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Abstract

Covariate-adaptive designs are widely used to balance covariates and maintain ran-

domization in clinical trials. Restricted randomization procedures for discrete covari-

ates and their asymptotic properties have been addressed in the literature. However,

clinical trials can often contain continuous covariates. Simply discretizing or cate-

gorizing continuous covariates can result in lose of information. The state-of-the-art

adaptive design with continuous covariates is still entirely based on simulation and

to-date lacks a rigorous theoretical understanding. Therefore, conventional hypoth-

esis testing for clinical trials using continuous covariates is still not well understood.

In this dissertation, we establish a theoretical framework for hypothesis testing on

clinical trials with continuous covariates randomized using adaptive designs. We

test for treatment effects and significance of covariates under null and alternative

hypotheses. To verify our framework, numerical simulations are conducted under a

class of covariate-adaptive designs including, the p-value based method, the Su’s per-

centile method, the empirical cumulative-distribution method, the Kullback-Leibler

divergence method, and the kernel-density method. For independent covariates we

find that: (1) hypothesis testing that compares treatment effects has small Type I

error, (2) hypothesis testing using adaptive designs outperforms complete random-

ization method in terms of power, and (3) testing for significance of covariates is

still valid. For correlated covariates we prove and verify in simulations that treat-

ment effects still have small Type I error, and estimators of continuous covariate

coefficients are biased under covariate-adaptive designs. Furthermore, we adapt a

minimization procedure to the kernel-density method for covariate-adaptive design,

and show that our method out-performs other adaptive designs in balancing the

distributions of continuous covariates across treatment groups in clinical trials.
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Chapter 1

Introduction

1.1 Overview of adaptive design

1.1.1 Background

In clinical trials, randomizing patient assignments and balancing patient allocation

are integral for convincing treatment comparison. The aim of randomization is

to reduce selection bias, however complete randomization methods, i.e., flip of an

unbiased coin can be prone to imbalance especially in small clinical trials due to

unpredictability. On the other hand, perfect balancing methods can make clinical

trials susceptible to selection bias. However, in order to maximize the power of

treatment comparison, we need to balance patient allocation without compromis-

ing randomization. To handle this dilemma, adaptive randomization or restricted

randomization (Rosenberger and Lachin, 2002) designs have been introduced.

In this chapter, we review the four main classes of adaptive randomization. This

includes restricted randomization, response-adaptive design, covariate-adaptive de-

sign and covariate-adjusted response adaptive design. With the focus of the disser-
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tation on covariate-adaptive design, we review how to handle both discrete and con-

tinuous covariates. A review of hypothesis testing under covariate adaptive design

is presented in the next section. In the final section we motivate this dissertation.

1.1.2 Four major classes of adaptive randomization

Adaptive design utilizes historical information from a clinical trial to adjust future

treatment assignment. The information from a clinical trial includes: treatment

assignments of previous patients, the covariates of the patients, and the treatment

response of assigned patients. Based on the information used to assign new patients,

the adaptive design is classified into four-main families (Hu and Rosenberger, 2006):

(1) restricted randomization, (2) response-adaptive design, (3) covariate-adaptive

design, and (4) covariate-adjusted-response adaptive design.

Restricted randomization is a procedure that uses past treatment assignments

to select the probability of future treatment assignments, with the objective to

balance the number of subjects across treatment groups. The most widely used

restricted randomization procedure is the permuted block design (PBD). In the

permuted block design, sample allocations are made at random within blocks of size

2m, where m number of subjects are equally assigned to A and B treatments. In

this case, there are m, (m ≥ 1) study subjects per trial. The PBD method perfectly

balances allocation for at least two treatments. However, PBD method is susceptible

to selection bias. Some allocations in the tail of each block can be guessed with high

probability or even with certainty. Therefore, while the PBD method achieves the

objective of balancing treatments, it fails to protect the study from experimental

bias, due to its deterministic property. Berger et al. (2003) improved PBD by

introducing a maximal procedure with the least restrictive allocation procedure
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subject to a constraint on the maximum tolerated imbalance.

An important class of restricted randomization procedures is the biased coin

designs (BCD). The first and the most widely used BCD was proposed by Efron

(1971). In Efron’s method, the difference between the number of patients in each

treatment either skews the probability of assigning patients toward the underrep-

resented treatment or balances the trial with probability 1/2. Hu et al. (2009)

show that Efron’s BCD is an asymptotically best procedure in targeting balanced

allocation with minimal variability for a two treatment trial. Since the 1970s, a

variety of BCD methods have been developed and studied. These methods can be

divided into two groups based on whether the procedures skew allocation probabil-

ity according to the magnitude of the current treatment imbalance or simply use a

fixed probability. The first group of biased-coin designs uses treatment difference

as the measure of imbalance with fixed allocation probability. This includes works

by Efron’s (1971) BCD, Soares and Wu’s (1983) big stick rule, Chen’s (1999) BCD,

and Baldi Antognini and Giovagnolli’s (2004) adjustable BCD. The second group of

BCDs skews the probability conditional on the current imbalance rather than using

a fixed probability. This include works by Wei (1978), Atkinson (1982) and Smith’s

(1984) generalized biased coin designs (GBCDs).

Response-adaptive design utilizes patients’ responses to their assigned treatments

to adjust the allocation probability of new patients in order to achieve the desired

allocation target (Hu and Rosenberger, 2003). The urn design is widely used in

response-adaptive design. The idea behind the urn model was first proposed from

an ethical point-of-view by assigning more patients to the better treatment. In the

urn model, the assignment of the incoming patient is determined by the type of

ball drawn from an urn containing two types of balls (red, black) representing two

treatments, A and B, respectively. Wei and Durham (1978) introduced “randomized
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play-the- winner” model, where a success adds more same type balls and failure adds

more opposite type balls. Moreover, Ivanova (2003) proposed the “drop-the-loser”

urn model, which replaces a ball for every success and drops it for every failure.

The drop-the-loser rule is a fully randomized procedure with minimal variability

(Rosenberger et al., 2012). The generalization of “drop-the-loser” urn model is

found in Zhang et al. (2007), Sun et al. (2007) and Zhang, et al. (2011).

Modern research on response-adaptive design has focused on optimizing some

specific criterion with chosen allocation target R. For example, consider a clinical

trial with two treatments (A and B), the success rates θ = (pA, pB) and the failure

rates (qA, qB). Neyman allocation: R =
√
pAqA/

√
pBqB, is designed to maximize the

power under a fixed sample size. R =
√
pA/
√
pB minimizes the expected number

of failures for a fixed power (Rosenberger and Lachin, 2002). Even though these

methods have attractive properties in theory, the actual success rates θ = (pA, pB)

are unknown parameters. Thus the optimal allocation rate is unknown at the begin-

ning of the trial, and needs to be estimated during the process, which leads to the

doubly-adaptive biased coin design (DBCD) (Eisele, 1994, Eisele and Woodroofe,

1995). Hu and Zhang (2004) improved the DBCD method with conditions that

are easy to verify. Their method is fully randomized with minimal variability and

also efficiently converges to the chosen optimal target allocation. Two recent works

regarding response-adaptive designs are the asymptotically best response-adaptive

randomization procedures, Hu et al. (2006), and the efficient response adaptive

randomization designs (ERADE), Hu et al. (2009).

Covariate-adaptive designs balance patients with respect to key covariates across

treatment groups by changing the probability of patient assignment according to the

previous treatment allocation and patients’ covariate information. Real clinical trials

require the balance of important baseline factors to get a convincing comparison of
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the treatment effect. Baseline factors are well balanced by simple randomization

when sample size is large enough. However, the balance of all key covariates is hard

to achieve when sample size is small, which is common in real clinical trials. Though

it is possible to remedy imbalance after the trial, we share the belief with many

other researchers that balancing for prognostic factors prior to a trial is necessary,

both in terms of efficiency and convincing (Begg 1980). Over the 50,000 trials

conducted from 1989 to 2008 (Tave, 2010), more than 95% of the trials applied

stratified permuted block design to balance covariates. More recently, minimization

procedures (Tave, 1974; Pocock and Simon, 1975) have been gaining ground for

use in clinical trials. More details of well-known covariate-adaptive designs will be

discussed in section 1.2.

Covariate-adjusted response adaptive design (Zhang et al., 2007) is a procedure

that randomizes according to an allocation function that depends on (1) all previous

patients’ covariates, (2) the coming patient’s covariate vector and (3) all previous

response. This approach is a personalized randomization procedure. It aims at

finding a therapy or a dosage that is most appropriate for an individual patient,

with the potential benefits of increasing efficacy as well as safety. Historical infor-

mation of the covariates and the responses of previous patients are used to predict

the responses of current patients to different treatments. The target allocation

is a function of the response parameter and patients’ covariate vectors. The first

approach (Rosenberger et al., 2001) is to randomize patients with probabilities pro-

portional to the current estimate of the treatment difference adjusting for patients’

covariates. Zhang et al. (2007) proposed to determine the desired proportions of

patients assignment and different covariate values based on specifying a target al-

location function. Other works include weighted optimality approach by Atkinson

(1982) and Atkinson and Biswas (2005), bayesian adaptive randomization methods
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by Biswas and Angers (2002), Thall and Wathen (2005), and Cheung et al. (2006)

and randomized survival methods by Zhu and Hu (2010).

1.2 Covariate-adaptive design

1.2.1 Handling discrete covariate in clinical trials

The balance of important baseline covariates, such as gender, age, disease stage, is

essential in clinical trials. To maintain the validity of treatment comparisons, covari-

ate adaptive allocation is often adopted in sequential clinical trials. Stratification

is an intuitive method to balance categorical covariates. Strata are defined as the

combinations of different levels of covariates. In handling discrete covariates, the

most commonly used strategy is stratified permuted block design (SPBD). Stratified

permuted block design based on discrete covariate is a well accepted method, where

the permuted block allocation is employed within each strata. This method can

achieve good balance for different covariates when the number of strata is small,

but may cause selection bias for clinical trials with many strata. Especially with

a moderate sample size and a large number of covariates, most strata have very

few patients. In this case, SPB design performs as bad as complete randomization,

whose marginal imbalance and overall imbalance can be extremely large.

To deal with the trials containing a large number of strata, minimization proce-

dures (or named covariate-adaptive designs) are proposed in the mid-1970s. The first

minimization procedure is proposed by Tave (1974). Tave’s minimization method

is a deterministic method which allocates patients to treatments to minimize im-

balances on important covariates with probability 1. Pocock and Simon (1975) and

Wei (1978) generalized minimization to randomized clinical trials. Pocock and Si-
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mon’s method considers a clinical trial with two treatments (k = A,B), and the

balancing of covariates (Z1, · · · , ZI) between these treatments. Suppose the n+ 1th

patient to be randomized is a member of strata (r1, · · · , rI) of covariates Z1, · · · , ZI .

Let Nijk(n), i = 1, · · · , I, j = 1, · · · , ni, k = 1, 2, (1 = A, 2 = B), be the number of

patients in stratum j of covariate i on treatment k after n patients have been ran-

domized. Defining Di(n) = Niri1(n) − Niri2(n), the sum over weighted strata is

D(n) =
∑I

i=1wiDi(n), where wi are weights chosen based on importance of individ-

ual covariates. If D(n) is less than 0, then the weighted measurement indicates that

for set (r1, · · · , rI) of strata and the new patient should be assigned with probability

p (p > 1
2
) to treatment A; and vice-versa. If D(n) is greater than 0, Pocock and

Simon suggest assigning the next patient to treatment A with probability 1− p. If

D(n) = 1/2 then the next patient is assigned to treatment A with probability 1/2.

Pocock and Simon’s minimization method controls both the overall difference across

treatments as well as the marginal difference on important covariates.

Another important covariate-adaptive design is Wei’s marginal procedure using

urns. Wei (1977, 1978) developed an adaptive biased coin design where the prob-

ability of assigning patients adapts according to the degree of imbalance. At the

beginning of the trial, an urn contains α balls of each of two types, A and B. Draw

a ball and replace, if it is a type A ball, assign the patient to treatment A, and add

β type B balls to the urn. When the number of covariates is large and the stra-

tum sizes are small, use separate urn in each stratum. The one with the greatest

imbalance is used to generate the patient assignment. Wei (1978) proves that if

there is no interaction between the covariates or between the treatment effect and

covariates in a standard linear model, then marginal balance is sufficient to achieve

an unbiased estimate of the treatment difference. A review of urn model is found in

Wei and Lachin (1988).
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Many procedures that achieve balanced allocation for both margins of the co-

variates and within-strata are proposed by Zelen (1974), Nordle and Brandmark

(1977), Efron (1980), Signorini, Leung et al. (1993), and Heritier, Gebski, et al.

(2005). These methods take care of the balance within-stratum when interactions

between the covariates exist.

Before Hu and Hu (2012), a theoretical understanding of minimization proce-

dures for handling covariates was missing in the literature. For a limited family of

covariate-adaptive designs based on bias coin allocation, Hu and Hu (2012) show

that the imbalances are positive recurrent Markov chains. Later, Hu and Zhang

(2013) proposed and determined the theoretical properties for an even more gen-

eral family of discrete covariate-adaptive designs that incorporates most of the prior

well-accepted discrete covariate-adaptive designs as special cases. They treat im-

balance measure as a weighted average of overall difference, marginal difference and

within-strata difference. For the case where only the overall imbalance measure is

considered, Hu and Zhang’s model reduces to Efron’s biased coin design. If the

weight on within-strata imbalance measures is zero, and only the marginal imbal-

ances are considered, then Hu and Zhang’s model reduces to Pocock and Simon’s

(1975) marginal method. Furthermore, if only the within-strata imbalance measure

is considered, their model reduces to stratified randomization, where a separate

biased coin is employed to determine the assignment within each stratum.

1.2.2 Handling continuous covariate in clinical trials

Two commonly used balancing strategies are stratified permuted block design and

minimization, both of which require discrete covariates. In order to apply random-

ization procedures on continuous covariates in real clinical trials, the continuous
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covariates must be discretized. A downside of discretizing continuous covariates is

the lose of information, which can alter the nature of the covariates along with the

influence the distribution balance.

Existing methods consider balancing continuous covariates based on a variety of

aspects. Such aspects include (1) the differences of means and variances, (2) the

weighted sum of the mean difference, standard deviation difference and the group

size difference, (3) the area difference between empirical cumulative distribution

functions, (4) the kernel density estimate distribution difference, and (5) the p-value

of covariates across groups.

One way of handling continuous covariates is to use rank to replace actual co-

variate values. In this way continuous covariates can be treated in the same way

as categorical covariates. The approach outlined in Ciolino (2011) measures the

imbalance by ranking the pooled covariates and taking the ratio of the sum of ranks

from the experimental treatment group to the sum of ranks from the control group.

Another approach is to minimize the difference in rank-means, which is introduced

in Hoehler (1987). Later Stigsby and Taves (2010) improved Hoehler’s method by

calculating rank-sum instead of rank-means. The rank-sum method first develops a

rank-matrix constructed from an updated raw-matrix. This matrix represents the

ranks of new subjects for individual prognostic variables. New subjects are tenta-

tively assigned to either of the two available treatment groups. For each tentative

assignment imbalance is calculated as the sum of squared deviations of the individual

rank-sums for each prognostic variable.

Frane (1998) introduced a covariate-adaptive randomization for both continu-

ous and categorical types that uses p-value to identify imbalance among treatment

groups. A smaller p-value represents a larger imbalance among treatment groups.

The p-value for continuous covariates is calculated using t-test and analysis of vari-
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ance (ANOVA). For categorical covariates the goodness-of-fit χ2 test is used. Let us

consider a clinical trial with two groups (1 and 2) with the aim of balancing a single

continuous prognostic variable. The first step is to temporarily assign a new patient

into both groups and calculate the p-value for the t-test of the continuous covariates

for each group. Subsequent patients are then randomized to group 1 with proba-

bility p1/(p1 + p2) and to group 2 with probability p2/(p1 + p2). The same process

for randomized patient assignments can be generalized for n-prognostic variables

and k-groups by letting qij denote the p-value for the j-th prognostic variable and

the i-th group. The p-value for each group is determined by pi = min(qi1, · · · , qin).

Overall Frane’s method focuses on achieving balance between groups in relation to

the prognostic variable with the greatest imbalance. However, a large p-values close

to 1 for covariate values does not guarantee distributional balance between treat-

ments. Since this method treats all covariates equally and imbalance is only based

on the smallest p-value, it is not possible to rank covariates during clinical trials.

Endo (2006) intended to minimize the Kullback-Leibler divergence (KLD) as

the index of difference in distribution between two groups, which is equivalent to a

function of mean and standard deviation when the covariate is normally distributed.

In a study, fij(x) is the probability density function of Xij, which indicates the j-

th, (j = 1, · · · , J) prognostic variable of any subjects in group i, (i = 1, 2). The

difference in the distribution of prognostic variables between two groups can be

expressed as an index of Kullback-Leibler divergence (KLD) using the equation

below:

δj =

∫
(f1j(x)− f2j(x))(logf1j(x)− logf2j(x))dx.

The smaller KLD indicates a smaller difference between two distributions, and thus

can be interpreted to mean a higher degree of similarity. If the distribution is
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assumed to be a normal distribution N(µij, σ
2
ij), the KLD is:

δj = 1/2{(µ1j − µ2j)
2 + (σ2

1j + σ2
2j)}(

1

σ2
1j

+
1

σ2
2j

)− 2.

If the prognostic variables are discrete random variables with probability function

pij(x), the KLD is:

δj =
∑

(p1j(x)− p2j(x))(logp1j(x)− logp2j(x)).

Finally, if the prognostic variable is a categorical variable of Mj categories, and the

probability of each category are θij1, · · · , θijMj
, the KLD is:

δj =

Mj∑
m=1

(θ1jm − θ2jm)log
θ1jm

θ2jm

.

Before a new subject is allocated to each group, both δ
(1)
j and δ

(2)
j are calculated

by temporarily assigning the new subject into two groups. The main limitation

of this method is that, it is based on the probability density functions (PDFs) of

the covariates. Compared to cumulative distribution functions it is more difficult

to estimate PDFs. Probability density functions can be very close to zero, and

KLD is calculated based on the ratio of the covariate’s PDF in group 1 with the

corresponding covariate’s PDF in group 2. This may lead to an extreme outlier

value of KLD, which can dominate the sum of the KLDs.

Su’s quartile method (2011) does not have limitation on the type of covariates

and it allows the covariates to be ranked according to their clinical importance,

which can be perceived by the clinical trial practitioners. To determine the desired

balance level for the group sizes and each of the selected covariates, let C0 = |St−Sc|



12

denote the difference in the number of patients in two groups, where St denote the

number of patients in treatment group and Sc denote the number of patients in

control group. A binary imbalance score is defined as Cb
0 = I{C0 > c0}, where

I{·} is the indicator function and c0 is a constant specified by the study team.

For continuous symptom score, which is assumed to be positive, it is important to

achieve similar overall distributions in both groups by maintaining similar quartiles

for both groups. By denoting the three quartiles for the treatment and control

groups as Qt
i, i = 1, 2, 3 and Qc

i , i = 1, 2, 3, respectively, the continuous imbalance

score can be defined as

C1 = max{|Qt
i −Qc

i |/max(Qt
i, Q

c
i), i = 1, 2, 3}.

The binary score is then

Cb
1 = I{max{|Qt

i −Qc
i |/max(Qt

i, Q
c
i), i = 1, 2, 3} > c1},

where c1 is the threshold for imbalance. For categorical prognostic variable, the

imbalance score can be defined as C2 = max|N t
i − N c

i |, i = 1, 2, · · · , where N t
i and

N c
i denote the number of patients in covariate i for the treatment and control groups,

respectively. Similarly, the imbalance score can be denoted as Cb
2 = I{max{|N t

i −

N c
i |, i = 1, 2, · · · } > c2}. The importance of the factors is ordered, and a weighted

overall imbalance score is based on the following binary imbalance score:

C = w0C
b
0 + w1C

b
1 + w2C

b
2,

where wi, i = 0, 1, 2 are the weights assigned to the factors with w0 > w1 > w2.

The new patient should be assigned to the treatment that will have the smaller
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continuous imbalance score. Su’s method uses the largest difference in the three

pairs of quartiles of the two distributions of the observed covariate values to quantify

the imbalance level of continuous covariate. However, the two distributions can also

be significantly different even with the same quartiles.

Motivated by attaining identical distribution functions at the end of a trial, Lin

and Su (2012) use the normalized area between two empirical cumulative distribution

functions (ECDFs) as the imbalance measure of the distribution of the covariates.

For continuous covariates, Lin and Su denote the ECDFs for the treatment and

control group by F̂ (t) and Ĝ(t), respectively, where

F̂ (t) =
1

m

m∑
i=1

I{xi ≤ t}, Ĝ(t) =
1

n

n∑
i=1

I{yi ≤ t},

and define the area between F̂ (t) and Ĝ(t) as A(F̂ (t), Ĝ(t)). The normalized imbal-

ance metric is:

Ã(F̂ (t), Ĝ(t)) =
A(F̂ (t), Ĝ(t))

max(x1, · · · , xm, y1, · · · , yn)−min(x1, · · · , xm, y1, · · · , yn)
,

and is bounded between 0 and 1, representing the perfect balance and the worst

imbalance, respectively.

For a categorical covariate with K ≥ 2 different categories or levels, there is

an experimental and a control treatment group. The percent of m patients in

the K categories receiving the experimental treatment is p1, · · · , pK . In the control

treatment, the percent of n patients in K categories is q1, · · · , qK . The ideal balance

is achieved when p1 = q1, · · · , pK = qK . The area between ECDF of covariate Bi is



14

|pi − qi|. The sum of the areas for the K categories is

K∑
i=1

|pi − qi| ≤
K∑
i=1

(pi + qi) = 2

with equality holding, if and only if, at least one of pi and qi equal to 0 for any i.

For a categorical covariate, the normalized area is

Ã =
K∑
i=1

|pi − qi|/2.

Ma and Hu (2013) proposed to balance continuous covariates by minimizing

the differences between covariate densities, which can be estimated using a kernel

density estimator. They consider a continuous covariate Z, and let Zi,k, i = 1, ..., nk,

denote the baseline scores of patients in treatment k, k = 1, 2. The density function

for covariate Z in treatment k can be estimated using the kernel method as follows:

f̂k(z) =
1

nkh(nk)

nk∑
i=1

K(
z − Zi,k
h(nk)

),

whereK(·) is the kernel function. Ma and Hu use Scott’s rule: h(nk) = σ̂n−0.2
k , where

σ̂ is the estimated standard deviation of the covariate. Distributional imbalance

covariates is defined below:

4d =
n1

n
f̂1(z0)− n2

n
f̂2(z0),

where z0 is the baseline score of a new patient. More generally, 4dj denotes the dis-

tributional imbalance of covariate j, j = 1, · · · ,M . The overall imbalance measure
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Imb is defined as the weighted average of M covariate imbalances:

Imb =
M∑
j=1

wj4dj,

where wj is a nonnegative weight on covariate j. And the allocation rule is: assign

new patient to treatment 1 with probability π, if Imb < 0; assign to treatment

2 with probability π, if Imb > 0; and assign with probability 1/2, if Imb = 0.

For this method, the maximum acceptable imbalance of group size does not need

to be pre-specified. All other adaptive designs for continuous covariates need the

threshold imbalance for |n1 − n2|, and when it is reached the patient is allocated

without randomization.

1.3 Testing Hypotheses of covariate-adaptive de-

sign

In practice, conventional testing hypotheses are employed without consideration of

covariate-adaptive randomization scheme. The validity of conventional tests under

covariate-adaptive designs is still a concern. Forsythe (1987) suggests that all co-

variates used in minimization procedure should also be incorporated in inference

models. Shao, Yu and Zhong (2010) found one way to obtain a valid test procedure

is to use a correct model between outcomes and covariates, including those used in

randomizations. It is well known now that covariates used in trial randomization

should also be incorporated in inference procedures. A valid test procedure should

be associated with the randomization scheme. Although covariate-adaptive design

has long been in use, hypothesis testing under these designs is rarely discussed.

Most works that do discuss hypothesis testing are related to discrete covariates.
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Meanwhile, hypothesis testing for continuous covariates are even less understood.

Thus it is very important to develop a testing that is valid under covariate-adaptive

design that balances both discrete and continuous covariates. The test should also

be more powerful under covariate-adaptive randomization than it is under simple

randomization. Discussion based on simulations can be found in the literature (see,

Brikett, 1985; Forsythe, 1987; Aickin, 2002; Weir and Lees, 2003; Hagino, 2004 and

Shao et al., 2010). Ma and Hu (2014) establish a theoretical framework for hypothe-

ses testing of adaptive designs with discrete covariates under linear model. In this

paper, we propose a theoretical foundation about hypotheses testing regards under

adaptive designs with continuous covariates.

1.4 Motivation of my dissertation

Clinical trials are always complex with multiple objectives. Common objectives in-

clude maximizing power to detect clinically relevant difference, balancing important

covariates for valid comparison, detecting important interaction among treatments

and covariates, and minimizing total monetary cost of a trial. Covariate-adaptive

randomization methods achieve a balanced treatment allocation over important co-

variates. In this section we will discuss the applicability and limits of existing meth-

ods with regards to handling continuous covariates in clinical trials. We also briefly

introduce our work in studying and understanding adaptive designs and inference

with continuous covariates under conventional hypothesis testing.

The two most commonly used balancing strategies are stratified permuted block

design and minimization, both of which require the covariates to be discrete. In

practice, there are many continuous covariates which need to be discretized in order

to be included in randomization procedures. However, lose of information is a
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consequence of breaking down continuous covariate into subcategories, which may

change the nature of the covariates and influence the distribution balance.

Existing adaptive designs for continuous covariates each have their own strengths

and weakness. Most adaptive randomizations can deal with certain individual as-

pects of continuous covariates. Meanwhile only Ma and Hu (2013) have targeted the

density using the kernel estimator. Hoehler (1986) and Stigsby focus on rank, Frane

(1988), Nishi (2003) and Endo (2006) focus on mean and standard deviation, Su

(2011) focus on three quartiles, and Lin and Su (2012) focus on empirical cumulative

distribution. Although each of criterions they use can represent the distribution in

some aspect, none of them can ensure the same distribution. For example, Endo

(2006) shows that similarity in mean and standard deviation ensures similar dis-

tributions when covariates are normally distributed. Realistically, baseline factors

are not normally distributed and therefore the normality of covariates in each group

cannot be properly justified. In fact, Endo’s method can possibly split the normal

distribution to a left-skewed sample and a right-skewed sample with the same mean

and standard deviation. Ma and Hu’s kernel estimate method comprehensively bal-

ances the distribution of the covariates without having to worry about normality.

Even though Ma and Hu’s targets the distribution of covariates, it is not a mini-

mization procedure. Therefore this work modifies the Ma and Hu’s method to be a

minimization procedure.

Our proposed version of the kernel density continuous covariate randomiza-

tion method follows the idea of minimization and out-performs existing covariate-

adaptive designs in balancing the distribution difference. This approach also min-

imizes the difference of mean, median, variance and other characteristics as those

continuous covariate-adaptive designs targeting on that specific characteristics.

The state-of-the-art work on performance strategies that balance continuous co-
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variates are all based on simulation. None of the current works provide a theoretical

understanding of the asymptotical properties of adaptive designs for continuous co-

variates. Thus conventional hypothesis testing for clinical trials using continuous

covariate-adaptive designs is not well understood. Herein, this dissertation investi-

gates the theoretical properties of the testing hypotheses by proving the asymptotic

distributions of the test statistic under null and alternative hypotheses for continu-

ous covariate-adaptive designs that satisfy the conditions presented in theorem 2.2.1.

In Chapter 2 and 3, we also did extensive simulation studies on a class of continuous

covariate-adaptive randomization methods, including the rank-sum test, the p-value

based method, the Su’s percentile method, the empirical cumulative-distribution

method, the Kullback-Leibler divergence method, and the kernel-density method.

The Type-I error and power of the hypothesis testing under those adaptive designs

are compared to those using the complete randomization method.
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Chapter 2

Statistical inference for adaptive

designs balance independent

continuous covariates

2.1 Background and notations

A statistical hypothesis test is a method of statistical inference used for testing a

statistical hypothesis. Given a threshold probability---the significance level, a test

result is statistically significant if it has been predicted as unlikely to happen by sam-

pling error alone. In the Neyman-Pearson framework, the process of distinguishing

the null hypothesis from the alternative hypothesis is by identifying type I and type

II error. It is essential to make sure the hypothesis testing is valid when comparing

two treatment effects. A hypothesis testing is valid under the following condition:

limN→∞Py,I ( |T | > Cα| Z) ≤ α with equality holding for at least some cases. Mean-

while a test is conservative when the true probability of incorrectly rejecting the

null hypothesis is never greater than the nominal level when constructed for a given
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nominal significance level. The result of hypothesis testing is not convincing if the

test is conservative.

The hypothesis test here is based on linear model framework under covariate-

adaptive designs. Assuming there is a clinical trial with two treatments: 1 and

2, the discrete and continuous covariates of patients are balanced by applying one

covariate-adaptive design. Let µj, j = 1, 2 is the expected main effect of treatment

j respectively; N is the total number of patients in this trial; Ii i = 1, · · · , N is the

allocation indicator of patient i, say Ii = 1 if patient i is assigned to treatment 1,

Ii = 0 otherwise. Assume the relationship between the response Y and covariates,

treatment follows the linear model below:

Yi = µ1Ii + µ2(1− Ii) + α1Xi,1 + · · ·+ αpXi,p + β1Zi,1 + · · ·+ βqZi,q + εi,

where

1. Xi,k, k = 1, · · · , p is discrete or continuous covariate identically independent

distributed as Xk, with E(Xk) = 0, which is used in both covariate random-

ization procedure and final statistical inference.

2. Zi,j, j = 1, · · · , q is discrete or continuous covariate identically independent

distributed as Zj, with E(Zj) = 0, which is only used in covariate randomiza-

tion procedure.

3. εi, i = 1, · · · , N is independent and identically distributed random error with

E(εi) = σ2
ε .

4. Xi,k, k = 1, · · · , p and Zi,j, j = 1, · · · , q are independent from each other, and

εi is independent with Xi,k and Zi,j.
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Let us define Ỹ = (Y1, Y2, · · · , YN)T , α̃ = (µ1, µ2, α1, · · · , αp)T , β̃ = (β1, β2, · · · , βq)T

and ε̃ = (ε1, ε2, · · · , εN)T ,

X =



I1 (1− I1) X1,1 · · · X1,p

...
...

...
. . .

...

IN (1− IN) XN,1 · · · XN,p


, Z =



Z1,1 · · · Z1,q

...
. . .

...

ZN,1 · · · ZN,q.


.

Notice both Xi,k, k = 1, · · · , p and Zi,j, j = 1, · · · , q are assumed to be scalar

quantities. For covariates with two categories, a dummy variable is used. In cases

with more than two categories, for example when there are three categories, high

dimensional vectors (0,0), (0,1), and (1,0) are coded in the model. All the results

can be extended to the situation that discrete covariates have multiple categories

easily.

The general model for randomization can be rewritten as,

Ỹ = Xα̃ + Zβ̃ + ε̃. (2.1)

The statistical inference working model is then,

Ỹ = Xα̃ + ε̃. (2.2)

Hypothesis testing : Based on the final statistical inference model 2.2, the follow-

ing hypothesis test is used to compare if there is difference between two treatment



22

effects:

Ho : µ1 = µ2 vs. Ha : µ1 6= µ2. (2.3)

According to the ordinary least square estimation method, the estimate of α̃ is

obtained by the following formula,

α̂ = (XTX)−1XT Ỹ = (XTX)−1XT (Xα̃ + Zβ̃).

The test statistic for (2.3) is

T =
Lα̂

(σ̂2L(XTX)−1LT )1/2
, (2.4)

where L = (1,−1, 0, · · · , 0) and σ̂2 = (Ỹ −Xα̂)/(N − p− 2). The null hypothesis is

rejected when |T | > Z1−α/2 and otherwise accepted, where Z1−α/2 is the (1 − α/2)

percentile of the standard normal distribution.

Evaluating the significance of a single covariate is usually important in personal-

ized medicine. To test the significance of a single covariate, without loss of generality,

we consider the hypothesis testing for α1 using the hypothesis,

H0 : α1 = 0 vs. Ha : α1 6= 0. (2.5)

The test statistic for hypothesis testing (2.5) is:

T =
(lα̂)

(σ̂2l(XTX)−1lT )1/2
, (2.6)

where l = (0, 0, 1, 0, . . . , 0). The null hypothesis is rejected if |T | > Z1−α/2, otherwise



23

the null hypothesis is accepted.

In general forms of hypothesis testing for significance of covariates, let C be an

m×(p+2) matrix of rank m with m < (p+2), where entries of the first two columns

are all zeros. The hypothesis test would be

H0 : Cα̃ = ξ0 vs. Ha : Cα̃ = ξ1. (2.7)

The test statistic for hypothesis testing (2.7) is,

T ∗ =
m−1(Cα̂− ξ0)T [C(XTX)−1CT ]−1(Cα̂− ξ0)

σ̂2
. (2.8)

The null hypothesis is rejected when T ∗ > χ2
m,(1−α)/m, where χ2

m,(1−α)/m is (1− α)

percentile of a χ2 distribution with degree of freedom m, otherwise, accept the null

hypothesis.

2.2 Asymptotic properties

Suppose a clinical trial is designed to balance both discrete and continuous co-

variates: Xi,k, k = 1, · · · , p, Zi,j, j = 1, · · · , q. Let D = (k|Xk is categorical,

k = 1, ..., p), C = (k|Xk is continuous, k = 1, ..., p), D∗ = (j|Zj is categorical,

j = 1, ..., q) and C∗ = (j|Zj is continuous, j = 1, ..., q). The marginal imbal-

ance measure for all levels of categorical covariates are considered here. Assume

categorical covariate Xk ∈ D has level sk and Zj ∈ D∗ has level s∗j . Contin-

uous covariate Xk ∈ C, Zk ∈ C∗ whose two group difference is define as the

difference of the sum of this covariate in two groups. For ith patient, we use

Wi = (Xi,1, Xi,2, ..., Xi,p, Zi,1, Zi,2, ..., Zi,q) to represent the covariate profile. If Xi,k

is categorical and at level tk (1 ≤ tk ≤ sk) and Zi,j is categorical and at level tj
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(1 ≤ tj ≤ s∗j), for convenience, we use (k; tk) to denote the margin at categorical

level Xk = tk, and (j; tj) to denote the margin at categorical level Zj = tj. The

overall and marginal imbalance between two treatments are defined as:

1. DN be the difference between the number of patients among two groups as

total, where DN = N1 −N2.

2. DN(k; tk), DN(j; tj) be the differences between the number of patients in the

two treatment groups on the margin (k; tk), (j; tj) for categorical covariates,

where DN(k; tk) = Ntk,1 −Ntk,2, DN(j; tj) = Ntj ,1 −Ntj ,2.

3. Dc
N(Xk), D

c
N(Zj)be the difference between continuous covariate k and j among

two groups, whereDc
N(Xk) =

∑N1

i1=1 Xi1,k−
∑N2

i2=1 Xi2,k, D
c
N(Zj) =

∑N1

i1=1 Zi1,j−∑N2

i2=1 Zi2,j.

The primary interest of hypothesis testing is comparing two treatment group

effect difference, and the secondary interest is testing significance of covariates, both

types of hypothesis testing are considered here. For clinical inference the working

model is (2.2) while the data are generated from the true model (2.1). Asymptotic

properties of testing statistic under both null hypothesis and alternative hypothesis

is studied here.

Theorem 2.2.1. Suppose the following three conditions are satisfied in a covariate-

adaptive design:

(1) the overall imbalance converges to zero in probability at rate N1/2, that is DN =

op(N
1/2);

(2) the marginal imbalance for each categorical covariate converges to zero in prob-

ability at rate N1/2, that is, DN(k, tk) = op(N
1/2) and DN(j, tj) = op(N

1/2);

(3) each continuous covariate sum in two groups converges to zero in probability at
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rate N1/2, that is, Dc
N(Xk) = op(N

1/2) and Dc
N(Zj) = op(N

1/2).

(i) Then under H0 : µ1 − µ2 = 0,

T
D−→ N(0, τ 2) , where τ 2 =

σ2
ε

σ2
z

, σ2
z = σ2

ε +

q∑
j=1

β2
jV ar(Zj), (2.9)

if βj = 0 for all j = 1, ..., q, then τ = 1. Thus only if all the covariates used in

randomization are not related with outcome Y , the hypothesis testing can achieve

type I error, otherwise, the hypothesis testing is conservative.

(ii) Under Ha : µ1 − µ2 6= 0, consider a sequence of local alternative, i.e, µ1 − µ2 =

δ/
√
N for a fixed δ 6= 0, then

T
D−→ N(∆, τ 2), where ∆ =

δ

2σz
. (2.10)

Theorem 2.2.1, gives the theoretical properties of test statistic for testing hypoth-

esis of treatment effects under covariate-adaptive designs. Covariate information is

used in covariate-adaptive randomization to reduce the imbalance of different levels

of discrete covariates (overall, marginal, and within-stratum) and certain character-

istics of continuous covariates (mean, variance, quantiles, distribution). Under the

assumption of three mild conditions of covariate-adaptive designs, the asymptotic

distribution of the test statistic is derived. If the overall two group difference con-

verges to zero at rate N1/2, the marginal difference of categorical covariates at all

levels, and the continuous covariate sum goes to zero at rate N1/2. These conditions

are satisfied by most well-known covariate-adaptive designs. The proof shows under

these three conditions, the model based variance used in the denominator of test

statistic is smaller than its actual variance. If the important covariates are omit-
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ted from the working model, type I error is smaller than nominal level under null

hypothesis.

Under the alternative hypothesis, the power can be obtained from the asymptotic

distribution 2.10. Under covariate-adaptive design, power is

P (|T | > Z1−α/2) = Φ(
δ

2σε
−
σzZ1−α/2

σε
) + Φ(− δ

2σε
−
σzZ1−α/2

σε
) + o(1).

The power of complete randomization would be

P (|T | > Z1−α/2) = Φ(
δ

2σε
− Z1−α/2) + Φ(− δ

2σε
− Z1−α/2) + o(1),

because σε = σz under complete randomization. Some conclusions about the power

comparisons of covariate-adaptive designs and complete randomization can be made.

The asymptotic power under covariate-adaptive design should be smaller than com-

plete randomization when δ is small, and usually larger than complete randomization

when δ is large. The simulation results also confirm these conclusions.

The hypothesis testing of the significance of covariates can still be valid in per-

spective of type I error, even though not all covariates used in randomization are

incorporated in the inference model. The power will also be harmed if important

covariates which used in randomization procedure is missed in the inference model.

Theorem 2.2.2. Under the same three conditions as in Theorem 2.2.1

(i) under null hypothesis H0 : Cα̃ = ξ0,

T ∗
D−→ χ2

(m)/m (2.11)

where T ∗ = m−1(Cα̂− ξ0)T [C(XTX)−1CT ]−1(Cα̂− ξ0)/σ̂2.
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(ii) Under Ha : Cα̃ = ξ1, if (ξ1 − ξ0) = η/
√
N

T ∗
D−→ χ2

(m)(λ)/m, λ = ηT [CM−1CT ]−1η/σ̂2
Z . (2.12)

where M = diag(1/2, 1/2,Var(X1), ...,Var(Xp)) and λ is the noncentral parameter.

Theorem 2.2.2 shows that the hypothesis tests regarding significance of covari-

ates can still obtain the correct type I error, under covariate-adaptive design. This

suggests that to test the significance of some covariate in real clinical trials, the in-

ference model can only contain partial covariates. Under covariate-adaptive design,

however, the power of hypothesis testing of covariates will decrease by omitting any

important covariate in the inference model.

The following corollary gives an important special case of hypothesis testing of

covariates, where only one covariate is considered.

Corollary 2.2.1. Under the same three conditions as in Theorem 2.2.1,

under H0 : α1 = 0,

T1
D−→ N(0, 1), where T1 =

lα̂

(σ̂2l(XTX)−1lT )1/2
(2.13)

under Ha : α1 6= 0, i.e. α1 = δα1/
√
N .

T1
D−→ N(∆α1 , 1), where ∆α1 =

δα1σX1

σz
. (2.14)

Corollary 2.2.1 shows the hypothesis testing of a single covariate can still achieve

correct type I error with incomplete inference model. And the power will be harmed

if missing important covariates and will increase as more covariates are incorporated

into the model.
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2.3 One example: adaptive design balances mean

difference

Assume there is a clinical trial with two treatments, 1 and 2. Mean difference

based method (Mean-diff) is used to balance one continuous covariate Z. Sam-

ple Z1, Z2, · · · , Zn are independent and identically distributed with mean 0 and

variance σ2. Suppose n1, n2 patients are assigned to treatment 1, 2, respectively.

Z1,1, Z2,1, · · · , Zn1,1 are assigned to group 1, and Z1,2, Z2,2, · · · , Zn2,2 are assigned to

group 2. The imbalance measure is defined as the square of mean difference:

Imbn = (Zn1 − Zn2)
2.

When the (n+ 1)-th patient enters the trial with covariate Zn+1, we determine the

allocation of this new patient using a biased coin, which favors the treatment with

smaller mean difference between two groups. Let p be a biased probability, such

that 0.5 < p < 1, the procedure of biased coin allocation for continuous covariate

can be summarized as follows.

Step 1 : Initial step

Assign n0 patients to each treatment by using a restricted randomization.

Step 2 : Imbalance calculation

Suppose the (n+1)-th patient is potentially assigned to treatment k, k = 1, 2;

calculate the imbalance measure Imb(1) and Imb(2).

Step 3 : Biased allocation

(a) |n1 − n2| < d

If Imb(1) < Imb(2), assign patient n + 1 to treatment 1 with probability
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p.

If Imb(1) > Imb(2), assign patient n + 1 to treatment 2 with probability

p.

If Imb(1) = Imb(2), assign patient n + 1 to treatment 1 or 2 with proba-

bility 1/2.

(b) |n1 − n2| = d

assign (n+ 1)-th patient to treatment with less patients with probability

1.

Theorem 2.3.1. Under adaptive design based on mean difference, {Λn =
∑N1

i=1 Zi1−∑N2

i=1 Zi2} is a positive recurrent Markov chain, which means Λn = Op(1). Thus this

adaptive randomization is one example that satisfies three conditions in Theorem

2.2.1.

2.4 Simulation study

Case 1: Testing treatment effects. Continuous covariate randomization methods:

mean difference based method (Mean-diff), p-value based randomization (P-value)

by Frane (1998), Su’s (2011) percentile method (Quartile), Empirical cumulative

distribution function method (ECDF) by Lin and Su (2012), Kullback-Leibler diver-

gence method (KLD) by Endo et al. (2006) and Kernel density procedure (Kernel)

by Ma and Hu (2013) are compared with complete-randomization (CR) to com-

pare the type I error of the hypothesis testing for comparing treatment effects. The

details of these adaptive designs are in chapter 1.2.2.

To investigate the type I error of the hypothesis testing: Ho : µ1 = µ2, no treat-

ment effect difference is assumed here, i.e., µ1 = µ2. In the simulation, biased coin
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probability p = 0.8 is applied for all the covariate-adaptive designs. The significance

level α = 0.05 and sample size N = 100, 200, 500 is considered. The groups size dif-

ference is set to be no more than 6. Three types of tests are compared: (1) two

sample t-test (t-test), (2) covariate test based on the linear model contains covariate

Z (lm(z), lm(z1, z2)), (3) bootstrap t-test introduced in Shao, Yu, and Zhong (2010),

where bootstrap samples (Y ∗b1 , Z∗b1 ), · · · , (Y ∗bN , Z∗bN ), b = 1, 2, · · · , B, are generated

independently randomly with replacement from sample (Y1, Z1), · · · , (YN , ZN). The

variance of Ȳ1 − Ȳ2 is estimated by the bootstrap samples.

Model 1: the response Yi is assumed to follow linear model:

Yi = µ1Ii + µ2(1− Ii) + β1Zi + εi, (2.15)

where Zi ∼ N(0, 1) and εi ∼ N(0, 1) , β1 = 1.
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Table 2.1: Type I error for methods: mean difference based method (Mean-diff),
p-value based randomization (P-value), Su’s percentile method (Quartile), Empiri-
cal cumulative distribution function method (ECDF), Kullback-Leibler divergence
method (KLD), Kernel density procedure (Kernel) and Complete Randomization
(CR) in %, simulation based on 10,000 runs, significance level α = 5% and sample
size N = 100, 200, 500.

Method N t-test lm(z) B-test

Mean-diff 100 0.66 4.92 5.34

200 0.61 5.15 5.12

500 0.62 4.95 4.69

P-value 100 0.01 5.12 5.16

200 0.02 4.82 4.45

500 0.01 5.13 5.26

Quartile 100 1.38 5.12 5.85

200 1.26 5.05 4.68

500 1.00 4.85 5.53

ECDF 100 0.75 4.84 4.56

200 0.93 5.16 5.27

500 0.63 4.89 4.68

KLD 100 0.02 5.02 4.85

200 0.01 5.56 5.86

500 0.00 4.86 4.73

Kernel 100 1.09 5.31 5.09

200 0.80 4.76 5.69

500 0.67 5.00 4.53

CR 100 4.63 4.75 -

200 5.16 5.05 -

500 4.59 4.81 -
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Model 2 considers about a linear model with two covariates Z1, Z2, the response

Yi is assumed follows linear model:

Yi = µ1Ii + µ2(1− Ii) + β1Zi,1 + β2Zi,2 + εi (2.16)

where Zi,1 ∼ N(0, 1), Zi,2 ∼ exp(1) and εi ∼ N(0, 1) , β1 = β2 = 1, µ1 = µ2 = 100.

Table 2.2: Type I error for methods: p-value based randomization (P-value), Su’s
percentile method (Quartile), Empirical cumulative distribution function method
(ECDF), Kullback-Leibler divergence method (KLD), Kernel density procedure
(Kernel) and Complete Randomization (CR) in %, simulation based on 10,000 runs,
significance level α = 5% and sample size N = 100, 200, 500.

Method N t-test lm(Z1) lm(Z2) lm(Z1, Z2) B-test

P-value 100 0.13 0.82 0.71 4.98 4.49

P-value 200 0.08 0.61 0.59 4.96 4.73

P-value 500 0.05 0.59 0.62 5.16 5.67

Quartile 100 1.36 1.85 2.43 4.99 5.03

Quartile 200 1.07 1.43 2.39 4.96 5.09

Quartile 500 1.44 1.31 2.57 4.79 5.53

ECDF 100 0.28 1.21 0.88 5.09 4.67

ECDF 200 0.19 0.79 0.76 4.61 5.49

ECDF 500 0.12 0.67 0.61 4.54 5.20

KLD 100 0.32 1.24 0.95 5.51 4.93

KLD 200 0.14 0.79 0.68 5.35 5.45

KLD 500 0.06 0.64 0.65 5.12 5.63

Kernel 100 0.76 1.73 1.41 5.06 4.85

Kernel 200 0.55 1.33 1.23 5.06 4.89

Kernel 500 0.35 1.39 1.01 5.25 5.57

CR 100 4.54 4.70 5.11 5.14 -

CR 200 4.86 4.93 4.84 5.61 -

CR 500 5.13 4.76 5.28 5.26 -
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Based on Table 2.1, several conclusions can be drawn. Firstly, the two sample t-

test is conservative under all the methods here except complete randomization. This

also means t-test is only valid under complete randomization, and conservative for

restricted randomization procedures. Secondly, under full model lm(Z) is valid for

all the randomization procedures, thus it is more powerful than t-test. From Table

2.2, it is obvious that t-test, lm(Z1) and lm(Z2) are all conservative. Among them,

the two sample t-test is the most conservative with smallest type I error. lm(Z1) or

lm(Z2) is more conservative than lm(Z1, Z2), which indicates that missing important

covariates will damage the validness of the test. In addition, the bootstrap method

is always valid for covariate-adaptive designs in both cases.

Case 2: Power comparison. To the comparison of power for different hypothesis

testing methods under continuous covariate-adaptive designs and complete random-

ization, same linear model with one covariate is used as in case 1, but the difference

between treatment effects µ1 and µ2 is not zero. The response Yi is assumed to

follow linear model:

Yi = µ1Ii + µ2(1− Ii) + β1Zi + εi, (2.17)

where Zi ∼ N(0, 1) and εi ∼ N(0, 1) , β1 = 1, µ1 − µ2 = i
10
, i = 1, 2, · · · , 10. We

set µ1 − µ2 =0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0, sample size N = 32, 64, 100. The

simulation repeated 10,000 times, each time biased coin probability p = 0.8 is used

to minimize the imbalance measure.
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Table 2.3: Power Comparison for methods: mean difference based method (Mean-
diff), p-value based randomization (P-value), Su’s percentile method (Quartile),
Empirical cumulative distribution function method (ECDF), Kullback-Leibler di-
vergence method (KLD), Kernel density procedure (Kernel) and Complete Ran-
domization (CR) in %, simulation based on 10,000 runs and sample size is 32.

Test µ1 − µ2 Mean-diff P-value Quartile ECDF KLD Kernel CR

t-test 0 0.86 0.87 1.41 1.16 1.21 1.58 4.58

0.1 1.07 1.24 1.76 1.45 1.21 1.79 5.68

0.2 1.89 1.99 2.54 2.19 2.14 2.71 6.96

0.3 3.25 3.31 4.06 3.59 3.34 4.49 9.38

0.4 5.45 5.90 6.81 6.02 6.00 7.07 11.51

0.5 8.68 8.92 10.34 9.43 9.58 10.77 15.26

0.6 13.90 13.69 15.99 15.79 14.59 14.92 20.97

0.7 20.69 20.36 21.92 20.91 20.90 21.70 26.54

0.8 27.76 27.79 29.58 28.36 28.90 29.33 31.86

0.9 37.33 36.21 37.62 37.29 38.46 38.38 39.85

1 47.28 46.94 47.54 47.34 47.08 47.73 47.15

lm(z) 0 5.15 4.98 5.13 5.33 5.67 5.09 5.18

0.1 5.89 6.18 5.89 6.23 5.33 6.18 5.81

0.2 8.25 8.49 8.19 8.68 8.77 8.40 8.28

0.3 12.61 12.96 12.92 12.89 12.46 12.80 12.69

0.4 19.06 19.28 19.86 18.92 19.63 19.26 18.21

0.5 26.53 27.89 26.91 27.12 27.38 27.24 25.07

0.6 36.93 36.17 37.81 37.80 36.29 37.12 34.57

0.7 47.32 48.01 47.43 47.45 48.05 47.14 45.16

0.8 58.07 57.01 58.57 58.11 58.15 57.21 54.58

0.9 69.07 67.34 68.07 68.59 69.12 68.69 65.12

1 77.81 77.26 76.89 77.65 76.85 77.75 74.43
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Table 2.4: Power Comparison for methods: mean difference based method (Mean-
diff), p-value based randomization (P-value), Su’s percentile method (Quartile),
Empirical cumulative distribution function method (ECDF), Kullback-Leibler di-
vergence method (KLD), Kernel density procedure (Kernel) and Complete Ran-
domization (CR) in %, simulation based on 10,000 runs and sample size is 64.

Test µ1 − µ2 Mean-diff P-value Quartile ECDF KLD Kernel CR

t-test 0 0.76 0.67 1.33 0.95 0.74 1.30 5.62

0.1 1.15 1.12 2.06 1.45 1.34 1.60 6.20

0.2 2.62 2.58 3.95 2.97 3.06 3.91 8.85

0.3 5.83 6.11 8.28 6.43 6.40 7.27 12.51

0.4 12.27 11.83 14.15 13.10 12.98 13.42 19.61

0.5 21.64 21.13 22.95 22.36 21.94 23.06 27.74

0.6 33.19 34.05 35.43 34.57 34.13 35.30 37.99

0.7 48.86 49.01 49.17 48.89 49.02 48.91 48.82

0.8 63.57 64.05 62.80 63.81 63.77 62.75 60.36

0.9 77.46 77.12 74.64 76.71 76.69 75.17 69.47

1 86.32 86.72 85.05 86.21 86.46 85.07 78.95

lm(z) 0 5.44 5.03 4.99 5.04 4.90 4.84 5.27

0.1 6.57 6.56 7.21 6.98 7.02 6.98 6.72

0.2 12.16 12.03 12.43 12.26 12.37 12.39 12.48

0.3 21.39 21.74 22.18 21.34 21.68 21.38 21.08

0.4 35.60 34.48 35.05 34.98 35.43 34.89 34.45

0.5 50.65 49.74 49.55 50.20 50.01 50.03 48.52

0.6 65.04 66.38 64.79 64.85 66.37 66.00 64.89

0.7 78.93 78.50 78.12 78.75 78.91 78.56 77.35

0.8 88.11 88.37 88.39 87.92 88.05 87.97 86.76

0.9 94.24 94.39 94.32 94.15 94.55 94.01 93.45

1 97.70 97.47 97.59 97.50 97.53 97.65 97.38
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Figure 2.1: Power Comparison for methods: p-value based randomization (P-
value), Su’s percentile method (Quartile), Empirical cumulative distribution func-
tion method (ECDF), Kullback-Leibler divergence method (KLD) and Kernel den-
sity procedure (Kernel) and Complete Randomization (CR) in %, simulation based
on 10,000 runs and sample size is 100.
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From table 2.3, 2.4 and figure 2.1 it is obvious that two sample t-test is less pow-

erful than lm(z) test under these covariate-adaptive designs as well as the complete

randomization procedure. Furthermore, compared with complete randomization the

covariate-adaptive designs are less powerful when |µ1−µ2| is small, but become more

powerful when |µ1 − µ2| is large.

When sample size is small, i.e N = 32, 64, in table 2.3 and 2.4, the covariate-

adaptive designs have advantage in power under both two sample t-test and covariate

test lm(z) which is more obvious in table 2.3 when N = 32.

Case 3: Significance of covariates. To investigate type I error of hypothesis

testing of the significance of single covariate Z under covariate-adaptive designs and
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complete randomization, set the testing hypotheses: H0 : β1 = 0 v.s. Ha : β1 6= 0.

Assume the response Yi is assumed follows linear model:

Yi = µ1Ii + µ2(1− Ii) + β1Zi,1 + β2Zi,2 + εi

where Zi,1 ∼ N(0, 1), Zi,2 ∼ exp(1) and εi ∼ N(0, 1). We set β1 = 0, β2 = 1,

µ1 = µ2 = 100. The simulation is repeated 10, 000 times, biased coin probability

p = 0.8. The sample size N = 100, 200, 500, under significance level α = 5%, testing

of the significance of β1 are performances under tests lm(z1), lm(z1, z2).

Table 2.5: Type I error for H0 : β1 = 0 under methods: p-value based randomiza-
tion (P-value), Su’s percentile method (Quartile), Empirical cumulative distribution
function method (ECDF), Kullback-Leibler divergence method (KLD) and Kernel
density procedure (Kernel) and Complete Randomization (CR) in %, simulation
based on 10,000 runs, significance level α = 5%, and sample size N = 100, 200, 500.

Test N P-value Quartile ECDF KLD Kernel CR

lm(z1) 100 5.16 5.29 4.72 4.88 5.31 4.95

200 5.01 4.93 5.04 5.08 4.86 4.87

500 5.15 5.23 4.76 4.91 5.08 4.77

lm(z1, z2) 100 5.29 5.13 5.27 5.02 5.22 5.11

200 4.97 5.09 5.26 4.86 5.17 5.12

500 5.20 4.82 5.03 4.92 5.09 4.99

Results of simulated type I errors are summarized in table 2.5, from which we

can see that both tests are valid in terms of type I error under covariate-adaptive

designs and complete randomization procedure.

The comparison of power for different tests is made under restricted random-
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izations and complete randomization. Let us set β1 = 0, 0.1, · · · , 0.5, sample size

N = 100. Simulation results in figure 2.2 shows, the power of testing β1 is quite simi-

lar under all these randomization procedures for the same testing method. lm(z1, z2)

is more powerful than lm(z1) under the same randomization procedure.

Figure 2.2: Power Comparison for Ha : β1 6= 0 under methods: Su’s percentile
method (Quartile), Empirical cumulative distribution function method (ECDF),
Kullback-Leibler divergence method (KLD) and Kernel density procedure (Kernel)
and Complete Randomization (CR) in %, simulation based on 10,000 runs and
sample size is 100.
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2.5 Appendix: proof of theorems

The following two lemmas are used to the proof of theorem 2.2.1.

Lemma 2.5.1. Suppose the three conditions in theorem 2.2.1 are satisfied in a

covariate-adaptive design, then:

1.
∑
Ii/N

P−→ 1/2,
∑

(1− Ii)/N
P−→ 1/2;

2.
∑
IiXi,k/N

P−→ EXk/2,
∑

(1 − Ii)Xi,k/N
P−→ EXk/2,

∑
IiZi,k/N

P−→ EZk/2

and
∑

(1− Ii)Zi,k/N
P−→ EZk/2.
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Proof. The first part of this lemma says, sample size in both groups will convergence

to half of the total patient in probability,

∑
Ii/N =

1

2
+

∑
(2Ii − 1)

2N
=

1

2
+ op(1)

P−→ 1/2, by condition (1).

Same here ∑
(1− Ii)/N =

1

2
+

(1− 2Ii)

2N
=

1

2
+ op(1)

P−→ 1/2.

To prove 2, let us first consider about discrete covariate,

∑
IiXi,k/N =

1

2N

∑
Xi,k +

1

2N

∑
(2Ii − 1)Xi,k.

Since for discrete covariate marginal difference D(k; tk) = op(
√
N), and

1

2N

∑
(2Ii − 1)Xi,k =

1

2N

sk∑
tk=1

D(k; tk).

Thus 1
2N

∑
(2Ii − 1)Xi,k = op(1) by condition (2), and by week law of large number

1
2N

∑
Xi,k

P−→ EXk/2, in sum

∑
IiXi,k/N

P−→ EXk/2.

When Xi,k is continuous covariate, then

∑
IiXi,k/N =

1

2N

∑
Xi,k +

1

2N

∑
(2Ii − 1)Xi,k.

Based on condition (3) Dc
N(Xk) = op(N

1/2), it is easy to get 1
2N

∑
(2Ii − 1)Xi,k =
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op(1), and by week law of large number, thus

1

2N

∑
Xi,k

P−→ EXk/2.

The proof for Zi is similar.

Lemma 2.5.2. Under the same three conditions in Lemma 2.5.1, α̂ is consistent

estimator of α̃, which means

α̂
P−→ α̃.

Proof. According to the solution of MLE in linear model (1), it is known that

α̂ = α̃ + (
XTX

N
)−1 XTZ

N
β̃ + (

XTX

N
)−1 XT ε̃

N
.

Firstly, we will show (X
TX
N

)−1 XTZ
N
β̃

P−→ 0. By weak law of large number and the

independence of each Xi,

1

N
XTX

P−→ diag(
1

2
,
1

2
, V ar(X1), ..., V ar(Xp)).

Since Xi and Zj are independent, E(XiZj) = E(Xi)E(Zj) for all i and j; and by
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weak law of large number,

1

N
XTZ =

1

N



∑
IiZi,1 . . .

∑
IiZi,q

∑
(1− Ii)Zi,1 . . .

∑
(1− Ii)Zi,q

∑
Xi,1Zi,1 . . .

∑
Xi,1Zi,q

...
. . .

...

∑
Xi,pZi,1 . . .

∑
Xi,pZi,q



P−→



1
2
EZ1 . . . 1

2
EZq

1
2
EZ1 . . . 1

2
EZq

EX1EZ1 . . . EX1EZq

...
. . .

...

EXpEZ1 . . . EXpEZq



.

Since E(Xk) = E(Zj) = 0 for all k and j,

(
XTX

N
)−1 XTZ

N
β̃

P−→ 0. (2.18)

Secondly, E(εi) = 0, Ii and εi are independent for any i = 1, . . . . , N ,

1

N
XT ε̃ =

1

N



∑
Iiεi

∑
(1− Ii)εi

∑
Xi,1εi

...

∑
Xi,pεi



P−→



1
2
Eεi

1
2
Eεi

EX1Eεi

...

EXpεi



.

Thus

(
XTX

N
)−1 XT ε̃

N

P−→ 0. (2.19)
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Hence by (2.18) and (2.19), α̂
P−→ α̃.

Next we will use the above two lemmas to prove Theorem 2.2.1.

Proof of Theorem 2.2.1

Proof. The hypothesis testing of µ1 − µ2 = 0, the test statistic is

T =
Lα̂

(σ̂2L(XTX)−1LT )1/2
,

where L = c(1,−1, 0, . . . , 0) and σ̂2 = (Ỹ −Xα̂)T (Ỹ −Xα̂)/(N − p − 2), here p is

the total number of independent variables besides µ.

First we check the numerator of the test statistic:

Lα̂ = µ̂1 − µ̂2 = µ1 − µ2 + L(
XTX

N
)−1(

XTZ

N
)β̃ + L(

XTX

N
)−1 XT ε̃

N
.

As show in lemma 2.5.2,

1

N
XTX

P−→M, where M = diag(
1

2
,
1

2
, V ar(X1), ..., V ar(Xp)).

Then the test statistic can be rewritten as:

Lα̂ = µ1 − µ2 + LM−1(
XTZ

N
β̃ +

XT ε̃

N
) + L((

XTX

N
)−1 −M−1)(

XTZ

N
β̃ +

XT ε̃

N
).

Define A = LM−1(X
TZ
N
β̃ + XT ε̃

N
) and B = L((X

TX
N

)−1 −M−1)(X
TZ
N
β̃ + XT ε̃

N
).

Firstly, it is not hard to find

A =
2

N
(
∑
j

∑
i

(2Ii − 1)βjZi,j +
∑
i

(2Ii − 1)εi).
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Since all margins with respect to each covariate Zj, the difference between two

groups are bounded by condition (2) and (3), that is,
∑

i(2Ii− 1)βjZi,j = op(N
1/2).

For model with finite number of covariates, it follows that

2

N
(
∑
j

∑
i

(2Ii − 1)βjZi,j) = oP (N−1/2).

Define Ĩ = {Ii, i = 1, ..., N}, and ε̃ is independent of Ĩ given Z, thus E(2Ii−1)εi = 0

and

2

N
E(
∑
i

(2Ii − 1)εi|Z) = 0,

and

V ar(
2

N

∑
i

(2Ii − 1)εi|Z) =
4σ2

ε

N
.

By the central limit theorem, given (Ĩ ,Z),

2√
N

(
∑
i

(2Ii − 1)εi|Z)
P−→ N(0, 4σ2

ε).

And, by condition (2) and (3),

2√
N

∑
j

∑
i

(2Ii − 1)βjZi,j
P−→ 0.

By Slutsky theorem,
√
NA

D−→ N(0, 4σ2
ε). (2.20)

Next, we will show
√
NB

P−→ 0.

√
NB = L((

XTX

N
)−1 −M−1)(

XTZ√
N
β̃ +

XT ε̃√
N

).
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From Lemma 2.5.2, we have

(
XTX

N
)−1 −M−1 P−→ 0. (2.21)

So to proof
√
NB

P−→ 0, it suffices to show

XTZ√
N
β̃ +

XT ε̃√
N

= Op(1).

Notice that

XTZ√
N
β̃ +

XT ε̃√
N

=
1√
N



∑
j

∑
i IiZi,jβi +

∑
i Iiεi

∑
j

∑
i(1− Ii)Zi,jβi +

∑
i(1− Ii)εi

∑
j

∑
iXi,1Zi,jβj +

∑
iXi,1εi

...

∑
j

∑
iXi,pZi,jβj +

∑
iXi,pεi



.

Also,

1√
N

(
∑

j

∑
i IiZi,jβj +

∑
i Iiεi) = 1

2
( 1√

N

∑
j

∑
i Zi,jβj + 1√

N

∑
i εi

+ 1√
N

∑
j

∑
i(2Ii − 1)Zi,jβj + 1√

N

∑
i(2Ii − 1)εi).

By central limit theorem, and the finiteness of covariate number Zj,

1√
N

∑
j

∑
i

Zi,jβj +
1√
N

∑
i

εi = Op(1). (2.22)
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Furthermore,

1√
N

∑
j

∑
i

(2Ii − 1)Zi,jβj +
1√
N

∑
i

(2Ii − 1)εi =

√
N

2
A.

Since
√
N
2
A converges to a normal distribution,

1√
N

∑
j

∑
i

(2Ii − 1)Zi,jβj +
1√
N

∑
i

(2Ii − 1)εi = Op(1). (2.23)

Hence, based on (2.22) and (2.23)

1√
N

(
∑
j

∑
i

IiZi,jβj +
∑
i

Iiεi) = Op(1). (2.24)

Also, by central limit theorem, for any k, k = 1, 2, ..., p

1√
N

(
∑
j

∑
i

Xi,kZi,jβj +
∑
i

Xi,kεi) = Op(1). (2.25)

By (2.21), (2.24) and (2.25), we get

√
NB

P−→ 0. (2.26)

Based on (2.20), (2.26) and Slutsky theorem.

√
N [µ̂1 − µ̂2 − (µ1 − µ2)]

D−→ N(0, 4σ2
ε).

Up to now, we get the distribution of the numerator part of the test statistic, it

is asymptotic normal with mean zero and variance 4σ2
ε . To proof the test is con-

servative, next we will show, the denominator is larger than 4σ2
ε . For denominator
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part,

σ̂2L(XTX)−1LT .

Notice,

L(XTX)−1LT =
1

N
L(

XTX

N
)−1LT =

4

N
+ op(

1

N
).

Moreover, since α̂ is consistent estimator of α̃, we can get the asymptotic variance:

σ̂2 = 1
N−p−2

(Ỹ −Xα̂)T (Ỹ −Xα̂)

= 1
N−p−2

[(Ỹ −Xα̃)T (Ỹ −Xα̃) + (α̂− α̃)TXTX(α̂− α̃)− 2(α̂− α̃)XT (Ỹ −Xα̃)]

= 1
N−p−2

(Zβ̃ + ε̃)T (Zβ̃ + ε̃) + op(1)

P−→ σ2
ε +

∑q
j=1 β

2
jV ar(Zj).

Thus, it is easy to get

σ̂2L(XTX)−1LT =
4

N
(σ2

ε +

q∑
j=1

β2
jV ar(Zj)) + op(

1

N
).

Under H0 : µ1 − µ2 = 0,

T
D−→ N(0, τ 2), τ 2 =

σ2
ε

σ2
ε +

∑q
j=1 β

2
jV ar(Zj)

=
σ2
ε

σ2
z

for any βj 6= 0, σ2
ε < σ2

z . When N →∞

Pr(|T | > Z(1−α/2))→ 2Φ(−
σzZ1−α/2

σε
) < α.
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Under Ha : µ1 − µ2 6= 0, µ1 − µ2 = δ/
√
N for fixed δ 6= 0,

T
D−→ N(∆, τ 2), where ∆ =

δ

2σz
.

Finish the proof of Theorem 2.2.1

Proof of theorem 2.2.2

Proof. For the general case of hypothesis testing H0 : Cα̃ = ξ0, the test statistic:

T ∗ =
m−1
√
N(Cα̂− ξ0)T [C(XTX/N)−1CT ]−1

√
N(Cα̂− ξ0)

σ̂2
.

Notice, under H0 : Cα̃ = ξ0,

√
N(Cα̂− ξ0) =

√
NC(α̂− α̃).

Notice (2.21) and (2.25), we have

√
NC(α̂− α̃) =

√
NC(X

TX
N

)−1(X
TZβ̃
N

+ XT ε̃
N

)

=
√
NCM−1(X

TZβ̃
N

+ XT ε̃
N

) +
√
NC((X

TX
N

)−1 −M−1)(X
TZβ̃
N

+ XT ε̃
N

)

=
√
NCM−1(X

TZβ̃
N

+ XT ε̃
N

) + op(1).
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Let C = [0m×2, C̃], and M = diag(1/2, 1/2, M̃), we can get

√
NC(α̂− α̃) = C̃M̃−1

√
N



∑
j

∑
iXi,1Zi,jβj +

∑
iXi,1εi

...

∑
j

∑
iXi,pZi,jβj +

∑
iXi,pεi


+ op(1).

Then by central limit theorem, and the fact that CM−1CT = C̃M̃−1C̃T ,

√
NC(α̂− α̃)

D−→ N(0, σ2
zCM

−1CT ).

Under H0 : Cα̃ = ξ0,

T ∗
D−→ χ2

(m)/m.

Under Ha : Cα̃ = ξ1, and (ξ1 − ξ0) = η/
√
N , for fixed η 6= 0,

T ∗
D−→ χ2

(m)(λ)/m, λ = ηT [CM−1CT ]−1ησ2
z .

End of proof theorem 2.2.2.

Following three Lemmas are used to prove Theorem 2.3.1.

Lemma 2.5.3. E(Zn1) = 0, E(Zn2) = 0.

Proof. According to the definition, 2Ii−1 is the allocation indicator only takes value

1 or −1 with symmetric probability function for two groups, thus E((2Ii−1)Zi) = 0.
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Moreover, E(Zi) = 0, thus

E(
∑n

i=1 IiZi) = 1/2E(
∑
Zi) + 1/2E(

∑
(2Ii − 1)Zi)

= 1/2
∑
EZi + 1/2

∑
E((2Ii − 1)Zi)

= 0.

So it is easy to get E(Zn1) = 0, also E(Zn2) = 0.

Lemma 2.5.4. Define Z ′n = n
2
(Zn1 −Zn2), then a restricted randomization to min-

imize Z ′2n is equivalent to the randomization procedure to minimize the mean differ-

ence among two groups.

Proof. For the procedure of minimizing the mean difference among two groups, the

imbalance measure is

Imb = (Zn1 − Zn2)
2

it is easy to verify,

Z ′2n = Imb ∗ n2/4.

Thus minimizing the mean difference among two groups is equivalent to minimize

Z ′2n . So the randomization procedure using Z ′2n as imbalance measure is equivalent to

the restricted randomization to minimize the mean difference among two groups.

Lemma 2.5.5. Define Λn =
∑n1

i=1 Zi1 −
∑n2

i=1 Zi2, and Z ′n = n
2
(Zn1 − Zn2) (same

as in Lemma 2.5.4). In addition, we have Λ
(1)
n+1, Z

(1)′

n+1 if n + 1th patient is assigned

to group 1 otherwise we have Λ
(2)
n+1, Z

(2)′

n+2 if assigned to group 2. Then,

(i) P ({|Λn − Z ′n| > ε i.o.}) = 0, where i.o. means infinitely often;
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(ii) P (|Λ(1)
n+1| ≤ |Λ

(2)
n+1|&|Z

(1)′

n+1| > |Z
(2)′

n+1|, i.o.) = 0;

(iii) P (|Λ(1)
n+1| > |Λ

(2)
n+1|&|Z

(1)′

n+1| ≤ |Z
(2)′

n+1|, i.o.) = 0;

Proof. Borel-cantelli Lemma is used to prove these three conclusions. Borel-cantelli

Lemma states, for a sequence of random variables {Xn}, suppose, for any ε > 0,

that An(ε) is the event

An(ε)
.
= {w : |Xn(w)−X(w)| > ε}

if the sum of probabilities of events

∞∑
n=1

Pr(An(ε)) =
∞∑
n=1

P [|Xn(w)−X(w)| > ε] <∞

then

Xn
a.s.−−→ X.

Indeed, convergences almost surely Λn − Z ′n
a.s.−−→ 0 implies that for all ε > 0,

P ({|Λn − Z ′n| > ε i.o.}) = 0.

To prove (i) is equivalent to show for any ε > 0,

∞∑
n=1

P [|Λn − Z ′n| > ε] <∞. (2.27)
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Firstly, let us calculate the value of Λn − Z ′n,

Λn − Z ′n =
∑n1

i=1 Zi1 −
∑n2

i=1 Zi2 −
n
2
(zn1 − zn2)

= (n1zn1 − n2zn2)− n
2
(zn1 − zn2)

= n1−n2

2
∗ Zn1 + n1−n2

2
∗ Zn2 .

(2.28)

We will show that, for any ε > 0,

P (|Λn − Z ′n| > ε) ≤ P (|
∑

n Zi
n
| > ε

2d
) + P (|d(Zn1 − Zn2)

n
| > ε

d
).

According to (2.28),

P (|Λn − Z ′n| > ε) = P (|n1 − n2

2
∗ (Zn1 + Zn2)| > ε).

Since according to the assumption of the randomization procedure that the patient

number difference between two groups must be less or equal than d, which means

|n1 − n2| ≤ d, thus

P (|Λn − Z ′n| > ε) ≤ P (|d
2
∗ (Zn1 + Zn2)| > ε).

Also,

P (|Λn − Z ′n| > ε) ≤ P (|n1Zn1 + n2Zn2

n
+
n2 − n1

2n
(Zn1 − Zn2)| >

ε

d
).



52

Moreover,

P (|Λn − Z ′n| > ε) ≤ P (|
(
∑

n1
Zi1 +

∑
n2
Zi2)

n
|+ |n2 − n1

2n
(Zn1 − Zn2)| >

ε

d
).

Also, not hard to find

P (|Λn − Z ′n| > ε) ≤ P (|
(
∑

n1
Zi1 +

∑
n2
Zi2)

n
|+ | d

2n
(Zn1 − Zn2)| >

ε

d
).

Moreover, obvioulsy,

P (|Λn − Z ′n| > ε) ≤ P (|
∑

n Zi
n
| > ε

2d
) + P (|d(Zn1 − Zn2)

n
| > ε

d
).

To prove (2.27), we only need to show that

∞∑
n=1

P (|
∑

n Zi
n
| > ε

2d
) <∞

and
∞∑
n=1

P (|d(Zn1 − Zn2)

n
| > ε

d
) <∞.

Firstly, since Z1, Z2, · · · , Zn are i.i.d with E(Zi) = 0, according to the proof of

strong law of large numbers in Etemadi (1981),

∞∑
n=1

P (|
∑

n Zi
n
| > ε

2d
) <∞.

Secondly, since E(Zn1 − Zn2) = 0 and by Chebyshev P (|d(Zn1−Zn2 )

n
| > ε

d
) ≤ d4

n2ε2
∗
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V ar(Zn1 − Zn2), moreover, 1
n2 is summable, thus

∞∑
n=1

P (|d(Zn1 − Zn2)

n
| > ε

d
) <∞.

In sum,

∞∑
n=1

P (|Λn − Z ′n| > ε) ≤
∞∑
n=1

P (|
∑

n Zi
n
| > ε

2d
) +

∞∑
n=1

P (|d(Zn1 − Zn2)

n
| > ε

d
) <∞.

By the Borel-cantelli lemma, for any ε > 0,

P ({|Λn − Z ′n| > ε i.o.}) = 0.

Here, we finish the proof of (i). Next we are going to prove (ii) and (iii).

To prove (ii) and (iii), it is enough to prove

(|Λ(1)
n+1| − |Λ

(2)
n+1|)− (|Z(1)′

n+1| − |Z
(2)′

n+1|)
a.s.−−→ 0.

Define ∆ = |(|Λ(1)
n+1| − |Λ

(2)
n+1|)− (|Z(1)′

n+1| − |Z
(2)′

n+1|)|, we still use Borel-cantelli lemma

to do the proof. For any ε > 0,

P (∆ > ε) = P (|(|Λ(1)
n+1| − |Z

(1)′

n+1|)− (|Λ(2)
n+1| − |Z

(2)′

n+1|)| > ε)

≤ P (|(|Λ(1)
n+1| − |Z

(1)′

n+1|)| > ε
2
) + P (|(|Λ(2)

n+1| − |Z
(2)′

n+1|)| > ε
2
)

≤ P (|Λ(1)
n+1 − Z

(1)′

n+1| > ε
2
) + P (|Λ(2)

n+1 − Z
(2)′

n+1| > ε
2
).
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Since Λ
(1)
n+1 − Z

(1)′

n+1
a.s−→ 0 by (i), thus

∞∑
n=1

P (|Λ(1)
n+1 − Z

(1)′

n+1| >
ε

2
) <∞.

Also Λ
(2)
n+1 − Z

(2)′

n+1
a.s−→ 0 by (i), thus

∞∑
n=1

P (|Λ(2)
n+1 − Z

(2)′

n+1| >
ε

2
) <∞.

In sum,

P (|(|Λ(1)
n+1| − |Λ

(2)
n+1|)− (|Z(1)′

n+1| − |Z
(2)′

n+1|)| > ε) <∞.

Which means

P (|Λ(1)
n+1| ≤ |Λ

(2)
n+1|&|Z

(1)′

n+1| > |Z
(2)′

n+1|, i.o) = 0,

as well as

P (|Λ(1)
n+1| > |Λ

(2)
n+1|&|Z

(1)′

n+1| ≤ |Z
(2)′

n+1|, i.o) = 0.

The end of proof for Lemma 2.5.5.

The proof of Theorem 2.3.1.

Proof. The proof of Theorem 2.3.1 needs two steps. The first step is to show the

procedure applying mean difference based method is equivalent to the procedure

using Λ2
n = (

∑n1

i=1(zi1 − µ) −
∑n2

i=1(zi2 − µ))2 as imbalance measure. The second

step is to show that, in the procedure using Λ2
n as imbalance measure, Λn is positive

recurrent Markov chain, which means Λn = Op(1).

Firstly, Λn is an equivalent imbalance measure for mean difference based method.

Lemma 2.5.5 shows, only finite steps, the randomization procedures using Λ2
n and

Z ′2n will have different preference for assigning new patients. Define Ai = {|Λ(1)
i | <
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|Λ(2)
i |} and Bi = {|Z(1)′

i | < |Z
(2)′

i |}. Thus there must exist an finite integer N , for

all i ≥ N ,

P (Ai ∩Bc
i ) = 0 and P (Aci ∩Bi) = 0.

which indicates for all i ≥ N ,

P ({Ai ∩Bi} ∪ {Aci ∩Bc
i }) = 1,

alternatively,

P (
⋂
i≥N

{Ai ∩Bi} ∪ {Aci ∩Bc
i }) = 1.

So after this N th patient, these two procedures have the same allocation preference

for every step with probability 1. Moreover, Lemma 2.5.4 tells us Z ′2n is an equivalent

imbalance measure to mean difference. Thus Λ2
n is also equivalent imbalance measure

for mean difference based method.

Secondly, Λn is positive recurrent Markov chain. Conditions for drift condition

under general space: (1) φ-irreducible Markov chain; (2) transit probability {P (x, ·)}

is strongly continuous; (3) exists a compact set K, and a non-negative measurable

function g on X that drift condition holds.

Define Γn = c(
∑N1

i=1 Zi1 −
∑N2

i=1 Zi2, N1 − N2) and Λn =
∑N1

i=1 Zi1 −
∑N2

i=1 Zi2 =

l(Γn), thus Λn is a linear transform of Γn. Obviously, Γn is irreducible Markov chain

on space Z2, and l(Γn) = Λn is also irreducible Markov chain on l(Z2).

Next, prove {Λn} is a φ-irreducible Markov chain. According to the definition of

φ-irreducible Markov chain: L(x,A) > 0 for any φ(A) > 0. Here, L(x,A) = P (τA <

∞) >
∫
A
P (x, y)dy > 0 for any φ(A) > 0. Thus {Λn} is a φ-irreducible Markov

chain on real line R.

Finally, we need to find a compact set K, and non-negative measurable function



56

g on X that drift condition holds. The drift condition here means, for some finite b,

∫
P (x, dy)g(y) ≤ g(x)− 1 + b ∗ I(x,K), x ∈ Ω

holds.

Assume E|Z| <∞ and E(Z2) <∞.We choose g(z) = z2, andK = [− 1+3EZ2

2(2p−1)E|Z|−

E|Z|, 1+3EZ2

2(2p−1)E|Z| + E|Z|],

Λn+1 = Λn + (2In+1 − 1) ∗ Zn+1.

Case 1 : |n1 − n2| < d,

E(g(Λn+1)|Fn)− g(Λn) = E(Λn + (2In+1 − 1) ∗ Zn+1)2 − Λ2
n

= −2(2p− 1)|Λn| ∗ E|Z|+ E(Z2).

And if Λn /∈ K,

E(g(Λn+1)|Fn)− g(Λn) = −2(2p− 1)|Λn| ∗ E|Z|+ E(Z2) < −1.

Else Λn ∈ K,

E(g(Λn+1)|Fn) = Λ2
n − 2(2p− 1)|Λn| ∗ E|Z|+ E(Z2) <∞.

In sum, the drift condition holds with a compact set K and non-negative function

g here.
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Case 2 : n1 − n2 = d > 0, then

Λn+2 = Λn − Zn+1 + (2In+1 − 1)Zn+2,

then

E(g(Λn+2)|Fn) = E((Λn − Zn+1 + (2In+2 − 1)Zn+2)2|Λn)

= E((Λn − Zn+1)2 + Z2
n+2 + 2(2In+2 − 1)Zn+2 ∗ (Λn − Zn+1)|Λn)

= Λ2
n + EZ2

n+1 + EZ2
n+2 + 2E((2In+2 − 1)Zn+2 ∗ (Λn − Zn+1)|Λn).

Moreover, we will show

E((2In+2 − 1)Zn+2 ∗ (Λn − Zn+1)) = −(2p− 1)E|Zn+2| ∗ E|Λn − Zn+1|.

The details of the calculation as follows:

E((2In+2 − 1)Zn+2 ∗ (Λn − Zn+1))

=
∫ ∫

(Λn − Zn+1)(2In+2 − 1)Zn+2f(zn+2)f(zn+1)dZn+2dZn+1

= (
∫ Λn

−∞+
∫∞

Λn
)
∫

(Λn − Zn+1)(2In+2 − 1)Zn+2dZn+2dZn+1

= −(2p− 1)E|Zn+2|(
∫ Λn

−∞ f(zn+1)(Λn − Zn+1)dZn+1 −
∫∞

Λn
f(zn+1)(Λn − Zn+1)dZn+1)

= −(2p− 1)E|Zn+2| ∗ E|Λn − Zn+1|.
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Thus, in sum

E(g(Λn+2)|Fn) = Λ2
n + 2EZ2 − 2(2p− 1)E|Zn+2| ∗ E|Λn − Zn+1|

= Λ2
n + 2EZ2 − 2(2p− 1)E|Z| ∗ E|Λn − Z|

≤ Λ2
n + 2EZ2 − 2(2p− 1)E|Z| ∗ (Λn − E|Z|).

It is easy to verify, when Λn /∈ K,

E(g(Λn+2)|Fn) ≤ g(Λn)− 1.

Else when Λn ∈ K,

E(g(Λn+2)|Fn) ≤ Λ2
n + 2EZ2 − 2(2p− 1)E|Z| ∗ (Λn − E|Z|) <∞.

We showed drift condition also applies for case 2, and it is the same for the case

that n1 − n2 = −d < 0. In sum, {Λn} is a positive recurrent Markov chain, and it

is bounded in probability. Thus Z ′n is also bounded in probability, and |zn1 − zn2| =

op(
1√
n
) must hold.
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Chapter 3

Statistical inference for adaptive

designs balance correlated

continuous covariates

In chapter 2, the statistical inference of adaptive randomized clinical trials based

on independent covariates has been studied. The theoretical properties are derived

on the assumption that all the covariates in randomization are independent with

each other. Based on the independence and linear relationship we have the results

that the hypothesis testing to compare treatment effects between two groups is

conservative and the testing about a linear combination of covariates remain valid.

However, the assumption that all covariates are independent is usually not satisfied

in practice. This chapter addresses the problem that what is the theoretical results

for hypothesis testing for linear models with correlated covariates. The consistency

of the estimators of treatment effects and covariate effects will be studied. The

framework to study statistical inference for linear models with correlated covariates

is described in the section 3.1. The theoretical properties about hypotheses testing
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are given and discussed in section 3.2. Simulations and conclusions are given at last

two sections respectively.

3.1 Framework

Here we give the general framework to study statistical inference of linear models

with correlated covariates for covariate-adaptive randomized clinical trails. In the

general case, the covariates can be correlated by incorporating a covariance matrix

into the underlying model. Similar to the independence case in chapter 2, the

underlying model and working model are given. The working model only contains

partial covariate information used in randomization. The main difference for the

dependence cases from the independence case is that the covariance matrix can be

any semi-definite matrix instead of diagonal matrix.

There is a covariate-adaptive randomized clinical trial, with two treatments: 1

and 2. The discrete and continuous covariates of patients are balanced by applying

one covariate-adaptive design. Let µj, j = 1, 2 be the expected main effect of

treatment j respectively; N be the total number of patients in this trial; Ii, i =

1, · · · , N be the allocation indicator of patient i, say Ii = 1 if patient i is assigned

to treatment 1, Ii = 0 otherwise. Assume the relationship between the response Y

and covariates, treatment follows the linear model below:

Yi = µ1Ii + µ2(1− Ii) + α1Xi,1 + · · ·+ αpXi,p + β1Zi,1 + · · ·+ βqZi,q + εi (3.1)

where

1. Xi,k, k = 1, · · · , p is discrete or continuous covariate identically independent

distributed with as Xk, with E(Xk) = 0, which is used in both covariate
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randomization procedure and final statistical inference.

2. Zi,j, j = 1, · · · , q is discrete or continuous covariate identically independent

distributed with as Zj, with E(Zj) = 0, which is only used in covariate ran-

domization procedure.

3. εi, i = 1, · · · , N is independent and identically distributed random error with

E(εi) = σ2
ε .

4. Xi,k, k = 1, · · · , p and Zi,j, j = 1, · · · , q can be correlated with each other, let

the covariance matrix of (X,Z) be Σ, where

Σ =



Cov(X1, X1) · · · Cov(X1, Xp) Cov(X1, Z1) · · · Cov(X1, Zq)

...
. . .

...
...

. . .
...

Cov(Xp, X1) · · · Cov(Xp, Xp) Cov(Xp, Z1) · · · Cov(Xp, Zq)

Cov(Z1, X1) · · · Cov(Z1, Xp) Cov(Z1, Z1) · · · Cov(Z1, Zq)

...
. . .

...
...

. . .
...

Cov(Zq, X1) · · · Cov(Zq, Xp) Cov(Zq, Z1) · · · Cov(Zq, Zq)



.

5. εi is independent with Xi,k and Zi,j.

Define Ỹ = (Y1, Y2, · · · , YN)T , α̃ = (µ1, µ2, α1, · · · , αp)T , β̃ = (β1, β2, · · · , βq)T and
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ε̃ = (ε1, ε2, · · · , εN)T ,

X =



I1 (1− I1) X1,1 · · · X1,p

...
...

...
. . .

...

IN (1− IN) XN,1 · · · XN,p


, Z =



Z1,1 · · · Z1,q

...
. . .

...

ZN,1 · · · ZN,q



Σx,x =



Cov(X1, X1) · · · Cov(X1, Xp)

...
. . .

...

Cov(Xp, X1) · · · Cov(Xp, Xp)


Σz,z =



Cov(Z1, Z1) · · · Cov(Z1, Zq)

...
. . .

...

Cov(Zq, Z1) · · · Cov(Zq, Zq)



Σx,z = ΣT
z,x =



Cov(X1, Z1) · · · Cov(X1, Zq)

...
. . .

...

Cov(Xp, Z1) · · · Cov(Xp, Zq)


.

The general model used for randomization can be rewritten as,

Ỹ = Xα̃ + Zβ̃ + ε̃.

The statistical inference working model would be,

Ỹ = Xα̃ + ε̃
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and the expectation of Yi is,

E[Yi] = µ1Ii + µ2(1− Ii) + α1Xi,1 + · · ·+ αpXi,p. (3.2)

Remark 3.1.1. Both the underlying model and working model in chapter 3 is similar

to those of independence case in chapter 2. The only difference is that the covariance

structure of covariates in chapter 3 can be any semi-definite matrix instead of diag-

onal matrix. In this general case where covariates are not necessarily independent.

Besides, both Xi,k, k = 1, · · · , p and Zi,j, j = 1, · · · , q are assumed to be scalars

here. For covariates with two categories, a dummy variable is used. In cases with

more than two categories, for example when there are three categories, high dimen-

sional vectors (0,0), (0,1), and (1,0) are coded in the model. All the results can be

extended to the situation that discrete covariates have multiple categories easily.

Based on the final statistical inference model (3.2) to compare if there is difference

between two treatment effects, do the following hypothesis test:

Ho : µ1 = µ2 vs. Ha : µ1 6= µ2. (3.3)

According to the ordinary least square estimation method, the estimate of α̃ is

obtained by the following formula,

α̂ = (XTX)−1XT Ỹ = (XTX)−1XT (Xα̃ + Zβ̃).

The test statistic for 3.3 is

T =
Lα̂

(σ̂2L(XTX)−1LT )1/2
(3.4)
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where L = (1,−1, 0, · · · , 0) and σ̂2 = (Ỹ −Xα̂)T (Ỹ α̂)/(N − p − 2). The null hy-

pothesis is rejected when |T | > Z1−α/2, and otherwise accepted when Z1−α/2 is the

(1− α/2) percentile of the standard normal distribution.

3.2 Theoretical properties

For clinical trials designed to balance both discrete and continuous covariates with

covariate-adaptive designs. Suppose discrete and continuous covariates: Xi,k, k =

1, · · · , p, Zi,j, j = 1, · · · , q are balanced in randomization procedure. Let D = (k|Xk

is categorical, k = 1, ..., p), C = (k|Xk is continuous, k = 1, ..., p), D∗ = (j|Zj

is categorical, j = 1, ..., q) and C∗ = (j|Zj is continuous, j = 1, ..., q). The

marginal imbalance measure for all levels of categorical covariates are considered

here. Assume categorical covariate Xk ∈ D has level sk and Zj ∈ D has level

s∗j . Continuous covariate Xk ∈ C, Zk ∈ C∗ two group difference is define as

the difference of the sum of this covariate in two groups. For ith patient, we use

Wi = (Xi,1, Xi,2, ..., Xi,p, Zi,1, Zi,2, ..., Zi,q) to represent the covariate profile. If Xi,k

is categorical and at level tk (1 ≤ tk ≤ sk) and Zi,j is categorical and at level tj

(1 ≤ tj ≤ s∗j), for convenience, we use (k; tk) to denote the margin at categorical

level Xk = tk, and tj to denote the margin at categorical level Zj = tj. The overall

and marginal imbalance between two treatments are defined as:

1. DN be the difference between the number of patients among two groups as

total, where DN = N1 −N2;

2. DN(k; tk), DN(j; tj) be the differences between the number of patients in the

two treatment groups on the margin (k; tk) for categorical covariates, where
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DN(k; tk) = Ntk,1 −Ntk,2, DN(j; tj) = Ntj ,1 −Ntj ,2;

3. Dc
N(Xk), D

c
N(Zj)be the difference between continuous covariate k and j among

two groups, whereDc
N(Xk) =

∑N1

i1=1 Xi1,k−
∑N2

i2=1 Xi2,k, D
c
N(Zj) =

∑N1

i1=1 Zi1,j−∑N2

i2=1 Zi2,j.

Remark 3.2.1. Only the hypothesis testing for comparing treatment effects is dis-

cussed in chapter 3. Because it can be shown that, the hypothesis testing about

treatment effects under complete randomization is still valid, however, the estima-

tors for coefficients of covariate are biased if any covariate omitted from the inference

model. The theoretical properties of statistical inference under covariate-adaptive de-

signs satisfy above three conditions are studied in the following theorems. In theorem

3.2.1, the consistency and biases will be given for the estimators of treatment effects

and covariate effects. Moreover, theorem 3.2.2 shows the theoretical properties of

the hypothesis testing of treatment effects under covariate-adaptive deigns.

Theorem 3.2.1. Suppose the following three conditions are satisfied in a covariate-

adaptive design:

(1) the overall imbalance converges to zero in probability by rate N1/2, that is

DN = op(N
1/2);

(2) the marginal imbalance for each categorical covariate converges to zero in prob-

ability by rate N1/2, that is, DN(k, tk) = op(N
1/2) and DN(j, tj) = op(N

1/2);

(3) each continuous covariate sum in two groups converges to zero in probability by

rate N1/2, that is, Dc
N(Xk) = op(N

1/2) and Dc
N(Zj) = op(N

1/2).

(i) The estimator of treatment effect difference is consistent, i.e.,

µ̂1 − µ̂2
P−→ µ1 − µ2.
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(ii) (α̂1, · · · , α̂p)T is a biased estimator for (α1, · · · , αp)T , i.e.,

(α̂1, · · · , α̂p)T − (α1, · · · , αp)T
P−→ Σ−1

x,xΣx,zβ̃.

Theorem 3.2.1, gives the theoretical properties of test statistic for testing hypoth-

esis of treatment effects under covariate-adaptive designs. Under the assumption of

three mild conditions of covariate-adaptive designs, theorem 3.2.1 shows the differ-

ence of estimators of treatment effects is consistent, similar to the independence case

in chapter 2. Even if the covariance matrix structure is not fully understood, we

can always achieve consistent estimator of treatment effect. On the other hand, it

also shows the estimators of covariates coefficients are biased if important covariates

are omitted from the inference model. From the results in theorem 3.2.1, we know

the covariance matrix between all covariates need to be fully understood to get the

exact value of bias. So for some studies where we need to identify the importance of

covariates or biomarkers, we need to take care of the bias. The bias of estimators for

covariates coefficients exists no matter under covariate-adaptive designs or complete

randomization.

Theorem 3.2.2. Suppose the following three conditions are satisfied in a covariate-

adaptive design:

(1) the overall imbalance converges to zero in probability by rate N1/2, that is

DN = op(N
1/2);

(2) the marginal imbalance for each categorical covariate converges to zero in prob-

ability by rate N1/2, that is, DN(k, tk) = op(N
1/2) and DN(j, tj) = op(N

1/2);

(3) each continuous covariate sum in two groups converges to zero in probability by

rate N1/2, that is, Dc
N(Xk) = op(N

1/2) and Dc
N(Zj) = op(N

1/2).
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(i) Then under H0 : µ1 − µ2 = 0,

T
D−→ N(0, τ 2) , where τ 2 =

σ2
ε

σ2
z

, σ2
z = σ2

ε + V ar[(ZT −XTΣ−1
x,xΣx,z)β̃] (3.5)

if V ar[(ZT −XTΣ−1
x,xΣx,z)β̃] = 0, then τ 2 = 1.

(ii) Under Ha : µ1 − µ2 6= 0, consider a sequence of local alternative, i.e, µ1 − µ2 =

δ/
√
N for a fixed δ 6= 0, then

T
D−→ N(∆, τ 2), where ∆ =

δ

2σz
. (3.6)

Remark 3.2.2. Under null hypothesis, type I error is conservative when τ 2 < 1.

τ 2 = 1 only if V ar[(ZT − XTΣ−1
x,xΣx,z)β̃] = 0. When βj = 0 for j = 1, ..., q, all

the covariates used in randomization are not related with outcome Y , then τ 2 = 1.

Moreover, if (ZT −XTΣ−1
x,xΣx,z) = 0 which means Z is a linear transform of X, then

also τ 2 = 1. Under these two cases, the hypothesis testing can achieve type I error.

Otherwise, the hypothesis testing is conservative.

Remark 3.2.3. Under alternative hypothesis, the power can be obtained from the

asymptotic distribution 3.6. Under covariate-adaptive design, power is

P (|T | > Z1−α/2) = Φ(
δ

2σε
−
σzZ1−α/2

σε
) + Φ(− δ

2σε
−
σzZ1−α/2

σε
) + o(1).

The power of complete randomization would be

P (|T | > Z1−α/2) = Φ(
δ

2σε
− Z1−α/2) + Φ(− δ

2σε
− Z1−α/2) + o(1),

because σε = σz under complete randomization.
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Some conclusions about the power comparisons of covariate-adaptive designs and

complete randomization can be made. First, the asymptotic power under covariate-

adaptive design is smaller than complete randomization when δ is small, and usually

larger than complete randomization when δ is large. The simulation results also

confirm these conclusions.

3.3 Simulation study

3.3.1 Case 1: Testing treatment effects

Continuous covariate randomization methods: p-value based randomization (P-

value), Su’s percentile method (Quartile), Empirical cumulative distribution func-

tion method (ECDF), Kullback-Leibler divergence method (KLD) and Kernel den-

sity procedure (Kernel) are compared with complete randomization (CR) to com-

pare the type I error of the hypothesis testing for comparing treatment effects. (The

details of above continuous covariate-adaptive designs can be found in section 1.2.2)

The response Yi is assumed to follow the linear model:

Yi = µ1Ii + µ2(1− Ii) + β1Zi,1 + β2Zi,2 + εi (3.7)

where
(
Z1

Z2

)
∼ N(µ,Σ), µ =

(
0
0

)
, Σ = ( 1 0.5

0.5 1 ), and εi ∼ N(0, 1) , β1 = 1, β2 = 1. To

investigate the type I error of the hypothesis testing: Ho : µ1 = µ2, no treatment

effect difference is assumed here, i.e., µ1 = µ2. In the simulation, similar settings of

parameters are used here as in chapter 2. Biased coin probability p = 0.8 is applied

for all the covariate-adaptive designs. The significance level α = 0.05 and sample

size N = 100, 200, 500 is considered.
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Table 3.1: Type I error for methods: p-value based randomization (P-value), Su’s
percentile method (Quartile), Empirical cumulative distribution function method
(ECDF), Kullback-Leibler divergence method (KLD), Kernel density procedure
(Kernel) and Complete Randomization (CR) in % with ρ = 0.5, simulation based
on 10,000 runs.

Method N t-test lm(Z1) lm(Z2) lm(Z1, Z2) B-test

P-value based 100 0.04 1.30 1.31 5.25 4.74

P-value based 200 0.02 1.05 0.99 4.73 4.65

P-value based 500 0.01 0.99 0.95 5.11 5.36

Quartile 100 0.36 2.22 2.25 4.97 5.23

Quartile 200 0.25 2.40 2.19 5.09 4.59

Quartile 500 0.18 2.15 1.90 5.04 4.53

ECDF 100 0.07 1.21 1.37 5.16 5.27

ECDF 200 0.02 1.29 1.30 5.27 5.39

ECDF 500 0.01 1.01 1.03 4.88 5.18

KLD 100 0.06 1.50 1.35 5.26 5.39

KLD 200 0.05 1.16 1.05 5.26 4.52

KLD 500 0.02 1.10 1.01 5.42 4.63

Kernel 100 0.19 2.19 2.12 4.80 5.25

Kernel 200 0.10 1.66 1.80 4.77 4.69

Kernel 500 0.03 1.53 1.30 4.91 5.34

CR 100 5.33 5.17 4.95 4.66 -

CR 200 4.98 5.10 4.75 4.93 -

CR 500 5.12 5.08 5.28 4.89 -

Three types of tests are compared in table 3.1: (1) two sample t-test (t-test);(2)

covariate test based on the linear model contains covariate Z (lm(z), lm(z1, z2)); (3)

bootstrap t-test introduced in Shao, Yu, and Zhong (2010), where bootstrap samples

(Y ∗b1 , Z∗b1 ), · · · , (Y ∗bN , Z∗bN ), b = 1, 2, · · · , B, are generated independently randomly

with replacement from sample (Y1, Z1), · · · , (YN , ZN). The variance of Ȳ1 − Ȳ2 is

estimated by the bootstrap samples. Based on Table 3.1, several conclusions can
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be made: (1) Two sample t-test has the most conservative results with the smallest

type I error. (2) Under covariate-adaptive design, lm(Z1) and lm(Z2) are also con-

servative with type I error less than 5%. (3) The linear model with both covariates

Z1 and Z2, (lm(Z1, Z2)) is valid for the type I error is close to 5%. These findings are

consistent to Theorem 3.2.2 with regards to the hypothesis testing with full model

or omitted covariates.

Table 3.2: Type I error for methods: p-value based randomization (P-value), Su’s
percentile method (Quartile), Empirical cumulative distribution function method
(ECDF), Kullback-Leibler divergence method (KLD), Kernel density procedure
(Kernel) and Complete Randomization (CR) in % with different values of ρ, simu-
lation based on 10,000 runs, sample size N = 100.

Method ρ t-test lm(Z1) lm(Z2) lm(Z1, Z2) B-test

P-value based 0.8 0.05 2.38 2.49 5.03 4.61

0.5 0.02 1.34 1.10 4.89 4.84

0.2 0.08 0.68 0.67 4.75 5.56

0 0.09 0.64 0.72 5.00 4.92

-0.2 0.27 0.72 0.65 4.90 5.12

-0.5 0.63 0.94 1.02 5.00 4.73

-0.8 2.34 2.49 2.41 4.82 4.87

Quartile 0.8 0.17 3.87 3.71 4.92 5.39

0.5 0.17 2.27 2.19 4.93 4.60

0.2 0.63 1.70 1.74 5.23 5.06

0 0.85 1.50 1.76 4.88 4.80

-0.2 1.22 1.51 1.52 4.42 4.32

-0.5 2.17 2.40 2.52 5.14 5.74

-0.8 3.98 3.86 3.96 4.75 4.56

ECDF 0.8 0.03 2.75 2.80 4.66 4.54

0.5 0.06 1.28 1.27 5.09 4.59

0.2 0.03 0.76 0.87 5.05 4.92

0 0.21 0.87 0.94 5.23 5.41

-0.2 0.33 0.91 0.88 4.86 5.35

-0.5 1.07 1.40 1.39 4.91 4.52

-0.8 2.84 2.82 2.90 5.11 5.61
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KLD 0.8 0.01 2.92 2.82 4.91 5.28

0.5 0.07 1.29 1.18 4.84 5.63

0.2 0.04 0.77 0.82 0.82 4.54

0 0.18 0.71 0.67 4.97 5.52

-0.2 0.35 0.89 0.77 4.89 5.16

-0.5 0.86 1.20 1.23 4.71 4.90

-0.8 2.94 3.02 2.92 5.06 4.58

Kernel 0.8 0.08 3.63 3.91 5.26 4.80

0.5 0.11 1.93 2.19 5.05 5.12

0.2 0.40 1.32 1.45 4.79 5.09

0 0.84 1.57 1.58 5.21 5.68

-0.2 0.90 1.45 1.22 5.11 5.34

-0.5 2.07 2.25 2.17 5.09 4.73

-0.8 3.86 3.75 3.90 4.83 4.84

CR 0.8 5.30 5.05 4.96 4.66 -

0.5 4.89 5.11 4.72 4.64 -

0.2 4.85 5.04 5.09 5.08 -

0 4.63 4.91 4.86 5.29 -

-0.2 4.89 4.61 4.88 4.71 -

-0.5 5.12 5.21 4.96 5.12 -

-0.8 5.24 5.35 5.00 4.98 -

For the case of different correlations between two covariates, i.e., ρ = (±0.8,±0.5,±0.2, 0),

the type I error results are similar to Table 3.1 which is also consistent with Theorem

3.2.2.

3.3.2 Case 2: Power comparison

To compare the power of testing treatment effects under continuous covariate-

adaptive designs and complete randomization, the same model is used as in case



72

1. The difference between treatment effects µ1 and µ2, i.e., µ1 − µ2 6= 0. Sample

size N = 100, ρ = 0.5, and the simulation is based on 10, 000 iterations.

Figure 3.1: Power Comparison for methods: p-value based randomization (P-
value), Su’s percentile method (Quartile), Empirical cumulative distribution func-
tion method (ECDF), Kullback-Leibler divergence method (KLD), Kernel density
procedure (Kernel) and Complete Randomization (CR) in % with ρ = 0.5, simula-
tion based on 10,000 runs and sample size N = 100.
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Two sample t-test is compared with hypothesis testing including covariates under

complete randomization and covariate-adaptive randomizations. Figure 3.1 shows

that two sample t-test is less powerful than lm(z) test under covariate-adaptive

designs as well as the complete randomization procedure. Furthermore, compared

with complete randomization the covariate-adaptive designs are less powerful when
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|µ1 − µ2| is small, but become more powerful when |µ1 − µ2| increases.

3.4 Conclusion

Chapter 3 discusses the hypothesis testing problem under linear models with corre-

lated covariates. The theoretical properties of statistical inference are derived under

the assumption that the covariates are correlated with each other instead of they are

independent. Based on the asymptotic distributions of the test statistic, Theorem

3.3.1 shows that hypothesis testing for comparing treatment effects is always conser-

vative. The type I error is always smaller than the given significant level when any

important covariates are missed from the inference model. Moreover, two sample

t-test is the most conservative among the tests we compared here since it does not

use any covariate information. These conclusions are similar with our findings in

Chapter 2.

The estimator of covariate coefficient is biased if the covariates are correlated with

each other and important covariates are omitted from the analysis model. Thus

the hypothesis testing about covariate effect is not valid under the case discussed

in Chapter 3. However, the treatment effect estimator is still valid both under the

independence case and the dependence case. In realistic, we should be more careful

when we consider about the inference of covariate effect because usually we may not

be aware of the covariates if they are independent or not.
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3.5 Appendix: proof of theorems

Lemma 3.5.1. Suppose the following three conditions are satisfied in a covariate-

adaptive design:

(1) the overall imbalance converges to zero in probability by rate N1/2, that is

DN = op(N
1/2);

(2) the marginal imbalance for each categorical covariate converges to zero in prob-

ability by rate N1/2, that is, DN(k, tk) = op(N
1/2) and DN(j, tj) = op(N

1/2);

(3) each continuous covariate sum in two groups converges to zero in probability by

rate N1/2, that is, Dc
N(Xk) = op(N

1/2) and Dc
N(Zj) = op(N

1/2).

then

1.
∑
Ii/N

P−→ 1/2,
∑

(1− Ii)/N
P−→ 1/2;

2.
∑
IiXi,k/N

P−→ EXk/2,
∑

(1 − Ii)Xi,k/N
P−→ EXk/2,

∑
IiZi,k/N

P−→ EZk/2

and
∑

(1− Ii)Zi,k/N
P−→ EZk/2.

Proof. The proof is the same as the proof for Lemma 2.5.1.

Proof of Theorem 3.2.1. According to the solution of OLS in linear model 3.1, it is

known that

α̂ = α̃ + (
XTX

N
)−1 XTZ

N
β̃ + (

XTX

N
)−1 XT ε̃

N
.

First, we will show (X
TX
N

)−1 XTZ
N
β̃

P−→ 0.
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By weak law of large number,

1
N

XTX = 1
N



∑
Ii 0

∑
IiXi,1 . . .

∑
IiXi,p

0 (1−
∑
Ii)

∑
(1− Ii)Xi,1 . . .

∑
(1− Ii)Xi,p

∑
Xi,1Ii

∑
Xi,1(1− Ii)

∑
Xi,1Xi,1 . . .

∑
Xi,1Xi,p

...
...

...
. . .

...

∑
Xi,pIi

∑
Xi,p(1− Ii)

∑
Xi,pXi,1 . . .

∑
Xi,pXi,p


P−→ diag(1

2
, 1

2
,Σx,x)

and by weak law of large number,

1

N
XTZ =

1

N



∑
IiZi,1 . . .

∑
IiZi,q

∑
(1− Ii)Zi,1 . . .

∑
(1− Ii)Zi,q

∑
Xi,1Zi,1 . . .

∑
Xi,1Zi,q

...
. . .

...

∑
Xi,pZi,1 . . .

∑
Xi,pZi,q



P−→



0

0

Σx,z



for E(Xk) = E(Zj) = 0 for all k and j, and by the weak law of large numbers and

dependence of covariates X and Z.
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Secondly, E(εi) = 0, Ii and εi are independent for any i = 1, . . . . , N ,

1

N
XT ε̃ =

1

N



∑
Iiεi

∑
(1− Ii)εi

∑
Xi,1εi

...

∑
Xi,pεi



P−→



1
2
Eεi

1
2
Eεi

EX1εi

...

EXpεi



.

Thus

(
XTX

N
)−1 XTZ

N
β̃

P−→



0

0

Σ−1
x,xΣx,zβ̃


and

(
XTX

N
)−1 XT ε̃

N

P−→ 0.

Hence,

(
XTX

N
)−1 XTZ

N
β̃ + (

XTX

N
)−1 XT ε̃

N

P−→



0

0

Σ−1
x,xΣx,zβ̃


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so,

α̂− α̃ P−→



0

0

Σ−1
x,xΣx,zβ̃


.

Thus,

µ̂1 − µ̂2
P−→ µ1 − µ2

moreover,

(α̂1, . . . , α̂p)
T − (α1, . . . , αp)

T P−→ Σ−1
x,xΣx,zβ̃.

Proof of Theorem 3.2.2. For hypothesis testing of µ1 − µ2 = 0, the test statistic is

T =
Lα̂

(σ̂2L(XTX)−1LT )1/2

where L = (1,−1, 0, . . . , 0) and σ̂2 = (Ỹ −Xα̂)T (Ỹ −Xα̂)/(N − p − 2), here p is

the total number of independent variables besides µ.

First have a look at the numerator of the test statistic:

Lα̂ = µ̂1 − µ̂2 = µ1 − µ2 + L(
XTX

N
)−1(

XTZ

N
)β̃ + L(

XTX

N
)−1 XT ε̃

N
.

As show in lemma 2.5.2,

1

N
XTX

P−→ diag(
1

2
,
1

2
,Σx,x)

.
= M.
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Then the test statistic can be rewritten as:

Lα̂ = µ1 − µ2 + LM−1(
XTZ

N
β̃ +

XT ε̃

N
) + L((

XTX

N
)−1 −M−1)(

XTZ

N
β̃ +

XT ε̃

N
).

Define

A = LM−1[
XTZ

N
β̃ +

XT ε̃

N
]

and

B = L((
XTX

N
)−1 −M−1)(

XTZ

N
β̃ +

XT ε̃

N
).

Firstly, after some calculation

A =
2

N
(
∑
j

∑
i

(2Ii − 1)βjZi,j +
∑
i

(2Ii − 1)εi).

Since all margins with respect to each covariate Zj, the difference between two

groups are bounded by condition (2) and (3), it is,
∑

i(2Ii − 1)βjZi,j = oP (N1/2).

For model with limited covariates, it follows that

2

N
(
∑
j

∑
i

(2Ii − 1)βjZi,j) = oP (N−1/2).

Define Z = {Zi,j, i = 1, 2, ..., N, j = 1, 2, ..., q}, ε̃ = {ε1, ..., εN} and Ĩ = {Ii, i =

1, ..., N}. ε̃ is independent of Ĩ given Z, thus E(2Ii − 1)εi = 0 and

2

N
E(
∑
i

(2Ii − 1)εi|Z) = 0,

and

V ar(
2

N
(
∑
i

(2Ii − 1)εi|Z) =
4σ2

ε

N
.
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By the central limit theorem, given (Ĩ ,Z),

2√
N

(
∑
i

(2Ii − 1)εi|Z)
P−→ N(0, 4σ2

ε)

and,

2√
N

∑
j

∑
i

(2Ii − 1)βjZi,j
P−→ 0.

By Slutsky theorem,
√
NA

D−→ N(0, 4σ2
ε).

Next, we will show
√
NB

P−→ 0,

√
NB = L((

XTX

N
)−1 −M−1)(

XTZ√
N
β̃ +

XT ε̃√
N

).

Notice that

XTZ√
N
β̃ +

XT ε̃√
N

=
1√
N



∑
j

∑
i IiZi,jβi +

∑
i Iiεi

∑
j

∑
i(1− Ii)Zi,jβi +

∑
i(1− Ii)εi

∑
j

∑
iXi,1Zi,jβj +

∑
iXi,1εi

...

∑
j

∑
iXi,pZi,jβj +

∑
iXi,pεi



.



80

Then,

√
NB = L((

XTX

N
)−1 −M−1)

1√
N



∑
j

∑
i IiZi,jβi +

∑
i Iiεi

∑
j

∑
i(1− Ii)Zi,jβi +

∑
i(1− Ii)εi

∑
j

∑
iXi,1Zi,jβj +

∑
iXi,1εi

...

∑
j

∑
iXi,pZi,jβj +

∑
iXi,pεi



.

√
NB can be written to two parts: S1 and S2, where

S1 = L((
XTX

N
)−1 −M−1)

1√
N



∑
j

∑
i IiZi,jβi +

∑
i Iiεi

∑
j

∑
i(1− Ii)Zi,jβi +

∑
i(1− Ii)εi

∑
iXi,1εi

...

∑
iXi,pεi


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and,

S2 = L((
XTX

N
)−1 −M−1)

1√
N



0

0

∑
j

∑
iXi,1Zi,jβj

...

∑
j

∑
iXi,pZi,jβj



.

First, we will prove S1 = op(1),

1√
N

(
∑

j

∑
i IiZi,jβj +

∑
i Iiεi) = 1

2
[ 1√

N

∑
j

∑
i Zi,jβj + 1√

N

∑
i εi

+ 1√
N

∑
j

∑
i(2Ii − 1)Zi,jβj + 1√

N

∑
i(2Ii − 1)εi].

By central limit theorem,

1√
N

∑
j

∑
i

Zi,jβj +
1√
N

∑
i

εi = Op(1).

Furthermore,

1√
N

∑
j

∑
i

(2Ii − 1)Zi,jβj +
1√
N

∑
i

(2Ii − 1) =

√
N

2
A.
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Since
√
N
2
A converges to a normal distribution,

1√
N

∑
j

∑
i

(2Ii − 1)Zi,jβj +
1√
N

∑
i

(2Ii − 1)εi = Op(1).

Hence,

1√
N

(
∑
j

∑
i

IiZi,jβj +
∑
i

Iiεi) = Op(1).

Also, by symmetry,

1√
N

(
∑
j

∑
i

(1− Ii)Zi,jβj +
∑
i

(1− Ii)εi) = Op(1)

and since

(
XTX

N
)−1 −M−1 P−→ 0.

Thus

S1 = L((
XTX

N
)−1 −M−1)

1√
N



∑
j

∑
i IiZi,jβi +

∑
i Iiεi

∑
j

∑
i(1− Ii)Zi,jβi +

∑
i(1− Ii)εi

∑
iXi,1εi

...

∑
iXi,pεi



= op(1).
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Now, consider about S2,

S2 = L((
XTX

N
)−1 −M−1)

1√
N



0

0

XZ


.

The formula for matrix inverse:


A U

V C


−1

=


(A− UC−1V)−1 −(A− UC−1V)−1UC−1

−C−1V(A− UC−1V)−1 C−1V(A− UC−1V)−1UC−1 + C−1

 .

Let

A =


∑
Ii/N 0

0
∑

(1− Ii)/N



U = VT =


∑
IiXi,1/N . . .

∑
IiXi,p/N

∑
(1− Ii)Xi,1/N . . .

∑
(1− Ii)Xi,p/N

 ,
and

C =



∑
Xi,1Xi,1/N . . .

∑
Xi,1Xi,p/N

...
. . .

...

∑
Xi,pXi,1/N . . .

∑
Xi,pXi,p/N


.
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After matrix calculation,

S2 = L((
XTX

N
)−1 −M−1)

1√
N



0

0

XZ


= (1,−1)[−(A− UC−1V)−1UC−1]

1√
N
XZ.

It is easy to get

A− UC−1V P−→


1/2 0

0 1/2

 .
Also by central limit theorem,

√
NU =

√
N


∑
IiXi,1/N . . .

∑
IiXi,p/N

∑
(1− Ii)Xi,1/N . . .

∑
(1− Ii)Xi,p/N

 = Op(1).

Thus

−(A− UC−1V)−1UC−1 =


1/2 0

0 1/2

UΣ−1
x,x + op(N

−1/2).

In sum, we get

S2 =
2√
N

(
∑

(2Ii − 1)Xi,1, . . . ,
∑

(2Ii − 1)Xi,p)Σ
−1
x,xΣx,zβ̃ + op(N

−1/2).

By condition (2), ∑
(2Ii − 1)Xi,1 = op(N

1/2).
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Thus

S2 = op(1),

we finish the proof of
√
NB

P−→ 0.

It follows that

√
NL(α̂− α̃) =

√
N(A+B) =

2√
N

(
∑
i

(2Ii − 1)εi|Z) + op(1).

Therefore,
√
NL(α̂− α̃)

D−→ N(0, 4σ2
ε).

Now, consider about the denominator part, σ̂2L(XTX)−1LT . We will show it is

larger than 4σ2
ε) which means it is an inflated estimator of the variance of Lα̂.

It is easy to get,

L(XTX)−1LT =
4

N
+ op(

1

N
)

and similar with chapter 2,

σ̂2 = 1
N−p−2

(Ỹ −Xα̂)T (Ỹ −Xα̂)

= 1
N

[(Ỹ −Xα̃)T (Ỹ −Xα̃) + (α̂− α̃)TXTX(α̂− α̃)− (α̂− α̃)XT (Ỹ −Xα̃)] + op(1).



86

From Theorem 3.3.1,

1

N
(α̂−α̃)TXTX(α̂−α̃)

P−→ (0, 0, β̃TΣT
x,zΣ

−1
x,x)∗diag(

1

2
,
1

2
,Σx,x)



0

0

Σ−1
x,xΣx,zβ̃


= β̃TΣT

x,zΣ
−1
x,xΣx,zβ̃,

moreover,

2

N
(α̂− α̃)TXT (Ỹ −Xα̃) = 2(α̂− α̃)T

XTZβ̃

N
+ 2(α̂− α̃)T

XT ε̃

N

P−→ 2β̃TΣT
x,zΣ

−1
x,xΣx,zβ̃,

furthermore,

1

N
(Ỹ −Xα̃)T (Ỹ −Xα̃) =

1

N
(Zβ̃ + ε̃)T (Zβ̃ + ε̃)

P−→ σ2
ε + β̃TΣz,zβ̃.

Thus, in sum

σ̂2 P−→ σ2
ε + β̃TΣz,zβ̃ − β̃TΣT

x,zΣ
−1
x,xΣx,zβ̃,

and

σ̂2L(XTX)−1LT =
4

N
(σ2

ε + β̃TΣz,zβ̃ − β̃TΣT
x,zΣ

−1
x,xΣx,zβ̃) + op(

1

N
).

Also,

σ̂2L(XTX)−1LT =
4

N
(σ2

ε + V ar(ZT −XTΣ−1
x,xΣx,zβ̃)) + op(

1

N
).

Obviously,

σ2
ε + V ar(ZT −XTΣ−1

x,xΣx,zβ̃) > σ2
ε ,

which means σ̂2L(XTX)−1LT is inflated variance.



87

Under H0 : µ1 − µ2 = 0,

T
D−→ N(0, τ 2), τ 2 =

σ2
ε

σ2
ε + V ar(ZT −XTΣ−1

x,xΣx,zβ̃)
,

for any βj 6= 0, σ2
ε < σ2

ε + V ar(ZT −XTΣ−1
x,xΣx,zβ̃).

And when N →∞,

Pr(|T | > Z(1−α/2))→ 2Φ(−
σzZ1−α/2

σε
) < α.

Under Ha : µ1 − µ2 6= 0, µ1 − µ2 = δ/
√
N for fixed δ 6= 0,

T
D−→ N(∆, τ 2), where ∆ =

δ

2σz
.

Finish the proof of Theorem 3.1.2



88

Chapter 4

Proposed covariate-adaptive

randomization with continuous

covariate

Different methods have been published to balance continuous covariates. Most of

these balancing procedures are designed to balance continuous covariates by mini-

mizing the difference in certain characteristics of the continuous covariates among

treatments. However, characteristics usually cannot capture the whole distribution.

In real clinical trials, the distributions of the fatal baseline factors are usually not

those common distributions, like normal or exponential distribution.

Kernel density estimator is an accepted and well-established nonparametric es-

timator for continuous covariate density. Ma and Hu (2013) proposed a method

to balance continuous covariates sequentially using a biased coin in favor of the

treatment with lower covariate density at the local covariate value of the incom-

ing patient. However, the method proposed by Ma and Hu is not a minimization

procedure, it does not consider the imbalance measure after assigning the incoming
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patient. Also based on the kernel density estimator of the continuous covariate den-

sities, we proposed a modified kernel density randomization which is a minimization

method.

Consider a clinical trial with two treatments: 1 and 2, the patients are enrolled

sequentially. Suppose for each patient, M covariates need to be balanced, among

which m1 are continuous and m2 are categorical. Denote Zi = (Zi1, · · · , ZiM), as the

covariate profile of the i-th patient. Assume the first m1 covariates (Zi1, · · · , Zim1)

are continuous, and the last m2 covariates (Zi(m1+1), · · · , ZiM) are categorical. Sup-

pose after assigning treatment to the first n patients sequentially, n1 patients have

been allocated to treatment 1 and n2 to treatment 2, where n1 +n2 = n. Moreover,

let Z
(k)
i = (Z

(k)
i1 , · · · , Z

(k)
iM ), i = 1, · · · , nk, denote the covariate of patients in treat-

ment k, k = 1, 2. When patient n+ 1 enters the trial with covariate profile Zn+1, we

determine the allocation of the new patient to achieve better similarity of covariate

distribution among the two treatments.

4.1 Minimization procedure

4.1.1 Kernel density estimate

A novel covariate-adaptive allocation procedure is proposed to minimize distribu-

tions for both continuous and discrete covariates between two treatments. For a

continuous covariate Zj, j = 1, · · · ,m1, its density function in treatment k, k = 1, 2,

can be estimated as

f̂j,k(z) =
1

nkh(nk)

nk∑
i=1

K(
z − Z(k)

ij

h(nk)
)
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where K(·) is the kernel. In our method, normal kernel is used,

K(x) =
1√
2π
exp(−x2).

The bandwidth h(nk) is a function of the sample size nk. Here, we use Scott’s rule:

h(nk) = σ̂n−0.2
k , where σ̂ is the estimated standard deviation of the covariate. The

mean integrated squared error can be minimized when use Scott’s rule.

As the original kernel method proposed, the density estimation is proportion-

adjusted to maintain balance measure in group size.

dj,k(z) =
nk
n
f̂j,k(z).

Note that the kernel density estimation for covariate j based on all patients in two

treatments is

f̂j(z) =
1

nhn

n∑
i=1

K(
z − Zij
hn

).

By choosing the same bandwidth like h(nk) = hn, k = 1, 2, we have the following

density decomposition of covariate j

f̂j(z) = dj,1(z) + dj,2(z).

Therefore, dj,k(z) is actually the proportional density of covariate j that decomposed

to treatment k.

For discrete covariate j, j = m1 + 1, · · · ,M , distribution is captured by the

relative frequency. Suppose covariate j has Ej levels and patient n + 1 falls in

the level Z(n+1)j, 1 ≤ Z(n+1)j ≤ Ej. Within level Z(n+1)j of covariate Zj, assume
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nj1 patients have been assigned to treatment 1 and nj2 assigned to treatment 2,

respectively. The density of covariate j for treatment k on the level that the new

patient falls is, k = 1, 2,

dj,k(Z(n+1)j) = njk/n.

Similar with continuous covariates, dj,k is the density with respect to total patients

in two treatments.

4.1.2 Imbalance measure

When a new patient is ready to join a clinical trial with two treatment: 1 and 2,

we calculate the kernel density estimators by potentially assigning a new patient to

a treatment group. Let Z(n+1)j the jth covariate of the new patient with value z0,

thus Z(n+1)j = z0.

If the new patient is assigned to treatment 1, and the density function is defined

as

f̂
(1)
j,1 (z0) =

1

(n1 + 1)h(n1 + 1)

n1+1∑
i=1

K(
z0 − zi,j
h(n1 + 1)

)

f̂
(1)
j,2 (z0) =

1

(n2)h(n2)

n2∑
i=1

K(
z0 − zi,j
h(n2)

),

then the proportion-adjusted kernel density estimator will be:

d
(1)
j,1(z0) =

n1 + 1

n+ 1
f̂

(1)
j,1 (z) and d

(1)
j,2(z0) =

n2

n+ 1
f̂

(1)
j,2 (z).

The imbalance measure ∆d
(1)
j is defined as the following equation if patient n+ 1 is



92

assigned to treatment 1,

∆d
(1)
j = |d(1)

j,1(z0)− d(1)
j,2(z0)|

as the density difference with regard to covariate j for the patient n+ 1. Similarly,

if patient n + 1 is assigned to treatment 2, then the imbalance measure ∆d
(2)
j is

denoted as:

∆d
(2)
j = |d(2)

j,1(z0)− d(2)
j,2(z0)|

as the density difference with in regard to the discrete covariate j for the new patient.

For discrete covariate Zj, j = m1 +1, · · · ,M , assume patient n+1 with covariate

Zj falls in the level z0, say the gender: male or female. Within level z0 of covariate

Zj, let nj1 and nj2 be the number of patients that have been allocated to treatment

1 and treatment 2 respectively. If the new patient is assigned to treatment 1, then

the density of covariate j for treatment 1 will be:

d
(1)
j,1(z0) = (nj1 + 1)/(n+ 1).

The density for treatment 2 will be:

d
(1)
j,2(z0) = nj2/(n+ 1).

Similar with continuous covariates, the imbalance measure for discrete covariate j

by assigning new patient to treatment 1 is:

∆d
(1)
j = |d(1)

j,1(z0)− d(1)
j,2(z0)|

= |(nj1 + 1− nj2)/(n+ 1)|,
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where ∆d
(1)
j is the density difference in regard to the discrete covariate j for the new

patient. The imbalance measure for discrete covariate j by assigning new patient to

treatment 2:

∆d
(2)
j = |d(2)

j,1(z0)− d(2)
j,2(z0)|

= |(nj1 − nj2 − 1)/(n+ 1)|,

where ∆d
(2)
j is the density difference in regard to the discrete covariate j for the new

patient.

Finally, we define the imbalance measure Imb as the weighted average of ∆dj,

j = 1, · · · ,M .

Imb =
M∑
j=1

wj(∆d
(1)
j −∆d

(2)
j )

where wj is a nonnegative weight placed on covariate j. with nonnegative weights

wj such that
M∑
j=1

wj = 1.

In practice, the variance of covariates may differ from each other, which means

the weight cannot reflect the relative importance of each covariate. It is recom-

mended that each continuous covariate should be standardized with the same vari-

ance before they are randomized. Then we can put heavier weight to the covariates

with comparative importance. In real clinical trials, the variance of covariates could

be estimated and adjusted sequentially.

When patient n+1 enters the trial with covariate Zn+1, we determine the alloca-

tion of this new patient using a biased coin, which favors the treatment with lower

density at Zn+1. Let p be a biased probability, such that 0.5 < p < 1, the procedure

of biased coin allocation for continuous covariate can be summarized as follow,
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Step 1 : Initial step

Assign n0 patients to each treatment by using a restricted randomization.

Step 2 : Imbalance calculation

Suppose n(n > 2n0) patients have been assigned to treatments, calculate the

imbalance measure Imb.

Step 3 : Biased allocation

If Imb < 0, assign patient n+ 1 to treatment 1 with probability p.

If Imb > 0, assign patient n+ 1 to treatment 2 with probability p.

If Imb = 0, assign patient n+ 1 to treatment 1 or 2 with probability 1/2.

The proposed procedure reduces to Pocock and Simon’s minimization when all

covariates are discrete.

4.2 Simulation study

In our simulation studies the adjusted kernel density method is compared with

other continuous covariate minimization procedures from the literature. Different

scenarios regarding the number and nature of covariates are considered. In the first

study, the simplest case of a single normally distributed covariate is considered. The

new randomization method is compared with other procedures in various perspec-

tives. In our second simulation study, two and more covariates are incorporated

in the randomization procedure. Besides the popular covariate-adaptive random-

ization methods, the two most widely used methods: the stratified permuted block

design (SPBD) and the Pocock and Simon’s method, are also considered here by

discretizing continuous covariates into categories.



95

We evaluate the balance of a clinical trial from various perspectives: balance

of group size, mean, median and balance of covariate distribution. For discrete

covariate, the p-value of χ2 test is used to measure the degree of balance. The

larger the p-value is, the more balance of a covariate among two treatments. For

continuous covariate, Kolmogorov-Smirnov (K-S) test is commonly used to test the

equality of distribution. Thus the p-value of Kolmogorov-Smirnov (K-S) test is used

to measure the degree of balance of continuous covariates.

4.2.1 Balancing single continuous covariate

Our new kernel method is compared with the kernel density method (Kernel) pro-

posed by Ma and Hu, the Stratified permuted block design (SPBD), the Pocock

and Simon’s (P-S) method, the Rank-sum test method (Rank), p-value method (P-

value) by Frane, the Kullback-Leibler divergence measure (KLD) by Endo, quartiles

minimization (Quartile) by Su, empirical cumulative distribution (ECDF) by Lin

and Su, and the Complete Randomization (CR). (The details of above covariate-

adaptive designs can be found in section 1.2.2)

Study 1 considers an idealized clinical trial with one continuous covariate from

standard normal distribution for 100 subjects. Simulation results were based on

5,000 repetitions. The biased coin allocation with p = 0.8 was used for all methods.

Median case 50 percentile of overall difference |n1−n2|, K-S test, ∆mean, ∆median,

as well the worst case 99 percentile are checked.

For Pocock and Simon’s method and stratified permuted block design, the nor-

mal covariate is divided into three categories by cutting on 1 and −1. The squared

difference in numbers is used in P-S method. For P-value, KLD, ECDF, Quantile

methods, 6 is setted to be the maximum tolerant imbalance of |n1 − n2|.
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Table 4.1: Comparison of overall imbalance and p-value of K-S test for methods:
New Kernel density method (New Kernel), Pocock and Simon’s marginal proce-
dure (P-S), Stratified permuted block design (SPBD), Rank-sum method (Rank),
p-value based randomization (P-value), Su’s percentile method (Quartile), Empiri-
cal cumulative distribution function method (ECDF), Kullback-Leibler divergence
method (KLD), Kernel density procedure (Kernel) and Complete Randomization
(CR), simulation based on 5,000 runs.

50 Percentile 99 (1) Percentile

Method ∆N K-S ∆N K-S

New Kernel 2 0.972 6 0.587

P-S 0 0.720 4 0.108

SPBD 0 0.717 4 0.048

P-value 4 0.743 6 0.112

KLD 4 0.805 6 0.158

Rank 4 0.548 12 0.022

Quartile 2 0.869 6 0.272

ECDF 4 0.986 6 0.641

Kernel 2 0.975 6 0.563

CR 6 0.540 24 0.007

In controlling total patient number difference between two groups, Pocock and

Simon’s method and stratified permuted block design have the best performance.

When the number of strata is small, stratified permuted block design gives good

within stratum balance and overall balance. The p-value of K-S test shows, ECDF

method and two Kernel methods achieve the minimum distribution difference among

two treatments. Pocock and Simon’s method and stratified permuted block design

do not perform as well as covariate-adaptive designs here. Complete randomization

works worst in both overall patient number difference and distribution difference.
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Table 4.2: Comparison of the difference in mean and median for methods: New
Kernel density method (New Kernel), Pocock and Simon’s marginal procedure (P-S),
Stratified permuted block design (SPBD), Rank-sum method (Rank), p-value based
randomization (P-value), Su’s percentile method (Quartile), Empirical cumulative
distribution function method (ECDF), Kullback-Leibler divergence method (KLD),
Kernel density procedure (Kernel) and Complete Randomization (CR), simulation
based on 5,000 runs.

50 Percentile 99 Percentile

Method ∆mean ∆median ∆mean ∆median

New Kernel 0.055 0.058 0.206 0.252

P-S 0.083 0.058 0.315 0.295

SPBD 0.078 0.133 0.283 0.534

P-value 0.016 0.114 0.093 0.421

KLD 0.024 0.105 0.128 0.403

Rank 0.123 0.155 0.460 0.602

Quartile 0.064 0.080 0.238 0.326

ECDF 0.031 0.047 0.134 0.220

Kernel 0.058 0.062 0.225 0.245

CR 0.119 0.151 0.525 0.629

In perspective of mean difference, P-value method and KLD method achieve the

minimum imbalance. Both kernel method and our new kernel method also perform

well in controlling mean difference. The reason is that the imbalance measure for

P-value method is the ratio of mean difference and weighted variance. KLD method

targets on minimizing mean difference and variance difference for normal covari-

ate. In controlling median difference, ECDF method and two Kernel methods are

the best. Because these methods target on balancing distributions of continuous

covariates among groups, thus have good balance in respect to mean and median.
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4.2.2 Balancing multiple covariates

Study 2: consider a clinical trial with two treatments, apply various covariate-

adaptive methods to balance 4 baseline factors for 200 subjects. Assume two con-

tinuous covariates are from normal and exponential, i.e., Z1 ∼ N(0, 1), Z2 ∼ Exp(1),

representing symmetric and skewed distributions respectively. Two discrete covari-

ates are from Bernoulli distribution with p = 0.5, i.e., Z3, Z4 ∼ Binary(0.5). For

Pocock and Simon’s (P-S) method and stratified permuted block design (SPBD),

the normal covariate was divided into three categories by cutting on 1 and −1,

while exponential covariate is stratified at mean 1. The square of patient number

difference among groups is used in P-S method. For P-value, KLD, ECDF, Quartile

methods 6 is setted to be the maximum tolerant imbalance of group size.

Simulation results were based on 5,000 repetitions. The biased coin allocation

with p = 0.8 was used for all methods. Median case 50-percentile of overall difference

|n1 − n2|, K-S test for continuous covariates, χ2 test for discrete covariates, as well

the worst case 99 percentile are checked.
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Table 4.3: Comparison of overall imbalance and p-value of K-S test for methods:
Pocock and Simon’s marginal procedure (P-S), Stratified permuted block design
(SPBD), Rank-sum method (Rank), p-value based randomization (P-value), Su’s
percentile method (Quartile), Empirical cumulative distribution function method
(ECDF), Kullback-Leibler divergence method (KLD), Kernel density procedure
(Kernel) and Complete Randomization (CR) for 4 covariate, 200 subjects, simu-
lation based on 5,000 runs.

50 Percentile 99 Percentile

Method ∆N Nor Exp Bin ∆N Nor Exp Bin

New Kernel 2 0.902 0.906 0.908 4 0.317 0.296 0.654

P-S 0 0.729 0.710 0.894 4 0.075 0.066 0.639

SPBD 4 0.692 0.699 0.838 10 0.043 0.045 0.394

KLD 4 0.812 0.721 0.887 6 0.199 0.102 0.494

Rank 2 0.691 0.699 0.677 10 0.083 0.088 0.109

Quartile 0 0.813 0.775 0.790 4 0.124 0.078 0.152

ECDF 4 0.838 0.812 0.907 6 0.197 0.102 0.677

Kernel 2 0.912 0.906 0.904 4 0.281 0.275 0.683

CR 6 0.518 0.518 0.617 26 0.012 0.012 0.020

Table 4.3 summarized the overall group size difference in two treatments, p-value

of K-S test for normal covariate, p-value of K-S test for exponential covariate and

p-value of χ2 test for categorical covariates. It shows, kernel density method and

our new kernel method can achieve largest p-value for both continuous covariates

as well as good balance in discrete covariates.
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Chapter 5

Conclusions and future work

5.1 Conclusion

In a covariate-adaptive design, the covariates of patients in groups are balanced

and kept randomized, which is important when comparing treatment effectiveness

in clinical trials. While most clinical trials still use permuted-block design, mini-

mization methods are becoming more widely accepted. Current minimization tech-

niques still discretize continuous covariates for randomization at the cost of losing

information. More recent works in the literature have proposed various continuous

covariate-adaptive designs targeting balance specific characteristics in the distribu-

tion of the covariates for different groups. Ma and Hu (2013) proposed a design

based on the kernel-density estimate. Their method out-performs a variety of ex-

isting continuous-covariate minimization methods for randomization including the

p-value based method, KLD method, quantile method and ECDF method.

However, Ma and Hu’s proposed kernel-density method is not a minimization

method for randomizing patient groups. Our proposed work is minimization adap-

tation of the kernel-density method. We show our adaptation performs just as well
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as the Ma and Hu’s method and better than various existing covariate-adaptive de-

signs. The advantage of the kernel-density method compared to other widely used

covariate adaptive randomization methods is the statistical power in minimizing

distribution-differences of covariates between two treatments. The kernel-density

method ensures proper balance of covariates among groups with mean, median and

overall distributions. While other continuous covariate-randomization methods re-

quire thresholds on group sample size, the kernel-density method ensures two group

sample size difference is bounded in probability even without using it as a part of

the imbalance measure to do randomization.

In chapter two, we discuss hypothesis testing for clinical trials based on var-

ious continuous covariate randomizations. Assuming a linear relationship for the

response and covariates, we conduct hypothesis testing to determine the difference

between treatment effects and the significance of covariates. When the conditions in

theorem 2.2.1 hold, the hypothesis testing of treatment effect under null hypothesis

is conservative. However if the trial uses complete randomization to allocate patients

then the hypothesis testing of treatment effect difference is valid. The power of hy-

pothesis testing is smaller for covariate-adaptive design than complete randomiza-

tion when the difference is small and sample size is small. As the difference between

null hypothesis and underlying truth increases and sample size increases, the power

will also increase. Moreover, the power of covariate-adaptive design is larger than

complete randomization. Meanwhile hypothesis testing for covariate significance is

always valid regardless of the randomization method used in the clinical trial.
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5.2 Future work

For future works the properties of the hypothesis testing can be generalized to many

other ways under covariate-adaptive design. Beyond the current linear model, we

can adapt to more complex situations using a more general model, e.g., logistic

model. While our proposed method handles only two treatments, generalizing to

handle more than two methods is important. Finally, we assume the covariates

are independent, but in real clinical trials covariates may be correlated; therefore,

incorporating their correlation is an important next step to the current proposed

method.

In hypothesis testing problems under covariate-adaptive designs, p-value based

method and KLD method give the most conservative testing results among all the

continuous covariate-adaptive designs. In particular, the test statistic for the p-value

based method minimizes the ratio of mean difference and weighted variance, while

the KLD method minimizes the mean difference and variance difference in cases of

normal covariates. For example, minimizing an imbalance measure that contains the

mean difference results in the least difference between group means. Both p-value

based method and KLD method with smaller group mean difference lead to smaller

type-I errors of the hypothesis testing. Simulations shows
∑n1

i=1 Zi,1 −
∑n2

i=1 Zi,2 =

Op(1) in both p-value based method and KLD method. Moreover, all the continuous

covariate-adaptive deigns discussed here should satisfy the condition 3 in theorem

2.2.1 which is
∑n1

i=1 Zi,1 −
∑n2

i=1 Zi,2 = op(
√
n).

For the continuous covariate-adaptive designs, the proposed approach of balanc-

ing continuous covariate shows desired properties in simulation. Investigation on the

theoretical properties of the proposed approach would be interesting and important.

Though various approaches to balance continuous covariate have been proposed in
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the literature, none of them proved any theoretical properties.

To start with, let’s consider the covariate-adaptive randomization with one con-

tinuous covariate. Let Ti denotes treatment assignment of patient i, with Ti = 1 if

assigned to treatment 1 and Ti = 0 otherwise. After the randomization of the first

n patients, we have the following density estimation for covariate Z in treatment 1

and 2. Here the density estimation has been adjusted for group size

d1(z) =
1

nhn

n∑
i=1

K(
z − Zi
hn

)Ti

and

d2(z) =
1

nhn

n∑
i=1

K(
z − Zi
hn

)(1− Ti).

Then the density difference between two groups can be measured as:

∆d(z) = d1(z)− d2(z) =
1

nhn

n∑
i=1

K(
z − Zi
hn

)(2Ti − 1).

Simulations are carried out to investigate the convergence speed of ∆d(z). In par-

ticular, we consider the case that covariate Z follows standard normal distribution

and run simulations based on different sample sizes. Density difference at different

values of z are considered. Based on the simulation result, it’s reasonable to propose

the following hypothesis:

∆N ∼ Op(1) and (nhn)∆d(z) ∼ Op(1).

For future works we hope to give a rigorous derivation for the above two theoretical

properties of kernel density method.
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