
Design of an Alternative Method to Create Custom Ocular Prosthetics

A Technical Report submitted to the Department of Biomedical Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Raina Danielle Mourad

Spring, 2022

Technical Project Team Member

Jaden G. Stanford

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

William Guilford, Department of Biomedical Engineering

Stanford, Mourad. 06 05 2022

1

Design of an Alternative Method to Create Custom Ocular
Prosthetics

Authors: Jaden Stanford and Raina Mourad

Word count: 5877
Figures: 8

Equations: 2
Supplementary Figures: 10

References: 33

William H. Guilford
May 11, 2022

Stanford, Mourad. 05 06 2022

Design of an Alternative Method to Create Custom Ocular
Prosthetics

Jaden G. Stanford. Raina D. Mourad.

Abstract
Patients wear ocular prosthetics following the removal of an eye. While prosthetics do not restore vision, they protect the socket
from infection and improve quality of life by restoring the individual’s natural appearance. Custom prosthetics are preferred because
they have superior fit, comfort, and appearance; however, they are much less affordable than generically-produced stock
prosthetics. In addition, an ocularist must take a mold impression of the socket for a custom prosthesis, which is uncomfortable and
sometimes painful for patients. This report details the design of an alternative method to create custom ocular prosthetics to replace
traditional ocularist practices. By using photogrammetry, this technique eliminates the need for the mold impression step and
reduces resource use. The steps in the method include photogrammetry to image the face, 3D mesh generation, mesh modification,
and Boolean subtraction to deduce the shape of the prosthesis. The method relies on the assumption that the shapes of the natural
and lost eye can be compared to deduce the required prosthesis dimensions. The researchers validated this assumption by comparing
an individual's two eyes, finding that their average difference in thickness was 0.50 mm. The researchers optimized each step of
the aforementioned method and created a written manual of the process so that it could be used by others. This method was
developed primarily through testing with a computer-generated (CGI) model of a human female head and a real model of a human
male head; they were both artificially enucleated using a Gaussian function with known dimensions. To measure accuracy and
precision, the method was repeated for the CGI model five times. The average root mean square error between the thickness of the
5 prosthetics and the known dimensions was 0.43 +/- 0.05 mm, which is promising for initial tests.

Keywords: ocular prosthetics, ocularist, 3D technology, 3D modeling, photogrammetry, Boolean subtraction

Introduction
Significance
An estimated 5 million people worldwide wear prosthetic eyes
following surgical removal (enucleation) of an eye1. Eye enucleation is
often unexpected and distressing; the most frequent cause is traumatic
injury (commonly work-related), followed by ocular diseases, tumors,
and malformations2. Once the eye is removed, a surgeon will place a
ball implant into the socket to prevent drooping and maintain facial
symmetry. Although the globe of the eye is removed and the optic nerve
is severed, the muscles that control eye movement are left intact3.
Eventually, when the implant and subsequent prosthesis rest on top of
the eye muscles, they will move in the appropriate direction with the
contralateral eye, but the movement appears slower and slightly out of
sync. A cross-sectional image of the implant and prosthesis is shown in
Figure 1.

 Six to eight weeks post-surgery, a patient can be fitted for an ocular
prosthesis, which will lie slightly under the lids, similar to a contact
lens. Unlike the ball implant, the ocular prosthesis can be removed and
reinserted at will. Although ocular prosthetics do not function to restore
vision, they help to restore natural appearance. This is important for the
well-being of anopthalmic patients, as the loss of an eye is a life-
changing event and can lead to depression, anxiety, and overall reduced
quality of life5. In addition, eyes are the first part of a face that humans
are drawn to. In studies on infants’ gazing patterns, the results show a
clear preference for human eyes, emphasizing the significance of the
loss of such a vital part of the face6. While there are mass-produced,
generic (stock) ocular prosthetics, custom-made ocular prosthetics are
preferable due to their improved aesthetic appearance and comfort7.
Stock prostheses also have an increased risk of medical complications
due to the collection of socket secretion behind the prosthesis and in
front of the enucleated socket, which results from the imperfect fit

between the concave backing of the prosthesis and the shape of the
socket7.

Although they are preferred to stock prostheses, current custom ocular
prosthetics have limited accessibility for both patients and ocularists
who create them. The price of a custom prosthesis ranges from $2,500 -
$8,300, excluding the cost of surgery for eye removal8. Conversely,
stock prosthetics cost around $15 and do not require an extensive fitting
process. The low number of practicing ocularists also limits the number

Fig. 1. Cross-sectional diagram of the placement of an ocular prosthesis
and orbital implant4

Stanford, Mourad. 06 05 2022

3

of prostheses that can be made, as the creation of a custom ocular
prosthesis requires significant resources and time. For reference, there
are only 5 practicing ocularists in Virginia9.

The current custom ocular prosthesis fabrication technique is based on
dental procedures, which presents a number of challenges.10 The initial
step in custom prosthesis creation involves injecting a silicone-based
material into the enucleated socket to make an impression, which is then
left to harden and later extracted.11 This process is invasive,
uncomfortable for patients, and the impression material can be
traumatic for the tissue; in most cases patients have undergone
enucleation surgery as soon as 1 ½ months prior8. Ocularists use the
impression to create a wax mold, which they then use to create the
acrylic prosthesis. Next, they modify the prosthesis through smoothing
and polishing, and hand paint it to make its appearance more realistic.
Along with the process being painful for patients and inefficient, the
impression technique can also be inaccurate. Because the material has
to be pressed firmly into the socket, the folds and wrinkles of the tissue
may be flattened and the socket may be overfilled, losing detail12. Also,
since the impression material is only in the socket for a short period of
time, the orbicularis muscles do not have time to relax after their initial
contraction in response to the foreign body, which could result in an
inaccurate shape. Finally, the impression material does not provide any
information about the anterior shape or size of the eyeball.12

Furthermore, adult prosthetic eyes should be replaced every 5 years,
while children who are growing need to have their prosthesis examined
and potentially remade every 6 months5. According to a New Zealand
study, the most common age group for eye loss is 1-9 years old,
meaning a large number of the users of prosthetic eyes have theirs
replaced on a regular and frequent basis1. There are also many other
reasons why a prosthesis would need premature replacement, such as
complications that can arise from allergic reactions, conjunctivitis,
bacterial infections, post-enucleation socket syndrome, and other
conditions.5 Consequently, this presents a huge financial and
psychological burden for the patient.

The researchers aim to address the problems with the current design
approach by developing a more efficient, cheaper, and painless
technique to create an ocular prosthesis that would completely eliminate
the need for hydrocolloid impression materials. Rather, topographical
information about the empty socket such as the volume of the cavity
and fornices will be obtained using photogrammetry. Photogrammetry
is a non-invasive scanning approach that generates 3D mesh models
from a set of 2D images. Unlike the current process which requires
specialized skills and is inaccessible to the average physician,
photogrammetry is simple to learn, available in free software packages,
and can be used with any digital camera. In addition to reducing
discomfort, the method will also require fewer clinical visits, making
the process of obtaining a custom prosthesis much faster. The novel
process will reduce the costs associated with creating the prosthetic by
requiring minimal resources, making it more accessible for individuals
unable to afford custom prostheses. Once the desired mesh model is
generated using photogrammetry and modified, the shape of the
prosthesis will be determined by taking a Boolean difference between
the enucleated and natural eye. The consequence of continuing to
employ current methods is a drastic loss of time and money, and more
importantly, enduring pain and discomfort for patients.

Innovation & Prior Art
There has been limited success in previous attempts to design a suitable
method for creating an ocular prosthesis using noninvasive,

inexpensive, and efficient techniques. However, several groups have
attempted to advance the process digitally printing the iris or by 3D
printing a prosthesis based on a variety of imaging methods. Although
both of these methods offered improvements to current methods of
ocular prosthesis creation, they have significant limitations.

Printing the iris
Although there is no available method for digitally modeling a complete
ocular prosthesis, digital imaging technology has been used to improve
the aesthetic quality of ocular prosthetics, mainly through better
replication of the iris and sclera13. In the traditional method of creating
an ocular prosthesis, the intricate details of the iris and veins of the
sclera must be hand-painted. This is non-ideal because the aesthetic
quality of the prosthesis is highly dependent on the ocularist’s painting
ability; this is also a time-consuming process. Digital imaging
eliminates human error that could impact the appearance of the iris14. In
addition, while hand-painting the prosthetics produces good results,
digital photography offers greater color calibration technology and a
standardized process for obtaining accurate images13.

Multiple groups have explored techniques to digitally print the iris. In
one technique, a digital camera with a macro lens and ring flash
attachment was used to photograph images of a patient’s contralateral
iris13. Using graphics software, differences in color hue or contrast that
occurred during the image process were adjusted to match the true
color. After, the iris was printed on white paper using a laser printer,
and attached to an ocular prosthesis using monopoly syrup and a coat of
sealant painter’s spray15.
Although this innovation was successful, it only addresses aesthetics of
the prosthesis, and does not significantly improve accessibility and price
issues. It also does not reduce patient discomfort by adjusting the mold
cast process of obtaining eye shape. The proposed technique in this
paper will use the advantages of digital image processing in similar
ways, but focusing on the actual modeling of the shape of the prosthetic.
It is possible that printing the iris could eventually be used in
conjunction with the proposed photogrammetry process, to further
streamline the process of ocular prosthesis creation using digital
imaging in every step.

3D modeling and printing an ocular prosthesis
3D modeling in ocular prosthesis creation has been explored previously.
One method called cone beam computed tomography (CBCT)16 was
successful in generating a 3D computer model of the anophthalmic
cavity in an elderly patient. The cavity was digitally delineated with
segmentation and dilation of the outline, and the anterior curve of the
model was calculated from standard values of normal eyes. Afterwards,
the design was 3D printed using resin16. Although this method was
successful in generating an ocular prosthesis using digital models and
3D printing, the major limitation is that CBCT uses X-ray exposure.
Although CBCT uses a lower dose of radiation than conventional
computed tomography (CT), it still cannot be used safely in children
and pregnant women16. Considering the most common age for eye loss
is 1-91, CBCT would not be a viable option to use consistently and
safely in the creation of ocular prosthetics.

Other imaging techniques have been used to obtain 3D model data, such
as CT or magnetic resonance (MR) imaging; however, since these
methods are intended for clinical use, special software is needed to
obtain the data and use the images for 3D modeling. Another imaging
technique using light intensity 3D scanners reflects laser beams from
the surface of objects to obtain 3D model data17; however, this is also
inaccessible due to the necessity of a light intensity 3D scanner and

Stanford, Mourad. 05 06 2022

4

other specialized technology. Previous innovation in the use of 3D
printing in ocular prosthetics has led to important developments, the
most important being the recognition of the mold cast process as
unnecessary, uncomfortable, and time consuming since it can lead to
inaccurate impressions16. 3D printing has been validated through these
studies as a valid non-contact way of creating ocular prosthetics;
however, all of the aforementioned methods require highly specialized
technology, and would require skilled experts. They are also expensive,
as CBCT scanning requires costly equipment and is priced around $300
per scan18. There is still a need for a technique in creating ocular
prosthetics that uses 3D printing, but also an accessible and affordable
method of digital imaging. The 3D modeling method proposed in this
paper plans to meet this need.

Design Constraints and Criteria
By considering the issues that arise from current ocularist methods in
combination with prior art, a set of design constraints and criteria was
developed for this method. The criteria given highest priority were
dimensional accuracy, biocompatibility/safety, comfortable fit of the
prosthesis, and patient comfort during the process (Table S1). In order
to achieve dimensional accuracy, the researchers wanted to ensure that
the thickness of prosthetics created using the novel method were within
acceptable limits of the thickness of currently used prosthetics. The
prosthesis' horizontal length and vertical height will vary based on
patient differences in face size and shape; however, the average size of
a prosthesis was used as a baseline to confirm the prostheses created
using the new method are similar to that of the current process
(Supplemental Table 2). To address the biocompatibility criteria, the
custom ocular prosthesis was planned to be 3D printed in biocompatible
acrylic resin from Formlabs19. However, future research is necessary to
thoroughly evaluate the safety of the material on a mucosal membrane
such as the eye socket. Since the focus of the current research is to
validate that the method successfully produces an accurate prosthesis
model, working with patients and testing biocompatibility is outside the
scope of this paper, but will be considered in the future. Furthermore,
the researchers tested the accuracy of the prosthetics created using the
new method, as this would be important for comfort. A prosthesis that
effectively conforms to the crevices and shape of the socket will be a
comfortable fit for an anophthalmic patient. In the novel method, the
prosthesis is lightly smoothened before 3D printing, which removes any
jagged edges or sharp corners that may have resulted from Boolean
subtraction. Next, patient comfort during the process was considered.
Photogrammetry was chosen as the 3D scanning tool since it is a non-
contact imaging method and does not require the use of radiation-based
scanning devices. The benefit of this is two-fold. First, photogrammetry
ensures that the method is painless for patients and ocularists can forgo
the use of impression materials. Secondly, the method is safe since there

is no need for harmful exposure to radiation. Since growing children
may need to replace their prosthesis multiple times a year, avoiding
radiation and reducing the cost was a priority for the researchers.

The secondary criteria the researchers considered are the efficiency,
accessibility, and financial cost of the method. Because the current
method requires multiple clinical visits and the use of disposable single-
use materials, the researchers sought to improve upon this by
minimizing the computational time and using as little disposable
resources as possible. Although the prosthesis generated using
photogrammetry and 3D modeling will still need to be hand-painted by
an ocularist, there is no need for impression materials. The method can
also be performed in 1-2 clinical visits and computational times for the
mesh generation are only about 1 hour. After mesh generation, the
model editing and 3D printing may take up to 2 days. Additionally, in
order to be implemented into ocularists’ clinics, the researchers
attempted to design the method to be accessible to anyone, without
needing background knowledge about 3D modeling. In comparison to
previous work that incorporated 3D imaging and modeling into
ocularistry, the method discussed here does not require large, expensive
machinery that may be difficult to operate. Rather, photogrammetry can
be performed using an iPhone camera and the modeling software is
highly user-friendly. Minimizing the financial cost of the method was
another important criterion. Since the current method costs patients up
to $8,300 at each fitting, patients unable to afford these prices may be
forced to purchase a stock prosthesis, which has more health risks and is
less aesthetically pleasing20. In the new method, the chosen
photogrammetry software, RealityCapture, costs $3,750 for an
unlimited license to create 3D mesh models, or approximately 50 cents
per model without a subscription21. The 3D modeling software,
Meshmixer, is free and can be downloaded on any Windows operating
system22.

Results

The flowchart in Figure 2 shows an overview of the steps in the
proposed alternative method devised by the researchers. For each step,
the researchers optimized the process by testing different settings.
Included in the supplements is the manual (supplementary material 9)
detailing the specific steps and instructions for this method, with
detailed explanations and images for each part.

Photogrammetry
The first step in the method is photogrammetry. This involves taking
images of the face to generate a 3D mesh rendering. The
photogrammetric measurement principle is to acquire many images of
an object from different viewpoints and identify common physical

object points among
multiple photos23. From
these corresponding
points, 3D coordinates of
objects can be
reconstructed through
triangulation. By taking
a picture from at least 2
different locations and
measuring the same
point in each picture, a
line of sight is identified
from each camera
location to the target24. If

Fig. 2. Flowchart showing the steps in the proposed alternative method

Stanford, Mourad. 06 05 2022

5

the camera location and line of sight direction are known, the lines can
be mathematically intersected to produce the XYZ coordinates of each
target point20,. By taking many photos, photogrammetry is able to
identify XYZ coordinates of the 3D object and generate a mesh.
Photogrammetry is governed by the coplanarity constraint: for two
cameras, the viewing rays through corresponding image points must be
coplanar, because they intersect at the 3D point23. This means that while
taking photos of human eyes, it is important to rotate on a constant
horizontal plane around the head. Other factors like lighting and camera
resolution are also important to consider, as good lighting and higher
camera resolution makes it easier for the photogrammetry software to
identify common points in images, and will result in a higher resolution
mesh.

Photogrammetry was selected over other imaging techniques to model
an enucleated socket because of its ability to generate effective 3D
models using a non-contact method and because it does not require
expensive resources. Compared to similar imaging techniques such as
LiDAR or structured light that require hardware that may amount to
thousands of dollars, photogrammetry can be performed with a modern
cell phone and freeware, making it easiest to implement. More
importantly, photogrammetry is non-invasive and does not expose the
patient to any harmful radiation. It is important to note that LiDAR
could potentially be used with a smartphone in this application instead
of photogrammetry; however, it requires a 3D scanner that only the
latest iPhone models (12/13 Pro) have, and which was unavailable to
the researchers at this time. Many of the apps are also new and require
payment to create high-quality scans or to export them27 . This form of
LiDAR is not as widely accessible as photogrammetry, although it
would be relevant to investigate in the future when it becomes available
and is tested on more phone models. Because photogrammetry has
never been used to image eye sockets, the researchers performed
various tests to optimize the imaging conditions to generate the most
accurate mesh models.

Lens type
First, a macro lens was chosen to image the faces of several non-
enucleated subjects with their eyes open. However, the macro lens’
short depth of field proved to be incompatible with photogrammetry.
The images taken using the macro lens failed to capture the details of
the eye socket and the mesh model was insufficient for Boolean
subtraction (Figure S1). An iPhone 11 Pro camera was then used to
image non-enucleated subjects with their eyes open. The mesh models
generated using these images were significantly better (Figure S2).

Lighting
Proper lighting is an important factor in photogrammetry. Images were
taken of the same non-enucleated subjects using artificial and outdoor
lighting, and mesh models were created. After qualitative evaluation, it
was determined that there was only a slight difference between the two
lightings, with the natural outdoor lighting being superior. One other

adjustment had to be made due to the glare that was created from light
on the eyeball, which was preventing proper mesh reconstruction. The
researchers compared the models of closed eyes to open eyes and found
that closed eyes significantly improved resolution of the mesh, and that
the shape of the eye could still be determined by looking at the shape of
the eyelid. After this, researchers imaged exclusively closed eyes. To
further test lighting, outdoor lighting and a ring light with three
settings–white, warm white, and warm yellow– was used to generate
meshes (Figure 3). There was only a slight difference in the quality of
the models generated using different ring light settings, and outdoor
lighting was deemed superior due to slightly better observed rendering
of skin texture, as well as better rendering of eyelid curvature. Because
of this advantage in quality, outdoor lighting was determined to be the
optimal setting, with any of the ring light setting as a viable alternative
if outdoor lighting is inaccessible. It was noted that artificial indoor
lighting produced the worst results.

Mesh Generation
The next step in the method is mesh generation, which involves using
the images from photogrammetry and using them to generate a 3D mesh
rendering of the face. The software selected to use for this step is
Reality Capture21, because it is free and relatively easy to use. After
importing the image set, Reality Capture aligns the images, and uses the
alignment to generate a 3D mesh rendering of the object. The main
optimization problem for this step was computational time, as
generation of the 3D mesh takes time and computational power, and
varies depending on the number of images used. The efficiency of the
method is dependent on the computational time for mesh generation
from the 2D image set. Other factors such as 3D printing and mesh
model editing will also affect the efficiency of the method, but the
number of photos used to generate an accurate mesh model within a
reasonable timeframe is an easily adjustable factor. Therefore,
photogrammetry was tested on the same object six times using a
different number of images each time. The computational time was
recorded with each iteration and plotted against the number of images in
the set (Supplemental Figure 3). Researchers concluded that 60-80
images was optimal, as this had a computation time of ~60-90 minutes
and produced a high-quality mesh with few observable artifacts.
Increasing the number of images beyond this did not appear to improve
the mesh quality or reduce artifacts, but significantly increased
computational time.

Modifying the Mesh
The next step in the method involves modifying the mesh obtained in
the previous step in a software called Meshmixer. Like Reality Capture,
Meshmixer was selected because it is free and the interface is user
friendly. Upon importing the mesh, any artifacts are removed. Then, the
mesh is properly aligned in the Meshmixer plane. It must then be made
solid to allow for later Boolean subtraction. It is also scaled to match its
real-world dimensions, which is imperative for later accuracy in
prosthesis shape.

Fig. 3. 3D mesh models created with different ring light settings including a) warm yellow, b) warm white, c) white and d) outdoor lighting

Stanford, Mourad. 05 06 2022

6

Deducing the Size of the Prosthesis
The final step involves Boolean subtraction in Meshmixer. This relies
on the assumption that the normal eye and enucleated eye can be
superimposed, and the prosthesis can be determined by comparing the
difference in shape. First, the enucleated face model is duplicated and
offset vertically from the original model. The duplicated model is then
mirrored across the center vertical line, so that it has two normal eyes.
The duplicated model and enucleated model are then aligned, so that the
enucleated eye of the original model is superimposed with the normal
eye of the duplicated model. The areas of the models other than the
superimposed eyes are then removed to reduce computational
time. Then the Boolean difference tool is used, which is a mathematical
operation that outputs the areas where the two models do not intersect.
The prosthesis shape is obtained after removing noise artifacts from this
output and smoothing it to get rid of any sharp edges.

Testing Methods of Enucleation
Researchers decided to create an artificially enucleated model to test on,
which was imperative to be able to test the method’s accuracy and
precision. By indenting the eye artificially, the exact dimensions of the
indentation could be recorded and then compared to the dimensions of
the prosthesis obtained through the method. A few different methods of
enucleation were tested. A CGI head from Turbosquid was used to
create the artificially enucleated models28.

Manual indentation
The model was first enucleated by manually indenting the coordinates
of one eye socket (Figure S4). However, this was determined to be
ineffective since the socket appeared ‘blocky’ and measuring the size
and shape of the indentation was imprecise and thus difficult to analyze.

Boolean subtraction with prosthesis
Next, an ocular prosthesis was designed in AutoCAD software using the
average dimensions of a prosthesis (Figure S5). Boolean subtraction
was performed between this ocular prosthesis with known dimensions
and the CGI head model to create an enucleated socket (Figure S6).
However, the size and shape of the enucleation was imprecisely
quantifiable since accuracy was lost during Boolean subtraction.

Indentation with Gaussian function
Finally, a Gaussian function was used to artificially enucleate the right
eye socket of the CGI model as shown in Figure 4a (See Materials and
Methods). This was determined to be the most accurate and measurable
method to artificially enucleate a socket, since the subtracted thickness
could easily be calculated at any given point using the function.

Testing the Method on the Artificially Enucleated CGI Model
The enucleated model created by indenting the socket using a Gaussian
function was then printed in polylactic acid (PLA) using fused
deposition modeling (FDM) and spray-painted in matte gray to reduce
the shine from the PLA (Figure 4b). The model was then imaged
outdoors in midday, non-direct sunlight using photogrammetry. Then, a
mesh model of the printed, enucleated CGI was generated using Reality
Capture (Figure 4c). The model was imported to Meshmixer,
duplicated, and mirrored across the vertical plane through the nose
(Figure 4d) (see Materials and Methods). Afterwards, the two models
were aligned and a Boolean difference was performed to obtain the size
of the ocular prosthesis.

Assessment of Method Accuracy and Precision
After optimization of the method, it was important to test its accuracy
and precision. Once the size and shape of the prosthesis was determined
using Boolean difference, the thickness of the prosthesis at every point
was calculated using a Python script. These reconstructed thickness
values were plotted against the known dimensions from the Gaussian
indentation and compared (See Fig S10 for code). The method was
repeated four more times on the same CGI model to test precision. Root
mean square error (RMSE) was calculated between the reconstructed
and known points. The average RMSE for the five tests was 0.43 +/-
0.05 mm. A full table of results for the 5 iterations is shown in
Supplemental Table 3. An example of a prosthesis and its subsequent
plot from the fifth iteration of the method is shown in Figure 5.

Fig. 5. An ocular prosthesis obtained from using the novel method on an
artificially enucleated CGI head model and plots of the prosthesis thickness
values compared to known Gaussian indentation dimensions

Fig. 4. CGI head model with left socket enucleated using a Gaussian function in a) Meshmixer, b) 3D printed, c) re-imaged in RealityCapture, d) modified
in Meshmixer

Stanford, Mourad. 06 05 2022

7

Boolean Subtraction of Non-Enucleated Real Model
This method is based on the theory that the contralateral eye can be
used as an accurate replica of the enucleated eye. However, real faces
may not be perfectly symmetrical. To test the validity of this
assumption, researchers performed Boolean subtraction between two
non-enucleated eyes of a mesh model created using the photogrammetry
technique described in this paper on a male model. The average
thickness of the noise artifacts was found to be 0.50 mm. These results
are plotted in Figure 6, which also shows that there were many points
with no detectable difference between the two eyes. However, this test
was only performed a single time on one model. More data is needed to
thoroughly assess the accuracy of using the contralateral eye as a model
for the enucleated eye.

Boolean Subtraction of Enucleated Real Model
The method was then tested on an artificially enucleated real face
model. After imaging a subject using photogrammetry and obtaining a
mesh model, the same Gaussian function used to create the enucleation

in the CGI model was applied. This
created an artificially enucleated real
face model (Figure 8). The method
was used to modify the mesh and
perform Boolean subtraction to

obtain the ocular prosthesis shape. The thickness values at every point
of this ocular prosthesis were measured and compared to the Gaussian
indentation in the same way the CGI head model was tested. The
resulting prosthesis and plot of reconstructed and known values is
shown in Figure 7. The average RMSE between the prosthesis and
Gaussian indentation was 0.29 mm, which was superior to the CGI
model tests; however, more tests are needed to confirm this trend.

Discussion

The results of this paper provide the foundation for a novel, alternative
method to create custom ocular prosthetics. This alternative method also
meets the design criteria of being efficient, accurate, accessible, and
comfortable for patients. By shifting modeling and production digitally,
this method eliminates the need for the uncomfortable mold impression
step traditionally used by ocularists to determine the shape of a custom
prosthesis for a patient. Additionally, the elimination of the impression
mold and the following steps reduces the amount of physical resources
needed to create the prosthesis, which saves time and potentially reduces
cost. This would also reduce the number of appointments needed to create
a prosthesis for a patient; instead of the current 3-4 appointments29, this
method would likely only require 1. Overall, a full iteration of the
method costs less than $1 per case, and it takes around ~2.5 hours to
obtain the shape prosthesis from start to finish. All of the software is free
to download and is compatible with Windows OS. Through assessing the
method accuracy and precision using the CGI model, it was found that
the average RMSE was 0.43 +/- 0.05 mm, which is a promising start for
both accuracy and precision. The RMSE for the real enucleated model
was even less at 0.29 mm. This method also obtains accurate information
about the anterior portion of the prosthesis and prevents measurement
error due to overfilling during the impression step, which is advantageous
compared to current methods. There were no available values in literature
to determine how much error is physiologically significant or acceptable
in ocular prosthesis design, but this is something that would be
investigated in future work, perhaps in combination with patient trials.
For perspective, the average prosthesis is about 9 mm thick30, and the
average RMSE was less than half a mm.

Fig. 6. Thickness values for each point where a difference existed between two non-enucleated, natural eyes

Fig. 7. Results after testing the method on an enucleated socket from a
real face mesh model, showing the reconstructed prosthesis and
comparison of thickness values and known dimensions from Gaussian
indentation

Stanford, Mourad. 05 06 2022

8

Next steps
The proposed method is limited as there is still work to be done to finalize
it. First, there needs to be more tests and iterations done with real faces.
Although certain steps in this method (photogrammetry, mesh
generation) were optimized for use with real faces, much of the testing in
the mesh editing and Boolean subtraction steps was done using the CGI
model. Testing on scans of more real faces that have been artificially
enucleated would improve the optimization of the method and perhaps
reveal how to better align different face shapes, as in reality most faces
are not symmetrical, and only one real face was tested in this project.

Additionally, it would be helpful to test the use of different Gaussian
functions and other potential indentation techniques with this method. It
is possible that a different indentation technique or shape could lead to
different resulting errors or different imaging requirements during
photogrammetry, which would need to be accounted for. The Gaussian
function, though useful for testing in this project because it was a known
value, is not a perfect approximation in shape for an enucleated socket. It
could also be useful in this sense to perhaps take a facial scan of a patient
with a lost eye and then 3D print that model to use in testing. Testing on
more faces and with different shapes of enucleated sockets would also
give the method more realism, as ocularists report that all enucleated
sockets are unique and therefore each prosthesis has slightly different
shape29.

Once the various steps in the proposed method are improved, it would be
ideal to begin exploring 3D printing of the prosthetics. The ideal outcome
would be to take the 3D model of the prosthesis generated using the
proposed steps of this method and 3D print it, after which it would be
usable by a patient.3D printing the prosthetics would also require
extensive research into printing material biocompatibility, as the
prosthesis is in contact with the eye socket and cannot leach or degrade
over time in a way that could cause harm. There are a number of
biocompatible printing materials currently available, an example is the
Formlabs BioMed resin, which is USP Class VI certified and supported
by an FDA Master File19. This resin would be printed using
stereolithography (SLA) which is a higher resolution than the fused
deposition modeling (FDM) printing used for the CGI model; the
prosthetics would need to be printed in SLA so that they have a smoother
finish. Notably, the incorporation of 3D printing at the end of the method
would increase the cost of the method and decrease accessibility. The
BioMed resin filament costs $349 per liter (1L of resin could be used to
print several prosthetics), while a SLA printer starts at $3,75031.
However, this is still comparable to the current cost of even one custom
prosthesis, which is ~$2000 - $800020.

Future work
In the future, it would be ideal to begin testing the finalized method with
patients. This would be necessary before the method could be
incorporated into any ocularist clinics. Working with patients could
involve having them try the prosthetics on and report levels of comfort,
or how similar the prosthetics are to ones they have worn in the past. This
would also help determine how small the RMSE needs to be so it is
undetectable when the prosthetic is worn.

In its current state, this method does not include any steps to replace or
replicate the aesthetic decoration part of prosthetic design. Currently,
ocularists hand-paint the iris and sclera onto the prosthetic to match the
patient’s contralateral eye. This requires significant time, and also means
that the creation of the prosthetic is highly dependent on the skill of the
ocularist. One way that this method could improve on this process would
be to incorporate other digital imaging methods, like printing the iris. In

prior art, there was a method discussed where the iris and sclera were
printed onto the prosthetic after it was made using images of the patient’s
eye13. If this method were combined with the proposed method, the whole
process of prosthetic creation would be digital, which would further
streamline creation and minimize patient contact.

Limitations
One of the main limitations of this alternative method is that patients who
have lost both of their eyes could not benefit, because the foundation of
this method is using the contralateral eye as a base of comparison. This
is also a limitation of current practice, as ocularists also use the
contralateral eye as standard. There is the potential that with further
research, this alternative method could be extended to patients who have
lost both eyes by using other eyes as standard, but it would require
additional work to determine the necessary shape and desired appearance.
In a similar sense, this method would become more complex with more
asymmetrical faces, and for cases where the enucleated socket has a more
unique shape due to conditions like fat loss around the eye29. Using the
shape of the eyelid to determine prosthesis shape is an additional
limitation, as the smoothness of the eyelid can obscure small features
within the socket. This could potentially be accounted for by using
images of the patient’s enucleated socket to sculpt these features into the
prosthesis at the end. Another limitation of this method is that it is not
fully automated, and relies on the use and upkeep of Reality Capture and
Meshmixer software. In the future, it would be ideal to design one piece
of software that could perform all the functions of the method from the
original photogrammetry images (mesh generation, editing, and Boolean
subtraction).

Alternative applications
While the focus of this project was on an alternative process to create
custom ocular prosthetics, the technology used and developed has
potential alternative applications. 3D modeling could be used in many
other aspects of prosthetic creation to streamline creation. For example,
scanning and modeling the mold trays or old prosthetics could allow
ocularists to have the exact shape of old prosthetic designs. This could be
helpful when designing new prosthetics for patients, or to offer an
alternative between a stock prosthesis and a fully custom one. If
ocularists kept a repository of old designs they have made for previous
patients, they could offer them to patients who are not able to pay for a
fully custom one. This method could also be relevant in the creation of
other prosthetic devices, especially in any case where one side of the body
needs to match the other.

Materials and Methods
Materials
Software and Hardware
The two softwares used in this project are RealityCapture and Autodesk
Meshmixer, which both have minimum system requirements.
RealityCapture requires a 64-bit machine with at least 8 GB of RAM, 64-
bit Windows version 7+, as well as a NVIDIA graphics card with CUDA
3.0+ capabilities and 1GB VRAM32. RealityCapture can still be used
without a NVIDIA graphics card to register images, but a NVIDIA GPU
is needed to create a textured mesh. Meshmixer requires Windows
version 7+, 4GB of system RAM, and an integrated or discrete graphics
card with updated drivers22. The Meshmixer and RealityCapture Support
FAQs and support pages provide more information on installation
instructions and troubleshooting. Three computers were used for the
entirety of the project: (1) A desktop with an AMD Athlon(™) X4 880K
Quad Core Processor (4.00 GHz) with 16 GB of RAM and a NVIDIA
GeForce GTX 1050 Ti graphics card; (2) A desktop with an Intel(R)

Stanford, Mourad. 06 05 2022

9

Xeon(R) W-2133 CPU @ 3.60 GHz, with 32 GB RAM and a NVIDIA
Quadro P2000 GPU; and (3) a Surface Book 2 laptop with an Intel(R)
Core(™) i7-8650U CPU @ 1.90 GHz processor with 16 GB of RAM and
a NVIDIA GeForce GTX 1050 graphics card. All three computers had
Windows 10 Pro installed and 64-bit operating systems. Meshmixer
version 2.5 and RealityCapture version 1.2 were used for the duration of
this project.

Two phone cameras were used for photogrammetry to image faces, (1)
an iPhone 11 Pro and (2) an iPhone 12. The default back camera (1x) was
used in each instance, and images were taken outdoors during the daytime
approximately 6-10 inches from the face. The macro lens that was tested
is the 25 mm M-Series macro lens from Moment for the iPhone 11 Pro.
The ring light that was used to test artificial lighting was a 10-inch LED
ring light purchased from Amazon33. The three lighting levels were
white, warm white, and warm yellow. All settings were used at the max
brightness level. More details on the imaging method are discussed in
Methods.

Enucleated Models
The female CGI head model was obtained online as a .obj file from
Turbosquid.com28. First, parts of the model were cut off and discarded so
that it resembled a slab of the face including just the eyes. Then, it was
dimensioned to be 150 mm wide (similar to that of a real head based on
measurements researchers took). An image of this model with
dimensions is shown in Supplemental Figure 7.

The CGI head model was artificially enucleated using a code program
that directly edits the obj file containing the mesh points. The code for
indenting the CGI head is shown in supplemental material 10. A 3D
Gaussian function was used to indent the right eye, by subtracting the
function from every point in the mesh. The Gaussian function used for
this indentation is shown in Eq 1.

X1 and Z1 indicate the center point of the enucleated eye, which was
found by using the ‘analysis’ -> ‘measure’ tools in Meshmixer to look at
xyz coordinates of individual points on the surface of the mesh. The final
enucleated CGI model is shown in Figure 8b. This model was 3D printed
using fused deposition modeling (FDM) on a LulzBot printer with
polylactic acid (PLA) filament. The printed model is shown in Figure 4b.
The male enucleated model was created using photogrammetry by
imaging a real face. This initial scan is shown in Supplemental Figure 8.
Researchers followed the steps described in Methods up to Boolean
subtraction. Once the 3D mesh of the face was obtained and edited, the
model was dimensioned to 150 mm wide, similar to the CGI model. The
eyelashes were also removed and smoothed using the ‘select’ and
‘discard’ tools in Meshmixer, followed by the ‘select’, ‘deform’, and

‘smooth’ tools. The eyelashes were highlighted and discarded with brush
size 15. The final model is shown in Figure 8a.

This model was enucleated on the left eye using similar code, but with
different values for the center point of the Gaussian function. This code
is shown in supplemental material 10. The Gaussian equation is shown
in Eq 2 below.

The final enucleated model using a real face is shown in Figure 8b.

Methods
See supplement 9 for the detailed instruction manual for ocular prosthesis
creation.

End Matter

Author Contributions and Notes
The authors declare no conflict of interest.

Acknowledgements
The authors would like to thank Dr. William Guilford, our biomedical
engineering faculty advisor, for providing guidance and feedback
throughout the research. We would also like to thank Dr. Allen and Dr.
Barker, our Capstone instructors for the past year.

References
1. Pine, K. R., Sloan, B. H. & Jacobs, R. J. Clinical Ocular Prosthetics.

(Springer International Publishing, 2015). doi:10.1007/978-3-319-
19057-0.

2. Modugno, A. et al. Ocular prostheses in the last century: a
retrospective analysis of 8018 patients. Eye 27, 865–870 (2013).

3. Moshfeghi, D. M., Moshfeghi, A. A. & Finger, P. T. Enucleation.
Surv. Ophthalmol. 44, 277–301 (2000).

4. LA Custom Prosthetic Eye. https://ocularpro.com/
https://ocularpro.com/the-difference-between-a-stock-and-custom-
prosthetic-eye/.

5. Rokohl, A. C. et al. Socket discomfort in anophthalmic patients—
reasons and therapy options. Ann. Eye Sci. 5, 36–36 (2020).

6. Dupierrix, E. et al. Preference for human eyes in human infants. J.
Exp. Child Psychol. 123, 138–146 (2014).

Fig. 8. The real face 3D mesh model, which was created using the novel method, originally has no enucleated sockets a) and is later artificially enucleated
using the Gaussian function in equation 1 shown in b) and highlighted by the red circles

Stanford, Mourad. 05 06 2022

10

7. Chao, J. Stock Eye vs. Custom Prosthesis. Prosthetics Advancement
Lab http://www.prostheticslab.com/blog/2018/5/30/stock-eye-vs-
custom-prosthesis-before-and-after.

8. Prosthetic Eye: Cost, Care, Surgery, and More. Healthline
https://www.healthline.com/health/prosthetic-eye (2018).

9. American Society of Ocularists - Search by State/Province.
https://www.ocularist.org/find_ocularist_search.asp?&tab=1.

10. Thakkar, P., Patel, J., Sethuraman, R. & Nirmal, N. Custom Ocular
Prosthesis: A Palliative Approach. Indian J. Palliat. Care 18, 78–83
(2012).

11. Cevik, P., Dilber, E. & Eraslan, O. Different Techniques in
Fabrication of Ocular Prosthesis: J. Craniofac. Surg. 23, 1779–1781
(2012).

12. Chinnery, H., Thompson, S. B. N., Noroozi, S. & Dyer, B. Scoping
review of the development of artificial eyes throughout the years.
Edorium J. Disabil. Rehabil. 3, 1–10 (2017).

13. Zoltie, T., Bartlett, P., Archer, T., Walshaw, E. & Gout, T. Digital
photographic technique for the production of an artificial eye. J. Vis.
Commun. Med. 44, 41–44 (2021).

14. Jain, S., Makkar, S., Gupta, S. & Bhargava, A. Prosthetic
Rehabilitation of Ocular Defect Using Digital Photography: A Case
Report. J. Indian Prosthodont. Soc. 10, 190–193 (2010).

15. Artopoulou, I.-I., Montgomery, P. C., Wesley, P. J. & Lemon, J. C.
Digital imaging in the fabrication of ocular prostheses. J. Prosthet.
Dent. 95, 327–330 (2006).

16. Ruiters, S., Sun, Y., de Jong, S., Politis, C. & Mombaerts, I.
Computer-aided design and three-dimensional printing in the
manufacturing of an ocular prosthesis. Br. J. Ophthalmol. 100, 879–
881 (2016).

17. Ko, J., Kim, S. H., Baek, S. W., Chae, M. K. & Yoon, J. S. Semi-
automated fabrication of customized ocular prosthesis with three–
dimensional printing and sublimation transfer printing technology.
Sci. Rep. 9, 2968 (2019).

18. Pallaver, A. & Honigmann, P. The Role of Cone-Beam Computed
Tomography (CBCT) Scan for Detection and Follow-Up of
Traumatic Wrist Pathologies. J. Hand Surg. 44, 1081–1087 (2019).

19. 3D Printing Materials For Healthcare. Formlabs
https://formlabs.com/materials/medical/.

20. Prosthetic Eye: Cost, Care, Surgery, and More. Healthline
https://www.healthline.com/health/prosthetic-eye (2018).

21. RealityCapture - CapturingReality.com.
https://www.capturingreality.com/realitycapture.

22. System Requirements Meshmixer 3.5.
https://www.meshmixer.com/download.html.

23. Schindler, K. Mathematical Foundations of Photogrammetry. in
Handbook of Geomathematics (eds. Freeden, W., Nashed, M. Z. &
Sonar, T.) 1–14 (Springer, 2020). doi:10.1007/978-3-642-27793-
1_63-1.

24. What is Photogrammetry? – Geodetic Systems, Inc.
https://www.geodetic.com/v-stars/what-is-photogrammetry/.

25. Hartley, R. I. & Sturm, P. Triangulation. Comput. Vis. Image
Underst. 68, 146–157 (1997).

26. Deli, R. et al. Three-dimensional methodology for photogrammetric
acquisition of the soft tissues of the face: a new clinical-instrumental
protocol. Prog. Orthod. 14, 32 (2013).

27. Here are some hot apps to try on your iPhone Pro with LiDAR.
iMore https://www.imore.com/best-apps-lidar (2020).

28. Free 3D Free Bust Head Base Mesh model - TurboSquid 1832518.
https://www.turbosquid.com/3d-models/3d-free-bust-head-base-
mesh-model-1832518.

29. American Society of Ocularists Conference. (2021).
30. Hoang, H. P. et al. Factors affecting dimensions of the 3D ocular

prosthesis in patients rehabilitated at Mahidol University. 6.
31. 3D Printing Guide: Types of 3D Printers, Materials, and

Applications. Formlabs https://formlabs.com/3d-printers/.
32. OS and hardware requirements. RealityCapture Support

https://support.capturingreality.com/hc/en-
us/articles/115001524071-OS-and-hardware-requirements.

33. Amazon.com : 10" Ring Light MACTREM LED Light Ring with
Tripod, Clamp & Phone Holder for YouTube Video, Makeup,
Selfie, Photography, Live Streaming, Tiktok, 3 Light Modes & 10
Brightness Level : Electronics.
https://www.amazon.com/MACTREM-YouTube-Photography-
Streaming-Brightness/dp/B08F36R7Y1.

Stanford, Mourad. 06 05 2022

11

Supplemental Materials

Supplemental Table 1: Pugh Chart

Baseline Alternative 1 Alternative 2 Alternative 3 Alternative 4

Design Evaluation
Criteria

Weight
Factor

Current
custom

prosthesis

Custom prosthesis
made using

structured light
scanning

Custom prosthesis
made using Cone
Beam Computed

Tomography

Custom prosthesis
with a digitally

printed iris

Custom prosthesis
made using

photogrammetry

Dimensional accuracy 3 0 S S S S

Safety/biocompatibility 3 0 - - S -

Comfortable fit 3 0 S S S S

Patient comfort during
prosthesis creation

3 0 + + S +

Production cost 2 0 - - S +

Production time 2 0 + + + +

Resource use 2 0 + + + +

Applicable to special cases 1 0 + + S -

Aesthetically pleasing 1 0 S S - S

Time required to learn
method/expertise

1 0 - - - +

Reusable model 1 0 + + + +

Total +

0 5 5 3 6

Total -

0 3 3 2 2

Total S

0 3 3 6 3

Total

0 3 3 3 8

Supplemental Table 2: Design Constraints
Need # Design Constraint/Metric Unit of Measure Acceptable Ideal Value

1a Prosthetic horizontal width mm 24 +/- 2 24+/- 0.5

1b Prosthetic vertical height mm 23 +/- 2 23 +/- 0.5

1c Prosthetic thickness mm 9 +/- 2 9 +/- 0.5

1d Prosthetic volume ml 2 - 3 2.2-2.5

1e Prosthetic mass g 2.36-3.54 2.60-2.95

2 Alignment metric % >90% >95%

3a Model computational time Minutes <180 minutes <90 minutes

3b Number of images used # of images 50 - 100 50 - 70

4a Software cost Dollars <$500 $0

Stanford, Mourad. 05 06 2022

12

4b Time required to install/learn Minutes <360 <120

4c Software compatibility Yes/No Windows OS Windows, Linux, MacOS

5 Aesthetically pleasing/accurate Yes/No Yes Yes

Supplemental Fig. 1. Testing photogrammetry using a macro lens. a) The non-enucleated eye being tested and b) 3D mesh model generated

Supplemental Fig. 2. 3D mesh model generated using an iPhone 12 1x camera lens

Stanford, Mourad. 06 05 2022

13

Supplemental Fig. 3. Computational time for mesh generation with different image set sizes

Supplemental Fig. 4. Enucleated socket model in Meshmixer created by manipulating the coordinates of the obj file to indent the eye between 0.1
and 0.4 centimeters

Supplemental Fig. 5. 3D printed ocular prosthesis created in AutoCAD and used for Boolean subtraction to create an enucleated socket model

Stanford, Mourad. 05 06 2022

14

Supplemental Fig. 6. Enucleated CGI socket model in Meshmixer created by performing boolean subtraction between the prosthesis shown and the
original non-enucleated socket model

Supplemental Table 3: RMSE values for each prosthesis created using the novel method

Prosthesis RMSE

1 0.42 mm

2 0.54 mm

3 0.43 mm

4 0.41 mm

5 0.38 mm

Average RMSE: 0.43 +/- 0.05 mm Range: 0.38–0.54 mm

Stanford, Mourad. 06 05 2022

15

Supplemental Fig. 7. Dimensions CGI head model in Meshmixer with two non-enucleated sockets

Supplemental Fig. 8. Original 3D mesh model of a real face with two non-enucleated sockets before model editing

Stanford, Mourad. 06 05 2022

16

Supplemental material 9: Detailed manual of steps in ocular prosthesis creation

Instruction Manual for Custom Prosthesis Creation
Photogrammetry
The first step involves imaging the face. A smart phone camera is suitable enough for these pictures, although
a camera with higher resolution could be used. Approximately 60-80 pictures were taken for each model
using an iPhone 11 Pro/ iPhone 12 camera, 6-10 inches away from the face. Pictures were taken while
revolving around the individual, keeping the height of the camera constant, so that the images showed the face
from all angles. The pictures were taken outdoors in the afternoon on a sunny day, though not in direct
sunlight. The individual was positioned so that shadows on the face were minimized while taking pictures.
The individual was instructed to keep their eyes closed and face relaxed, as movement/fidgeting could disrupt
later image alignment.

Mesh Generation
The next step involves generating a 3D mesh of the face,
using the images from the previous step, which uses the
RealityCapture software. This process is relatively
straightforward and involves minimal input from the user
after importing the images. Upon opening RealityCapture,
researchers registered with a free account. First, the images
were imported using the ‘inputs’ tool in the workflow tab.
Next, in the ‘alignments’ tab, the ‘align images’ function
was used to generate a point cloud rendering of the object
in 3D. A picture of what this step looks like is shown to the
right. At this point, if some images can not be aligned, they
will show up in a different color to indicate failures. These images can be selected from the image list on the
left and deleted so they will not be used during the mesh generation. The reconstruction region can be
specified by selecting the ‘set reconstruction region tool’
within the ‘mesh model’ menu, and editing the box dimensions.
This will designate which parts of the point cloud will be
generated into a full mesh, so certain parts of the face like the
eyes can be selected, reducing computation time as well. Next,
in the ‘mesh model’ tab, a 3D mesh can be generated using the
‘high detail’ setting in the create model section. An example of
this is shown in to the right. After this, the .obj file containing
the mesh can be generated using the ‘export’ button in the main
menu. It should be noted that users will have to pay for the
licensing of their mesh to export it as a .obj, which costs
around $0.40 - $0.70 per .obj file; alternatively, a lifetime subscription is available for purchase.

Mesh Modification
The next step involves importing the .obj file containing the mesh into Meshmixer, which is the software used
for all further 3D modeling for this method. Several example images are included for these next two sections
with settings visible, as the manipulation is a bit more complex. As a starting note, the object browser where
mesh objects can be selected can be toggled visible by pressing ctrl + shift + o. Additionally, camera controls
can be toggled by holding down the space bar. The ‘import’ tool was first used to load in the .obj file. If the
mesh is over 150,000 vertices, researchers reduced the mesh detail to shorten computation time by using the
’select’ tool, selecting the entire object, and then using ‘edit’ and ‘remesh’ to reduce the mesh between 20 -
40%. Upon importing the mesh, the face might be rendered in a variety of different directions. First, the ‘edit’
and ‘transform’ tools were used to spin the head so that it was oriented

Stanford, Mourad. 06 05 2022

17

facing the proper direction. Next, to get the head
flat to the bottom plane in Meshmixer, a pivot was
created by using the ‘edit’ and ‘create pivot’ tools
(right image). In the create pivot menu, the
placement mode was set to surface point, the
coordinate frame was set to world frame, and the
link to target box was selected. The flat lower
surface of the face was clicked, and ‘drop pivot’
was selected to place the pivot. Next, the ‘edit’ and
‘align’ tools were used to align the face to the
world origin. For source, pivot was selected (the
pivot on the face must be clicked after this is
selected to change the source), and the destination
was set as ‘World Origin / Y-up. For this example,
translate and rotate and flip were selected, but it is possible that it will work better if only translate is selected.
After this, the head was rotated so that it was parallel and perpendicular to the grid lines on the base plane.
Next, the head was made solid using the ‘edit’
and ‘make solid’ tool (right image).
The solid type was selected as accurate, color
transfer mode as automatic, solid accuracy at
400, and mesh density at 300. The model was
then dimensioned to match the known
dimensions using the ‘edit’ and
‘Units/Dimensions’ tool. It should be noted that
adjusting the specific x, y, and z dimensions
using the typing boxes here will change the
other dimensions. Using the ‘edit’ and
‘transform’ tools, the squares at the ends of the
colorful coordinate arrow box can be selected
and dragged to adjust one coordinate dimension
without changing the others; alternatively, the dimensions can be edited directly in the settings box within
‘edit’ and ‘transform’. The dimensions should be set in mm (eg. 150 mm instead of 15 cm) because
Meshmixer by default loads in obj files with mm; additionally, all of the Python code files included in
supplements assume that the dimensions are in mm. The head should also be rotated in Meshmixer so that the
X axis is the long width of the head, as shown in the image below. Artifacts from the head were removed
from the edges of the model using ‘edit’ and ‘plane cut.’

Stanford, Mourad. 06 05 2022

18

Boolean Subtraction

The final step involves using a tool called Boolean subtraction in
Meshmixer to compare the shapes of the enucleated eye and contralateral
eye to determine the shape of the prosthesis (i.e. the difference in shape).
The current model was first duplicated using the ‘edit’ and ‘duplicate’ tool.
Then, using ‘edit’ and ‘transform’, the duplicated model was moved
vertically upwards from the current model. Next, the model on top was
mirrored across the center point using the ‘edit’ and ‘mirror’ tools, so that
the top model had 2 normal eyes, as shown in the image to the right. Next,
the model on top was moved back on top of the original model using ‘edit’
and ‘transform’, as shown below. Further accuracy in alignment was

obtained by using the ‘align
to target’ tool. To use this tool, the original head was set as the
target by toggling its magnet icon in the object browser. Next,
the ‘select’ tool was used to select the mirrored head, and the
‘edit’ and ‘align to target’ tools
were used. The solve iterations
were set to 70, and the error
tolerance to 0.0005 cm. After
this, all regions of the head

except for the area of overlap between the normal eye of the mirrored model
and the enucleated eye of the original model were removed using plane cuts,
as shown to the right.

Next, using the object browser, the normal eye was first
selected, followed by the enucleated eye, and the ‘boolean
difference’ tool was selected. Note that this tool subtracts
the second selected object from the first, so selecting the
non-enucleated eye first is important. Often, the first
iteration of the solution failed and appeared in red. The
solution mode was set to precise, and the handle coplanarity
option was selected. If this still produces a failed result,
researchers modified the delta value to increase
incrementally from 0.001 cm up to 0.05 cm, and it should
resolve. A passed result will be in purple and orange, as
shown to the right. Next, the ‘edit’ and ‘separate shells’
tool was selected to separate some of the artifacts created by
Boolean subtraction; all of those that were not the main
object (which will be a lighter color when selected) were
deleted. Then, the shape of the prosthetic was found by
removing the areas surrounding the eye using plane cuts and
the ‘select’ and ‘discard’ tools. Then, the prosthesis was
made solid using the same settings as previously mentioned.
It was then smoothed using the ‘select’ tool, selecting the
whole prosthesis, and using the ‘deform’ and ‘smooth’ tools,
with the smoothing type set to shape preserving and the
smoothing scale set to 40, as shown to the right. The
smoothing scale was different on a case-to-case basis.

Stanford, Mourad. 06 05 2022

19

Supplemental material 9: a) Code used to enucleate CGI model, b) code used to enucleate real model, c) code used to measure
thickness of prosthesis and graph against Gaussian values d) code to measure and graph thickness of two normal subtracted eyes

a) Code used to enucleate CGI model,
import math

#opening the write file for writing
f = open("cgi-solid-minus40density-write1.obj", "w")

#opening obj file and read line by line
with open('cgi-solid-minus40density-edit1.obj') as file:
 for line in file:
 content = line.split()
 #check if vertices line
 if content[0] != 'v':
 print(line, file = f)
 else:
 list = []
 list.append('v')
 for item in content:
 if item != 'v':
 item2 = float(item)
 list.append(item2)
 #check for desired values
 if len(list) == 4:
 x1 = -3.5
 z1 = 2.4
 x = list[1]
 z = list[3]
 val = list[2] - (.6 * math.exp(-((x-x1)**2)/(2*(.8**2)))
* math.exp(-((z-z1)**2)/(2*(.4**2))))
 list.pop(2)
 list.insert(2,val)
 for item in list:
 print(item, end=" ", file = f)
 print('\n', file=f)

#closing the write file
f.close()

with open("cgi-solid-minus40density-write1.obj", "r") as f:
 lines = f.readlines()
with open("cgi-solid-minus40density-write1.obj", "w") as f:
 for line in lines:

Stanford, Mourad. 06 05 2022

20

 if line.strip("\n") != "":
 f.write(line)

b) code used to enucleate real model
import math

#opening the write file for writing
f = open("anth-eyelashes-removed-enucleated.obj", "w")

#opening obj file and read line by line
with open('2eyes_anth_smooth.obj') as file:
 for line in file:
 content = line.split()
 #check if vertices line
 if content[0] != 'v':
 print(line, file = f)
 else:
 list = []
 list.append('v')
 for item in content:
 if item != 'v':
 item2 = float(item)
 list.append(item2)
 #check for desired values
 if len(list) == 4:
 x1 = 37
 z1 = 12
 x = list[2]
 z = list[3]
 val = list[1] - (6 * math.exp(-((x-x1)**2)/(2*(8**2))) *
math.exp(-((z-z1)**2)/(2*(4**2))))
 list.pop(1)
 list.insert(1,val)
 for item in list:
 print(item, end=" ", file = f)
 print('\n', file=f)

#closing the write file
f.close()

with open("anth-eyelashes-removed-enucleated.obj", "r") as f:
 lines = f.readlines()

Stanford, Mourad. 06 05 2022

21

with open("anth-eyelashes-removed-enucleated.obj", "w") as f:
 for line in lines:
 if line.strip("\n") != "":
 f.write(line)

c) code used to measure thickness of prosthesis and graph against Gaussian values
Python program to measure thickness of a prosthesis

This program is fully automated, there are only 2 spots where you might have to
manually enter values towards the end
 # one is if the max thickness value is not the center point of the prosthetic
 # in that case you can manually find the center point and enter it in
 # the second is the trimming bounds for finding the RMS error

import csv
from pyexpat.errors import XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING
import numpy
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
from mpl_toolkits import mplot3d
import math

field names
fields = ['X', 'Y', 'Z']

name of csv file
filename = "measured-thickness.csv"

writing to csv file
with open(filename, 'w', newline='') as csvfile:
 # creating a csv writer object
 csvwriter = csv.writer(csvfile)

 # writing the rownames
 csvwriter.writerow(fields)

 #opening obj file and read line by line
 with open('prosthesis-4-smooth.obj') as file:
 for line in file:
 content = line.split()
 #check if vertices line
 if content[0] == 'v':
 list = []

Stanford, Mourad. 06 05 2022

22

 for item in content:
 if item != 'v':
 list.append(item)
 if len(list) == 3:
 # writing the data rows
 csvwriter.writerow(list)

#closing the write file
file.close()

#importing csv as data frame
df = pd.read_csv (r'measured-thickness.csv')

#converting data frame to array
matrix1 = df.to_numpy()

print('Vertices stored in an array: ')
print(matrix1)
print('\n')

#getting dimensions of matrix
dims = matrix1.shape
rows = dims[0]
columns = dims[1]
print('Dimensions of array: ')
print(rows)
print(columns)
print('\n')

#sort matrix by x values
matrix = matrix1[matrix1[:, 0].argsort()]
print('Array sorted by x value: ')
print(matrix)
print('\n')

#sort matrix by y values
matrix2 = matrix1[matrix1[:, 1].argsort()]
print('Array sorted by y value: ')
print(matrix2)
print('\n')

#find max values for x and y for bounds of scan box
max_x = numpy.max(matrix[:,0])
min_x = numpy.min(matrix[:,0])

Stanford, Mourad. 06 05 2022

23

max_y = numpy.max(matrix[:,2])
min_y = numpy.min(matrix[:,2])
print('Max and min values: ')
print(max_x)
print(min_x)
print(max_y)
print(min_y)
print('\n')

#finding thickness by 'box' method?
box_width = 0.5
box_height = 0.5

calculate iterations across and down based on box dimensions and scan box
dimensions
iters_x = int((max_x - min_x) // box_width)
iters_y = int((max_y - min_y) // box_height) + 1

#starting from top left of bounding box
box_coord_y = max_y
box_coord_x = min_x

#initialize empty list to store points and thickness vals
points = []

#starting at min x and max y , top left of square
#scanning vertical rows and then moving horizontally to the right across the
square
for i in range (0, iters_x):
 for j in range(0, iters_y): #scanning down one column
 array1 = numpy.zeros((2000,3))
 count = 0
 for k in range(0, rows): # scanning through all vertices
 if matrix[k,0] >= box_coord_x and matrix[k,0] <= (box_coord_x +
box_width) and matrix[k,2] <= box_coord_y and matrix[k,2] >= (box_coord_y -
box_height):
 array1[count,0] = matrix[k,0] # x coord
 array1[count,1] = matrix[k,2] # y coord
 array1[count,2] = matrix[k,1] # z coord
 count = count + 1
 array1 = array1[~numpy.all(array1 == 0, axis=1)]
 if array1.size:

Stanford, Mourad. 06 05 2022

24

 max_z = numpy.max(array1[:,2])
 min_z = numpy.min(array1[:,2])
 thickness = max_z - min_z
 points.append(box_coord_x + (box_width / 2))
 points.append(box_coord_y -(box_width / 2))
 points.append(thickness)
 box_coord_y = box_coord_y - box_height
 box_coord_y = max_y
 # once you get out of j for loop
 box_coord_x = box_coord_x + box_width

cols = 3
points_fin = numpy.array([points[i:i+cols] for i in range(0, len(points), cols)])

finding dims
dims_fin = points_fin.shape
rows_fin = dims_fin[0]

print first 10 rows to check
print('Final array of x vals, y vals, and thickness: ')
print(points_fin)
print('\n')

#finding weighted average of x and y to approximate center point
countx = 0.0
county = 0.0
totalz = 0.0
for i in range(0, rows_fin):
 x_val = points_fin[i,0]
 y_val = points_fin[i,1]
 z_val = points_fin[i,2]
 countx = countx + (x_val * z_val)
 county = county + (y_val * z_val)
 totalz = totalz + z_val
mid_x = countx / float(totalz)
mid_y = county / float(totalz)
print(mid_x)
print(mid_y)

plotting prosthesis thickness vs. gaussian
points3d = points_fin.copy()
for i in range(0, rows_fin):
 x_val = points3d[i,0]
 y_val = points3d[i,1]

Stanford, Mourad. 06 05 2022

25

 #gaussian function for indenting, x1 and y1 are center point
 x1 = mid_x
 y1 = mid_y
 z_val = (6 * math.exp(-((x_val-x1)**2)/(2*(8**2))) * math.exp(-((y_val-
y1)**2)/(2*(4**2))))
 points3d[i,2] = z_val

x1 = points3d[:,0]
y1 = points3d[:,1]
z1 = points3d[:,2]

#3D graph
fig = plt.figure(figsize = plt.figaspect(0.5))
ax = fig.add_subplot(1,2,1,projection='3d')
x = points_fin[:,0]
y = points_fin[:,1]
z = points_fin[:,2]
ax.scatter3D(x, y, z, c = 'r', marker = 'o', label = 'prosthesis')
ax.scatter3D(x1, y1, z1, c = 'b', label = 'gaussian')
ax.set_xlabel('X', rotation=150)
ax.set_ylabel('Y')
ax.set_zlabel('Z', rotation=60)

finding RMS error
cut1 = box_width * 5.0
cut2 = box_width * 2
list_del = []
count = 0
for i in range(0,rows_fin):
 xs = points_fin[i,0]
 ys = points_fin[i,1]
 xs1 = points3d[i,0]
 ys1 = points3d[i,1]
 if (xs < (min_x + cut1)) or (xs1 < (min_x + cut1)) or (xs > (max_x - cut1))
or (xs1 > (max_x - cut1)) or (ys < (min_y + cut2)) or (ys1 < (min_y + cut2)) or
(ys1 > (max_y - cut2)) or (ys > (max_y - cut2)):
 list_del.append(count)
 count = count + 1

points_fin1 = numpy.delete(points_fin, list_del, axis=0)
points3d1 = numpy.delete(points3d, list_del, axis=0)

Stanford, Mourad. 06 05 2022

26

dims_del = points_fin1.shape
rows_del = dims_del[0]

#finding weighted average of x and y to approximate center point for updated set
of points
countx1 = 0.0
county1 = 0.0
totalz1 = 0.0
for i in range(0, rows_del):
 x_val = points_fin1[i,0]
 y_val = points_fin1[i,1]
 z_val = points_fin1[i,2]
 countx1 = countx1 + (x_val * z_val)
 county1 = county1 + (y_val * z_val)
 totalz1 = totalz1 + z_val
mid_x1fin = countx1 / totalz1
mid_y1fin = county1 / totalz1
print(mid_x1fin)
print(mid_y1fin)

updated plotting prosthesis thickness vs. gaussian
for i in range(0, rows_del):
 x_val = points3d1[i,0]
 y_val = points3d1[i,1]
 #gaussian function for indenting, x1 and y1 are center point
 z_val = (6 * math.exp(-((x_val-mid_x1fin)**2)/(2*(8**2))) * math.exp(-
((y_val-mid_y1fin)**2)/(2*(4**2))))
 points3d1[i,2] = z_val

3D graph after trim
ax = fig.add_subplot(1,2,2,projection='3d')
x2 = points_fin1[:,0]
y2 = points_fin1[:,1]
z2 = points_fin1[:,2]
x3 = points3d1[:,0]
y3 = points3d1[:,1]
z3 = points3d1[:,2]
ax.scatter3D(x2, y2, z2, c = 'r', marker = 'o', label = 'Reconstructed values')
ax.scatter3D(x3, y3, z3, c = 'b', label = 'Known values')
ax.set_xlabel('X', rotation=150)
ax.set_ylabel('Y')
ax.set_zlabel('Z', rotation=60)
plt.legend(loc = 'upper right')
plt.show()

Stanford, Mourad. 06 05 2022

27

RMS Error calculation
dims_rms = points_fin1.shape
rms_count = dims_rms[0]
resids = 0.0
for i in range(0, rms_count):
 z4 = points_fin1[i,2]
 z5 = points3d1[i,2]
 val = z4 - z5
 val2 = val * val
 resids = resids + val2
num = resids / rms_count
rms = math.sqrt(num)
print('The RMS Error is: ', rms)

plt.show()

d) code to measure and graph thickness of two normal subtracted eyes
Python program to measure thickness of two subtracted eyes

import csv
from pyexpat.errors import XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING
import numpy
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
from mpl_toolkits import mplot3d
import math

field names
fields = ['X', 'Y', 'Z']

name of csv file
filename = "measured-thickness2.csv"

writing to csv file
with open(filename, 'w', newline='') as csvfile:
 # creating a csv writer object
 csvwriter = csv.writer(csvfile)

 # writing the rownames
 csvwriter.writerow(fields)

Stanford, Mourad. 06 05 2022

28

 #opening obj file and read line by line
 with open('anth-eyes-subtracted-solid.obj') as file:
 for line in file:
 content = line.split()
 #check if vertices line
 if content[0] == 'v':
 list = []
 for item in content:
 if item != 'v':
 list.append(item)
 if len(list) == 3:
 # writing the data rows
 csvwriter.writerow(list)

#closing the write file
file.close()

#importing csv as data frame
df = pd.read_csv (r'measured-thickness2.csv')

#converting data frame to array
matrix1 = df.to_numpy()

print('Vertices stored in an array: ')
print(matrix1)
print('\n')

#getting dimensions of matrix
dims = matrix1.shape
rows = dims[0]
columns = dims[1]
print('Dimensions of array: ')
print(rows)
print(columns)
print('\n')

#sort matrix by x values
matrix = matrix1[matrix1[:, 0].argsort()]
print('Array sorted by x value: ')
print(matrix)
print('\n')

#find max values for x and y for bounds of scan box
max_x = numpy.max(matrix[:,0])

Stanford, Mourad. 06 05 2022

29

min_x = numpy.min(matrix[:,0])
max_y = numpy.max(matrix[:,2])
min_y = numpy.min(matrix[:,2])
print('Max and min values: ')
print(max_x)
print(min_x)
print(max_y)
print(min_y)
print('\n')

#finding thickness by 'box' method?
box_width = 0.5
box_height = 0.5

calculate iterations across and down based on box dimensions and scan box
dimensions
iters_x = int((max_x - min_x) // box_width)
iters_y = int((max_y - min_y) // box_height)

#starting from top left of bounding box
box_coord_y = max_y
box_coord_x = min_x

#initialize empty list to store points and thickness vals
points = []

#starting at min x and max y , top left of square
#scanning vertical rows and then moving horizontally to the right across the
square
for i in range (0, iters_x):
 for j in range(0, iters_y): #scanning down one column
 array1 = numpy.zeros((500,3))
 count = 0
 for k in range(0, rows): # scanning through all vertices
 if matrix[k,0] >= box_coord_x and matrix[k,0] <= (box_coord_x +
box_width) and matrix[k,2] <= box_coord_y and matrix[k,2] >= (box_coord_y -
box_height):
 array1[count,0] = matrix[k,0] # x coord
 array1[count,1] = matrix[k,2] # y coord
 array1[count,2] = matrix[k,1] # z coord
 count = count + 1
 array1 = array1[~numpy.all(array1 == 0, axis=1)]

Stanford, Mourad. 06 05 2022

30

 if array1.size:
 max_z = numpy.max(array1[:,2])
 min_z = numpy.min(array1[:,2])
 thickness = max_z - min_z
 points.append(box_coord_x + (box_width / 2))
 points.append(box_coord_y -(box_width / 2))
 points.append(thickness)
 box_coord_y = box_coord_y - box_height
 box_coord_y = max_y
 # once you get out of j for loop
 box_coord_x = box_coord_x + box_width

cols = 3
points_fin = numpy.array([points[i:i+cols] for i in range(0, len(points), cols)])

finding dims
dims_fin = points_fin.shape
rows_fin = dims_fin[0]

print first 10 rows to check
print('Final array of x vals, y vals, and thickness: ')
print(points_fin)
print('\n')

print average and max value of thickness
max_thick = numpy.max(points_fin[:,2])
mean_thick = numpy.mean(points_fin[:,2])
print('The maximum thickness is ', max_thick, 'mm')
print('The average thickness is ', mean_thick, 'mm')

#3D graph
fig = plt.figure(figsize = plt.figaspect(1))
ax = fig.add_subplot(1,2,1,projection='3d')
x = points_fin[:,0]
y = points_fin[:,1]
z = points_fin[:,2]
ax.scatter3D(x, y, z, c = 'g', marker = 'o', label = 'Noise')
ax.set_xlabel('X (mm)', rotation=150)
ax.set_ylabel('Y (mm)')
ax.set_zlabel('Thickness (mm)', rotation=60)

plt.legend(loc = 'upper right')
plt.show()

