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ABSTRACT 

The. choice of initial conditions is a fundamental issue in the experimental 

analysis of non-terminating, stochastic, discrete-event dynamic systems (DEDS). 

Because output observations are sequentially correlated, cumulative performance 

estimators are biased when initial observations are not representative of steady-state 

operation. A poor choice of initial conditions, at best, requires a larger sample of 

steady-state operations so as to dilute the initialization bias. At worst, the bias goes 

undetected, and the result is that insufficient data are collected to ensure accurate 

statistical performance estimates. 

Initialization bias is most often associated with discrete-event simulation, in 

which initial conditions are generally selected to convenience the analyst. In the 

simulation literature, this issue is called the "initial transient" or "start-up" problem. 

While various solutions to this problem have been proposed, by far the most common 

are those based on truncation of the output sequence. An observation in the sequence 

is identified as the first point representing steady-state operation. All prior 

observations are then deleted and the truncated sequence is retained for output 

analysis. 

This research contributes a new and superior method for quantifying the 

performance of steady-state detection heuistics used to determine truncation points. 

Prior studies have concluded that existing heuristics are either ineffective, because the 

implied number of observations truncated is too few, or inefficient, because the implied 

number of observations truncated is too great. These prior studies are reviewed and 

several methodological deficiencies are identified. The method developed and applied 

here corrects these deficiencies by posing a more appropriate set of evaluation criteria 

and a more representative set of benchmark models. 
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This research also contributes a new and superior steady-state detection 

heuristic. The Confidence Maximization Rule (CMR) compares sample confidence 

intervals across candidate truncation points and identifies the onset of steady state as 

the point that minimizes the halfwidth of the truncated sample. The CMR was 

suggested by and tested using the method previously developed. 

The CMR was evaluated against two existing heuristics that do not require 

pilot runs. The implied truncation point was computed using each heuristic for each of 

ten fixed-length runs of five different DEDS benchmark models. In most cases, the 

performance of the CMR was superior in terms of coverage and consistency. In all 

cases, the performance of the CMR was at least as good as the next best alternative. 

For the benchmark problems with significant initialization bias, the CMR also was 

shown to yield estimates comparable to those derived from untruncated samples with 

six times the number of observations. 
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1.1 BACKGROUND 

CHAPTER ONE 

INTRODUCTION 

Output analysis of stochastic discrete-event dynamic systems (DEDS) is the process 

of estimating the population statistics of selected system response variables from sample 

data generated during simulation experiments. Reliable methods for DEDS output analysis 

are well established, and new and potentially more efficient methods are evolving rapidly. 

For non-terminating DEDS, however, these methods invariably presuppose that· the 

available sample data are representative of steady-state system operation, unbiased by 

transients. 

Techniques required to remove the transient bias from non-terminating simulation 

data (caused by arbitrary initial conditions) have received comparatively less attention. A 

range of heuristics has been developed to address the so-called simulation start-up problem, 

but all of these appear to be inadequate in one way or another. The root of this difficulty 

can be traced, at least in part, to the lack of a clear and consistent operational definition of 

steady state for DEDS that can be used in creating and judging such heuristics. 

The purposes of this research are: 

1) to explore the fundamental issues that make the concept of steady state 
difficult to interpret for DEDS experiments, 

2) to develop operational definitions of steady state and system settling 
time which are appropriate for DEDS simulation studies, 

3) to develop a procedure to assess the performance of settling-time 
heuristics, in the light of these issues and operational definitions, 

4) to reassess the performance of several settling-time heuristics by 
applying this procedure, and 

5) to develop and test a new settling-time heuristic with potentially 
improved perf orrnance. 



In this chapter, we first consider the objectives of output analysis, as determined by 

the purpose of DEDS simulation studies. Terminating and non-terminating systems are 

defined, along with the problems of achieving analysis objectives for each. We review 

several informal and formal definitions of steady state, taken from the simulation literature, 

and consider what would be required to use these definitions in the course of a simulation 

study. An alternative definition of DEDS steady state and settling time, based solely on 

sample statistics, is then proposed. A brief overview of the remainder of the thesis is 

presented in the final section. 

1.2 TERMINATING AND NON-TERMINATING SYSTEMS 

All simulation studies have a directed purpose. The information requirements of the 

decisionmaker determine this purpose and govern every aspect of the study. With respect 

to output analysis, the purpose of the simulation study determines the system variables to 

be observed and the precision and confidence required for these observations. 

Fulfillment of these requirements calls for the resolution of two fundamental 

operational issues. First, the length of each simulation run or replication must be 

determined, in terms of the simulated time or the number of observations per replication. 

Second, the number of required replications must be established. These two issues relate 

the variability in the simulation output data to the confidence levels that can be achieved and 

determine how well the purpose of the simulation can be fulfilled within the time and 

budget allowed. 

Determination of the appropriate replication length and number of replications 

depends mainly on whether the system being simulated is terminating or non-terminating. 

Each of these simulation types has its own methodologies and techniques for output 

analysis. A terminating simulation is one for which natural initial and terminating 

conditions can be easily defined. An example is the simulation of a bank or store that opens 

and closes periodically at regular time intervals. The analysis of such a simulation concerns 
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techniques for output analysis. A terminating simulation is one for which natural 

initial and terminating conditions can be easily defined. An example is the simulation 

of a bank or store that opens and closes periodically at regular time intervals. The 

analysis of such a simulation concerns the behavior of the system over the entire time 

interval defined by these conditions. Initial conditions may have a significant effect on 

this behavior and are of interest in the output studies. 

A non-terminating simulation, on the other hand, has no natural initial or 

terminal conditions. An example is the simulation of a factory or telecommunications 

network that operates twenty-four hours a day, seven days a week. The objective of 

output analysis for such a simulation is to study the behavior of the system over a 

representative period of operation, after the initial conditions of the simulation no 

longer affect its behavior. 

Replication length and number of replications are decided differently for 

terminating and non-terminating simulations. For terminating simulations, both 

questions have natural answers. Replication length is set by the actual initial and 

terminal conditions of the simulated system. The required number of replications is 

determined by the variability of the output data, just as the variability of the data 

across periods of operation determines the number of periods the actual system would 

have to be observed experimentally. In general, observations across replications are 

statistically independent for simulations using independent random number streams; 

therefore, standard statistical techniques can be used to determine the number of 

replications required. 

For non-terminating simulations, the resolution of these operational issues is 

less straightforward. Because initial and terminal conditions are not naturally defined, 

these must be invented for the analysis. The analysis of this data requires some 

means of defining artificial initial and terminal conditions, in order to block 

observations into finite, statistically independent sets. These filtered sets can then be 
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The need for such rules is not unique to simulation output analysis, but is the same 

for any empirical study of a non-terminating stochastic process, regardless of whether 

experimentation is conducted on the actual system or on a model of the system. The simple 

truth that constrains both situations is that observations cannot be made infinitely into the 

future, so the analysis must rely on sample data and must draw inferences based on these 

data. Even when experimenting on the actual system, these compromises must be made. 

A sample drawn from the actual system will not necessarily reflect the average, long-term 

behavior of the system; in fact, such behavior may not even exist. The inherent difficulty of 

sample data constraints is simply exaggerated in simulation studies because the 

simulationist has greater control over data collection and analysis decisions. 

1.3 DEFINITIONS OF STEADY STATE 

The concept of steady-state behavior is essential to the analysis of non-terminating 

simulations. Formal definitions of steady state provide a theoretical basis for developing 

rules used to filter sequences of sample data. This section introduces the concept of steady 

state and discusses its treatment in the simulation literature. 

The purpose of a simulation study determines the system operating condition to be 

studied; that is, transient or steady-state operation. For naturally non-terminating systems, 

long-term operating characteristics are typically the most significant. The usual assumption 

is that these systems are not chaotic. That is, for stable, non-terminating systems, the 

simulation output eventually will settle into some steady-state pattern, from which the 

simulationist can derive these:long-term characteristics. As Law and Kelton (1982) 

observe, "Many books and papers on simulation make a statement like 'It is desired to 

estimate some measure of performance for a system that is operating in steady state."' 

Similarly, Pegden (1985) says of non-terminating simulations, " ... we are interested in 

defining the steady state performance of the system." The point is that, without the 
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assumption of a steady state, long-term stochastic behavior cannot be determined from a 

finite sampling experiment, and simulation is a doubtful endeavor. 

The importance of steady-state detection is easy to see. The transient response that 

results from effects of the arbitrary initial conditions of the simulation run are not of interest 

in this type of system. If the weight of this initial transient behavior significantly corrupts 

the steady-state estimates, the statistical results will be biased. The obvious remedy is 

either to de-emphasize the effects of the transient response on the total system behavior by 

using large samples, or to eliminate the transient response from the system analysis by 

truncating the observations prior to steady state. As Emshoff and Sisson (1970) contend, 

"A good experimental design insures that the results during such a transitional phase are 

insignificant or are not included in the analysis." 

The problem is that this objective is not as easy to achieve as it may seem. A means 

for recognizing steady-state operation is required, whether we choose to overwhelm any 

transient bias in a sample with a sufficiently large number of steady-state observations, or 

to purge the transient bias from these observations. This in tum requires an operational 

definition of steady state for DEDS. 

Control theory provides such an operational definition for deterministic continuous-

or discrete-time dynamic systems with damping. A continuous process x(t) is said to 

achieve a steady state, Xss. when 

1+ >x(t)>l-E_ X~ _ E for all t ~ ts, 

where ts is called the system settling time associated with an (E * 100) percent settling band. 

Two percent and five percent settling times are common performance measures for the 

classical analysis and design of control systems. For nonlinear deterministic systems, the 

value of Xss is a function of the initial condition, x(O). For stable, linear, deterministic 

systems, a unique steady state exists and both steady state and approximate settling times 

can be determined analytically. 
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An entirely analogous definition is not possible for DEDS, or for stochastic systems 

in general. Figure 1.1 illustrates this point. The figure shows standard continuous-

dynamic-system response functions, alongside output data points from "equivalent" 

discrete-event systems. Because the continuous functions are based upon systems of linear 

differential equations, settling time can be determined using basic linear algebra. Once the 

settling time has been reached, these deterministic functions always stay within the two 

percent (or five percent) settling band. DEDS output data points, on the other hand, exhibit 

random variability, even once the system has reached an apparent steady state. As the 

figure suggests, for an arbitrary steady-state distribution, observations in the steady-state 

range can be outside of any arbitrary settling-time corridor. 

The settling time measure derived from continuous dynamic systems analysis is an 

appropriate concept for steady-state detection in discrete-event analysis, but the application 

of this measure is not as straightforward. In order to apply it to stochastic DEDS, a more 

robust definition of steady state is needed; one that is based on the same concept but can 

handle the probabilistic nature of discrete-event output data. Authors have used various 

approaches in attempting to develop such a definition. Before looking at these, some basic 

theoretical statistical concepts must be reviewed. 

Clearly, the desired result of a DEDS study is a useful, meaningful estimator of the 

variable of interest. According to Fishman (1978), 

For Sn [a sample statistic based on n observations] to be a useful 

estimator [of the popull!:tion statistic 8], in practice, we want Sn to 

converge to 8, in some probabilistic sense. When Sn satisfies 

lim "' 
Pr{18n - 81 > E} = 0, 

n~oo 

where 8 is the variable of interest, for arbitrary E > 0, we say that it is a 

consistent estimator of 8, [and] the absence of consistency implies that 
additional information fails to improve one's knowledge of underlying 
phenomena. 
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In order for an estimator to be consistent, its mean square error and variance must vanish as 

the number of observations n increases. The parallel between the definition of deterministic 

steady state and that of a consistent estimator is clear. Measurement of the process x(t) 

over increasing time is replaced by measurement of the estimator 8n over increasing 

observations. Since a typical estimator smooths the variations in the individual data points, 

it is reasonable to expect the variation in the estimator to decrease in some probabilistic 

sense as the number of observations increases. 

For correlated observations, such as the output of a non-terminating simulation, 

consistent estimators may not be available unless the underlying stochastic process is 

stationary and ergodic (Papoulis, 1965): 

A stochastic process x(t) is stationary if its statistics are not affected by a 
shift in the time origin. This means that the two processes x(t) and x(t+'t) 
have the same statistics for any 't .... x(t) is stationary in the wide sense 
if its expected value is a constant and its autocorrelation depends only on 
[t1 - t1] . 

A stochastic process is ergodic if time averages equal ensemble averages 
(i.e., expected values). 

In terms of simulation experiments, stationarity implies that for a fictitious replication of 

infinite length, the output statistics would be identical if data collection began at any 

arbitrary time during the replication. Ergodicity implies that the output statistics collected at 

any given simulation time are the same across all replications, for fictitious replications 

starting infinitely distant in the past. 

It is easy to see the parallel between the concepts of steady-state behavior that we 

are attempting to define and the properties of stationarity and ergodicity. These properties 

exactly describe, on a theoretical level (for population statistics), the characteristics of 

steady-state data. Many of the definitions of steady state that can be found in the simulation 

literature rely on these properties, at least to some extent. Whether or not this is intentional 

8 



is difficult to tell, because the properties represent a very "common sense" approach to the 

description of steady state. We consider two such definitions, one by Law and Kelton 

(1982) and a second by Gafarian et al. (1978). 

Law and Kelton give the following interpretation of the transient and steady-state 

response in discrete-event simulation with respect to system delay time for an M/M/l 

queue: 

Let Fi,,(x) = P{Di::; xlL(O) = () [where Di is the delay in the system at 
each time i]. We call Fi,t(x) the transient distribution of delay at time i given 

L(O) = t . (The word "transient" means that there is a different distribution 
for each time i.) Now it can be shown that for any x ~ 0, 

lim F(x) = . {Fi i(x)} for L(O) =any t 
l~oo ' 

exists, and we call F(x) the steady-state distribution of delay . ... At the 
point in time when Fi,t(x) is essentially no longer changing with i, we shall 

intuitively say that the process {Di, i ~ 1} is in 'steady state'. Thus, steady 
state does not mean that the actual delays in a single realization (or run) of 
the simulation become constant after some point in time, but that the 
distribution of the delays becomes invariant. 

Constancy of the theoretical distribution of Xt obviously implies that all of the theoretical 

statistics of the distribution must be constant. This definition of steady state implies strict 

stationarity, i.e., that the marginal probability distribution function of Xt is independent oft 

(Fishman, 1978). In other words, Law and Kelton select the point at which the output data 

becomes strictly stationary as the onset of steady state. 

Gafarian, et al. (1978) define the steady-state mean (J..loo) the following way: 

They state that the problem in steady-state detection is to find the minimum t, called t*, 

such that 
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where Xt is some discrete-parameter stochastic process being observed, and E is some very 

small preassigned number. This means that steady state is the operating condition which 

occurs beginning at t*, the time when the sample expectation of Xt is bounded by some 

arbitrary E for all sample sequences beginning with Xo and ending with Xt. t ~ t*. The 

parallel with the definition of settling time for deterministic systems is clear, as well as with 

that of a consistent estimator. Since Gafarian et al. rely only on the first moment of the 

variable of interest and disregard other system statistics, however, their definition falls 

within the category of stationary in the "wide sense". Further, Gafarian et al. define the 

onset of steady state as the point at which sufficient data have been collected to debias the 

output statistic, achieving approximate stationarity in the wide sense, rather than the point at 

which wide stationarity is exhibited by the ensuing data. 

Both of these definitions of steady state seem to be reasonable formalizations of the 

underlying ideal. The fact that these are different, and often result in different conclusions 

about the onset of steady state for the same data sample, reflects the elusiveness of the 

underlying concepts. In setting out to develop a methodology for defining and measuring 

steady state, this is one of the main issues that must be resolved. 

1.4 MEASUREMENT OF STEADY STATE 

In the preceding discussion, we identified the principal components of a theoretical 

definition of stochastic DEDS steady state and DEDS settling time. Operationally, the 

differences between alternative definitions of steady state imply that the simulationist must 

establish the sense of stationarity required for a specific application. This means that steady 

state must be defined not with respect to the output variables of interest, but with respect to 

the specific statistics of the underlying distributions of these variables that are thought to 

characterize steady-state operation. This determination largely will dictate the output data to 

be collected and, in so far as possible, should be made during exploratory simulation runs. 

Defining the statistics which characterize steady-state operation clearly requires a judgment, 
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which must be made in consideration of both the anticipated behavior of the system and the 

purpose of the simulation study. 

Differences in the theoretical definitions of settling time further imply that the 

simulationist must establish the alternative that will be used to remove the "start-up" bias 

from the output data. Operationally, the choices appear to be either dilution or truncation of 

the transient data, or perhaps some combination of the two. Generally, truncation is more 

efficient and, therefore, preferred, regardless of the purpose of the study. 

To see this, consider a "well-behaved" sample, Xt. which has an invariant F(Xt) 

fort~ t' and whose statistics approach steady state monotonically. For E<<l, Gafarian et 

al.'s onset point, t*, typically will be greater than Law and Kelton's onset point, t', for an 

arbitrary Xo. This is true because Gafarian et al.'s calculations are based on the cumulative 

mean, which is biased by the initial conditions, while Law and Kelton's calculations are 

not. Clearly, then, Law and Kelton's concept is preferable because it leads to a more 

efficient solution in which fewer observations are required for the same level of confidence 

in the results. The difficulty, of course, is in actually putting Law and Kelton's concept to 

use. The most desirable procedure for our purposes is one that uses the statistics of Xt 

without retaining the bias of the initial conditions, but gives more straightforward guidance 

than Law and Kelton's instructions to find "intuitively" the point at which the distribution 

becomes invariant. 

The common components of the alternative theoretical definitions also have 

implications for steady-state measurements. All of the theoretical definitions of steady state 

quite properly involve the invarzance of some output statistic as time approaches infinity. 

An operational definition of steady state, on the other hand, must recognize that simulations 

are inherently sampling experiments. Replications are of finite length. Output statistics 

will vary at some level of precision for different replication lengths, except in unusual 

cases. In the remainder of this section, we consider the transcendent operational issue of 
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detennining DEDS steady state and settling-time statistics (however defined) from actual 

simulation output. 

Recognizing that DEDS simulations are sampling experiments, the key to an 

operational definition of steady state, involves the usual statistical notion of confidence in 

an estimate based on sample data. Consider, for example, Gafarian et al.'s definition of 

steady state. They say that steady state begins at t=t*, when the mean of the data sample 

settles down to some error band. This assumes a finite sample with some initial condition, 

x0, that fits some sample distribution, F(Xt I Xo). Their reasoning seems to be that the 

smoothing effects of the cumulative mean calculations will eventually wash out the bias 

caused by Xo; therefore, for all t ;;::: t*, E[XtlXo], E[Xt*IXo], and E[Xt*] are all 

approximately the same. But the only way to be absolutely sure of this is if the sample is 

infinitely large. Given a restricted sample size, the best we can do is to determine how 

much confidence there is that the mean has actually settled down. 

Similarly, Law and Kelton say that steady state begins at t = t', when the theoretical 

distribution F[XtlXt'] is constant for all t;;::: t', with t' based on initial condition Xo. Again, 

to be 100% certain of its constancy, the sample must be infinitely large. Otherwise, we 

must settle for some level of confidence that t' has been found in the sample and that the 

distribution is constant for the observations after t'. 

What becomes apparent in studying these two definitions is that there are two 

significant components necessary for a definition of steady state to be complete. One 

requirement is, obviously, initial detection of the settling of the transient response; the other 

is somewhat less obvious. This requirement is that the sample size, N, if not 

predetermined by external forces, must be large enough to affix a certain amoun_t of 

confidence to the actual existence of steady state. This is equivalent to the determination of 

sample size for establishing system parameter confidence levels, and, in this sense, we treat 

the. system settling time just as we would any other system parameter. 
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ji. 

An example will clarify this concept. Consider a simulation in which steady-state 

system delay is the parameter of interest, and assume that onset of steady state has been 

estimated at point t*. The sample is composed of all data points from the point t* to the 

endpoint, N. Basic statistics says that a larger sample size results in higher confidence that 

the expectation from t* to the endpoint closely estimates the theoretical limiting system 

delay value. At the same time, the larger sample size implies that the existence of steady 

state is being tested for a longer period of time. If transient data dominate the initial portion 

of the sample so as to make the sample seem to be in steady state, a larger sample size is 

more likely to detect the actual transient nature of the data. Therefore, increasing the sample 

size increases confidence in the existence of steady state, as well as increasing confidence 

in the calculated steady-state values. The inherent handicap of any time-constraining 

definition is that the systems involved are probabilistic; hence, any restriction placed on the 

run length limits the sample size of the data set. This changes the calculated values from 

population statistics into sample statistics, which immediately reduces the reliability of the 

solutions. This is why the level of confidence desired by the decisionmaker should be used 

in the determination of run length for simulations in which run length is not dictated by the 

simulation's purpose or some other condition. 

Consider, on the other hand, a situation in which a decisionmaker is strictly 

interested in the steady state values of a given set of parameters based on the simulation of a 

two-month cycle of a manufacturing plant. It is clear that in this case the meaning of 

"steady state" may not exactly match its theoretical meaning and that run length must be 

based on the purpose of the simulation and the decisionmaker's needs. As long as the 

expectations are not transient throughout the entire set of data, the decisionmaker's concept 

of steady state has been found. Here, confidence levels are not as important as the 

decisionmaker's criteria for analysis. This case illustrates that the definition of steady state 

may be altered to fit the requirements of the situation. 

13 



Consequently, there are two ways to define the run length, N. The first is 

according to decisionmaker needs and simulation purpose, as in the above case. In this 

example, N is simply the number of data points generated by the simulation of a two month 

cycle of the plant. Here, statistics based on confidence levels are used only to confirm the 

existence of steady state, not to set run length. The second way to define run length, for 

the more general case in which the purpose does not strictly dictate N, is to base run length 

on the level of confidence the decisionmaker wants in (1) the existence of steady state, and 

(2) the estimated limiting values of his system parameters. Clearly, the confidence-level 

versus sample-size issue is of great importance in the development of an operational 

definition of DEDS steady state. 

1.5 AN OPERATIONAL DEFINITION OF STEADY STATE 

Based on the preceding discussions, we now offer an operational definition of 

stochastic DEDS steady state and settling time. 

Let Xt be a vector of random processes, representing the DEDS simulation output 

variables of interest. Let S(XJ be a vector of random processes, representing the output 

statistics which capture the sense of stationarity prescribed for the study. Let 8(ti.tn) be an 

estimate of 8, based on a sample sequence Xt. t=t1, ... ,tn, of n observations. Let ±z be an 

(approximate) vector confidence interval for 8 at some prescribed confidence level. Finally, 

let Xo be the prescribed initial condition for the simulation. 

For a given output sequence Xt, t = O, ... ,T, the sample settling time t*(Xo,T) is 

defined as the value of t which minimizes some prescribed norm of the confidence interval 

llZll for the truncated sample Xt, t=t* , ... ,T. It will be said that the sample process Xt. 

t=t* , ... ,T is in steady state if and only if llZll :::; E, some prescribed minimum confidence 

norm. 

To understand this definition on a more practical level, consider the processing of 

some .device in a continuously-operating manufacturing plant. This plant has two 
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constrained servers in parallel. For each server, once there are 30 devices in its queue, it 

"rejects" further devices until the queue shrinks. Let Xt represent the number of devices in 

the second queue at time t. Let 0 (Xt> be the steady-state mean for the number in the 
....... 

second queue. 0(ti,T), the sample estimate of the mean, is then E[Xt], where t = ti,. . .,T 

with ti to be determined. Assume that the initial state of this simulated process is empty 

and idle, that is, Xo = 0, and let the total number of observations be, somewhat arbitrarily, 

1875. For additional information on this model, see the SIMAN model files for the Filling 

Queue Model listed in Appendix A. 

The sample settling time, as defined above, can be found by locating the point, ti, 

at which the confidence interval is minimized; therefore, confidence intervals clearly must 

be determined. In order to compute statistically accurate confidence intervals, the data must 

be batched to remove the effects of autocorrelation resulting from the non-terminating 

nature of the model. For this example, confidence intervals have been assessed using an 

arbitrary batch size of 25. Figure 1.2 shows the behavior of the output function for this 

model. The graph displays the batched values based on the observations of Xt fort= 

1,. . .,-9000 minutes. Each point is the batch mean for a subsequent group of 25 

observations. There are 75 points in all, corresponding to the total of 1875 observations. 

In order to determine the sample settling time, t*, confidence intervals are calculated 

using various values of t1 until the minimum is found. Table 1.1 displays several 

confidence intervals computed based on the Xt sample (batched in groups of 25), with an 

increasing number of batches truncated before each computation. From both the table and 

the graph, it is clear that the c·onfidence interval is minimized when five batches are 

truncated; therefore, the number of observations to be truncated is 125, and from looking at 

individual observations, it can be found that the associated time is approximately 450 

minutes. This value is the sample settling time, t*. Assuming that this situation requires a 

95 percent confidence interval with a halfwidth size of less than two percent of the 

estimated mean, we can say that Xt is in steady state over the interval t = q,. . .,T if and 
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Table 1.1 
Effect of Initial Truncation on Confidence Interval 

for (Example) Manufacturing System 

Batches truncated 95% Conf. Interval 

0 0.9709 

1 0.7595 

2 0.5797 

3 0.5070 

4 0.4800 

5 *0.4352 

6 0.4358 

7 0.4415 

8 0.4474 

9 0.4538 

10 0.4607 

17 

Mean 

26.56 

26.88 

27.13 

27.27 

27.37 

27.47 

27.51 

27.50 

27.48 

27.54 

27.49 



only if llZll :S 0.55. In this case, for Xt from t = -450(t*), ... ,9000 minutes, this 

requirement has been met, so Xt is said to be in steady state over this interval. If greater 

confidence were required, the sample size would have to be increased; in other words, T 

must be greater than 9000 minutes. 

The operational definitions of steady state and sample settling time developed here 

provide a straightforward, quantifiable procedure for assigning a level of confidence to the 

existence of steady state in a given data sample. The power of this capability will be 

revealed by the development of a new steady-state detection heuristic and a methodology 

for evaluation of this and other detection heuristics in the remainder of this thesis. 

1. 6 THESIS OUTLINE 

The next chapter will discuss the need for steady-state detection heuristics and will 

summarize the work that has been done by simulation researchers in developing procedures 

for evaluation of detection heuristics. Chapter Three will then provide a detailed 

methodology· based on the definition that has been developed in Chapter One. Chapter 

Four will present the results of evaluation of some detection heuristics using the procedure 

developed in Chapter Three, and Chapter Five will discuss future research needs in this 

area. 
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CHAPTER TWO 

PREVIOUS WORK IN STEADY-STATE DETECTION 

2 .1 INTRODUCTION 

In this chapter, some of the previous work on steady-state detection heuristics will 

be reviewed. The review begins with the seminal work of Gafarian et al. (1978) and of 

Wilson and Pritsker (1978a,b) on the comparative analysis of alternative detection 

heuristics. In addition, we present the work of Schruben (1981) and the related work of 

Heidelberger and Welch (1983), who take a rather different approach from the earlier 

analysts. The similarities and differences among the various analyses will be discussed, as 

well as the strengths and weaknesses of each. 

2.2 STEADY-STATE DETECTION HEURISTICS 

A list of the most commonly used detection heuristics is provided here, in Table 

2.1, as background to the information discussed in the body of this chapter. Each of these 

rules determines a point at which a sequence of simulation response data is commonly 

truncated for subsequent output analysis. The table includes both the heuristics evaluated 

by Gafarian et al. and the heuristics considered by Wilson and Pritsker. Also included in 

the table is a heuristic recently proposed by Ingalls (1987). 

2.3 THE GAFARIAN ANALYSIS 

In their seminal paper, Gafarian et al. developed a test procedure and set of criteria 

for evaluating alternative detection heuristics. Steady-state was defined with respect to the 

mean as 
lim 

µ°" = E[Xt IXo] = E[X°"], 
t--t= 
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Table 2.1 

COMMON TRUNCATION HEURISTICS 

1. Conway/Data Interval Rule: Truncate the set of data until the first value is neither 
the maximum nor the minimum of the remaining set. Repeat for a few exploratory 
runs, then truncate future data sets based on the most conservative of the test runs 
(Conway, 1963). 

I 

2. Modified Conway Rule: Similar to Conway Rule, except that data is looked at in a 
backwards manner to find first observation that is not a maximum nor minimum of 
the previous values. Exploratory runs are used the same way as in Rule 1 
(Gafarian et al., 1978). 

*3. Fishman/Crossings-of-the-Mean Rule: A running cumulative mean is kept as the 
data are generated, and the number of times the data crosses this mean is counted. 
When this number reaches a prespecified value, steady state is said to begin. 
Exploratory runs are not required for this rule (Fishman, 1973). 

4. Gordon/Cumulative-Mean Rule: Run a pre-specified number of exploratory 
replications, each with a pre-specified number of observations and initial condition. 
Plot the grand cumulative mean over all observations and runs and choose a point at 
which the mean appears to stabilize. Truncate to this point (Gordon, 1969). 

5. GordonNariance-Reduction Rule: Run a pre-specified number of exploratory 
replications to estimate the variance of the data values. Truncate up to the point at 
which the variance begins to fall off at a rate of 1/(sample size) (Gordon, 1969). 

6. Schribner/Batch-Means Interval Rule: Divide an exploratory data set into batches 
and calculate each batch mean. Truncate to the point at which a specified number of 
the most recent batch means are within a specified interval of each other (Schribner, 
1974). 

7. Fishman/Autocorrelation Rule: Truncate the number of autocorrelated observations 
that is "equivalent" to one independent observation (Fishman, 1971). 

*8. Emshoff & Sisson/Moving-Averages Rule: Divide the sample into "statistically 
large" subgroups (i.e., at least 30 if a z test is to be used). Truncate when there is 
no statistically significant difference between the average of the previous subgroup 
and the average of the current subgroup (Emshoff and Sisson, 1970). 

*9. Ingalls/Cumulative-Statistics Rule: Truncate when both (a) the cumulative mean 
and cumulative standard deviation of sequential subgroups are within a specified 
range, and (b) the slope of the mean and slope of the standard deviation of 
sequential subgroups are less than a specified ratio (Ingalls, 1987). 

*10. "Do Nothing" Rule: Retain all data. No truncation. 

* No exploratory runs required 
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and the problem of steady-state detection was defined as that of finding the minimum t, 

denoted t *, such that 

1 < E[Xt*] < 1 - e - E[Xoo] - + e. 

These definitions were used to calculate t* for entity waiting time (time-in-queue) in an 

M/Mfl/oo queuing system, using a variety of initial conditions and utilization factors (traffic. 

intensities), the corresponding theoretical value of µoo, and error bands, e, of 0.05 and 

0.10. The queuing system was simulated to generate sets of test data from which the 

sample statistics fort* were determined. 

The first five rules in Table 2.1 were applied to the same output data. The 

truncation point detenriined by each heuristic was considered to be an estimate of t*, 
,,... ....-... 

denoted t*, which is one possible value of a random variable T*. The performance of 
....-... 

each heuristic was judged by comparing the corresponding statistics of T* with those 

previously determined for t*. Based on this comparison, heuristics were rated in terms of 

five criteria: accuracy, precision, generality, cost, and simplicity. 

Accuracy measures how close the expectation of the estimator of t* is to the actual 

t*. Mathematically, accuracy is defined as: 
....-... 

E[T*] a=--
t* 

where? is the random variable estimator oft*. High accuracy is attained if a is close to 
....-... 

one. Precision is measured by the coefficient of variation of T*: 

) Var[?] 
p= ......... 

E[T*] 

Gafarian et al.'s idea of high precision is p = 0. 

Generality means that a heuristic works well for a wide variety of systems. Cost is 

essentially a measure of the computer time required for: 
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(1) 
(2) 
(3) 

computational needs of the algorithm, 
collecting exploratory output data, if necessary, and 
making up any data lost from an overestimation oft*. 

Simplicity measures the accessibility of a heuristic to the average person. In the 

Gafarian study, all five heuristics were judged unsatisfactory and "not suitable for their 

intended use" because they each are judged to perform poorly in relation to one or more of 

these criteria. 

While the importance of this pioneering analysis is undisputed, a number of 

fundamental problems invalidate the procedure employed and mitigate its sweeping 

rejection of the five heuristics tested. Most of these problems stem, directly or indirectly, 

from the use of the theoretical value of µoo in the definition of steady state and settling time. 

Failure to use sample statistics and confidence intervals as the basis for evaluation limits the 

generality of the approach, leads to false notions of accuracy and precision, obscures 

tradeoffs between the confidence and cost of estimates, and generally precludes a 

meaningful comparison of the heuristics. We consider some of these problems in more 

detail in the following. 

Most obviously, use of the theoretical mean in defining the experiment limits testing 

to processes for which the theoretical value can be calculated analytically, such as the 

11/M/l queuing system actually employed. Such processes are comparatively rare and are 

not necessarily representative of the types of systems to which the detection heuristics are 

applied in practice. For example, the regenerative nature and high variability of the M/M/l 

queue makes this simple process one of the most difficult in which to detect steady state. 

Gafarian et al. defend the:0 use of this test system based on the generality criterion, 

stating that heuristics which break down for M/M/l do not merit further investigation. 

These rules will no longer be tested in other situations, since, even if they 
produced good results in some other cases, our criterion for generality 
would not have been met. 
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In fact, it is the testing condition that fails to generalize. Heuristics that are rejected in this 

instance should be tested on a wide variety of more typical processes, for which the 

theoretical mean is estimated from the sample data actually used by the heuristic. 

More importantly, using the theoretical mean as the basis for evaluating the 

accuracy and cost of a heuristic obscures the individuality of the experimental data on 

which the heuristic actually operates. Because the analysis is based on a sampling 

experiment, it is unlikely that the theoretical value is in fact the best estimate of the mean or 

settling time that can be had from the data, i.e., the sample steady-state mean and sample 

settling time defined in Chapter One. Furthermore, the sample data support only limited 

confidence in the accuracy of the estimates, which must be determined as a part of the 

experiment. Using the theoretical mean (inadvertantly) implies 100% confidence in this 

value, which is not supported by the data. To salvage the Gaf arian methodology would 

require prohibitively long test sequences, in order that the theoretical mean and implied 

confidence in this value begin to approximate the true sample statistics. This point is 

perhaps as subtle as it is fundamental. 

As a consequence, Gafarian et al. improperly reject three of the five heuristics tested 

primarily because these overestimate t*. We note, first, that Gafarian et al.'s judgment of 

conservatism is based on an arbitrary choice of e and the misuse of the theoretical mean in 

calculating t*. Moreover, conservatism in itself is not an appropriate rejection criterion. 

Truncating a longer sequence of data provides greater certainty that steady state has been 

achieved in the data remaining. A more appropriate way to assess acceptability is to weigh 

the extra confidence in the achievement of steady state gained by a "conservative" t* against 

the cost of the additional data required to achieve comparable confidence levels . 

. For a fixed sequence of data, as used in the analysis, our definition of the sample 

settling time provides a means for quantifying this assessment and measuring exactly how 

good or how bad a heuristic estimate is. A conservative truncation point is one which is 

greater than the sample settling time; a premature truncation point is one which is less than 
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the sample settling time. Since the number of data points is fixed, the cost of a heuristic is 

some appropriate combination of (1) the loss of confidence in the resulting estimate of the 

mean, i.e., IZ - ZJ, where Z is the confidence interval for the sample mean and Z is the 

confidence interval of the heuristic estimate of the sample mean, both defined for the 

sample confidence level; and (2) the increased or decreased computation time of the 

heuristic, compared with the time required to compute the sample settling time. The 

accuracy of the heuristic with respect to estimating the sample mean is the difference 

between the sample mean and the heuristic estimate of the sample mean, i.e., the bias 

IE[Xt8] - E[X(]I, where the sequence Xts runs { t8 , .. .,T}; for the sample mean, and the 

sequence X;* runs { t* , .. .,T}, for the heuristic estimate. The accuracy of the heuristic with 

respect to estimating the sample settling time is the number of data points between the 
...... 

sample settling time and the heuristic truncation point, i.e., Its - t*I. 

Using these measures, a consistent comparison of alternative heuristics can be 

made, with respect to both accuracy and cost. Indeed, these measures can be used to 

measure the accuracy and cost of Gafarian et al. 's t* as an estimator of ts and to measure the 

consequences of the arbitrary choice of E and misuse of the theoretical mean in the analysis. 

While use of the theoretical mean in the Gafarian analysis confuses the evaluation 

of accuracy and cost, the analysis also presents problems with respect to the criterion of 

precision. One of the reasons some of the rules are rejected is that the precision values are 

unacceptable; that is, they are not close enough to zero. In Gafarian et al. 's interpretation, 

precision is a measure of the variation in the set of t* estimates produced by a particular 

heuristic. This sample oft* estimates is the result of execution of the heuristic for several 

output sets of a given simulation; i.e., several runs of the MJMO queue model simu~ation, 

each with a different random number seed. Gafarian et al. 's requirement is that there be 

almost no variation among these t* estimates. The problem is that, because of the natural 

variation of the underlying distributions of the output data, it is very probable that the actual 

* t values have a high degree of variation themselves; therefore, it is illogical to require the t* 
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estimates to exhibit low variation. It simply does not make sense for Gafarian to use the 

precision criterion in evaluating the effectiveness of a truncation heuris~ic. 

Based on the problems brought out in the above discussion, it is safe to say that 

Gafarian et al. 's sweeping rejection of the first five truncation heuristics is premature. 

Additional research with extra emphasis on statistical comparisons is required before any 

such conclusions can be made. 

We note, finally, that the selection of a "best" heuristic using our method is a 

multiobjective problem, just as it should be in the original Gafarian analysis. The difficulty 

here is in assigning tradeoff weights to the various measures of accuracy and to the 

component measures of cost. It is likely that no single heuristic will dominate with respect 

to all of these criteria and that the selection of a heuristic will depend on the purpose and 

constraints of the simulation study. The improved evaluation method will inform this 

decision. This result clearly is preferable to a sweeping rejection of all heuristics. 

2. 4 THE WILSON AND PRITSKER ANALYSIS 

In two papers published soon after the Gafarian analysis, Wilson and Pritsker 

present an alternative procedure for evaluating steady-state detection heuristics. The first 

paper (1978a) surveys research on the so-called"startup problem". Three approaches to 

the problem were found in the literature: time-series analysis, queuing theory, and 

detection heuristics. Wilson and Pritsker conclude that 

Although the results derived from time-series analysis and queuing theory 
are rigorous and precise,"they have rather limited applicability. On the 
other hand, many of the heuristic methods have broader applicability but 
are ambiguously formulated and have uncertain statistical properties. 

Several prior analyses of detection heuristics are briefly reviewed, including the Gafarian et 

al. study. Wilson and Pritsker correctly note that Gafarian et al. 

did not examine the full effects of truncation on the estimator of µx [the 
theoretical mean]. The best policy for estimating µx may not necessarily 
also be the best policy for estimating r*. 
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They further conclude that an evaluation procedure is needed that 

focuses directly on the behavior of the truncated sample mean, 
... consider[s] the random variation in the truncation point, [and] 
characterize[s] both the random and systematic components in the 
estimation error. 

Such a procedure is developed and applied in the second paper (1978b). 

Statistics were generated for number-in-system for 50 observations of a finite 

capacity single-server queue (MJM/1/15) and a finite capacity machine-repair queue 

(M/M/3/14/14) from the theoretical probability transition functions for these stochastic 

processes. These statistics were based on three different initial conditions: 

(1) "empty and idle"; 
(2) Xo as close as possible to the theoretical steady-state mode; and 
(3) Xo as close as possible to the theoretical steady-state mean. 

For each of the three, the bias 

B[Xso ctlXo=i] = E[Xso ctlXo=i] - µx 
' ' ' 

variance 

V(Xso ctlXo=i) = E([Xn ct - E(Xn ct)]21Xo=i) 
' ' ' ' 

and mean square error 
- - 2 MSE(Xn,ctlXo=i) = E[(Xn,d - µx) IXo=i] 

= V(Xn ctlXo=i) + B2(Xn ctlXo=i) 
' ' ' 

were tabulated for all 50 possible truncation points, d = 0, ... ,49, where Xso,d is the mean 

of the truncated sample and µx is the theoretical mean. These bias, variance, and mean 

square error values represent the a priori expected statistics of the sample runs. 

Four detecti9n heuristics from Table 2.1 were considered: the Do-Nothing rule 

(dilution), the Conway rule, the Crqssings-of-the-Mean _rule, and the Batch-Means rule. 

For each combination of heuristic and initial condition (termed a "startup policy"), empirical 

probability distributions for the recommended truncation point were developed from 

independent simulation replications. The average bias, variance, and mean square error for 
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each startup policy was computed from the tabulated data by using an estimated probability 

distribution of the truncation point, d, over independent simulation runs. These results in 

turn were used to construct normalized confidence intervals for the sample steady-state 

mean for each policy. Finally, policies were compared based on the average sample 

confidence interval coverage of the theoretical mean. Based on these comparisons, it was 

concluded that 

the judicious selection of an initial condition is more effective than 
truncation in improving the performance of the sample mean as an 
estimator of the steady-state mean. 

The methodology developed by Wilson and Pritsker is free of the conceptual errors 

that plague the Gafarian analysis. In order to understand Wilson and Pritsker's results 

better, some of the underlying effects of their methodology must first be explained. The 

basis of their entire methodology is the use of theoretical probability transition functions for 

the determination of bias, variance, and mean square error. These data represent the 

expected values ·of bias, variance, and mean square error, associated with the given initial 

conditions, as the number of replications approaches infinity. Because the sampling 

process is theoretically-based, its mean value progresses smoothly from the initial condition 

to the theoretical mean value of the underlying process as the sample size increases. 

Assuming that the initial conditions are not "unusual" for steady-state operation (which is 

an acceptable assumption for their study--this will be explained later), this smooth 

progression means that the expected bias will consistently decrease and the expected 

variance will consistently increase throughout truncation. Bias decreases because 

truncation eliminates observations that on average are skewed toward the initial condition. 

Variance increases because truncation reduces the number of observations. Given that the 

initial conditions are within normal data range, the truncated observations on average are 

not different enough to significantly affect the variance. Hence, Wilson and Pritsker's 

analysis indicates, correctly, that in certain situations, there is a compromise between bias 

and variance reduction as initial observations are truncated. 
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Their conclusipn that truncation is an inefficient methcxl of obtaining gocxl statistics 

follows from this compromise. Given that their recommended approach is to choose an 

appropriate initial condition, we may assume that a "pilot run" is required before simulation 

data is actually collected. Because of the compromise between bias and variance, if a 

heuristic is used on the pilot run to determine the truncation points for all subsequent runs, 

it is likely for some processes that "good" data will be thrown away. This is especially true 

if the initial condition used for prcxluction runs is the mean or mode of the pilot run because 

this value is even more likely to represent a "good" initial condition; hence, the increase in 

variance due to truncation will be significant. 

As indicated above, however, there are some restrictions associated with Wilson 

and Pritsker's results. First of all, their method relies on multiple replications of short 

runs, whereas the preferred way of analyzing non-terminating simulation output is to use 

data from a single long run. In addition, observed data are random, whereas the theoretical 

statistics are deterministic. The observed data do not necessarily progress monotonically 

from the initial condition to the population mean value and are not bounded by either the 

initial condition or the population mean (in a limited sample). Thus, it is always possible 

that statistical estimates from one long simulation run may actually be improved by 

truncating observations. Finally, Wilson and Pritsker's methodology requires "reasonable" 

initial condition values to be known at the start of the prcxluction runs, and this requirement 

may not always be achievable. 

The link between Wilson and Pritsker's results and our approach lies in the 

relationship between sample settling time, as defined in Chapter One, and the behavior of 

the bias, variance, and mean square error. The data and measures developed in the Wilson 

and Pritsker analysis demonstrate that the sample settling time is an optimal truncation point 

in the absence of foreknowledge of an acceptable initial condition value. For the tabulated 

data, truncation at the sample settling time (zero, in the case of their examples) does in fact 

result in a minimum or near-minimum square error in all data sets. The reason for this is 
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clear from the MSE equation, where the error criterion is shown to be the sum of the 

sample variance and the square of the bias. 

If a "judicious selection" of the initial condition can be made, the bias term will be 

small relative to the variance term, the sample settling time will always be near zero, and 

truncation at the sample settling time (i.e., no truncation) will lead to a near minimum 

estimation error for a sufficiently large sample. On the other hand, if there is no basis for 

making a "judicious selection", then there is no prior knowledge of the bias, and the best 

strategy is to minimize the variance by truncating at the sample settling time. In effect, 

truncation at the sample settling time can be viewed as one means for making a "judicious 

selection" experimentally, since the observation corresponding to truncation point becomes 

the initial condition for the truncated sequence. The cost of the information concerning a 

good initial condition is the cost of the data that is rejected. 

2. 5 THE SCHRUBEN/HEIDELBERGER AND WELCH ANALYSIS 

Our final analysis concerns a methodology for controlling simulation run length in 

the presence of an initial transient, described in a 1983 paper by Philip Heidelberger and 

Peter D. Welch. The transient detection aspect of their methodology is based on an 

approach described in a 1981 paper by Lee W. Schruben. Because our interests concern 

both transient detection and the "cost", or run length requirements, associated with 

initialization bias, we will look at both of these papers. First Schruben's approach to 

transient detection will be described, then it will be placed in the context of Heidelberger 

and Welch's overall methodology. 

Schruben's approach is somewhat different from the others reviewed here. First of 

all, the purpose of his methodology is to determine only whether or not initialization bias 

exists in a given set of simulation output data. He does not attempt to identify where the 

bias ends within the data set. Heidelberger and Welch extend Schruben's concept to 

include identifying the location at which the bias disappears. Schruben's method attempts 
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to standardize "the stochastic process being simulated so that it represents 'noise' in which 

a 'signal', due to initialization bias, may be detected." Schruben's standardization process 

is conceptually similar to the standardization process used in applications of the classical 

central limit theorem; that is, the procedure attempts to find a limiting distribution for the 

test statistic. The major difference here, though, is that instead of using a limiting normal 

random variable to standardize, as in classical central limit theorem applications, 

Schruben's method uses a limiting stochastic process, the standard Brownian bridge. His 

procedure is essentially a process version of the central limit theorem. 

In order to perform this standardization, the output series is divided into the "noise" 

function, X, which is stationary, or unbiased, and the "signal", µ, which is affected by 

initialization bias. In other words, if Yi is the actual value of a process at time ti, then Yi= 

µi +Xi, where Xi is purely a function of the state of the system between time ti-1 and time 

ti, and µi is the amount added (or subtracted) by initializing and running the simulation. 

Schruben's determination of whether or not initialization bias exists is based on the 

sequence of partial sums, 

Sn(k) = Yn - Yk; k = 1,2,. . .,n, 

where Yn is the average of the entire output series, and Yk is the average of the first k 

observations. 

By manipulating the relationships between these entities and relying on some basic 

statistical properties, Schruben determines the standardized noise function and the 

standardized signal function. Combining these two functions creates a "standardized test 

sequence", 
Tn(t) = [ntJSn([nt]); tE [0,1], 

./Ila 

where n is total number of observations and tis time scaled to the unit interval (t = 1/n, 

2/n,. . .,l). Schruben asserts that initialization bias can be detected by the existence of a 

prominent peak in this function that occurs at a relatively small value oft. In other words, 

assuming that the simulation user knows the sign of the bias, T n(t) is not expected to have a 
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large positive maximum value if there is no negative initialization bias. If positive bias is 

expected, the output series is multiplied by (-1 ), and a similar expectation is true. 

Schruben develops a test procedure based on the fact that if no initialization bias 

exists (i.e., µi is constant throughout the ruri), then T0 (t) can be modeled as the standard 

Brownian bridge process, {Pt; t e [O, 1]}. By working with the joint density of t*, which 

is the location of the maximum of Pt, and s*, which is Pt*, Schruben sets up several 

variable definitions from which his test procedure is developed. The procedure uses a 

hypothesis test in which the null hypothesis is that the output process has a constant mean . 
....... 

The value of a. for the hypothesis test is determined by manipulating the observed statistics 

and using an F distribution with three and v degrees of freedom. The values of c? and v, 

which are necessary for the test procedure, can be estimated using autoregression 

techniques. Schruben's methodology here is based on previous work by Fishman (1973). 

Once a is computed, it is used to assess whether or not a test statistic more unusual than 

that observed will occur if there is no initialization bias present. If a is large, the output 

probably does not contain a significant negative initialization bias. The "no negative bias" 

hypothesis is rejected if a is less than the specified probability, a., of rejecting a true 

hypothesis. 

Using this procedure, Schruben tests sets of simulation output data from five 

different models, with and without initialization bias. The behavior of the power functions 

of a is monitored as a. increases from zero to one. The models he uses have known 

steady-state distributions; therefore, he knows where to anticipate bias based on the initial 

conditions he uses in each run. According to Schruben's test results, his detection 

procedure is highly effective for a wide variety of simulation models. 

Schruben calls attention to the test of an M/M/l queue system as one notable 

"exception" to the success of his procedure. In the run of the M/M/l queue with "empty 

and idle" initial conditions, Schruben seems to expect a strong indication of negative 

initialization bias from his procedure because a waiting time of zero is clearly less than the 
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steady-state mean waiting time. The procedure gives a fairly weak indication of bias, and 

Schruben interprets this as bad performance of the procedure. However, when one recalls 

that zero is not an unusual value for the cyclic, highly variable M/M/l queue, it becomes 

apparent that Schruben's assessment of the procedure's performance in this case may have 

been unnecessarily harsh. In other words, starting an M/M/l queue as "empty and idle" 

does not actually introduce a strong negative initial bias, as Schruben seems to think. 

In general, Schruben's method seems to work well in the act of bias detection; 

however, since it does not attempt to locate the ending point of the bias nor consider 

required run lengths, it is difficult to assess the usefulness of Schruben's method in the 

context of actual simulation output analysis. Soon after Schruben's results were published, 

Heidelberger and Welch (1983) published their work on run length control in the presence 

of an initial transient, which places Schruben's detection methodology into a more 

practically useful procedure. The purpose of their procedure is to determine the run length 

required to attain a pre-specified confidence interval and to incorporate the transient test so 

as to optimize the output statistics (e.g., maximize confidence while minimizing run 

length). 

Heidelberger and Welch state that they wished to design a methodology to be useful 

to the "wide population of experimenters who have little knowledge or interest in 

simulation output analysis". They feel this can be done by incorporating a fairly complex 

set of procedures in a high-level simulation package that could be transparent to the user. A 

simple user interface would require the user to specify a few parameters. 

Ideally, these parameters should enable the users to define the accuracy 
they require and the maximum amount of computing time they are willing 
to invest, but not involve them any further in the technical details of the 
procedure. 

As stated previously, Heidelberger and Welch use a method of initial transient 

detection based on Schruben's Brownian bridge model test. Their procedure uses 

Schruben's test a number of times to identify the transient portion of the data, then 
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generates confidence intervals based on the remaining, stationary portion of the data. The 

confidence intervals requirement set by the simulationist is used to determine dynamically 

the optimal run length. 

The procedure itself is as follows: 
0. Set four parameter values: 

• jmax. maximum number of observations (run length) 
• j 1. initial checkpoint 
• I, multiplicative checkpoint increment parameter 
. • e, relative half-width requirement. 

1. Perform stationary portion testing on data up to checkpoint jk (initially, k = 
1) to find no, if it exists, where {X(n), n =no+ 1,. . .,jk} is a sample from a 
covariance stationary process: 

a) Test {X(n), n = l,. . .,jk} to determine if there is initialization bias. If 
no, then no=O. If yes, then (b). 

b) Remove initial 10% of the data and repeat (a) (now n = LJk/10]+ 1, .. .,jk). 
If no initialization bias, then no= jk/10. If yes, repeat (b). 

If no such no can be found, then jk becomes jk+l = min{I * jk, jmax}. 
Repeat Step 1. 
If jmax is reached and no no is found, then no confidence interval for µ can 
be formed. 

2. Once no is located, generate a confidence interval from {X(n), n = 
no+ l , .. .,jk}. 
Find estimated relative halfwidth (ERHW) of the C.I.: 

ERHW = C.I. hal~idth 
2*X 

jk 
where X = L, X(n) 

n=no+l 

If ERHW ~ £, then s~ulation may stop. 
If ERHW > £, then j}( becomes jk+ 1 = min { I*jk, jmax}. 
If jmax is reached, the confidence interval generated for µ may or may not 
satisfy the accuracy requirement e. 

Heidelberger and Welch used their procedure to determine optimal truncation and 

run length for three different stochastic processes and four different initial transient 

functions. The initial transients they used were deterministic functions of various sizes and 
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strengths which were simply added to the (known) stationary output series. With these 

models, they looked at the procedure's effects on confidence interval coverage, point 

estimate bias, mean run length, and mean amount of data truncated. In addition, they 

studied the effects of size and shape of the initial transient and the correlation structure of 

the output data. 

Heidelberger and Welch performed tests initially to compare the relative 

effectiveness of four initial transient detection tests based on four alternative statistics that 

can be used for the Brownian bridge test. From these tests, they determined that the 

behavior of the run length control procedures is very similar, regardless of which of the 

four transient tests is used. For a given accuracy criterion, all four tests produce point 

estimates with very low relative bias, generally 3% or less; confidence intervals have 

approximately the same coverage of 0.90, which is, appropriately, the prespecified level of 

the transient. tests; mean run length and mean amount of data truncated are also 

approximately the same over all transient detection tests. Based on these results, the 

Cramer-von Mises test was chosen because it is the simplest to use. In addition to the 

transient tests, further tests were performed to study the impacts of changing various 

parameters, including test levels and location and size of the initial checkpoint (j1). 

Based on the results of these various tests, Heidelberger and Welch note that, in 

general, the introduction of a transient test improves performance of their run length control 

procedure. With the use of a transient test, 

there is only a slight loss in coverage in the no transient case, and no 
increase in run length. 0 In the cases where there is a transient, the 
coverage remains adequate with the introduction of the transient test and 
the run lengths are much shorter. The coverages for the case when no 
transient test is applied are way off. 

They also conclude that their procedure performed very well when faced with a strong 

transient and when the initial checkpoint (j1) is beyond the end of the transient phase. 

However, it was not as effective in detecting a weak transient or in detecting a transient 

when the initial checkpoint was within the transient period. 

34 



Heidelberger and Welch's technique for combining transient detection and 

confidence interval testing to determine run length is very effective and has some very 

specific advantages over procedures studied and developed in previous papers. For 

example, it is based on the use of one long simulation run, as most non-terminating 

simulation output sets are created. In addition, it makes things fairly easy for the 

simulationist by requiring nothing more complex than accuracy requirements and run length 

constraints to be input, and it does the rest automatically. It also allows the amount of data 

needed for final calculations to be as little as the accuracy requirements will allow. 

The only real problem with Heidelberger and Welch's procedure is that it may be 

somewhat computationally intensive. Schruben's transient detection method does not have 

extreme computing requirements in itself for a single run: Schruben states that "order n 

storage locations" and "insignificant computation" is required for the first step of his 

procedure; in addition, two of the estimators may be taken from a table in Fishman (1973) 

or obtained using a modification of a subroutine by Fishman; and a probability value may 

be taken from F-distribution tables. Although each step in itself does not seem 

overwhelming, when used within Heidelberger and Welch's cyclical procedure, the whole 

process will have to be performed many times for every piece of every output series (in the 

worst case). At best, the computational requirements may call for the use of a fairly 

powerful computer; at worst, they may cause a computer to take an unreasonably long time 

to complete an analysis of the simulation output. 

Finally, although this may not necessarily be considered a disadvantage, it should 

be noted that Heidelberger and Welch's procedure, because of its relative complexity and 

its unique transient detection method, is not easily understood by the average simulationist. 

The procedure must, without a doubt, be almost fully automated. The potential problem 

therein is that because there is less interaction and understanding by the user, there is also 

less. chance that he/she will be aware of any existing problems with the analysis done by the 
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computer. However, since this is clearly a problem with automation in general, it should 

be considered beyond the scope of this res~arch. 

2.6 CONCLUSIONS 

In this chapter, we reviewed the prior literature on steady state/initialization bias 

detection methods and heuristics, as well as evaluation methodologies for these heuristics. 

We focused on the seminal detection heuristics evaluation work of Gafarian et al. (1978), 

the "startup policy" evaluation work of Wilson and Pritsker (1978), and the initialization 

bias detection and run length control methodology developed respectively by Schruben 

(1981) and Heidelberger and Welch (1983). 

We showed that the Gafarian paper, while very enlightening as the first major work 

in the area, has serious gaps in the concepts and evaluation procedures used. Gafarian et 

al. 's most serious error was the use of theoretical rather than sample statistics as the basis 

for evaluations and comparisons. Wilson and Pritsker's work was shown to be both 

enlightening and robust as a description of the theoretical workings of initialization bias 

effects and some previously developed heuristics. However, Wilson and Pritsker's 

developments are not particularly useful for the execution and analysis of a "real-world" 

simulation. 

Finally, we outlined the initialization bias. detection method of Schruben and the run 

length control procedure developed by Heidelberger and Welch that incorporates 

Schruben's detection method. In this section, it was shown that, although the procedure 

may be somewhat computationally intensive, it could be very useful for automated 

simulation output analysis. It requires only empirically obtainable statistics, so it does not 

require foreknowledge of system statistics. In addition, it is based on theoretically sound 

statistical relationships among confidence interval width and coverage, bias, amount of 

initial data truncated, and run length. 
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In the next chapter, we will use some of the measures and definitions outlined here 

to develop a new heuristic for determining the optimal truncation point for non-terminating 

simulations. In later chapters, we will use these measures and definitions to compare the 

efficiency and effectiveness of this heuristic against some of the steady-state detection 

heuristics that were described in this chapter. 
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CHAPTER THREE 

A NEW METHODOLOGY 

3 .1 GENERAL METHODOLOGY 

As Chapter Two indicated, there are various problems associated with current 

methods for determining the onset of steady state and for evaluating detection heuristics. 

This chapter will describe a new evaluation procedure that is based on the steady-state 

concepts presented in Chapter One and that bears some resemblance to Heidelberger and 

Welch's concepts outlined in Chapter Two. In addition, a new steady-state detection 

heuristic that derives from this evaluation procedure will be introduced. 

Recall that a new, operational definition of the steady-state detection problem was 

presented in Chapter One. This definition assumes a given initial condition and initial 

maximum confidence interval and considers detection of steady state as the problem of 

finding the "sample settling time", which is the point at which truncation maximizes the 

confidence level of the sample mean estimate. This definition of steady state is 

operationally feasible, as opposed to previously-used definitions, because it relies on 

confidence intervals and statistics based on finite samples of data. Note that confidence 

levels and confidence intervals have an inverse relationship. An increase in confidence 

level with constant halfwidth is equivalent to a decrease in confidence interval (CI) 

halfwidth with confidence level held constant. 

The heuristics evaluation procedure consists of three steps: 

1) Set a "base" CI halfwidth by obtaining a sample of data that can be 
collected in what the simulationist considers "a reasonable time" (a 
minimum of 1000 observations is generally required). The CI calculation 
should include all data (i.e., initial transient points should not be 
removed). 

2) Truncate points from the beginning of the data set and study the behavior 
of the confidence level/interval as the number of truncated points 
increases. Truncation should end when the confidence level begins to 
decrease (or CI halfwidth begins to increase). 
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3) Compare the confidence levels achieved by other truncation heuristics 
against the statistics achieved by this confidence maximization-based 
truncation point. 

For a well-behaved process with transient bias, the CI halfwidth will decrease, or 

confidence level will increase, as points are truncated until truncation enters the steady-state 

region of the data. At the onset of steady state, the confidence level will peak and then 

begin to decrease. The time of the confidence level peak approximates the sample settling 

time and is, therefore, the optimal truncation point. 

The rationale behind this procedure is that two quantities have the greatest amount 

of influence on the confidence of a sample statistic: sample variance and number of 

observations, or sample size. Recall the definition of the 100(1-a)% confidence interval 

for the mean of a Normal population: 

[X _ sZa.12 X + sZa.12] 
..;n ' ..;n ' 

where a is confidence level, X is sample mean, s is sample standard deviation, n is sample 

size, and Z is the Z-statistic value at a confidence level of ( 1-a). Using the Central Limit 

Theorem, it can also be said that this definition holds true for samples that are not 

necessarily Normal but are "very large". We will assume that our samples contain at least 

1000 observations, so this definition may be safely applied~ The above definition shows 

that the size of the CI is directly proportional to the sample standard deviation and inversely 

proportional to the square root of sample size. Therefore, a decrease in the variability 

within a set of data will cause a_aecrease in the size of the CI, while a decrease in sample 

size will have the opposite effect--the size of the CI will be increased. 

A theoretical explanation for the peaking behavior of the confidence level at the 

onset of steady state can be found in Wilson and Pritsker's work (1983a,b), introduced in 

Chapter Two. Recall that Wilson and Pritsker studied the effects of initial truncation on the 

theoretical bias and variance of sets of output data from different models with a variety of 
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initial conditions. For the data sets they tested, truncation of initial observations 

consistently caused the bias to decrease and the variance to increase. This effect occurred 

because, in every case, the initial conditions they used were not outside of the "normal" 

steady-state range of values for their models. Bias reduction occurred because, regardless 

of the "normality" of the initial condition, there will always be a slight skew in the initial 

output toward the initial condition values (because the initial conditions must be natural 

numbers, while the theoretical steady-state mean is non-integer). On the other hand, 

variance consistently increased because the sample size reduction caused by truncation had 

a much greater impact on the statistic than did the slight reduction in bias. 

Although Wilson and Pritsker's testing did not specifically cover the case in which 

initial condition values are well outside the range of "normal" steady-state values, ideas 

from their analysis can be extrapolated to cover this case. Clearly, the initial data generated 

by a model run with very unusual initial conditions will be much more strongly skewed 

than the previous case; hence, bias caused by the initial conditions will be large. As initial 

observations are truncated, the statistics (for a well-behaved, converging function) will 

move closer to steady-state values, which will cause the bias to decrease. Assuming that 

the sample size is statistically large (which is not true of Wilson and Pritsker's test cases), 

the variance will not immediately be strongly affected by reduction in sample size. The 

variance will, however, decrease in response to the bias reduction caused by removal of 

outlying data points. 

Once truncation reaches a point at which the remaining data values are close to 

steady-state values, the bias reduction will slow and its effect on the variance calculation 

will fade away. In addition, the effect of removing observations will eventually become 

stronger and will cause the variance to increase. 

The truncation problem, then, is to determine how to assess the balance between 

bias and variance so as to find the optimal truncation point. Intuitively, it seems that the 

optimal point should be the point at which variance begins to increase. However, initial 
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testing (as will be seen in Chapter Four) indicates that judging by the variance tends to 

produce overly conservative truncation points. Apparently, the effects of bias reduction are 

more powerful than sample size reduction in computing the variance; therefore, sample size 

must be weighted more heavily in determining optimal truncation point. This can be 

achieved in a rather straightforward manner by studying the behavior of the CI halfwidth 

instead of the variance. Since the CI calculation divides the statistic by the sample size one 

more time, the sample size gets the extra weight it needs. The theory behind this effect 

should be studied at some point to determine the cause; however, this is somewhat outside 

of the scope of this research. It will do for the time being simply to state that, empirically, 

the CI halfwidth seems to be a more effective statistic to use in determining the optimal 

truncation point. 

Clearly, the CI halfwidth will exhibit behavior similar to the variance as described 

earlier; that is, it will decrease as a result of the bias reduction from truncation of outlying 

data values; then, it will increase once bias reduction slows and decreasing sample size 

becomes more powerful. The point at which the CI halfwidth reaches a minimum is the 

point of maximum confidence for the output statistics. This is the optimal point at which to 

stop truncation. This maximization of the confidence level (or, equally, minimization of CI 

halfwidth) approach is the theoretical basis of the heuristics' evaluation procedure; thus, it 

will be called the Confidence Maximization Procedure. 

3. 2 THE PROCEDURE 

The Confidence Maximization Procedure (CMP) will now be described in detail. 

Most of the required calculations can be performed using the SIMAN (Simulation 

Language) Output Processor. 

The first step is to run the simulation for a "conveniently long" time (according to 

the simulationist's best estimate; again, a minimum of 1000 observations is generally 

required) and to collect data for the system variable of interest (e.g., time in system, 
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number in system, number in queue, etc.). Next, the "initial confidence" of the sample is 

determined. This is done by calculating the (1-a)% CI halfwidth: 

sZa12 
v'[ , 

where a= (1.0 - confidence level), based on all available data (no truncation). 

At this point, truncation begins. Truncation testing requires recalculation of the CI 

halfwidth based on increasing amounts of truncated initial data. For a well-behaved 

function with some initial transients, as the number of points truncated increases, CI 

halfwidth will generally decrease for a time (probabilistically), then begin to rise. The point 

at which CI is minimized (or confidence peaks) is the optimal truncation point. This period 

of calculation can be computationally burdensome if the analyst does not have some 

prescience regarding the expected behavior of the process. Generally, the analyst will have 

an idea of approximately where the data fonction should begin to level off. Testing for 

truncation in such a situation requires a few calculations of confidence for truncation above, 

below, and at the estimated point to confirm and refine the estimate. If, however, the 

analyst has no idea where steady state might begin, he must recalculate confidence for 

truncations from the beginning and test until the confidence peak point is found. 

Obviously, testing for truncation of every point from the beginning is not necessary, but 

enough points must be tested to give a reasonable indication of the behavior of the 

confidence function, in order to find the peak. Assuming that the sample is statistically 

large, experience shows (as will be seen in Chapter Four) that testing for truncation at 

every 10 points gives good results, but to ease the amount of computation, testing for 

truncation at every 50 points is acceptable. Clearly, the choice depends upon both the size 

of the sample and the need for precision and saving of data. 

It is, of course, possible that a peak in the confidence function may not exist for the 

given data sample. For example, if the data immediately converges to steady state with no 

transient period, truncation of initial points will cause the confidence to continually decrease 
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because, while variance is not decreasing, sample size is. On the other hand, the data may 

never reach steady state within the given sample; it may be entirely transient. Truncation of 

initial points in this case will probably also cause the confidence to continually decrease 

because of the decreasing sample size; however, it is harder to tell in this case because the 

transient nature of the data could cause variance to either increase or decrease, which will 

affect confidence level. Clearly, because these functions are random, no statement about 

the behavior of the confidence function is entirely certain, but in most cases, the expected 

confidence peak should be identifiable. The special cases must be noted, and further 

· testing is necessary in order to determine whether these can be handled effectively by the 

CMP. This issue will be discussed in more detail in Chapter Five. 

Finally, once the optimal truncation point has been found for a data set, the values 

for confidence level, CI halfwidth, and total required sample size given by the CMP can be 

used to compare the results of steady-state detection heuristics to determine their 

effectiveness. In order to do this, "optimal" truncation points for a particular data set must 

be calculated using the candidate detection heuristics. Comparisons among these can be 

made on the basis of confidence. Confidence levels (or intervals) are calculated for the data 

set (given a constant sample size) using each truncation estimate. Clearly, the detection 

heuristic that yields the truncation point associated with the best confidence statistics is the 

most effective for that model and run. Since all of these calculations are based on 

probabilistic functions and behavior, many different runs of a model must be tested before 

a statement can be made regarding "the best heuristic" for that model. Specifics of the 

procedure will become clearer in Chapter Four, when examples of tested data will be 

described. 
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3. 3 CONFIDENCE MAXIMIZATION PROCEDURE AS A DETECTION 
METHOD 

We have shown how the Confidence Maximization Procedure may be used as a 

methodology for comparison and judgment of the effectiveness of other detection 

heuristics. However, it is not difficult to see that the confidence maximization concept has 

the potential for application as a detection method on its own. After all, the initial steps of 

the testing procedure involve estimation of the steady-state onset point for a complete 

sample using the confidence maximization concept. The only difficulty in operationalizing 

this set of steps for use as a detection method is in determining a way to make it "real-

time". Because of our underlying interest in automating the steady-state detection process, 

we have no use for a method that requires that the entire data sample be collected before 

detection analysis can be done. Therefore, the confidence maximization concept must be 

made into a dynamic process. 

There are many ways to go about this. One possibility would be to use a sequential 

method similar to Law and Kelton's (1982) sample size determination method. A general 

procedure of this sort would require the user to: 

1) Execute the simulation by small sequential sample subsets. 

2) Locate the optimal truncation point and its associated confidence each time 
a new subset of data is appended. 

3) Stop when a pre-specified confidence requirement is met. 

This sort of procedure has an additional advantage over other "real-time" detection 

heuristics in that not only is the optimal truncation point identified, but also the total sample 

size requirement is automatically determined, based on the user's precision specifications. 

This procedure is also nearly identical to Heidelberger and Welch's run length control 

procedure that was outlined in Chapter Two. The CMP can be easily transformed into a 

similar dynamic run length control procedure using the same basic structure. We will refer 

to the steady-state detection procedure that is based on the CMP as the Confidence 
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Maximization Rule (CMR). The specific methodology of the CMR is described in more 

detail in Chapter Four. 

3. 4 CHARACTERISTICS OF THE CONFIDENCE MAXIMIZATION RULE 

On a high level, Heidelberger and Welch's approach to run length control is very 

much the same as the CMR; the most significant difference between these is the manner in 

which initial transient detection and truncation is performed. Heidelberger and Welch's 

transient detection method is based on Schruben's fairly complex method, and therefore it 

requires a substantial amount of computation at each truncation test point. 

Although the CMR uses a less stringent standard to identify the existence of initial 

transients, the output of the CMR is effectively the same as that of Heidelberger and 

Welch's procedure: namely, a sample whose initial transients have been truncated so as to 

optimize the confidence of sample statistics. The question that remains is whether or not 

Schruben's transient detection method yields a significantly more precise truncation value 

to balance the excessive complexity and computation required. Logic indicates that the 

answer is no. If the objective is to maximize confidence and the basis of the procedure is 

the observation of the confidence function (as is true for both the CMR and Heidelberger 

and Welch's procedure), the addition of another mechanism to check for transients is 

redundant. Although this question should be studied at a future time through experiments 

comparing the two procedures, it seems safe to assume that the CMR will not yield results 

that are substantially inferior to the results of Heidelberger and Welch's procedure. 

In addition to the computational savings associated with the transient detecti~n 

method, the CMR requires fewer computations than Heidelberger and Welch's procedure 

because there is no need for batching of observations during the truncation testing period. 

Because of the high autocorrelation associated with single-run statistics, the variances and 

halfwidths calculated during the testing phase of the CMR are not valid as absolute 

statistics; however, the relative differences between these statistics as truncation progresses 
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are the values of interest. These should be unaffected by the autocorrelation. Once the 

optimal truncation point is determined, batching can be performed to eliminate 

autocorrelation effects before absolute statistics are calculated. 

Another reason, in addition to the computational savings, that batching is not used 

for the CMR truncation testing is that batching disrupts the effects of the variance reduction 

that occurs when initial transients are truncated. There are two ways that truncation can 

progress when batching is done: either individual observations may be truncated before 

batching, or batching may occur first and truncation is then performed on full batches of 

data. Each alternative has a detrimental effect on the behavior of the variance and CI 

halfwidth. 

The first truncation alternative, batching after truncation, causes the behavior of the 

statistics (variance and CI halfwidth) to be misleading. The mechanics of this method are 

as follows: a set of observations (10, 50, 100, etc.) are truncated from the data set; the 

remaining data is batched into potentially large sets (possibly on the order of 1000 

observations); and the change in statistics is determined. The problem is that the effect of 

truncating individual observations is undermined by the effects of batching on the 

calculation of statistics. 

For example, suppose a batch size of 500 is used for a set of output data with a total 

of 10,000 observations, and truncations progress in groups of ten observations. Assume 

an initial transient exists within the first 1000 observations of the data set. The expected 

behavior of the confidence function is that for the first 100 groups of ten observations, 
.. 

confidence should increase rather smoothly; after the lOOOth observation has been 

truncated, confidence should begin to decrease. Consider the effect of batching on these 

confidence calculations. Fifty groups of (ten) observations make up one batch size; 

therefore, as the first fifty sets of observations are truncated, transients will be eliminated, 

thereby decreasing the variability of the data. However, the number of batches used to 

determine the variance and confidence values will remain the same throughout these 
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truncations. From the first set of ten observations truncated to the 49th set, the number of 

batches remaining for calculation of statistics is nineteen ([10,000/500] - 1). Hence, the 

variability in the data will be eliminated without any change in the sample size. Even if the 

data were in steady state during this period, chances are the confidence would continue to 

increase (or CI halfwidth to decrease) because sample size is not decreasing. This effect 

causes the results to be misleading. 

As truncations progress beyond the batch size (in our example, beyond the 49th set 

of ten observations), the next complication occurs. With one additional truncation (the 50th 

set), the number of batches in the sample suddenly drops by one. This event will have a 

much more noticeable effect on the statistics calculations because the sample size was 

unchanged during all previous truncations. This artificially heightened effect of truncating 

one presumably insignificant set of observations is also misleading. 

The second alternative for batching during truncation testing is to batch all 

observations before truncation begins. With this method, truncation may only be done for 

full batches of data at a time. The obvious drawback to this method is that data will often 

be wasted. Imagine, using our previous example, that the transient period of the data set 

falls at approximately the 600th (individual) observation. Assuming once again a batch size 

of 500, truncation of one batch will not eliminate enough of the bias; therefore, two 

batches, or 1000 observations, must be truncated. This means wasting 400 steady-state 

observations. Although the amount of data is not always a constraint to the simulationist, 

wasted data can sometimes be a serious drawback. 

Given the drawbacks associated with the two alternatives for batching during 

truncation testing, batching will not be used as part of truncation testing for the CMR. 

While there does not appear to be any problem with using individual observations to study 

relative effects of truncation on the confidence function, this is another situation that should 

be studied further at another time. 
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Aside from the method of transient detection and the use of batching in determining 

optimal truncation point and run length, the CMR and Heidelberger and Welch's procedure 

are very similar. The tradeoff between the two methodologies is potentially increased 

precision of results (from Heidelberger and Welch's procedure) versus decreased 

computational intensity and increased simplicity (from the CMR). Clearly, the needs of the 

user will have to dictate the appropriateness of the use of the CMR over some other 

transient detection and/or run length control procedure such as Heidelberger and Welch's. 

3.5 CONCLUSIONS 

As has been shown, the Confidence Maximization Rule is one approach to 

operationalizing the confidence maximization principle as a steady-state detection heuristic. 

The Confidence Maximization Procedure, likewise, is a way to apply the principle to 

compare and evaluate other detection heuristics. Chapter Four will go into further detail 

regarding the application of these ideas. 
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CHAPTER FOUR 

TEST AND EVALUATION 

4 .1 OVERVIEW OF TEST PROCEDURES 

The purpose of this chapter is twofold: first, to test the effectiveness of the 

Confidence Maximization Rule as a steady-state detection heuristic, and second, to illustrate 

the use of the Confidence Maximization Procedure as a methodology for testing the 

effectiveness of existing detection heuristics. In order to do both, two sets of experiments 

were created to test these respective applications of confidence maximization. 

The first set of tests evaluates the reliability and consistency of the CMR as a 

steady-state detection heuristic. "Reliability" refers to how sure one can be that the CMR 

gives a reasonable estimate of the optimal truncation point. This can be tested by checking 

confidence interval coverage of the theoretical mean (if known) or "large sample" mean (if 

theoretical mean is unknown) for several runs of a variety of models. The "consistency" of 

the CMR indicates how well it repeats its results for the same data set with varied sample 

sizes. 

The second set of tests uses CI coverage to confirm that confidence maximization 

can reasonably be used to compare the effectiveness of various detection heuristics. These 

tests will illustrate how the CMP is used as a methodology for comparing detection 

heuristics against each other. These will also help to compare and contrast the performance 

of the CMR with that of the other detection heuristics tested here. 

All tests conducted during this research were based on output files from multiple 

runs of five different models. These particular models were chosen so as to cover a 

reasonable spectrum of general simulation types that an average user might encounter. The 

five models are: 
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1. A simple M/M/l queue system with a traffic intensity (p) arbitrarily 
selected to be 0.9. This model starts out "empty and idle"; therefore, it 
theoretically has no initialization bias/transient data region because of 
the regenerative nature of the system. The theoretical mean number in 
system for this model is nine. This model will be called "the Empty 
Queue Model". 

2. A simple M/M/l queue system (p = 0.9). This model starts out with 
100 entities in the system (in other words, 100 people in queue when 
it begins); therefore, it has a positively biased transient region that 
exists until the natural system operation clears up the bottleneck. 
Given that this model has a theoretical mean number in system of nine 
entities, a front-loading of 100 is very powerful. This model will be 
called "the Loaded Queue Model". 

3. A series of 15 finite-capacity M/M/1/15 queues (p = 0.9). The system 
starts out "empty and idle". The input to the later queues in the system 
is the output of the initial queues and is, therefore, affected (with a 
delay) by bottlenecks and other events associated with the initial 
queues. The issue of interest here is whether or not initialization bias 
will occur in the final queue as a result of the effects of the other 
queues on the flow. This model will be called "the Queue Series 
Model". 

4. A simple network of two parallel capacity-constrained M/M/l/30 
queues. This model begins "empty and idle", and system times build 
because p > 1, until queue capacities are filled, at which time balking 
causes the operation to stabilize. This will have a negatively biased 
initial transient period and, therefore, will be called "the Filling Queue 
Model". 

5. A simple network system with no resource or queue capacity limits, 
whose service rate is so high that steady state is theoretically 
impossible to achieve. Here, the entire set of output data behaves in a 
transient manner. This will be called "the Transient Queue Model". 

The SIMAN algorithms for these models can be found in Appendix A. For the first 

two models, the output variable"of interest was total number in system; for the Filling 

Queue and Transient Queue models, the variable of interest was the total number in the 

second "station" or queue subsystem. Finally, for the Queue Series model, the variable of 

interest was the number in the subsystem at the final (fifteenth) queue. 
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4. 2 CONFIDENCE MAXIMIZATION AS A DETECTION HEURISTIC 

4.2.1 Reliability 

The first test run on the CMR was an evaluation of its reliability as a detection 

heuristic; in other words, how sure can one be that the truncation point chosen by the CMR 

is actually optimal and will produce statistics with as high a confidence as possible? 

Confidence in a statistic is partially a matter of confidence level and interval size, but 

another important aspect is the "correctness" of the confidence interval. This can be 

measured for samples with a known theoretical mean by checking the coverage of sample 

mean confidence intervals. A "good" confidence interval should result in coverage of the 

theoretical mean (1-a) percent of the time (where (1-a) is the originally assigned confidence 

level). For samples with an unknown theoretical mean, an estimate can be computed by 

taking statistics on samples of significantly larger size than the sample of interest. 

Coverage for such samples can be checked by determining whether or not the sample 

confidence interval comes within a (100*(1-a)) percent CI halfwidth of a Normal 

distribution around the large sample statistic. A logical way to compute the size of this 

halfwidth is to run several large samples and calculate the (100*(1-a)) percent statistics for 

the means of the large samples. 

Testing of the reliability began with ten different runs of each of the five test 

models. Based on computer software and hardware constraints associated with this 

project, each run consisted of 5000 observations. A Fortran program called "Statistics" 

(listed in Appendix B) was developed in order to compute and compile the mean, standard 

deviation, and 95 percent CI halfwidth, truncating initial points in groups of ten. In other 

words, the output of this program is 500 lines of statistics, the first line giving statistics 

based on zero points truncated, the second line on ten points truncated, and so on, until the 

500th line gives statistics based on just the last ten points of the sample. The statistics 

computed in this program are based on unhatched samples, for reasons that were given in 

Chapter Three. The truncation statistics listing associated with each run was then used to 
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determine the associated CMR truncation point by identifying the point at which the CI 

halfwidth is minimized. 

The total sample sizes (including both truncated and untruncated data) used for 

these calculations were held constant at 5000; no additional observations were added to the 

ends of the samples to "make up" for truncated initial observations. In other words, the 

sizes of the samples actually used for the calculations varied depending on the number of 

points truncated. The reason for this approach is that with truncation of initial transients, 

there is an implicit tradeoff between confidence and sample size. In general, if a heuristic 

removes observations, whether or not these are part of the steady state, confidence will, at 

least, stay fairly constant and, at best, improve if new observations are allowed to be added 

at the end of the sample to replace the eliminated initial observations. The cost of such an 

increase in confidence is that sample size requirements increase. By assigning a constant 

total sample size for these tests, confidence increases and decreases that result from 

transient elimination occur without affecting the sample size requirement. Shown this way, 

an increase in confidence is strictly a benefit to the user because there is no associated cost 

of increased sample size that must be taken into account. In most cases, once the optimal 

truncation point has been identified, any increases in sample size will only further increase 

(probabilistically) the confidence of the statistics. 

To give the reader a feel for the effect of CMR truncation on output data, the output 

of one run from each model is shown in Figures 4.1 through 4.5. Because of graphical 

constraints, the data has been batched into groups of 25 observations; however, the data 

trends of interest here are unaffected by this batching. The data to be truncated by the CMR 

is represented by squares .with dots inside, while· the untruncated data is represented by 

filled-in squares. These two groups together make up the full set of 5000 observations (25 

observations/batch * 200 batches). Note from these graphs that no truncation is required 

for the Empty Queue and Queue Series models (Figures 4.1 and 4.3) because the initial 

conditions are within "normal steady-state range". However, the CMR removes the 
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positively biased initial data from the Loaded Queue Model (Figure 4.2) and the negatively 

biased initial data from the Filling Queue Model (Figure 4.4) as appropriate. The most 

unique output set shown here is the Transient Queue Model (Figure 4.5), in which the 

CMR cannot identify an appropriate truncation point and, therefore, indicates that the whole 

set of data should be truncated. Since it is known theoretically that there is no steady state 

for this model, the CMR is correct. Similar graphs for the nine remaining runs of the five 

models can be found in Appendix C. Tables 4.1, 4.3, 4.5, 4.7, and 4.9 present the 

statistics associated with the (unhatched) output data following CMR truncation for the runs 

of the Empty Queue Model, the Loaded Queue Model, the Queue Series Model, the Filling 

Queue Model, and the Transient Queue Model, respectively. 

The statistics and graphs associated with the last two runs for the Loaded Queue 

Model should especially be noted. These output sets exhibit the somewhat unusual 

characteristic of stabilizing for a fairly long period of time at the initial, overloaded level of 

operation (see graphs in Appendix C, pages C-18 and C-19 for illustration of this 

behavior). The result of this occurrence is that the CMR sees the high level as the steady-

state level because there are not enough observations at the lower, actual steady-state level 

to cause a significant change in the system statistics as initial observations are truncated. 

The CMR, therefore, indicates that no observations should be truncated. This is clearly a 

fallacy and will be discussed in more depth in the "Consistency" section of this chapter. 

The first step in evaluating the reliability of the CMR required estimating the CI 

coverages associated with each model. In order to determine CI coverage effectively, non-
,. 

terminating simulation output must be batched or in some other way massaged to remove 

the effects of autocorrelation. The sample size restriction of 5000 observations dictated a 

limit of 100 points/batch as the largest reasonable batch size; this resulted in a base sample 

size (before truncation) of fifty batches from which to take statistics. Because of the 

inconsistencies in statistics that are based on small non-Normal samples, and because the 

distributions of these output sets were not all known, a conservative value of fifty was 
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MODEL: 

SAMPLE 

RUN 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

SAMPLE 

RUN 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

CIHW: 

EMPTYQ 

SIZE: 5000 

POINTS 
TRUNCATED 

BYCMR 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

SIZE: 5000 

BATCHES 
TRUNCATED 

BYCMR . 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Empty Queue Model Statistics 
CMR Truncation 

UNHATCHED 

MEAN 

11.75 
9.27 
7.45 
6.71 
8.03 
6.29 
7.25 
5.84 

20.73 
14.67 

BATCHED 

MEAN 

11. 75 

Table 4.1 
Unhatched Data 

ACTIJAL MEAN: 9.0 

STAN.DEV. 95% 
CIHW 

10.78 0.299 
8.22 0.228 
5.49 0.152 
7.36 0.204 
7.50 0.208 
5.38 0.149 
7.00 0.194 
5.06 0.140 

21.33 0.591 
17.87 0.495 

Table 4.2 
Batched Data 

100 OBS/ BATCH 

STAN.DEV. 95% COVERAGE 
CIHW 

-- 10.30 3.00 + 
9.27 - 7.39 2.15 + 
7.45 4.36 1.27 
6. 71 6.76 1.97 
8.03 6.90 2.01 + 
6.29 4.26 1.24 
7.25 6.31 1.83 + 
5.84 3.93 1.15 

20.73 21.20 6.18 
14.67 17.70 5.14 

COVERAGE: 40% 

confidence interval half width 
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% 
TRUNC. 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

% #BATCHES 
TRUNC. 

0 50 
0 50 
0 50 
0 50 
0 50 
0 50 
0 50 
0 50 
0 50 
0 50 



MODEL: lDADEDQ 

SAMPLE SIZE: 5000 

RUN POINI'S 
TRUNCATED 

BYCMR 

1 1820 
2 1180 
3 1260 
4 970 
5 1610 
6 1230 
7 2960 
8 2510 
9· 0 
10 0 

SAMPLE SIZE: 5000 

RUN BATCHEs 
TRUNCATED 

BYCMR 

1 18 
2 12 
3 13 
4 10 
5 16 
6 12 
7 30 
8 25 
9 0 
10 0 

Loaded Queue Model Statistics 
CMR Truncation 

UNHATCHED 

MEAN 

14.38 
11.06 
9.65 

13.40 
12.62 
6.38 
5.02 
6.83 

54.91 
70.20 

BATCHED 

MEAN 

14.38 
11.06 

9.65 
13.40 
12.62 

6.38 
5.02 
6.83 

54.91 
70.20 

Table 4.3 
Unhatched Data 

ACl1JAL MEAN: 9.0 

STAN.DEV. 95% 
CIHW 

11.29 0.393 
8.75 0.278 
7.57 0.243 

13.53 0.418 
8.74 0.294 
4.95 0.158 
4.03 0.175 
5.02 0.197 

33.75 0.936 
41.60 1.150 

Table 4.4 
Batched Data 

100 OBS/ BATCH 

STAN.DEV. 95% COVERAGE 
CIHW 

-- 10.90 4.09 
7.86 2.66 + 
6.67 2.29 + 

13.20 4.40 + 
8.26 3.00 
3.78 1.36 
2.89 1.44 
3.66 1.59 

33.90 9.63 
41.80 11.90 

COVERAGE: 30% 

ClliW: confidence interval half width 
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% 
TRUNC. 

0.364 
0.236 
0.252 
0.194 
0.322 
0.246 
0.592 
0.502 

0 
0 

% #BATCHES 
TRUNC. 

0.36 32 
0.24 38 
0.26 37 
0.20 40 
0.32 34 
0.24 38 
0.60 20 
0.50 25 
0.00 50 
0.00 50 



MODEL: SERIES Q 

SAMPLE SIZE: 5000 

RUN POINTS 
TRUNCATED 

BYCMR 

1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 

10 0 

CIHW: confidence 

SAMPLE SIZE: 5000 

RUN BATCHES 
TRUNCATED 

BYCMR 

1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 

10 0 

Queue Series Model Statistics 
CMR Truncation 

UNBATCHED 

MFAN 

3.02 
3.91 
3.80 
3.51 
3.50 
3.46 
3.72 
3.81 
3.45 
3.38 

interval 

BATCHED 

MEAN 

3.0Z 
3.91 
3.80 
3.51 
3.50 
3.46 
3.72 
3.81 
3.45 
3.38 

Table 4.5 
Unhatched Data 

THFDREf. MEAN: 5.36 

STAN. 95% 
DEV. CIHW 

2.69 0.075 
3.23 0.090 
3.35 0.093 
2.92 0.081 
3.09 0.086 
2.83 0.078 
3.30 0.091 
3.31 0.092 
3.10 0.086 
3.04 0.084 

half width 

Table 4.6 
Batched Data 

100 OBS/ BATCH 

STAN. 95% EXTENDED 
DEV. CIHW RUN 

MEAN 

1.24 0.360 3.34 
1.90 0.554 3.83 
2.25 0.657 3.89 
1.58 0.460 3.79 
2.20 0.642 3.47 
1.75 0.511 3.70 
2.33 0.680 3.53 
2.12 0.620 3.72 
2.13 0.621 3.62 
1.78 0.519 3.44 

-----------
EXT.RUN MEAN: 3.633 
EXT.RUN HW: 0.113 

cov. 
(EXT.RUN 

MEAN) 

0% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 

90% 
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% 
TRUNC. 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

% #BATCHES 
TRUNC. USED 

0 50 
0 50 
0 50 
0 50 
0 50 
0 50 
0 50 
0 50 
0 50 
0 50 



MODEL: FlLl.1NG Q 

SAMPLE SIZE: 5000 

RUN POINfS 
TRUNCATED 

BYCMR 

1 100 
2 130 
3 150 
4 140 
5 90 
6 100 
7 llO 
8 110 
9 210 

10 130 

CIHW: confidence 

SAMPLE SIZE: 5000 

RUN BATCHES 
TRUNCATED 

BYCMR 

1 1 
2 1 
3 2 
4 1 
5 1 
6 1 
7 1 
8 1 
9 2 

10 1 

Filling Queue Model Statistics 
CMR Truncation 

UNBATCHFD 

MF.AN 

27.65 
27.48 
27.69 
27.72 
27.67 
27.33 
27.67 
27.11 
27.73 
27.30 

interval 

BATCHED 

MEAN 

27.65 
27.48 
27.69 
27.72 
27.67 
27.33 
27.67 
27.11 
27.73 
27.30 

Table 4.7 
Unhatched Data 

TIIEOREf. MEAN: unknown 

STAN. 95% 
DEV. crnw 

2.17 0.061 
2.54 0.071 
2.28 0.064 
2.14 0.060 
2.16 0.060 
2.55 0.071 
2.05 0.058 
2.89 0.081 
2.15 0.061 
2.58 0.072 

half width 

Table 4.8 
Batched Data 

100 OBS/ BATCH 

STAN. 95% EX'JENDFD 
DEV. crnw RUN 

MEAN 

1.01 0.291 27.50 
1.48 0.425 27.50 
1.21 0.351 27.60 
1.04 0.299 27.50 
1.18 0.338 27.60 
1.46 0.420 27.50 
1.07 0.309 27.50 
2.08 0.597 27.20 
1.21 0.350 27.40 
1.33 0.383 27.50 

...................... 
EXT.RUN MEAN: 27.48 
EXT.RUN HW: 0.071 

COY. 
(EXT. RUN 

MEAN) 

100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 

-----------
100% 
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% 
TRUNC. 

0.02 
0.026 
0.03 

0.028 
0.018 
0.02 

0.022 
0.022 
0.042 
0.026 

% #BATCHES 
TRUNC. USED 

0.02 49 
0.02 49 
0.04 48 
0.02 49 
0.02 49 
0.02 49 
0.02 49 
0.02 49 
0.04 48 
0.02 49 



MODEL: TRANS Q 

SAMPIE SIZE: 5000 

RUN POINTS 
TRUNCATED 

BYCMR 

1 all 
2 all 
3 all 
4 all 
5 all 
6 all 
7 all 
8 all 
9 all 

10 all 

SAMPIE SIZE: 5000 

RUN BATCHES 
TRUNCATEO 

BYCMR 

1 all 
2 all 
3 all 
4 all 
5 all 
6 all 
7 all 
8 all 
9 all 
10 all 

Transient Queue Model Statistics 
CMR Truncation 

UNBATCHFD 

MEAN 

n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 

BATCHED 

MEAN 

n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 

Table 4.9 
Unhatched Data 

THEOREf. MEAN: unknown 

STAN. 95% 
DEV. CIHW 

n/a n/a 
n/a n/a 
n/a n/a 
n/a n/a 
n/a n/a 
n/a n/a 
n/a n/a 
n/a n/a 
n/a n/a 
n/a n/a 

Table 4.10 
Batched Data 

100 OBS/ BATCH 

STAN. 95% EXI'ENDFD 
DEV. CIHW RUN 

MEAN 

n/a n/a n/a 
n/a n/a n/a 
n/a n/a n/a 
n/a n/a n/a 
n/a n/a n/a 
n/a n/a n/a 
n/a n/a n/a 
n/a n/a n/a 
n/a n/a n/a 
n/a n/a n/a 

cov. 
(EXT. RUN 

MEAN) 

n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
n/a 
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% 
TRUNC. 

100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 
100% 

% #BATCHES 
TRUNC. USED 

100% 0 
100% 0 
100% 0 
100% 0 
100% 0 
100% 0 
100% 0 
100% 0 
100% 0 
100% 0 



determined to be the smallest reasonable starting sample size. The equations used to 

calculate the statistics for these batched runs were based on Student's t distribution, rather 

than Normal distribution tables, because of the reduced sample sizes involved. 

The statistics associated with batched output following CMR truncation for the five 

models are shown in Tables 4.2, 4.4, 4.6, 4.8, and 4.10. These statistics include coverage 

estimates for each model, based on its ten runs. Coverage for the models with unknown 

theoretical means was determined in the manner described earlier in this chapter. Each 

model was run again using the same ten random number seeds, but this time with a sample 

size of 30,000 observations. The means for these "extended runs" were calculated and the 

distribution of these means was estimated for each model. Coverages were determined by 

calculating the proportion of the extended run CI halfwidth that was covered by the normal 

run halfwidth estimate for each run. The ten estimates were then averaged to determine the 

coverage for a particular model. 

Unfortunately, for models with a high degree of variability, 100 observations is not 

generally a large enough batch size to effectively reduce the autocorrelation. Such models 

include all three of the M/M/1 queue models tested here: Empty Queue, Loaded Queue, and 

Queue Series. The effect of the remaining autocorrelation is that the size of the CI 

half width shows up as unrealistically small; hence, the coverage computed for each of these 

models is much lower than expected. 

For the Empty Queue Model, coverage for the test runs is 40 percent; for the 

Loaded Queue Model, coverage is only 30 percent. Since the theoretical "optimal" 

truncation point for the Empty Queue Model is known to be zero in all cases, and the CMR 

identifies the optimal truncation points correctly, the coverage value of 40 percent must be 

about the highest achievable given the sample/batch size constraints. Therefore, the 

coverage achieved for the Loaded Queue Model is fairly high, relative to the highest 

achievable coverage value. 

64 



Coverage for the Queue Series Model is 90 percent, quite a bit better than the other 

two. Because of the unusual input function for this model (the output of fourteen queues), 

normal queuing theory calculations do not apply; therefore, it was determined that using 

extended run statistics as the basis for comparison for the Queue Series Model would be 

more meaningful. The main reason for the superiority of the Queue Series Model coverage 

is that the queues are constrained to a maximum of fifteen entities. Limiting the number 

allowed in each queue causes the amount of variability in the output to decrease drastically. 

Coverage for the Filling Queue Model is much better than the simple queue models; this is 

logical because it is a model based on two parallel constrained queues, and its output is a 

great deal less variable than the single, unconstrained queue outputs. Coverage for the 

Transient Queue Model is actually meaningless for the CMR because the CMR calls for 

truncation of all data in these runs. 

Given the sample size constraints associated with these runs, the coverages 

calculated for these models are not as low as they might seem. For the Queue Series 

Model, the Filling Queue Model, and the Transient Queue Model, the results are about as 

good as can be expected theoretically. The statistics from the more variable Empty Queue 

and Loaded Queue models are actually not far from the theoretical statistics; most of their 

CI halfwidths come within far less than 1.0 (approximately 10 percent) of the theoretical 

mean. 

To show the effect of CMR truncation, Tables 4.2, 4.11, 4.6, 4.12, and 4.13 give 

the batched statistics of the same ten runs of the five models (respectively) for the case of 

no truncation. Using CMR truncation results in two significant changes to the output 

statistics: first, the size of the CI halfwidth decreases, indicating that the user can be more 

confident of the accuracy of the estimated statistics; second, the coverage of the estimated 

statistics, in general, improves. Clearly, for the Empty Queue and Queue Series models, 

for which zero is the optimal truncation point, the statistics and coverage remain the same. 
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MODEL: lDADEDQ 

Table 4.11 
Loaded Queue Model Output Statistics 

No Truncation 
Batched Data 

ACI1JAL MEAN: 9.00 

SAMPLE SIZE: 5000 BATCHED 100 OBS/ BATCH 

RUN BATCHES MEAN 
TRUNCATED 

1 0 35.50 
2 0 23.70 
3 0 22.40 
4 0 26.60 
5 0 31.40 
6 0 16.20 
7 0 39.60 
8 0 38.30 
9 0 54.90 
10 0 70.20 

STAN. 
DEV. 

31.70 
25.50 
26.10 
30.70 
31.30 
21.20 
36.20 
38.30 
33.90 
41.80 

95% COVERAGE % #BATCHES 
CIHW TRUNC. USED 

9.000 0 0 50 
7.240 0 0 50 
7.420 0 0 50 
8.720 0 0 50 
8.910 0 0 50 
6.020 0 0 50 

10.300 0 0 50 
10.900 0 0 50 
9.630 0 0 50 

11.900 0 0 50 

COVERAGE: 0% 
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MODEL: Fill.ING Q 

SAMPLE SIZE: 5000 

RUN BATCHES 
TRUNC. 

1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 
10 0 

Table 4.12 
Filling Queue Model Output Statistics 

No Truncation 
Batched Data 

THEOR. MEAN: unknown 

BATCHED 100 OBS/ BATCH 

MEAN STAN. 95% EXTEN. COY. % 
DEV. CilIW RUN (EX.RUN TRUNC. 

MEAN MEAN) 

27.40 1.80 0.526 27.5 100% 0 
27.10 2.58 0.753 27.5 100% 0 
27.30 2.62 0.763 27.6 100% 0 
27.40 1.84 0.537 27.5 100% 0 
27.40 2.24 0.653 27.6 100% 0 
27.10 2.40 0.698 27.5 100% 0 
27 .40 2.07 0.604 27.5 100% 0 
26.70 3.25 0.947 27.2 100% 0 
27.20 2.69 0.786 27.4 100% 0 
27.00 2.14 0.624 27.5 100% 0 

--------·-- -----------
EXT.RUN MEAN 27.48 100% 
EXT.RUN HW 0.071 
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MODEL: TRANS Q 

SAMPLE SIZE: 5000 

RUN BATCHES 
TRUNC. 

1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 
10 0 

Table 4.13 
Transient Queue Model Output Statistics 

No Truncation 
Batched Data 

THEOR. MEAN: unknown 

BATCHED 100 OBS/ BATCH 

MEAN STAN. 95% EX.TEN. COY. % 
DEV. CIHW RUN (EX.RUN TRUNC. 

MEAN MEAN) 

922.00 537.00 153 1289.0 0% 0 
971.00 547.00 155 1354.0 0% 0 
917 .00 536.00 152 1279.0 0% 0 
892.00 534.00 152 1284.0 0% 0 
959.00 554.00 157 1291.0 0% 0 
961.00 562.00 160 1354.0 0% 0 
917 .00 54 7 .00 155 1270.0 0% 0 
944.00 559.00 159 1298.0 0% 0 
902.00 498.00 142 1294.0 0% 0 
871.00 530.00 151 1259.0 0% 0 

----------- -----------
EXT.RUN MEAN 1297 .2 0% 
EXT.RUN HW 4.05 
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However, for the Loaded Queue Model, the computed CI halfwidths with no truncation are 

a great deal larger than with CMR truncation; likewise, the coverage with no truncation is 

zero percent. This represents a serious degradation in the usefulness of the output 

statistics. Note that for the CMR truncated runs, no new observations are added to the end 

of the sample to offset the removal of the initial, truncated observations. What this shows 

is that even with a substantial decrease in the sample size from which the statistics are taken 

(under CMR truncation), the validity of the output is greatly enhanced by the removal of the 

transient data. The effect of CMR truncation on the Filling Queue Model is less notable 

than the case of the Loaded Queue Model. Here, the coverages are unaffected by 

truncation, but the CI halfwidths are significantly enlarged--nearly doubled, in most cases--

by keeping the initial transients in the statistical calculations. The effect is less extreme here 

because of the relatively small size of the transient period as compared to the full data set; 

the transients are generally only about two to three percent of the output. Again, the 

Transient Queue Model is meaningless in this illustration because its statistics with no data 

truncated are terrible, and there can be no comparison with CMR truncation because the 

CMR can find no optimal truncation point for any of the runs. 

Based on the overall CI halfwidth and coverage levels produced by CMR truncation 

on the runs of the five models, the CMR has shown itself to be a reasonably reliable 

method for transient elimination, given the sample size constraints associated with this 

project. The reliability of the CMR will be confirmed at a later point in this chapter, at 

which time the CMR results will be compared with results of other truncation methods. 

Clearly, the coverage issue as it relates to highly variable data such as the Empty Queue and 
. ' 

Loaded Queue models should be studied in more depth at a later time and without the 

sample size constraints encountered here. 

4.2.2 Consistency 

The second test run on the CMR was a simple test of the consistency of its results. 

For this test, a second set of samples was collected for the first five of the ten runs of each 
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of the five models, but this time 10,000 observations were collected instead of 5000. The 

purpose was to determine the CMR truncation point for each of these longer runs and 

confirm that it closely coincides with the CMR truncation point calculated for the same run 

of 5000 observations. 

A modified version of the "Statistics" program was used on the new, longer runs. 

Because of the increased amount of data (hence, increased computation required), statistics 

were only calculated after truncation of sets of fifty points, rather than sets of ten points. 

The CMR truncation points for each of these, therefore, will be multiples of fifty and will 

not exactly coincide with the truncation points for the short runs; however, these estimates 

will still effectively illustrate whether or not the CMR is consistent within the runs. Figures 

4.6 through 4.10 are graphs of the first 10,000 observation run of each of the five models 

(runs with the same initial random number streams as those shown in Figures 4.1 through 

4.5). 

Tables 4.14 through 4.18 list the CMR truncation points computed for the 5000 

observation and 10,000 observation runs of each of the five models, along with their 

associated means and CI halfwidths. (Coverage values are not shown here because, in the 

context of unhatched output, coverage is less meaningful.) These lists of truncation points 

indicate that, on the whole, the CMR is very consistent in its results for each run. The only 

discrepancy that occurs is in the third run of the Loaded Queue Model, in which the long 

run CMR truncation point is 300 observations less than the short run truncation point. Out 

of twenty-five truncation point~, one discrepancy is not unreasonable. For the most part, it 

can be said that when using the CMR, the increased confidence in system statistics obtained 

from a larger sample occurs simply because the number of observations in the calculations 

is larger; the larger sample size will not usually make the CMR "perform" any better. 

However, this observation does not hold up for all data sets. Recall the last two 

runs of the Loaded Queue Model that were singled out at the beginning of this chapter 

because of their unusually long and seemingly "stable" transient periods, which the CMR 
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MODEL: 

RUN 

1 
2 
3 
4 
5 

Table 4.14 

Empty Queue Model Output Statistics 
10,000 Observation Runs vs. 5000 Observation Runs 

CMR Truncation · Consistency Test 

EMPTYQ 

SAMPLE SIZE: 10,000 OBS (UNBATCHED) SAMPLE SIZE: 5000 OBS (VNBA TCHED) 

BATCHES MEAN 95% BATCHES MEAN 95% 
TRUNCATED CIHW TRUNCATED craw 

BYCMR BYCMR 

0 9.48 0.186 0 11.75 0.299 
0 8.73 0.139 0 9.27 0.228 
0 12.90 0.226 0 7.45 0.152 
0 7.29 0.144 0 6.71 0.204 
0 10.90 0.169 0 8.03 0.208 
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MODEL: 

RUN 

1 
2 
3 
4 
5 

9 
10 

Table 4.15 

Loaded Queue Model Output Statistics 
10,000 Observation Runs vs. 5000 Observation Runs 

CMR Truncation . Consistency Test 

WADFDQ 

SAMPLE SIZE: 10,000 OBS (UNBATCHED) SAMPLE SIZE: 5000 OBS (UNBATCHED) 

BATCHES MEAN 95% BATCHES MEAN 95% 
TRUNCATED CIHW TRUNCATED ClliW 

BYCMR BYCMR 

1850 9.93 0.211 1820 14.38 0.393 
1200 9.41 0.152 1180 11.06 0.278 
950 14.98 0.247 1260 9.65 0.243 
1000 10.31 0.224 970 13.40 0.418 
1600 13.26 0.188 1610 12.62 0.294 

3950 11.98 0.228 0 54.91 0.936 
3500 7 .15 0.133 0 70.20 1.150 
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MODEL: 

RUN 

1 
2 
3 
4 
5 

Table 4.16 

Queue Series Model Output Statistics 
10,000 Observation Runs vs. 5000 Observation Runs 

CMR Truncation - Consistency Test 

QSERIES 

SAMPLE SIZE: 10,000 OBS (UNBATCHED) SAMPLE SIZE: 5000 OBS (UNBATCHED) 

BATCHES MEAN 95% BATCHES MEAN 95% 
TRUNCATED CIHW TRUNCATED CIBW 

BYCMR BYCMR 

0 3.09 0.052 0 3.02 0.075 
0 3.89 0.064 0 3.91 0.090 
0 4.13 0.069 0 3.80 0.093 
0 3.62 0.060 0 3.51 0.081 
0 3.55 0.063 0 3.50 0.086 
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3 
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Table 4.17 

Filling Queue Model Output Statistics 
10,000 Observation Runs vs. 5000 Observation Runs 

CMR Truncation · Consistency Test 

FIIllNGQ 

SAMPLE SIZE: 10,000 OBS (UNBATCHED) SAMPLE SIZE: 5000 OBS (UNBATCHED) 

BATCHES MEAN 95% BATCHES MEAN 95% 
TRUNCATED CIHW TRUNCATED CIHW 

BYCMR BYCMR 

100 27.70 0.045 100 27.65 0.061 
150 27.76 0.044 130 27.48 0.071 
150 27.70 0.045 150 27.69 0.064 
150 27.84 0.040 140 27.72 0.060 
100 27.76 0.041 90 27 .67 0.060 
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MODEL: 

RUN 

1 
2 
3 
4 
5 

* 

Table 4.18 

Transient Queue Model Output Statistics 
10,000 Observation Runs vs. 5000 Observation Runs 

CMR Truncation · Consistency Test 

TRANSIENfQ 

SAMPLE SIZE: - 7000 OBS * (UNBATCHED) SAMPLE SIZE: 5000 OBS (UNBATCHED) 

BATCHES MEAN 95% BATCHES MEAN 95% 
TRUNCATED OHW TRUNCATED crnw 

BYCMR BYCMR 

all n/a n/a all n/a n/a 
all n/a n/a all n/a n/a 
all n/a n/a all n/a n/a 
all n/a n/a all n/a n/a 
all n/a n/a all n/a n/a 

Unable to reach 10,000 obs. 
due to system overflow 
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mistook for steady state. These data sets are examples in which the consistency of the 

CMR does not hold. Because of the unexpected behavior of the CMR on their 5000 

observation samples, these runs were redone for 10,000 observation samples (along with 

the others in the consistency test). Figures 4.11 and 4.12 show the graphs of the two new 

runs. There were two problems with the CMR when it was used on the 5000 observation 

samples: first, the size of the initial transient period was overwhelmingly large relative to 

the size of the full data set; second, the behavior of the initial transient period appeared to be 

relatively stable and settled around a value much higher than the actual steady-state mean. 

The combined effect was that the CI halfwidth increased as initial data was truncated 

because the large amount and low variability of the "transient" data counteracted the weight 

of the transition to actual steady state that occurred near the end of the data set. Therefore, 

the CI calculations were more strongly (negatively) affected by the reduction in sample size 

than (positively) by the elimination of initial transients. 

On the other hand, when the CMR is used on the same runs with 10,000 

observation samples, it correctly determines the optimal truncation point for each sample. 

It works for these longer runs because the steady-state portion of each data set has become 

large enough to affect the statistics calculatio.ns and, hence, to show that the initial portion 

is transient. The trickiest part of effectively using the CMR, then, is to determine whether 

or not the sample being tested is large enough to identify a potentially large initial transient. 

One possible way to handle this problem would be to build a check into the CMR 

that breaks the data set into subsets and analyzes the statistics of the subsets to identify the 

existem;:e of significant trends: For example, the two Loaded Queue (5000 observation) 

runs could each be divided into ten sequential pieces, and the mean determined for each 

piece. A search for trends in the subset statistics would show that the means of the last few 

subsets are significantly lower than the means of the first subsets. A result of this sort 

could then trigger a call for more data to be added to the sample so as to clarify the 

situation. However, this approach is not perfect. If the initial sample size of the two 
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Loaded Queue runs was only 2000 observations, the subset statistics would all be 

consistent; no signal would be given that more data is required. Clearly, the only way to 

avoid these problems is to collect as much data as possible from the start. 

A comparison of the statistics of model run outputs for two different sample sizes, 

has shown that, in general, the CMR generates fairly consistent results. The optimal 

truncation point identified for a particular run of 5000 observations is very close to the 

point identified for the same run of 10,000 observations. For a run with a very long and 

"stable" transient, the fact that there is an inconsistency between the result for a short run 

and the result for a long run indicates that there is a problem with the accuracy of the short 

run. In such a case, the only way to generate an acceptable result is to increase the sample 

size enough to balance the weight of the initial transient in the calculation of statistics. 

In general, the CMR tends to be an unusually reliable and consistent methodology 

for initialization transient detection and truncation. The next section of this chapter will 

describe how these same confidence maximization concepts are applied to the evaluation of 

other detection heuristics. 

4.3 CONFIDENCE MAXIMIZATION AS AN EVALUATION 
METHODOLOGY 

The initial objective of this project was to find a new, more robust methodology 

with which to test the effectiveness of initial transient detection and truncation heuristics. 

This section shows how the Confidence Maximization Procedure is used to compare 

heuristics' performance; in addition, it outlines tests that were conducted to evaluate the 

"reliability" of the CMP results. 

4.3.1 The Confidence Maximization Procedure 

The heuristics chosen for testing were the Ingalls Algorithm and the Crossings-of-

the-Mean Rule (see Table 2.1). In addition, the output of extended run data sets, with no 

truncation, will be checked to study the effectiveness of "diluting" the transients instead of 
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truncating. The two heuristics being tested were chosen for the following reasons. Several 

of the heuristics listed in Chapter Two require "pre-runs", that is, several test runs to 

determine the truncation point before it is actually used. These heuristics were rejected for 

this test because they are not real-time and are unnecessarily wasteful of data; hence, they 

are not very useful for our purposes of output analysis automation. Aside from the two 

chosen, the only remaining heuristic is Emshoff and Sisson's Moving-Averages Rule (see 

Table 2.1 ), which is essentially a less conservative version of the Ingalls Algorithm. It was 

decided that testing both Emshoff and Sisson's Rule and the Ingalls Algorithm would be 

redundant. Because the Ingalls Algorithm is more theoretically sound, it was chosen for 

testing over Emshoff and Sisson's. 

The Ingalls Algorithm is based on cumulative and moving statistics. The 

cumulative mean of the data set is recomputed at every point, as well as the cumulative 

standard deviation. A group size and range ratio are specified by the user of the heuristic. 

The group size chosen for our testing was 30 and the range ratio was 0.25; these values 

seemed to provide the best overall results. Given the chosen group size, the algorithm 

looks at the slope of the cumulative mean and standard deviation for each group, moving 

the group in single point steps for each recalculation. In addition to calculating these slopes 

for each group, the algorithm determines the maximum and minimum of the cumulative 

mean and standard deviation values within each group. Next, the algorithm compares the 

maximum and minimum of the mean and standard deviation to see if these are within the 

prespecified ratio of each other (minimum* [1.0 +range] >maximum) and determines 

whether the mean and standard deviation slope values are less than the ratio. If all criteria 

are met, its definition of "steady state" has been met. 

The Crossings-of-the-Mean Rule (hereafter referred to as "Cross/Mean") is a 

somewhat less elegant procedure, but it is based on common sense. The cumulative mean 

of the data set is recomputed at every point, and the data value at each point is compared to 

the mean. Each time the data value changes from greater than to less than the mean or from 
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less than to greater than the mean, one crossing is tallied. Once a pre-specified number of 

crossings occurs, "steady state" is said to have begun. From some preliminary testing and 

based on the recommendations in the literature, thirty was chosen as the required number of 

crossings for our experiment. 

The data sets used to illustrate the CMP were the same ten runs of the five models 

from the first section of this chapter: the Empty Queue, Loaded Queue, Queue Series, 

Filling Queue, and Transient Queue models. Their 5000 observation samples were used to 

test the truncation heuristics, while the "no truncation/diluted" samples had 30,000 

observations (except for the Transient Queue model, which caused SIMAN to overflow at 

just over 7000 observations). 

The Ingalls and Cross/Mean heuristics were tested by finding the truncation point 

identified by each for a given data set, and the CMR was then used to determine the 

"optimal" truncation point and its associated mean and confidence interval. The relative 

performance of each heuristic is assigned according to which heuristic, on average, yields 

the smallest CI halfwidth, compared against each other. 

Tables 4.19 through 4.23 show the results of all of the truncation heuristics and 

their associated statistics for each run of each of the five models. The statistics associated 

with the diluted samples are also listed to show the difference in statistics an increase in 

sample size can make. 

The results of the CMP for the Ingalls Algorithm and the Cross/Mean Rule can be 

summarized based on these tables. According to the average CI halfwidth for each 

heuristic with each model, it seems that the Ingalls Algorithm tends to work better than the 

Cross/Mean Rule with the Loaded Queue and the Filling Queue models; while the 

Cross/Mean Rule is preferable to the Ingalls Algorithm for the Empty Queue and Queue 

Series models. (Both work equally well at not finding a truncation point for any of the 

Transient Queue Model runs.) While it may seem that this shows nothing about these two 

heuristics relative to one another (because they seem to be "even"), that is not exactly true. 
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Table 4.19 
Empty Queue Model Output Statistics 

All Four Truncation Approaches 
Unhatched Data 

MODEL: EMPTY Q UNBA'ICHED THEOR. MEAN: 9.00 

RUN 'raUNC. METHOD PfS. TRUNC. SAMPl.E SIZE PfS. USED FOR MEAN HAI.FWID11I 
('IUI'AL) STATS 

(1) CMR 0 5000 5000 11.75 0.299 
CROSS/MEAN 160 5000 4840 12.01 0.306 
INGALLS 360 5000 4640 12.32 0.315 
EXT. RUN (NO TRUNC.) 0 30000 30000 8.87 0.095 

(2) CMR 0 5000 5000 9.27 0.228 
CROSS/MEAN 160 5000 4840 9.50 0.232 
INGALLS 390 5000 4610 9.86 0.239 
EXT. RUN (NO TRUNC.) 0 30000 30000 8.96 0.100 

(3) CMR 0 5000 5000 7.45 0.152 
CROSS/MEAN 180 5000 4820 7.56 0.156 
INGALLS 390 5000 4610 7.66 0.162 
EXT. RUN (NO TRUNC.) 0 30000 30000 9.36 0.105 

[4) CMR 0 5000 5000 6.71 0.204 
CROSS/MEAN 140 5000 4860 6.81 0.209 
INGALLS 320 5000 4680 6.92 0.216 
EXT. RUN (NO TRUNC.) 0 30000 30000 8.25 0.088 

[5) CMR 0 5000 5000 8.03 0.208 
CROSS/MEAN 90 5000 4910 8.15 0.210 
INGALLS 370 5000 4630 8.15 0.221 
EXT. RUN (NO TRUNC.) 0 30000 30000 10.60 0.111 

[6) CMR 0 5000 5000 6.29 0.149 
CROSS/MEAN 220 5000 4780 6.33 0.154 
INGALLS 380 5000 4620 6.45 0.158 
EXT. RUN (NO TRUNC.) 0 30000 30000 7.70 0.080 

[7] CMR 0 5000 5000 7.25 0.194 
CROSS/MEAN 160 5000 4840 7.39 0.199 
INGALLS 470 5000 4530 7.65 0.210 
EXT. RUN (NO TRUNC.) 0 30000 30000 8.20 0.086 

[8) CMR 0 5000 5000 5.84 0.140 
CROSS/MEAN 50 5000 4950 5.89 0.141 
INGALLS 410 5000 4590 5.95 0.149 
EXT. RUN (NO TRUNC.) 0 30000 30000 8.98 0.099 

[9) CMR 0 5000 5000 20.73 0.591 
CROSS/MEAN 200 5000 4800 21.46 0.607 
INGALLS 430 5000 4570 22.23 0.628 
EXT. RUN (NO TRUNC) 0 30000 30000 9.65 0.130 

[1 OJ CMR 0 5000 5000 14.67 0.495 
CROSS/MEAN 250 5000 4750 15.11 0.518 
INGALLS 370 5000 4630 15 .14 0.531 
EXT. RUN (NO TRUNC.) 0 30000 30000 12.00 0.132 
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Table 4.20 
Loaded Queue Model Output Statistics 

All Four Truncation Approaches 
Unhatched Data 

MODEL: lDADEDQ UNBATCHED THEOR. MEAN: 9.00 

RUN TRUNC. METIIOD PTS. TRUNC. SAMPLE SIZE PTS. USED FOR MEAN HA1FWIDIH 
(IUI'AL) STATS 

[1) CMR 1820 5000 3180 14.38 0.393 
CROSS/MEAN 260 5000 4740 32.03 0.818 
INGALLS 150 5000 4850 33.49 0.843 
EXT. RUN (NO TRUNC.) 0 30000 30000 12.80 0.202 

[2) CMR 1180 5000 3820 11.06 0.278 
CROSS/MEAN 110 5000 4890 22.01 0.652 
INGALLS 400 5000 4600 18.53 0.551 
EXT. RUN (NO TRUNC.) 0 30000 30000 11.50 0.163 

[3) CMR 1260 5000 3740 9.65 0.243 
CROSS/MEAN all 5000 0 
INGALLS 150 5000 4850 20.03 0.642 
EXT. RUN (NO TRUNC.) 0 30000 30000 11.80 0.167 

[4] CMR 970 5000 4030 13.44 0.418 
CROSS/MEAN 440 5000 4560 20.10 0.682 
INGALLS 80 5000 4920 25.47 0.829 
EXT. RUN (NOTRUNC.) 0 30000 30000 11.60 0.180 

[5) CMR 1610 5000 3390 12.62 0.294 
CROSS/MEAN 210 5000 4790 28.04 0.775 
INGALLS 150 5000 4850 29.03 0.804 
EXT. RUN (NO TRUNC.) 0 30000 30000 14.60 0.197 

[6) CMR 1230 5000 3770 6.38 0.158 
CROSS/MEAN all 5000 0 
INGALLS 4490 5000 510 6.04 0.434 
EXT. RUN (NO TRUNC) 0 30000 30000 9.63 0.131 

[7] CMR 2960 5000 2040 5.02 0.175 
CROSS/MEAN 110 5000 4890 38.27 0.987 
INGALLS 260 5000 4740 36.39 0.971 
EXT. RUN (NO TRUNC.) 0 30000 30000 13.70 0.227 

[8] CMR 0 2510 5000 2490 6.83 0.197 
CROSS/MEAN 550 5000 4450 29.19 0.867 
INGALLS 220 5000 4780 34.82 0.998 
EXT. RUN (NO TRUNC.) 0 30000 30000 14.60 0.234 

[9] CMR 0 5000 5000 54.91 0.936 
CROSS/MEAN 1230 5000 3770 46.24 1.094 
INGALLS 250 5000 4750 52.75 0.945 
EXT. RUN (NO TRUNC.) 0 30000 30000 15.30 0.262 

[10] CMR 0 5000 5000 70.20 1.150 
CROSS/MEAN 260 5000 4740 68.30 1.190 
INGALLS 160 5000 4840 69.00 1.180 
EXT. RUN (NO TRUNC.) 0 30000 30000 21.20 0.330 
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Table 4.21 
Queue Series Model Output Statistics 

All Four Truncation Approaches 
Unhatched Data 

MODEL: SERIES Q UNBA1CHED THEOR. MEAN: 5.3608 

RUN 1RUNC.METHOD YI'S. TRUNC. SAMPLE SIZE YI'S. USED FOR MEAN HAUWIDIH 
(IUl'AL) STATS 

(1) CMR 0 5000 5000 3.02 0.075 
CROSS/MEAN 100 5000 4900 3.05 0.076 
INGALLS 370 5000 4630 3.12 0.079 
EXT. RUN (NO TRUNC.) 0 30000 30000 3.34 0.036 

[2] CMR 0 5000 5000 3.91 0.090 
CROSS/MEAN 40 5000 4600 3.94 0.090 
INGALLS 360 5000 4640 4.00 0.094 
EXT. RUN (NO TRUNC.) 0 30000 30000 3.83 0.037 

[3] CMR 0 5000 5000 3.80 0.093 
CROSS/MEAN 150 5000 4850 3.87 0.095 
INGALLS 270 5000 4730 3.90 0.097 
EXT. RUN (NO TRUNC.) 0 30000 30000 3.89 0.038 

[4] CMR 0 5000 5000 3.51 0.081 
CROSS/MEAN 60 5000 4940 3.54 0.082 
INGALLS 330 5000 4670 3.60 0.085 
EXT. RUN (NO TRUNC.) 0 30000 30000 3.79 0.036 

[5] CMR 0 5000 5000 3.50 0.086 
CROSS/MEAN 50 5000 4950 3.52 0.086 
INGALLS 300 5000 4700 3.60 0.090 
EXT. RUN (NO TRUNC.) 0 30000 30000 3.47 0.035 

[6] CMR 0 5000 5000 3.46 0.078 
CROSS/MEAN 210 5000 4790 3.54 0.081 
INGALLS 420 5000 4580 3.57 0.083 
EXT. RUN (NO TRUNC.) 0 30000 30000 3.70 0.036 

[7] CMR 0 5000 5000 3.72 0.091 
CROSS/MEAN 90 5000 4910 :us 0.093 
INGALLS 310 5000 4690 3.81 0.096 
EXT. RUN (NO TRUNC.) 0 30000 30000 3.53 0.034 

[8] CMR 0 5000 5000 3.81 0.092 
CROSS/MEAN 140 5000 4860 3.86 0.094 
INGALLS 390 5000 4610 3.93 0.097 
EXT. RUN (NO TRUNC.) 0 30000 30000 3.72 0.036 

[9) CMR 0 5000 5000 3.45 0.086 
CROSS/MEAN 60 5000 4940 3.48 0.087 
INGALLS 360 5000 4640 3.55 0.091 
EXT. RUN (NO TRUNC.) 0 30000 30000 3.62 0.036 

[10] CMR 0 5000 5000 3.38 0.084 
CROSS/MEAN 70 5000 4930 3.40 0.085 
INGALLS 280 5000 4720 3.49 0.088 
EXT. RUN (NO TRUNC.) 0 30000 30000 3.44 11.034 
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Table 4.22 
Filling Queue Model Output Statistics 

All Four Truncation Approaches 
Unhatched Data 

MODEL: Flll.lNG Q UNHATCHED THEOR. MEAN: unknown 

RUN TRUNC.MEfHOD PJ'S. TRUNC. SAMPl.ESlZE PJ'S. USED FOR MEAN HAI..FWIDIH 
('JUJ'AL) STATS 

[l) CMR 100 5000 4900 27.65 0.061 
CROSS/MEAN 780 5000 4220 27 .61 0.067 
INGALLS 410 5000 4590 27.67 0.063 
EXT. RUN (NO TRUNC.) 0 30000 30000 27.50 0.028 

[2) CMR 130 5000 4870 27.48 0.071 
CROSS/MEAN 700 5000 4300 27.43 0.078 
INGALLS 650 5000 4350 27.40 0.078 
EXT. RUN (NO TRUNC.) 0 30000 30000 27.50 0.030 

[3) CMR 150 5000 4850 27 .69 0.064 
CROSS/MEAN 1160 5000 3840 27.65 0.073 
INGALLS 860 5000 4140 27 .58 0.072 
EXT. RUN (NO TRUNC.) 0 30000 30000 27.60 0.029 

[4) CMR 140 5000 4860 27.72 0.060 
CROSS/MEAN 830 5000 4170 27 .75 0.065 
INGALLS 660 5000 4340 27.70 0.065 
EXT. RUN (NO TRUNC.) 0 30000 30000 27.50 0.029 

[5) CMR 90. 5000 4910 27.67 0.060 
CROSS/MEAN 500 5000 4500 27.77 0.060 
INGALLS 410 5000 4590 27.76 0.060 
EXT. RUN (NO TRUNC.) 0 30000 30000 27.60 0.028 

[6] CMR 100 5000 4900 27.33 0.071 
CROSS/MEAN 710 5000 4290 27.22 0.079 
INGALLS 310 5000 4690 27.30 0.074 
EXT. RUN (NO TRUNC.) 0 30000 30000 27.50 0.029 

[7) CMR 110 5000 4890 27.67 0.058 
CROSS/MEAN 570 5000 4430 27.62 0.061 
INGALLS 270 5000 4730 27 .65 0.059 
EXT. RUN (NO TRUNC.) 0 30000 30000 27.50 0.030 

[8] CMR -- 110 5000 4890 27 .11 0.081 
CROSS/MEAN 800 5000 4200 27.01 0.091 
INGALLS 330 5000 4670 27.09 0.084 
EXT. RUN (NO TRUNC.) 0 30000 30000 27.20 0.033 

[9) CMR 210 5000 4790 27.73 0.061 
CROSS/MEAN 870 5000 4130 27.68 0.068 
INGALLS 370 5000 4630 27.72 0.062 
EXT. RUN (NO TRUNC.) 0 30000 30000 27.40 0.030 

[10] CMR 130 5000 4870 27.30 0.072 
CROSS/MEAN 740 5000 4260 27.24 0.079 
INGALLS 630 5000 4370 27.24 0.078 
EXT. RUN (NO TRUNC.) 0 30000 30000 27.50 0.028 
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Table 4.23 
Transient Queue Model Output Statistics 

All Four Truncation Approaches 
Unhatched Data 

MODEL: 1RANSIENT Q UNHATCHED THEOR. MEAN: none 

RUN TRUNC. METHOD PJ'S. TRUNC. SAMPLE SIZE PJ'S. USED FOR MEAN HAI..FWIDTII 
(IDTAL) STATS 

[1] CMR all 5000 0 
CROSS/MEAN all 5000 0 
INGALLS all 5000 0 
EXT. RUN (NO TRUNC.) 0 7050 30000 1298 17.5 

[2] CMR all 5000 0 
CROSS/MEAN all 5000 0 
INGALLS all 5000 0 
EXT. RUN (NO TRUNC.) 0 7204 30000 1355 17 .1 

[3] CMR all 5000 0 
CROSS/MEAN all 5000 0 
INGALLS all 5000 0 
EXT. RUN (NO TRUNC.) 0 7040 30000 1286 17 .3 

[4] CMR all 5000 0 
CROSS/MEAN all 5000 0 
INGALLS all 5000 0 
EXT. RUN (NO TRUNC.) 0 7114 30000 1286 17 .7 

[5] CMR all 5000 0 
CROSS/MEAN all 5000 0 
INGALLS all 5000 0 
EXT. RUN (NO TRUNC.) 0 6702 30000 1292 17.9 

[6] CMR all 5000 0 
CROSS/MEAN all 5000 0 
INGALLS all 5000 0 
EXT. RUN (NO TRUNC.) 0 7252 30000 1363 17 .6 

[7] CMR all 5000 0 
CROSS/MEAN all 5000 0 
INGALLS all 5000 0 
EXT. RUN (NO TRUNC.) 0 6942 30000 1278 17.6 

[8] CMR an 5000 0 
CROSS/MEAN all 5000 0 
INGALLS all 5000 0 
EXT. RUN (NO TRUNC.) 0 6926 30000 1303 17 .8 

[9] CMR all 5000 0 
CROSS/MEAN all 5000 0 
INGALLS all 5000 0 
EXT. RUN (NO TRUNC.) 0 7212 30000 1296 16.9 

[10] CMR all 5000 0 
CROSS/MEAN all 5000 0 
INGALLS all 5000 0 
EXT. RUN (NOTRUNC.) 0 7012 30000 1261 18 



Rather, this test shows that each heuristic works better than the other for a particular class 

of data. Therefore, the tentative conclusion to be drawn from the CMP is that the Ingalls 

Algorithm is more effective for data that has a stronger initial transient skew (as the Loaded 

Queue and Filling Queue models have), and the Cross/Mean Rule works better for data 

with no significant initial transient (as the Empty Queue and Queue Series models have). 

4.3.2 Reliability of the Confidence Maximization Procedure 

Given the above "conclusion", in order to evaluate how well the CMP has 

determined the "best" heuristic (assuming that a different "best" heuristic can be associated 

with each class of output), the reliability of the results will be assessed by looking, once 

again, at coverages. The reliability of the CMP can be considered good if the coverages 

associated with the "best" heuristic (for each class of output) are as good or better than the 

coverages for the other heuristics. Coverages for each heuristic were calculated in the same 

manner as the previous section in this chapter, and Tables 4.24 through 4.28 show the 

results of these calculations. 

These results show that the coverages with the Ingalls truncation points are better 

than with the Cross/Mean truncation points for the Loaded Queue and Filling Queue models 

(although for the runs tested here, coverage values generally are not very high due to the 

sample size constraints). This result is in agreement with the CMP's conclusion that 

Ingalls works better than Cross/Mean for data sets with an initial transient. For the Empty 

Queue and Queue Series models, the coverage using the Cross/Mean truncation points is 

about the same as the coverage usfog the Ingalls truncation points. Since coverage is 

unaffected while CI halfwidth is improved by using Cross/Mean rather than Ingalls, the 

CMP's conclusion that Cross/Mean works better than Ingalls for data without an initial 

transient is confirmed by this test. Therefore, based on coverage comparisons, the results 

of the CMP are reliable. 

92 
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Table 4.24 
Empty Queue Model Coverage - Batched Data - All Truncation Approaches 

MODEL: EMPTY Q ACTUAL MEAN: 9.00 100 OBS/ BATCH 

RUN DEf. MEI'HOD BATCHES TOTAL SAMPLE % 1RUNCATFD MEAN 95% C.I. OOVERAGE 
TRUNC. SIZE(BATCHF.S) (FROMTOTAL) H.W. 

[1) CMR 0 50 0.00 11.80 2.93 + 
CROSS/MEAN 2 50 0.04 12.10 3.10 + 
INGALLS 4 50 0.08 12.40 3.20 
EXT.RUN 0 300 0.00 8.87 0.87 + 

[2) CMR 0 50 0.00 9.28 2.10 + 
CROSS/MEAN 2 50 0.04 9.57 2.21 + 
INGALLS 4 50 0.08 9.87 2.26 + 
EXT.RUN 0 300 0.00 8.96 0.93 + 

[3] CMR 0 50 0.00 7.45 1.24 
CROSS/MEAN 2 50 0.04 7 .57 1.31 
INGALLS 4 50 0.08 7.67 1.36 + 
EXT.RUN 0 300 0.00 9.36 0.99 + 

[4] CMR 0 50 0.00 6.71 1.97 
CROSS/MEAN 1 50 0.02 6.79 2.00 
INGALLS 3 50 0.06 6.92 2.03 
EXT.RUN 0 300 0.00 8.25 0.81 + 

(5) CMR 0 50 0.00 8.03 1.96 + 
CROSS/MEAN 1 50 0.02 8.17 2.03 + 
INGALLS 4 50 0.08 8.16 2.18 + 
EXT.RUN 0 300 0.00 10.60 1.05 

(6] CMR 0 50 0.00 6.29 1.21 
CROSS/MEAN 2 50 0.04 6.34 1.28 
INGALLS 4 50 0.08 6.46 1.33 
EXT.RUN 0 300 0.00 7.70 0.72 

[7] CMR 0 50 0.00 7.25 1.79 + 
CROSS/MEAN 2 50 0.04 7.42 1.90 + 
INGALLS 5 50 0.10 7.69 2.01 + 
EXT.RUN 0 300 0.00 8.20 0.78 

[8] CMR 0 50 0.00 5.84 1.12 
CROSS/MEAN 1 50 0.02 5.93 1.16 
INGALLS 4 ." 50 0.08 5.96 1.22 
EXT.RUN 0 300 0.00 8.98 0.92 + 

(9) CMR 0 50 0.00 20.70 6.03 
CROSS/MEAN 2 50 0.04 21.50 6.36 
INGALLS 4 50 0.08 22.10 6.58 
EXT.RUN 0 300 0.00 9.65 1.26 + 

[10] CMR 0 50 0.00 14.70 5.02 
CROSS/MEAN 3 50 0.06 15.20 5.46 
INGALLS 4 50 0.08 15.20 5.58 
EXT.RUN 0 300 0.00 12.00 1.26 

CMR CROSS/MEAN IN GAUS EXT.RUN 
A VG. OOVERAGE: 40% 40% 40% 60.00% 
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Table 4.25 
Loaded Queue Model Coverage - Batched Data - All Truncation Approaches 

MODEL: l.DADEDQ ACTUAL MEAN: 9.00 100 OBS/ BATCH 

RUN DET.MEI'HOD BATCHES WfALSAMPIB %TRUNCATFD MEAN 95% C.I. COVERAGE 
TRUNC. SIZE (BATCHES) (FROM 'JUI' AL) H.W. 

[1] CMR 18 50 0.36 14.50 4.09 
CROSS/MEAN 3 50 0.06 31.40 8.46 
INGAU..S 2 50 0.04 32.80 8.78 
EXT.RUN 0 300 0.00 12.80 1.99 

[2] CMR 12 50 0.24 11.00 2.66 + 
CROSS/MEAN 1 50 0.02 22.20 6.87 
INGALLS 4 50 0.08 18.50 5.75 
EXT.RUN 0 300 0.00 11.50 1.59 

[3] CMR 13 50 0.26 9.61 2.29 + 
CROSS/MEAN all 50 1.00 n/a 
INGALLS 2 50 0.04 19.30 6.41 
EXT.RUN 0 300 0.00 11.80 1.36 

[4] CMR 10 50 0.20 13.40 4.40 + 
CROSS/MEAN 4 50 0.08 20.70 7.38 
INGALLS 1 50 0.02 25.20 8.66 
EXT.RUN 0 300 0.00 11.60 1.77 

[5] CMR 16 so 0.32 12.60 3.00 
CROSS/MEAN 2 50 0.04 28.20 8.24 
INGALLS 2 so 0.04 28.20 8.24 
EXT.RUN 0 300 0.00 14.60 1.95 

[6) CMR 12 so 0.24 6.51 1.36 
CROSS/MEAN all so 1.00 n/a 
INGALLS 4S 50 0.90 5.88 12.70 + 
EXT.RUN 0 300 0.00 9.63 1.26 + 

[7] CMR 30 so 0.60 4.97 1.44 
CROSS/MEAN 1 so 0.02 38.40 10.SO 
INGALLS 3 . 50 0.06 3S.90 10.20 
EXT.RUN 0 300 0.00 13.70 2.2S 

[8] CMR 2S so 0.50 6.86 1.59 
CROSS/MEAN 6 50 0.12 28.30 8.92 
INGALLS 2 so 0.04 35.20 10.70 
EXT.RUN 0 . 300 0.00 14.60 2.32 

[9] CMR 0 50 0.00 54.90 9.63 
CROSS/MEAN 12 50 0.24 46.50 11.60 
INGALLS 2 50 0.04 53.10 9.94 
EXT.RUN 0 300 0.00 15.30 2.61 

[10] CMR 0 50 0.00 70.20 11.90 
CROSS/MEAN 3 50 0.06 67.90 12.70 
INGALLS 2 50 0.04 68.70 12.50 
EXT.RUN 0 300 0.00 21.20 3.29 

CMR CROSS/MEAN INGAU.S EXT.RUN 
AVG. COVERAGE: 30% 0% 10% 10.00% 
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Table 4.26 
Queue Series Model Coverage - Batched Data · All Truncation Approaches 

MODEL: SERIES Q THEOR. MEAN: 5.36 100 OBS/ BATCH 

RUN DET.METHOD BATCHES TCJJ'ALSAMPI.E %TRUNCATFD MEAN 95% C.I. MEAN OF OOVF.RAGE 
TRUNC. SIZE (BATCHES) (FROM 1Uf AL) H.W. EXT. RUN (EX. RUN MN. 

MEANS &HW) 
[1] CMR 0 50 0.00 3.02 0.361 3.633 -(0%) 

CROSS/MEAN 1 50 0.02 3.05 0.361 3.633 -(0%) 
IN GAUS 4 50 0.08 3.13 0.370 3.633 -(0%) 
EXT.RUN 0 300 0.00 3.34 0.207 3.633 -(40%) 

[2] CMR 0 50 0.00 3.91 0.554 3.633 + 
CROSS/MEAN 0 50 0.00 3.91 0.554 3.633 + 
INGALLS 4 50 0.08 4.02 0.581 3.633 + 
EXT.RUN 0 300 0.00 3.83 0.227 3.633 -(35%) 

(3) CMR 0 50 0.00 3.80 0.657 3.633 + 
CROSS/MEAN 2 50 0.04 3.90 0.665 3.633 + 
INGALLS 3 50 0.06 3.88 0.678 3.633 + 
EXT.RUN 0 300 0.00 3.89 0.245 3.633 -(42%) 

[4) CMR 0 50 0.00 3.51 0.460 3.633 + 
CROSS/MEAN 1 50 0.02 3.56 0.448 3.633 + 
INGALLS 3 50 0.06 3.60 0.474 3.633 + 
EXT.RUN 0 300 0.00 3.79 0.211 3.633 -(74%) 

[5) CMR 0 50 0.00 3.50 0.642 3.633 + 
CROSS/MEAN 1 50 0.02 3.54 0.650 3.633 + 
INGALLS 3 50 0.06 3.60 0.672 3.633 + 
E.Xf.RUN 0 300 0.00 3.47 0.222 3.633 - (76%) 

(6) CMR 0 50 0.00 3.46 o.s 11 3.633 + 
CROSS/MEAN 2 50 0.04 3.54 O.S21 3.633 + 
INGALLS 4 50 0.08 3.58 O.S40 3.633 + 
EXT.RUN 0 300 0.00 3.70 0.231 3.633 + 

(7) CMR 0 so 0.00 3.72 0.680 3.633 + 
CROSS/MEAN 1 50 0.02 3.7S 0.690 3.633 + 
INGALLS 3 50 0.06 3.81 0.716 3.633 + 
EXT.RUN 0 300 0.00 3.S3 0.213 3.633 + 

[8] CMR 0 so 0.00 3.81 0.620 3.633 + 
CROSS/MEAN 1 50 0.02 3.8S 0.626 3.633 + 
INGALLS 4 50 0.08 3.93 0.657 3.633 + 
EXT.RUN 0 300 0.00 3.72 0.222 3.633 + 

[9] CMR 0 so 0.00 3.4S 0.621 3.633 + 
CROSS/MEAN 1 50 0.02 3.49 0.631 3.633 + 
INGALLS 4 50 0.08 3.57 0.666 3.633 + 
EXT.RUN 0 300 0.00 3.62 0.225 3.633 + 

(10) CMR 0 so 0.00 3.38 O.S19 3.633 + 
CROSS/MEAN 1 50 0.02 3.42 0.523 3.633 + 
INGALLS 3 50 0.06 3.48 0.538 3.633 + 
EXT.RUN 0 300 0.00 3.44 0.210 3.633 - (58%) 

CMR CROSS/MEAN INGAil..S EXT.RUN EXT. RUN CIHW [3.520,3.746] 
AVG. OOVERAGE: 90% 90% 90% 72.50% 
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Table 4.27 
Filling Queue Model Coverage · Batched Data · All Truncation Approaches 

MODEL: FlllJNG Q ACl1JAL MEAN: unknown 100 OBS/ BATCH 

RUN DET.MEI'HOD BATCHES TOTALSAMPLE %TRUNC. MEAN 95% C.I. MEAN OF CX>VERAGE 
TRUNC. SIZE (BATCHES) (FROM TOT.) H.W. EXT.RUN (EX. RUN MN. 

MEANS &HW) 
[1) CMR 1 50 0.02 27.60 0.291 27.5 + 

CROSS/MEAN 8 50 0.16 27.60 0.335 27.5 + 
INGAU..S 4 50 0.08 27.70 0.311 27.5 + 
EXT.RUN 0 300 0.00 27.50 0.156 27.5 + 

[2) CMR 1 50 0.02 27.40 0.425 27 .5 + 
CROSS/MEAN 7 50 0.14 27.40 0.476 27.5 + 
INGAU..S 7 50 0.14 27.40 0.476 27.5 + 
EXT.RUN 0 300 0.00 27.50 0.188 27 .5 + 

[3) CMR 2 50 0.04 27.70 0.351 27 .5 + 
CROSS/MEAN 12 50 0.24 27.60 0.436 27.5 + 
INGAU..S 9 50 0.18 27.60 0.406 27.5 + 
EXT.RUN 0 300 0.00 27.60 0.180 27.5 + 

[4) CMR 1 50 0.02 27.70 0.299 27.5 + 
CROSS/MEAN 8 50 0.16 27.80 0.303 27.5 - (38%) 
INGAU..S 7 50 0.14 27.70 0.301 27.5 + 
EXT.RUN 0 300 0.00 27 .50 0.178 27.5 + 

[5) CMR 1 50 0.02 27.70 0.338 27.5 + 
CROSS/MEAN 5 50 0.10 27.80 0.319 27 .5 - (49%) 
INGAU..S 4 50 0.08 27.70 0.315 27.5 + 
EXT.RUN 0 300 0.00 27.60 0.162 27.5 - (80%) 

[6) CMR 1 50 0.02 27.30 0.420 27.5 + 
CROSS/MEAN 7 50 0.14 27.20 0.430 27.5 + 
INGAU..S 3 50 0.06 27.30 0.447 27.5 + 
EXT.RUN 0 300 0.00 27.50 0.176 27.5 + 

[7) CMR 1 50 0.02 27.70 0.309 27.5 + 
CROSS/MEAN 6 50 0.12 27.60 0.347 27.5 + 
INGAU..S 3 50 0.06 27.70 0.341 27.5 + 
EXT.RUN 0 300 0.00 27.50 0.187 27 .5 + 

[8) CMR 1 50 0.02 27.10 0.597 27.5 + 
CROSS/MEAN 8 50 0.16 27.00 0.703 27.5 + 
INGAU..S 3 _50 0.06 27.10 0.632 27.5 + 
EXT.RUN 0 300 0.00 27.20 0.221 27.5 - (8%) 

[9) CMR 2 50 0.04 27.70 0.350 27.5 + 
CROSS/MEAN 9 50 0.18 27.70 0.419 27.5 + 
INGAU..S 4 50 0.08 27.70 0.374 27.5 + 
EXT.RUN 0 300 0.00 27.40 0.188 27 .5 + 

[10) CMR 1 50 0.02 27.30 0.383 27.5 + 
CROSS/MEAN 7 50 0.14 27.20 0.437 27 .5 + 
INGAU..S 6 50 0.12 27.30 0.427 27.5 + 
EXT.RUN 0 300 0.00 27.50 0.158 27.5 + 

CMR CROSS/MEAN INGALLS EXT.RUN EXT. RUNCJHW [27.41,27.55) 
A VG. COVERAGE: 100% 88.70% 100% 88.80% 
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Table 4.28 
Transient Queue Model Coverage . Batched . All Truncation Approaches 

MODEL: TRANSQ ACTUALMEAN: ~ 100 OBS/ BATCH 

RUN DEf.METHOD BATCHES TCYJ'ALSAMPLE %TRUNC. MEAN 95% Cl. MEAN OF a>VFRAGE 
TRUNC. SIZE (BATCHE'S) (FROM'IUI'.) H.W. EXT. RUN (EX. RUN MN. 

MEANS &HW) 
[1) CMR all 50 100 n/a n/a 1287 .2 n/a 

CROSS/MEAN all 50 100 n/a n/a 1287 .2 n/a 
ING AILS all 50 100 n/a n/a 1287 .2 n/a 
EXT.RUN 0 70 0 1289 178 1287 .2 

[2) CMR. all 50 100 n/a n/a 1287 .2 n/a 
CROSS/MEAN all 50 100 n/a n/a 1287 .2 n/a 
ING AILS all 50 100 n/a n/a 1287 .2 n/a 
EXT.RUN 0 72 0 1354 175 1287 .2 

[3) CMR all 50 100 n/a n/a 1287 .2 n/a 
CROSS/MEAN all 50 100 n/a n/a 1287.2 n/a 
ING AILS all 50 100 n/a n/a 1287.2 n/a 
EXT.RUN 0 70 0 1279 177 1287 .2 

[4) CMR all 50 100 n/a n/a 1287 .2 n/a 
CROSS/MEAN all 50 100 n/a n/a 1287 .2 n/a 
ING AILS all 50 100 n/a n/a 1287.2 n/a 
EXT.RUN 0 71 0 1284 181 1287 .2 

[5) CMR all 50 100 n/a n/a 1287.2 n/a 
CROSS/MEAN all 50 .100 n/a n/a 1287 .2 n/a 
INGAlLS all 50 100 n/a n/a 1287 .2 n/a 
EXT.RUN 0 67 0 1291 184 1287.2 

[6] CMR all 50 100 n/a n/a 1287 .2 n/a 
CROSS/MEAN all 50 100 n/a n/a 1287.2 n/a 
INGAlLS all 50 100 n/a n/a 1287.2 n/a 
EXT.RUN 0 72 0 1354 180 1287.2 

[7) CMR all 50 100 n/a n/a 1287 .2 n/a 
CROSS/MEAN all 50 100 n/a n/a 1287.2 n/a 
INGAILS all 50 100 n/a n/a 1287 .2 n/a 
EXT.RUN 0 69 0 1270 180 1287.2 

[8) CMR all 50 100 n/a n/a 1287 .2 n/a 
CROSS/MEAN all 50 100 n/a n/a 1287 .2 n/a 
INGAILS all .So 100 n/a n/a 1287 .2 n/a 
EXT.RUN 0 69 0 1298 182 1287 .2 

[9) CMR all 50 100 n/a n/a 1287.2 n/a 
CROSS/MEAN all 50 100 n/a n/a 1287 .2 n/a 
ING AILS all 50 100 n/a n/a 1287.2 n/a 
EXT.RUN 0 72 0 1294 173 1287 .2 

[10) CMR all 50 100 n/a n/a 1287 .2 n/a 
CROSS/MEAN all 50 100 n/a n/a 1287.2 n/a 
INGAU.S all 50 100 n/a n/a 1287 .2 n/a 
EXT.RUN 0 70 0 1259 184 1287.2 

CMR CROSS/MEAN ING AILS EXT.RUN EXT. RUNCIHW [1277.3,1317.1) 
A VG. COVERAGE: n/a n/a n/a 0.00% 



4. 4 THE EFFECTIVENESS OF THE CONFIDENCE MAXIMIZATION 
RULE 

Unfortunately, using the CMP to compare only the Cross/Mean and Ingalls 

heuristics would not be very helpful to the average simulationist because, although the 

results generated are perfectly valid in a theoretical sense, the "answer" is different 

depending on the form of the output data. This is a problem because the user does not 

always have prescience regarding the form of his output; he may not know whether or not 

to expect an initial transient in his output data. After all, this is probably why he wants to 

use a transient detection heuristic in the first place! In addition to this problem, there is also 

the issue that, both in general and compared with the results of the CMR, neither heuristic 

performs very well in terms of CI halfwidth and coverage for any of the steady-state 

models (i.e., all but the Transient Queue Model). The CMR outperforms both heuristics 

for all four steady-state models; its average CI halfwidths are smaller and its coverage 

values are at least as good or better in all cases. 

The only method for transient elimination that outperforms the CMR here is to make 

the sample sizes six times larger (30,000 observations instead of 5000) and let the 

transients be diluted by the large steady-state periods. It should be noted that, even with a 

run as long as 30,000 observations, the Loaded Queue Model statistics still have a lower 

coverage value than they do with CMR truncation. This is true because the transient is 

much stronger for this model than for any of the others and, therefore, requires an even 

longer run for the dilution to be effective. Although the dilution approach seems to 

generate reliable statistics, its use will be discounted here on the basis of impracticality. In 

many cases, the need for such a large sample size in order for dilution to work makes the 

use of some sort of truncation method a preferable approach. 

Hence, it may be concluded that of the three transient detection/truncation heuristics 

tested here, the CMR is the best approach. Its statistical superiority over Cross/Mean and 

Ingalls may be partially explained by the fact that the two latter heuristics use the cumulative 
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mean of the system variable as the basis for steady-state detection. Because of the high 

variability common in simulation output, the cumulative mean takes a while to settle, even 

if the initial data is not heavily biased. The extra time required to allow for settling of the 

cumulative mean causes heuristics like Cross/Mean and Ingalls to generate overly 

conservative estimates of the onset of steady state. 

The effects of overconservative estimation can perhaps be seen more clearly in the 

frequency bargraphs displayed in Figures 4.13 through 4.17. Bargraphs have been 

developed for one run of each of the five models. The graphs show the distribution of 

output data by separating the "number in system" observations according to their magnitude 

and computing the frequency of observations in each "value region" (the abscissa). Note 

that the "value regions" are defined differently for each model because the range of values 

associated with each model's output varies widely. For example, the highest observation 

of "number in system" for this run of the Loaded Queue Model is nearly 120, while for the 

run of the Queue Series Model, the highest value is only twelve. To moderate the range 

requirements for these graphs, the raw data (5000 observations, once again) was batched 

by groups of 25 to create the data sets used in the frequency counts. This batching does 

not affect the general shapes of the distributions nor does it alter the effects of truncation on 

these distributions. In these plots, each truncation heuristic is assigned a bar within each 

value region, so each value region has four bars: one for no truncation, to illustrate the 

"raw" distribution of the data; one for the data distribution after CMR truncation has been 

applied to the "raw" data; one for the distribution after Cross/Mean truncation has been 

applied; and one for the distribution after Ingalls truncation has been applied. 

The plirpose of these plots is to illustrate the "smoothing" effects of truncation on 

the output data distributions. Clearly, because the optimal CMR truncation point for the 

Empty Queue and Queue Series models is zero, for these models, the CMR distribution 

bars are the same as those for the no truncation case. Note also that for the Transient 

Queue Model's output, none of the heuristics identified a truncation point. Its frequency 
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graph is presented here simply to show its entirely transient behavior in another form. For 

the remaining models (the Loaded Queue and Filling Queue models), CMR truncation 

eliminates outlying data values that result from the biased initial portions of the runs. CMR 

truncation of the Loaded Queue output "smooths" the distribution by removing the 

unreasonably large "number in system" observations from the distribution, while for the 

Filling Queue output, it removes the unreasonably small "number in second queue 

subsystem" observations. For the Empty Queue, Queue Series, and Filling Queue models, 

the Cross/Mean and Ingalls heuristics call for a larger number of observations to be 

truncated than the CMR. The problem with this is that truncation beyond the CMR point 

does not significantly change the shape of the frequency curve. It only decreases the 

frequency of points in the steady-state value ranges, thereby reducing the confidence of the 

statistics. Hence, truncation beyond the CMR point is inefficient because its main effect is 

to eliminate steady-state data. 

4.5 TESTING CONCLUSIONS 

This chapter showed, through a variety of tests, that the CMR is an effective, 

although not perfect, approach to initialization bias detection and truncation. It also 

illustrated how confidence maximization can be used to compare the effectiveness of 

detection heuristics. Finally, it was shown that the CMR is a more effective detection 

heuristic than two previously developed heuristics, the Crossings-of-the-Mean Rule, and 

Ingalls' Algorithm. 
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CHAPTER FIVE 

CONCLUSIONS 

5 .1 SUMMARY AND CONCLUSIONS 

The purpose of this project was to evaluate the performance of various steady-state 

detection methodologies, in the light of new ideas about steady state and system settling 

time for discrete event dynamic systems. There have been several heuristics evaluation 

methodologies developed prior to this study, but almost all of them have relied on infinite 

samples and/or theoretical statistics to assess performance. Because of the emphasis on 

theoretical statistics, these methodologies are often meaningless in the context of the finite 

sample DEDS that are studied in "real world" simulations. 

In order to develop a new, more meaningful steady-state detection methodology, 

three previous research efforts were studied in detail: Gafarian et al. (1978), Wilson and 

Pritsker (1978a,b), and Schruben (1981)/Heidelberger and Welch (1983). The work of 

Gafarian et al. was the first major attempt to set up a methodology by which to evaluate the 

effectiveness of steady-state detection heuristics. Their methodology was used to evaluate 

several longstanding "rule-of-thumb" procedures that have been used for steady-state 

detection. Their conclusion that none of these heuristics is acceptable was both 

unreasonably rigid and unproductive. It was overly rigid in that the heuristic-based 

statistics of each model were compared against its theoretical statistics as the measure of the 

heuristic's validity. It was unprsxluctive because it gave no indication as to what sort of 

detection heuristic might be more acceptable than those tested. 

Wilson and Pritsker's study was more theoretically sound than Gafarian et al. 's. 

They developed an approach to evaluating "initialization policies", which are combinations 

of initial conditions and detection heuristics. Their approach is very logical and is based on 

finite sample statistics (unlike Gafarian et al. 's), but in actual application, their 

methodology leaves something to be desired. To use their approach in evaluating several 
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initialization policies for several model types would be quite cumbersome because of the 

need for tables of data based on probability transition functions for each output set. In 

addition, their conclusion that the best initialization policy is to set the initial conditions 

strategically and truncate no observations at all is, in most cases, unhelpful. The 

simulationist is often unaware of the "correct" initial conditions and must, therefore, rely on 

truncation of initialization bias to clean up his output data. 

Heidelberger and Welch's run length control procedure, which uses Schruben's 

transient detection methodology, is an effective approach to locating the optimal truncation 

point. The principal drawback to their approach is the computational intensity of 

Schruben's procedure; however, as part of a software-based output analysis system (as the 

procedure is meant to be), Heidelberger and Welch's methodology is quite sound. 

Based on lessons learned from these prior research efforts, the approach taken in 

this project has been to use finite samples and empirically-developed statistics as the basis 

for the heuristic evaluation. With such an approach, the results can be applied to finite 

sample simulation output that is not analytically tractable (e.g., through queuing theory or 

other straightforward mathematical techniques). New definitions of steady state and 

settling time for DEDS that use finite sample confidence level comparisons were conceived. 

A new steady-state detection methodology was created from these definitions that uses 

finite sample confidence statistics to determine the optimal truncation point for removal of 

initialization bias. With this methodology, the confidence statistics generated for a given 

(finite) sample or set of samples using various truncation heuristics are compared with one 

another to evaluate the relative performance of the heuristics. 

Although it was initially conceived as a methodology for evaluating the performance 

of existing detection heuristics, once testing began, it became apparent that the new 

confidence level comparison concept could be used as a steady-state detection and 

initialization bias truncation procedure in itself. It also became clear that, as a detection 

procedure (the Confidence Maximization Rule), the new approach was more effective than 
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most of the existing heuristics. A series of tests was conducted, in which the CMR was 

compared with two seemingly strong detection heuristics: the Crossings-of-the-Mean Rule 

and a recently developed algorithm by Ingalls. The heuristics were compared for five 

different types of DEDS: an initially empty and idle M/M/l queue (p = 0.9), a heavily 

front-loaded M/M/l queue (p = 0.9), a system of 15 M/M/1/15 queues in tandem (p = 0.9), 

a system of two parallel M/M/l/30 queues (p1 = 25, P2 = 22.5), and a transient system of 

two parallel M/M/l (unconstrained) queues (p1 = 25, P2 = 22.5). The results of these tests 

indicate that, in general, the CMR outperforms the Crossings-of-the-Mean Rule and 

Ingalls' algorithm in both accuracy (i.e., high confidence and high coverage) and efficiency 

(i.e., fewer observations truncated). All three heuristics were equally effective at 

identifying the lack of a steady state in the transient model output. 

Because of sample size/simulation length restrictions, steady-state detection and 

initialization bias truncation is often a more practical approach than dilution of initialization 

bias. In this project, the confidence level performance and reliability of "extended run" 

samples was tested to provide additional information to the reader; however, the main focus 

was on the comparison of detection and bias truncation heuristics and methodologies. A 

comparison of the statistics generated from the CMR against those from dilution shows that 

dilution using extremely large samples produces slightly better statistics than CMR 

truncation using significantly smaller samples. (For this test, the diluted samples were six 

times larger than the truncated samples.) It is important to note that the degree of 

improvement in confidence and coverage obtained by the use of dilution is quite small in 

comparison with the associated increase in sample size. Therefore, for most "real life" 

applications, in which sample size/simulation length is a primary constraint, truncation of 

initialization bias, requiring relatively small samples, is more effective than dilution of 

initialization bias, which requires relatively large samples. 

The trade-off between computation time added by using the CMR and time required 

to generate additional data is clearly an issue here. In its current state (i.e., manual 
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computations) the CMR can take some time to use, particularly if the estimated size of the 

transient region is unknown. However, the complexity of the computations required is 

low, and the process of using the CMR is logically straightforward enough that it should be 

rather simple to program. Once the procedure is automated, the computation time will 

probably be significantly smaller than the amount of time required to generate a 

"statistically" equivalent number of observations. 

Even for cases in which statistical accuracy is more critical than sample size 

constraints, the use of truncation can improve results. Although in this test dilution of 

initialization bias, by increasing sample size, produced better statistical results than 

truncation, even better results can be obtained by using both an extended sample size and 

truncation of initialization bias. 

The tests described in this paper have shown that, for general purpose, "real life" 

non-terminating simulation output analysis, an effective way to handle initialization bias is 

to use the CMR to identify and truncate the bias before system statistics are calculated. 

Although it does not perform perfectly in all cases, it seems to produce the best results, in 

terms of reliability, consistency, and efficiency, for a variety of DEDS types. In addition, 

the same confidence maximization concept can be used to compare the perlormance of other 

detection/truncation heuristics and methods for treating initialization bias. 

5.2 RECOMMENDATIONS 

This project has been an attempt to extend existing ideas about steady-state detection 

so as to be more applicable to the needs of "real world" simulation output analysis. The 

result of this project is a new foundation of concepts that use finite sample confidence 

levels to evaluate simulation output and determine optimal system statistics. From this 

foundation, a great deal remains to be done. There are many unresolved issues associated 

with the confidence maximization concept and steady-state detection, in general, that 

remain. Some of these will be addressed in this final section. 
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One area associated with the CMR that requires further exploration is reliability and 

consistency testing. The testing done in this project has given an indication as to the 

effectiveness of the CMR in detecting initialization bias and optimizing sample statistics, 

but additional testing must be done in a less software- and hardware-restrictive 

environment. The tests performed for this research were done on an 80286-based PC 

running at 8 MHz under DOS. Rapidly evolving microcomputer technology now permits 

more robust testing because longer runs (hence, larger and more batches) can be used for 

statistical calculations and comparisons. In addition, with more powerful software and 

hardware, a larger number of samples and a larger variety of DEDS models can be studied. 

Another area requiring further work is the method of testing used in CMR 

evaluation. In order to broaden the test base of the CMR, it should also be evaluated using 

an entirely different heuristic evaluation methodology. One way to approach this would be 

to use a modified version of Wilson and Pritsker's heuristics' evaluation methodology 

(described in Chapter Two). A few change.s would help to make their methodology more 

appropriate for this particular application. For example, their comparison of initialization 

policies includes the strategic setting of initial conditions. In testing the CMR, setting of 

initial conditions should not be included because the comparisons of interest are specifically 

among truncation methods. In addition, their methodology should be expanded to include 

testing under a wider variety of DEDS models because, as was shown in Chapter Four, 

heuristics can tend to work better for some model output types than for others. With these 

modifications, testing the CMR using Wilson and Pritsker's methodology will help to 

confirm the CMR's overall effeetiveness. 

Another area that must be studied more fully is the problem encountered with the 

Loaded Queue Model in Chapter Four, involving an initial transient that is so long and 

seemingly stable that the CMR identifies it as a steady state. The potential enhancement to 

the CMR, described in Chapter Four, that addresses this problem should be explored and 

tested. 
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One final area that must be explored further is the application of the CMR to a run 

length control procedure. The idea of ultimately using this initialization bias detection and 

truncation methcx:i as a part of an overall output analysis system has been a primary goal in 

this project. Although out of the scope of the work done here, extending the use of the 

truncation methcx:i to help determine appropriate simulation run lengths is the next logical 

step. Since the CMR requires calculations of confidence statistics, the most significant 

groundwork for a run length control procedure has already been laid. What is still needed 

is a methodical process, in which overall statistical accuracy requirements are specified at 

the start, the CMR is used to optimize the statistics for a given sample, and the sample 

statistics are compared with the requirements. If the sample statistics do not measure up, 

the sample being tested must be extended and retested until the requirements are met. The 

run length control procedure outlined in the paper by Heidelberger and Welch (1983), 

described in Chapter Two of this report, might work quite well alongside the CMR. In 

their procedure, Schruben's method is used for transient detection and truncation. With 

some very slight modifications, the CMR might be incorporated into Heidelberger and 

Welch's procedure in place of Schruben's more complex and time-consuming method. 

Exploration and testing of this possibility would not be difficult and should be the next task 

in this area. 

The issues listed in this section are a few of the most important areas of steady-state 

detection in which further work must be done. Once these issues have been explored more 

fully, steady-state detection, propably the most complex part of non-terminating simulation 

output analysis, will be better understood. At that point, effective automation of the output 

analysis process will be within reach. 
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APPENDIX A 

SIMAN MODEL AND EXPERIMENT FILES 
FOR TEST SYSTEMS 

I. Empty Queue Model File 

BEGIN; 

END; 

BEGIN; 

CREATE:ED{l); 
COUNT:l; 
COUNT:2; 
QUEUE,1; 
SEIZE:SERVER; 
DELAY:ED(2); 
RELEASE: SERVER; 
COUNT:l,-1; 
COUNT:2:DISPOSE; 

Experiment File 

DISCRETE,1000,,1; 
RESOURCES:l,SERVER; 
DISTRIBUTIONS: l,EX(l,1): 

2, EX ( 2, 1) ; 
PARAMETERS: 1,10: 

2' 9; 
COUNTERS: 1,NUMBER IN SYSTEM,,,20: 

2,0BSERVATIONS,30000; 
END; 



II. Loaded Queue Model 

BEGIN; 

CONT 

END; 

BEGIN; 

CREATE,100; 
CREATE:ED(l); 
COUNT:2; 
COUNT:l; 
QUEUE,l; 
SEIZE:SERVER; 
DELAY:ED(2); 
RELEASE: SERVER; 
COUNT:l,-1; 
COUNT:2:DISPOSE; 

Experiment File 

DISCRETE,1000,1,1; 
RESOURCES:l,SERVER; 
DISTRIBUTIONS: l,EX(l,l): 

2, EX (2, 1) ; 
PARAMETERS: 1,10: 

2' 9 ;" 
COUNTERS: 1,NUMBER IN SYSTEM,,,80: 

2,TOTAL OBSERV,30100; 
END; 
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III. Queue Series Model File 

BEGIN; 

CONTl 

CONT2 

BALK 
END 

CREATE:ED(l); 
ROUTE:0,1; 

STATION,1-14; 
BRANCH,1: 

IF,NC(M).GE.15,BALK: 
ELSE,CONTl; 

COUNT:M; 
QUEUE,M; 
SEIZE:SERVER(M); 
DELAY: ED ( 2); 
RELEASE:SERVER(M); 
COUNT:M,-1; 
ROUTE:O,M+l; 

STATION,15; 
BRANCH,l: 

IF,NC(l5).GE.15,BALK: 
ELSE,CONT2; 

COUNT:M; 
COUNT:M+l; 
QUEUE,M,14; 
SEIZE:SERVER(M); 
DELAY:ED(2); 
RELEASE:SERVER(M); 
COUNT:M,-1; 
COUNT:M+l:DISPOSE; 
COUNT:17:DISPOSE; 
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Queue Series Experiment File 

BEGIN; 
DISCRETE,2000,,15,15; 
RESOURCES:l-15,SERVER; 
DISTRIBUTIONS: 1,EX(l,1): 

2,EX(2,1); 
PARAMETERS: 1,10: 

2,9; 
COUNTERS: l,NO.IN SUBSYS: 

2,NO.IN SUBSYS: 
3,NO.IN SUBSYS: 
4,NO.IN SUBSYS: 
5,NO.IN SUBSYS: 
6,NO.IN SUBSYS: 
7,NO.IN SUBSYS: 
8,NO.IN SUBSYS: 
9,NO.IN SUBSYS: 

END; 

10,NO.IN SUBSYS: 
11,NO.IN SUBSYS: 
12,NO.IN SUBSYS: 
13,NO.IN SUBSYS: 
14,NO.IN SUBSYS: 
15,NO.IN SUBSYS15,,,80: 
16,0BSERVATIONS,5000: 
17,NO. OF BALKS; 
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IV. Filling (Constrained) Queue Network Model File 

BEGIN; 

SERVEl 

CONTl 

SERVE2 

CONT2 

LEAVE 

BALK 
END; 

CREATE:ED(l); 
BRANCH,1: 

WITH, .3,SERVEl: 
ELSE,SERVE2; 

BRANCH,1: 
IF,NC(l) .GE.30,BALK: 
ELSE,CONTl; 

COUNT:l; 
COUNT:2; 
QUEUE,1,30; 
SEIZE:SERVERl; 
DELAY:ED(2); 
RELEASE:SERVERl:NEXT(LEAVE); 
BRANCH,1: 

IF,NC(2) .GE.30,BALK: 
ELSE,CONT2; 

COUNT:l; 
COUNT:2; 
QUEUE,2,30; 
SEIZE:SERVER2; 
DELAY:ED(3); 
RELEASE:SERVER2; 
COUNT:l,-1; 
COUNT:2:DISPOSE; 
COUNT:3:DISPOSE; 

Experiment File 

BEGIN; 
PROJECT,FILLUP,MAM,10/5/87; 
DISCRETE,1000,1,2; 
RESOURCES:l,SERVERl,5: 

2,SERVER2,6; 
DISTRIBUTIONS:l,EX(l,1): 

2, EX ( 2 , 1) : .O 

3 , EX ( 3 , 1 ) ; · 
PARAMETERS:l,2:2,50:3,45; 
COUNTERS: 1,NUM IN Q2,,,50: 

2,TOTAL OBS,30000: 

;TRACE; 
END; 

3,NUM BALKS; 
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V . Transient (Unconstrained) Queue Network Model File 

· BEGIN; 
CREATE:ED(l); 
BRANCH,l: 

WITH,.3,SERVEl: 
ELSE,SERVE2; 

SERVEl COUNT:l; 
COUNT:2; 
QUEUE,l; 

'SEIZE:SERVERl; 
DELAY:ED(2); 
RELEASE:SERVERl:NEXT(LEAVE); 

SERVE2 COUNT:l; 
COUNT:2; 
QUEUE,2; 
SEIZE:SERVER2; 
DELAY:ED(3); 
RELEASE: SERVER2; 

LEAVE COUNT:l,-1; 
COUNT:2:DISPOSE; 

BALK COUNT:3:DISPOSE; 
END; 

Experiment File 

BEGIN; 
PROJECT,FILLUP,MAM,10/5/87; 
DISCRETE,2600,1,2; 
RESOURCES:l,SERVERl,5: 

2,SERVER2,6; 
DISTRIBUTIONS:l,EX(l,l): 

2 I EX ( 2 I 1) : 
3 I EX ( 3 I 1) ; 

PARAMETERS:l,2:2,50:3,45; 
COUNTERS: l,NUM IN Q2,,~60: 

2,TOTAL OBS,9000: 

;TRACE; 
END; 

3,NUM BALKS; 
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APPENDIX B 

FORTRAN CODE FOR COMPILATION OF STATISTICS 
OVER A RANGE OF TRUNCATION POINTS 

PROGRAM STATISTICS 
REAL 

MEAN,STDEV,VAR,DIFF,SUMDIFF,SQDIFF(5000),VALUE(5000),0BS, 
*TIME,TRTOTAL,SUM,VARMEAN,HW 

INTEGER COUNT,TRUNC,TOP 
TRUNC = 0 
SUM= 0.0 
COUNT = 0 
TOP = 0 
TRTOTAL = 0.0 
SUMDIFF = 0.0 
OPEN(l,FILE='OUTPUT.CUR') 
OPEN(2,FILE='STATS.TMP' ,STATUS='NEW') 
WRITE (2, 5) 

5 FORMAT(3X,'PTS TRUN' ,7X,'MEAN' ,12X,'ST DEV' ,9X,'HW') 
READ(l,10)NTITLE1,NTITLE2 

10 FORMAT(1X,I6,1X,A20) 
20 READ(l,30)TIME,OBS 
30 FORMAT(1X,El4.8,1X,E14.8) 

C WRITE(*,12)TIME,STAT 

c 

12 FORMAT(1X,E14.8,1X,E14.8) 
IF (TIME.NE. (-1.0)) THEN 

COUNT = COUNT + 1 
VALUE(COUNT) =OBS 
SUM = SUM + OBS 
GO TO 20 

ENDIF 
TOP = COUNT 

DO 50, TRUNC = 0,TOP,50 
SUMDIFF = 0.0 
TRTOTAL = 0.0 
IF (TRUNC.GT.0) THEN 

C WRITE(*,52)COUNT" 
52 FORMAT(lX,'COUNT -1 IS' ,I4) 

COUNT = TOP - TRUNC 
DO 51, K = (TRUNC-49),TRUNC 

TRTOTAL = TRTOTAL + VALUE(K) 
51 CONTINUE 

SUM = SUM - TRTOTAL 
END IF 
MEAN = SUM/COUNT 



DO 40, I= (TRUNC+l),TOP 
C WRITE(*,44)VALUE(I) 

44 FORMAT(lX,'VALUE ',Fl0.5) 
DIFF =VALUE(!) - MEAN 

C WRITE(*,41)TRUNC,TOP,DIFF,MEAN 
41 FORMAT(lX,I3,1X,I3,lX,Fl0.5,lX,Fl0.5) 

SQDIFF(I) = DIFF * DIFF 
SUMDIFF = SUMDIFF + SQDIFF(I) 

C WRITE(*,42)SQDIFF(I),SUMDIFF 
42 FORMAT(lX,Fl0.5,lX,'SUMDIFF ',Fl0.5) 
40 CONTINUE 

C WRITE(*,46)COUNT 

c 

46 FORMAT(lX,'COUNT ',I4) 
VAR= SUMDIFF/(COUNT - 1) 
STDEV = SQRT(VAR) 
HW = 1.96*SQRT(VAR/COUNT) 

WRITE(2,60)TRUNC,MEAN,STDEV,HW 
60 FORMAT(5X,I4,5X,Fll.4,5X,F10.4,5X,Fl0.4) 

c 
50 CONTINUE 

STOP 

END 
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APPENDIX C 

GRAPHS OF NINE REMAINING RUNS OF THE FIVE TEST MODELS 
(5000 Observation Runs, Batched by 25) 
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Empty Queue Model : Run 3 
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Empty Queue Model : Run 4 
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Empty Queue Model : Run 5 
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Empty Queue Model : Run 6 
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Empty Queue Model : Run 7 
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Empty Queue Model : Run 8 
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Empty Queue Model : Run 9 
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Loaded Queue Model : Run 3 
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Loaded Queue Model : Run 5 
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Loaded Queue Model : Run 8 
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Queue Series Model : Run 3 
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Queue Series Model : Run 4 
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Queue Series Model : Run 7 
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Queue Series Model : Run 8 
is---~~~~~~~~~~~~~~--~~~~--

:E w 
I-en > en m 
:::> 1 0 en 
w 
:::> w 
:::> 
0 
.c -U) 
T"" 

z -a: 5 w m 
:E 
:::> z 
..I 
<( 
I-
0 
I-

0 
0 10000 20000 

TIME (minutes) 

--a- Data before truncation 

A Data after CMR truncation 

Batch size= 25; 
200 points bet ore truncation 

30000 

n 
I 

N 
0\ 



Queue Series Model : Run 9 
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Queue Series Model : Run 1 O 
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Filling Queue Model : Run 2 
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Filling Queue Model : Run 3 
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Filling Queue Model : Run 4 
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Filling Queue Model : Run 5 
30 - - -

:: 
U1 
t-en 
> en m 
~ 20 
c z 
0 
0 
U1 en 
z -a: 
U1 m I:. 

~ 101 
z d. 
..J . 
<( 

b 
I-

·:i 

truncated by CMR 

~ 

---£1- Data before truncation 

• Data after CMR truncation 

Batch size= 25; 
200 points before truncation 

0------------------------------------------
0 10000 20000 30000 

TIME (minutes) 

n 
' w 

N 



r 

Filling Queue Model : Run 6 
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Filling Queue Model : Run 7 
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Filling Queue Model : Run 8 
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Filling Queue Model : Run 9 
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Filling Queue Model : Run 1 O 
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Transient Queue Model : Run 4 
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Transient Queue Model : Run 5 
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