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Abstract

Recently, modern deep learning-based approaches have become popular over traditional methods in

many real-world applications. However, the success of these approaches relies on two factors: (1) access

to the massive amount of labeled data for training and (2) independent and identically distributed

(i.i.d) assumption of training and test datasets. In many applications, collecting a large amount of

high-quality labeled data is expensive and financially demanding, especially for tasks like semantic

segmentation and multivariate time series classification. The majority of practical datasets are only

partially labeled or possess limited labeled instances.

The main goal of this dissertation is to develop robust deep learning models for situations where the

target dataset is labeled insufficiently. To achieve this goal, we developed four innovative approaches,

two of which are the Universal representation learning and Label-efficient Contrastive learning-based

models. These models are designed for time series classification and semantic segmentation tasks

where the datasets are insufficiently labeled. A distinctive feature of our methods is the introduction

of a cluster-level Supervised Contrastive (SupCon) approach in addition to the instance-level SupCon.

This addition aims to mitigate the negative impact caused by intra-class variances and inter-class

similarities during the training process. By incorporating both instance and cluster-level contrastive

learning, our approach seeks to enhance the model’s ability to discern meaningful patterns and rep-

resentations, particularly in scenarios where labeled data is scarce. The third approach focuses on

self-training Domain Adaptation (DA) techniques to improve the generalization ability of the deep

models on the unlabeled or scarce-labeled target tasks by training the model on both label-scarce target

and label-rich source data. The prevalent self-training approach involves retraining the dense discrimi-

native classifier of p(class|pixelfeature) using the pseudo-labels from the target domain. While many



methods focus on mitigating the issue of noisy pseudo-labels, they often overlook the underlying data

distribution p(pixelfeature|class) in both the source and target domains. To address this limitation,

we designed the multi-prototype Gaussian-Mixture-based (ProtoGMM) model, which incorporates

the Gaussian mixture model into contrastive losses to perform guided contrastive learning. This novel

approach involves estimating the underlying multi-prototype source distribution by utilizing the Gaus-

sian Mixture model on the feature space of the source samples. The components of the GMM model

act as representative prototypes, effectively adapting to the multimodal data density and capturing

within-class variations. To achieve increased intra-class semantic similarity, decreased inter-class sim-

ilarity, and domain alignment between the source and target domains, we employed multi-prototype

contrastive learning between source distribution and target samples. The fourth developed approach is

the Generalized Gaussian mixture-based (GenGMM) Domain Adaptation Model which was designed

for the Generalized Domain Adaptation (GDA) task. While significant efforts have been devoted to

improving unsupervised domain adaptation for this task, it’s crucial to note that many promising

domain adaptation models rely on a strong assumption: the source data is entirely and accurately

labeled, while the target data is unlabeled. In real-world scenarios, however, we often encounter

partially or noisy labeled data in source and target domains, referred to as the Generalized Domain

Adaptation (GDA) setting. In such cases, we leveraged weak or unlabeled data from both domains to

narrow the gap between them, leading to more effective adaptation. To facilitate this, we introduce

the GenGMM Domain Adaptation Model, which harnesses the underlying data distribution in both

domains to refine noisy weak and pseudo labels.

All developed approaches compared to the current state-of-the-art (SOTA) approaches across dif-

ferent well-known benchmarks including, 1) The UEA multivariate time series classification archive, 2)

The cardiopulmonary exercise testing (CPET) dataset, 3) The immunofluorescent images, and 4) The

benchmarks of urban scenes including GTA5 to Cityscapes, Synthia to Cityscapes, and Cityscapes

to Dark Zurich. The results demonstrate that our framework yields substantial improvements when

compared to existing approaches.
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Chapter 1

Introduction

Recently, deep learning-based methods which are a subfield of machine learning have achieved promis-

ing performance in real-world problems in different domain applications. These methods contain the

hierarchical architectures that learn the multiple levels of distributed representations, i.e. intermediate

representations. The advantage of these methods over the conventional machine learning approaches

is their capability to learn both low-dimensional feature representations and a prediction model in

an end-to-end fashion, simultaneously [1]. In addition, they require less domain knowledge compared

to traditional methods. Despite the prevalence of supervised deep learning approaches in real-world

tasks, the success of these approaches hinges on (1) access to the massive amount of labeled data for

training and (2) independent and identically distributed (i.i.d) assumption of training and test datasets

[2]. However, in many application domains, such as semantic segmentation or multivariate time series

classification, achieving a large amount of high-quality reliable labeled data is labor-expensive, error-

prone, and time-consuming to train accurate deep models. Recently, new groups of techniques, such as

Weakly-supervised Learning (WSL), Unsupervised Domain adaptation (UDA), and semi-supervised

learning (SSL) approaches, have emerged as vital solutions to situations where only limited or insuf-

ficiently labeled data is available. These approaches focus on building more robust models that learn

from fewer labeled samples and/or with better out-of-distribution generalization [3, 4].

In the following sections, we provide an introduction to the current literature and recent advances

in three crucial areas: multivariate time series data classification, nuclei detection and classification,

1
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and domain adaptation. We delve into the existing knowledge, methodologies, and breakthroughs in

these domains, shedding light on their significance. Moreover, we explore potential challenges that

researchers and practitioners may face, particularly when dealing with insufficiently labeled data.

Finally, we outline the structure of the dissertation, offering a roadmap for the subsequent chapters

and discussions.

1.1 Multivariate Time Series Classification

The goal of Time Series Classification (TSC) is to predict the class label for a given time series

data, which is a sequence of real-value observations ordered by time. While most state-of-the-art

methods for TSC have focused on univariate TSC, where each case consists of a single series (i.e., one

dimension), real-world time series datasets in many applications are multivariate—containing multiple

dimensions but a single label. With the advancement of sensor technologies, the Multivariate Time

Series Classification (MTSC) problem has received great attention in a wide range of research domains

and applications such as Human Activity Recognition [5], EEG/ECG data analysis [6], and Motion

Recognition [7].

An ideal TSC method should be accurate, efficient, and interpretable. However, even accurate

state-of-the-art TSC models suffer from a lack of interoperability or efficiency. Most general TSC

approaches involve a preliminary learning phase to extract feature candidates from the time series data,

such as a bag of patterns [8] or time series shapelet [9]. These methods become less computationally

efficient when dealing with long-time series data as selecting features from a larger feature space

increases the computational complexity of the model. The challenge is amplified in the multivariate

case, where feature selection from a vast feature space becomes more difficult [10]. Recently, ensemble

methods have achieved high accuracy for TSC tasks, while their computational complexity increases

with the number of time steps and dimensions. For instance, the Hierarchical Vote Collective of

Transformation-based Ensembles (HIVE-COTE) [11], has high training complexity O(N2 · T 4), as

highlighted by [12], where T represents the length of the series and N is the number of dimensions.

The latest version, HIVE-COTE v2.0 [13], for multivariate data requires a substantial run time [14].

However, studies indicate that deep learning models significantly surpass HIVE-COTE in terms of run

2
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time. Importantly, these methods do not provide interpretable results.

Recently, deep learning-based methods with cross-entropy loss function have demonstrated promis-

ing performance in TSC tasks (e.g. ResNet [15], Inception [16]). One of the main advantages of the

deep learning approaches is their capability to manage large feature spaces by learning low-dimensional

feature representations [10]. Moreover, these approaches require less domain-specific knowledge com-

pared to the traditional methods for handling time series data. However, these advantages come at the

cost of a substantial requirement for a large amount of labeled data during training, posing challenges

when dealing with time series data that has limited labeling. Zhang et al. (2020) [10] suggested that

the traditional TSC models can effectively mitigate the issue of limited data by using distance-based

methods. They proposed the TapNet deep learning model [10] with a distance-based loss function

instead of a cross-entropy loss function to address the issue of limited data.

In this dissertation, we designed the Supervised Contrastive learning for Time Series Classification

(SupCon-TSC) model to enable deep learning models to handle limited labelings in TSC tasks while

learning the low-dimensional feature representations. It is based on Supervised Contrastive learning

(SupCon) and provides interpretable outcomes.

1.2 Nuclei Detection and Classification in 3D Cardiovascular Im-

munofluorescent Images

Two major causes of death in the United States and worldwide are stroke and myocardial infarc-

tion (MI) [17]. The underlying cause of both is thrombi released from ruptured or eroded unstable

atherosclerotic plaques that occlude vessels in the heart (MI) or the brain (stroke) [18, 19]. Unstable

plaques are more prone to rupture or erosion, leading to possible MI or stroke. Human morphological

studies have shown that the critical factor of plaque stability is plaque composition rather than lesion

size [20, 21]. Virmani et al. (2000) [17] have extensively studied the composition of human lesions

and established that lesions with a thin extracellular matrix (ECM)- rich protective fibrous cap and

a predominance of CD68+ relative to ACTA2+ cells, presumed to be macrophages (MΦ) and smooth

muscle cells (SMC), respectively, are prone to plaque rupture [22]. Another study showed that loss of

3
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endothelial cells (EC) overlying lesions, and increased CD31+ ACTA2+ cells assumed to be EC that

have undergone EC to mesenchymal transition (EndoMT), are prone to erosion. However, lineage

tracing studies in [23] highlighted that more than 80% of SMCs in advanced mouse atherosclerotic

lesions no longer had detectable ACTA2. Further, a subset of these cells expressed LGALS3, a marker

that would have traditionally classified them as a (MΦ).

Plaque composition can be determined by immunofluorescent staining of histological cross-sections

from diseased vessels. These morphological studies are extremely valuable for understanding the un-

derlying mechanisms for plaque rupture and determining the mechanisms that promote atherosclerotic

plaque stability. However, to determine the plaque composition from the immunofluorescent images,

we need to first accurately detect cells and classify them based on co-expressed markers. This process

requires hours of manual detection of the various cell types, which is slow, expensive, and prone to

human error. The challenges of manual cell counting indicate a need for automated image processing

to localize and count various cell types in order to find their distribution in fluorescent microscopy

images, and thereby classify lesions as stable or unstable. Several challenges arise when designing

automated image analysis, such as the heterogeneity of cell types (shape and size), autofluorescent

signal from the tissue, and low image contrast [24]. Moreover, automatic localization and counting of

various cell types in 3D immunofluorescent images have the added challenge of overlapping cells and

cellularly dense regions that are difficult to count. In addition, there can be variability in the depth

of imaging and thickness of the sample tissue itself.

Recently, modern deep learning-based nuclei segmentation approaches [25, 26, 27, 28, 29] have be-

come popular over traditional methods [30] to quantify the histopathology and fluorescent microscopy

images. However, these neural networks are usually categorized as fully supervised approaches that

require a large amount of pixel-wise annotated data for training. Collecting pixel-wise annotated data

is expensive, time-consuming, and difficult because it requires classification of every pixel in an image

and is near impossible to perform on 3D images. Alternatively, adapting weak-annotation methods

such as labeling each nucleus with a point reduces the burden of pixel-wise annotations. Several stud-

ies [31, 32, 33] have tried to address training neural networks based on point annotations but focus on

the nuclei segmentation problem using point annotations. In these approaches, as point annotations

alone are not sufficient to train a neural network model, the authors take advantage of the original

4
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images and the shape of nuclei, among others, to get extra information to train the model. None of

these studies pay attention to the nucleus’ boundary [34], even though it plays a key role to separate

clustered nuclei. While all these studies focus on developing weakly supervised models for nuclei de-

tection in 2D images, our study is the first to leverage weakly annotated data for 3D multi-channel

Immunofluorescent images.

This dissertation developed the Label-efficient Contrastive learning-based (LECL) model to detect

and classify various types of nuclei in 3D immunofluorescent images using weak annotations (i.e.,

point annotations). Developing and training weakly-supervised learning models for 3D images is

a challenging task because these images contain multiple channels (z-axis) for nuclei and different

markers separately, which makes training using point annotations difficult. Previous methods use

Maximum Intensity Projection (MIP) to convert immunofluorescent images with multiple slices to

2D images, which can cause signals from different z-stacks to falsely appear associated with each

other. To overcome this we devised a novel approach called Extended Maximum Intensity Projection

(EMIP) that addresses issues using MIP. Moreover, in order to enhance the model’s performance

in a weak setting, the suggested method incorporates a semi-supervised learning approach. This

involves applying entropy minimization loss specifically over the boundaries of nuclei, treating them

as unlabeled areas. Moreover, the suggested approach incorporates a supervised contrastive learning

method to improve the model’s performance in nuclei classification metrics.

1.3 Unsupervised Domain Adaptation Model for Semantic Segmen-

tation

In recent years, there has been remarkable progress in semantic segmentation, a technique that assigns

semantic class labels to each pixel in an image. However, achieving the generalization of deep neural

networks to unseen domains is vital for critical applications, including autonomous driving [35, 36], and

medical analysis [37]. Unfortunately, this progress heavily depends on acquiring large-scale pixel-level

annotations, a costly and time-consuming process when done manually.

To address this challenge, researchers have been exploring alternative approaches like generating

5
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simulated data or leveraging out-of-domain (source) annotations to reduce manual effort and improve

neural network applicability across domains. However, domain shift remains a major obstacle, leading

to a performance decline when applying a well-trained model from the source domain to the target

domain. To tackle this issue, a solution known as unsupervised domain adaptation (UDA) has been

developed, which transfers knowledge from a label-rich source domain (synthetic) to a label-scarce

target domain (real) [38]. Recent trends in UDA for semantic segmentation have led to two main

approaches: domain alignment and self-training.

Domain alignment methods employ adversarial learning training algorithms to reduce the domain

shift in various spaces, including image level [39], feature level [40], or output level [41]. While these

methods can bring the two domains closer together on a global scale, they do not ensure that the feature

representations for different classes in the target domain are sufficiently discriminative. Consequently,

this limitation hampers the model’s overall capacity for image segmentation.

Alternatively, self-training methods aim to utilize target-specific knowledge by selecting high-

confidence pseudo-labels in the target domain for the next round of training. Despite the promising

performance, these methods suffer from significant limitations. The segmentation model tends to

be biased toward the source domain, leading to error-prone pseudo-labels for the target domain.

Moreover, relying solely on highly confident predictions offers limited supervision information during

model training. Effectively addressing noisy labels and managing bias toward the source domain is vital

for ensuring the effectiveness of self-training and achieving superior performance in the target domain.

Some studies tackle the issue of noisy pseudo labels by implementing techniques such as confidence

estimation [42, 43], consistency regularization [44], or label denoising [45, 46]. These approaches aim

to alleviate the impact of noise in the pseudo labels to improve the overall performance.

In many papers, a common approach to train the classifier is by using cross-entropy loss. However,

cross-entropy loss primarily focuses on bringing similar features together and does not effectively dif-

ferentiate features across distinct classes. As a result, it is crucial to ensure that features corresponding

to different classes are properly separated while aggregating features belonging to the same class in

the latent space. In this context, contrastive learning emerges as a relevant topic, allowing models

to learn meaningful visual representations by comparing diverse unlabeled data [47]. One straight-

6
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forward approach for contrastive learning involves employing a memory bank mechanism. During

training, this memory bank is updated by adding the averaged features of each category from the

current source image while removing the oldest ones. However, this method may be susceptible to

class biases, as it updates underrepresented classes (e.g., truck, bus) less frequently, and it can be

computationally expensive. Alternatively, another approach is to use global prototypes, which are

the averaged features of each category across the entire source domain. However, this approach has

its drawbacks. It tends to overlook variations in certain attributes (e.g., shape, color, illumination),

potentially reducing the discriminability of the learned features. Furthermore, it relies on the uni-

modality assumption of each category. While contrastive learning losses have shown improvements in

domain adaptation, their effectiveness is constrained by their dependence on pseudo-labels generated

using a discriminative classifier trained with the cross-entropy loss function. During the early stages

of training, the backpropagation signals originating from the contrastive loss can be excessively high,

especially when the model’s predictions are highly unreliable. This situation negatively impacts the

overall performance. To mitigate this issue, Vayyat et al. (2022) [48] introduce a weight on the loss

based on the confidence of the teacher-network predictions. This approach helps in stabilizing the

training process and improving overall performance. However, this teacher network is a discriminative

classifier that is biased toward the source domain data. Moreover, these discriminative classifiers suf-

fer from various limitations: 1) neglecting to model the underlying data distribution, 2) unimodality

for each class, and 3) these models suffer from accuracy degradation away from decision boundaries,

hampering adaptation for critical tasks [49].

In this dissertation, to address these challenges we present the Multi-prototype Gaussian-Mixture-

based model (ProtoGMM) that overcomes the limitations of existing methods. Unlike prevailing

self-training approaches that focus solely on the discriminative classifier of p(class|pixelfeature),

ProtoGMM adopts a hybrid training approach, integrating both discriminative and generative models.
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1.4 Generalized Domain Adaptation Model for Semantic Segmen-

tation

To reduce annotation tasks, the Unsupervised Domain Adaptation (UDA) techniques [50, 51, 52]

aim to leverage the valuable knowledge from a labeled source domain to enhance learning in another

unlabeled target domain [53, 54]. However, UDA methods assume fully labeled source data and

completely unlabeled target domains, which is often not the case in practice due to partial or noisy

labels in both domains. In such cases, we suggest leveraging additional weak or unlabeled data from

both the source and target domains to enhance UDA performance by narrowing the gap between these

two domains. Therefore, we introduce a novel domain adaptation setting called Generalized Domain

Adaptation (GDA) which possesses the following characteristics: 1) Partially or noisy labeled source

data, 2) Weakly or unlabeled target data.

The GDA setting relaxes the problem of UDA by allowing the use of unlabeled or weakly labeled

data from the source domain and weak labels from the target domain. Nevertheless, effectively lever-

aging these unlabeled or weakly labeled source data and weakly labeled target data is a non-trivial

task. There is limited research that focuses on the incorporation of weak labels from the target do-

main. Even though Akata et al. (2022) [55] and paul et al. (2020) [56] introduce weak labels from

the target domain as supplementary sources of supervision, they do not employ them to align fea-

tures between the source and target domains. In contrast, Das et al. (2023) [57] proposed a novel

approach, utilizing class prototypes generated by exploiting these weak labels. These prototypes were

employed for both intra-domain feature alignment within individual domains and inter-domain feature

alignment between the source and target domains, effectively reducing the domain gap. However, it’s

crucial to highlight that prototype-based approaches, relying on the unimodality assumption within

each category, may not fully account for variations in specific attributes like shape, color, or illumi-

nation [49]. This oversight could potentially diminish the distinguishability of the acquired features.

Furthermore, despite limited studies on weekly supervised domain adaptation, the incorporation of

unlabeled/weakly labeled source data remains an underexplored area.

This dissertation addresses domain adaptation challenges in GDA settings with partially labeled
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source and target data. A common strategy is self-training, iteratively refining predictions on unlabeled

source and target data, but it’s important to note that the pseudo-labels generated in this process

can be noisy. To tackle these issues, we introduce a Generalized Gaussian mixture-based (GenGMM)

Domain Adaptation Model, leveraging the source and target domain distributions to enhance the

quality of weak and pseudo labels and achieve alignment between the source and target domains.

1.5 Dissertation Outline

This dissertation starts with a literature review that provides background on time series classification,

nuclei detection and classification, and domain adaptation. Following this, it includes four chapters

that highlight our contributions to the literature, and their summaries along with corresponding

contributions are as follows:

1.5.1 Universal Representation Learning for Multivariate Time Series using the

instance-level and cluster-level Supervised Contrastive Learning

Abstract: The Multivariate Time Series Classification (MTSC) task aims to predict a class label for

a given time series. Recently, modern deep learning-based approaches have achieved promising per-

formance over traditional methods for MTSC tasks. The success of these approaches relies on access

to the massive amount of labeled data (i.e., annotating or assigning tags to each sample that shows

its corresponding category). However, obtaining a massive amount of labeled data is usually very

time-consuming and expensive in many real-world applications such as medicine, because it requires

domain experts’ knowledge to annotate data. Insufficient labeled data prevents these models from

learning discriminative features, resulting in poor margins that reduce generalization performance. To

address this challenge, we developed a novel approach: Supervised Contrastive learning for Time Series

Classification (SupCon-TSC). This approach improves the classification performance by learning the

discriminative low-dimensional representations of multivariate time series, and its end-to-end struc-

ture allows for interpretable outcomes. It is based on Supervised Contrastive (SupCon) loss to learn

the inherent structure of multivariate time series. First, two separate augmentation families, includ-
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ing strong and weak augmentation methods, are utilized to generate augmented data for the source

and target networks, respectively. Second, we developed the instance-level, and cluster-level SupCon

learning approaches to capture contextual information to learn the discriminative and universal rep-

resentation for multivariate time series datasets. In the instance-level SupCon learning approach, for

each given anchor instance that comes from the source network, the low-variance output encodings

from the target network are sampled as positive and negative instances based on their labels. How-

ever, the cluster-level approach is performed between each instance and cluster centers among batches,

as opposed to the instance-level approach. The cluster-level SupCon loss attempts to maximize the

similarities between each instance and cluster centers among batches. We tested this novel approach

on two small cardiopulmonary exercise testing (CPET) datasets and the real-world UEA Multivariate

time series archive. The results of the SupCon-TSC model on CPET datasets indicate its capabil-

ity to learn more discriminative features than existing approaches in situations where the size of the

dataset is small. Moreover, the results on the UEA archive show that training a classifier on top of

the universal representation features learned by our developed method outperforms the state-of-the-art

approaches.

1.5.2 Label-efficient Contrastive Learning-based model for nuclei detection and

classification in 3D Cardiovascular Immunofluorescent Images

Abstract: Recently, deep learning-based methods achieved promising performance in nuclei detection

and classification applications. However, training deep learning-based methods requires a large amount

of pixel-wise annotated data, which is time-consuming and labor-intensive, especially in 3D images.

An alternative approach is to adapt weak-annotation methods, such as labeling each nucleus with a

point, but this method does not extend from 2D histopathology images (for which it was originally

developed) to 3D immunofluorescent images. The reason is that 3D images contain multiple channels

(z-axis) for nuclei and different markers separately, which makes training using point annotations

difficult. To address this challenge, we designed the Label-efficient Contrastive learning-based (LECL)

model to detect and classify various types of nuclei in 3D immunofluorescent images. Previous methods

use Maximum Intensity Projection (MIP) to convert immunofluorescent images with multiple slices

to 2D images, which can cause signals from different z-stacks to falsely appear associated with each
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other. To overcome this, we devised an Extended Maximum Intensity Projection (EMIP) approach

that addresses issues using MIP. Furthermore, we performed a Supervised Contrastive Learning (SCL)

approach for weakly supervised settings. We conducted experiments on cardiovascular datasets and

found that our framework is effective and efficient in detecting and classifying various types of nuclei

in 3D immunofluorescent images.

1.5.3 ProtoGMM: Multi-prototype Gaussian-Mixture-based Domain Adaptation

Model for Semantic Segmentation

Abstract: Domain adaptive semantic segmentation aims to generate accurate and dense predic-

tions for an unlabeled target domain by leveraging a supervised model trained on a labeled source

domain. The prevalent self-training approach involves retraining the dense discriminative classifier

of p(class|pixelfeature) using the pseudo-labels from the target domain. While many methods focus

on mitigating the issue of noisy pseudo-labels, they often overlook the underlying data distribution

p(pixelfeature|class) in both the source and target domains. To address this limitation, we devel-

oped the multi-prototype Gaussian-Mixture-based (ProtoGMM) model, which incorporates the Gaus-

sian mixture model into contrastive losses to perform guided contrastive learning. Contrastive losses

are commonly executed in the literature using memory banks, which can lead to class biases due to

underrepresented classes. Furthermore, memory banks often have fixed capacities, potentially restrict-

ing the model’s ability to capture diverse representations of the target/source domains. An alternative

approach is to use global class prototypes (i.e. averaged features per category). However, the global

prototypes are based on the unimodal distribution assumption for each class, disregarding within-class

variation. To address these challenges, we designed the ProtoGMM model. This novel approach

involves estimating the underlying multi-prototype source distribution by utilizing the Gaussian Mix-

ture model on the feature space of the source samples. The components of the GMM model act as

representative prototypes, effectively adapting to the multimodal data density and capturing within-

class variations. To achieve increased intra-class semantic similarity, decreased inter-class similarity,

and domain alignment between the source and target domains, we employ multi-prototype contrastive

learning between source distribution and target samples. The experiments show the effectiveness of our

method on UDA benchmarks.
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1.5.4 GenGMM: Generalized Gaussian-Mixture-based Domain Adaptation Model

for Semantic Segmentation

Abstract: Domain adaptive semantic segmentation is the task of generating precise and dense pre-

dictions for an unlabeled target domain using a model trained on a labeled source domain. While

significant efforts have been devoted to improving unsupervised domain adaptation for this task, it’s

crucial to note that many promising domain adaptation models rely on a strong assumption: that

the source data is entirely and accurately labeled, while the target data is unlabeled. In real-world

scenarios, however, we often encounter partially or noisy labeled data in source and target domains,

referred to as Generalized Domain Adaptation (GDA). In such cases, we suggest leveraging weak or

unlabeled data from both domains to narrow the gap between them, leading to more effective adap-

tation. To facilitate this, we introduce the Generalized Gaussian mixture-based (GenGMM) Domain

Adaptation Model, which harnesses the underlying data distribution in both domains to refine noisy

weak and pseudo labels. Our experiments across different benchmarks of cell-type adaptation and ur-

ban scenes demonstrate that our framework yields substantial improvements when compared to existing

approaches.
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Chapter 2

Literature Review

2.1 Introduction

In this section, we first provide an overview of relevant studies related to time series classification and

image segmentation, especially in cases where the dataset is insufficiently labeled or small. We then

proceed to recent developments and state-of-the-art domain adaptation techniques to outline relevant

methods.

2.2 Multivariate Time Series Classification

In this section, we discuss relevant related work in the area of time-series classification. The state-

of-the-art MTS classifiers are generally categorized into three groups: similarity-based, feature-based,

and deep learning methods.

The similarity-based approaches typically utilize a similarity function such as Euclidean distance

[58], edit distance [59], wavelets [60], and Dynamic TimeWarping (DTW) [61] to measure the similarity

between two instances. In these approaches, the new time series instance is classified best on its

similarity to the top-k neighbors in the historical data. DTW is the most popular distance function,

and two versions of it for MTSC are the independent (DTWI) and dependent approaches (DTWD)
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[62]. The independent strategy defines a different point-wise distance matrix for each dimension and

then sums them up. In contrast, the dependent strategy performs warping over all the given dimensions

simultaneously by calculating the Euclidean distance between vectors containing all dimensions.

On the other hand, conventional feature-based classification methods involve the manual design

of feature extraction algorithms combined with machine learning models for classification. Based on

the literature, Shapelets-based (gRSF [63] and UFS [64]) and Bag of Word-based classifiers (LPS

[65], mv-ARF [66], SMTS [67] and WEASEL+MUSE [68]) are two popular feature-based algorithms.

To classify time series data, Shapelets-based models transform the original time series into a lower-

dimensional space by using subsequences. However, Bag of Word-based classifiers perform the classi-

fication by converting time series into a Bag of Words (BoW) and building a classifier upon the BoW

representation. Recently, the WEASEL+MUSE [68] model, which uses the bag of Symbolic Fourier

Approximation (SFA) symbol model, outperforms gRSF, LPS, mv-ARF, SMTS, and UFS. However,

both shapelets-based and BoW-based methods are computationally expensive and have a long learning

process [69].

Recently, deep learning techniques (XCM [70], FCN [15], MLSTM-FCN [71], MTEX-CNN [72],

ResNet [15], and TapNet [10]) have been used extensively for time series classification. These tech-

niques offer the advantage of automatically extracting the important features from time-series data

for classification, as opposed to the feature-based methods listed above that require significant manual

effort. However, a large amount of data is needed to train these models. These techniques commonly

contain the stack of CNN layers and LSTM layers to extract features along with the softmax layer

to predict the label. We describe these techniques briefly below. However, Ismail et al. (2019) [73]

provides a more elaborate survey. Karim et al. (2019) [71] proposed a model named MLSTM-FCN

which consists of an LSTM layer and a stacked CNN layer to extract features.

Assaf et al. (2019) [72] proposed MTEX-CNN, which utilizes a sequence of 2D and 1D convolu-

tion filters to extract MTS features corresponding to the observed variables and time, respectively.

However, this model has some limitations which have been addressed by [70]. Fauvel et al. (2021) [70]

propose the XCM model, which uses the 2D and 1D convolution filters parallelly over the input data

to extract features corresponding to observed variables and time, separately.
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Even though deep learning-based methods can learn the latent features by training convolutional or

recurrent networks, they require large-scale labeled data. Recently, Zhang et al. (2020) [10] proposed

the TapNet model with a distance-based loss function instead of a cross-entropy loss function to

address the issue of limited data. None of the existing work addresses the problem of the limited

labeled data, except TapNet.

2.3 Nuclei Detection and Classification

Deep learning algorithms have achieved great success in medical image segmentation/ classification

[74], quantifying both histopathology and fluorescent microscopy images. However, these methods

typically require a large amount of pixel-level annotations, which can be time-consuming and labor-

intensive to obtain, especially when dealing with 3D images. Hence, we used point-level annotation to

accurately detect and segment the nuclei while reducing the annotation burden. Below we provide an

overview of some of the recently proposed 1) Nuclei instance segmentation techniques and 2) Weakly

Supervised Image Segmentation using Point annotation.

2.3.1 Nuclei Instance Segmentation

Due to the small size of nuclei and their overlapping structures, nuclei instance segmentation is a chal-

lenging task. As a result, different strategies for separating nuclear boundaries have been proposed

in the literature. Kumar et al. (2017) [26] incorporated boundary pixels with nuclei and background

for the segmentation model training and performed anisotropic region growing as a post-processing

step. Kang et al. (2019) [75] further extended the three-class segmentation approach by using it as

an intermediate task for estimating coarse boundaries followed by fine-grained segmentation. Naylor

et al. (2017) [27] formulated the segmentation problem as a regression task of the distance map for

separating the touching or overlapping nuclei. Schmidt et al. (2018) [76] used star-convex polygons for

localizing cell nuclei. Another branch of approach that has shown promising results uses auxiliary task

learning to separate overlapping nuclei. Chen et al. (2017) [77] proposed a deep contour-aware network

integrating instance appearance and contour information into a multi-task learning framework and a
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weighted auxiliary classifier to address the vanishing gradient problem. Oda et al. (2018) [78], in their

Boundary-Enhanced Segmentation Network, added another decoding path in the U-Net architecture

for enhancing the boundaries of cells. Liu et al. (2019) [79] designed a dual-branch segmentation

model integrating the auxiliary semantic segmentation branch with the instance segmentation branch

via a feature fusion mechanism. Zhou et al. (2019) [80] proposed a Contour-aware informative aggre-

gation network aggregating the spatial and texture dependencies of nuclei and contour in the decoder’s

bi-directional feature aggregation module. Hover-Net, one of the popular methods for instance seg-

mentation and classification, used horizontal and vertical distance maps to the nuclear center with

segmentation and classification maps for learning. Most recently, He et al. (2021) [81] learned the spa-

tial relationship between nucleus pixels via the centripetal direction feature. These direction features

were then used to separate instances.

2.3.2 Weakly Supervised Image Segmentation using Point annotation

Since Bearman et al. (2015) [82] proposed point annotations for semantic segmentation and estab-

lished it as an effective strategy for object detection and counting tasks, it has been extended to

other domains, including medical imaging and nuclei segmentation. Zhou et al. (2018) [83] designed

architecture with sibling branches for cell nuclei detection and classification tasks and trained them

using centroid point annotations. Yoo et al. (2019) [84] introduced an auxiliary task, Pseudoegnet, for

accurately detecting nuclei boundaries without edge annotations. Nishimura et al. (20119) [33] used

contribution pixel analysis in the centroid detection network for instance segmentation. They used

guided backpropagation focusing on particular regions for determining the contributing pixels for a

predicted centroid. Qu et al. (2015) [31] generated the Voronoi label and cluster label from the point

label and used them to train the U-Net model with CRF loss for segmentation. In the follow-up to

this work, they tackled a more challenging scenario of partial point annotation and used a two-stage

learning framework for nuclei segmentation [29]. In the first stage, they used self-training for gen-

erating nuclei annotation for the unlabeled region, followed by their weakly supervised segmentation

module. Chamanzar et al. (2020) [32] used Voronoi transformation, local pixel clustering, and repel

encoding for generating pixel-level labels for U-Net training via a multi-task scheduler. Tian et al.

(2020) [34] proposed a coarse-to-fine two-staged training framework. In the first stage for generating
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coarse maps, they employed an iterative self-supervision strategy for generating high confidence point-

distance maps along with Voronoi edge distance maps for training. Further, in the second stage, they

refined predictions by incorporating contour-sensitive constraints.

Most of the existing weak approaches in the literature have predominantly concentrated on 2D

analysis, with relatively less emphasis on 3D immunofluorescent images. While numerous studies have

been dedicated to the development of weakly supervised models for nuclei detection in 2D images,

our research marks a significant departure. It stands as the pioneering effort in leveraging weakly

annotated data while meticulously preserving the intrinsic 3D nature of the images.

2.4 Unsupervised Domain Adaptation

Because reliable labels are not available for various applications, there is a strong demand to apply the

trained model over the label-rich source domain to the label-scarce domain. However, the performance

of the trained model can be severely dropped on the target domain because of the domain shift.

Unsupervised domain adaptation technique (UDA) which is a special case of transfer learning as

shown in Figure 2.1 aims to mitigate the domain shift between source and target domain [85].

2.4.1 UDA Definition

In the UDA, ps(x, y) ∈ pS and pt(x, y) ∈ pT are the underlying source and target domain distributions,

respectively. Then, the labeled data DS is sampled i.i.d from the source domain distribution (i.e.

ps(x, y)) and unlabeled data DT is selected i.i.d from marginal target domain distribution (i.e. pt(x)).

The UDA aims to train the model on both DT and DS to improve the performance of the trained

model on the target domain. Y = 1, 2, ..., c is the set of the class label. The UDA is motivated by the

following Theorem [85]:

Theorem 1. For a hypothesis h

Lt(h) ⩽ Ls(h) + d[pS , pT ] +min[Ex∼ps |ps(y|x)− pt(y|x)|,Ex∼pt |ps(y|x)− pt(y|x)|].
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Figure 2.1: A taxonomy of transfer learning ap-

proaches based on the availability of labeled data

in a source or target domain [2]

Here, Lt(h) and Ls(h) indicate the ex-

pected loss in the target and source do-

main, respectively. The second term on the

right hand of the theorem, d[.], shows the

divergence measure between source and tar-

get distributions, e.g. the Jensen–Shannon

(JS) divergence in the case of conventional

adversarial UDA [86]. Finally, the third

term on the right hand, min[Ex∼ps |ps(y|x) −

pt(y|x)|,Ex∼pt |ps(y|x) − pt(y|x)|], is negligible. Therefore, the first and second terms in this theo-

rem can be considered as the upper bound of the expected loss in the target domain. To lower the

generalization error on the target domain, UDA methods minimize the upper bound by minimizing

the divergence or distribution shift between two domains.

Figure 2.2: A summary of the

possible shifts. [87]

The domain shift can be divided into four categories [85], as shown

in Figure 2.2. In the presence of the covariate shift i.e. p(x), the ob-

jective is to align the marginal distributions of the source and target

domains. The more realistic shift is the conditional shift, which aims

to align the shift of p(x|y), because each class may have its own shift

protocol. Moreover, when the proportion of classes differs between

source and target domains, the label shift (i.e. the target shift) oc-

curs. Finally, the concept shift [85], happens when classifying caret

as vegetable or fruit in different countries. The concept shift is not a common problem in the segmen-

tation tasks [2]. Most studies focus on a single shift only while they assume that other shifts remain

invariant between source and target domains. The solutions to the UDA problem can be categorized

into self-training [88, 89], and feature-level adversarial learning [90].
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2.4.2 Adversarial Training

Various techniques address the distribution disparity between the source and target domains, target-

ing The pixel level, feature level, and output level through adversarial learning. Pixel-level alignment

is often referred to as image-to-image translation or style transfer. Works along this line attempt to

translate source images to the target domain, or vice versa, such as classic CycleGAN [91]. Recent

studies have expanded the pixel-level alignment approach by incorporating feature-level alignment to

enhance segmentation precision. Chen et al. (2019) [92] introduce feature alignment, which optimizes

the image-to-image translation by aligning intermediate features. Additionally, Li et al. (2019) [39]

incorporate the segmentation model to supervise the style transformation within the framework of

cycle-GAN, ensuring the preservation of semantics that align with the segmentation task’s objectives.

Conversely, Hoffman et al. (2016) [93] propose to conduct alignment in the feature level. Tsai et al.

(2018) [94] discover that aligning the distribution of the output features yields greater effectiveness

compared to aligning the distribution of the intermediate feature space. Nonetheless, the direct align-

ment of feature distributions in a high-dimensional space presents challenges. Sankaranarayanan et al.

(2018) [95] tackle this by reducing feature dimensions that contain the essential feature components.

Subsequently, they are mapped back to the original feature space. Long et al. (2018) [96] propose

that the global distribution alignment can compromise the distinctiveness of features within the target

domain. To address this issue, Wang et al. (2020) [97] incorporate the class information into the ad-

versarial loss. However, adversarial training often encounters issues with stability because of the lack

of a comprehensive understanding of each category. As a result, some studies opt for the utilization of

category anchors [98] derived from source data to enhance the alignment process. However, choosing

these category anchors is challenging. Furthermore, constructing the global category anchors based

on the unimodal distribution assumption for each class will disregard the within-class variation.

2.4.3 Self-training

In self-training approaches, pseudo labels are assigned to samples from the target domain to facilitate

iterative training. The central concern in these techniques is how to achieve stable model training in

the presence of noisy pseudo labels. Some studies proposed a variety of strategies such as dynamic
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threshold strategy [43], or uncertainty estimation strategy [99], to select high-quality pseudo labels. In

some other studies design curriculum learning [100], or anti-noise learning strategies [101] have been

proposed to achieve model stability during training. Recently, Zhang et al. (2021) [45] use the relative

feature distance to the prototypes to refine further target pseudo labels. Several studies have inte-

grated self-training and adversarial training [102, 103], aimed at entropy minimization [104], boundary

refinement [105], or curriculum-based approaches [106]. Most existing self-training approaches rely on

training the classifier, i.e. discriminative model, using the cross-entropy loss function over the source

ground truth and target pseudo labels. These discriminative classifiers suffer from various limitations:

1) neglecting to model the underlying data distribution, 2) unimodality for each class, and 3) these

models suffer from accuracy degradation away from decision boundaries, hampering adaptation for

critical tasks [49]. Furthermore, these UDA methods assume fully labeled source data and completely

unlabeled target domains, which is often not the case in practice due to partial or noisy labels in both

source and target domains.
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Chapter 3

Universal Representation Learning for

Multivariate Time Series using the

instance-level and cluster-level

Supervised Contrastive Learning

3.1 Introduction

In this dissertation, we introduce the Supervised Contrastive Learning for Time Series Classification

(SupCon-TSC) model. This model is designed to empower deep learning models in dealing with

limited labels in TSC tasks while acquiring low-dimensional feature representations. It builds upon

Supervised Contrastive Learning (SupCon) principles and yields interpretable outcomes.

The recent success of the SupCon learning approach in various computer vision tasks inspired us

to adapt this competitive approach for the TSC tasks. The SupCon loss function overcomes the short-

comings of the cross-entropy loss function, such as a lack of robustness to noisy labels [107, 108] and

the potential for decision boundaries with poor margins resulting in poor classification performance.

Leveraging the SupCon learning approach alleviates the challenge of defining classification boundaries
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between classes. It achieves this by bringing the representations of instances with the same label

closer together while moving them farther from those with different labels. In addition, because the

SupCon loss function is a distance-based loss, it effectively addresses the issue of limited data in time

series tasks. However, despite the advantages of the SupCon loss function, the intra-class variances

and inter-class similarities found in many real-world time series make it challenging to learn universal

low-dimensional feature representations using SupCon loss. To address this issue, we extend the Sup-

Con learning approach to learn the low-dimensional universal representation, not only by applying the

SupCon loss between time series instances but also between the clusters of instances across batches,

as depicted in Figure 3.2. In this approach, we cluster the time series instances based on their labels

within each batch. Subsequently, we apply the SupCon learning approach between each instance and

centers of generated clusters across batches. This introduces cluster-level SupCon as a complement

to an instance-level contrastive strategy. We introduce a cluster memory bank that allows us to ac-

cess representations of clusters generated in previous batches during training. This approach helps

in bringing clusters with the same label closer and distancing those with different labels. This pro-

cess results in clearer boundary decisions by reducing intra-class variances and inter-class similarities.

Unlike existing contrastive loss function studies, our approach does not depend on designing complex

augmentation methods, which are challenging for time series data. The temporal dependencies in time

series data present challenges in designing augmentation methods. This complexity is amplified when

dealing with the MTSC task, as it requires considering the cross-correlations between variables across

time. The major contributions of this study are summarized as follows:

1. We developed SupCon-TSC for time series data to capture contextual information, which pro-

vides interpretable outputs.

2. Even though the contrastive objective is usually based on augmented context views to get good

results, our approach does not depend on adopting well-known augmentation methods. In other

words, the developed approach is capable of learning the universal low-dimensional feature rep-

resentations without introducing undetected inductive bias created by adopting well-known aug-

mentation methods such as transformation- and cropping-invariance.

3. We evaluate the performance of the SupCon-TSC model on two small CPET datasets to demon-
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strate the model’s capability for learning better discriminative features than existing models.

4. We conduct extensive experiments on multivariate time series data to show the effectiveness of

our method compared to standard approaches in the literature. Our new approach outperforms

existing SOTAs on 29 UEA Archive datasets.

5. We design a SupCon loss at the cluster level in addition to the instance level to alleviate the

negative impact induced by intra-class variances and inter-class similarities during training.

3.2 Methodology

In this section, we first provide a brief introduction to the problem formulation in Section 3.1. Following

that, we elaborate on the details of the developed method and our framework in Section 3.2.

3.2.1 Problem Formulation

In multivariate time series classification, a data set consists of pairs (X ,y), where X = {X1,X2,X3, ...,Xn} ∈

Rn×m×l contains n multi-dimensional time series observations and y ∈ Rn contains corresponding dis-

crete class variables with c possible values for each observation. Here, each time series observation

can be represented as a matrix with the dimension m and time series length l. The goal of the MTSC

tasks is to train a classifier on the observed pairs of (X ,y), enabling it to predict the class label of a

new, unlabeled time series observation.

3.2.2 Model

In this section, we introduce our novel approach, i.e., SupCon-TSC, which aims to enhance model

performance for downstream tasks like classification by learning a universal representation for multi-

variate time series data. Our approach consists of two stages: a) Learning the universal representation,

and b) Training the classifier, as depicted in Figure 3.1. The first stage of SupCon-TSC is built upon

the SupCon framework [109], initially designed for image representation learning. However, we have

made modifications to adapt it to learning a universal representation of multivariate time series data
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Figure 3.1: Diagram of training process

24



Ph.D. Dissertation Nazanin Moradinasab

for supervised MTSC. Algorithm 1 outlines the pseudo-code for this first stage. Specifically, the pro-

vided pseudo-code outlines an algorithm for learning a universal representation for multivariate time

series data using instance-level and cluster-level supervised contrastive learning. The algorithm begins

by initializing hyperparameters, encoder, and projection head weights, and creating an empty buffer.

During the training process, as the algorithm progresses through a fixed number of epochs (Ne), a

check is performed to determine whether the current epoch falls within the warm-up period (Nw). If

the current epoch is within the warm-up period, the variable α is set to 0, implying that the cluster-

level contrastive learning step is skipped. However, if the current epoch is equal to or greater than

the number of warm-up epochs, α is set to 1, indicating that the cluster-level contrastive learning step

will be executed as part of the algorithm for that epoch. The algorithm then iterates over sampled

mini-batches. For each instance in the mini-batch, the algorithm applies augmentation techniques to

generate weak (xwk ) and strong (xsk)views of the given input sequence. Then, the encoder (E) processes

these augmented sequences, and the projection head (proj) projects their hidden representations into

lower-dimensional feature vectors. The algorithm performs clustering on the instances in the mini-

batch based on their labels according to lines 16 to 18. Each instance is assigned to the cluster with

the same label. Then, for each unique label, the algorithm calculates the average feature vector of

instances (zcli ) with the associated label (ck) and adds it to the buffer along with the corresponding

label. The algorithm then proceeds to compute the instance-level and cluster-level contrastive losses.

More details on Learning the Universal Representation, instance-level, and cluster-level contrastive

learning approaches have been provided in the following sections.

The second stage of SupCon-TSC contains training the multilayer perceptron (MLP) classifier on

top of the frozen representations using a cross-entropy loss.
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Algorithm 1: Instance-level and cluster-level SupCon algorithm
Input: Input multi-dimension time series instances (X), Labels (Y)

Parameter: Buffer size (β), Batch size (N), Number of epochs (Ne), Number of warm-up epochs (Nw) Number of unique labels (Nl),

Temperature (τ),

Initialize the weights of encoder (f) and projection head (g), Initialize buffer (B).

for epoch:=1:Ne do

if epoch < Nw then
α = 0

else
α = 1

for sampled minibatch do

for k ∈ 1, ..., N do

xs
k = Ts(xk)

xt
k = Tt(xk)

hs
k = E(xs

k)

ht
k = E(xt

k)

zsk = proj(hs
k)

ztk = proj(ht
k)

Cluster instances in the batch

Assign each time series instance (xk) to the cluster with the same label (ck)

for i ∈ 1, ..., Nl do

zcli =

∑N
k=1 I{ck=i}ztk∑N
k=1

I{ck=i}
Update the Buffer B by adding µi and corresponding label ck to it

for k ∈ 1, ..., N do
Instance-level SupCon

A(k) = {1, ..., N}

P (k) = {p ∈ A(k) : yk = yp}

LIns−level
k

= −1
|P (k)|

∑
p∈P (k) log

exp(zsk·ztp/τ)∑
a∈A(i) exp(zs

k
·zta/τ)

Cluster-level SupCon

Abuf (k) = {1, ..., β}

Pbuf (k) = {p ∈ Abuf (k) : yk = yp}

Lclus−level
k

= −1
|Pbuf (k)|

∑
p∈Pbuf (k) log

exp(zsk·zclus
p /τ)∑

a∈Abuf (i) exp(zs
k
·zclus

a /τ)

L =
∑N

k=1 LIns−level
k

+ αLcl−level
k

3.2.2.1 Learning the Universal Representation

This stage serves as the pre-training phase for training the encoder to generate the universal represen-

tation. As depicted in Figure 3.1-a, the Siamese network consists of source (Es) and target encoders

(Et), which take two augmented versions of a multivariate time series instance sampled from two

distinct augmentation families.

xs ∼ Ts(x)

xt ∼ Tt(x)
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where, xs, and xt represent the strongly and weakly augmented view of x, respectively. The high-

variance strong augmentation (Ts) and low-variance weak augmentation (Tt) families are used to

generate these strongly and weakly augmented views of x for the source and target networks, respec-

tively. Wang et al. (2022) [110] demonstrated that these settings enhance the model performance

on downstream tasks such as classification. Noted, even though an essential part of the success of

the contrastive learning methods is designing and utilizing good data augmentation methods [111],

our approach does not depend on the well-known augmentation methods. We utilize only jittering

augmentation with low variance (weak augmentation) for the target network and high variance (strong

augmentation) for the source network. After generating the augmented views of a given instance (x),

they are passed to the encoder to learn the universal low dimensional representations (h = E(x)). To

train the encoder, first, the encoder output will be sent to the MLP projection head to obtain the

normalized embedding (z = proj(E(x)). In each iteration, the buffer is updated with the output from

the target network. For every iteration, the target outputs of the given batch are clustered according

to their labels, and the buffer is updated with the mean value of the clusters. Subsequently, the Sup-

Con loss is calculated between the output of the source network, the output of the target network, and

the buffer. This process aims to learn a discriminative representation that effectively characterizes

instance x. The SupCon loss function enforces the normalized embeddings from the same class to

pull closer together than embeddings from different classes. For this purpose, it tries to maximize

the dot product between the given anchor and positive samples (i.e., samples with the same labels)

while minimizing the dot product with negative samples (i.e., samples with different labels) within

the batch. The SupCon learning is conducted at the instance and cluster level, which are explained

in the following sections in detail.

3.2.2.2 Supervised Contrastive learning at the instance-level:

As depicted in Algorithm 1, within a batch of N samples, two encoding representations are generated

for each instance: the source encoding representation (zs) and the target encoding representation

(zt). We expect the source encoding to have higher variance in comparison with the target encoding

representation as we use higher variance in the corresponding augmentation method.
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Figure 3.2: Diagram of SUpCon-TSC

The instance-level Supervised contrastive loss is as follows:

LSupCon =
−1

| P (k) |
∑

p∈P (k)

log
exp(zsk · ztp/τ)∑

a∈A(i) exp(z
s
k · zta/τ)

(3.1)

where, τ is the temperature. For an anchor embedding zsk that comes from the source network,

we denote ztp as a positive sample which is the output of the target network corresponding to the

sample in the batch with the same label as the anchor image. Hence, (zsk, z
t
p) is a positive pair and the

number of positive pairs for the anchor k is equal to the number of instances with the same label as

the anchor instance in the batch. A(i) is a set of all indexes in the given batch, while P (k) indicates

a set of positive samples for the anchor k. P (k) contains indexes of those samples in the batch which

have the same label as the anchor k.

Noted, the size of negative samples for the anchor k is N(k) =| A(i) | − | P (k) |. Figure 3.2

presents the Instance-level supervised contrastive learning between a given anchor and positive and

negative samples in each batch.
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3.2.2.3 Supervised Contrastive learning at the cluster-level among batches

In this approach, we design a cluster memory bank that contains the representation of the cluster’s

center generated in the previous batches during training. In each batch with N samples, we perform

clustering over the target embeddings based on their labels. We assign the target embedding of each

time series sample xk to the cluster with the same label (ck). Then, we determine the cluster centers

using Equation 3.2. The representations of the cluster centers generated in each batch will be stored

in the cluster memory bank. The cluster memory bank is built with size Nbuffer × Nl × D, where

Nbuffer, Nl, and D are the memory size, number of unique classes for time series data set and the

dimension of representation embedding, respectively.

zcli =

∑N
k=1 I{ck = i}ztk∑N
k=1 I{ck = i}

(3.2)

As shown in Algorithm 1, the cluster-level SupCon learning is conducted using Equation 3.3 among

the batches during training in addition to the instance-level SupCon learning in each batch.

Lclus−level
k =

−1

| Pbuf (k) |
∑

p∈Pbuf (k)

log
exp(zsk · zclusp /τ)∑

a∈Abuf (i)
exp(zsk · zclusa /τ)

(3.3)

We aim to optimize the following objectives: 1) Maximize the similarity between each instance embed-

ding in a batch zsk and positive samples zclusp retrieved from the cluster memory bank, 2) Minimizing

the similarity between each instance embedding in a batch zsk and negative samples also sourced from

the cluster memory bank. In Equation 3.3, Abuf (i) denotes the set of all indexes within the cluster

memory bank, while pbuf (k) represents the set of positive samples which have the same label as the

anchor k in the cluster memory bank. Figure 3.2 outlines the cluster-level SupCon learning approach,

depicting the interaction between a given anchor instance and positive and negative samples (i.e. cen-

ters of the clusters with the same and different labels) extracted from the cluster memory bank. The

overall piece-wise training loss can be defined as follows:

L =
N∑
k=1

LIns−level
k + αLcl−level

k (3.4)

α =

 0 epoch ≤ Nw

1 epoch > Nw

(3.5)
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We only utilize the instance-level contrastive loss to train the model during the first epochs. After

training the model for Nw epochs, we take into account the cluster-level loss in addition to the

instance-level loss to train the model.

3.2.2.4 Training the classifier

Illustrated in Figure 3.1-b, the objective of the second stage is to train a classifier on top of the source

encoder, utilizing cross-entropy loss for predicting class labels in MTSC tasks. During this step,

we discard the projection head (proj(.)), and the classifier is incorporated into the preserved frozen

universal representation. Subsequently, the classifier is trained using the cross-entropy loss function.

Figure 3.3: The aggregated second-by-second VE, RER, VTex, VTin, METS, RR, VCO2, VO2, for

patients with label HF
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3.3 Experiments

In this section, we assess the performance of SupCon-TSC on three different datasets: the UEA

Multivariate Time Series Archive dataset and two Cardiopulmonary Exercise Testing datasets. Firstly,

we provide detailed descriptions of the datasets, metrics used for evaluation, and the implementation

specifics. Subsequently, we present a comprehensive analysis of experimental results, comparing the

performance across diverse datasets. Finally, we delve into the ablation studies section, conducting

in-depth analyses to further understand the model’s effectiveness.

3.3.1 Datasets

1. UEA Multivariate time series archive 1 [112]: The archive includes data sets collected from

different applications such as Human Activity Recognition, Motion classification, and ECG/EEG

signal classification. For variable-length datasets, we pad all series to the same length, setting

NaNs for missing observations. When an observation is missing (NaN), the corresponding mask

position is set to zero. Also, we noticed inconsistencies between the current ERing dataset

available at the UEA Multivariate time series archive and the dataset used in the referenced

papers [70, 10]. To ensure the integrity of our experiments, we removed the ERing dataset from

our analysis.

2. Cardiopulmonary exercise testing (CPET) dataset 1 [113]: The CPET dataset con-

sists of the breath-by-breath readings of 30 patients with two clinically diagnosed conditions:

Heart Failure (HF) and Metabolic Syndrome (MS) (15 patients each). The testing protocol

for gathering data involved using a treadmill with three stages: rest, testing, and recovery.

This dataset contains the following variables: Metabolic equivalent of task (METS)(1 MET =

3.5ml/kg/min); Heart Rate (HR); inspired Volumes of Oxygen (VO2); expired Volumes of Car-

bon Dioxide (VCO2); Ventilation (VE); Respiratory Rate (RR); expiratory tidal volume (VTex);

and inspiratory tidal volume (VTin); Respiratory Exchange Ratio (RER); Speed of the treadmill;

Elevation of the treadmill; binary outcome variable indicating the clinically diagnosed condition

1Datasets are available at http://timeseriesclassification.com
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of the patient. The aggregated second-by-second values of normalized CPET variables (i.e. HR,

RR, VO2, VE, VCO2, RER, VTin, VTex) for participants with label HF as an example is shown

in Figure 3.3. In other words, we compute the mean of each CPET variable per second over all

participants with the label HF.

3. Cardiopulmonary exercise testing (CPET) dataset 2 [114]: This dataset comprises

breath-by-breath readings from 78 healthy children and adolescents who underwent the (Multi-

ple Brief Exercise Bouts) (MBEB) task at low, moderate, and high-intensity work rates. Even

though all participants completed the ten bouts at low and moderate-tensity, half of them failed

and stopped before all ten bouts had been completed (task failure) high-tensity work rate. This

dataset the following variables: Heart Rate (HR); inspired Volumes of Oxygen (VO2); expired

Volumes of Carbon Dioxide (VCO2); Respiratory Rate (RR); gender; maturational status; body

mass; total fat; binary outcome variable indicating whether the participant completed the test.

The aggregated second-by-second values of CPET variables (i.e. HR, RR, VO2, VCO2) over all

participants are shown in Figure 3.4.

Figure 3.4: The aggregated second-by-second RR, VCO2, VO2, and HR over all participants from

CPET dataset 2
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3.3.2 Metric

Each model is evaluated using the accuracy score (i.e. TP+TN
TP+FP+TN+FN ). where TP, FP, TN, and FN

are True Positive, False Positive, True Negative, and False Negative, respectively.

3.3.3 Friedman test and Wilcoxon test

To find the differences between the methods, we leverage the Freidman test which is a non-parametric

statistical test. Moreover, the Wilcoxon-signed rank test is used to compare pairs of classifiers over

the datasets. The Friedman test and Wilcoxon-signed rank test with Holm’s α(5%) are conducted by

following the process described in [115].

3.3.4 Interpretability

Gradient-weighted Class Activation Mapping (Grad-CAM) [116] is one of the well-known methods for

generating saliency maps to support convolutional neural network predictions. The Grad-CAM aims

to identify the regions of the input data that the most influence the predictions using the class-specific

gradient information. In this study, we use the Grad-CAM approach to identify those time steps of

the time series that influence the most on the model’s decision for a specifically assigned label. The

following paragraph explains how we adapt Grad-CAM for the SupCon-TSC model.

In order to build the attribution map, we apply grad-CAM to the output features of the last

1D convolution layer. First, we compute the importance of each feature map (wc
k) by obtaining the

gradient of the output score for specific class c (yc) with respect to each feature map activation Ak as:

wc
k =

1

Z

∑
i

σyc

σAk
i

(3.6)

where Z is the total number of units in A. Then, wc
k is used to compute a weight combination of

feature maps for class c by Equation 3.7. The ReLU non-linearity is used to keep only positive values.

Lc
1D = ReLU(

∑
k

wc
kA

k) (3.7)
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3.3.5 Architecture Details

The model architecture is as follows:

1. Encoder: ResNet [15]

2. Head: two linear layers with ReLu activation function.

3. Classifier: two linear layers with ReLu activation function and Softmax on top.

3.3.6 Hyperparameters

The grid search along with the 5-fold cross-validation on the training set is used to set hyperparameters

for each dataset. Please refer to Table 3.1 for the hyperparameters used in our experiments.

3.3.7 Models

We have compared the performance of our method with the following state-of-the-art MTSC models

on the UEA Multivariate time series archive datasets.

• TapNet: Multivariate Time Series Classification with Attentional Prototypical Network was

applied to time series data [10].

• WEASEL+MUSE (WM): Word ExtrAction for time Series cLassification plus Multivariate

Unsupervised Symbols and dErivatives was applied to time series data [68].

• MLSTM-FCN (MF): Multivariate LSTM Fully Convolutional Networks for Time Series Clas-

sification was applied to time series data [71].

• MTEX-CNN (MC): Multivariate Time Series EXplanations for Predictions with Convolu-

tional Neural Networks was applied to time series data [72].

• CMFM+RF (CMRF): Random Forest (RF) was applied to the set of time series features ob-

tained by Complexity Measures and Features for Multivariate Time Series (CMFMTS) approach

[117].
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Table 3.1: Selected hyperparameters. Abbreviations: LR1- Learning rate 1, LR2- Learning rate 1,

BS1- Batch size 1, BS2- Batch size 2

Datasets LR1 BS1 Epoch1 LR2 BS2 Epoch2

ArticularyWordRecognition 0.001 40 100 0.005 20 100

AtrialFibrillation 0.001 15 100 1e-05 15 100

BasicMotions 0.001 10 100 0.001 5 100

CharacterTrajectories 0.001 50 100 0.001 50 100

Cricket 0.001 10 100 0.001 50 100

DuckDuckGeese 0.001 30 100 0.001 5 150

EigenWorms 0.001 10 100 0.001 10 150

Epilepsy 0.001 10 100 0.001 50 150

EthanolConcentration 0.001 10 100 0.001 20 150

FaceDetection 0.001 50 100 0.001 70 100

HandMovementDirection 0.001 50 100 0.0001 5 100

FingerMovements 0.005 100 100 0.0005 100 150

Handwriting 0.001 30 100 0.001 5 150

Heartbeat 0.001 50 100 0.001 10 100

InsectWingbeat 0.001 1000 100 0.0001 1000 100

JapaneseVowels 0.001 20 100 0.001 5 100

Libras 0.0001 30 100 0.001 5 150

LSST 0.001 20 100 0.001 5 100

MotorImagery 0.001 70 100 0.001 10 100

NATOPS 0.005 25 100 0.005 10 100

PenDigits 0.001 100 100 0.001 50 100

PEMS-SF 0.001 70 100 0.001 5 100

Phoneme 0.001 50 100 0.001 200 100

RacketSports 0.001 30 100 1e-05 5 150

SelfRegulationSCP1 0.001 20 100 1e-05 100 100

SelfRegulationSCP2 0.001 20 100 0.0001 5 100

SpokenArabicDigits 0.001 20 100 0.001 10 100

StandWalkJump 0.001 3 100 0.001 9 100

UWaveGestureLibrary 0.001 15 100 0.001 10 150
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• CMFM+SVM (CMSVM): Support Vector Machine (SVM) was applied to the set of time

series features obtained by CMFMTS approach [117].

• CMFM+ C5.0B (CMC5.0B): C5.0 with boosting (C5.0B) was applied to the set of time

series features obtained by CMFMTS approach [117].

• CMFM+1NN (CM1NN): 1-Nearest Neighbor classifier with Euclidean distance (1NN-ED)

was applied to the set of time series features obtained by CMFMTS approach [117].

• XCM: The eXplainable Convolutional neural network model was applied to time series data

[70].

• LCEM: Local Cascade Ensemble for Multivariate data classification (LCEM) was applied to

time series data [118].

• XGBM: The Extreme Gradient Boosting algorithm was applied to the LCEM transformation

[118].

• RFM: Random Forest for Multivariate (RFM) algorithm was applied to the LCEM transfor-

mation [118].

• DWI / DWI(n): a 1-Nearest Neighbor classifier was applied to the sum of DTW distances for

each dimension with and without normalization (n) [62].

• DWD / DWD(n): Dimension-dependent dynamic time warping [62] was employed with and

without normalization (n). Distances are computed using multidimensional points, and subse-

quently, a 1-Nearest Neighbor classifier was applied to them.

3.3.8 Classification Performance Evaluation

We evaluate the performance of the SupCon-TSC model on two small CPET datasets and the UEA

Multivariate time series archive.
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3.3.8.1 CPET datasets

Table 3.2 shows the performance of the SupCon-TSC alongside the state-of-the-art deep learning

models on small CPET datasets 1 and 2. To maintain consistency with prior research [113, 114],

we conducted experimentation through the same k-fold cross-validation method. Additionally, for

our experiment, we focused exclusively on the initial four bouts from the second dataset. We then

proceeded to smooth and align these bouts as recommended in [114]. Four bouts of CPET variables

after converting the discrete time series to 78 smoothed and aligned curves are shown in Figure 3.5.

As shown, the SupCon-TSC model has achieved better accuracy on both datasets.

Table 3.2: The model’s performance on the second CPET datasets 1 and 2

Dataset Model k-fold CV Accuracy (%)

CPET 1
CNN [113] 5-fold 90

SupCon-TSC 5-fold 97

CPET 2
GADF + Attention [114] 10-fold 80.8

SupCon-TSC 10-fold 86.07

To investigate the interpretability of the model, we present a comprehensive analysis of the atten-

tion mechanism of our SupCon-TSC model when applied to CPET dataset 2. The dataset consists of

samples with binary labels indicating whether the participant completed the test. We sought to un-

derstand how the model’s attention is distributed across the input data during the prediction process.

Figure 3.6 shows the network’s attention for two samples with different labels from CPET dataset

2. The attention maps provide valuable insights into the regions of interest that the model deems

crucial for making predictions. As shown, the network’s attention is spread approximately across time

steps 150-190, 310-380, 510-540, and 690-710, which are associated with the valleys in the graphs (i.e.,

displayed by red circles on the first HR graph). Remarkably, these identified intervals align remark-

ably well with the recovery points observed in the heart rate (HR) and gas exchange change graphs.

From a physiological standpoint, these recovery points have significant implications as they are widely

recognized indicators of an individual’s fitness level [119, 120]. Notably, we found that the identified

recovery points align with the findings from studies [114, 121]. These studies suggest that incomplete
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Figure 3.5: Four bouts of CPET variables after smoothing and aligning the curves

recovery from individual exercise bouts may result in a cumulative response deficiency. This defi-

ciency, over time, could potentially manifest in physiological signals that can impact cognitive exercise

behavior, which aligns with the patterns identified by the SupCon-TSC model.

3.3.8.2 UEA Multivariate time series archive

The accuracy results of SupCon-TSC and the other state-of-the-art algorithms on the public UEA

test sets are presented in Table 3.3. In the SupCon-TSC approach, ensemble learning is used to make

the final prediction by taking the average over the five different models’ outputs trained using 5-

fold cross-validation. We perform the hyper-parameter tunning for XCM, TapNet, MTEX-CNN, and

MLSTM-FCN models. The results of other baseline models are taken from the [70, 117]. The dash

shows that the approach ran out of memory. Also, the best accuracy for each dataset is boldfaced. The

SupCon-TSC was implemented in Python3 using Pytorch 1.10 and all the experiments are conducted

on a single Tesla k80 GPU with 11GB memory. As Table 3.3 indicates, SupCon-TSC achieves better
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Figure 3.6: Time attention corresponding to a prediction for two participants with label task-failure

and task completer

performance on 11 out of 29 UEA datasets in comparison with the baseline methods followed by LCEM

with 7 datasets. The average rank is computed using a pairwise Wilcoxon signed rank test and we

observe that the best average rank belongs to SupCon-TSC (5.07) which is followed by LCEM (5.26).

Furthermore, Table 3.3 indicates that the SupCon-TSC approach outperforms LCEM methods in 18

out of 29 datasets.

We applied the Friedman test to investigate if there is a significant difference between the methods.

The output of the Friedman test is p = 4.205e − 19, which is smaller than α = 0.05, indicating that

there is a significant difference among all ten methods. Figure 3.7 shows the accuracy scatter plots

of SupCon-TSC against each of the LCEM and MLSTM-FCN. Figure 3.8 shows a critical difference

diagram obtained by using the pairwise Wilcoxon signed-rank test. The numbers on each line are

the average rank of the corresponding method and the solid bars indicate the groups of methods

between which there are no significant differences in terms of accuracy. As shown in Figure 3.8, the

SupCon-TSC model has the first rank followed by LCEM and MLSTM-FCN approaches.
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Figure 3.7: Scatter plots of accuracy on 29 UEA MTSC problems. Left : SupCon-TSC vs LCEM

showing that SupCon-TSC beats LCEM on 18 problems. Right : SupCon-TSC vs MLSTM-FCN

showing that SupCon-TSC beats MLSTM-FCN on 19 problems

3.3.9 Ablation studies

To study the effect of our developed Supervised Contrastive Learning method, we separately train

ResNet models with and without designed Supervised Contrastive Learning. As shown in Table 3.4,

the Supervised Contrastive Learning component improves the performance of the model in 22 out of

29 datasets which verifies the effectiveness of our approach.

3.4 Conclusion

This dissertation developed Supervised Contrastive learning for time series classification (SupCon-

TSC). This model is based on the instance-level and cluster-level supervised contrastive learning

approaches to learn the discriminative and universal representation for the multivariate time series

dataset. As this approach is an end-to-end model, it allows us to detect those time steps of the

time series that have the maximum influence on the model’s prediction via utilizing the Grad-CAM

method. The experimental results on small CPET datasets indicate the capability of our SupCon-TSC

model to learn discriminative features where the labeled dataset is insufficient. Furthermore, the new
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Figure 3.8: Critical difference diagram (α = 0.05)

Table 3.4: Effect of our Supervised Contrastive Learning method

Datasets AW AF BM CT C DDG

w/o SupCon 0.97 0.266 1.0 0.995 0.986 0.44

w/SupCon 0.98 0.467 1.0 0.997 1.0 0.54

Datasets EW EP EC FD HMD FM

w/o SupCon 0.862 0.985 0.277 0.559 0.378 0.52

w/ SupCon 0.885 0.993 0.231 0.565 0.338 0.61

Datasets LIB LSST MI NATO PD PEMS

w/o SupCon 0.872 0.662 0.59 0.911 0.986 0.843

w/ SupCon 0.85 0.657 0.59 0.894 0.993 0.861

Datasets HW HB IW JV PS SA

w/o SupCon 624 0.741 0.665 0.983 0.313 0.993

w/ SupCon 0.566 0.746 0.667 0.987 0.322 0.995

Datasets RS SRS1 SRS2 SWJ UW

w/o SupCon 0.848 0.703 0.488 0.333 0.837

w/ SupCon 0.875 0.730 0.55 0.6 0.812
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model outperforms the state-of-the-art models in 11 out of 29 UEA archive datasets. In our future

work, we would like to focus on the augmentation methods and evaluate their impact on SupCon-TSC

performance.
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Chapter 4

Label-efficient Contrastive

Learning-based model for nuclei

detection and classification in 3D

Cardiovascular Immunofluorescent

Images

4.1 Introduction

This dissertation introduces the Label-efficient Contrastive learning-based (LECL) model for detecting

and classifying various types of nuclei in 3D immunofluorescent images using weak annotations (point

annotations). Addressing the challenge of training weakly-supervised learning models for 3D images

with multiple channels (z-axis), our model avoids the limitations of Maximum Intensity Projection

(MIP) by introducing a novel approach called Extended Maximum Intensity Projection (EMIP). The

MIP approach is a common technique used to reduce the computational burden in image analysis.

Several studies, such as Noguchi et al. (2023) [122] and Nagao et al. (2020) [123], have successfully
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Figure 4.1: a) It presents the sequence of channels (i.e. z=0,..,n) for the nuclei (first row) and the

Lineage Tracing marker (second row). The nuclei and Lineage Tracing marker channels are associated

with each other in order. The third row indicates the linear combination of the nuclei and Lineage

Tracing marker per slice.

employed the MIP technique for image preprocessing to convert 3D images into 2D format in tasks

like cell segmentation and cell cycle phase classification. Nevertheless, it’s important to consider that

the MIP approach might not be the optimal option for nuclei detection and classification models,

as elaborated in the subsequent section. The LECL model aims to detect nuclei and assign them a

classification label based on specific markers (e.g., Lineage Tracing) with minimum labeling cost. To

reduce the labeling cost, we request expert point annotations rather than fine pixel-wise annotations,

which require much less effort. Das et al. [57] confirm this by stating that annotating 2975 images of the

Cityscapes dataset with point labels costs 37.2 hours, while fine labeling costs 4463 hours. We assign

the label ”positive” if and only if the given detected nucleus overlaps with the given marker, otherwise,

it is labeled as ”negative”. It is notable that training the model to classify the type of each nucleus using

weak annotations in these images is a difficult task because these images contain multiple channels

(Z-axis) for nuclei and different markers, as shown in Figure 4.1-a. The main challenges of nuclei

detection/classification in 3D images are described in detail in section 4.2. To address these challenges,

the EMIP approach partially performs the maximum intensity projection per nucleus where z levels

contain the given nucleus to convert multi-channel images to 2D z-stack images. Additionally, to
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Figure 4.2: A) Challenges: (1) nucleus in the yellow square: Even though the ground truth labels

for the nucleus in the yellow and green squares are positive, they are only coincident in the second

slice, (2) nucleus in the white square: it shows an example of nonoverlapping marker and nucleus,

(B-1) The output of the MIP approach, (B-2) The output of the EMIP approach, (B-3) Ground truth

point annotations: green color is associated with the nuclei with label positive and white is associated

with the nuclei with label negative

enhance performance in a weak setting, the model incorporates semi-supervised learning with entropy

minimization loss over nuclei boundaries as unlabeled areas. Furthermore, a supervised contrastive

learning method is implemented to improve the model’s nuclei classification metrics.

The major contributions of this study are summarized as follows:

1. We develope an automated approach called LECL for 3D nuclei detection and classification in

fluorescent images with minimum labeling cost.

2. We design the EMIP approach that addresses the limitations of MIP approach to convert multi-

channel images to 2D z-stack images.

3. We show that the SCL loss enhances the model’s performance by capturing global semantic

relationships.

4.2 Challenges

The main challenges associated with detecting and classifying the types of nuclei in fluorescent images

can be categorized into three groups as follows:
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1. One specific nucleus might spread over multiple z-slices, as shown in Figure 4.2-A,

but only have a point annotation in one z-slice. For example, the blue color nucleus in the

orange square spreads over z-slices from two to eight, but the experts are asked to only annotate

that nucleus in one of the slices to minimize the labeling cost. Therefore, only a subset of nuclei

are annotated in each z-slice. Having incomplete nuclei annotations in each z-slice makes it

challenging to train the model over each z-slice separately.

2. The marker and nucleus might not be coincident in all z-slices. In fluorescent images,

the given nucleus is labeled as positive if that nucleus and the marker overlap at least in one of

the z-slices. In other words, even though the ground truth label for the nucleus is positive, the

nucleus might not contain the marker in some slices as shown in Figure 4.2-A.

3. Maximum Intensity Projection (MIP) can cause objects to appear coincident that

are actually separated in space. Based on the literature, some approaches convert multi-

channel 3D images to 2D z-stack images using MIP, as shown in Figure 4.1-b. This approach

utilizes maximum intensity projection over nuclei/marker channels to convert these 3D multi-

channel nuclei/marker images to 2D images (i.e., collapse images along with the z-axis). Then,

the 2D nuclei image is combined with the 2D marker image using the linear combination method.

However, this approach can be problematic when there are non-overlapping nucleus and marker

in the same x, y, but at different z-axis. Figure 4.2-A illustrates this, where the blue nucleus and

red marker in the white square indicate non-overlapping objects that could be falsely shown as

overlapping using the MIP approach.

4.3 Method

In this section, we describe the our Label-efficient Contrastive learning-based (LECL) model (Figure

4.3), which consists of two components: a) Extended Maximum Intensity Projection (EMIP) and b)

Supervised Contrastive Learning-based (SCL) training strategy.
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Figure 4.3: Schematic representation of the LECL model

Figure 4.4: (A-1) The nuclei z-slices, (A-2) The marker z-slices, (B-1) The Voronoi label, (B-2) The

Voronoi Cell (VC) binary mask associated to convex cell j that assigns label 1 to convex cell j and

zero to others, (B-3) The z-slice 6 of nuclei channel, (B-4) The multiplication’s output of VC mask

and z-slice 6 which depicts the nucleus located in convex cell j, (C-1) nuclei z-slices, (C-2) The 3D

binary mask, (D-1) The intersection between VC mask (B-2) and 3D binary mask (C-2), (D-2) the

intersection between the VC binary mask and the nuclei/marker z-slices, (D-3) EMIP output

4.3.1 Extended Maximum Intensity Projection (EMIP)

To address the issue of non-overlapping nuclei and markers when applying the MIP approach, the

EMIP method is developed. The EMIP approach utilizes the maximum intensity projection for each

nucleus separately and only over the z-slices that include that specific nucleus. For example, for a

nucleus that spans z-slices from seven to ten (as shown in the white square in Figure 4.2-A), the MIP
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should only be applied to those slices. This ensures that the generated 2D image accurately represents

the nucleus without mistakenly overlapping with the marker. Figure 4.2-B shows a comparison of the

output from the MIP and EMIP approaches for the image shown in Figure 4.4 -A. As depicted, the

EMIP approach prevents the lineage tracing marker (depicted in red) from falsely appearing over nuclei

with the ground truth label negative. As shown, nuclei in the pink and orange squares with ground

truth label negative falsely contain signals of the marker in the output of the MIP, as opposed to the

EMIP. The steps of the EMIP are shown in Algorithm 2. To perform the EMIP approach, two types

Algorithm 2: Extended Maximum Intensity Projection

linenosize= input: multi-channel images, Point-level annotations

for i = 1 : N (Number of images) do
1. Generate the 3D distance map (Di) using point annotations

2. Create the feature map by combining the distance map and nuclei z-slices

3. Apply k-mean clustering on the feature map

4. Identify background cluster (i.e., Min overlap with the dilated point labels)

5. Generate 3D binary masks

6. Generate the 2D Voronoi label using point annotations

for j = 1 : Ncell(Number of convex cells in the 2D Voronoi label) do

(a) Generate the Voronoi Cell (VC) binary mask for cell j

(b) Find the intersection between VC mask and 3D binary mask (I3Dj )

(c) Determine the set of slices (Sj) containing the Nuclousj by taking

summation over the z-slices in I3Dj

(d) Find the intersection between VC and the nuclei/marker z-slice

(e) Compute the maximum intensity projection for nuclei and marker

channels only over the corresponding slices (Sj) for convex cell j

end
end

of information are required: (a) which z-slices are associated with each individual nucleus and (b) the
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boundaries of each nucleus over the x- and y-axes. Since the boundaries of nuclei are not clear when

using point annotations, we utilize a k-mean clustering map and Voronoi label approaches to determine

the approximate boundaries of each nucleus over the x-, y-, and z-axes (Steps 1-6 in Algorithm 2). It

is essential to note that all nuclei have been annotated with points located at their centers, ensuring

we have ground truth point annotations for all nuclei in the dataset. However, due to the nature

of 3D images, nuclei are often spread across multiple slices, and the center of each nucleus is only

located in one of the slices. Therefore, while every nucleus has a point annotation, these annotations

are limited to the z-slice where the nucleus center is present. Consequently, point annotations for

all nuclei per slice are unavailable. Using k-means clustering, we generate 3D binary masks (steps

3-5). First, we create a 3D distance map from the distance transform of point annotations (step 1).

This map represents distances to the nearest nuclear point. Combining the distance map with nuclei

channels of the multi-channel nuclei/marker image creates a features map (step 2). Next, k-means

clustering (k=3) is applied to the feature maps, resulting in 3D binary masks. Label 0 represents

the background cluster with minimal overlap with dilated point labels, and label 1 corresponds to

nuclei pixels. An example of the sequence of the nuclei channels and corresponding 3D binary mask is

depicted in Figure 4.4 -C. As shown, the binary mask indicates that the given nucleus in the orange

square is spreading only over z-slices from four to nine (i.e., it approximates the nucleus’ boundaries

over the z-axis). To find the nuclei boundaries on the x- and y-axes, Voronoi labels are created (step 6)

using point annotations (Figure 4.4-B-(1)). Assuming that each Voronoi convex cell contains only one

nucleus, the Voronoi edges separate all nuclei from each other well. Next, we iterate through Voronoi

convex cells (steps a-e) and create a Voronoi Cell (VC) binary mask for each cell, approximating

nuclei boundaries on the x- and y-axes. Figure 4.4-B-(2) shows the VC binary mask for convex cell j.

Since each cell is assumed to contain only one nucleus, the intersection of the VC binary mask with

nuclei/marker channels reveals the nucleus in that cell (Figure 4.4-B-(4)). Likewise, the intersection

of the VC and 3D binary masks will reveal only the nucleus mask (represented by the color white)

within the corresponding cell (Figure 4.4-D-(1)). As nuclei and background take values of one (i.e.,

white color) and zero (i.e., black color) respectively, simply, summation over the z-slices can be used

as a detector of the presence of the nucleus. If the sum is greater than one, it implies the nucleus

is present in that z-slice. Figure 4.4-D-(1) shows that the nucleus corresponding to the convex cell j
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Figure 4.5: (a) Original image, (b) Point annotation, (c) Cluster label which is refined using Voronoi

diagram

is spreading over z-slices four to nine, and its boundaries over the x- and y- axes can be determined

using the given convex cell edges. Figure 4.4-D-(3) illustrates that a MIP is performed over the z-slices

spanning from four to nine for the nucleus situated within the convex cell. This technique avoids the

lineage tracing marker, which spreads over slices zero to three, from overlapping with the nucleus.

4.3.2 Supervised Contrastive Learning-based (SCL) training strategy

The Hover-Net model [25] is used for nuclei detection and classification due to its strong generalizability

and instance detection performance. As we can not directly use the point-level labels for training the

Hover-Net model, we used the cluster label approach proposed in [31] to extract pixel-level labels

from point annotation via information obtained from the shape of nuclei in the original image. The

generated pixel-wise masks contain three regions: nuclei, background, and an ignored area (Figure

4.5). For training the NP branch, Equation 4.1 is used, employing the cross-entropy (LCE), Dice

(LDice), and entropy-minimization (Lentropy) loss functions. We adopted a semi-supervised learning

approach and used entropy minimization loss function in these unlabeled areas to train the model

over them without requiring labels. The entropy minimization loss encourages the model to output

confident predictions over these unlabeled areas. The NC branch is trained by using Equation 4.2,

employing the cross-entropy (LCE), Dice (LDice), and SCL (LSCL) loss functions. The Hover branche

was trained using the approach from [124]. The LCE , LDice, LSCL and Lentropy losses are computed

via Equation 4.3.
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LNP = LCE + LDice + Lentropy (4.1)

LNC = LCE + LDice + LSupCon (4.2)

LCE = − 1
nΣ

N
i=1Σ

K
k=1Xi,k(I)logYi,k(I)

LDice = 1− 2ΣN
i=1(Xi(I)×Yi(I))+ϵ

ΣN
i=1Xi(I)+ΣN

i=1Yi(I)+ϵ

LSCL = −1
|P (q)|

∑
q+∈P (q) log

exp(q·q+/τ)
exp(q·q+/τ)+

∑
q−∈N(i) exp(q·q−/τ)

Lentropy = −ΣN
i=1Σ

K
k=1Yi,k(I)logYi,k(I)

(4.3)

where Y, X, K, N, and ϵ(1.0e− 3) are the prediction, ground truth, number of classes, number of

images, and smoothness constant, respectively. The Cross-Entropy Loss function has two limitations:

1) It penalizes pixel-wise predictions independently without considering their relationships, and 2) It

does not directly supervise the learned representations. HoVer-Net improves upon the Cross-Entropy

Loss function by incorporating the Dice loss function, which considers pixel dependencies within an

image. However, the Dice loss function does not account for global semantic relationships across

images. To address the issue, we enhance our model’s performance by incorporating Pixel-to-Pixel

and Pixel-to-Region Supervised Contrastive Learning (SCL) [125] techniques alongside cross-entropy

and Dice losses in the third branch. We introduce a projection head in the NC branch, outputting

the embedding q per pixel, which is optimized using the last row of Equation 1. where, p(q) and N(q)

indicate the set of positive and negative embedding samples, respectively.

4.4 Experimental Results

Metrics: To evaluate the model’s performance, we utilize the popular detection/classification met-

rics: precision (P = TP
TP+FP ), recall (R = TP

TP+FN ), and F1-score (F1 = 2TP
2TP+FP+FN ).

Datasets: We experimented with three datasets: Cardiovascular dataset 1 (D1) and Cardio-

vascular dataset 2 (D2), containing advanced atherosclerotic lesion images from two mouse models.
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D1 has 13 images, with 11 used for training and 2 for testing. These images vary in size along the

z-axis (8 to 13). We extract 256 × 256-pixel patches with 10% overlap. The train and test sets have

370 and 74 patches respectively. Additionally, we have a separate evaluation set called D2 (29 images)

that are used for further evaluation. Our aim was to developed a label-efficient model that achieves

comparable results with minimum labeling effort, so we trained our model on the smaller dataset.

Please refer to Table 4.1 for more details. Additionally, we used the CoNSeP dataset 1 [25], which

contains 24,332 nuclei from 41 whole slide images (26 for training and 14 for testing), with 7 different

classes: fibroblast, dysplastic/malignant epithelial, inflammatory, healthy epithelial, muscle, other,

and endothelial.

Table 4.1: Cardiovascular datasets

Charecteristices Dataset Value

Model
D1 Myh11 − CreERT2 − RADROSA26 − STOPflox −

tdTomApoe− /−

D2 Myh11 − CreERT2 − RADROSA26 − STOPflox −

tdTomIrs1∆/∆Irs2∆/∆

Diet
D1 Western diet for 18 weeks

D2 Western diet for 18 weeks

Test time: We combine nuclei and marker channels per slice using the linear combination method

(Figure 4.1-a). The model detects and classifies nuclei in each slice individually. The final output is

integrated over the slices with this rule: If a nucleus is predicted positive in at least one slice, it is

labeled positive, otherwise negative.

Results: Table 4.2 shows the performance of different approaches on D1 and D2. The first row

shows the results of using regular MIP during both the training and test stages, while the second row

shows the model’s performance trained using EMIP. The NP branch indicates the model’s performance

in detecting nuclei, and the NC branch denotes the model’s performance in classifying the type of

detected nuclei. As observed, the EMIP approach improves precision and F1 score metrics by 16.43%

1https://warwick.ac.uk/fac/cross fac/tia/data/hovernet/
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Table 4.2: The performance of our methods on D1 and D2

Model Branch
D1 D2

Precision Recall F1 Precision Recall F1

HoVer-Net [25] (MIP)
NP 0.8898 0.8894 0.8883 0.9233 0.8455 0.8816

NC 0.6608 0.8511 0.7424 0.7150 0.6663 0.6703

HoVer-Net [25] (EMIP)
NP 0.8551 0.9353 0.8880 0.9064 0.8743 0.8894

NC 0.7694 0.7800 0.7718 0.8114 0.7718 0.7760

Qu et al. [31] (EMIP)
NP 0.7774 0.8489 0.8084 0.6525 0.877 0.7431

NC 0.8548 0.6048 0.6881 0.8140 0.5749 0.6577

LECL
NP 0.8764 0.9154 0.8942 0.9215 0.877 0.8978

NC 0.8277 0.7668 0.7890 0.8392 0.7840 0.7953

Table 4.3: The effect of SCL based training approach on the CoNSep dataset

Model Fd F e
c F i

c F s
c Fm

c

HoVer-Net [25] w/o SCL (Weakly) 0.735 0.578 0.542 0.461 0.147

HoVer-Net [25] w SCL (Weakly) 0.738 0.576 0.551 0.480 0.212

and 3.96% on D1, respectively, indicating a decrease in false positives. To ensure a comprehensive

evaluation of our method, we have included Dataset D2 in our study. The selection of D2 was based

on its larger size and representativeness, making it suitable for robust performance assessment. As

observed, the EMIP approach achieves higher precision, recall, and F1 scores than the MIP method.

The study found that the EMIP approach reduces false positives in lineage tracing markers overlapping

with nuclei. Furthermore, we compare the performance of the HoVer-Net [25] model with Qu et al.[31]

on both datasets D1 and D2. Hyper-parameters for Qu et al.[31] was borrowed from [31]. As observed,

the HoVer-Net model [25] outperforms Quet al.[31] in both nuclei detection and classification. We

investigate the benefits of combining SCL-based training and EMIP in the LECL model. The SCL loss

enhances the model’s performance by capturing global semantic relationships between pixel samples,

resulting in better intra-class compactness and inter-class separability. On both D1 and D2, the LECL

model outperforms other models. For visualization examples, refer to Figure 4.6. Furthermore, the
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hyperparameters for all experiments have been provided in Table 4.4.

Table 4.4: Training setup for all experiments

Characteristic Value Characteristic Value

Pytorch 1.10 Loss function weights

Entropy 0.5

Cross-entropy 1

Dice loss 1

GPU Tesla p100 Number of epochs 100

Projection head Two convolutional layers, outputting a 256 l2-normalized fea-

ture vector

Ablation study: To investigate further the performance of the SCL-based HoVer-Net, we evaluate

the model on the ConSep dataset (Table 4.3). Here, Fd represents the F1-score for nuclei detection,

while F e
c , F

i
c , F

s
c , and Fm

c indicate the F1-scores for epithelial, inflammatory, spindle-shaped, and

miscellaneous, respectively. The SCL-based model achieves better performance.

4.5 Conclusion

Developing an automated approach for 3D nuclei detection and classification in fluorescent images

requires expensive pixel-wise annotations. To overcome this, we designed the LECL model, which

includes the EMIP and SCL components. The EMIP approach improves upon the limitations of the

MIP approach, while the SCL learning approach enhances the model’s performance by learning more

discriminative features.
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Figure 4.6: The model’s output trained using the HoVer-Net(MIP) and HoVer-Net(EMIP). The HoVer-

Net (EMIP) model correctly predicts label positive for nuclei in the yellow circle, which is consistent

with the ground truth labels. In contrast, HoVer-Net (MIP) incorrectly predicts these nuclei as

negative. Both models incorrectly predict the nuclei’s labels in the blue circle.

56



Chapter 5

ProtoGMM: Multi-prototype

Gaussian-Mixture-based Domain

Adaptation Model for Semantic

Segmentation

5.1 Introduction

In this dissertation, we present a Multi-prototype Gaussian-Mixture-based model (ProtoGMM) that

overcomes the limitations of existing UDA methods. The schematic representation of the ProtoGMM

model is shown in Figure 5.1. Unlike prevailing self-training approaches that focus solely on the

discriminative classifier of p(class|pixelfeature), ProtoGMM adopts a hybrid training approach, in-

tegrating both discriminative and generative models. The core of the ProtoGMM framework lies in

modeling the underlying distribution of source pixel features using generative Gaussian Mixture Mod-

els (GMMs) (Figure 5.1-a), optimized through Expectation-Maximization (EM). This novel approach

allows ProtoGMM to adapt effectively to multimodal data densities. Rather than relying on noisy

pseudo-labels from the discriminative classifier, ProtoGMM leverages the generative GMM model for
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Figure 5.1: Diagram of the ProtoGMM model

more efficient contrastive learning. The components of the Gaussian mixture model, which describe

the underlying distribution of pixel representations, serve as the most suitable representative proto-

types for contrastive losses. The ProtoGMM approach is rooted in the domain closeness assumption

[126], which suggests that features from two domains cluster together in a shared space, and clusters

with identical semantic labels are located in close proximity. Based on this foundational insight, the

ProtoGMM method departs from using noisy pseudo-labels from the discriminative classifier to per-

form contrastive learning. Instead, it determines the positive and negative clusters for the given target

sample by considering the underlying distribution of the source domain and the category prototypes

of the target domain. This, in turn, allows the method to identify positive and negative samples with

greater precision, enabling more guided and effective contrastive learning. By incorporating the GMM-

based model with contrastive learning loss, ProtoGMM functions as a generative model, significantly

improving the performance of the domain adaptation model when used alongside the discriminative

classifier. In addition to its advantages in contrastive learning, ProtoGMM excels at addressing the

label distribution shift, a common challenge in UDA tasks. The major contributions of this study are
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summarized as follows:

1. We present the ProtoGMM model for UDA in semantic segmentation.

2. By utilizing guided contrastive learning, our approach enhances self-supervised learning, elevat-

ing intra-class semantic similarity and reducing inter-class similarity between source and target

domains.

3. We address biases inherent in discriminative classifiers by combining a generative model with a

discriminative model.

4. We showcase the superior performance of our approach compared to the current state-of-the-art

in two scenarios: 1) GTA → Cityscapes, 2) Synthia → Cityscapes

5.2 Methodology

5.2.1 Problem formulation

In the UDA, ps(x, y) ∈ pS and pt(x, y) ∈ pT are the underlying source and target domain distributions,

respectively. Then, the labeled data DS (i.e. xs ∈ RH×W×3 and ys ∈ RH×W×C) is sampled i.i.d from

the source domain distribution (i.e. ps(x, y)) and unlabeled data DT (i.e. xt ∈ RH×W×3) is selected

i.i.d from marginal target domain distribution (i.e. pt(x)). Here, H and W represent the height and

width of the images, respectively, and C denotes the number of classes. The primary goal of UDA is

to train the model using both DT and DS to enhance the model’s performance on the target domain.

The model itself is composed of three components: an encoder (E), a multi-class segmentation head

(CL), and an auxiliary projection head (F). When given an input image x, the auxiliary projection

head processes the encoder’s output to obtain a feature map (f = F (E(x))). All features are mapped

to the l2-normalized feature vector. Subsequently, the multi-class segmentation head operates on the

encoder’s output to produce a class probability map (pred = CL(E(x))). We utilize the cross-entropy

loss (Lce) and ProtoGMM loss functions to train the model. The cross-entropy loss is computed for

the source and target domain images using their ground truth labels (ysi ) and pseudo labels (ŷti) as
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follows:

Ls
ce = −

H×W∑
i=1

C∑
c=1

I[ysi=c]log(preds,i,c)

Lt
ce = −

H×W∑
i=1

C∑
c=1

wt,i,cI[ŷti=c]log(predt,i,c)

ŷti = argmax
c

predt,i,c, I ∈ {1, 2, ..,H ×W}

(5.1)

To reduce pseudo-label noise, we applied confidence weights wt,i,c =

H×W∑
i=1

1
[max

c
predt

i,c
]>β

H×W [51]. We

adopt the teacher-student architecture [127] and the same framework used in [51] as the strong back-

bone. The weights of the teacher network are assigned as the exponential moving average (EMA) of

the student network’s weights in every iteration.

Algorithm 3: ProtoGMM model

Initialize the weights of the model.

for Iter = 1: NIter do

for n ∈ 1, ..., N s
batch(source minibatch) do

Update source pixel data distribution GMM model {ϕ∗
c} using Sinkhorn EM

if Iter > Iterdist then

Apply source domain multi-prototype Contrastive Learning for the feature map fs

end

Update the source prior distribution δcsource

end

for n ∈ 1, ..., N t
batch(target minibatch) do

Update the target prior distribution δctarget

Update target bank by choosing reliable ft

if Iter > Iterdist then

Aligning source and target domain by applying target domain multi-prototype

Contrastive Learning for the feature map ft

end

end

end
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5.2.2 ProtoGMM model

Our primary goal is to enhance the performance of domain adaptation techniques by improving the

alignment of features between source and target domains. While most self-training techniques rely

heavily on domain alignment methods, they often neglect the importance of precise domain alignment

[51, 38]. To tackle this issue, we developed a novel approach called multi-prototype-guided alignments

in the embedding space. Our method involves identifying the most representative prototypes per

category and utilizing them to align the source and target domains. However, the challenge lies in

finding prototypes that can effectively capture the diversity in semantic concepts for each category. If

sub-class labels are available, we can use them to define these prototypes for each class. Another pos-

sible approach is to utilize global category prototypes from the source domain to guide the alignment

between the source and target domains. However, this method has limitations, as global prototypes

only capture the common characteristics of each category and do not fully leverage the potential

strength of semantic information [51]. Moreover, this approach is based on the unimodality assump-

tion of each category, ignoring within-class variations. To overcome these challenges, we introduce the

ProtoGMM approach, which aims to address the issues associated with existing methods and improve

domain alignment for enhanced domain adaptation. In this approach, we estimate the underlying

multi-prototype source distribution by employing the GMM model on the feature space of the source

samples. The components of the GMM model serve as the most suitable representative prototypes.

The GMM model adapts effectively to multimodal data density, capturing within-class variations. In

this approach, to increase intra-class semantic similarity and decrease inter-class similarity across the

source domain, we compute the multi-prototype contrastive learning loss between source pixel embed-

dings and the source prototypes. As illustrated in Algorithm 3, during each iteration, we first update

the Gaussian Mixture Model (GMM) of the source pixel data distribution using the high-dimensional

l2-normalized features fs of the source pixels. Subsequently, we compute the multi-prototype Con-

trastive Learning for the source sample features (fs). For the semantic alignment of the source and

target domain on the feature space, we perform contrastive learning between the embedding of the

target samples and source domain multi-prototypes, as shown in Algorithm 3. Since the model is

biased toward the source domain and exhibits a discrepancy between the source and target domains,
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we perform an alignment mechanism to identify reliable prototypes for the given target sample. Our

approach’s details are elaborated in the following sections.

5.2.3 Multiprototype source domain distribution

The goal is to represent the Multiprototype source domain joint distribution p(fs, c) in the latent

feature space as shown in Figure 5.1-a. To achieve this, we can approximate the joint distribution by

estimating the class conditional distribution p(fs|c) together with the class prior p(c):

p(fs, c) = p(fs|c)p(c) (5.2)

In our approach, we establish uniform class source priors, achieved through the adoption of a

class-balanced sampling technique called rare class sampling (RCS) proposed in [50]. By employing

RCS, each class is equally represented during training, leading to a balanced distribution. To further

enhance the capabilities of our model, we employ generative GMMs to estimate the class-conditional

distribution p(fs|c) for each category. This innovative technique enables ProtoGMM to adapt adeptly

to datasets with multiple modes of data densities. The GMM consists of a weighted mixture of M

multivariate Gaussians, which effectively models the pixel data distribution of each class c in the

D-dimensional feature space, as shown in Equation 5.3.

p(fs|c;ϕc) = ΣM
m=1p(m|c;πc)p(fs|c,m;µc,Σc)

= ΣM
m=1πcmN (fs;µcm,Σcm)

(5.3)

where, πcm is a prior probability for each class and ΣM
m=1πcm = 1; Σc and µc are the covariance

matrix and mean vector.

The GMM classifier is parameterized by {ϕ∗
c = {πc,µc,Σc}}Cc=1 and is optimized online using a

momentum-based version of the (Sinkhorn) EM (Expectation-Maximization) algorithm, as proposed

in [49]. The objective of the EM method is to maximize the log-likelihood over the feature-label pairs,

which is expressed as follows:

ϕ∗
c = argmax

ϕc

∑
fs:ys=c

log

M∑
m=1

p(fs,m|c;ϕc) (5.4)
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5.2.4 Source domain multi-prototype Contrastive Learning

We apply contrastive learning between source pixel embeddings and class prototypes, calculated as

the means of GMM components for each class, using Equation 5.5. The question that arises is

how to select negative and positive prototypes for the given source sample. As previous works have

confirmed the significance of hard negatives in metric learning [128], we perform a hard sampling

mechanism to enable multi-prototype contrastive learning on the source domain. Employing Bayes’

rule and assuming uniform class priors, we compute the posterior using Equation 5.6. The probability

ps(m|fs, c;ϕ∗
c) indicates the likelihood of data fs being assigned to component m in class c.

Based on the values of ps(m|fs, c;ϕ∗
c) for the given source sample, considering its ground truth

label c, we choose the prototype corresponding to the mean of the closest component with the same

label as a positive prototype (Equation 5.7). Moreover, from the GMM distribution of the categories

with different labels, we select the closest component as the hardest component for each category as

hard negative prototypes:

lprotoGMM = −log
efsq

+/τ

efsq+/τ +ΣN
n=1e

fsq
−
c /τ

(5.5)

ps(m|fs, c;ϕ∗
c) =

πc,mN (fs|µc,m,Σc,m)

ΣM
m′=1πc,m′N (fs|µc,m′ ,Σc,m′)

(5.6)

q+ = {µc,m+ | m+ = argmax
m

ps(m|fs, c;ϕ∗
c), c = ys} (5.7)

q−c = {µc,m− | m− = argmax
m

ps(m|fs, c;ϕ∗
c), c}∀c ̸= ys (5.8)

5.2.5 Prior distribution update

We update the prior distribution of the target and source domain using Equation 5.9. The equation

functions for both domains and the index d indicates whether it pertains to the source or target

domains. Where, δcIter denotes the proportion of pixels belonging to the c-th category in the given

iteration,Nd
batch is a number of the images in the given minibatch, H ×W is the multiplication of the

height and width of the image indicating the total number of the pixels, ydn,i shows the pixel’s ground
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truth label for the source domain and pseudo label for the target domain.

δcIter =
1

Nd
batch ×H ×W

Σ
Nd

batch
n=1 ΣH×W

i=1 ydn,i

δcd = αδcd + (1− α)δcIter ∀d = {s, t}
(5.9)

5.2.6 Update target bank

The target bank is updated in each iteration by incorporating reliable pixel embeddings from each

target mini-batch. To identify these reliable embeddings, we begin by computing the average pixel

embedding per class within the given mini-batch, utilizing their pseudo labels (Equation 5.10). Next,

we assess their cosine similarity with the average mean per class and select the M pixel embeddings

with the highest cosine similarity scores as the most reliable representations using Equation 5.11. In

each iteration, M represents the selected pixel embeddings for updating the target memory bank.

µ′c
t =

Σ
Nt

batch×H×W
i ft,i × I(ŷt,i = c)

Σ
Nt

batch×H×W
i I(ŷt,i = c)

(5.10)

S = {(si, fi)|si = cosine(µ′c
t , ft,i)}

S∗ = sort
si

(S)[: M ]
(5.11)

5.2.7 Target domain prototypes

We estimate the underlying distribution of the target domain by computing the class prototypes, as

shown in Figure 5.1-b. The target domain prototypes per category will be updated using the target

memory bank and the exponential moving average as follows:

µc
t = αµc

t + (1− α)µ′c
t ∀d = {s, t} (5.12)

Noted, We employ Class-balanced Cropping (CBC) [51] on the unlabeled target image, a technique

that encourages the model to prioritize cropping from regions with multiple classes.
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5.2.8 Aligning source and target domain distribution

To align the distributions of the source and target domains, we employ multi-prototype Contrastive

Learning between the target pixel embeddings and source multi-prototypes (Figure 5.1-c). Since the

true labels of target samples are unavailable, we assign a pseudo label to the given target sample

using the posterior probability pt(c|ft;ϕ∗
c) and its similarity to the target prototypes, as shown in

Equation 5.13. For example the sample shown with the orange color is close to the target prototype

of class 1 and source component 3 of class 1, as depicted in Figure 5.1-c. The posterior probability

represents the likelihood of the given target sample belonging to class c. The rationale for utilizing the

posterior probability to assign pseudo labels is grounded in the domain closeness assumption. This

assumption suggests that features from two domains are clustered in a shared space, wherein clusters

with identical semantic labels are situated close to each other [38]. With this premise, we posit that

the target sample should be in proximity to the source domain distribution with the same category

within the feature space.

ŷt = argmax
c

pt(c|ft;ϕ∗
c)×

ecosine(µ
t
c,ft)

Σc′e
cosine(µt

c′ ,ft)
(5.13)

where the first term is the posterior probability and is computed using Proposition 1; the second

term computes the cosine similarity of the given target sample with the target prototype. The second

term corrects the posterior probabilities of class c for the given target sample based on its similarity

to the target prototype of class c.

Proposition 1: Given ps(c|ft;ϕ∗
c) =

∑
m′
ps(c,m

′|ft;ϕ∗
c), the posterior probability for the given

target sample ft is computed as follows:

pt(c|ft;ϕ∗
c) = ps(c|ft;ϕ∗

c)×
δctarget
δcsource

(5.14)

Noted, adjusting the posterior using the ratio
δctarget
δcsource

addresses the issue of label shift as noted in

[52].

Proof. Based on the Bayes rule, We have the below relationship for the posterior probability trained
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Figure 5.2: Qualitative analysis on GTA → Cityscapes (first row) and Synthia → Cityscapes (second

row). The ProtoGMM shows a clear visual improvement.

on the source (ps) and the target (pt) domains.

pt(c|ft;ϕ∗
c) α pt(f(x)|c;ϕ∗

c)pt(c)

ps(c|ft;ϕ∗
c) α ps(f(x)|c;ϕ∗

c)ps(c)
(5.15)

If we assume the conditional data distribution is well aligned, i.e. pt(f(x)|c) = ps(f(x)|c). We can

extract the below relationship between the posterior probabilities using Equation 5.15.

pt(c|ft;ϕ∗
c) = ps(c|ft;ϕ∗

c)×
pt(c)

ps(c)
= ps(c|ft;ϕ∗

c)×
δctarget
δcsource

(5.16)

To perform the multi-prototype Contrastive Learning between the target pixel embeddings and

source multi-prototypes, the positive and negative prototypes are chosen using Equation 5.17.

q+ = {µc,m+ | m+ = argmax
m

pt(m|ft, c;ϕ∗
c), c = ŷt}

q−c = {µc,m− | m− = argmax
m

pt(m|ft, c;ϕ∗
c), c}∀c ̸= ŷt

(5.17)

5.3 Experiments

5.3.1 Datasets

• Cityscapes [129]: This dataset comprises real urban scenes captured across 50 cities in Ger-

many and nearby nations. This dataset has segmentation masks with 19 distinct categories
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Table 5.1: Comparison with state-of-the-art methods for UDA

GTA5→Cityscapes

Model Road S.Walk Build. Wall Fence Pole T.Light T.Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.Bike Bike mIoU

AdaptSeg 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4

CBST 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

DACS 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1

CorDA 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6

BAPA 94.4 61.0 88.0 26.8 39.9 38.3 46.1 55.3 87.8 46.1 89.4 68.8 40.0 90.2 60.4 59.0 0.0 45.1 54.2 57.4

ProDA 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5

DAFormer 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3

DAFormer+

ProtoGMM
97.32 79.53 90.13 55.57 52.22 53.69 58.18 63.38 90.53 49.53 91.83 74.56 46.42 93.25 73.21 79.96 68.74 53.77 65.41 70.4

HRDA 96.4 74.4 91 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8

HRDA+

ProtoGMM
96.83 77.31 90.9 60.5 55.11 59.87 62.88 73.59 90.75 49.96 94.78 79.22 53.48 94.7 86.77 89.45 78.23 65.3 67.34 75.1

Synthia→Cityscapes

Model Road S.Walk Build. Wall Fence Pole T.Light T.Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.Bike Bike mIoU

AdaptSeg 79.2 37.2 78.8 - - - 9.9 10.5 78.2 - 80.5 53.5 19.6 67.0 - 29.5 - 21.6 31.3 37.2

CBST 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 - 78.3 60.6 28.3 81.6 - 23.5 - 18.8 39.8 42.6

DACS 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 - 90.8 67.5 38.3 82.9 - 38.9 - 28.5 47.6 48.3

CorDA 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 - 90.4 69.7 41.8 85.6 - 38.4 - 32.6 53.9 55.0

BAPA 91.7 53.8 83.9 22.4 0.8 34.9 30.5 42.8 86.6 - 88.2 66.0 34.1 86.8 - 51.3 - 29.4 50.5 53.3

ProDA 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 - 90.4 69.7 41.8 85.6 - 38.4 - 32.6 53.9 55.0

DAFormer 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 - 89.8 73.2 48.2 87.2 - 53.2 - 53.9 61.7 60.9

DAFormer+

ProtoGMM
93.4 64.3 87.8 23.5 14.1 53.6 60.1 59.4 86.3 - 88.6 65.2 49.5 89.3 - 62.3 - 52.3 63.6 63.3

HRDA 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 - 92.9 79.4 52.8 89.0 - 64.7 - 63.9 64.9 65.8

HRDA+

ProtoGMM
91.92 59.15 88.67 46.16 4.47 59.59 66.63 62.26 87.48 - 94.07 81.08 57.77 91.5 - 50.42 - 65.25 66.92 67.09
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Table 5.2: Comparison with state-of-the-art Contrastive learning approaches

GTA→Cityscapes

Model BankCL UniProto ProtoGMM

mIoU 69.12 69.48 70.4

Synthia→Cityscapes

Model BankCL UniProto ProtoGMM

mIoU 61.46 61.71 62.88

for 2,975 training images and 500 validation images, all at a resolution of 2048×1024 pixels.

We use the unlabeled training set as a target domain in our experiments, while evaluations are

conducted using the corresponding validation set.

• GTA [53]: The dataset comprises 24,966 synthetic images extracted from the immersive open-

world game ”Grand Theft Auto V”, each accompanied by corresponding semantic segmentation

maps. These images have a resolution of 1914x1052. This dataset is used as a source domain

and has 19 common semantic annotations with the Cityscapes dataset.

• Synthia [54]: It is a synthetic dataset encompassing 9400 photo-realistic frames with a resolu-

tion of 1280 × 960. These frames, rendered from a virtual, are paired with pixel-level annotations.

This dataset serves as the source domain and shares 13 common semantic annotations with the

Cityscapes dataset.

5.3.2 Implementation Details

Network architecture: For DAFormer+ProtoGMM and HRDA+ProtoGMM, we adopt the same

framework and mainstream pipelines as suggested in [50] and [130], respectively. Furthermore, we

incorporate two 1 × 1 convolutional layers with ReLU [51] as a projection head into the network,

which maps the high-dimensional pixel embeddings into a 64-dimensional l − 2 normalized feature

vector (D=64). Also, the covariance matrices Σ ∈ RD×D used in GMM are restricted to a diagonal

structure.

68



Ph.D. Dissertation Nazanin Moradinasab

Table 5.3: Number of components

Model GTA5→City. Synthia→City.

M 1 3 5 7 1 3 5 7

mIoU 69.2 69.7 70.4 69.6 61.7 63.3 62.9 61.2

Table 5.4: Comparison with CL baseline methods

Model UniProto BankCL ProtoGMM

mIoU 60.0 59.42 61.4

Training: We follow the same training regime as described in [50] and [130] for DAFormer+ProtoGMM,

and HRDA+ProtoGMM, respectively. All models are developed using PyTorch 1.8.1 and trained on a

single NVIDIA Tesla V100-32G GPU. In DAFormer+ProtoGMM and HRDA+ProtoGMM, We used

the AdamW optimizer [131] and set the betas set and weight decay at (0.9, 0.999) and 0.01. We incor-

porate the learning rate warmup policy as same as [50]. We set α to 0.9 and the EMA weight update

parameter (β) for the teacher network to 0.999. We train the the DAFormer+ProtoGMM model for

60000 epochs and the HRDA+ProtoGMM model for 80000 epochs. For the generative optimization of

GMM, we follow the same framework from GMMSeg [49]. In each iteration, we perform one iteration

of the momentum (Sinkhorn) Expectation-Maximization (EM) process, on both the current training

batch and the external memory. The size of external memory is 32K pixel features per category and

the number of components per category is set to 5. This memory is updated by the first-in, first-out

matter and by selecting 100 pixels per class from each image. The size of the target memory bank is

16K pixel features per class. Our evaluation metric employs per-class intersection-over-union (IoU),

mean IoU across all classes, precision, recall, and F1-score for different scenaios.

5.3.3 Comparison with existing UDA methods

We compare the ProtoGMM with existing methods. We show that the ProtoGMM improves the

performance of existing UDA methods in two representative synthetic-to-real adaptation scenarios:

GTA5 → Cityscapes and Synthia → Cityscapes in Table 5.1. The UDA methods include AdaptSeg
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[94], CBST [132], DACS [133], CorDA [134], BAPA [105], ProDA [45], and DAFormer [50]. Our results

reveal that DAFormer+ProtoGMM surpasses the current method by a notable margin of +2.1 mIoU

in the GTA5 → Cityscapes scenario and +2.4 mIoU in the Synthia → Cityscapes case, as outlined

in Table 5.1. Additionally, we note that HRDA+ProtoGMM exhibits superior performance over the

existing method, achieving a margin of +1.3 mIoU in the GTA5 → Cityscapes scenario and +1.29

mIoU in the Synthia→ Cityscapes case, as detailed in Table 5.1. Figure 5.2 shows that the ProtoGMM

approach improves the performance of the HRDA model in classes like wall, walk-side, Bus, Sign, etc

indicated by white dotted boxes.

Ablation study:

The comparison between the ProtoGMM and state-of-the-art pixel contrast methods, including

UniProto and BankCL, is illustrated in Table 5.4. In the UniProto approach, global class prototypes

are utilized as both positive and negative samples. This results in one positive class and C − 1 neg-

ative classes per sample. Conversely, the BankCL method employs an approach that incorporates

multiple positive and negative samples from a memory bank [51]. This involves storing the local

category centroids of individual source images in the memory bank. As Table 5.4 indicates the Pro-

toGMM outperforms both BankCL and UniProto methods in both GTA5 → Cityscapes and Synthia

→ Cityscapes cases. Table 5.3 shows optimal values for M: 5 for GTA5 and 3 for Synthia. Further-

more, to illustrate our method’s effectiveness, we compared the DAFormer+ProtoGMM model with

the DeepLab-V2 backbone to baseline CL methods (BankCL, UniProto) for the GTA5 → Cityscapes

scenario. As observed the DAFormer+ProtoGMM model outperforms the baseline ones.

5.4 Conclusion

In this dissertation, we introduce the protoGMM model which involves estimating the multi-prototype

source distribution by using GMM models in the feature space. The GMM components serve as

representative prototypes, effectively adapting to the diversity of the data and capturing variations

within classes. To enhance intra-class semantic similarity, reduce inter-class similarity, and align the

source and target domains, we apply multi-prototype CL between the source distribution and target

samples. Experimental results demonstrate the effectiveness of our approach on the UDA benchmarks.
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Chapter 6

GenGMM: Generalized

Gaussian-Mixture-based Domain

Adaptation Model for Semantic

Segmentation

6.1 Introduction

In this dissertation, we introduce a novel domain adaptation setting called Generalized Domain Adap-

tation (GDA) which possesses the following characteristics: 1) Partially or noisy labeled source data,

2) Weakly or unlabeled target data. The GDA setting relaxes the problem of UDA by allowing the use

of unlabeled or weakly labeled data from the source domain and weak labels from the target domain.

This work addresses domain adaptation challenges in GDA settings with partially labeled source and

target data. We introduce a Generalized Gaussian mixture-based (GenGMM) Domain Adaptation

Model, leveraging the source and target domain distributions to enhance the quality of weak and

pseudo labels and achieve alignment between the source and target domains. Instead of solely relying

on noisy pseudo-labels generated by a discriminative classifier, GenGMM employs generative Gaussian
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Mixture Models (GMMs) for both the source and target domains to facilitate more efficient contrastive

learning and alignment as well as addressing the issue of partially labeled source and target domain.

The GenGMM approach is based on two key principles: 1) the domain closeness assumption [126] and

2) feature similarity between labeled and unlabeled pixels [135]. The first principle implies that both

domains inherently cluster in a shared space, with items of identical semantic labels situated closely

within these clusters. The second principle highlights that unlabeled pixel embeddings tend to be

closer to labeled pixel embeddings with matching semantic labels within each domain. Expanding on

these principles, GenGMM diverges from the common approach of relying on unreliable pseudo-labels

generated by the discriminative classifier for contrastive learning. Instead, it identifies positive and

negative clusters for a given target sample by considering the underlying distribution of both source

and target domains. We estimate the source domain’s underlying distribution using the generative

GMM, optimized through Expectation-Maximization (EM) on labeled source pixel features. There

are three distinct advantages in estimating the source pixel feature distribution using the GMM.

First, it adapts effectively to multimodal data densities. Second, by capturing category-wise Gaussian

mixtures for feature representations, the components of the GMM can serve as the most suitable

representative prototypes for contrastive loss to align the source and target domain. Third, the GMM

model provides reliable information from labeled pixels to refine the unlabeled or weakly labeled pix-

els, achieving more reliable supervision on both source and target domains. Inspired by [135], we

model the similarity between the labeled and unlabeled pixels of the target domain by modeling the

underlying target distribution using the adaptive GMM. Specifically, we use target weak labeled pixels

as the centers of Gaussian mixtures, allowing us to model the data distribution for each class in the

high-dimensional feature space. This enables us to utilize the soft GMM predictions to provide more

probabilistic guidance for unlabeled regions, enabling more guided and effective contrastive learning.

Our framework utilizes reliable information from unlabeled/weakly labeled data to enhance model

performance in GDA settings on the target domain. We summarise our main contributions as:

1. We formally introduced the GDA setting, where both the source and target domains are weakly

labeled.

2. We developed the GenGMM model, which incorporates the underlying distribution of the source
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Figure 6.1: GMM-based contrastive learning. a) Labeled and unlabeled source data along with the

GMM model with 3 components fitted on labeled source data. b) Unlabeled target data, together

with the source GMM model. c) Unlabeled target data, coupled with the adaptive GMM model fitted

to labeled target data and the source GMM model.

and target domain data using a GMM as a generative model, in conjunction with a discriminative

classifier, to enhance the performance of the UDA model.

3. Extensive experiments conducted on numerous benchmark datasets have confirmed the effec-

tiveness of the GenGMM approach within the GDA settings.

4. We showcase the superior performance of our approach compared to the current state-of-the-art

on cell-type adaptation in immunofluorescent images, where each cell type serves as an individual

domain. We highlight the effectiveness of the GenGMM model in improving segmentation/de-

tection performance across different cell types.

5. The experimental results indicate that the GenGMM approach achieved high performance where

the source data contains real-world label noise.
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6.2 Methodology

In this section, we begin by providing an overview of the foundations (Sec. 6.2.1), in which we introduce

the GDA settings and the preliminary information essential for understanding our approach. Following

this, we will delve into the key components of the GenGMM approach, beginning with the estimation

of the source domain distribution (as detailed in Sec. 6.2.2), where we employed GMM to estimate the

underlying source domain’s pixel distribution. We then proceed to explain our GMM-based contrastive

learning approach (Sec. 6.2.3), in which we outline our strategy for reducing the domain gap between

the source and target domains using contrastive learning, guided by the underlying pixel distribution

of the source and target domains.

6.2.1 Preliminaries

In the GDA setting, the underlying source and target domain distributions are ps(x, y) ∈ pS and

pt(x, y) ∈ pT , from which the source DS and target DT datasets are sampled i.i.d. We sample labeled

source data Sl = {xs,li , ys,li } from DS , unlabeled source data Su = {xs,ui } from the marginal distribution

of DS over X, labeled target data Tl = {xt,li , yt,li } from DT , unlabeled target data Tu = {xt,ui } from

the marginal distribution of DT , where x ∈ RH×W×3, y ∈ RH×W×C and C is the number of classes.

Ll
ce = −

∑
d∈{s,t}

H×W∑
i=1

C∑
c=1

I
[yd,li =c]

log(ŷd,li,c ) (6.1)

Lu
ce = −

∑
d∈{s,t}

H×W∑
i=1

C∑
c=1

wt,i,cI[ŷd,ui =c]
log(ŷd,ui,c )

ŷd,ui = argmax
c

ŷd,ui,c , I ∈ {1, 2, ..,H ×W}

wt,i,c =

H×W∑
i=1

1
[max

c
ŷd,ui,c ]>β

H ×W

(6.2)

To enhance the model’s performance in the target domain, GDA primarily focuses on training with

all Sl, Su, Tl, and Tu. The model itself is comprised of three key elements: an encoder (E), a multi-

class segmentation head (CL), and an auxiliary projection head (F). When given an input image

x, the auxiliary projection head processes the encoder’s output to generate a feature map (f =
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F (E(x))). These features are then transformed into an l2-normalized feature vector. Subsequently,

the multi-class segmentation head operates on the encoder’s output to produce a class probability map

(ŷ = CL(E(x))). For model training, we employ the cross-entropy loss (Lce) over both labeled and

unlabeled data (i.e., Eqs. 6.1 - 6.2), in addition to the GenGMM loss functions. Eq. 6.1 represents

the cross-entropy loss function applied to the labeled data from both the source and target domains,

utilizing the ground truth labels yd,li , with d indicating the domain, which can take values source (s)

or target (t). However, the cross-entropy loss function for unlabeled data from both the source and

target domains is computed using Eq. 6.2. Since pseudo labels are typically noisy, as suggested in [51],

we apply weights to the loss values. These weights are determined by the confidence weights (wt,i,c)

computed in Eq. 6.2. In addition, we implement the teacher-student architecture [127] and employ

the same framework as used in [51, 50] to establish a robust foundation. Notably, the weights of the

teacher network are assigned as the exponential moving average of the student network’s weights in

each iteration [127].

6.2.2 Source domain distribution

Our approach focuses on estimating the source domain distribution, denoted as p(fs, c) = p(fs|c)p(c),

using labeled source data. To achieve this, we estimate two vital components: the class conditional

distribution p(fs|c) and the class prior p(c). We establish uniform class source priors using rare class

sampling (RCS), a technique introduced in DAFormer [50]. Additionally, as shown in Fig. 6.1-a, we

employ a GMM model that consists of a weighted mixture of M multivariate Gaussians to estimate

the class-conditional distribution p(fs|c) for each category c. The GMM model effectively models the

pixel data distribution within the D-dimensional feature space, as described by Eq. 6.3. The GMM

classifier, parameterized as ϕc = {πc,µc,Σc}Cc=1, is optimized online using a momentum-based variant

of the (Sinkhorn) EM (Expectation-Maximization) algorithm, as proposed by Liang et al. (2022) [49].

The GMMmodel is optimized exclusively using source pixel embeddings with pseudo labels that match

their ground truth labels. Consequently, the model remains unaffected by real-world label noise in

noisy source domains. The EM method’s objective is to maximize the log-likelihood over feature-label

75



Ph.D. Dissertation Nazanin Moradinasab

pairs (i.e. ϕ∗
c = argmax

ϕc

∑
fs:ys=c

log
∑M

m=1p(fs,m|c;ϕc)).

p(fs|c;ϕc) = ΣM
m=1p(m|c;πc)p(fs|c,m;µc,Σc)

= ΣM
m=1πc,mN (fs;µc,m,Σc,m)

(6.3)

where, πc,m represents the prior probability for each class, with the constraint that ΣM
m=1πcm = 1. Σc

and µc signifies the covariance matrix and mean vector, respectively.

6.2.3 GMM-based contrastive learning

We perform contrastive learning between the pixel embeddings (fd, ∀d ∈ {s, t}) and the components of

the source GMMmodel, which act as the most representative prototypes, using Eqs. 6.4. Nevertheless,

the selection of negative (q−) and positive (q+) prototypes is challenging for unlabeled or weakly

labeled pixels, as pseudo-labels from the discriminative classifier are noisy. Consequently, using them

may result in a significant drop in performance [48].

lGMMCl = −αlog
efdq

+
c /τ

efdq
+
c /τ +ΣC

c=1
c′ ̸=c

efdq
−
c′/τ

(6.4)

To address this challenge, we leverage two foundational assumptions: 1) the domain closeness assump-

tion [126] and 2) the feature similarity between labeled and unlabeled pixels [135]. According to these

two assumptions, we select the positive/negative prototypes based on the similarity between unlabeled

or weakly labeled pixel embeddings and prototypes, which is measured using the fitted GMM model

on the labeled source pixel embeddings. This, in turn, allows the method to identify positive/negative

samples with greater precision. To further mitigate noise, we introduce weighting (α) that considers

each feature embedding’s proximity to the positive prototypes in contrastive training. The details

of choosing the positive/negative prototypes for source and target pixel embeddings, along with the

value of α, are described in the following sections. The summary of the GenGMM model is shown in

Algorithm 4.
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Algorithm 4: GenGMM model

for Iter = 1: NIter do

for n ∈ 1, ..., N s,l
batch(Labeled source minibatch) do

Get pixel source features f l
s

Update source pixel data distribution GMM model {ϕ∗
c} using Sinkhorn EM(Sec.

6.2.2)

Identify positive&negative prototypes(Eq. 6.5-6.6)

Set α = 1 for pixel feature f l
s Compute loss lGMMCl for feature f l

s (Eq.6.4)

end

for n ∈ 1, ..., N s,u
batch(Un/weakly labeled source minibatch) do

Get pixel source features fu
s

Determine positive&negative prototypes (Eq.6.7)

Compute α for pixel feature fu
s (Eq.6.8)

Compute loss lGMMCl for feature fu
s (Eq.6.4)

end

for n ∈ 1, ..., N t
batch(Target minibatch) do

Get pixel target features ft

Assign pseudo-label to unlabeled data (Eq. 6.9-6.10)

Determine positive&negative prototypes(Eq.6.11)

if Contains weak labeled target data then

Estimate target GMM via weak labels (Eq. 6.12) Compute α for pixel feature ft

(Eq.6.13)

end

if Contains only unlabeled target data then

Set α = 1 for pixel feature ft

end

Compute loss lGMMCl for feature ft (Eq.6.4)

end

end
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6.2.3.1 Labeled source pixel embeddings

Based on the values of ps(m|fs, c;ϕc) for the given source sample and its corresponding ground truth

label c, we determine both positive and negative prototypes for labeled pixels (Sl). Here, ps(m|fs, c;ϕc)

represents the posterior probability, signifying the likelihood of data fs being assigned to component

m within class c. We compute this probability using Bayes’ rule while assuming uniform class priors,

as detailed in Eq. 6.5. We choose positive prototypes by taking the prototype associated with the

mean of the nearest component that shares the same label, as indicated in Eq. 6.6. In parallel, we

recognize the importance of the hardest negatives in metric learning, drawing from previous research

[128]. To find the hardest negative prototypes across various categories with distinct labels, we identify

the closest component per category, following the procedure described in Eq. 6.6. Noted, the number

of hardest negative prototypes for each pixel embedding is C-1. For example, as depicted in Fig. 6.1-a,

consider the labeled source sample with a ground truth label of 1 in the red square. In this case, we

select µ1,1 and µ2,2 as the positive and negative prototypes. Contrastive training is conducted using

Eq. 6.4, with α set to 1.

ps(m|fs, c;ϕ∗
c) =

πc,mN (fs|µc,m,Σc,m)

ΣM
m′=1πc,m′N (fs|µc,m′ ,Σc,m′)

(6.5)

q+ = {µc,m+ | m+ = argmax
m

ps(m|fs, c;ϕ∗
c), c = ys,l}

q−c = {µc,m− | m− = argmax
m

ps(m|fs, c;ϕ∗
c), c},∀c ̸= ys,l

(6.6)

6.2.3.2 Unlabeled source pixel embeddings

Regarding the unlabeled source pixels (Su = {xs,ui }), they pose a challenge as they lack any available

ground truth labels for determining positive and negative prototypes. A common method is to assign

pseudo labels to Xs,u using the output of a discriminative classifier. However, these pseudo-labels

are often imprecise and unreliable for supervising contrastive training, leading to a noticeable drop in

performance [48]. In response to this challenge, we develop an effective approach for guiding unlabeled

pixels. Given that pixels with identical semantic labels tend to cluster together in the feature space

[135], we leverage the GMM model fitted to labeled source data in Sec. 6.2.2 to model the similarity
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between labeled and unlabeled pixels. By utilizing the GMM model and measuring the similarity of

a given pixel’s embedding with the components of the GMM model, we select positive and hardest

negative components following the procedure outlined in Eq. 6.7. For instance, in Fig. 6.1-a, consider

the unlabeled source sample in the orange square, where we choose µ1,2 as the positive prototype and

µ2,1 as the hardest negative prototype. To enhance the training process, we introduce a weighting

mechanism for the contrastive training loss associated with each pixel embedding. This weight, denoted

as α and calculated using the closest GMM component with the same labels as described in Eq. 6.8.

q+ = {µc+,m+ | c+,m+ = argmax
c,m

ps(c,m|fs, ϕc)}

q−c = {µc,m− | m− = argmax
m

ps(m|fs, c;ϕ∗
c), c}, ∀c ̸= c+

(6.7)

α = e
− d2

2σ
c+,m+ (6.8)

where, d represents the difference between fs and µc+,m+ . Weighting the contrastive training loss is

essential to mitigate the impact of noise, as it can significantly affect contrastive training [48]. Notably,

by omitting the term 1√
2πσ2

, we restrict α to the range of 0 to 1. The value of α indicates the proximity

of a given pixel to its associated GMM component, with higher values indicating greater similarity.

As a result, the soft scoring mechanism assigns more weight to pixel embeddings that closely resemble

their associated GMM components.

6.2.3.3 Noisy source-labeled pixel embeddings

In the presence of noisy source-labeled data, we apply weighted contrastive training to alleviate the

impact of noise, following the same framework as described in Sec. 6.2.3.2. As detailed in Sec. 6.2.3.2

the weights (α) are computed based on the closest GMM component with the same label as the

given pixel embedding. Despite the noise in the source domain data, the source GMM model remains

reliable. This reliability is due to its construction process, detailed in Sec. 6.2.2, which involves using

pixel embeddings with pseudo-labels that match their ground truth labels, effectively mitigating the

influence of noise.
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6.2.3.4 Unlabeled target pixel embeddings

To determine the positive and hardest negative prototypes for the unlabeled target pixels (Tu = {xt,ui }),

we assign pseudo-labels to them using the posterior probability pt(c|ft;ϕ∗
c) and their similarities to

the target prototypes, as demonstrated in Eq. 6.9. Then, the selection of positive and hardest

negative prototypes is carried out using Eq. 6.11. The rationale behind utilizing Eq. 6.9 for reliable

pseudo-label generation is rooted in the assumption that features from both domains cluster together

in a shared space. In this shared space, clusters with matching semantic labels are expected to be

closely situated, as observed in [38]. Then, we expect that unlabeled target embeddings should exhibit

proximity to the associated source GMM component and target prototype sharing the same semantic

label, as depicted in Fig. 6.1-b. For example, in Fig. 6.1-b, the unlabeled target sample within the

green square is close to target prototype class 1 and the source GMM components of class 1, rather

than those of class 2. These proximities can be computed using Eq. 6.9.

ŷct = argmax
c

pt(c|ft;ϕ∗
c)×

ecosine(µ
t
c,ft)

Σc′e
cosine(µt

c′ ,ft)
(6.9)

pt(c|ft;ϕ∗
c) =

∑
m′

ps(c,m
′|ft;ϕ∗

c)×
δctarget
δcsource

(6.10)

q+ = {µc,m+ | m+ = argmax
m

pt(m|ft, c;ϕ∗
c), c = ŷt,u}

q−c = {µc,m− | m− = argmax
m

pt(m|ft, c;ϕ∗
c), c}∀c ̸= ŷt,u

(6.11)

The key concern is how to derive the target domain prototypes and determine the posterior probability

for a given target embedding. Target domain prototypes per category are established through an

exponential moving average, utilizing reliable pixel embeddings sourced from the target memory bank.

This iterative process involves updating the target bank with reliable pixel embeddings from target

mini-batches. It begins by computing class-specific average pixel embeddings based on pseudo labels

and assessing their cosine similarity with class means. Subsequently, the M pixel embeddings with the

highest cosine similarity scores, signifying their trustworthiness, are chosen and incorporated into the

target bank. The posterior probability, which signifies the likelihood of a given target sample belonging

to class c, is computed using Eq. 6.10. δctarget and δcsource are the prior distribution of the target and

source domain and are updated using the exponential moving average during training. The rationale
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behind adjusting the posterior using the ratio
δctarget
δcsource

is to mitigate the label shift issue, as discussed

in [52] (proof provided in supplement). Finally, the contrastive learning loss value is computed using

Eq. 6.4 with α = 1, given the positive and hardest negative prototypes selected via Eq. 6.11.

6.2.3.5 Weak labeled target pixel embeddings

In the context of limited or coarse labels for the target domain, we enhance model performance

through refined contrastive learning using weak labels. This approach relies on the assumption that

the unlabeled target data is close to both the labeled source data and the labeled target data with

the same semantic label [126, 135]. Drawing on our knowledge of the source data distribution (i.e.

Eq. 6.3), we employ Eqs. 6.9-6.10 to determine reliable pseudo-labels for unlabeled target pixels.

These pseudo-labels are selected based on their proximity to the nearest GMM components in feature

space, ensuring reliability. We subsequently determine positive and hard negative prototypes using Eq.

6.11. Additionally, we expect unlabeled target pixels to naturally cluster with labeled target samples

sharing identical semantic labels. In cases of point or coarse annotations for target-domain images, we

mitigate the influence of noisy pseudo-labels during training based on this expectation. The challenge

lies in verifying this proximity. To address this challenge, we draw inspiration from [135] and develop

a method that leverages observed similarities between labeled and unlabeled pixels within each image.

This is accomplished by fitting a Gaussian Mixture Model with K Gaussian mixture components to

each image, where K represents the number of annotated classes, as depicted in Fig. 6.1-c. Mean and

covariance are computed for each GMM component, as outlined in Eq. 6.12.

µk =
1

ΣI
y
t,l
n =k

ΣnIyt,ln =k
ft,n ∀k = yt,l

σk =

√
1

N
ΣN
n=1ŷ

t
n(ft,n − µk)2

(6.12)

α = e
− d2

2σk ∀k = m+ (6.13)

We then compute α values using 6.13 as weighting factors to adjust each pixel’s contribution during

contrastive learning through Eq. 6.4. Here, d is defined as the difference between ft and µk. Lower

α values indicate weaker proximity to pixels of the same class, allowing us to reduce their impact on
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Table 6.1: Comparison with state-of-the-art methods for noisy labeled source data

Cityscapes→Dark Zurich

Model RoadS.Wa Bld. Wall Fence Pole T.LigT.SigVeget. Ter. Sky Pers.Rider Car TruckBusTrainM.BikeBikemIoU

DAFormer[50] 84.8 47.2 66.5 35.0 13.3 45.4 14.4 34.8 48.1 27.4 62.2 48.9 44.5 63.3 52.6 0.8 83.7 40 35 44.6

SePiCo[51] 88.1 54.7 67.8 31.9 18.3 41.0 24.6 32.4 59.7 21.5 78.3 34.2 45.1 68.3 33.5 0 26.8 14.3 16.9 39.9

GenGMM 86.9 45.1 73.541.019.70 21.8 42.0 29.9 66.3 21.9 79.354.7 36.6 76.4 75.8 0.4 85.2 38.6 38.6 49.0

Table 6.2: Comparison for partially labeled source data

Data GTA5→City. Synthia→City.

Model 50% 70% 100% 50% 70% 100%

DAFormer[50] 65.5 65.4 68.3 58.2 59.1 60.9

SePiCo[51] 63.8 65.0 69.7 59.7 60.5 62.2

GenGMM 67.8 68.3 70.4 61.4 62.0 63.3

the loss function. Also, in the presence of weak target data, the α is used to weight the self-training

instead of w, as it is more informative (See Sec. ??).

Table 6.3: The comparison with SOTA methods for Point labels

Data GTA5→City. Synthia→City.

Model mIoU gap mIoU mIoU* gap

WeakSegDA[56] 56.4 - 57.2 63.7 -

WDASS[57] 64.7 +8.3 62.8 68.7 +5.0

GenGMM 71.4 +6.7 65.1 72.4 +3.4
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Figure 6.2: a) Blue-colored nuclei accompanied by the red Lineage tracing marker, b) Blue-colored

nuclei accompanied by the purple LGALS3 marker

6.3 Experiments

6.3.1 Datasets and metric

We conducted our evaluation on four well-established domain adaptation benchmark datasets: GTA5[53],

Cityscapes[129], SYNTHIA[54], and Dark Zurich[136]. For Cityscapes, we used 2975 training images

and reported results on a validation dataset of 500 images. In the case of GTA5, Synthia, and Dark

Zurich, we had 24,966, 9,400, and 2,416 training images, respectively. Our evaluation covered three

scenarios: 1) noisy labeled source data, 2) partially labeled source data, and 3) weakly labeled target

data. In the first scenario, we evaluated the model’s performance on the Cityscapes → Dark Zurich

DA benchmark by using Cityscapes coarse annotations as training labels to simulate a noisy source

scenario. These annotations represent real-world label noise. In the second scenario, we divided the

source data into labeled and unlabeled splits, with fine annotations from GTA5/Synthia in the labeled

split. In the last scenario, we followed prior research [57] and conducted comparisons using both point

and coarse labels. We generated point labels for each class within images at their original sizes by

randomly selecting a small group of pixels. This selection was done within a randomly positioned circle

with a radius of 4 per category. We opted for circles instead of points because different methods may

use various image sizes, and point annotations can be lost when resizing. Additionally, we included
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coarse weak labels from the Cityscapes dataset (gtCoarse). We primarily evaluated our approach

based on the mean Intersection over Union (mIoU) score [50, 38, 51].

Furthermore, we evaluate the performance of the model on cell-type adaptation in immunofluores-

cent images, where each cell type serves as an individual domain. In this scenario, the source domain

contains noise as the pixel-level segmentation masks are generated using point annotations. We high-

light the effectiveness of the GenGMM model in improving segmentation/detection performance across

different cell types. In this scenario, we utilized the Cardiovascular dataset which contains 26 3D multi-

channel immunofluorescent images of advanced atherosclerotic lesions from two mouse models, with

13 used for training and 13 for testing. These images include multiple channels for nuclei and different

markers such as Lineage Tracing, LGALS3, etc. as shown in Figure 6.2. Analyzing these images allows

the identification of diverse cell types based on the overlapping presence of nuclei and various markers.

The assignment of the ”positive” label occurs exclusively when the detected nucleus precisely overlaps

with the designated marker [137].

6.3.2 Network architecture and training

Our network architecture is based on the DAFormer framework [50], incorporating the Class-balanced

Cropping (CBC) approach and regularization methods from [51] to enhance feature representations.

These methods focus on prioritizing cropping from multi-class regions and ensuring smoother feature

representations. We initialize the backbone model with pre-trained ImageNet weights [138] and add

two 1 × 1 convolutional layers with ReLU activation [51] to obtain a 64-dimensional feature vector,

which is further l2-normalized (D=64). Our model was constructed utilizing PyTorch version 1.8.1,

and trained on a single NVIDIA Tesla V100-32G GPU. The optimization strategy is AdamW [131]

with betas (0.9, 0.999) and a weight decay of 0.01. Learning rates are 6 × 10−5 for the encoder and

6 × 10−4 for the decoder. All Exponential Moving Averages (EMAs) update weights are set to 0.9,

except for the teacher network (β), which is set to 0.999. Our model undergoes training for 60,000

epochs with a batch size of 2. Notably, we impose a diagonal structure constraint on the covariance

matrices Σ ∈ RD×D used in our GMMmodel. To optimize the performance of our GMM, we implement

a generative optimization process, proposed in the GMMSeg framework [49]. Each iteration features
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the momentum (Sinkhorn) Expectation-Maximization (EM) process, which is executed on both the

current training batch and the external memory. The number of components is 5 for GTA5 and Dark

Zurich and 3 for Synthia. The size of the external memory is 32k per category. This memory is

governed on a first-in, first-out basis, with 100 pixels per class selected from each image for updates.

Furthermore, for cell-type adaptation, the backbone of HoVer-Net+GenGMM is the same framework

and settings as suggested in [137], with D set to 256. Also, we follow the same training regime as

described in [137] for HoVer-Net+GenGMM. In HoVer-Net+GenGMM, we used the Adam optimizer

[131] with the learning rate 1.0e-4 and set the betas set and weight decay at (0.9, 0.999).

6.3.3 Comparison with existing UDA methods

We perform three separate comparisons: 1) noisy labeled source data, 2) partially labeled source data,

and 3) weakly labeled target data. In the first scenario, where the source data exhibits noise, we assess

the performance of the GenGMM model using the Cityscapes → Dark Zurich Domain benchmark. To

replicate the noisy source conditions, we employed coarse annotations from the Cityscapes dataset as

training labels, representing real-world label noise. Our evaluation, detailed in Tab. 6.1, compares the

GenGMM model against the DAFormer [50] and SePiCo [51] models on 151 test images, serving as the

target test data for an online benchmark assessment available at online site1. Notably, our GenGMM

method outperforms both the DAFormer and SePiCo models by a substantial margin, achieving a

4.4% and 9.1% mIoU improvement, respectively. The lower performance of SePiCo in the presence of

source domain noise compared to the DAFormer model can be attributed to SePiCo’s combination of

contrastive training and self-training. As observed in [48], contrastive training is sensitive to noise and

can significantly degrade model performance. In contrast, the GenGMM model effectively mitigates

the noise’s impact by utilizing the underlying distribution of the source domain.

Table. 6.2 presents the results for the second comparison, assuming scenarios where 50%, 70%,

and 100% of the source data are labeled. In the 50% labeled scenario (i.e., 12,483 out of 24,966 for

GTA5 and 4,700 out of 9,400 for Synthia), we compare the GenGMM model with the DAFormer

[50] and SePiCo [51] models. Both the DAFormer and SePiCo models were trained by incorporating

1https://competitions.codalab.org/competitions/23553
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Data GTA5→City. Synthia→City.

Model mIoU gap mIoU mIoU* gap

Coarse-to-fine[139] 66.7 - 61.6 67.2 -

WDASS[57] 69.1 +2.4 66.0 71.0 +3.8

GenGMM 72.3 +3.2 71.6 76.2 +5.2

Table 6.4: The comparison with SOTA methods for Coarse labels

Model GTA5→City. Synthia→City.

Point annotations

Baseline (DAFormer) 68.9 61.9

GenGMM 71.4 65.1

Coarse annotations

Baseline (DAFormer) 69.2 69.6

GenGMM 72.3 71.6

Table 6.5: The comparison with the Baseline model

Table 6.6: Lineage Training → LGALS3

Model Precision Recall F1-score

HoVer-Net+Self-training 65.79 70.42 68.05

HoVer-Net+UniProto 77.4 68.9 72.0

HoVer-Net+GenGMM 73.1 76.4 73.9

Table 6.7: Comparison wrt to components

Lb UL GMM-Cl GTA5→City. Synthia→City.

✓ 64.7 60.0

✓ ✓ 65.1 60.5

✓ ✓ ✓ 67.8 61.4
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Table 6.8: The effect of α during self-training (point annotations)

Data GTA5→City. Synthia→City.

Model w α w α

GenGMM 70.5 71.4 63.6 65.1

self-training on the unlabeled source data. As observed, our GenGMM method outperforms both

DAFormer [50] and SePiCo [51] models for both GTA5 → Cityscapes and Synthia → Cityscapes, as

shown in Tab. 6.2. Similar trends are observed in the 70% and 100% labeled scenarios, highlighting

the robust performance of the GenGMM model. The detailed results are shown in Tables A.1 and

A.2.

In our latest comparison, we assessed the GenGMMmodel’s performance with weakly labeled data,

both point and coarse labels. We conducted comparisons with previous methods, namely, WeakSegDA

[56] and WDASS [57] for point labels, and Coarse-to-fine [139] and WDASS [57] for coarse labels.

The results, as shown in Tabs. 6.3 and 6.4, reveal that our GenGMM model consistently outper-

forms these prior approaches in both label types (point and coarse) across GTA5→ Cityscapes and

Synthia→ Cityscapes datasets. Particularly, in the GTA5→ Cityscapes scenario, our method exhibits

a significant performance boost, with a 6.7 mIoU increase for point labels and a 3.2 mIoU increase for

coarse labels, surpassing state-of-the-art (SoTA) techniques. Similarly, in the Synthia→ Cityscapes

setting, our method surpasses the SoTA for both weak label types, achieving a 2.3 and 5.6 mIoU

increase for point and coarse labels across 16 classes. Furthermore, for 13 classes as indicated in Tabs.

6.3 and 6.4, our method secures a 3.4 and 5.2 mIoU increase for point and coarse labels, respectively.

Tab. 6.5 compares the GenGMM and Baseline models, where the Baseline model utilizes DAFormer

[50] trained with point and coarse labels. The results highlight the GenGMM model’s superior per-

formance across both DA benchmarks. We show the qualitative comparison of our framework with

baselines for Dark zurich dataset in Fig. 6.4. We provide more qualitative results as well as classwise

results in the Appendix.
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6.3.4 Cell-type adaptation scenario

Furthermore, we evaluate the performance of our method for the cell-type adaptation with noisy

source data. To adapt cell types in immunofluorescent images, we utilized the HoVer-Net+GenGMM

domain adaptation model, built upon a modified HoVer-Net from [137]. In our approach, cell types

are identified in each image based on their overlap with various markers. A cell is labeled positive

for a specific marker if it exhibits overlap with that marker. Treating each cell type as a separate

domain, our goal is to enhance the segmentation/detection performance of the trained model on one

marker for other markers with different distributions, without the need for additional labeling efforts.

In this scenario, the Lineage Tracing marker serves as a labeled source domain, while LGALS3 acts

as an unlabeled target domain. We have access to positive/negative labels for nuclei only for the

Lineage Tracing marker, while nuclei labels based on LGALS3 are unknown. This adaptation scenario

involves both covariate and label shifts, as different markers have distinct distributions (covariate

shift), and the distributions of positive and negative cells vary for different markers (label shift). It’s

worth noting that we follow the methodology outlined in [137] to convert these 3D images into 2D

images within the source domain. In the target domain, we employ a linear combination approach

to merge nuclei and marker channels, followed by slicing the images along the z-axis to transform

them into 2D images. During model training, we extract patches of size 256×256 pixels with a 10%

overlap from both the source and target domains. All segmentation pixel-level masks are generated

using the point annotation and original images, following the approach introduced in [137]. Therefore

the source domain labels are noisy. Table 6.6 highlights that GenGMM significantly improves the

performance of the base domain adaptation model (HoVer-Net+Self-training), which relies solely on

self-training, with increases of +7.31, +5.98, and 5.85 in precision, recall, and F1-score, respectively.

Furthermore, HoVer-Net+GenGMM outperforms HoVer-Net+UniProto in terms of recall and F1-

score while maintaining comparable precision. Additionally, Figure 6.3 presents a qualitative analysis

of Lineage Tracing → LGALS3, illustrating that the HoVerNet+GenGMM model accurately predicts

the labels of nuclei marked with dashed yellow color.
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Figure 6.3: Qualitative analysis on Lineage Tracing → LGALS3.

Model GTA5→City. Synthia→City.

M 1 3 5 7 1 3 5 7

mIoU 69.2 69.7 70.4 69.6 61.7 63.3 62.9 61.2

Table 6.9: Number of components

6.3.5 Ablation analysis

Tab. 6.7 investigates the advantages of training the model with unlabeled source data (UL) and

applying GMM-based contrastive learning (GMM-Cl) in a scenario with 50% labeled source data.

The results highlight the positive impact of training on unlabeled data and the effectiveness of GMM-

Cl on model performance. As described in Sec. 6.2.3.5, we utilize the weight α derived from the GMM

fitted to the target weak labels in place of the confidence weights w suggested in [51] for self-training.

The impact of these α weights in self-training, in the context of target point annotations, is presented

in Tab. 6.8. The data distribution for each source class is modeled using a mixture of M Gaussian

components (Eq. 6.3). Tab. 6.9 shows optimal values for M in a 100% labeled data scenario: 5 for

GTA5 and 3 for Synthia.
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Figure 6.4: Qualitative results on Cityscapes→Dark Zurich

6.4 Conclusion

In this dissertation, we present GenGMM, a model designed for scenarios with partial or weak labeling

in both source and target domains, collectively referred to as GDA. Many domain adaptation models

assume perfectly labeled source data and unlabeled target data, which often doesn’t hold in real-world

scenarios. GenGMM addresses GDA by utilizing weak or unlabeled data from both domains to bridge

the adaptation gap. It employs GMM models on source and target domains to capture similarities

between labeled and unlabeled data, enhancing performance. Our experiments on various urban

scene datasets as well as cell-type adaptation show significant performance improvements compared

to existing approaches.
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Chapter 7

Conclusion and future work

In this dissertation, we addressed the challenges of developing robust deep learning models for tasks

with insufficiently labeled datasets. The widespread success of deep learning approaches often hinges

on the availability of large labeled datasets, which may be impractical for diverse and complex tasks

such as semantic segmentation and multivariate time series classification. To overcome these lim-

itations, we designed four innovative approaches: Universal representation learning, Label-efficient

Contrastive learning-based (LECL) model, ProtoGMM for self-training Domain Adaptation, and

GenGMM for Generalized Domain Adaptation.

Our first two approaches, the Universal representation learning and LECL models, leverage super-

vised contrastive learning to handle limited labelings in tasks like time series classification and semantic

segmentation. By introducing both instance and cluster-level contrastive learning, the model enhances

its ability to discern meaningful patterns in scenarios where labeled data is scarce.

The third approach, ProtoGMM, focuses on self-training Domain Adaptation by incorporating a

multi-prototype Gaussian-Mixture-based model. This model addresses the challenge of noisy pseudo-

labels on the target domain by considering the underlying data distribution in both source and target

domains, leading to improved intra-class semantic similarity and domain alignment.

Our fourth approach, GenGMM, extends the domain adaptation framework to the Generalized

Domain Adaptation (GDA) setting, where both source and target domains may have partially or
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noisily labeled data. By harnessing weak or unlabeled data from both domains, GenGMM refines

noisy labels and effectively narrows the gap between them.

All three approaches were rigorously evaluated across diverse benchmarks, including multivariate

time series classification, fluorescent image analysis, and urban scene adaptation. The results demon-

strated significant improvements over state-of-the-art approaches, validating the effectiveness of our

frameworks.

While our current research has made substantial contributions to addressing the challenges of

limited labeling in deep learning tasks, there are several avenues for future exploration:

1. Augmentation Strategies: As mentioned in Chapter 1, future work will focus on exploring

augmentation methods to further enhance the performance of the SupCon-TSC model. Investi-

gating different augmentation techniques and evaluating their impact on the model’s robustness

and generalization could provide valuable insights.

2. Scalability and Efficiency: Scaling up the developed models to handle larger datasets and

improving their computational efficiency is a critical aspect of future work. This involves opti-

mizing the algorithms and architectures to accommodate more extensive and diverse datasets

without compromising performance.

3. Multi-Source Domain Adaptation: Extending our research to accommodate scenarios with

multiple source domains is a crucial avenue for future work. Many real-world applications involve

data from diverse sources, and developing models capable of effectively leveraging information

from these multiple domains remains a critical challenge. Investigating the generalizability

of our developed approaches, ProtoGMM and GenGMM, to handle multiple source domains

simultaneously will enhance their versatility and applicability in complex settings.

4. Adaptation to Temporal Changes in Target Domain Distribution: In dynamic real-

world environments, the distribution of data in target domains can change over time. Future

work should concentrate on the development and adaptation of the ProtoGMM and GenGMM

models, enabling them to continuously learn and adjust to evolving distributions. This entails

exploring techniques for detecting and responding to shifts in data characteristics, ensuring the
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ongoing robustness and effectiveness of our models in dynamic scenarios.

In summary, the presented dissertation lays a foundation for future research in addressing labeling

challenges in deep learning. Our approaches exhibit promising results, and ongoing efforts will continue

to refine and extend these models for broader practical use.
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[59] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search for moving object trajec-

tories,” in Proceedings of the 2005 ACM SIGMOD international conference on Management of

data, pp. 491–502, 2005.

[60] K.-P. Chan and A. W.-C. Fu, “Efficient time series matching by wavelets,” in Proceedings 15th

International Conference on Data Engineering (Cat. No. 99CB36337), pp. 126–133, IEEE, 1999.

[61] P. Senin, “Dynamic time warping algorithm review,” Information and Computer Science De-

partment University of Hawaii at Manoa Honolulu, USA, vol. 855, no. 1-23, p. 40, 2008.

[62] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh, “Generalizing dtw to the multi-

dimensional case requires an adaptive approach,” Data mining and knowledge discovery, vol. 31,

no. 1, pp. 1–31, 2017.

[63] I. Karlsson, P. Papapetrou, and H. Boström, “Generalized random shapelet forests,” Data min-

ing and knowledge discovery, vol. 30, no. 5, pp. 1053–1085, 2016.

[64] M. Wistuba, J. Grabocka, and L. Schmidt-Thieme, “Ultra-fast shapelets for time series classifi-

cation,” arXiv preprint arXiv:1503.05018, 2015.

[65] M. G. Baydogan and G. Runger, “Time series representation and similarity based on local

autopatterns,” Data Mining and Knowledge Discovery, vol. 30, no. 2, pp. 476–509, 2016.

[66] K. S. Tuncel and M. G. Baydogan, “Autoregressive forests for multivariate time series modeling,”

Pattern recognition, vol. 73, pp. 202–215, 2018.

[67] M. G. Baydogan and G. Runger, “Learning a symbolic representation for multivariate time series

classification,” Data Mining and Knowledge Discovery, vol. 29, no. 2, pp. 400–422, 2015.
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Appendix A

GTA5→Cityscapes

Model RoadS.Wa Bld. WallFencePoleT.LigT.SigVeget. Ter. Sky Pers. Rider Car Truck Bus TrainM.Bike Bike mIoU

DAFormer 90.1 50.3 88.7 54.2 38.9 46.0 55.13 56.0 89.6 50.9 89.9 70.2 38.8 92.3 75.6 79.9 63.5 53.2 61.1 65.5

SePiCo 90.9 54.9 89.56 40.1 50.2 50.9 59.4 58.1 89.6 47.5 90.4 73.8 44.3 92.9 73.2 76.1 61.1 25.2 43.5 63.8

GenGMM 97.0 77.3 89.9 52.5 46.0 50.2 60.0 60.4 89.5 45.7 91.4 72.3 38.8 93.4 76.8 74.6 54.7 52.2 64.3 67.8

Synthia→Cityscapes

DAFormer 85.3 40.4 87.0 21.6 3.6 42.2 54.0 45.5 86.9 - 93.6 73.4 46.8 88.2 - 54.7 - 53.9 54.4 58.2

SePiCo 90.2 50.7 87.0 17.7 1.8 50.8 57.8 47.7 87.1 - 91.2 72.8 46.7 88.5 - 54.5 - 57.2 53.9 59.7

GenGMM 89.4 55.5 88.0 38.2 2.7 49.7 59.1 46.5 83.2 - 82.7 75.46 47.7 89.65 - 64.4 - 54.3 54.25 61.4

Table A.1: Comparison with state-of-the-art methods for partially labeled source data (50% labeled

and 50% unlabeled)

GTA5→Cityscapes

Model RoadS.WaBld. Wall FencePoleT.LigT.SigVeget. Ter. Sky Pers.Rider Car Truck Bus TrainM.BikeBikemIoU

DAFormer 88.8 48.4 88.6 47.4 37.3 45.0 56.2 52.5 89.7 51.2 90.3 70.6 42.7 92.2 75.5 78.6 69.8 56.4 61.9 65.4

SePiCo 96.1 71.22 89.5 50.99 47.1 49.4 58.5 59.2 89.2 46.2 90.5 73.5 41.0 92.4 63.0 70.4 31.6 51.3 62.8 65.0

GenGMM 97.0 76.2 89.8 48.6 49.2 50.4 59.8 60.1 89.5 48.2 90.673.8 44.8 93.2 76.1 76.3 57.7 52.4 63.3 68.3

Synthia→Cityscapes

DAFormer 84.6 40.0 87.1 33.8 5.8 40.0 53.7 31.7 88.0 - 93.3 74.0 46.4 86.9 - 65.5 - 54.6 60.3 59.1

SePiCo 89.7 53.8 86.7 26.1 2.9 46.4 59.4 41.7 85.7 - 89.7 76.4 49.2 88.9 - 56.8 - 56.3 58.3 60.5

GenGMM 89.6 59.6 88.6 26.7 8.9 49.3 57.5 54.0 86.2 - 90.5 76.1 49.2 89.0 - 62.5 - 54.9 59.0 62.0

Table A.2: Comparison with state-of-the-art methods for partially labeled source data (70% labeled

and 30% unlabeled)
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GTA5→Cityscapes

Model RoadS.WaBld.WallFencePoleT.LigT.SigVeget. Ter. Sky Pers.Rider Car Truck Bus TrainM.BikeBikemIoU

DAFormer 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3

SePiCo 96.8 75.2 89.5 52.9 47.9 52.4 59.7 59.1 89.3 44.6 91.3 73.9 44.8 93.2 78.8 79.1 74.2 56.7 65.8 69.7

GenGMM 97.3 79.5 90.155.6 52.2 53.7 58.2 63.4 90.5 49.5 91.8 74.6 46.4 93.3 73.2 80.0 68.7 53.8 65.4 70.4

Synthia→Cityscapes

DAFormer 84.5 40.7 88.441.5 6.5 50.0 55.0 54.6 86.0 - 89.8 73.2 48.2 87.2 - 53.2 - 53.9 61.7 60.9

SePiCo 87.0 45.4 88.1 41.4 7.2 52.3 57.9 57.8 85.9 - 84.7 75.2 50.6 88.0 - 57.3 - 55.7 60.3 62.2

GenGMM 93.4 64.3 87.8 23.5 14.1 53.6 60.1 59.4 86.3 - 88.6 65.2 49.5 89.3 - 62.3 - 52.3 63.6 63.3

Table A.3: Comparison with state-of-the-art methods for partially labeled source data (100% labeled)

GTA5→Cityscapes

Model RoadS.WaBld.WallFencePoleT.LigT.SigVeget. Ter. Sky Pers.Rider Car Truck Bus TrainM.BikeBikemIoU

Coarse-to-fine 96.4 75.1 89.9 51.6 47.3 49.6 53.7 62.2 89.5 45.2 91.0 71.4 46.4 92.2 69.6 72.9 51.5 51.1 61.7 66.7

WDASS 95.5 71 89.2 49.3 51.7 52.0 60.0 64.2 89.8 51.4 91.5 73.8 46.5 91.5 69.4 75.3 68.3 55.0 68.4 69.1

GenGMM 96.6 74.6 90.859.0 50.3 54.8 59.0 66.1 90.3 50.3 94.0 73.0 51.4 93.1 85.8 83.3 76.4 55.9 68.8 72.3

Synthia→Cityscapes

Coarse-to-fine 95.5 69.9 87.3 38.4 29.7 44.9 40.1 53.7 87.0 - 90.3 70.9 39.9 - 87.8 53.6 - 35.4 61.6 61.6

WDASS 93.4 68.6 87.4 42.9 39.1 50.7 52.7 64.8 87.9 - 77.3 73.1 42.1 - 89.3 70.7 - 46.8 68.7 66.0

GenGMM 96.8 77.0 90.650.1 51.2 54.5 58.2 69.6 90.0 - 93.674.7 50.5 - 76.2 83.8 - 58.7 70.5 71.6

Table A.4: Comparison with state-of-the-art methods for weakly labeled target data (Coarse annota-

tions)

GTA5→Cityscapes

Model RoadS.WaBld.WallFencePoleT.LigT.SigVeget. Ter. Sky Pers.Rider Car Truck Bus TrainM.BikeBikemIoU

WeakSegD 94.0 62.7 86.3 36.5 32.8 38.4 44.9 51.0 86.1 43.4 87.7 66.4 36.5 87.9 44.1 58.8 23.2 35.6 55.9 56.4

WDASS 95.5 71.3 87.6 43.3 43.3 47.7 51.3 58.7 87.0 45.5 86.4 73.6 49 91.4 56.7 65.2 63.2 46.8 67 64.7

GenGMM 97.1 79.2 89.552.6 52.2 53.7 59.7 66.1 89.7 49.189.0 72.3 51.9 91.9 78.3 80.8 73.8 61.0 69.3 71.4

Synthia→Cityscapes

WeakSegD 94.9 63.2 85.0 27.3 24.2 34.9 37.3 50.8 84.4 - 88.2 60.6 36.3 86.4 - 43.2 - 36.5 61.3 57.2

WDASS 95.4 68.7 85.4 37.5 29.3 44.0 48.9 56.4 86.8 - 86.8 70.6 47.1 89.7 - 50.8 - 41.1 65.8 62.8

GenGMM 90.6 50.5 87.542.3 4.3 53.5 61.0 58.3 87.1 - 88.877.1 55.3 89.6 - 70.1 - 61.4 63.9 65.1

Table A.5: Comparison with state-of-the-art methods for weakly labeled target data (point annota-

tions)

Figure A.1: Qualitative results on GTA5→Cityscapes setting for weakly labeled target data (point

labels)
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Figure A.2: Qualitative results on Synthia→Cityscapes setting for weakly labeled target data (point

labels)

Figure A.3: Qualitative results on GTA5→Cityscapes setting for weakly labeled target data (Coarse

labels)

Figure A.4: Qualitative results on Synthia→Cityscapes setting for weakly labeled target data (Coarse

labels)
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