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Abstract 

Cardiovascular Magnetic Resonance (CMR) first-pass contrast-enhanced myocardial perfusion imaging 

has proven to be a promising noninvasive technique for evaluating patients with known or suspected 

coronary artery disease. It is performed during a single breath-hold (typically lasting sixty heartbeats for 

around 1 minute). However, patients are often not able to hold their breath for this period and involuntary 

motion of the diaphragm often occurs, especially for senior and pediatric patients. In the presence of cardiac 

and respiratory motion, CMR perfusion imaging techniques are susceptible to motion-induced artifacts, 

leading to poor image quality. The inter-frame motion artifacts make quantitative analysis for cardiac 

function evaluation difficult. Hence motion correction is an important processing step before robust 

quantification of myocardial perfusion analysis. The motion-compensated reconstruction of CMR perfusion 

imaging is performed off-line and is a time-consuming method. To address this limitation, we developed a 

deep learning-based framework for rapid motion correction of spiral first-pass myocardial perfusion 

imaging using a 2D U-Net that estimates the deformation field from a moving frame to a fixed frame. 

Additionally, we incorporated auxiliary myocardium mask information to the model to analyze its effects 

on motion correction performance. Because there are large contrast variations in the temporal series of 

CMR perfusion data that makes registration of perfusion images inherently difficult, we generated flattened 

contrast images of the fixed frames using robust principal component analysis (RPCA). Our proposed deep 

learning-based framework demonstrated faster motion correction than the traditional Advanced 

Normalization Tools (ANTs) toolbox and temporal smoothness was found to be statistically significant for 

the models that did not use auxiliary information. 
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Introduction 

CMR Perfusion Imaging 

About 20.1 million adults aged 20 and older have 

coronary artery disease (about 7.2%) [1]. First-pass 

contrast-enhanced myocardial perfusion imaging provides 

important diagnostic and prognostic information in 

coronary artery disease [2]. It is performed during a single 

breath-hold (typically lasting sixty heartbeats for around 1 

minute) to limit movement of the heart within and through 

the imaging plane. However, patients are often not able to 

hold their breath for this period and involuntary motion of 

the diaphragm often occurs [3], especially for senior and 

pediatric patients. Hence, motion between frames must be 

corrected for quantitative analysis. The sources of cardiac 

motion are respiration, voluntary patient displacement, 

involuntary thoracic organ development, and the pumping 

action of the heart chambers [4]. 

Furthermore, for detection of coronary artery 

disease, a pharmacologically induced stress perfusion 

measurement is required to characterize myocardial 

perfusion defects. This is typically performed by the 

administration of adenosine to induce vasodilation. When 

the heart is under adenosine-induced stress, the ability of the 

patient to maintain a breath-hold for the duration of the first 

pass of contrast agent is further compromised.   

High-resolution spiral perfusion imaging 

techniques, using a motion-compensated L1-SPIRiT 

reconstruction, are capable of whole-heart high-resolution 

perfusion imaging [5], but the motion-compensated 

reconstruction is performed off-line and is a time-

consuming method, taking ~40 minutes per slice. 

Furthermore, in the presence of respiratory motion, these 
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techniques can suffer from significant degradation of image 

quality because of their sensitivity to respiratory motion-

induced artifacts [6].  

Small changes in the heart location can lead to the 

region of interest being contaminated by blood in the left 

ventricle cavity, resulting in potentially large differences in 

average myocardial signal intensity which affects 

quantification of myocardial blood flow. To develop a 

motion correction framework for spiral first-pass 

myocardial perfusion imaging that is both efficient and 

accurate, this project used deep learning. Attempts have 

been made using deep learning to learn motion correction. 

These methods have high image quality but have been 

targeted towards neurological cases with rigid head motion 

and milder motion displacements compared to CMR cases 

[7]. By developing a deep learning-based framework for 

accurate and rapid motion correction of CMR perfusion 

imaging, our technique aimed to reduce the effect of 

respiratory motion in the perfusion images without affecting 

the image quality. Furthermore, a rapid deep learning-based 

process for motion correction will assist clinicians in 

receiving faster results for pixel-wise CMR perfusion 

quantification because respiratory motion correction is an 

essential component to the workflow pipeline in the 

imaging process (Figure 1). 

 

 

Current Motion Correction Methods 

ANTs 

The ANTs package extracts information from 

complex datasets that include imaging, such as CMR 

perfusion, and depends on the Insight ToolKit (ITK), a 

widely used medical image processing library to which 

ANTs developers contribute. It provides many utilities for 

image preprocessing and registration which have 

demonstrated excellent performance [8]. Its imaging 

programs can, for example, perform segmentation, estimate 

thickness, and perform motion correction for time-series 

data. However, ANTs is a time-consuming optimization-

based method if accurate motion correction is desired. Users 

must decide which parameters to use such that the output is 

most optimal for their images. This can cause uncertainties, 

especially for new users.  

 

VoxelMorph 

VoxelMorph is an open-source unsupervised deep 

learning-based non-linear technique with the architecture of 

a U-Net that has demonstrated high accuracy in correcting 

motion and has demonstrated an ease in training 

methodology [9]. The study registered 3D MR brain scans 

and has achieved comparable accuracy to state-of-the-art 

ANTs registration, while taking orders-of-magnitude less 

time. On a CPU, VoxelMorph requires less than a minute 

while state of-the-art baselines take tens of minutes to over 

two hours [9]. An additional advantage of VoxelMorph over 

other learning-based methods is its end-to-end unsupervised 

framework. Hence, no ground truth is required, meaning no 

deformation fields are required during training, providing 

the network more freedom to estimate the deformation field 

during the training.  

 

Innovation 

Applications of motion correction for medical 

imaging, and particularly our focus for MRI, correct 

artifacts to generate good quality and reliable images for 

clinical interpretation. However, ANTs is time-consuming 

and VoxelMorph has targeted brain MR cases which have 

milder motion displacements relative to CMR.  

The goal of this project was to deploy VoxelMorph 

as a backbone framework model for correcting motion of 

CMR perfusion imaging by applying cardiac cases, 

changing its structure, and adding preprocessing steps 

discussed later. By using deep learning instead of ANTs’ 

optimization-method, we aimed to have the motion 

correction process be more time efficient so that clinicians 

can receive immediate clinical interpretation. More broadly, 

the research will assist physicians in their clinical duties by 

providing good quality images that are not disrupted by 

blurring artifacts which would affect a physician’s 

evaluation of the image.  

 

Materials and Methods 

Data 

The specific aims of our project were to develop a 

deep learning-based respiratory motion correction model 

(Aim 1) and validate and apply the proposed method on a 

Fig. 1. Workflow diagram of CMR imaging process. 
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clinical setting (Aim 2). We had acquired 76 slices from 17 

patients undergoing clinically ordered stress CMR studies 

with gadolinium (Gd)-based contrast agents on 3T scanners 

(SIEMENS Prisma/Skyra, Siemens Healthineers, Erlangen, 

Germany). Datasets were resized to 160 x 160 x 50 

(frames). The spiral whole-heart perfusion images have a 

1.25 mm in-plane resolution and 10 mm slice thickness [5]. 

The images were reconstructed using the L1-SPIRiT 

technique (Figure S1).  

 For Aim 1, we deployed the deep learning-based 

2D U-Net motion correction model, VoxelMorph, to our 

dynamic perfusion image series. It is a network proposed to 

estimate the deformation field between image pairs. The 

code for the VoxelMorph model is freely available in 

Python library TensorFlow and it was run in Jupyter 

Notebook in Rivanna.  

Data from 13 subjects was used for training for a 

total of 3,050 images from 61 slices. Data from another 4 

subjects was used for validation for a total of 750 images 

from 15 slices. All data was normalized before being used 

in the model. Each subject case had between three to eight 

slices. Training and evaluation were conducted on a single 

GPU (NVIDIA Tesla A100). 

 

Training Network 

During the training process, image pairs in the 

perfusion dynamic series were randomly selected, and the 

network learns the deformation mapping from one frame to 

the other (moving frame m to fixed frame f) without a gold-

standard image registration. The output of the network is the 

estimated deformation field between the moving and fixed 

frames, and the moved frame. Motion correction is 

conducted by applying the deformation field to the moving 

frame. The network structure for motion correction is 

demonstrated in Figure 2. 

Since CMR perfusion imaging has dynamically 

varying contrast, we used the normalized cross correlation 

(NCC) loss function that is less sensitive to contrast 

variation instead of mean squared error. NCC computed 

local cross-correlations between fixed frames and moved 

frames. A higher NCC indicates an accurate deformation 

field result so that the moved frame is approximate to the 

fixed frame. Loss was monitored during training. 

 For the 2D U-Net component in Figure 2, a model 

with encoder layers of [16, 32, 32, 32] and decoder layers 

of [32, 32, 32, 32, 32, 16, 16] were used; 16 and 32 represent 

the number of kernels at each layer. These layers were 

selected based on what was proposed in Balakrishnan’s 

VoxelMorph models. For the optimizer, we used ADAM. 

The model was trained for 500 epochs and 150 steps per 

epoch with a batch size of 5.  

 

Input 

 A training data generator was created to yield 

moving image and fixed image pairs for the custom model 

from the 3,050 images. The fixed frame was selected to be 

a random frame from the slice that contains the moving 

frame. Additionally, we trained another model that 

leverages myocardium masks using manual contours of the 

endocardium and epicardium (Figure 3) which are available 

during training but not during testing. In a binary mask, each 

pixel is labeled either 0 or 1 with 1 representing our region 

Fig. 2. The proposed image motion correction network for spiral perfusion imaging using deep learning. 
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of interest, the myocardium area. To incorporate these 

segmentations into the model, an additional loss function is 

implemented: Dice. If the deformation field by the model is 

accurate, then there should be an overlap in anatomical 

structures (such as of the myocardium mask) in the fixed 

frame and moved frame. A dice score of 0 means there is no 

overlap and a dice score of 1 means that there is perfect 

overlap in the anatomy.  

 

Contrast Removal 

As mentioned, there are large contrast variations in 

the temporal series of CMR perfusion data which makes 

registration of perfusion images inherently difficult. There 

are rapidly changing signal intensities due to the arrival and 

wash-out of the contrast agent in the region of interest. 

Algorithms cannot differentiate if differences in signal 

intensity are caused by spatial motion artifacts or local 

contrast enhancement [10]. To alleviate this issue, we 

generated flattened contrast image series during pre-

processing of the fixed frames using RPCA. The method 

separates the local signal enhancement from the baseline 

signal. Hence, the deformation field needed to remove 

respiratory motion can be calculated in the absence of the 

locally varying contrast enhancement, so the deformation 

field is then applied to the moving image to create the 

moved image.  

 When looking at a set of images in a slice, the data 

(M) can be viewed as a combination of a low-rank 

component (L) and a sparse component (S) [10]. This is 

formulated as: 

To optimally extract the low rank and sparse components, a 

parameter 𝜆 which balances the constraint on the rank of L 

and the sparsity of S is typically set as: 

 Np is the number of pixels in an image, which in this case 

was set to 25,600 pixels. Hence our 𝜆  was optimally 

selected to be 0.00625. As 𝜆 increases, this leads to the low-

rank components having higher rank and the sparse 

component being more sparse [10]. We used the low-rank 

component to represent the image with removal of contrast 

enhancement as it models the baseline signal. The sparse 

component itself models the contrast enhancement. Figure 

4 displays an example of flattening contrast using RPCA by 

extracting the low-rank components of the image M.  

 

Testing Data Pairs 

To test our deep learning-based model, a testing 

data generator was created to form moving and fixed image 

pairs. The fixed frame was the 25th frame in the slice 

containing the moving frame. The 25th frame was selected 

because that is the middle frame within a slice of 50 frames. 

Hence, it can be represented as a general representation of 

the slice for the moving frame to register to. This is 

important as the model registers the moving frame to the 

fixed frame by mapping it to the fixed space.  

 

Implementation of ANTs 

 In Python, we used “BOLDAffine”, an affine 

transformation, in the publicly available software package 

ANTs to do motion correction on our four CMR perfusion 

testing cases. All other parameters were kept to the default 

setting such as 0.2 for the gradient step size, 3 for the 

smoothing for the update field, and 0 for the smoothing for 

the total field. The fixed image was similarly also selected 

to be the 25th frame in the slice containing the moving frame 

as ANTs is also a pairwise registration.  

 

 

 

𝑀 = 𝐿 + 𝑆 [1] 

𝜆 = 1/√𝑁𝑝  [2] 

Fig. 4. Frame after removal of contrast using RPCA by separating image series 

M into its low-rank component L. 
 

Fig. 3. (A) Example of conversion of manual contours of the endocardium 

(inner circle) and epicardium (outer circle) into a binary mask of the 

myocardium. (B) Example of inputs into the model when incorporating 

auxiliary myocardium mask information. 
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Results 

X-t Profile 

 Using data from four subjects, we tested the 

different alterations of our deep learning-based model: with 

RPCA, using myocardium mask information, and using 

myocardium mask information with RPCA. To best 

visualize the results, the x-t profile of a slice (50 frames) 

was plotted, before motion correction and after motion 

correction (Figure 5). A blue line is drawn indicating the 

location we sought to observe, where the left ventricle 

cavity is present. Based on the x-t profile, our models reduce 

motion when compared to the no motion correction x-t 

profile (Figure 5B) where the up and down movements of 

the left ventricle are more apparent because of the breathing 

of the patient.  

 

Temporal Smoothness 

To quantify the correction of motion, the standard 

deviation (SD) of the second derivative of the voxel-wise 

time-intensity curves [10] was calculated for the 15 slices 

used for testing in MATLAB. Lower values indicate that the 

change in intensity between two successive images in the 

series is smooth and hence indicates a likely reduction in the 

amount of motion. From the boxplots in Figures 6 and S2, 

it is seen that all four of our deep learning-based models 

reduce motion as the SD of the second derivative of the 

intensities is lower.  

 Statistical testing was done by the Bonferroni-

Holm Method to determine if there are any models that have 
a statistically significant difference in the SD of the second 

derivative of the intensities. It was found that the DL 

MOCO and DL MOCO with RPCA models have a 

statistically significant difference compared to no motion 

correction with p-values of 0.0357 and 0.0331 respectively. 

The models using myocardium masks had no significant 

difference (p>0.05).  

 

Dice Score 

 Additionally, we sought to compute the dice score 

overlap of the endocardium and myocardium regions of the 

manual segmentations on the fixed frames compared to 

warped segmentations made on the moved frames done by 

the model. For every pair of contours on the fixed frames 

and moved frames, a dice score was calculated for the 

endocardium and myocardium areas. The two dice scores 

were then averaged which was done for all 750 images of 

testing data. The dice score is not an indicator of 

smoothness but rather evaluates similarities between the 

segmentations. We were limited to using only myocardium 

Fig. 6. Box plots indicating temporal smoothness. Statistical test is conducted 

using the Bonferroni-Holm Method and p-values of 0.0357 and 0.0331 for no 

MOCO compared to DL MOCO and DL MOCO with RPCA respectively are 

observed.     

 

Fig. 5. (A) X-t profiles of a slice (50 Frames), denoted by the blue line. (B) No motion correction, (C) After DL MOCO, (D) After DL MOCO with RPCA, (E) After 

DL MOCO using Myocardium Mask, (F) After DL MOCO using Myocardium Mask with RPCA. 
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and endocardium masks because segmentations of other 

regions were not available. The average overall dice score 

was highest for the models using myocardium mask 

information during training (Figure 7, S3) with dice scores 

of 0.824 and 0.822 for DL MOCO using Myocardium Mask 

and DL MOCO using Myocardium Mask with RPCA 

respectively.  

 Based on a Tukey Honestly Significant Difference 

Test, it was found that there was a statistically significant 

difference in the average dice score from models using 

myocardium mask information when compared to the DL 

MOCO with RPCA. Specifically, the p-value for the 

pairwise comparison between DL MOCO with RPCA and 

DL MOCO using Myocardium Mask was 0.00469 and the 

p-value for the pairwise comparison between DL MOCO 

with RPCA and DL MOCO using Myocardium Mask with 

RPCA was 0.0115. 

 

Time Efficiency 

 Time efficiency of our proposed deep learning-

based motion correction technique was assessed by using a 

built-in Python function to measure execution time. A two-

sample t-test was conducted to determine if there is a 

statistically significant difference between the time to 

register a frame using ANTs, a state-of-the-art medical 

image registration toolbox, and our technique. The average 

time using the deep learning approach, which was found to 

be independent of flattening contrast and adding 

myocardium mask information to the model, took 14 
milliseconds and ANTs took 25 times more time (Figure 8). 

The test concluded that there is a statistically significant 

difference with a p-value of 4.52E-43.  

 

Discussion 

 Based on the SD of the second derivative of the 

voxel-wise time-intensity curves, the deep learning-based 

models without the use of myocardium mask information 

reduced motion the most. The implementation of removing 

contrast of the fixed frame during testing did not 

significantly reduce motion. The additional segmentation 

information of the myocardium likely did not lead to a lower 

SD of the second derivative of the intensities because it 

provided an additional emphasis on the myocardium region. 

Implementing a model that uses multiple masks such as that 

of the right ventricle too can assist in increasing the 

temporal smoothness and learning network parameters.  

 With NCC as a loss function to quantify the 

dissimilarity between the intensities of two frames and the 

spatial regulation of the deformation in our models [9], it is 

likely that flattening contrast did not significantly affect 

motion correction results because NCC is insensitive to 

contrast variation. Future studies can analyze how using a 

MSE loss function for a model that uses flattened contrast 

images affects motion correction.   

 Overall, our deep learning-based technique is rapid 

in automatically reducing motion of CMR perfusion 

imaging. This is essential to be clinically translated and to 

assist in providing immediate feedback to clinicians after a 

scan. The results presented are a step closer to the 

elimination of motion and its related artifacts in CMR 

perfusion imaging so that clinicians can robustly quantify 

myocardial blood flow and read images with excellent 

image quality.  

 

 

 

Fig. 7. Average dice score of endocardium and myocardium region, measuring 

segmentation overlap between fixed frames and moved frames. Statistical test is 

conducted using the Tukey Honestly Significant Difference Test and p-values of 

0.00469 and 0.0115 for DL MOCO with RPCA compared to DL MOCO using 

Myocardium Mask and DL MOCO using Myocardium Mask with RPCA 
respectively are observed.     

 

 

Fig. 8. Bar graph measuring average runtime for motion correction. A two-sample 

t-test was conducted which yielded a p-value of 4.52E-43. 
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Future Work 

Potential ways in increasing the reduction of 

motion in CMR perfusion images could include improving 

the input quality of the images. In this project, we used L1-

SPIRiT for image reconstruction. However, alternative 

techniques such as DESIRE, a deep learning-based image 

reconstruction technique where complex-valued 

convolution is enforced [11], has also demonstrated good 

image quality. An advantage in using DESIRE is that its 

image reconstruction time is significantly shorter than L1-

SPIRiT. Using DESIRE would help the overall pipeline 

process seen in Figure 1 occur more rapidly. 

 As mentioned previously, we were limited to 

creating masks from manual contours of the endocardium 

and epicardium as those were the manual contours available 

to us in our cases used for testing. However, further studies 

can be done to observe how utilizing more masks can assist 

the deep learning-based motion correction model in 

learning network parameters. This would require additional 

manual contours of regions such as the right ventricle and 

other structures.  

 In this project, RPCA was utilized to remove 

contrast of the fixed frames. However, alternative 

techniques can be used to flatten contrast such as 

Contrastive Unpaired Image-to-Image Translation (CUT) 

[12], a neural style transfer network. CUT uses an InfoNCE 

loss to maximize mutual information between 

corresponding input and output patches, while drawing 

upon other patches in the image as contrastive negatives. It 

can be used to flatten contrast so that frames with low 

contrast resemble contrast level of middle slice perfusion 

frames.  

 Furthermore, the performance of motion correction 

by ANTs heavily relies on the parameters inputted by the 

user. In future studies, more research can be done to analyze 

if there are more optimal parameters to be selected. We 

tested several transformations in the ANTs package and 

discovered “BOLDAffine” to be the most sufficient in our 

cases. It would be beneficial to also observe how changing 

other parameters can affect motion correction such as the 

choice of the fixed frame, gradient step sizes, and 

smoothing for the update field and total field.  
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Temporal Smoothness by Case 

NUFFT L1-SPIRiT 

Fig. S1. Example of L1-SPIRiT image reconstruction on a CMR perfusion image. 

Fig. S2. Box plots indicating temporal smoothness for each testing case, calculated by the SD of the second derivative 

of the voxel-wise intensity curves. 
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