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Abstract 
Patients wear ocular prosthetics following the removal of an eye. While prosthetics do not restore vision, they protect the socket 
from infection and improve quality of life by restoring the individual’s natural appearance. Custom prosthetics are preferred because 
they have superior fit, comfort, and appearance; however, they are much less affordable than generically-produced stock 
prosthetics. In addition, an ocularist must take a mold impression of the socket for a custom prosthesis, which is uncomfortable and 
sometimes painful for patients. This report details the design of an alternative method to create custom ocular prosthetics to replace 
traditional ocularist practices. By using photogrammetry, this technique eliminates the need for the mold impression step and 
reduces resource use. The steps in the method include photogrammetry to image the face, 3D mesh generation, mesh modification, 
and Boolean subtraction to deduce the shape of the prosthesis. The method relies on the assumption that the shapes of the natural 
and lost eye can be compared to deduce the required prosthesis dimensions. The researchers validated this assumption by comparing 
an individual's two eyes, finding that their average difference in thickness was 0.50 mm. The researchers optimized each step of 
the aforementioned method and created a written manual of the process so that it could be used by others. This method was 
developed primarily through testing with a computer-generated (CGI) model of a human female head and a real model of a human 
male head; they were both artificially enucleated using a Gaussian function with known dimensions. To measure accuracy and 
precision, the method was repeated for the CGI model five times. The average root mean square error between the thickness of the 
5 prosthetics and the known dimensions was 0.43 +/- 0.05 mm, which is promising for initial tests. 
 

Keywords: ocular prosthetics, ocularist, 3D technology, 3D modeling, photogrammetry, Boolean subtraction

Introduction 
Significance 
An estimated 5 million people worldwide wear prosthetic eyes 
following surgical removal (enucleation) of an eye1. Eye enucleation is 
often unexpected and distressing; the most frequent cause is traumatic 
injury (commonly work-related), followed by ocular diseases, tumors, 
and malformations2. Once the eye is removed, a surgeon will place a 
ball implant into the socket to prevent drooping and maintain facial 
symmetry. Although the globe of the eye is removed and the optic nerve 
is severed, the muscles that control eye movement are left intact3. 
Eventually, when the implant and subsequent prosthesis rest on top of 
the eye muscles, they will move in the appropriate direction with the 
contralateral eye, but the movement appears slower and slightly out of 
sync. A cross-sectional image of the implant and prosthesis is shown in 
Figure 1.  
 
 Six to eight weeks post-surgery, a patient can be fitted for an ocular 
prosthesis, which will lie slightly under the lids, similar to a contact 
lens. Unlike the ball implant, the ocular prosthesis can be removed and 
reinserted at will. Although ocular prosthetics do not function to restore 
vision, they help to restore natural appearance. This is important for the 
well-being of anopthalmic patients, as the loss of an eye is a life-
changing event and can lead to depression, anxiety, and overall reduced 
quality of life5. In addition, eyes are the first part of a face that humans 
are drawn to. In studies on infants’ gazing patterns, the results show a 
clear preference for human eyes, emphasizing the significance of the 
loss of such a vital part of the face6. While there are mass-produced, 
generic (stock) ocular prosthetics, custom-made ocular prosthetics are 
preferable due to their improved aesthetic appearance and comfort7. 
Stock prostheses also have an increased risk of medical complications 
due to the collection of socket secretion behind the prosthesis and in 
front of the enucleated socket, which results from the imperfect fit 

between the concave backing of the prosthesis and the shape of the 
socket7.    
 
Although they are preferred to stock prostheses, current custom ocular 
prosthetics have limited accessibility for both patients and ocularists 
who create them. The price of a custom prosthesis ranges from $2,500 - 
$8,300, excluding the cost of surgery for eye removal8. Conversely, 
stock prosthetics cost around $15 and do not require an extensive fitting 
process. The low number of practicing ocularists also limits the number 

Fig. 1. Cross-sectional diagram of the placement of an ocular prosthesis 
and orbital implant4 
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of prostheses that can be made, as the creation of a custom ocular 
prosthesis requires significant resources and time. For reference, there 
are only 5 practicing ocularists in Virginia9.  
 
The current custom ocular prosthesis fabrication technique is based on 
dental procedures, which presents a number of challenges.10 The initial 
step in custom prosthesis creation involves injecting a silicone-based 
material into the enucleated socket to make an impression, which is then 
left to harden and later extracted.11 This process is invasive, 
uncomfortable for patients, and the impression material can be 
traumatic for the tissue; in most cases patients have undergone 
enucleation surgery as soon as 1 ½ months prior8. Ocularists use the 
impression to create a wax mold, which they then use to create the 
acrylic prosthesis. Next, they modify the prosthesis through smoothing 
and polishing, and hand paint it to make its appearance more realistic. 
Along with the process being painful for patients and inefficient, the 
impression technique can also be inaccurate. Because the material has 
to be pressed firmly into the socket, the folds and wrinkles of the tissue 
may be flattened and the socket may be overfilled, losing detail12. Also, 
since the impression material is only in the socket for a short period of 
time, the orbicularis muscles do not have time to relax after their initial 
contraction in response to the foreign body, which could result in an 
inaccurate shape. Finally, the impression material does not provide any 
information about the anterior shape or size of the eyeball.12 
 
Furthermore, adult prosthetic eyes should be replaced every 5 years, 
while children who are growing need to have their prosthesis examined 
and potentially remade every 6 months5. According to a New Zealand 
study, the most common age group for eye loss is 1-9 years old, 
meaning a large number of the users of prosthetic eyes have theirs 
replaced on a regular and frequent basis1. There are also many other 
reasons why a prosthesis would need premature replacement, such as 
complications that can arise from allergic reactions, conjunctivitis, 
bacterial infections, post-enucleation socket syndrome, and other 
conditions.5 Consequently, this presents a huge financial and 
psychological burden for the patient.  
 
The researchers aim to address the problems with the current design 
approach by developing a more efficient, cheaper, and painless 
technique to create an ocular prosthesis that would completely eliminate 
the need for hydrocolloid impression materials. Rather, topographical 
information about the empty socket such as the volume of the cavity 
and fornices will be obtained using photogrammetry. Photogrammetry 
is a non-invasive scanning approach that generates 3D mesh models 
from a set of 2D images. Unlike the current process which requires 
specialized skills and is inaccessible to the average physician, 
photogrammetry is simple to learn, available in free software packages, 
and can be used with any digital camera. In addition to reducing 
discomfort, the method will also require fewer clinical visits, making 
the process of obtaining a custom prosthesis much faster. The novel 
process will reduce the costs associated with creating the prosthetic by 
requiring minimal resources, making it more accessible for individuals 
unable to afford custom prostheses. Once the desired mesh model is 
generated using photogrammetry and modified, the shape of the 
prosthesis will be determined by taking a Boolean difference between 
the enucleated and natural eye. The consequence of continuing to 
employ current methods is a drastic loss of time and money, and more 
importantly, enduring pain and discomfort for patients. 
 
Innovation & Prior Art 
There has been limited success in previous attempts to design a suitable 
method for creating an ocular prosthesis using noninvasive, 

inexpensive, and efficient techniques. However, several groups have 
attempted to advance the process digitally printing the iris or by 3D 
printing a prosthesis based on a variety of imaging methods. Although 
both of these methods offered improvements to current methods of 
ocular prosthesis creation, they have significant limitations. 
 
Printing the iris  
Although there is no available method for digitally modeling a complete 
ocular prosthesis, digital imaging technology has been used to improve 
the aesthetic quality of ocular prosthetics, mainly through better 
replication of the iris and sclera13. In the traditional method of creating 
an ocular prosthesis, the intricate details of the iris and veins of the 
sclera must be hand-painted. This is non-ideal because the aesthetic 
quality of the prosthesis is highly dependent on the ocularist’s painting 
ability; this is also a time-consuming process. Digital imaging 
eliminates human error that could impact the appearance of the iris14. In 
addition, while hand-painting the prosthetics produces good results, 
digital photography offers greater color calibration technology and a 
standardized process for obtaining accurate images13. 
 
Multiple groups have explored techniques to digitally print the iris. In 
one technique, a digital camera with a macro lens and ring flash 
attachment was used to photograph images of a patient’s contralateral 
iris13. Using graphics software, differences in color hue or contrast that 
occurred during the image process were adjusted to match the true 
color. After, the iris was printed on white paper using a laser printer, 
and attached to an ocular prosthesis using monopoly syrup and a coat of 
sealant painter’s spray15.  
Although this innovation was successful, it only addresses aesthetics of 
the prosthesis, and does not significantly improve accessibility and price 
issues. It also does not reduce patient discomfort by adjusting the mold 
cast process of obtaining eye shape. The proposed technique in this 
paper will use the advantages of digital image processing in similar 
ways, but focusing on the actual modeling of the shape of the prosthetic. 
It is possible that printing the iris could eventually be used in 
conjunction with the proposed photogrammetry process, to further 
streamline the process of ocular prosthesis creation using digital 
imaging in every step. 
 
3D modeling and printing an ocular prosthesis  
3D modeling in ocular prosthesis creation has been explored previously. 
One method called cone beam computed tomography (CBCT)16 was 
successful in generating a 3D computer model of the anophthalmic 
cavity in an elderly patient. The cavity was digitally delineated with 
segmentation and dilation of the outline, and the anterior curve of the 
model was calculated from standard values of normal eyes. Afterwards, 
the design was 3D printed using resin16. Although this method was 
successful in generating an ocular prosthesis using digital models and 
3D printing, the major limitation is that CBCT uses X-ray exposure. 
Although CBCT uses a lower dose of radiation than conventional 
computed tomography (CT), it still cannot be used safely in children 
and pregnant women16. Considering the most common age for eye loss 
is 1-91, CBCT would not be a viable option to use consistently and 
safely in the creation of ocular prosthetics. 
 
Other imaging techniques have been used to obtain 3D model data, such 
as CT or magnetic resonance (MR) imaging; however, since these 
methods are intended for clinical use, special software is needed to 
obtain the data and use the images for 3D modeling. Another imaging 
technique using light intensity 3D scanners reflects laser beams from 
the surface of objects to obtain 3D model data17; however, this is also 
inaccessible due to the necessity of a light intensity 3D scanner and 
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other specialized technology. Previous innovation in the use of 3D 
printing in ocular prosthetics has led to important developments, the 
most important being the recognition of the mold cast process as 
unnecessary, uncomfortable, and time consuming since it can lead to 
inaccurate impressions16. 3D printing has been validated through these 
studies as a valid non-contact way of creating ocular prosthetics; 
however, all of the aforementioned methods require highly specialized 
technology, and would require skilled experts. They are also expensive, 
as CBCT scanning requires costly equipment and is priced around $300 
per scan18. There is still a need for a technique in creating ocular 
prosthetics that uses 3D printing, but also an accessible and affordable 
method of digital imaging. The 3D modeling method proposed in this 
paper plans to meet this need. 
 
 
Design Constraints and Criteria 
By considering the issues that arise from current ocularist methods in 
combination with prior art, a set of design constraints and criteria was 
developed for this method. The criteria given highest priority were 
dimensional accuracy, biocompatibility/safety, comfortable fit of the 
prosthesis, and patient comfort during the process (Table S1). In order 
to achieve dimensional accuracy, the researchers wanted to ensure that 
the thickness of prosthetics created using the novel method were within 
acceptable limits of the thickness of currently used prosthetics. The 
prosthesis' horizontal length and vertical height will vary based on 
patient differences in face size and shape; however, the average size of 
a prosthesis was used as a baseline to confirm the prostheses created 
using the new method are similar to that of the current process 
(Supplemental Table 2). To address the biocompatibility criteria, the 
custom ocular prosthesis was planned to be 3D printed in biocompatible 
acrylic resin from Formlabs19. However, future research is necessary to 
thoroughly evaluate the safety of the material on a mucosal membrane 
such as the eye socket. Since the focus of the current research is to 
validate that the method successfully produces an accurate prosthesis 
model, working with patients and testing biocompatibility is outside the 
scope of this paper, but will be considered in the future. Furthermore, 
the researchers tested the accuracy of the prosthetics created using the 
new method, as this would be important for comfort. A prosthesis that 
effectively conforms to the crevices and shape of the socket will be a 
comfortable fit for an anophthalmic patient. In the novel method, the 
prosthesis is lightly smoothened before 3D printing, which removes any 
jagged edges or sharp corners that may have resulted from Boolean 
subtraction. Next, patient comfort during the process was considered. 
Photogrammetry was chosen as the 3D scanning tool since it is a non-
contact imaging method and does not require the use of radiation-based 
scanning devices. The benefit of this is two-fold. First, photogrammetry 
ensures that the method is painless for patients and ocularists can forgo 
the use of impression materials. Secondly, the method is safe since there 

is no need for harmful exposure to radiation. Since growing children 
may need to replace their prosthesis multiple times a year, avoiding 
radiation and reducing the cost was a priority for the researchers.  
 
The secondary criteria the researchers considered are the efficiency, 
accessibility, and financial cost of the method. Because the current 
method requires multiple clinical visits and the use of disposable single-
use materials, the researchers sought to improve upon this by 
minimizing the computational time and using as little disposable 
resources as possible. Although the prosthesis generated using 
photogrammetry and 3D modeling will still need to be hand-painted by 
an ocularist, there is no need for impression materials. The method can 
also be performed in 1-2 clinical visits and computational times for the 
mesh generation are only about 1 hour. After mesh generation, the 
model editing and 3D printing may take up to 2 days. Additionally, in 
order to be implemented into ocularists’ clinics, the researchers 
attempted to design the method to be accessible to anyone, without 
needing background knowledge about 3D modeling. In comparison to 
previous work that incorporated 3D imaging and modeling into 
ocularistry, the method discussed here does not require large, expensive 
machinery that may be difficult to operate. Rather, photogrammetry can 
be performed using an iPhone camera and the modeling software is 
highly user-friendly. Minimizing the financial cost of the method was 
another important criterion. Since the current method costs patients up 
to $8,300 at each fitting, patients unable to afford these prices may be 
forced to purchase a stock prosthesis, which has more health risks and is 
less aesthetically pleasing20. In the new method, the chosen 
photogrammetry software, RealityCapture, costs $3,750 for an 
unlimited license to create 3D mesh models, or approximately 50 cents 
per model without a subscription21. The 3D modeling software, 
Meshmixer, is free and can be downloaded on any Windows operating 
system22.  

Results 

The flowchart in Figure 2 shows an overview of the steps in the 
proposed alternative method devised by the researchers. For each step, 
the researchers optimized the process by testing different settings. 
Included in the supplements is the manual (supplementary material 9) 
detailing the specific steps and instructions for this method, with 
detailed explanations and images for each part.  
 
 
Photogrammetry 
The first step in the method is photogrammetry. This involves taking 
images of the face to generate a 3D mesh rendering. The 
photogrammetric measurement principle is to acquire many images of 
an object from different viewpoints and identify common physical 

object points among 
multiple photos23. From 
these corresponding 
points, 3D coordinates of 
objects can be 
reconstructed through 
triangulation. By taking 
a picture from at least 2 
different locations and 
measuring the same 
point in each picture, a 
line of sight is identified 
from each camera 
location to the target24. If 

Fig. 2. Flowchart showing the steps in the proposed alternative method 
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the camera location and line of sight direction are known, the lines can 
be mathematically intersected to produce the XYZ coordinates of each 
target point20,. By taking many photos, photogrammetry is able to 
identify XYZ coordinates of the 3D object and generate a mesh. 
Photogrammetry is governed by the coplanarity constraint: for two 
cameras, the viewing rays through corresponding image points must be 
coplanar, because they intersect at the 3D point23. This means that while 
taking photos of human eyes, it is important to rotate on a constant 
horizontal plane around the head. Other factors like lighting and camera 
resolution are also important to consider, as good lighting and higher 
camera resolution makes it easier for the photogrammetry software to 
identify common points in images, and will result in a higher resolution 
mesh. 
 
Photogrammetry was selected over other imaging techniques to model 
an enucleated socket because of its ability to generate effective 3D 
models using a non-contact method and because it does not require 
expensive resources. Compared to similar imaging techniques such as 
LiDAR or structured light that require hardware that may amount to 
thousands of dollars, photogrammetry can be performed with a modern 
cell phone and freeware, making it easiest to implement. More 
importantly, photogrammetry is non-invasive and does not expose the 
patient to any harmful radiation. It is important to note that LiDAR 
could potentially be used with a smartphone in this application instead 
of photogrammetry; however, it requires a 3D scanner that only the 
latest iPhone models (12/13 Pro) have, and which was unavailable to 
the researchers at this time. Many of the apps are also new and require 
payment to create high-quality scans or to export them27 . This form of 
LiDAR is not as widely accessible as photogrammetry, although it 
would be relevant to investigate in the future when it becomes available 
and is tested on more phone models. Because photogrammetry has 
never been used to image eye sockets, the researchers performed 
various tests to optimize the imaging conditions to generate the most 
accurate mesh models.  
 
Lens type 
First, a macro lens was chosen to image the faces of several non-
enucleated subjects with their eyes open. However, the macro lens’ 
short depth of field proved to be incompatible with photogrammetry. 
The images taken using the macro lens failed to capture the details of 
the eye socket and the mesh model was insufficient for Boolean 
subtraction (Figure S1). An iPhone 11 Pro camera was then used to 
image non-enucleated subjects with their eyes open. The mesh models 
generated using these images were significantly better (Figure S2).  
 
Lighting 
Proper lighting is an important factor in photogrammetry. Images were 
taken of the same non-enucleated subjects using artificial and outdoor 
lighting, and mesh models were created. After qualitative evaluation, it 
was determined that there was only a slight difference between the two 
lightings, with the natural outdoor lighting being superior. One other 

adjustment had to be made due to the glare that was created from light 
on the eyeball, which was preventing proper mesh reconstruction. The 
researchers compared the models of closed eyes to open eyes and found 
that closed eyes significantly improved resolution of the mesh, and that 
the shape of the eye could still be determined by looking at the shape of 
the eyelid. After this, researchers imaged exclusively closed eyes. To 
further test lighting, outdoor lighting and a ring light with three 
settings–white, warm white, and warm yellow– was used to generate 
meshes (Figure 3). There was only a slight difference in the quality of 
the models generated using different ring light settings, and outdoor 
lighting was deemed superior due to slightly better observed rendering 
of skin texture, as well as better rendering of eyelid curvature. Because 
of this advantage in quality, outdoor lighting was determined to be the 
optimal setting, with any of the ring light setting as a viable alternative 
if outdoor lighting is inaccessible. It was noted that artificial indoor 
lighting produced the worst results.  
 
Mesh Generation 
The next step in the method is mesh generation, which involves using 
the images from photogrammetry and using them to generate a 3D mesh 
rendering of the face. The software selected to use for this step is 
Reality Capture21, because it is free and relatively easy to use. After 
importing the image set, Reality Capture aligns the images, and uses the 
alignment to generate a 3D mesh rendering of the object. The main 
optimization problem for this step was computational time, as 
generation of the 3D mesh takes time and computational power, and 
varies depending on the number of images used. The efficiency of the 
method is dependent on the computational time for mesh generation 
from the 2D image set. Other factors such as 3D printing and mesh 
model editing will also affect the efficiency of the method, but the 
number of photos used to generate an accurate mesh model within a 
reasonable timeframe is an easily adjustable factor. Therefore, 
photogrammetry was tested on the same object six times using a 
different number of images each time. The computational time was 
recorded with each iteration and plotted against the number of images in 
the set (Supplemental Figure 3). Researchers concluded that 60-80 
images was optimal, as this had a computation time of ~60-90 minutes 
and produced a high-quality mesh with few observable artifacts. 
Increasing the number of images beyond this did not appear to improve 
the mesh quality or reduce artifacts, but significantly increased 
computational time. 
 
Modifying the Mesh 
The next step in the method involves modifying the mesh obtained in 
the previous step in a software called Meshmixer. Like Reality Capture, 
Meshmixer was selected because it is free and the interface is user 
friendly. Upon importing the mesh, any artifacts are removed. Then, the 
mesh is properly aligned in the Meshmixer plane. It must then be made 
solid to allow for later Boolean subtraction. It is also scaled to match its 
real-world dimensions, which is imperative for later accuracy in 
prosthesis shape.  

Fig. 3. 3D mesh models created with different ring light settings including a) warm yellow, b) warm white, c) white and d) outdoor lighting 
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Deducing the Size of the Prosthesis 
The final step involves Boolean subtraction in Meshmixer. This relies 
on the assumption that the normal eye and enucleated eye can be 
superimposed, and the prosthesis can be determined by comparing the 
difference in shape. First, the enucleated face model is duplicated and 
offset vertically from the original model. The duplicated model is then 
mirrored across the center vertical line, so that it has two normal eyes. 
The duplicated model and enucleated model are then aligned, so that the 
enucleated eye of the original model is superimposed with the normal 
eye of the duplicated model. The areas of the models other than the 
superimposed eyes are then removed to reduce computational 
time.  Then the Boolean difference tool is used, which is a mathematical 
operation that outputs the areas where the two models do not intersect. 
The prosthesis shape is obtained after removing noise artifacts from this 
output and smoothing it to get rid of any sharp edges.  
 
Testing Methods of Enucleation 
Researchers decided to create an artificially enucleated model to test on, 
which was imperative to be able to test the method’s accuracy and 
precision. By indenting the eye artificially, the exact dimensions of the 
indentation could be recorded and then compared to the dimensions of 
the prosthesis obtained through the method. A few different methods of 
enucleation were tested. A CGI head from Turbosquid was used to 
create the artificially enucleated models28.  
 
Manual indentation 
The model was first enucleated by manually indenting the coordinates 
of one eye socket (Figure S4). However, this was determined to be 
ineffective since the socket appeared ‘blocky’ and measuring the size 
and shape of the indentation was imprecise and thus difficult to analyze. 
 
Boolean subtraction with prosthesis 
Next, an ocular prosthesis was designed in AutoCAD software using the 
average dimensions of a prosthesis (Figure S5). Boolean subtraction 
was performed between this ocular prosthesis with known dimensions 
and the CGI head model to create an enucleated socket (Figure S6). 
However, the size and shape of the enucleation was imprecisely 
quantifiable since accuracy was lost during Boolean subtraction.  
 
Indentation with Gaussian function  
Finally, a Gaussian function was used to artificially enucleate the right 
eye socket of the CGI model as shown in Figure 4a (See Materials and 
Methods). This was determined to be the most accurate and measurable 
method to artificially enucleate a socket, since the subtracted thickness 
could easily be calculated at any given point using the function. 

 
Testing the Method on the Artificially Enucleated CGI Model 
The enucleated model created by indenting the socket using a Gaussian 
function was then printed in polylactic acid (PLA) using fused 
deposition modeling (FDM) and spray-painted in matte gray to reduce 
the shine from the PLA (Figure 4b). The model was then imaged 
outdoors in midday, non-direct sunlight using photogrammetry. Then, a 
mesh model of the printed, enucleated CGI was generated using Reality 
Capture (Figure 4c). The model was imported to Meshmixer, 
duplicated, and mirrored across the vertical plane through the nose 
(Figure 4d) (see Materials and Methods). Afterwards, the two models 
were aligned and a Boolean difference was performed to obtain the size 
of the ocular prosthesis.  
 
Assessment of Method Accuracy and Precision 
After optimization of the method, it was important to test its accuracy 
and precision. Once the size and shape of the prosthesis was determined 
using Boolean difference, the thickness of the prosthesis at every point 
was calculated using a Python script. These reconstructed thickness 
values were plotted against the known dimensions from the Gaussian 
indentation and compared (See Fig S10 for code). The method was 
repeated four more times on the same CGI model to test precision. Root 
mean square error (RMSE) was calculated between the reconstructed 
and known points. The average RMSE for the five tests was 0.43 +/- 
0.05 mm. A full table of results for the 5 iterations is shown in 
Supplemental Table 3. An example of a prosthesis and its subsequent 
plot from the fifth iteration of the method is shown in Figure 5.  
 

 
 
 
 

Fig. 5. An ocular prosthesis obtained from using the novel method on an 
artificially enucleated CGI head model and plots of the prosthesis thickness 
values compared to known Gaussian indentation dimensions 
 

Fig. 4. CGI head model with left socket enucleated using a Gaussian function in a) Meshmixer, b) 3D printed, c) re-imaged in RealityCapture, d) modified 
in Meshmixer 
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Boolean Subtraction of Non-Enucleated Real Model 
This method is based on the theory that the contralateral eye can be 
used as an accurate replica of the enucleated eye. However, real faces 
may not be perfectly symmetrical. To test the validity of this 
assumption, researchers performed Boolean subtraction between two 
non-enucleated eyes of a mesh model created using the photogrammetry 
technique described in this paper on a male model. The average 
thickness of the noise artifacts was found to be 0.50 mm. These results 
are plotted in Figure 6, which also shows that there were many points 
with no detectable difference between the two eyes. However, this test 
was only performed a single time on one model. More data is needed to 
thoroughly assess the accuracy of using the contralateral eye as a model 
for the enucleated eye. 
 
Boolean Subtraction of Enucleated Real Model 
The method was then tested on an artificially enucleated real face 
model. After imaging a subject using photogrammetry and obtaining a 
mesh model, the same Gaussian function used to create the enucleation 

in the CGI model was applied.  This 
created an artificially enucleated real 
face model (Figure 8). The method 
was used to modify the mesh and 
perform Boolean subtraction to 

obtain the ocular prosthesis shape. The thickness values at every point 
of this ocular prosthesis were measured and compared to the Gaussian 
indentation in the same way the CGI head model was tested. The 
resulting prosthesis and plot of reconstructed and known values is 
shown in Figure 7. The average RMSE between the prosthesis and 
Gaussian indentation was 0.29 mm, which was superior to the CGI 
model tests; however, more tests are needed to confirm this trend. 
 

Discussion 

The results of this paper provide the foundation for a novel, alternative 
method to create custom ocular prosthetics. This alternative method also 
meets the design criteria of being efficient, accurate, accessible, and 
comfortable for patients. By shifting modeling and production digitally, 
this method eliminates the need for the uncomfortable mold impression 
step traditionally used by ocularists to determine the shape of a custom 
prosthesis for a patient. Additionally, the elimination of the impression 
mold and the following steps reduces the amount of physical resources 
needed to create the prosthesis, which saves time and potentially reduces 
cost. This would also reduce the number of appointments needed to create 
a prosthesis for a patient; instead of the current 3-4 appointments29, this 
method would likely only require 1.  Overall, a full iteration of the 
method costs less than $1 per case, and it takes around ~2.5 hours to 
obtain the shape prosthesis from start to finish. All of the software is free 
to download and is compatible with Windows OS. Through assessing the 
method accuracy and precision using the CGI model, it was found that 
the average RMSE was 0.43 +/- 0.05 mm, which is a promising start for 
both accuracy and precision. The RMSE for the real enucleated model 
was even less at 0.29 mm. This method also obtains accurate information 
about the anterior portion of the prosthesis and prevents measurement 
error due to overfilling during the impression step, which is advantageous 
compared to current methods. There were no available values in literature 
to determine how much error is physiologically significant or acceptable 
in ocular prosthesis design, but this is something that would be 
investigated in future work, perhaps in combination with patient trials. 
For perspective, the average prosthesis is about 9 mm thick30, and the 
average RMSE was less than half a mm. 
 
 

Fig. 6. Thickness values for each point where a difference existed between two non-enucleated, natural eyes 

Fig. 7. Results after testing the method on an enucleated socket from a 
real face mesh model, showing the reconstructed prosthesis and 
comparison of thickness values and known dimensions from Gaussian 
indentation 
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Next steps 
The proposed method is limited as there is still work to be done to finalize 
it. First, there needs to be more tests and iterations done with real faces. 
Although certain steps in this method (photogrammetry, mesh 
generation) were optimized for use with real faces, much of the testing in 
the mesh editing and Boolean subtraction steps was done using the CGI 
model. Testing on scans of more real faces that have been artificially 
enucleated would improve the optimization of the method and perhaps 
reveal how to better align different face shapes, as in reality most faces 
are not symmetrical, and only one real face was tested in this project. 
 
Additionally, it would be helpful to test the use of different Gaussian 
functions and other potential indentation techniques with this method. It 
is possible that a different indentation technique or shape could lead to 
different resulting errors or different imaging requirements during 
photogrammetry, which would need to be accounted for. The Gaussian 
function, though useful for testing in this project because it was a known 
value, is not a perfect approximation in shape for an enucleated socket. It 
could also be useful in this sense to perhaps take a facial scan of a patient 
with a lost eye and then 3D print that model to use in testing. Testing on 
more faces and with different shapes of enucleated sockets would also 
give the method more realism, as ocularists report that all enucleated 
sockets are unique and therefore each prosthesis has slightly different 
shape29. 
 
Once the various steps in the proposed method are improved, it would be 
ideal to begin exploring 3D printing of the prosthetics. The ideal outcome 
would be to take the 3D model of the prosthesis generated using the 
proposed steps of this method and 3D print it, after which it would be 
usable by a patient.3D printing the prosthetics would also require 
extensive research into printing material biocompatibility, as the 
prosthesis is in contact with the eye socket and cannot leach or degrade 
over time in a way that could cause harm. There are a number of 
biocompatible printing materials currently available, an example is the 
Formlabs BioMed resin, which is USP Class VI certified and supported 
by an FDA Master File19. This resin would be printed using 
stereolithography (SLA) which is a higher resolution than the fused 
deposition modeling (FDM) printing used for the CGI model; the 
prosthetics would need to be printed in SLA so that they have a smoother 
finish. Notably, the incorporation of 3D printing at the end of the method 
would increase the cost of the method and decrease accessibility. The 
BioMed resin filament costs $349 per liter (1L of resin could be used to 
print several prosthetics), while a SLA printer starts at $3,75031. 
However, this is still comparable to the current cost of even one custom 
prosthesis, which is ~$2000 - $800020.  
 
Future work  
In the future, it would be ideal to begin testing the finalized method with 
patients. This would be necessary before the method could be 
incorporated into any ocularist clinics. Working with patients could 
involve having them try the prosthetics on and report levels of comfort, 
or how similar the prosthetics are to ones they have worn in the past. This 
would also help determine how small the RMSE needs to be so it is 
undetectable when the prosthetic is worn.  
 
In its current state, this method does not include any steps to replace or 
replicate the aesthetic decoration part of prosthetic design. Currently, 
ocularists hand-paint the iris and sclera onto the prosthetic to match the 
patient’s contralateral eye. This requires significant time, and also means 
that the creation of the prosthetic is highly dependent on the skill of the 
ocularist. One way that this method could improve on this process would 
be to incorporate other digital imaging methods, like printing the iris. In 

prior art, there was a method discussed where the iris and sclera were 
printed onto the prosthetic after it was made using images of the patient’s 
eye13. If this method were combined with the proposed method, the whole 
process of prosthetic creation would be digital, which would further 
streamline creation and minimize patient contact. 
 
Limitations  
One of the main limitations of this alternative method is that patients who 
have lost both of their eyes could not benefit, because the foundation of 
this method is using the contralateral eye as a base of comparison. This 
is also a limitation of current practice, as ocularists also use the 
contralateral eye as standard. There is the potential that with further 
research, this alternative method could be extended to patients who have 
lost both eyes by using other eyes as standard, but it would require 
additional work to determine the necessary shape and desired appearance. 
In a similar sense, this method would become more complex with more 
asymmetrical faces, and for cases where the enucleated socket has a more 
unique shape due to conditions like fat loss around the eye29. Using the 
shape of the eyelid to determine prosthesis shape is an additional 
limitation, as the smoothness of the eyelid can obscure small features 
within the socket. This could potentially be accounted for by using 
images of the patient’s enucleated socket to sculpt these features into the 
prosthesis at the end.  Another limitation of this method is that it is not 
fully automated, and relies on the use and upkeep of Reality Capture and 
Meshmixer software. In the future, it would be ideal to design one piece 
of software that could perform all the functions of the method from the 
original photogrammetry images (mesh generation, editing, and Boolean 
subtraction). 
 
Alternative applications 
While the focus of this project was on an alternative process to create 
custom ocular prosthetics, the technology used and developed has 
potential alternative applications. 3D modeling could be used in many 
other aspects of prosthetic creation to streamline creation. For example, 
scanning and modeling the mold trays or old prosthetics could allow 
ocularists to have the exact shape of old prosthetic designs. This could be 
helpful when designing new prosthetics for patients, or to offer an 
alternative between a stock prosthesis and a fully custom one. If 
ocularists kept a repository of old designs they have made for previous 
patients, they could offer them to patients who are not able to pay for a 
fully custom one. This method could also be relevant in the creation of 
other prosthetic devices, especially in any case where one side of the body 
needs to match the other.  
 
 
Materials and Methods 
Materials 
Software and Hardware 
The two softwares used in this project are RealityCapture and Autodesk 
Meshmixer, which both have minimum system requirements. 
RealityCapture requires a 64-bit machine with at least 8 GB of RAM, 64-
bit Windows version 7+, as well as a NVIDIA graphics card with CUDA 
3.0+ capabilities and 1GB VRAM32. RealityCapture can still be used 
without a NVIDIA graphics card to register images, but a NVIDIA GPU 
is needed to create a textured mesh. Meshmixer requires Windows 
version 7+, 4GB of system RAM, and an integrated or discrete graphics 
card with updated drivers22. The Meshmixer and RealityCapture Support 
FAQs and support pages provide more information on installation 
instructions and troubleshooting. Three computers were used for the 
entirety of the project: (1) A desktop with an AMD Athlon(™) X4 880K 
Quad Core Processor (4.00 GHz) with 16 GB of RAM and a NVIDIA 
GeForce GTX 1050 Ti graphics card; (2) A desktop with an Intel(R) 
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Xeon(R) W-2133 CPU @ 3.60 GHz, with 32 GB RAM and a NVIDIA 
Quadro P2000 GPU; and (3) a Surface Book 2 laptop with an Intel(R) 
Core(™) i7-8650U CPU @ 1.90 GHz processor with 16 GB of RAM and 
a NVIDIA GeForce GTX 1050 graphics card. All three computers had 
Windows 10 Pro installed and 64-bit operating systems. Meshmixer 
version 2.5 and RealityCapture version 1.2 were used for the duration of 
this project.   
 
Two phone cameras were used for photogrammetry to image faces, (1) 
an iPhone 11 Pro and (2) an iPhone 12. The default back camera (1x) was 
used in each instance, and images were taken outdoors during the daytime 
approximately 6-10 inches from the face. The macro lens that was tested 
is the 25 mm M-Series macro lens from Moment for the iPhone 11 Pro. 
The ring light that was used to test artificial lighting was a 10-inch LED 
ring light purchased from Amazon33. The three lighting levels were 
white, warm white, and warm yellow. All settings were used at the max 
brightness level. More details on the imaging method are discussed in 
Methods. 
 
Enucleated Models 
The female CGI head model was obtained online as a .obj file from 
Turbosquid.com28. First, parts of the model were cut off and discarded so 
that it resembled a slab of the face including just the eyes. Then, it was 
dimensioned to be 150 mm wide (similar to that of a real head based on 
measurements researchers took). An image of this model with 
dimensions is shown in Supplemental Figure 7. 
 
The CGI head model was artificially enucleated using a code program 
that directly edits the obj file containing the mesh points. The code for 
indenting the CGI head is shown in supplemental material 10.  A 3D 
Gaussian function was used to indent the right eye, by subtracting the 
function from every point in the mesh. The Gaussian function used for 
this indentation is shown in Eq 1. 

 

 

X1 and Z1 indicate the center point of the enucleated eye, which was 
found by using the ‘analysis’ -> ‘measure’ tools in Meshmixer to look at 
xyz coordinates of individual points on the surface of the mesh. The final 
enucleated CGI model is shown in Figure 8b. This model was 3D printed 
using fused deposition modeling (FDM) on a LulzBot printer with 
polylactic acid (PLA) filament. The printed model is shown in Figure 4b.  
The male enucleated model was created using photogrammetry by 
imaging a real face. This initial scan is shown in Supplemental Figure 8. 
Researchers followed the steps described in Methods up to Boolean 
subtraction. Once the 3D mesh of the face was obtained and edited, the 
model was dimensioned to 150 mm wide, similar to the CGI model. The 
eyelashes were also removed and smoothed using the ‘select’ and 
‘discard’ tools in Meshmixer, followed by the ‘select’, ‘deform’, and 

‘smooth’ tools. The eyelashes were highlighted and discarded with brush 
size 15. The final model is shown in Figure 8a. 
 
This model was enucleated on the left eye using similar code, but with 
different values for the center point of the Gaussian function. This code 
is shown in supplemental material 10. The Gaussian equation is shown 
in Eq 2 below.  
 

 
 
The final enucleated model using a real face is shown in Figure 8b. 
 
Methods 
See supplement 9 for the detailed instruction manual for ocular prosthesis 
creation. 
 

End Matter 
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Supplemental Materials

 
Supplemental Table 1: Pugh Chart   

Baseline Alternative 1 Alternative 2 Alternative 3 Alternative 4 

Design Evaluation 
Criteria 

Weight 
Factor 

Current 
custom 

prosthesis 

Custom prosthesis 
made using 

structured light 
scanning 

Custom prosthesis 
made using Cone 
Beam Computed 

Tomography 

Custom prosthesis 
with a digitally 

printed iris  

Custom prosthesis 
made using 

photogrammetry 

Dimensional accuracy 3 0 S S S S 

Safety/biocompatibility 3 0 - - S - 

Comfortable fit 3 0 S S S S 

Patient comfort during 
prosthesis creation 

3 0 + + S + 

Production cost 2 0 - - S + 

Production time 2 0 + + + + 

Resource use 2 0 + + + + 

Applicable to special cases 1 0 + + S - 

Aesthetically pleasing 1 0 S S - S 

Time required to learn 
method/expertise 

1 0 - - - + 

Reusable model 1 0 + + + + 

Total + 
 

0 5 5 3 6 

Total - 
 

0 3 3 2 2 

Total S 
 

0 3 3 6 3 

Total  
 

0 3 3 3 8 
 
 
Supplemental Table 2: Design Constraints 
Need # Design Constraint/Metric Unit of Measure Acceptable Ideal Value 

1a Prosthetic horizontal width mm 24 +/- 2  24+/- 0.5 

1b Prosthetic vertical height mm 23 +/- 2 23 +/- 0.5 

1c Prosthetic thickness mm 9 +/- 2 9 +/- 0.5 

1d Prosthetic volume ml 2 - 3 2.2-2.5 

1e Prosthetic mass g 2.36-3.54 2.60-2.95 

2 Alignment metric  % >90% >95% 

3a Model computational time Minutes <180 minutes <90 minutes 

3b Number of images used # of images 50 - 100 50 - 70 

4a Software cost  Dollars  <$500 $0 
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4b Time required to install/learn Minutes <360 <120 

4c Software compatibility Yes/No Windows OS Windows, Linux, MacOS 

5 Aesthetically pleasing/accurate Yes/No Yes Yes 
 
 
 

 

 
Supplemental Fig. 1. Testing photogrammetry using a macro lens. a) The non-enucleated eye being tested and b) 3D mesh model generated 
 
 
 
 
 

 
Supplemental Fig. 2. 3D mesh model generated using an iPhone 12 1x camera lens 
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Supplemental Fig. 3. Computational time for mesh generation with different image set sizes 
 
 
 

 
Supplemental Fig. 4. Enucleated socket model in Meshmixer created by manipulating the coordinates of the obj file to indent the eye between 0.1 
and 0.4 centimeters  
 
 
 

 
 
 
 
 
 
 
 
 
 

Supplemental Fig. 5. 3D printed ocular prosthesis created in AutoCAD and used for Boolean subtraction to create an enucleated socket model 
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Supplemental Fig. 6. Enucleated CGI socket model in Meshmixer created by performing boolean subtraction between the prosthesis shown and the 
original non-enucleated socket model 
 
 
 
Supplemental Table 3: RMSE values for each prosthesis created using the novel method 

Prosthesis RMSE 

1 0.42 mm 

2 0.54 mm 

3 0.43 mm 

4 0.41 mm 

5 0.38 mm 

Average RMSE: 0.43 +/- 0.05 mm Range: 0.38–0.54 mm 
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Supplemental Fig. 7. Dimensions CGI head model in Meshmixer with two non-enucleated sockets 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Supplemental Fig. 8. Original 3D mesh model of a real face with two non-enucleated sockets before model editing 
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Supplemental material 9: Detailed manual of steps in ocular prosthesis creation 
 

Instruction Manual for Custom Prosthesis Creation 
Photogrammetry  
The first step involves imaging the face. A smart phone camera is suitable enough for these pictures, although 
a camera with higher resolution could be used. Approximately 60-80 pictures were taken for each model 
using an iPhone 11 Pro/ iPhone 12 camera, 6-10 inches away from the face. Pictures were taken while 
revolving around the individual, keeping the height of the camera constant, so that the images showed the face 
from all angles. The pictures were taken outdoors in the afternoon on a sunny day, though not in direct 
sunlight. The individual was positioned so that shadows on the face were minimized while taking pictures. 
The individual was instructed to keep their eyes closed and face relaxed, as movement/fidgeting could disrupt 
later image alignment.  
 
Mesh Generation  
The next step involves generating a 3D mesh of the face, 
using the images from the previous step, which uses the 
RealityCapture software. This process is relatively 
straightforward and involves minimal input from the user 
after importing the images. Upon opening RealityCapture, 
researchers registered with a free account. First, the images 
were imported using the ‘inputs’ tool in the workflow tab. 
Next, in the ‘alignments’ tab, the ‘align images’ function 
was used to generate a point cloud rendering of the object 
in 3D. A picture of what this step looks like is shown to the 
right. At this point, if some images can not be aligned, they 
will show up in a different color to indicate failures. These images can be selected from the image list on the 
left and deleted so they will not be used during the mesh generation. The reconstruction region can be 
specified by selecting the ‘set reconstruction region tool’ 
within the ‘mesh model’ menu, and editing the box dimensions. 
This will designate which parts of the point cloud will be 
generated into a full mesh, so certain parts of the face like the 
eyes can be selected, reducing computation time as well. Next, 
in the ‘mesh model’ tab, a 3D mesh can be generated using the 
‘high detail’ setting in the create model section. An example of 
this is shown in to the right. After this, the .obj file containing 
the mesh can be generated using the ‘export’ button in the main 
menu. It should be noted that users will have to pay for the 
licensing of their mesh to export it as a .obj, which costs 
around $0.40 - $0.70 per .obj file; alternatively, a lifetime subscription is available for purchase.  
 
Mesh Modification  
The next step involves importing the .obj file containing the mesh into Meshmixer, which is the software used 
for all further 3D modeling for this method. Several example images are included for these next two sections 
with settings visible, as the manipulation is a bit more complex. As a starting note, the object browser where 
mesh objects can be selected can be toggled visible by pressing ctrl + shift + o. Additionally, camera controls 
can be toggled by holding down the space bar. The ‘import’ tool was first used to load in the .obj file.  If the 
mesh is over 150,000 vertices, researchers reduced the mesh detail to shorten computation time by using the 
’select’ tool, selecting the entire object, and then using ‘edit’ and ‘remesh’ to reduce the mesh between 20 - 
40%. Upon importing the mesh, the face might be rendered in a variety of different directions. First, the ‘edit’ 
and ‘transform’ tools were used to spin the head so that it was oriented  
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facing the proper direction. Next, to get the head 
flat to the bottom plane in Meshmixer, a pivot was 
created by using the ‘edit’ and ‘create pivot’ tools 
(right image). In the create pivot menu, the 
placement mode was set to surface point, the 
coordinate frame was set to world frame, and the 
link to target box was selected. The flat lower 
surface of the face was clicked, and ‘drop pivot’ 
was selected to place the pivot. Next, the ‘edit’ and 
‘align’ tools were used to align the face to the 
world origin. For source, pivot was selected (the 
pivot on the face must be clicked after this is 
selected to change the source), and the destination 
was set as ‘World Origin / Y-up. For this example, 
translate and rotate and flip were selected, but it is possible that it will work better if only translate is selected. 
After this, the head was rotated so that it was parallel and perpendicular to the grid lines on the base plane.    
Next, the head was made solid using the ‘edit’ 
and ‘make solid’ tool (right image).  
The solid type was selected as accurate, color 
transfer mode as automatic, solid accuracy at 
400, and mesh density at 300. The model was 
then dimensioned to match the known 
dimensions using the ‘edit’ and 
‘Units/Dimensions’ tool. It should be noted that 
adjusting the specific x, y, and z dimensions 
using the typing boxes here will change the 
other dimensions. Using the ‘edit’ and 
‘transform’ tools, the squares at the ends of the 
colorful coordinate arrow box can be selected 
and dragged to adjust one coordinate dimension 
without changing the others; alternatively, the dimensions can be edited directly in the settings box within 
‘edit’ and ‘transform’. The dimensions should be set in mm (eg. 150 mm instead of 15 cm) because 
Meshmixer by default loads in obj files with mm; additionally, all of the Python code files included in 
supplements assume that the dimensions are in mm. The head should also be rotated in Meshmixer so that the 
X axis is the long width of the head, as shown in the image below. Artifacts from the head were removed 
from the edges of the model using ‘edit’ and ‘plane cut.’ 
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Boolean Subtraction  
 
The final step involves using a tool called Boolean subtraction in 
Meshmixer to compare the shapes of the enucleated eye and contralateral 
eye to determine the shape of the prosthesis (i.e. the difference in shape). 
The current model was first duplicated using the ‘edit’ and ‘duplicate’ tool. 
Then, using ‘edit’ and ‘transform’, the duplicated model was moved 
vertically upwards from the current model. Next, the model on top was 
mirrored across the center point using the ‘edit’ and ‘mirror’ tools, so that 
the top model had 2 normal eyes, as shown in the image to the right. Next, 
the model on top was moved back on top of the original model using ‘edit’ 
and ‘transform’, as shown  below. Further accuracy in alignment was 

obtained by using the ‘align 
to target’ tool. To use this tool, the original head was set as the 
target by toggling its magnet icon in the object browser. Next, 
the ‘select’ tool was used to select the mirrored head, and the 
‘edit’ and ‘align to target’ tools 
were used. The solve iterations 
were set to 70, and the error 
tolerance to 0.0005 cm. After 
this, all regions of the head 

except for the area of overlap between the normal eye of the mirrored model 
and the enucleated eye of the original model were removed using plane cuts, 
as shown to the right.  
 
 
Next, using the object browser, the normal eye was first 
selected, followed by the enucleated eye, and the ‘boolean 
difference’ tool was selected. Note that this tool subtracts 
the second selected object from the first, so selecting the 
non-enucleated eye first is important. Often, the first 
iteration of the solution failed and appeared in red. The 
solution mode was set to precise, and the handle coplanarity 
option was selected. If this still produces a failed result, 
researchers modified the delta value to increase 
incrementally from 0.001 cm up to 0.05 cm, and it should 
resolve. A passed result will be in purple and orange, as 
shown to the right. Next, the ‘edit’ and ‘separate shells’ 
tool was selected to separate some of the artifacts created by 
Boolean subtraction; all of those that were not the main 
object (which will be a lighter color when selected) were 
deleted. Then, the shape of the prosthetic was found by 
removing the areas surrounding the eye using plane cuts and 
the ‘select’ and ‘discard’ tools. Then, the prosthesis was 
made solid using the same settings as previously mentioned. 
It was then smoothed using the ‘select’ tool, selecting the 
whole prosthesis, and using the ‘deform’ and ‘smooth’ tools, 
with the smoothing type set to shape preserving and the 
smoothing scale set to 40, as shown to the right. The 
smoothing scale was different on a case-to-case basis.  
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Supplemental material 9: a) Code used to enucleate CGI model, b) code used to enucleate real model, c) code used to measure 
thickness of prosthesis and graph against Gaussian values d) code to measure and graph thickness of two normal subtracted eyes 
 
a) Code used to enucleate CGI model, 
import math 
 
#opening the write file for writing 
f = open("cgi-solid-minus40density-write1.obj", "w") 
 

#opening obj file and read line by line 
with open('cgi-solid-minus40density-edit1.obj') as file: 
    for line in file: 
        content = line.split() 
        #check if vertices line 
        if content[0] != 'v': 
            print(line, file = f) 
        else: 
            list = [] 
            list.append('v') 
            for item in content: 
                if item != 'v': 
                    item2 = float(item) 
                    list.append(item2) 
                    #check  for desired values 
                    if len(list) == 4: 
                        x1 = -3.5 
                        z1 = 2.4 
                        x = list[1] 
                        z = list[3] 
                        val = list[2] - (.6 * math.exp(-((x-x1)**2)/(2*(.8**2))) 
* math.exp(-((z-z1)**2)/(2*(.4**2))))  
                        list.pop(2) 
                        list.insert(2,val) 
            for item in list: 
                print(item, end=" ", file = f) 
            print('\n', file=f) 
             
#closing the write file 
f.close() 
 

with open("cgi-solid-minus40density-write1.obj", "r") as f: 
    lines = f.readlines() 
with open("cgi-solid-minus40density-write1.obj", "w") as f: 
    for line in lines: 
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        if line.strip("\n") != "": 
            f.write(line) 
 
 
 
b) code used to enucleate real model 
import math 
 
#opening the write file for writing 
f = open("anth-eyelashes-removed-enucleated.obj", "w") 
 

#opening obj file and read line by line 
with open('2eyes_anth_smooth.obj') as file: 
    for line in file: 
        content = line.split() 
        #check if vertices line 
        if content[0] != 'v': 
            print(line, file = f) 
        else: 
            list = [] 
            list.append('v') 
            for item in content: 
                if item != 'v': 
                    item2 = float(item) 
                    list.append(item2) 
                    #check  for desired values 
                    if len(list) == 4: 
                        x1 = 37 
                        z1 = 12 
                        x = list[2] 
                        z = list[3] 
                        val = list[1] - (6 * math.exp(-((x-x1)**2)/(2*(8**2))) * 
math.exp(-((z-z1)**2)/(2*(4**2))))  
                        list.pop(1) 
                        list.insert(1,val) 
            for item in list: 
                print(item, end=" ", file = f) 
            print('\n', file=f) 
             
#closing the write file 
f.close() 
 

with open("anth-eyelashes-removed-enucleated.obj", "r") as f: 
    lines = f.readlines() 
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with open("anth-eyelashes-removed-enucleated.obj", "w") as f: 
    for line in lines: 
        if line.strip("\n") != "": 
            f.write(line) 
 
 
 
c) code used to measure thickness of prosthesis and graph against Gaussian values 
# Python program to measure thickness of a prosthesis 
 
# This program is fully automated, there are only 2 spots where you might have to 
manually enter values towards the end 
   # one is if the max thickness value is not the center point of the prosthetic 
      # in that case you can manually find the center point and enter it in  
   # the second is the trimming bounds for finding the RMS error 
 
import csv 
from pyexpat.errors import XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING  
import numpy 
import pandas as pd 
import matplotlib.pyplot as plt 
plt.style.use('seaborn-whitegrid') 
from mpl_toolkits import mplot3d 
import math 
     
# field names  
fields = ['X', 'Y', 'Z']  
     
# name of csv file  
filename = "measured-thickness.csv" 
 
# writing to csv file  
with open(filename, 'w', newline='') as csvfile:  
    # creating a csv writer object  
    csvwriter = csv.writer(csvfile)  
 
    # writing the rownames  
    csvwriter.writerow(fields)  
 
    #opening obj file and read line by line 
    with open('prosthesis-4-smooth.obj') as file: 
        for line in file: 
            content = line.split() 
            #check if vertices line 
            if content[0] == 'v': 
                list = [] 
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                for item in content: 
                    if item != 'v': 
                        list.append(item) 
                    if len(list) == 3: 
                        # writing the data rows  
                        csvwriter.writerow(list) 
 
#closing the write file 
file.close() 
 
#importing csv as data frame 
df = pd.read_csv (r'measured-thickness.csv') 
 
#converting data frame to array 
matrix1 = df.to_numpy() 
 
print('Vertices stored in an array: ') 
print(matrix1) 
print('\n') 
 
#getting dimensions of matrix 
dims = matrix1.shape 
rows = dims[0] 
columns = dims[1] 
print('Dimensions of array: ') 
print(rows) 
print(columns) 
print('\n') 
 

#sort matrix by x values 
matrix = matrix1[matrix1[:, 0].argsort()] 
print('Array sorted by x value: ') 
print(matrix) 
print('\n') 
 
#sort matrix by y values 
matrix2 = matrix1[matrix1[:, 1].argsort()] 
print('Array sorted by y value: ') 
print(matrix2) 
print('\n') 
 
#find max values for x and y for bounds of scan box 
max_x = numpy.max(matrix[:,0]) 
min_x = numpy.min(matrix[:,0]) 
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max_y = numpy.max(matrix[:,2]) 
min_y = numpy.min(matrix[:,2]) 
print('Max and min values: ') 
print(max_x) 
print(min_x) 
print(max_y) 
print(min_y) 
print('\n') 
 
#finding thickness by 'box' method? 
box_width = 0.5 
box_height = 0.5 
 
# calculate iterations across and down based on box dimensions and scan box 
dimensions  
iters_x = int((max_x - min_x) // box_width) 
iters_y = int((max_y - min_y) // box_height) + 1 
 

#starting from top left of bounding box  
box_coord_y = max_y 
box_coord_x = min_x 
 

#initialize empty list to store points and thickness vals 
points = [] 
 

#starting at min x and max y , top left of square 
#scanning vertical rows and then moving horizontally to the right across the 
square 
for i in range (0, iters_x): 
    for j in range(0, iters_y): #scanning down one column 
        array1 = numpy.zeros((2000,3)) 
        count = 0 
        for k in range(0, rows): # scanning through all vertices 
            if matrix[k,0] >= box_coord_x and matrix[k,0] <= (box_coord_x + 
box_width) and matrix[k,2] <= box_coord_y and matrix[k,2] >= (box_coord_y - 
box_height): 
                array1[count,0] = matrix[k,0] # x coord 
                array1[count,1] = matrix[k,2] # y coord 
                array1[count,2] = matrix[k,1] # z coord 
                count = count + 1 
        array1 = array1[~numpy.all(array1 == 0, axis=1)] 
        if array1.size: 
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            max_z = numpy.max(array1[:,2]) 
            min_z = numpy.min(array1[:,2]) 
            thickness = max_z - min_z 
            points.append(box_coord_x + (box_width / 2)) 
            points.append(box_coord_y -(box_width / 2)) 
            points.append(thickness) 
        box_coord_y = box_coord_y - box_height 
    box_coord_y = max_y 
    # once you get out of j for loop 
    box_coord_x = box_coord_x + box_width 
        
cols = 3 
points_fin = numpy.array([points[i:i+cols] for i in range(0, len(points), cols)])  
 
# finding dims 
dims_fin = points_fin.shape 
rows_fin = dims_fin[0] 
 
# print first 10 rows to check 
print('Final array of x vals, y vals, and thickness: ') 
print(points_fin) 
print('\n') 
 
#finding weighted average of x and y to approximate center point 
countx = 0.0 
county = 0.0 
totalz = 0.0 
for i in range(0, rows_fin): 
    x_val = points_fin[i,0] 
    y_val = points_fin[i,1] 
    z_val = points_fin[i,2] 
    countx = countx + (x_val * z_val) 
    county = county + (y_val * z_val) 
    totalz = totalz + z_val 
mid_x = countx / float(totalz) 
mid_y = county / float(totalz) 
print(mid_x) 
print(mid_y) 
 

# plotting prosthesis thickness vs. gaussian  
points3d = points_fin.copy() 
for i in range(0, rows_fin): 
    x_val = points3d[i,0] 
    y_val = points3d[i,1] 
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    #gaussian function for indenting, x1 and y1 are center point 
    x1 = mid_x 
    y1 = mid_y 
    z_val = (6 * math.exp(-((x_val-x1)**2)/(2*(8**2))) * math.exp(-((y_val-
y1)**2)/(2*(4**2)))) 
    points3d[i,2] = z_val 
 
x1 = points3d[:,0] 
y1 = points3d[:,1] 
z1 = points3d[:,2] 
 

#3D graph 
fig = plt.figure(figsize = plt.figaspect(0.5)) 
ax = fig.add_subplot(1,2,1,projection='3d') 
x = points_fin[:,0] 
y = points_fin[:,1] 
z = points_fin[:,2] 
ax.scatter3D(x, y, z, c = 'r', marker = 'o', label = 'prosthesis') 
ax.scatter3D(x1, y1, z1, c = 'b', label = 'gaussian') 
ax.set_xlabel('X', rotation=150) 
ax.set_ylabel('Y') 
ax.set_zlabel('Z', rotation=60) 
 

# finding RMS error 
cut1 = box_width * 5.0 
cut2 = box_width * 2 
list_del = [] 
count = 0  
for i in range(0,rows_fin): 
    xs = points_fin[i,0] 
    ys = points_fin[i,1] 
    xs1 = points3d[i,0] 
    ys1 = points3d[i,1] 
    if (xs < (min_x + cut1)) or (xs1 < (min_x + cut1)) or (xs > (max_x - cut1)) 
or (xs1 > (max_x - cut1)) or (ys < (min_y + cut2)) or (ys1 < (min_y + cut2)) or 
(ys1 > (max_y - cut2)) or (ys > (max_y - cut2)): 
        list_del.append(count) 
    count = count + 1 
 

points_fin1 = numpy.delete(points_fin, list_del, axis=0) 
points3d1 = numpy.delete(points3d, list_del, axis=0) 
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dims_del = points_fin1.shape 
rows_del = dims_del[0] 
 
#finding weighted average of x and y to approximate center point for updated set 
of points  
countx1 = 0.0 
county1 = 0.0 
totalz1 = 0.0 
for i in range(0, rows_del): 
    x_val = points_fin1[i,0] 
    y_val = points_fin1[i,1] 
    z_val = points_fin1[i,2] 
    countx1 = countx1 + (x_val * z_val) 
    county1 = county1 + (y_val * z_val) 
    totalz1 = totalz1 + z_val 
mid_x1fin = countx1 / totalz1 
mid_y1fin = county1 / totalz1 
print(mid_x1fin) 
print(mid_y1fin) 
 

# updated plotting prosthesis thickness vs. gaussian  
for i in range(0, rows_del): 
    x_val = points3d1[i,0] 
    y_val = points3d1[i,1] 
    #gaussian function for indenting, x1 and y1 are center point 
    z_val = (6 * math.exp(-((x_val-mid_x1fin)**2)/(2*(8**2))) * math.exp(-
((y_val-mid_y1fin)**2)/(2*(4**2)))) 
    points3d1[i,2] = z_val 
 
# 3D graph after trim 
ax = fig.add_subplot(1,2,2,projection='3d') 
x2 = points_fin1[:,0] 
y2 = points_fin1[:,1] 
z2 = points_fin1[:,2] 
x3 = points3d1[:,0] 
y3 = points3d1[:,1] 
z3 = points3d1[:,2] 
ax.scatter3D(x2, y2, z2, c = 'r', marker = 'o', label = 'Reconstructed values') 
ax.scatter3D(x3, y3, z3, c = 'b', label = 'Known values') 
ax.set_xlabel('X', rotation=150) 
ax.set_ylabel('Y') 
ax.set_zlabel('Z', rotation=60) 
plt.legend(loc = 'upper right') 
# plt.show() 
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# RMS Error calculation 
dims_rms = points_fin1.shape 
rms_count = dims_rms[0] 
resids = 0.0 
for i in range(0, rms_count): 
    z4 = points_fin1[i,2] 
    z5 = points3d1[i,2] 
    val = z4 - z5 
    val2 = val * val 
    resids = resids + val2 
num = resids / rms_count 
rms = math.sqrt(num) 
print('The RMS Error is: ', rms) 
 
plt.show() 
 
 
 
 
d) code to measure and graph thickness of two normal subtracted eyes 
# Python program to measure thickness of two subtracted eyes 
 
import csv 
from pyexpat.errors import XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING  
import numpy 
import pandas as pd 
import matplotlib.pyplot as plt 
plt.style.use('seaborn-whitegrid') 
from mpl_toolkits import mplot3d 
import math 
     
# field names  
fields = ['X', 'Y', 'Z']  
     
# name of csv file  
filename = "measured-thickness2.csv" 
 
# writing to csv file  
with open(filename, 'w', newline='') as csvfile:  
    # creating a csv writer object  
    csvwriter = csv.writer(csvfile)  
 
    # writing the rownames  
    csvwriter.writerow(fields)  
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    #opening obj file and read line by line 
    with open('anth-eyes-subtracted-solid.obj') as file: 
        for line in file: 
            content = line.split() 
            #check if vertices line 
            if content[0] == 'v': 
                list = [] 
                for item in content: 
                    if item != 'v': 
                        list.append(item) 
                    if len(list) == 3: 
                        # writing the data rows  
                        csvwriter.writerow(list) 
 
#closing the write file 
file.close() 
 
#importing csv as data frame 
df = pd.read_csv (r'measured-thickness2.csv') 
 
#converting data frame to array 
matrix1 = df.to_numpy() 
 
print('Vertices stored in an array: ') 
print(matrix1) 
print('\n') 
 
#getting dimensions of matrix 
dims = matrix1.shape 
rows = dims[0] 
columns = dims[1] 
print('Dimensions of array: ') 
print(rows) 
print(columns) 
print('\n') 
 

#sort matrix by x values 
matrix = matrix1[matrix1[:, 0].argsort()] 
print('Array sorted by x value: ') 
print(matrix) 
print('\n') 
 
#find max values for x and y for bounds of scan box 
max_x = numpy.max(matrix[:,0]) 
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min_x = numpy.min(matrix[:,0]) 
max_y = numpy.max(matrix[:,2]) 
min_y = numpy.min(matrix[:,2]) 
print('Max and min values: ') 
print(max_x) 
print(min_x) 
print(max_y) 
print(min_y) 
print('\n') 
 
#finding thickness by 'box' method? 
box_width = 0.5 
box_height = 0.5 
 
# calculate iterations across and down based on box dimensions and scan box 
dimensions  
iters_x = int((max_x - min_x) // box_width) 
iters_y = int((max_y - min_y) // box_height) 
 

#starting from top left of bounding box  
box_coord_y = max_y 
box_coord_x = min_x 
 

#initialize empty list to store points and thickness vals 
points = [] 
 

#starting at min x and max y , top left of square 
#scanning vertical rows and then moving horizontally to the right across the 
square 
for i in range (0, iters_x): 
    for j in range(0, iters_y): #scanning down one column 
        array1 = numpy.zeros((500,3)) 
        count = 0 
        for k in range(0, rows): # scanning through all vertices 
            if matrix[k,0] >= box_coord_x and matrix[k,0] <= (box_coord_x + 
box_width) and matrix[k,2] <= box_coord_y and matrix[k,2] >= (box_coord_y - 
box_height): 
                array1[count,0] = matrix[k,0] # x coord 
                array1[count,1] = matrix[k,2] # y coord 
                array1[count,2] = matrix[k,1] # z coord 
                count = count + 1 
        array1 = array1[~numpy.all(array1 == 0, axis=1)] 
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        if array1.size: 
            max_z = numpy.max(array1[:,2]) 
            min_z = numpy.min(array1[:,2]) 
            thickness = max_z - min_z 
            points.append(box_coord_x + (box_width / 2)) 
            points.append(box_coord_y -(box_width / 2)) 
            points.append(thickness) 
        box_coord_y = box_coord_y - box_height 
    box_coord_y = max_y 
    # once you get out of j for loop 
    box_coord_x = box_coord_x + box_width 
        
cols = 3 
points_fin = numpy.array([points[i:i+cols] for i in range(0, len(points), cols)])  
 
# finding dims 
dims_fin = points_fin.shape 
rows_fin = dims_fin[0] 
 
# print first 10 rows to check 
print('Final array of x vals, y vals, and thickness: ') 
print(points_fin) 
print('\n') 
 
# print average and max value of thickness 
max_thick = numpy.max(points_fin[:,2]) 
mean_thick = numpy.mean(points_fin[:,2]) 
print('The maximum thickness is ', max_thick, 'mm') 
print('The average thickness is ', mean_thick, 'mm') 
 

#3D graph 
fig = plt.figure(figsize = plt.figaspect(1)) 
ax = fig.add_subplot(1,2,1,projection='3d') 
x = points_fin[:,0] 
y = points_fin[:,1] 
z = points_fin[:,2] 
ax.scatter3D(x, y, z, c = 'g', marker = 'o', label = 'Noise') 
ax.set_xlabel('X (mm)', rotation=150) 
ax.set_ylabel('Y (mm)') 
ax.set_zlabel('Thickness (mm)', rotation=60) 
 
plt.legend(loc = 'upper right') 
plt.show() 
 


