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Abstract

Recent years have witnessed a tremendous amount of research in exploiting machine learning
tools for handling a wide variety of problems in wireless communications. While data-driven
approaches, notably deep neural networks and deep reinforcement learning, have arguably gained
center-stage prominence owing to their empirical success in numerous applications when a lot
of training data is available, there are in fact several problems that can markedly benefit from
classical machine learning tools and latent factor analysis techniques. This dissertation studies
canonical correlation analysis (CCA) and its multi-view generalization (GCCA) in the context
of modern wireless communications.

One of the main contributions of this dissertation is that it provides a new and broadly
useful algebraic interpretation of (G)CCA as a method that can identify a common subspace
between two or more matrices, even if the uncommon components are dominant. Beyond iden-
tifiability, it develops two performance analyses which show that the common subspace can be
accurately estimated via (G)CCA even in the non-ideal case where there is background noise
and strong interference of the individual components in the other matrix view(s). These the-
oretical findings are leveraged to solve the challenging problem of reliably detecting cell-edge
(weak) users in cellular wireless systems. It is shown that cell-edge user signals can be reliably
decoded via (G)CCA, at very low signal to noise plus interference ratio (SINR), without knowing
their channels. The proposed (G)CCA approach, can tolerate strong interference, achieves supe-
rior detection performance compared to the state-of-the-art approaches, and is computationally
tractable for practical implementation.

The second part of the dissertation introduces a novel framework that enables efficient spec-
trum utilization by allowing coexistence between two independently operated co-channel net-
works. Existing methods require some level of primary-secondary coordination, cross-channel
state estimation and tracking, or activity detection — which seriously complicate their practical
use. This dissertation develops a simple and practical spectrum underlay solution which enables
reliable secondary communication in the presence of the primary network, without primary-
secondary coordination or channel state information, under potentially strong and time-varying
interference from the primary system. It is shown that the proposed approach enjoys theoret-
ical performance guarantees which are corroborated through laboratory experimentation using
software defined radios. The proposed approach works with digital or analog modulation, it is
computationally cheap, and, as a side-benefit, it provides means for accurate synchronization of

the secondary user even at very low SINR.
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Chapter 1

Introduction

1.1 Background and motivation

Mobile wireless networks are the data highways that are now connecting everything, from people,
sensors, cloud centers, to smart vehicles and homes. The exponential growth of the number of
wireless-connected devices will result in more complicated networks, and will require the wireless
networks to transfer much greater amount of data, at much higher speeds, which is in fact a
major challenge for the current mobile systems. Furthermore, such a continuous increase of
Internet-connected devices in factories, healthcare, homes, and businesses, that is expected to
reach to 200 billion by 2021 [1], will render the available spectral resources being overloaded and
significant interference issues will arise as a consequence. These considerations urge the need for
cutting-edge technologies and efficient approaches that can satisfy new software and hardware
constraints, scale with the size of networks, and more importantly, be capable of providing highly
reliable and low latency communication across all connected devices, to facilitate the operation
of the next-generation wireless systems.

Within the last few years, machine learning has become prominent and rapidly growing field
in the broad areas of wireless communications and signal processing. Machine learning tools
have shown a lot of success in tackling a wide variety of challenging problems in wireless commu-
nications [2,3], including resource allocation [4], antenna selection [5,6], channel estimation [7],
to name a few. Data-driven approaches, notably deep neural networks and (deep) reinforcement
learning, have gained central-stage prominence due to their empirical success in several applica-
tions. Though that, there are in fact a lot of problems that can markedly benefit from classical

learning tools and latent factor analysis.
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Unlike data-driven approaches which usually lack theoretical understanding, factor anal-
ysis techniques as principal component analysis (PCA) [8], independent component analysis
(ICA) [9], coupled matrix factorization (CMF) [10], non-negative matrix factorization (NMF) [11]
and canonical correlation analysis (CCA) [12], not only have the potential to efficiently handle
several challenging problems in various fields, but a lot of theoretical aspects can be provided
as well, thereby yielding better understanding compared to black-box approaches. While single-
view analysis techniques, like PCA, ICA and NMF use different constraints to extract strong
components from the given data matrix, multi-view analysis tools such as CMF and CCA, seek
to jointly analyze different views of the data. The main difference between CMF and CCA lies
in the optimization criterion: whereas CMF uses a data fitting (usually: least squares) criterion,
CCA is based on a “differential” criterion that forces it to zoom in only on what is common
between the different views. If one of the views includes a very strong component that is absent
from the other view(s), a least squares CMF formulation can still be obliged to represent that
component. CCA, on the other hand, owing to its use of a differential (balancing) criterion, can
ignore principal components no matter how strong they are, as long as they are not common.

Although CCA has been employed in several areas in signal processing, machine learning
and wireless communications, theoretical aspects of CCA was in fact very limited prior to our
work, and perhaps surprisingly, none of the aforementioned works has proven identifiability of
the common (shared) subspace between different data views. In general, identifiability is very
important as it provides sufficient conditions under which the recovery of the common signal
subspace via CCA is guaranteed under ideal (noiseless) conditions.

The work in this dissertation has filled that gap in the literature through presenting notable
theortical contributions of broader interest. Furthermore, this dissertation provides insightful
performance analyses, that yield the conditions required for reliably estimating the common
subspace in the presence of noise, and provides the reasons why CCA can even work under low
signal-to-noise ratio (SNR) and strong interference form the per-view individual components.
Besides our theortical findings, this dissertation will leverage our theoretical findings to show-
case the power of CCA in solving challenging problems in 5G and beyond. More importantly,

laboratory experimentation using real radios will demonstrate that our theory works in practice.

1.2 Thesis Outline and Contributions

Chapter 2 provides a comprehensive introduction to GCCA through covering different (G)CCA
formulations together with their computational complexities. Further, we present the complex
domain representation of (G)CCA formulations that will be used in some of the subsequent

chapters. Our new algebraic interpretation will also be introduced.
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Chapter 3 provides a link between CCA and cell-edge user detection in a cellular network
with two cooperating base stations. We show that cell-edge user signals can be reliably recovered
using CCA, at low SNR, without knowing their channels, and under strong inter- and intra-
cell interference. Further, this chapter presents two theortical contributions of broader interest.
First, we present a proof that shows the conditions under which CCA can identify a common
subspace under a noise-free linear generative model. Second, we develop a performance analysis
which shows that CCA works in practical situations where noise and leakage of strong individual
components are present. The results in this chapter have been published in [13,14].

Chapter 4 extends our study of the cell-edge problem to the more general setup that includes
large number of base stations. In such a case, generalized canonical correlation analysis (GCCA)
is invoked to handle the problem as opposed to CCA in the two cell setup. We address several
interesting questions as how many BSs should cooperate to yield the best detection performance
of cell-edge users? Does adding more BSs and allowing them to cooperate really help? Further,
we provide an insightful performance analysis which shows that GCCA can reliably estimate
the common subspace in presence of noise. Also, we propose a GCCA strategy that can be used
to differentiate cell center users from cell edge users. The material of this chapter can be found
in [15].

Chapter 5 presents a novel framework for efficient spectrum reuse. We propose a practical
underlay scheme that permits reliable secondary communication in the presence of strong and
time-varying (e.g., intermittent) interference from the primary system. The proposed method is
practically appealing as it can efficiently operate without knowing any channel and without any
primary-secondary coordination. From the theortical point of view, we show that reliable and
computationally efficient recovery of the secondary signal is possible via CCA. From the practical
perspective, we demonstrate through laboratory experimentation using a software radio testbed
that, for a secondary user with only two receive antennas, reliable detection of the secondary
signal is possible for signal to interference plus noise ratio (SINR) in the range of -20 to -40 dB.
Further, the approach works with unknown time-varying channels, digital or analog modulation,
and, as a side-benefit, it provides means for accurate synchronization of the secondary user even
at very low SINR. Part of the content of this chapter can be found in [16].

Finally, Chapter 6 provides a summary of contributions together with future and ongoing

research directions.

1.3 Notational Conventions

In this dissertation, we use the following notations. Upper and lower case bold letters are used

to denote matrices and column vectors, respectively. For any general matrix N, we use N7,
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N N-! NT and Tr(N) to denote the transpose, the conjugate-transpose, the inverse (when it

exists), the pseudo-inverse, and the trace of N, respectively. N(:,m) denotes the m-th column
of N (MATLAB notation). Furthermore, IRe{N} and Im{N} extract the real part and the
imaginary part of N, respectively. Scalars are represented in the normal face, while calligraphic
letters are used to denote sets. |.||2 and |.||r denote the fy-norm and the Frobenius norm,
respectively. Finally, Iny and Oxxas denote the N x N identity matrix and the N x M zero

matrix, respectively. Diag(x) returns a diagonal matrix with the element of x on its diagonal.



Chapter 2

Canonical Correlation Analysis

2.1 Overview of CCA

Canonical Correlation Analysis (CCA) is a widely-used statistical learning tool that aims at
finding directions in the data with maximal cross correlation. Consider, for instance, T samples

4

of the pair (y1,y2), where y; € RM: and y, € RM2 are two “views” of the same entity. For
example, y; could contain a set of economic indicators, while y5 could contain crime, corruption,
or social welfare data corresponding to the same country or municipality, and we have data for
T countries or municipalities. Or, y; could be the electroencephalogram (EEG) of a person and
y2 could be the voxels of a functional magnetic resonance (fMRI) scan; or y; could be a person’s
consumer record, while yo could reflect his/her social network connections, and we have data
for T people. We are interested in discovering what is common between these two views of the
same set of entities. Is there a particular ‘latent’ factor that affects both the economy and crime,
for example? Towards this end, we would like to derive ‘meta-variables’, one from each view,
which are strongly correlated with each other. How can we do this?

Let y1[t] and y2[t] denote the t-th observation of y; and yso, respectively, corresponding to
the t-th entity, for t € [T] := {1,--- ,T}. Assume that both y; and y, are zero-mean, otherwise
the sample mean can be subtracted as a pre-processing step. In its simplest form, CCA seeks
to find a pair of linear combinations x; = y¥q; and x3 = yZ'q of the elements of the random
vectors y1 and yo such that the two derived random variables x; and x5 are maximally correlated
— ideally, perfectly correlated. Mathematically, CCA seecks to find two vectors q; € RM' and
g2 € RM2 such that the correlation coefficient between Y7 q; and Y2 q, is maximized, where

Y, = [yo[l], -, ye[T]] € RMeXT and ¢ € {1,2}. In an optimization framework, this can be



expressed as

e ai Y1 Y]q, 2.1)
ava: /gl Y1 Y{aiv/ad Yo Y3 qq
Let Ry,y, = %YgY'{ and Ry, y, = %YlYQT denote the sample auto-correlation matrix of

ye¢ and the sample cross-correlation matrix of y; and yso, respectively. Then, (2.1) can be

equivalently written as

max Q?Rmyz a2 (2.2a)
q1,92
st. qfRy,y,q =1, £=1,2 (2.2b)

where the constraints in (2.2b) arise from the fact that the objective of (2.1) is not affected
by re-scaling q; and/or qs. Using the Lagrange duality theorem, a solution of (2.2) can be
provided in closed-form. The Lagrangian of (2.2) is

2

‘C(qlaq2» A17 A?) = Q?Rmyzq? - Z
=1

Ae
?(Q?Ryzyz(u - 1) (2'3)

By taking the derivatives with respect to q; and qo, we obtain

oL
8_(]1 = RY1Y2q2 - )‘1RY1Y1q1 =0 (2'4)
oL
prv Ry,y, a1 — A2Ry,y,q2 =0 (2.5)

By left multiplying (2.4) and (2.5) with qf and g, respectively, we have

qi Ry,y.q2 = Miqj Ry, y, a1 (2.6)

QQTRy2y1QI = A2quyzyQQ2 (2.7)

which together with the constraints in (2.2b) imply that A; = A2 = A. By assuming that the

matrix Ry,y, is invertible, the optimal solution, g3, of (2.5) is given by

* | *
Q2 = XRyzlyzRY2Y1 q (28)

Then by substituting in (2.4), the optimal solution, qj, can be obtained by solving the following

generalized eigenvalue problem

RY1Y2R_1 R)’2y1q1 = )‘2Ry1y1q1 (2'9)

Y2Y2

It can be easily seen from (2.4) that the maximum eigenvalue A* of (2.9) is nothing but the

square of the correlation coefficient, p1, associated with the canonical pair (qf, q3).
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N
n=1-

Considering the generalization to N < min(M;, Mz) canonical pairs, {(qi[n],qz2[n])
After identifying qi[1] = qf and q3[1] = q5, we can iteratively solve the following problem

max qi [n|Ry,y,q2(n] (2.10a)
a1[n],qz[n]
s.t. a; nRy,y,ac[n] =1, £=1,2 (2.10b)
qa/ [nRy,y,q[j] =0, j=1,--- ,n—1 (2.10c)
for n ={2,---, N}. Instead of solving N sub-problems of type (2.10), we can instead solve one

joint problem. Let us stack the vectors {q.[n]}2_; in the matrix Q, € RM*N for ¢ € {1,2},

and rewrite (2.10) in the following compact form

max Tr(Qf Ry,y,Q2) (2.11a)
Q1,Q2
st. Q[Ry,y,Qr=1, (=12 (2.11b)

which yields simultaneously multiple canonical pairs. Following the same procedures for solv-
ing (2.2), it can be shown that the optimal solution QF should satisfy the following generalized

eigenvalue equation

RY1Y2R;21y2RY2Y1 Qi = RY1Y1 Q1A2 (2'12)
where A = Diag([p1,--- , pn]) with p,, be the n-th correlation coefficient associated with the ¢-th
canonical pair, for n € [N] := {1,---,N}. Note that the optimal solution Q3 can be directly

obtained from (2.8) after solving (2.12).
The two-view CCA problem in (2.11) can be equivalently formulated as a distance minimiza-
tion between the low dimensional representations Y7 Q; and Y2 Q, [17,18], where the distance

is measured by the Frobenius norm, i.e.,
min Y7 Qi — Y5 Qa7 (2.13a)
Q1,Q2
st. QIY,YIQ, =1, (=1,2 (2.13b)

Note that by expanding the objective in (2.13), the equivalence between (2.12) and (2.13) can
be readily verified. Notice that the scaling constraints serve to exclude the trivial (and mean-
ingless) all-zero solution. Problem (2.13) is also known as the sum-of-correlations (SUMCOR)
formulation of CCA as it measures the sum of pairwise correlations, hence the name.
An alternative formulation of (2.13) is to search for an orthogonal representation G € RT*N
that is maximally correlated after the linear projections of Y; and Yo on Q; and Qo, respec-

tively. This leads to the so-called maximum-variance (MAXVAR) CCA formulation, which is



given by
2
min YIQ, - G2 2.14a
i g ;H ; 52 ( )
st. GTG=1 (2.14b)

Both MAXVAR and SUMCOR formulations in (2.14) and (2.13), respectively, are equivalent
in the sense that both problems yield the same optimal solutions QF and Q3 [18], for the two

views case considered above.

2.2 Generalized Canonical Correlation Analysis (GCCA)

Both SUMCOR and MAXVAR formulations can be naturally generalized to the case where
there are more than two random vectors (and accordingly, more than two data views) involved.
This case is known as Generalized CCA (GCCA) or multiview CCA, where there are more than
two data views {Y,},_, and ¢ = [L] := {1,---,L}.

To generalize the SUMCOR formulation (2.13) to accommodate the case of multiple views

(L > 2), it is natural to adopt a pair-wise matching criterion [17]. That is,

L-1 L
min > Y[/ Qe - YiQuE (2.15a)
Qebiy 127 0=
st. QIY,Y/Q,=1 Vv (4,¢) €L (2.15b)

On the other hand, the general form of MAXVAR, for L > 2, can be written as

L
min Y'Q, - G|> 2.16a
@ ¢ Y- Gl (2.162)
st. G'G=1 (2.16b)

Although both SUMCOR and MAXVAR formulations aim at finding highly-correlated reduced-
dimension views, and their optimal solutions can be shown to coincide in the special case of L = 2
(CCA) as mentioned earlier, they are generally not equivalent for the multiview case (L > 2).
While problem (2.16) introduces an additional T'N variables compared to SUMCOR, it replaces
the multiple constraints in (2.15) with a single orthonormality constraint on the matrix G. It
was shown that SUMCOR in (2.15) is NP-hard (in the worst case) [19,20]. Hence, several
efficient and scalable algorithms have been developed to tackle the SUMCOR GCCA to obtain
high-quality approximate solutions [19-24] — also incorporating various constraints.

The MAXVAR GCCA formulation, however, admits a simple algebraic solution via eigen-

value decomposition. To see this, one can fix G and solve (2.16) with respect to Q’s. Then,
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upon assuming that the matrices { Y}/, are full row rank, it follows that Q} = (Y,Y}) 'Y,G.
Substituting back Q} in (2.16) and expanding the cost function in (2.16), one can recast (2.16)

as
max Tr(GTAG) (2.17a)
GEeERNxKe
st. GTG =1L (2.17b)

where A is defined as A := Zle Y7 (Y, YF)"YY,. Tt can be easily seen that (2.17) is nothing
but an eigenvalue problem with the optimal solution G* being the first N principal eigenvectors
of the matrix A [25].

In this dissertation, we will focus more on the MAXVAR formulation to show the potential
of (G)CCA in handling several problems in wireless communications. In fact, we adopted the
MAXVAR formulation over the SUMCOR one as (i) it can be optimally solved using eigende-
composition whereas SUMCOR is an NP-Hard problem when the number of views exceeds two,
(ii) is computationally cheaper compared to SUMCOR, and hence, it is practically preferable,
and (ili) does not suffer from initialization and tuning parameters issues as SUMCOR does.
Therefore, we deem that considering MAXVAR will eventually lead to an overall much simpler

approach that can be used to tackle various problems.

2.3 Complex Domain Representation of (G)CCA

In Sections 2.1 and 2.2, we presented all the CCA and GCCA related formulations in the real
domain for simplicity, and also because the vast majority of (G)CCA literature only deals with
the real case. In wireless communications, however, we usually deal with complex signals mainly
because the communication channels are naturally belong to the complex domain. In such a
case, the CCA/GCCA formulations have to be slightly modified to accommodate the complex
representation. For instance, given the data views {Y, € CM**T}L | the SUMCOR formulation

can be expressed in the complex domain as [24],

L-1 L
min > > [Y/Q - YIQuE (2.18a)
(Qebia (=7 e
s.t. Y, YEQ, =1,V (¢,¢) € [L]. (2.18b)

while the MAXVAR formulation can be written as

L
min YAQ, - G|? 2.19a
QR ;H Q-G (2.192)

st. GHG =1 (2.19b)
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where Qg € CMXN and G € CT*N v/ € [L]. For L > 2, the optimal solution G* are the first N
principal components of the matrix A := Zle Y2 (Y, Y)Yy, and Qf = (Y, YH)71Y,G".

Further, we define the n-th correlation coefficient between views j and ¢ as [24],
) = Re{QY (-, n) Y, YIQ;(:,n)} (2.20)

Vl,5 € [L] and j > £ and n € [N].
In the subsequent chapters, we will use both the complex and real domain representations
of CCA and GCCA.

2.4 New Algebraic Interpretation

With a history of more than three decades, CCA has been employed in several signal pro-
cessing, communications, and machine learning applications, including array processing [26],
multiple-input multiple-output (MIMO) equalization [27,28], direction-of-arrival (DoA) estima-
tion [29], radar anti-jamming [30,31] and blind source separation [32-35], biomedical signal
processing [36,37], cell-edge detection [13-15], signal detection in multipath networks [38], un-
derlay communication [16], and multi-view learning [22-24,39], to name a few applications.

Most of the aforementioned CCA-related works relied on probabilistic interpretations of
CCA [40,41]. Recently, we came up with a new and broadly useful generative model and algebraic
interpretation of CCA as a method that can identify a common (shared) subspace between two
matrices [13,14]. In particular, we proved that under general (and purely deterministic) linear
generative model, CCA can identify the common subspace between two matrices. Even if the
common components are much weaker than the individual components associated with each data
view (e.g., 40 dB below), our analysis shows that under certain mild condition, the subspace
containing the common signals can be identified. In other words, we have recently shown
that what CCA does is it computes the intersection Range(Y;) and Range(Y3) [13,14]. More
generally, GCCA computes ﬂle Range(Y;) [24]. If the ranges have a nontrivial intersection
(the common signal of interest), then that can be perfectly recovered, even if the individual
components of each matrix are overwhelmingly stronger.

In the next chapters, we will build upon our new algebraic interpretation through establishing
identifiability analysis of the common subspace, followed by showing how valuable our theorti-
cal findings are, through showcasing the potential of (G)CCA in solving practical engineering

problems in next wireless generation.



Chapter 3

Cell-edge Detection via Canonical

Correlation Analysis

3.1 Motivation

At the dawn of 5G, providing reliable high-speed service to users on the edge between cells
remains a challenge that has persisted through several generations of cellular wireless systems. In
4G and legacy systems, the problem is usually tackled using aggressive power control, multiuser
detection, and dynamic base station (BS) assignment / handoff [42,43]. Multiuser detection
(MUD) is computationally complex (optimal MUD is NP-hard) [44,45], requires accurate channel
estimates for all users, and while it can tolerate power imbalance, practically tractable multiuser
detection does not work well in near-far scenarios, especially when the channels for the far users
are not accurately known.

The so-called sphere decoder (SD — a branch-and-bound type implementation of the max-
imum likelihood detector) features significantly lower complexity than naive implementations
at moderately high signal to noise ratios (SNRs), albeit worst-case and average complexities
remain exponential [46,47]. Semidefinite relaxation (SDR) is a polynomial-time alternative to
SD, in the low to moderate SNR regime where it yields better error rates and lower complexity
than SD [48,49]. The complexity of SDR remains high for practical implementation [50].

Minimum mean square error (MMSE) [51], and the zero-forcing (ZF — also known as the
decorrelating) detector are low-complexity linear detectors, whose performance remains far from
optimal in general. ZF and MMSE detectors can be further improved by successively canceling
the strong user signals once they are decoded — a technique referred to as successive interference

cancellation (SIC), decision feedback (DF) [52,53], or ‘turbo’ (iterative) interference cancellation

11
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[54].

Although all of the aforementioned detectors have been proven successful in many applica-
tions, their detection performance is contingent on the availability of accurate channel estimates.
In wireless cellular systems, accurate channel estimates may be acquired for cell-center (strong)
users, however, cell-edge (weak) user signals are received at low SNR due to the inverse power
law relationship between received signal power and distance. This and the intra- and inter-cell
interference (particularly prominent for the cell-edge users) together induce high uncertainty in
the cell-edge user channel estimates, degrading their detection performance and even leading to
connection drops [55,56]. Furthermore, the frequent hand-offs of such users further complicate
their situation [57]. While power control [58] and scheduling algorithms [59, 60] serve as two
possible candidates that can considerably enhance cell-edge user detection performance, this
comes at the expense of significantly reducing the rates of cell-center users. These are the ones
with the best channels, so throttling their rate has a serious impact on the overall sum rate of
the system.

This begs the question whether it is possible to reliably detect cell-edge user signals without
knowing their channels or sacrificing cell-center user rates?

We will show that with a suitable base station ‘interferometry’ strategy inspired from machine
learning, together with a well-known algebraic signal processing tool, the cell-edge user signals
can be reliably decoded under mild conditions, even at low SNR and when buried under heavy
intra-cell and inter-cell interference. Exploiting the fact that cell-edge user signals are weak but
common to both base stations, while users close to a base station are unique to that base station,
reliable detection is enabled by Canonical Correlation Analysis (CCA) [12,18].

Our approach is very different from multi-user detection using base station cooperation [61],
as it capitalizes on CCA. As noted earlier in Chapter 2, CCA has been employed in several
signal processing, communications, and machine learning applications , including array process-
ing [26], multiple-input multiple-output (MIMO) equalization [27,28], direction-of-arrival (DoA)
estimation [29], radar anti-jamming [30] and blind source separation [32-35], and multi-view
learning [39], to name a few applications; but not anywhere close to our present context.

We propose a two-stage learning based approach that leverages base station cooperation to
reliably detect cell-edge user signals without knowing their channels. The idea relies on connect-
ing canonical correlation analysis with cell-edge user detection. In the first stage, CCA is invoked
to find the common subspace of two space-time matrices, containing the baseband-equivalent
signals received at two base stations. A basis for this common subspace is a mixture of the
cell-edge user signals. In the second stage, this mixture is unraveled in an unsupervised fash-
ion, using a classical algebraic technique from array signal processing, namely (R)ACMA [62].

(R)ACMA exploits constant modulus structure in the transmitted cell-edge signals, owing to
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digital binary/M-ary phase shift keying (BPSK or MPSK) modulation, to recover the individ-

ual cell-edge signals. Judicious experiments demonstrate that the proposed approach works
remarkably well without any power control under realistic levels of intra-cell and inter-cell inter-
ference (following the urban macro scenario from the 3GPP 38.901 standard), delivering order
of magnitude error rate improvements compared to ‘oracle’ multiuser detection that assumes
perfect knowledge of the cell-center user channels. Furthermore, the proposed approach does
not even require that the signals from the different base stations are synchronized — the right
synchronization can be automatically determined as well.

Beyond these compelling contributions to the particular application in cellular communica-
tions considered herein, this chapter presents two notable theoretical contributions of broader
interest. First, we prove that CCA identifies the common subspace between two matrices, un-
der a rather general (and purely deterministic) linear generative model. Second, we include a
performance analysis which shows that CCA works even in the non-ideal case where there is
background noise and ‘leakage’ of the individual components to the other matrix view — e.g.,
the case where there is thermal noise and realistic adjacent-cell interference from non-cell-edge
users that cannot be neglected, in the context of our application herein.

The overall complexity of the proposed method depends on the cost incurred in solving
CCA and RACMA. Fortunately, both admit relatively simple algebraic solution via eigenvalue
decomposition [18,62]. This renders the overall approach computationally efficient even when
the base station is equipped with a large number of antennas and is serving a large number of
users.

The rest of this chapter is organized as follows. Section 3.2 describes the system model and
gives a brief review on cell-edge user detection. The proposed detector is presented in Section
3.3, while Section 3.4 explains how our detector can be used to resolve symbol synchronization
between the two base stations. Simulation results are provided in Section 3.5, and conclusions

are drawn in Section 3.6. Long proofs and derivations are relegated to the Appendix.

3.2 Problem Statement

3.2.1 System Model

Consider a multi-cell multi-user MIMO system comprising two hexagonal cells with a single base
station (BS) located at the center of each cell, as shown in Figure 4.1. The ¢-th BS is equipped
with M, antennas and serves K, single-antenna users, for ¢ € {1,2}. Let K. = K., + K.,
denote the total number of cell-edge users located around the common edge between the two
cells, where K., < K, represents the number of cell-edge users served by the ¢-th BS. Let hyy;
model path-loss and small scale fading between the k-th user in the j-th cell and the ¢-th BS,
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[ Signal Processing Unit }

Figure 3.1: System model of two base stations setup serving cell-edge and cell-center users.

given by
hop; = /Oukjzor; (3.1)

where zg,; € CMe*! represents the small scale fading between user k in cell j and BS ¢, while
oyr; € R models the large scale fading that accounts for the path loss between BS £ and user
k in cell j. Throughout this work, it is assumed that the uplink channel vectors hyy; for the

cell-edge users are not a priori known at any BS.

3.2.2 Uplink Transmission

Consider uplink transmission from the users to the BSs where each user aims at transmitting
its data to its serving BS. We assume that all users access the same channel without any (sub-)
channel allocation or coordination mechanism, thereby creating intra- and inter-cell interference.
Define si; € RT*! to be the vector containing symbols transmitted by the k-th user in cell j,
where each entry of si; belongs to the finite alphabet Q@ = {+1} (our approach works for
general PSK and other alphabets, with some variations in the second stage). The received

signal, Y, € CMexT at the (-th BS can be expressed as

2
YFZ
j:

1 k=

K,
\/Bkjhfkjsgj + W, (32)
1

where hyy; € CMex! is the uplink channel response vector defined in (3.1), W, € CMexT
contains independent identically distributed (i.i.d.) complex Gaussian entries of zero mean and

variance 02, and fj; represents the transmit power of the k-th user in the j-th cell.



15

In this work, we assume that each BS forwards its received signal to a central signal processing
unit (CSPU). Although BSs cooperation has been considered before for the sake of mitigating
inter-cell interference [63], cooperation here is assumed for a very different purpose. That is,
we leverage the joint processing of the BSs signals at the CSPU to provide reliable detection of
cell-edge user signals at low SNR, without knowledge of their channels. Furthermore, in contrast
to prior cooperation strategies that assume perfect synchronization of the received signals from
different BSs [61,64], this work deals with BS asynchrony as well, rendering the approach more
practical. Specifically, it will be shown in Section 3.4 how the proposed method can detect the

cell-edge user signals even if there exists a time delay between Y7 and Y.

3.2.3 Cell-edge Challenges

Let us denote the cell-edge user transmitted signals by S. € RT*¥e (where the subscript ¢ stands
for common), and those of the cell-center served by the /-th BS as S,, € RT*(Ke=Ke,) (where
the subscript p stands for private). Furthermore, let Wg represent the noise at the ¢-th BS plus
the inter-cell interference caused by the cell-center users in cell j, where j # £. Therefore, (4.2)
can be expressed as follows

Y, =H,,SI + H ST + W, (3.3)

where the matrices Hy, € CMexEe and H,, < CMex(Ke=Key) hold on their columns all the
channel vectors from cell-edge users to the ¢-th BS, and the channel vectors from cell-center
users to their serving BS, respectively. Moreover, absorb the transmitted signal power, f3;;, of
the k-th user in the j-th cell in its respective channel vectors, V k. j.

In general, to guarantee reliable detection performance for each cell-edge user, its serving
BS requires accurate knowledge about its channel state information (CSI) [65-67]. However,
due to the fact that cell-edge user signals are often received intermittently at very low signal to
interference plus noise ratio (SINR) and SNR, their channel estimates are inaccurate [55, 56].

One possible approach to detect cell-edge user signals is to apply zero-forcing successive
interference cancellation (ZF-SIC) [52], which is based on successively removing the cell-center
(strong) user signals once they are detected using ZF. Applying SIC after ZF improves the
detection performance of the cell edge user signals as it (ideally) cancels the strong interference
that stems from the transmissions of cell-center users, i.e., intra-cell interference. However, cell-
center user detection is imperfect, which can lead to error propagation, and in-cell SIC does not
address the inter-cell interference, which is particularly prominent for the cell-edge users. In the
absence of power control [58] and/or scheduling [59] , cell-edge user detection performance is
severely affected by the intra-cell interference from cell-center users. In what follows, we present
a novel blind detector that can reliably decode cell-edge user signals at low received SNR and

without knowing their channels.
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3.3 Cell-Edge User Detection via CCA

In this section, it is assumed that the base stations signals are perfectly synchronized at the
CSPU. We will explain how to deal with asynchrony later. The goal of the proposed detector
is to decode cell-edge user signals S, from the received signals Y; and Y. As a pre-processing
step, the signals are transformed to the real domain by forming the matrix Y, := [Yér) ; Yéi)] €
R2MexT ' ywhere Yy) = IRe{Y,} and Yéi) = Im{Y/,} represent the real and imaginary com-
ponents of the -th BS signal. Similarly, denote by Ay, := [HZ&;HZL] € R2Mex(Ke—Key)
Ay = [HZ);HZ)] € R2MexKe and W, = [WET);W?)] € R2MexT - Therefore, (3.3) can be
equivalently expressed as

?g = Kgpl S;{z + KchcT + Wz. (3.4)

Remark 1. Due to the broadcast nature of the wireless medium, each BS may (over)hear the
transmitted signals of all users. However, due to the inverse relationship between power and
distance, the received signal power of the cell-center users associated with the £-th BS is high
at the ¢-th BS (the serving one) and low at the j-th BS (the non-serving one). This power
imbalance renders the received SNR of these users to be high at the serving BS and very low at
the non-serving one, and hence, one can think of these users as being “private” to their serving
BS, as their received signals are around the noise floor at the non-serving BS. On the other hand,
cell-edge users are approximately half-way between two different BSs, and so they are received
at commensurate power at both BSs. In this sense, cell-edge users are “common” to both BSs.
In what follows, we will show theoretically and experimentally that our proposed CCA-based

approach can reliably recover these common cell-edge user signals under realistic conditions.

In what follows, the two-view MAXVAR CCA formulation in (2.14) is exploited to estimate
the subspace containing the cell-edge user signals. For the sake of brevity, we refer to this
subspace as the common subspace. Define the two matrices Q; € R?2M1*N and Q, € R2M2xN
where the n-th column of Q, represents the n-th canonical component of view Y, for n € [N] :=
{1,---,N}. The number of components (pairs) extracted, (IV), depends on the minimum value
of the correlation coefficient that needs to be considered. Towards this end, we feed the two
matrices Y1 and Yo to the MAXVAR formulation as follows,

2

. ey
__min 1Y, Q.- G|% (3.5a)
Q17Q27G /=1
s.t. GTG=1 (3.5b)

Assume that we are interested in the first K, canonical components of the matrices 61 and
Q,, i.e., N = K.. We have the following result.
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Theorem 1. In the noiseless case, if matriv B := [S.,S,,,S,,] € RT*FE1+K2) s full column
rank, and Ay = [Ag, Ayy,] € REMeXEeAKe=Ke,) s full column rank for £ € {1,2}, then the
optimal solution G* of problem (3.5) is given by G* = S.P, where P is a K, X K. non-singular

matriz.

Remark 2. The full column rank condition on B requires T greater than or equal to (K1 + Ks),
and the transmitted sequences from the different users to be linearly independent. For finite-
alphabet signals, this occurs with very high probability for modest T, since the different user
transmissions are independent. The more restrictive condition is full column rank of Ay, which
relates the number of base station antennas and signals impinging on each base station. We
thus need two times the number of antennas in each base station to be greater than or equal to
the number of users assigned to that base station, plus any cell-edge users assigned to the other
base station. Other than this dimensionality constraint though, if the channel vectors are drawn

from a jointly continuous distribution, the latter condition will be satisfied with probability one.

Proof. First, let us start with the single cell-edge user case, i.e., K. = 1 and each of S., G and

Q is a vector. In such setting (3.5) reduces to the following

2
. 1 —
min Y Y, q, —gll3 (3.6a)
qd1,92,8 =1
st. |gls=1 (3.6b)

—% %

To solve the above problem, we need to find (q7j, 5, g*) that can together attain a zero-cost. In

other words, we need the following two conditions to be satisfied simultaneously

—T_
Y, q =g (3.7a)
—T_

Y,q, =g (3.7b)

. . — ~ AT~ . . _
Without loss of generality, we can let q, = Ay(A, Ay) " uy, where uy is any vector in R¥e+Ke=Fe,

The reason is that we can always decompose q, into a component in the subspace spanned by
A, and one orthogonal to it. The latter is annihilated anyway after multiplication with A, .

Substituting in (3.7a) and (3.7b) and taking their difference, we obtain
Bu =0, (3.8)

where B = [s.,S,,, Sp,] € RTXK1+K2) and u = [uy(1) — ug(1),u;(2 : end), —uz(2 : end)]” €
RUC1HK2) - wwhere uy (2 : end) is the vector containing all except the first element of u. It can
be easily seen that if B is full column rank, then u = 0, 4 k,)x1 is the only possible solution

of (3.8). This means that u; = uy = ce;, where ¢ is any constant and e; is the first column of
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the identity matrix. Consequently, from (3.7), g* = as./||sc||2, with & = +1, will be the only
possible solution for problem (3.6).

The generalization to K, > 1 now follows naturally. Letting Q, = Kg(KZK@)_lUg, and
defining
U;(1l: K.,:) —Usx(1: K,:)
U:= U;(K.+1:end,:) € RE1TK)xKe
— Usg(K.+1:end,:)

where Uy (1 : K,,:) means rows 1 to K. and all columns of Uy, we obtain
BU =0, (3.9)

and when B is full column rank the solution is unique: U = 0, and therefore U;(1 : K,:) =
Us(l: Ke,:) =P, Uj(K.+1:end,:) =0, Uy(K, +1:end,:) =0, and therefore G* = S.P,
where P is K. x K, non-singular such that the orthonormality constraint (3.5b) is satisfied.
Note that if the signals themselves are (approximately) orthogonal, then P will be orthogonal
as well, which helps with the next (RACMA) stage. |

Remark 3. Theorem 1 provides results for an idealized scenario, where at each BS we ignore
other-cell signals coming from wusers that are not close to the given BS’s cell-edge. This is a
reasonable approximation that we use to prove that the cell-edge signals can be recovered even
when buried under very strong cell-center signals. In other words, Theorem 1 says that if we
have two multi-antenna signal “views” that include very strong but private components (in our
context, the received signals of each group of cell-center users at their serving BS, respectively)
and weak but common components (in our context, the received signals of the cell-edge users
between the two BSs), then CCA will exactly recover the subspace of the common components
irrespective of their relatively low power. We will later present an elegant analysis which shows
that what matters is the power (im)balance: signals received at roughly the same power at the
two BSs are “common” and recovered via CCA, and signals received at high SNR at one BS and
low SNR at the other BS are “private”, and cannot be recovered by CCA.

The next step is to extract the cell-edge user sequences S, from G* = S.P. This problem can
be viewed as a bi-linear factorization of the matrix G* to its factors P and S. under the constraint
that the entries of S. belong to the finite alphabet €2 = £1. This can be mathematically posed

as an optimization problem as follows

min |G* — S.P||% (3.10a)
S..P

s.t. Se(i,j) € Q (3.10Db)
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In [62], van der Veen proposed an algebraic algorithm called Real Analytical Constant Modulus
Algorithm (RACMA) for this problem. RACMA does not claim to optimally solve (3.10),
which is NP-hard even if P is known. Instead, RACMA assumes that noise is small, and
reduces (4.10) to a generalized eigenvalue problem. The solution is subject to sign and user
permutation ambiguity. This means that the original S, can be identified up to permutations
and column-wise (user) scaling by +1. From the practical point of view, each user has its unique
identification sequence, so once the users signals are received correctly each BS can identify each
user signal (and sign) via correlation with the identification sequence.
The following Algorithm describes the two-step procedure for cell-edge users detection via
CCA followed by RACMA.

Algorithm 1 CCA for Cell-Edge User Detection
Input: Y;,Y,

1. Solve problem (3.5) for Q, as explained in Section 2.1
2. Compute Gy = ?Zag e RT*Ke v =1,2
3. Construct G = [G1; Ga] € R?T*Ke and pass it to RACMA

4. Compute the BER of cell-edge users by comparing the output of RACMA with the original

cell-edge user transmitted sequences

Notice that the second step in Algorithm 1 stems out from the fact that the zero-cost solution
of problem (3.5) is not guaranteed in the noisy case, and therefore, ??61 is not equal to ?562
in general. Then, it turns out that feeding RACMA with both ?f@l and ?QTQQ simultaneously
results in much better BER as we will see in Section 3.5.

The overall complexity of the proposed method comes from solving problems (3.5) and (3.10).
Fortunately, similar to (3.5), (3.10) also admits simple algebraic solution via eigenvalue decom-
position [62]. This means that our end-to-end method requires solving two eigenvalue problems,
i.e., the overall complexity is of O(M?), with M = max{M;, My}.

It is important to emphasize that, in the noisy case and under inter-cell interference (i.e.,
users close to base station B can be overheard at base station A), it turns out that our method
can still identify the common subspace, even at low SNR, values. In order to show this, we follow
a very different path from that is described in the proof of Theorem 1.

First, let us define two channel matrices Hy := [Hy., Hyp,, Hip,| € CMix(Ki+K2) and Hy :=
[Ho., Hop, , Hyp, | € CM2x(K1t+K2) where Hy holds in its columns all the channel vectors from

all users to the ¢-th BS, for / = 1,2. Note that one can factor Hy = ZEP;N, where the
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columns of Z, are the channel vectors representing small scale fading between the ¢-th BS and
all users. Accordingly, the diagonal matrix P, incorporates the transmitted power and the

path-loss between each user and the /-th BS. We have the following result.

Proposition 1. In the noisy and inter-cell interference case, if %BTB ~1and Z'Z) ~ 1,
then under certain conditions on the relative SNRs of cell-center and cell-edge users (see the
Appendiz), the optimal solution Q} of problem (3.5) is given by Q; = Z,VM,, where V contains
the first K. columns of an (K1 4+ Ka) x (K1 + K») identity matriz, and My is a K. x K. non-

singular matriz.
Proof. The proof is relegated to Appendix A.1. O

The approximate semi-_L constraint on the matrix B posits that the transmitted sequences
of different users are approximately orthogonal. For binary signals, this occurs with high prob-
ability for large enough T, since the user transmissions are independent. The approximate
orthonormality constraint on Z, requires the number of base station antennas to be greater
than the total number of users assigned to both base stations, and is satisfied if, for example,
the entries of Z, are drawn from an i.i.d. zero-mean complex Gaussian distribution with variance

1/M, (which is often assumed in the case of rich scattering).

Remark 4. Recall that, in Theorem 1 we considered the MAX-VAR formulation in (3.5), and
showed that under certain conditions the optimal solution G* is the subspace containing the cell-
edge user signals. In Proposition 1, however, instead of directly estimating the common subspace,
we will consider the generalized eigenvalue problem in (2.12) to solve for Qj, for £ =1,2. Then,
we will show in Appendiz A.1 that upon applying the resulting Q) to the corresponding received
signals at BS €, we obtain the common subspace corrupted by reduced noise (see (A.17) in
Appendix A.1). It is worth mentioning that when the noise is absent, (A.17) boils down to the

result we have in the Theorem 1.

3.4 Synchronization

In Section 3.3, we proposed a learning-based approach that can identify cell-edge user signals.
However, this was under the assumption that the received signals from both BSs are perfectly
synchronized at the CSPU. One natural question that can be posed is what if there exists a time
delay 74 between Y; and Y, at the CSPU. It turns out that our proposed method not only can
recover cell-edge user signals in the synchronized case, it can even detect the time difference,
T4, between the two signals, re-synchronize the signals and then decode them as explained in
Section 3.3.
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Assume that the CSPU has received two long sequences Y, € R2M1xT apd Y, € RzM?XT,
where T > T, and that the sequence length T is known or has been estimated [68] at the CSPU.
The goal is to find the correct delay between the signals Y,; and Y, so that we can extract
the desired signal Y, from ?g, and then apply Algorithm 1 to identify cell-edge user signals.
Exploiting the fact that communication signals are uncorrelated in time, and thus two copies
of the same signal shifted by even one symbol are already uncorrelated, common user signals
cannot be extracted via CCA if the T symbols are misaligned. The correlation coefficient, p,,,
associated with each pair of canonical directions of Q; and Q, will not be at its maximum in
this case, Vn € {1,--- , K.}. Based on this key observation, we develop a CCA based algorithm
that can re-synchronize and then recover cell-edge user signals.

Define ?1(7'1) = ?1(:,7'1 :T+7 —1)and ?2(7'2) = ?2(:,7'2 : T+ 75 — 1). Furthermore,
let us define a search window of size [wr,, wg| symbols. Upon setting 7 = 1, the CSPU solves
problem (3.5) using the signals Y1(71) and Ya(72) to obtain @ := Qi(:,1) and g} := Q,(:
,1). Then, the CSPU computes and stores the corresponding correlation coefficient p; between
?1T(7'1 )q; and ?5(72)6’2‘. If 5 < wy, increment 75 and repeat, where w, := wg — wr, + 1 is the
window size. Finally, pick the value 75 that gives the highest p;. This procedure is summarized
in Algorithm 2.

Remark 5. Note that as the locations of the T symbols are not generally known, the value of
71 is chosen such that ?1 (11) includes a sufficient part of Y. This is guaranteed with a very
high probability as long as ws << T. One possible choice is to set 1 = f/2 —T/2 so that one

can assure the ezistence of enough samples from all users in Y1(11).

Algorithm 2 CCA SYNC
Input: ?1 € RMlXT, \?2 € RM2xT
Initialization: 7 = T/2 — T/2,7 := 1

while 7 < w, do

Compute pp after solving (3.5) using ?1(7'1) and Yo (12)
Store (72, p1) in a stack

Set 70 :=19 +1
end

Selection: pick the 75 := 75 corresponding to the highest p;.

While Algorithm 2 returns the correct shift, 74 = 75 — 71, between the two sequences, the
common part in both ?(Tl) and ?(7'2*) is not necessarily of length T since 3?(7‘1) may not be
equal to Y. However, from the practical point of view, each user has its own identification

sequence as a preamble, so once we know the correct relative delay, we can run algorithm 1 on
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\?(Tl) and ?(7'2*) , and then simply find the sample index at which Y starts via correlation
with the identification sequence of any of the cell-edge users. It is worth mentioning that
the computational complexity of Algorithm 2 is that of solving for the principal component
(canonical pair) of (3.5) a number of times (equal to the search window). The first canonical

pair can be cheaply computed via a power iteration.

3.5 Experimental Results

To evaluate the performance of our proposed method, we consider a scenario with two hexagonal
cells; each with radius R = 500 meters. Cell edge users are dropped randomly around the
common edge between the two cells, i.e., the locations of cell-edge users were chosen randomly
between 0.95R and 1.05R. On the other hand, cell-center users are randomly dropped within
distance zR from their serving BS, and we vary the value of z to see the effect of inter-cell
interference on the proposed method. The transmitted power f3j; is set to 25 dBm, Vk, j, i.e.,
power control is not employed. Furthermore, the transmitted sequence length T is fixed to 800.
Additive white Gaussian noise is assumed with variance o2 so that the SNR is P./c?, where P, is
the average received power of cell-edge users. This enables us to see what values of SNR should
cell-edge users have to achieve a specific BER. Furthermore, all results are averaged over 1000
channel realizations assuming different user locations in each realization. The uplink channel

response vectors {hy;;} are modeled as

L
1 A
bl =1\ qr S Vada e (3.11)
n=1

where L is the number of paths between the ¢-th BS and the k-th user in cell j, V{/,j} €
{1,2} and k € {1,---,K;}. We use the path-loss model of the urban macro (UMa) scenario
from the 3GPP 38.901 standard to compute the complex path gain 041(32])'7 vn, t, j, k. Cell-center
users were allowed to have a line of sight (LOS) path according to the LOS probability in the
3GPP 38.901 standard, however, all cell-edge users were non-LOS. The term a,(.) is the array
response vector at the BS, and (") ~ U[—7, 7] denotes the azimuth angle of arrival of the n-th

path. Assuming the BS is equipped with a uniform linear array, then

ikdcos(0) .
)

a,(0) = [1,exp ,expiRd(M—1) cos(6)] (3.12)

where k = 27/, X is the carrier wavelength and d = /2 is the spacing between antenna
elements.
In order to benchmark the performance of our proposed method, we adopted three base-

lines. First, we implemented zero-forcing successive interference cancellation (ZF-SIC) where
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the channels of the cell-center users were assumed to be perfectly known at their serving BSs.
Specifically, each BS decodes its cell-center users signals using ZF, encodes them again and then
subtracts them from its received signal. Afterwards, the residual signal from each BS will be
passed to RACMA [62] in order to identify cell-edge user signals. Finally, the bit error rate
(BER) of the cell-edge users is computed at both BSs and the best of the two BERs is reported.
Furthermore, in order to guarantee fairness, since we have assumed joint processing of the BSs
received signals, both residual signals from both BSs are further sent simultaneously to RACMA
and the resulting BER (from RACMA with “double measurements”) is also reported. Second,
we estimated the channels of cell-center users and cell-edge users via transmitting orthogonal
pilot sequences of length 300 each, then we used a ZF detector at each BS and reported the
best of the two BERs computed at the two BSs. Third, we implemented maximum likelihood
successive interference cancellation (ML-SIC) to decode and subtract cell-center users signals as-
suming perfect knowledge of their channels at their serving BS. However, since in the worst-case
the ML detector requires enumeration over all possible sequences of cell-center users, we only
used this baseline when the number of cell-center users is small. The CCA approach (first stage)
was implemented in MATLAB, while the MATLAB codes written by A.-J. van der Veen [62]
were utilized for the RACMA (second stage) implementation.

In a preliminary experiment, we consider a scenario with K1 = Ky = 8, M; = My = 10,
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K. = 2 and cell-center users are dropped randomly up to distance zR, with z = 0.3. The
numerical results for BER versus SNR of the cell-edge users is shown in Figure 3.2. It is obvious
that our method significantly outperforms ZF-SIC and ML-SIC which assume perfect CSI of the
cell-center users, whereas our method does not. For instance, more than one order of magnitude
improvement using our CCA-RACMA method is observed at SNR= 6dB. Furthermore, the bad
performance of ZF with channel estimation reflects how the inaccurate channel estimates of
cell-edge users severely degrade their detection performance.

In order to see the effect of increasing the number of antennas on the performance of the
proposed method, we considered the same setting of the previous experiment, however, we
increased the number of antennas at each base station to 20, i.e., M7 = My = 20. Figure 3.3
shows that doubling the number of antennas at each base station improves the BER of cell-edge
users obtained by all methods. However, a significant improvement gap in the BER obtained by
our “blind” method is observed compared to that of ZF-SIC and ML-SIC. For instance, while
ZF-SIC achieves an order of magnitude reduction in BER with M = 20, CCA-RACMA attains
more than three orders of magnitudes improvement in BER at SNR = 5dB. Furthermore,
Figure 3.3 shows that our approach does yield measurable BER when the SNR of cell-edge users
exceeds 5dB. The reason is that CCA can aggressively suppress the inter-cell interference when

the number of antennas exceeds the total number of users, as explained in Appendix A.1.
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To test the effect of inter-cell interference, we vary the locations of cell-center users in their
cell from 0.1R to 0.8R, and for each setting we measure the BER attained by all methods at
SNR = 5dB. Figure 3.4 demonstrates that the proposed CCA-RACMA approach still exhibits
a favorable performance relative to that of ZF-SIC and ML-SIC. In particular, two orders of
magnitude increase in the BER attained by ZF-SIC and ML-SIC is observed when the cell-center
users are spread up to 0.8R compared to 0.1R from their serving BS, however, a very slight
degradation in the performance of CCA-RACMA is observed, even for high spreads. Notice
that, while the two baselines assume perfect knowledge of the cell-center user channels, this
assumption becomes less realistic when “cell-center” users are in fact fully scattered throughout
the cell. This therefore give a big advantage to the baselines over our method; notwithstanding,
our method still works the best, even in this case.

We now consider another experiment with M; = M, = 30, K. = 2 and SNR = 5dB.
Assuming fixed user positions, we vary the number of cell-center users in each cell from 20 to 8,
and for each given number of cell-center users we compute the BER of cell-edge users. In this
experiment, all cell-center users are randomly dropped up to distance 0.5R from their serving
BS. In Figure 3.5, we observe that our proposed blind method can attain BER that is below the
detectable threshold for this simulation when the number of cell-center users per cell is less than
16 while the ZF-SIC detector is severely affected by the cancellation errors from cell-center users.
This shows how the proposed approach can handle dense scenarios, and hence, it is expected to
work well in the case of multiple BSs (more than two).

We next consider M7 = My = M = 25, K1 = Ky = 15, Ke = 3 and cell-center users are
randomly located at distance less than 0.8 R from their serving BS. As shown in Figure 3.6, jointly
injecting more users (cell-center and cell-edge) and allowing them to be more spread, yields a
noticeable degradation in the BER of cell-edge users achieved by all methods. This makes sense
because, for ZF-SIC, there exists a higher chance that the detection performance of some cell-
center users will be affected by the interference of cell-edge users resulting in cancellation errors
from SIC. On the other hand, our method also exhibits some degradation in the performance
because adding more users creates more intercell interference that can contaminate the common
subspace estimated by CCA. However, our approach can still achieve much better performance
to that obtained by ZF-SIC with perfect cell-center CSI. For example, our method still has more
than an order of magnitude lower BER at different SNR values.

We further simulate the previous scenario with double the number of antennas at each base
station. As Figure 3.7 depicts, doubling the number of antennas at each base station yields an
order of magnitude improvement in the BER of our method, while only slightly improving the
BER of ZF-SIC.

Finally, to show how CCA can still detect cell-edge user signals even when the received
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signals at the two BSs are not perfectly synchronized, we consider a scenario with K; = Ko = 8§,
My, = My = 10, K, = 2, SNR = 3dB, T' = 800 and cell-center users are dropped randomly
up to distance 0.5R, and we assume that the received signal at the ¢-th BS is S?g € RMexT
, where T was set to 830. Then, we applied Algorithm 2 on ?1 and ?2, and observed the
correlation coefficient of the first pair-wise canonical components as a function of the relative
shift. Figure 3.8 shows how CCA can clearly identify the correct delay, and hence, detect cell-
edge user signals as explained before. Clearly when the BS signals are not synchronized, there
is no meaningful common subspace — even the first pair of canonical components exhibits low
correlation. When we hit the correct delay, on the other hand, there are common components

and the correlation coefficient p; is very high, as shown in Figure 3.8.

3.6 Summary

This chapter has considered cell-edge user signal detection in the uplink of a multi-cell multi-
user MIMO system. The goal is to design a detector that can reliably demodulate cell-edge
user signals in the presence of strong intra-cell interference from users close to the base station,
without resorting to power control or scheduling algorithms that throttle the cell-center user
rates. We have proposed a two-stage approach that leverages base stations cooperation to
reliably identify cell-edge user signals at low SNR, without even knowing their channels. First,

two-view CCA was brought in to estimate the subspace containing the cell-edge user signals
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Figure 3.8: Correlation coefficient of the first pair-wise canonical component p; vs. delay.

shared by both base stations under the assumption that BS signals are synchronized. Then, an
efficient analytical method called RACMA that guarantees the identifiability of binary signals
from well-conditioned mixtures was utilized to extract the cell-edge user signals from the resulted
mixture. We presented theoretical analysis of common subspace identifiability, in both ideal and
realistic scenarios that include noise and inter-cell interference.

Furthermore, we developed an algorithm that can identify cell-edge user signals in the case
when BS signals are not fully synchronized at the CSPU. Extensive simulations using a realistic
path-loss model were carried out to show the superiority of the proposed learning-based method.
It was shown that our blind CCA method achieves more than an order of magnitude improvement
in the cell-edge user BER compared to the ‘oracle’ zero forcing and maximum likelihood cell-
center multiuser detection followed by interference cancellation of the cell-center users before

detecting the cell-edge users.



Chapter 4

Selective Cooperation for
Cell-edge Detection: Does
Adding Base Stations help?

4.1 Multi-cell Detection

In Chapter 3, we have showed the potential of CCA in handling the cell-edge problem in a setup
with two BSs. Considering the general setting case with several BSs (more than two) indeed
complicates the cell-edge problem, and makes cell-edge detection much more challenging due
to the deleterious impact of inter- and intra-cell interference. Even with advanced technologies
such as multiple-input-multiple-output (MIMO) and orthogonal frequency division multiplexing
(OFDM) [69, 70] in place, nomadic users who are close to the cell edge are still prone to suffer
from significant performance degradation especially in dense networks with large number of BSs
and users [71,72].

In this chapter, we will present an unsupervised learning-based method that leverages se-
lective base station cooperation to recover cell-edge users signals at low SNR subject to strong
inter- and intra-cell interference. Relying on fact that cell-edge users are located at approxi-
mately equal distances from different base stations, and hence their received signals are weak
but common (meaning: they are received at low but roughly equal power at different base sta-
tions), it shows that reliable detection is possible via (generalized) canonical correlation analysis
(G)CCA [73] under mild conditions.

While base station cooperation [74] has been considered before for several tasks such as

28
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coordinated power control [75], coordinated scheduling [76], and inter-cell interference mitiga-
tion [77], cooperation here is utilized for a completely different purpose: as a means for cell-edge
user detection, via GCCA.

Our contributions are as follows:

e We extend our previous work [14], which proposed using classical two-view CCA to detect
cell-edge user signals in a cellular network with two cells, to the more general setting. That
is, we consider a scenario with L cells / views (L > 2) which involves GCCA [17,78] as op-
posed to CCA for L = 2. We propose a two-stage approach that uses cooperation to jointly
detect cell-edge users signals without prior knowledge of their channel state information.
In particular, we first consider the so-called MAXVAR formulation of GCCA [17], and
show that it yields the range space of the cell-edge user signals. We present identifiability
conditions under which the common subspace can be recovered. While identifiability con-
ditions for the common subspace of two views have been obtained in [14], the conditions we
provide here for the general case are more relaxed. Upon identifying the subspace compris-
ing the cell-edge users signals via GCCA, we utilize the (R)ACMA [62] algorithm, which
exploits the finite alphabet constraint of the user transmitted signals to retrieve the origi-
nal cell-edge user signals from the resulting mixture. Fortunately, both MAXVAR GCCA
and RACMA admit relatively simple algebraic solution via eigenvalue decomposition. This
renders our approach computationally favorable in practice, because the proposed method
for solving the cell-edge problem is tantamount to solving two eigenvalue decomposition

problems.

e We present an insightful theoretical analysis which shows that GCCA can reliably estimate
the common subspace in the presence of thermal noise and cross interference from users

in adjacent cells, under realistic assumptions on the SNR of the different users.

e We provide a GGCA strategy that can be used to classify users as cell-edge or cell-center,

thereby determining the correct dimension of the common subspace.

e To showcase the effectiveness of our proposed method for cell-edge user detection, we
provide a comprehensive suite of simulations that employs a realistic path-loss model from
the 3GPP 38.901 standard. Experiments reveal that our approach attains a considerable
improvement in the BER at low SNR under realistic levels of inter-cell interference and
dense scenarios with a large number of cell-center users. We compare our proposed method
with our previous CCA-based one and different multi-user detection techniques including
ZF-SIC and MMSE-SIC which assume perfect knowledge of the cell-center user channels.
We show that the proposed GCCA method achieves significant reduction in the BER

compared to all baselines. Moreover, our simulations show that using GCCA with the
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Figure 4.1: System model.

three closest BSs always yields the best detection performance for the cell-edge users.
That is, not only does using the three closest BSs always improves the results of using the
two closest BSs; but also that using more than the three closest BSs never helps — neither

of which was obvious a priori.

The outline of this chapter is as follows. Section 4.2 defines the problem statement and
highlights the major limitations of the prior cell-edge user detection methods. The proposed
detector and the main results are presented in Section 4.3. Then, numerical simulations are

provided in Section 4.4. Conclusions are drawn in Section 4.5.

4.2 System Model

Consider an uplink transmission scenario in a cellular network with L regular hexagonal cells
— each cell has a base station (BS) located at its center, as shown in Fig. 4.1. The ¢-th BS is
equipped with M, antennas, and serves K, single-antenna users. Let K., denote the number of
cell-edge users served by the ¢-th BS, with K., < K,V ¢ € L :={1,---,L}. The uplink channel
vector representing the small-scale fading between the k-th user located in the j-th cell and the
(-th BS is given by zg; € CM¢. The entries of zg; are independent identically distributed (i.i.d.)
complex Gaussian random variables with zero mean and variance 1/M,. This corresponds to a
favorable propagation medium with rich scattering. The coefficient that accounts for the signal
attenuation due to distance (path-loss) between the ¢-th BS and the k-th user in the j-th cell is

given by ayy; € R. Accordingly, the overall uplink channel vector is given by

hyp; = \/Qurjzer;, (4.1)

Throughout this chapter, we assume that the channel vectors are not known a priori at the BSs.
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4.2.1 Uplink Transmission

The considered users in the system are assumed to be allocated the same time-frequency resource.
Also, assume that all user transmissions are heard at all BSs, thereby introducing both intra- and
inter-cell interference at each BS. Also, all user transmissions are assumed to be synchronized
at the BSs (this assumption can be lifted; see below and in [14]). Define xx; € CV as the vector
transmitted by the k-th user in the j-th cell. The received signal, Y, € CM¢XN " at the ¢-th BS

is given by
L Kj
Yo=Y /Prhegxt; + Ny, (4.2)
j=1k=1

where hy; is the uplink channel response vector as defined in (4.1), pg; is the transmitted
signal power of the k-th user in the j-th cell. The term N, € CM¢*N contains i.i.d. entries
with zero mean and variance o2?/N, i.e., E[N;N| = 02I. Throughout this work, we assume
that neither scheduling algorithms nor power control is employed. In other words, all users
are always active, and all users are assigned the same transmission power, i.e., px; = p,V k, j.
Scheduling and power control algorithms can still be employed on top of the proposed framework
for additional traffic shaping and other system considerations.

We assume that all BSs are connected to a remote radio head (RRH) via backhaul links
which can be either microwave links or high speed optical fiber cables [74]. Each BS forwards its
received signal to the RRH. Although base station cooperation has been considered in several
earlier papers [75-77], it is adopted here for an entirely different purpose. That is, we exploit
the joint processing of the BS signals at the RRH to provide reliable detection of cell-edge users
whose signals are received at low SNR without knowledge of any of the user channels. One key
challenge for all the BS cooperation techniques in the literature is time synchronization [74] of
the received signal at the RRH. Even though all prior works assumed perfect synchronization at
the RRH [72], we developed a low-complexity CCA-based algorithm that can handle (lack of)

synchronization for two BSs [14], and can be easily modified to deal with the multi-cell case.

4.2.2 Prior Art: Limitations

We now provide a brief discussion of the limitations of the prior art used to detect cell-edge user

signals. To this end, it is convenient to write (4.2) as

L
Yo =Hy, X] + Hee, XT + ) H X7 + Ny, (4.3)

A
where we collect the transmitted signals of the cell-center users and the cell-edge users served
by the /-th BS in the matrices X,, € RNV*(Ke=Key) and X., € RV*Ee respectively, and the
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transmitted signals by the users served by the j-th BS in X; € R¥*¥i. Further, the matrices
Hy,, € CMex(Ke—Key) Hy., € CM*Ker and Hy; € CMeXKi hold on their columns the respective
channel vectors. Note that we absorbed the transmitted signal power p of each user in its channel
vectors.

The goal is to recover the cell-edge user signals, X.,, from the received signal Y,. The tradi-
tional approach to recover X, is to first estimate all user channels via transmitting orthogonal
pilots, and then employ the ZF or MMSE detector to decode cell-edge user signals using their
estimated channel. This approach usually fails to provide reasonable performance due to the
effect of intra-cell interference (transmissions of strong cell-center users), the effect of inter-cell
interference (transmissions from users in other cells) and noise. The signals of cell-edge users are
consequently received at very low signal to interference plus noise ratio (SINR), which causes
high uncertainty in their channel estimates, which in turn seriously degrades their detection
performance. One workaround is to use ZF or MMSE followed by successive interference can-
cellation to decode and subtract the cell-center user signals, thereby mitigating / eliminating
the intra-cell interference effect. While this approach can slightly improve the detection perfor-
mance, the inter-cell interference and channel estimation errors still cause severe performance
degradation.

Another potential solution that mitigates the inter-cell interference effect [79], and can in-
deed enhance the detection of such users, is to use power control and/or scheduling algorithms
together with BS cooperation techniques [80]. However, this comes at the expense of throttling
the transmission of cell center users, and hence, it also severely degrades the overall system
throughput.

In the forthcoming section, we will present a two-stage learning-based approach that leverages
BS cooperation to reliably identify cell-edge user signals without knowing their channels, and

without resorting to either power control or scheduling.

4.3 Proposed Detector and Identifiability Analysis

The cell-edge users are located far but at roughly equal distances from different BSs. In other
words, if we use the distance-power relationship, their received signals are weak but common
to multiple BSs, i.e., their signals are received at relatively equal power at different BSs. We
will show how GCCA can efficiently recover the cell-edge users’ signal range space at low SNR,
even if they are buried under strong intra- and inter-cell interference. Notice that, owing to
the broadcast nature of the wireless medium, all user transmissions are (over)heard, albeit
weakly, at all BSs. Hence all user signals are, in principle, common. However, we use the

phrases “common” for cell-edge users versus “private” for cell-center users to reflect the power
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(im)balance of different users. That is, cell-center users signals are received at very high SNR,
e.g., [20,30] dB, at their serving BS, and very low SNR, eg. [~10,—30] dB at non-serving BSs.
On the other hand, cell-edge user signals are received at low but roughly equal SNR, e.g., [3, 5]
dB at multiple BSs.

From the geometry of the hexagonal cells shown in Fig. 4.1, one can argue that a user can
be common to two or three BSs, i.e., it can be located at relatively equal distance from two or
three BSs. For example, a user located on the left corner of the common edge between the top
and bottom cells in Fig. 4.1 is common to the BSs in these two cells and the one on the left.
Based on this fact, we will design a detector that can recover cell-edge user transmitted signals
from the signal received at three BSs. The case of more than three will also be considered in

the simulations section.

Remark 6. It is worth pointing out that we have only considered the uniformally hexagonal cells
architecture and the roughly-equidistant assumption of cell-edge users for the ease of exposition.
We only need the relative delays of the different users to be the same at each of the L=3 BSs
(so that the associated views contain the same cell-edge subspace) and the received SNRs for the
cell-edge users to be at least a few dB above the noise floor. The latter typically holds even when
shadowing is considered. Being approzimately equidistant from the 3 BSs is one reasonable way
to motivate these assumptions, but it is not the only one (e.g., small cells and per-subcarrier
processing). Furthermore, while with shadowing coefficients the received SNR at the different
views will not be balanced, our approach does not necessarily require the received SNR to be fully

balanced at the different views, as we will see in the simulations.

We will first consider the noiseless case to find the identifiability conditions required to recover
the cell-edge user signals. Identifiability is very important as it provides sufficient conditions
under which the recovery of the cell-edge user signals via (G)CCA is guaranteed under ideal
(noiseless) conditions. Whereas we have derived identifiability conditions in the case of two
BSs [14], it turns out that the conditions for three BSs are more relaxed (details will be provided

in the next subsection).

4.3.1 Noiseless Case

Let K, = Z]L:l K., denote the total number of cell-edge users. Assume that all cell-edge users
are located around the intersection point of the three hexagonal cells. Thus equation (4.3), with

L = 3, can be rewritten as

L
Y, = Hy, XD+ HeXE + Y Hyy XE 4+ N, (4.4)
A
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where the subscripts ‘py‘ and ‘¢ stand for private to the /-th BS and common to all base stations,
respectively. The matrices X, € RV*¢ and Xy, € RV *(Ki=Ke;) 161d the transmitted signals of
the cell-edge users and cell-center users in the j-th cell, respectively. Accordingly, Hy. € CMexKe
and Hyp, € CMex(Ki=Ke;) 1161d on their columns the corresponding channel vectors. Further,
we define E, := Z]L 0 ng.X;prj + Ny to denote the summation of inter-cell interference and

J

noise at the ¢-th BS. Thus, (4.4) can be rewritten as
Y, = Hy, X, + Hp X!+ Ey, (4.5)

Our goal now is to recover the cell-edge user signals X, given {Y,}£,. Recall that the
MAXVAR GCCA formulation in the complex domain can be expressed as,

L
min IYEQ, - G|? (4.6a)
{Ql}%:])G ; ¢ F
st. GHG =1 (4.6b)

We will start by showing how the solution of the MAXVAR GCCA formulation (4.6) is re-
lated to the column space of the cell-edge user signals, and then we will explain how the

original signals can be recovered from the given solution. Upon defining the matrix V() €

(L-DNX(L-DKet 3 (K-K.,))
=1 as follows,

Xp1 X Xpo

v — |

Xpl _Xc XpL

we have the following result.

Theorem 2. In the case where E; = 0, if the matric Wy := [Hye,Hyp,] € CMex(KetKe—Ke,)

(L—1)Nx ((L—l)Kchli (K—Ke,))
=1

and the matriz V&) e C are full column rank, then the optimal

solution G* of problem (4.6) is given by G* = X F, where F is a K. x K. non-singular matriz.
Proof. See [24] which offers a comprehensive identifiability analysis of GCCA for general L. O

Remark 7. The full column rank condition on W requires that: i) the number of antennas at
each base station is greater than or equal to the number of users assigned to that base station,
plus any cell-edge users associated with the other two base stations; and i) the channel vectors of
different users to be linearly independent. The first requirement is supported by massive MIMO
technology that aims at equipping the base station with hundreds of antennas [81]. Further,

because the user channel vectors can be assumed to be drawn from an absolutely continuous
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distribution (see (4.1)), the latter condition is satisfied with probability one. The full column

rank condition on V is related to the number of samples N required to guarantee recovery. For
L = 3, we need: i) the number of samples to be at least equal to the total number of cell-edge
users plus one half the total number of cell-center users served by the three BSs; and ii) the
transmitted sequences of different users to be linearly independent. For finite alphabets, the two
conditions are satisfied with very high probability for modest N, as the user transmissions are
statistically independent. In addition, it can be easily seen that the requirement on the number
of samples N becomes less restrictive for L > 2 compared to the earlier results presented in

Chapter 3 for the two-view case.

Theorem 2 asserts that in an ideal scenario where the effect of inter-cell interference and
thermal noise is negligible compared to the intra-cell interference, GCCA successfully recovers
the subspace spanned by the cell-edge users signals, under mild conditions. We point out that
such a scenario can arise in practice, especially if all cell-center users are close to their serving
BS. An interpretation of the statement of Theorem 2 is that if there exist several spatio-temporal
signal views that contain very strong but different components (in our case here arising from
the transmissions of each group of cell-center users) and very weak but common components (in
our case here the received cell-edge user signals), then GCCA recovers the common components
range space irrespective of the power of the individual components.

However, in practical deployment scenarios we cannot guarantee the above idealized as-
sumptions. One of the main contributions of this paper is that it offers an analysis of GCCA

performance in a realistic scenario with inter-cell interference and noise. This is coming up next.

4.3.2 Noisy Case

We now provide analysis showing how cell-edge users signals can be identified when E, #
0. In particular, we show that the signal subspace recovered by identifying the K. principal
eigenvectors of A is indeed containing the cell-edge user transmitted messages. As shown earlier,
this is equivalent to solving the MAXVAR GCCA problem.

Upon defining K, = Ele Ky, let us write (4.4) in a more compact form as
Y, =HX" + Ny, (4.7)

where Hy = [Hye,Hyp,, -+, Hyp, | € CMOEs land X = [X., X,,, -+, X, ] € CV*ES. Further,
we can use (4.1) to factor H, = ZgPé/Q, where the columns of Z, are the channel vectors
representing small scale fading between the k-th user and the ¢-th BS, for k € K :={1,--- , K,}.
Accordingly, each entry of the diagonal matrix P, represents the corresponding received signal

power that incorporates the transmitted power and the path-loss between each user and the ¢-th
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BS. Thus, (4.7) can be equivalently written as

Y, = Z,P,*X" + N, (4.8)

Assumption 1 (AS1). Assume that the matrices Z, and C := X/v/N are approzimately or-
thonormal, i.e., ZHZ, ~ 1y, for all £ € [L] and CHC ~ Ik, .

Remark 8. Recall that the matrices Zy contain i.i.d entries with zero mean and variance 1/M,,
and hence, the approximate orthonormality assumption on Zy requires the number of base station
antennas to be greater than the total number of users assigned to all base stations, and large
enough for the sample average (inner product of different columns) to be close to the ensem-
ble average (0). This requirement on the number of antennas is supported by massive MIMO
technology that aims at equipping base stations with hundreds of antennas. On the other hand,
the approxzimate orthonormality of C requires the sequence length to be greater than the total
number of users and the columns of C to be linearly independent. For finite alphabets, the latter

condition is satisfied with very high probability for modest N.

Let yx¢ denote the received SNR of the k-th user at the ¢-th BS. Then, we define ry, as

e ——
YR

for all k € Ky and £ € [L]. For any user k, the multi-view correlation measure 7y is defined as

N 1= Zle rre. We will make use of the following assumption on the cell-edge users.
Assumption 2 (AS2). For any cell-edge user i and cell-center user j, 1; > 1;.

Remark 9. Empirically, the relation between the average received power P, and the distance
is determined by the expression P, oc d=* where d and X\ denote the distance and the path loss
exponent, respectively. The noise power at the receiver is given by o2. Then, the value of rie as

function of the distance between the user and the BS (dy¢) is given by

- (die)
(

—dkz)_’\ oy (4.9)

where ¢ is constant that depends on the communication medium and the antenna characteristics.
This function exhibits a sharp phase transition which means that the ratio ;¢ for cell-center users
at other cells is almost zero if they are dropped up to certain distance from their serving BS such
that their received SNR at their non-serving BSs is a few dBs below zero, while all the ratios rip
for cell-edge users at their adjacent BSs is close to one if their received SNR at those BSs is a

few dBs above zero.

Our main result is the following:
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Proposition 2. In the presence of inter-cell interference and additive noise, under assumptions
(AS1) and (AS2), the optimal solution G* of problem (4.6) is given by G* = X P where P is

any K. x K. non-singular matriz.
Proof. The proof is relegated to the Appendix A.2. O

We have thus showed that MAXVAR GCCA identifies the range space of the cell-edge
users signals, under realistic conditions. We will next show how the original signals X, can be

unraveled from their range space, by exploiting their constellation/modulation structure.

4.3.3 ACMA Stage

Given the subspace G*, the problem of recovering the user signals X, can then be posed as
in |G* — X F|% 4.1

Inin || I (4.10a)

st X.(i,5) € Q, (4.10Db)

where X,.(4, j) represents the (7, j)-th entry of the matrix X, fori =1,--- ,Nandj=1,--- , K;.
Although problem (4.10) is known to be NP-Hard even if F is known, the Analytical Constant
Modulus Algorithm (ACMA) developed by van der Veen [82] provides a good algebraic solution
which comes with certain identifiability guarantees. In particular, ACMA transforms (4.10) to
a generalized eigenvalue problem. While the obtained solution is subject to both phase and
permutation ambiguities, both of them can be resolved in practice by simply matching the
preamble of each estimated signal with the identification sequence that is known a priori at the
serving BS.

It is worth emphasizing that the proposed end-to-end detector of the cell-edge user signals
only requires solving two generalized eigenvalue problems. Therefore, the overall computational
complexity of our proposed method is dominated by the complexity of solving two generalized
eigenvalue problems. This renders our approach favorable for practical implementation.

We also point out that our proposed method works for any modulation scheme and even
for analog signals. It is obvious that GCCA (first stage) can identify the common subspace
irrespective of the modulation of the cell-edge user signals. The second stage exploits knowledge
of the modulation to unravel the constituent signals from their range space. ACMA [82], for
instance, deals with constant modulus communication signals such as higher-order PSK, QPSK
or even analog phase or frequency-modulated signals. For binary signals (BPSK), the so-called
real ACMA (RACMA) [62] can be used to recover the user signals. Furthermore, algorithms
such as SIC-ILS [83] or the approach in [24] can be utilized for higher-order QAM — SIC-ILS

can also exploit Forward Error Control (FEC) codes to further improve the decoding accuracy.
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We assume that the cell-edge users employ BPSK, QPSK, and 8PSK modulation, and hence,

as we will see in the simulations, we use either RACMA [62] to recover the BPSK signals or
ACMA [82] for QPSK and 8PSK modulation. Recall that the received signals of the cell-edge

users are naturally weak, hence these users will typically employ low-order modulation.

4.3.4 Choosing the common subspace dimension

Recall that in our analysis in the Appendix A.2, in order to differentiate between cell-center users
and cell-edge users, we assumed that cell-center users are dropped up to certain distance from
their serving BS (see Remark 8). However, if all users are randomly dropped throughout the cells,
then it is not obvious how to differentiate if a user has to be treated as a cell-center or a cell-edge
user. In other words, how to determine the common subspace dimension if the cell-center users
are fully scattered within their cell. Note that underestimating the common subspace dimension
can naturally lead to a performance degradation as we will see in the simulation section. To
overcome such an issue, we propose a GCCA-based algorithm that can accurately estimate the
number of cell-edge users (common subspace dimension), and hence, we can classify whether a
user is cell-center or cell-edge.

Exploiting the fact that a component that is common to three views should also be common
to each pair of the three views, the common subspace dimension can be accurately estimated
via checking the mean of correlation coefficients computed from the canonical components of
each pair. Recall that K. < min{2M,, N}, where K, is the number of canonical pairs that can
be extracted using GCCA. Upon solving problem (4.6) and obtaining the solutions {Qj }3_,, we

define the i-th correlation coefficient between views j and ¢ as [24],
o = Re{QF ()Y Y Q; ()} (4.11)

Ve,j€[L]and j > ¢ and i€ {1, ---,K.}. Afterwards, we compute the i-th average correlation
coefficient as pg% = %(pgg) + pgg) + pgg))7 Then, we decide that the n-th canonical components
(Q1(:,7), Q2(:,1), Qs(:, 1)) extract a common signal if pgi,)g is greater than a certain threshold —
a reasonable choice of pyy, is 0.5.

It is worth emphasizing that the proposed GCCA approach requires solving a generalized
eigenvalue problem which naturally yields min{M,, T} canonical vectors. Once these vectors
are obtained, we use our proposed method to estimate the exact number of relevant canonical
vectors, i.e., number of cell-edge users K., which will be later used to recover the common

subspace from the data matrices {Y,}7_;.
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4.4 Numerical Results

In this section, we use realistic numerical simulations to assess the performance of the proposed
GCCA approach. We consider a scenario with I = 4 hexagonal cells, each of radius R = 600
meters. The locations of cell-center users served by each BS are drawn uniformly at random
within a distance less than d = 0.4R from their serving BS, unless stated otherwise. Cell-edge
users, on the other hand, are located around the edges between base stations at distance between
0.95R and 1.05R. Fig. 4.2 shows one simulated scenario where cell-center users and cell-edge
users are colored in red and green triangles, respectively. The transmitted power of all users was
set to 25 dBm while the transmitted sequence length N was fixed to 800. We assume BPSK
modulation for all the users, unless stated otherwise. All results were averaged over 500 Monte
Carlo trials. Additive white Gaussian noise was used with variance o2 so that the SNR is P, /o2,
where P, is the average received power of cell-edge users. In fact, this enables us to evaluate
SNR values required for cell-edge users to achieve a specific BER. The uplink channel between
the k-th user in the j-th cell and the /-th BS is modeled as

N,
1 - n n
hik; = \/ 77 2 Vamarl (@), (4.12)
n=1

where N, is the number of paths between the ¢-th BS and the k-th user in cell j, V{¢,j} € £

and k € [K,]. To compute the path gain, a%)

> We use the path-loss model of the urban macro
(UMa) scenario from Table 7.4.1 — 1 in the 3GPP 38.901 standard, with the carrier frequency
set to 2 GHz, Vn, ¥, j, k. Furthermore, all cell-center users are allowed to possibly have a line
of sight (LOS) component to their serving BS according to the LOS probability expression for
the UMa scenario in Table 7.4.2 — 1 in the 3GPP 38.901 standard; however, all cell-edge users
have only non-LOS components. The term a,(.) is the array response vector at the BS, and
¢,(€n) ~ U[—m, 7] denotes the azimuth angle of arrival of the n-th path associated with the k-th
user. Assuming the BS is equipped with a uniform linear array with omni-directional antenna

elements stretched over the vertical direction, then
ar(¢) — [1, 6ikdcos(¢), e 6ikd(M—l) cos(q&)]T, (413)

where i = /-1, k = 27/A, A is the carrier wavelength and d = A/2 is the spacing between
antenna elements.
To assess the efficacy of our approach, we implement the following approaches and use them

as performance baselines.

e MMSE / ZF with channel estimation: the channels of all users are estimated via

transmitting sequences of orthogonal pilots with length of 250 each. Then, both the MMSE
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Figure 4.2: Snapshot from the simulated scenario.

and ZF detectors are employed to decode the cell-edge user signals using their estimated

channels.

e MMSE / ZF SIC (R)ACMA with channel estimation: the channels of the cell-
center users associated with each BS are estimated first. Then, we use both the ZF-SIC
and MMSE-SIC detectors to decode, and then subtract the re-encoded signals of the cell-
center users at their serving BS. Afterwards, we apply (R)ACMA [62,82] on the residual
signal to recover the cell-edge user signals. To guarantee fairness, since we assume BS

cooperation, we feed (R)ACMA with the residual signals from all BSs simultaneously.

e MMSE / ZF SIC (R)ACMA Perfect: similar to the previous baseline but with perfect

knowledge of the cell-center user channels at their serving BS.

e CCA (R)ACMA combined: we use CCA to recover the range space of the cell-edge
users from the nearest two BSs [14]. Then, we apply (R)ACMA to recover the cell-edge

user signals from the resulting subspace.

In the first experiment, we consider a setup with M, = 12 antennas and K, = 8 single
transmit antenna users, V ¢ € L. Considering the scenario shown in Fig. 4.2, we varied the
x-location of one cell-edge user on the black edge between BS1 and BS2 from x = —R to x = R,
while the locations of all other users are kept fixed during the experiment. At each value of z,
we report the BER of the proposed GCCA approach using the three closest BSs, GCCA using
all BSs, CCA using the closest two BSs and ZF-SIC RACMA with perfect cell-center users
channels using the best BS. Note that when the user is located at x = —R/2, its received SNR
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Figure 4.3: BER vs. cell-edge user location: GCCA using 3 closest BSs is always better.

is approximately equal to 3dB at BSs 1,2 and 3, according to our adopted path-loss model. As
the user’s location shifts towards the center (x = 0) of the black edge, its received SNR increases
(as path-loss decreases) at BSs 1, 2, and 4 while it decreases at BS 3. When this user passes the
center of the edge, the received SNR decreases again at BSs 1 and 2. On the other hand, when
the user’s location changes towards the very left corner of the black edge (x = —R), its received
SNR automatically increases at BS 3, while it decreases at BSs 1,2, 4.

As Fig. 4.3 depicts, when the user is located at x = —R/2 (the user is at relatively equal
distance from three BSs), the proposed GCCA using the three left BSs (1, 2, and 3) attains the
minimum BER compared to GCCA using all BSs, CCA using the two closest BSs and ZF-SIC
using the best BS. Similarly, when the user is located at = R/2, the joint detection using the
three BSs 1, 2, and 4 gives the best performance. When the user is close to x = +R/2, GCCA
using the three nearest BSs attains more than order of magnitude reduction in the BER relative
to CCA RACMA and much more relative to ZF-SIC RACMA.

On the other hand, as the location of the user moves towards the center of the cell-edge
(x = 0), the detection performance of CCA using the two BSs 1, 2 improves gradually until
it reaches its best at the origin (minimum path-loss and maximum received SNR), and then it
decreases again as shown in Fig. 4.3. This happens as the received SNR of the user’s signal
at BS 1 and BS 2 becomes higher, and considerable discrepancy becomes evident between the
received SNR at BSs 1 and 2 and at BS 3. Note that GCCA using the best three BSs always
yields the minimum BER when the user’s location is in the interval [-R/2,R/2].

When the cell-edge user location becomes close to either BS 3 or BS 4, i.e., x =~ =R, Fig. 4.3
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Figure 4.4: Snapshot from the three BSs simulated scenario.

shows that using ZF-SIC RACMA at the nearest BS achieves the best detection performance
among all other methods that use joint detection. This can be attributed to the fact that this
user is no longer a “common” user - there is a large discrepancy among the received SNR at
BS 3 (very high) and at BSs 1,2, and 4 (very low), and hence, the power imbalance severely
affects the detection performance of the (G)CCA based approaches. This observation suggests
that depending on the user’s type (center or edge), one should use either the closest BS or the
three nearest BSs to detect the user. In other words, if a user is relatively close to any BS, then
this user’s signal received power is high at this BS and very weak at all other BSs, and hence, it
makes sense to decode this user’s signal from the nearest BS. However, if a user is close to the
edge between cells, then this user is common to multiple BSs and jointly detecting such a user
from the three closest BSs using GCCA yields the best detection performance.

More interestingly, it turns out that adding more BSs does not always improve the per-
formance. For instance, at © = +R/2, while GCCA using four BSs attains a comparable
performance relative to GCCA with the three nearest BSs, the latter is considerably better as
the user moves towards the center x = 0. This is because at © = 0, the received SNR is very low
at both BS 3 and BS 4 compared to BS 1 and BS 2, and consequently, both views 3 and 4 act
as two “noisy” views that naturally degrade the signal recovery of the cell-edge user. Therefore,
one can conclude that from the geometry of the hexagonal cells, adding more BSs and feed-
ing their received signals to GCCA to recover the common subspace will further degrade the
detection performance of cell-edge users as any additional BS (view) will lead to an additional
noisy view that severely affects the cell-edge user’s signal recovery. In other words, the more

views (L > 3) GCCA uses, the more difficult it becomes to reveal common information from all
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Figure 4.5: BER vs. SNR of cell-edge users. Figure 4.6: BER vs. SNR of cell-edge users,

d denotes the distance at which cell-center
users are randomly dropped up to.

views simultaneously. Therefore, using the observation that using GCCA with the three closest
BSs always yields the minimum BER for cell-edge users, and to further show the effectiveness
of our approach under different settings, we will only consider the three BSs scenario, shown in
Fig. 4.4, for all subsequent experiments.

We now consider another experiment where we vary the transmitted power of the two cell-
edge users from 20 dBm to 25 dBm which corresponds to approximately 0 dB to 5 dB SNR
according to the adopted path-loss model, while the transmitted power of all-center users is
fixed to 25 dBm. Drawing different cell-center user locations for each Monte-Carlo realization,
we compute the average BER among the two cell-edge users as a function of their transmitted
power. Fig. 4.5 shows how GCCA provides significant improvement in the BER compared to
all other methods. In particular, GCCA achieves an order of magnitude reduction in the BER
compared to MMSE-SIC followed by RACMA (the second best method) which jointly detects
the cell-edge user signals using the residual signals from the three BSs. Notice that, MMSE-SIC
assumes perfect ‘oracle’ knowledge of the channels of cell-center users at their serving BS. This
assumption becomes less realistic when “cell-center” users are fully scattered throughout the
cell. Although this gives a big advantage to the MMSE-SIC approach, GCCA still provides
considerably better detection performance of cell-edge users. Furthermore, one can easily see
how the channel estimation errors severely degrade the detection performance of cell-edge users.

Additionally, we simulate a more realistic scenario where cell-center users are almost fully

scattered in their cell. In particular, cell-center users are dropped up to d = 0.7R from their
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Figure 4.7: BER vs. SNR of cell-edge users Figure 4.8: Average correlation coefficient
for different number of users. of all possible extracted components via
GCCA.

serving BS, thereby cell-edge users are experiencing more aggressive inter-cell interference com-
pared to the case where d = 0.4R. Note that the MMSE-SIC RACMA is implemented using
estimates of the cell-center users’ channels instead of assuming perfect knowledge of their chan-
nels because that is hard to attain even approximately when cell-center users are fully scattered.
Fig. 4.6 depicts the inter-cell interference effect on the detection performance achieved by differ-
ent methods. It is obvious that the MMSE-SIC RACMA completely fails at d = 0.7R, compared
to d = 0.4R. On the other hand, both GCCA and CCA have a slight degradation in their
performance, which in turn reflects the efficacy of both methods that principally rely on recov-
ering the subspace of the “equipowered” users. Note that GCCA with three BSs still attains an
outstanding detection performance compared to the other methods under this realistic scenario.

We carry out another experiment in a more dense scenario where K, = 16 and M, = 30.
Further, cell-center users are dropped up to d = 0.8R. We report the BER of cell-edge users
versus the SNR. Although the results in Fig. 4.7 show that the detection performance of all
methods significantly degrades compared to the one in the previous experiment where Ky, = 8,
our proposed approach still can attain acceptable performance by achieving 10~2 BER at 5dB.
Notice that doubling the number of users and allowing them to be more scattered naturally
leads to greater corruption in the estimated common subspace, and hence, the degradation in
the detection performance obtained by the proposed method is expected.

Adding more BSs with K users each might be expected to severely affect the performance
which is true in general. However since, in principle, our approach recovers the subspace con-

taining the “equipowered” user signals, adding more users in the far cells (not served by the
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Figure 4.9: SER vs. SNR of cell-edge users Figure 4.10: SER vs. SNR of cell-edge
with QPSK modulation. users with 8PSK modulation.

three closest BSs) can slightly affect the cell-edge detection performance as we observed from
our simulations. For instance, looking at Fig. 4.2, increasing the number of users served by BS
4 does not affect the BER obtained when the cell-edge user is located at = —R/2 if GCCA is
used with BSs 1,2 and 3. However, increasing the number of cell-center users can only degrade
the performance, as shown in Fig. 4.7, when these users are served by any of the BSs used
for detecting the cell-edge users via GCCA. This can be attributed to the fact that there is a
chance that some users could be included in the common part, and hence, underestimating the
dimension of the common subspace can degrade performance.

We now test the proposed algorithm used to detect the number of cell edge users (i.e., the
common subspace dimension). We consider a setup with M, = 12, K, = 8, and SNR ~ 3 dB.
Note that since 2M, < N, we can find up to 2M, canonical components. Fig. 4.8 shows the
average correlation coefficient computed at the i-th extracted component, for ¢ = 1,--- 24, for
two different drop/scatter patterns for the cell-center users. It is obvious that when d = 0.4R,
there is a significant gap between the average correlation coefficient of the first two components
and the rest of the components. In particular, the average correlation coefficient of the first
two components is almost 0.8 while all the rest are less than 0.3. Thus, one can decide that
there exist only two cell-edge users in this case. On the other hand, at d = 0.7R, the value of
the average correlation coefficient slightly increases for some of the components. For example,
the average correlation coefficient of the third component now jumps to 0.52 which means that
there is one more user that can be considered as common user. However, considering only the

first two components is enough to reliably recover the signals of the two cell-edge users as shown
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in Fig. 4.6, where the detection performance was sightly affected by increasing d from 0.4R to
0.7R.

Finally, we evaluate the performance of the proposed method under different modulation
schemes. First, we assume a QPSK transmission for all users in a scenario with K, = 8 users
and two cell-edge users (K. = 2). Further, cell-center users are randomly located up to 0.7R
from their serving BS. We report the symbol error rate (SER) vs SNR of cell-edge users for
M, = M = 12,24 antennas, ¥¢. As Fig. 4.9 depicts, GCCA followed by ACMA attains the
lowest SER compared to both MMSE with channel estimation and CCA with the two closest
BSs. It is also clear that, with M = 12, the detection performance of all methods is worse
for QPSK relative to BPSK in Fig. 4.6, as expected. However, as we double the number of
antennas to M = 24, a significant improvement can be achieved by our method, which attains
approximately 1072 SER at 5 dB SNR.

We also carried out another simulation with the previous setup but with 8PSK modulation
instead of QPSK, and with K. = 1. The numerical results in Fig. 4.10 demonstrate the efficacy
of our approach with higher-order modulation, in the low SNR region. Note that the detection
performance of all methods degrades significantly as we increase the modulation order, which
is expected given the SNR range considered. However, for higher order modulation, coding

schemes can be employed on top of our proposed approach for improved reliability.

4.5 Summary

In this chapter, we studied the problem of cell-edge user signal detection in the uplink of a
multi-cell, multi-user MIMO system, with the aim of designing a detector that can reliably
demodulate cell-edge user signals in the presence of strong intra-cell interference from cell-
center users, without resorting to power control or/and scheduling algorithms that throttle
the cell-center user rates. We proposed a GCCA-based approach that leverages selective base
station cooperation to reliably identify the common subspace containing cell-edge user signals
at low SNR, without even knowing their channels. Then, we used an efficient analytical method
((R)ACMA) that guarantees the identifiability of finite alphabet signals from well-conditioned
mixtures to separate the cell-edge user signals from the resulting subspace. The proposed method
is appealing for use in dynamic environments because it (i) does not require any knowledge of
the channel state information of cell-edge users; (ii) can automatically detect the number of
common (cell-edge) user signals regardless of associated channel variations from one coherence
interval to the next; (iii) can automatically adjust to varying PSK modulation order (so cell-edge
users can even vary their modulation, depending on channel conditions); and (iv) can efficiently

deal with synchronization issues.
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We presented theoretical results to prove that under an idealized scenario, the proposed
GCCA-based approach recovers the subspace containing the cell-edge user signals. Further-
more, we showed through an elegant analysis that under realistic assumptions on the inter-cell
interference and the SNR of the cell-edge users, the common subspace recovery is guaranteed
via GCCA. Simulations using a realistic propagation and system model were carried out to
show the superiority of the proposed learning-based method over the prevailing state-of-the-art
methods. In particular, our proposed approach attained an order of magnitude reduction in
the BER compared to other multi-user detection methods that assume perfect knowledge of the
channels of the cell-center users. Furthermore, our experimental results evaluated the cell-edge
user detection performance as a function of the number of cooperating BSs, and revealed that
using the three closest BSs is always optimal in this regard. This was not obvious a priori,
as intuition may have suggested that two or even more than three BSs might be preferable in

certain cases.



Chapter 5

Seamless Underlay

Communication

5.1 Motivation

The rapidly growing demand for wireless connectivity from 5G4+ to Internet of Things (IoT)
and WiFi-enabled devices has brought renewed interest and impetus behind dynamic spectrum
sharing [84-86]. Even with millimeter-wave (mmWave) technology, the propagation loss in the
28 GHz - 300 GHz bands is much higher than in the sub-6 GHz bands [87], making the latter
better-suited for various wireless systems. The premium placed on sub-6 GHz bands together
with the need to protect scientific uses in the mmWave bands are driving the renewed interest
in spectrum sharing and dynamic spectrum access (DSA).

DSA techniques are designed to improve spectrum utilization by allowing secondary un-
licensed users to take advantage of ephemeral transmission opportunities in space, time, or
frequency [88-90] — a capability often referred to as cognitive radio. Currently, there are three
widely used DSA techniques for cognitive radio networks (CRN): interweaving, overlay, and
underlay [84]. In the interweaving mode, the secondary users search the band for spectrum
holes (vacant sub-bands) which represent secondary transmission opportunities. The overlay
paradigm requires tight coordination between the primary and secondary users, which compli-
cates implementation. Relative to the interweaving and overlay modalities, underlay spectrum
sharing is appealing in terms of its prioritization of the licensed users, practical feasibility, and
its relative simplicity — there is no need for continuous spectrum sensing or tight coordination
with the primary system.

There is a plethora of works on DSA and cognitive radio, spanning two decades of research
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ranging from spectrum sensing [91, 92] and channel gain “cartography” [93] to different spec-
trum sharing modalities [94-106]. A common assumption in those works is that the signal to
interference plus noise ratio (SINR) at the secondary receiver can be made high enough to en-
able reliable decoding. In practice, this is hard to ensure if the primary transmitter is powerful
(e.g., a T'V or radio station) while the secondary is power-limited (e.g., a WiFi or IoT device).
Furthermore, many of these works are relying on assumptions that are hard to meet in practice
— such as the availability of cross-channel knowledge at the secondary users.

Few spectrum underlay works have attempted to circumvent the need for such assump-
tions. Omne interesting recent example is [107], where the authors proposed a nice semi-blind
beamforming-based underlay spectrum sharing approach, which allows the secondary users to ac-
cess the spectrum while minimally affecting the primary network performance, without requiring
any channel knowledge at the secondary network. However, the proposed method in [107] still
requires i) the primary communication to be bidirectional (which does not hold for legacy radio
or TV broadcast, or scientific uses); ii) the flow direction of primary traffic to be predictable;
iii) effectively time-invariant channels from/to the primary users; and iv) training pilots for
designing the beamformer at the secondary receiver. These are still restrictive assumptions.
In particular, the reverse transmission of the primary user needs to be synchronized with the
forward of the secondary, and vice versa, so the secondary users need to track which node is
transmitting in the primary network.

Is it possible to design an underlay strategy that enables reliable decoding at very low SINR
and modest SNR at the secondary receiver, without noticeable increase of the noise floor at the
primary receiver? Is it possible to do this seamlessly, without any coordination between the
primary (legacy / incumbent) and the secondary user?

The answer is, surprisingly, affirmative. We propose a secondary transmission protocol that
operates at very low power yet allows reliable secondary communication without requiring any
channel knowledge or coordination with the primary system. The key idea is that the secondary
user sends its signal twice, each time at very low power. Assuming that the secondary receiver
employs at least two receive antennas, the proposed transmission protocol allows the secondary
receiver to create two “views” of the signal space that only share the secondary signal — the
interference from the primary network is potentially very strong, but different in the two views.
Invoking canonical correlation analysis (CCA) on these two views, the secondary receiver can
reliably decode its intended signal under very strong interference from the primary user.

Transmitting the same signal twice can be viewed as repetition coding [108], or as elementary
direct-sequence spreading [109,110] with spreading gain equal to two. Our approach is funda-
mentally different from these classical techniques in the way that this controlled redundancy is

exploited at the receiver (i.e., on the “decoding” side), where we leverage the unique strengths
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of CCA. In particular, we exploit our algebraic interpretation of CCA in Chapter 3 to reliably

decode the secondary signal even under strong interference from the primary users.

Our contributions can be summarized as follows:

e We propose a novel secondary underlay framework that enables seamless primary-secondary
coexistence — there is no need for coordination between the two. Assuming that the sec-
ondary receiver is equipped with two receive antennas and down-conversion chains, simple
repetition of the secondary signal coupled with CCA processing at the secondary receiver

can recover the secondary transmission even at very low SINR.

e The approach is data-driven and unsupervised in that it directly recovers the secondary
information signal (up to complex scaling), without requiring channel state information
or primary signal recovery and cancellation. It even works with analog modulation of the

primary and/or the secondary signal.

e Time-varying channels for the primary and the secondary user can be naturally accom-
modated, provided that the channel coherence time is greater than half the secondary
transmission frame length (comprising a transmitted packet and its repetition — and the

packet length is up to our control and can be fairly short).

e From a computational point of view, what is required is the computation and inversion
of small correlation matrices, and then a principal eigenvector computation, which can
be done using e.g., the power method. Hence, the approach is attractive for practical

implementation.

e The approach is immune to carrier frequency offset, which can be compensated after the
secondary symbol sequence is extracted using CCA. Furthermore, exploiting the repetition
structure and CCA, we develop a matching synchronization algorithm that identifies the
correct timing of the secondary transmission frames even at very low SINR in an unsu-
pervised manner — i.e., without using any pilot symbols, only exploiting the structured
redundancy introduced by repetition. These side-benefits are very fortunate, for other-
wise synchronization is a very difficult problem at very low SINR without very long pilot

sequences for acquisition.

e Last but not least, in order to demonstrate the practical feasibility and merits of our ap-
proach we have built and tested a prototype using software defined radios, where both the
secondary and primary users were realized using USRP-2920 radios. We conducted multi-
ple experiments to evaluate the performance of the proposed underlay CCA approach under
realistic conditions. Our laboratory experiments verified that the proposed approach can

reliably recover a secondary user signal that is buried under strong interference from the
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primary system (SINR as low as -40 dB), and that it approaches the attainable detection

performance in the interference-free regime (where the primary user is idle).

The rest of this chapter is organized as follows. Section 5.2 presents the system model
and highlights the major limitations of the prior art in terms of secondary underlay schemes.
The proposed secondary transmission protocol is described in Section 5.3, while the proposed
detector is presented in Section 5.4. Section 5.5 explains how to resolve synchronization issues
at the secondary receiver. Experimental results are provided in Section 5.6, and conclusions are

drawn in Section 5.7.

5.2 System and Signal Models

5.2.1 System Model

Consider an underlay cognitive radio network comprising a secondary transmitter (STx) com-
municating with a secondary receiver (SRx) equipped with My > 2 antennas, in the presence of
a primary transmitter (PTx) and primary receiver (PRx) with A, > 1 antennas, as shown in
Fig. 5.1. Multiple secondary and primary users can also be accommodated as we will explain
later. Let h, € CMs, h,, € CcMs, h,, € CM»r and h, € CM» be the channel response between
the STx and SRx, PTx and SRx, STx and PRx, and PTx and PRx, respectively, defined as

h, = VOs 8s, hps = 4/Ops 8ps>
h, = /6, 8, hy = /05 8sps (5.1)

where g, gps, 8sp, and g, are the respective small-scale fading vectors, while the terms
Os, Opss Osp, and o, are the corresponding large scale fading coefficients with values depen-
dant on the propagation distance and environment.

Unlike prior works [97-101] that require estimates of the cross channels h,s and/or h,, at the
secondary receiver and the secondary transmitter, respectively, this paper considers a practical
setting where the secondary users have no knowledge about any channel state information in

the network.

5.2.2 Signal Model

We assume that the primary users transmission is done over a narrowband channel of bandwidth
B Hz. For simplicity of exposition, we assume that both users are employing QPSK modulation,
but other types of modulation can be accommodated. The basic approach we propose to recover
the secondary signal is modulation-agnostic, and does not assume anything about the primary

signal’s modulation, which can even be analog.
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Y prx

Figure 5.1: System Model

Let x, € CV and x5 € CV denote the digitally-modulated transmitted signal by the primary
and secondary user, respectively, where |x,(n)|? = 1 and |xs(n)[?> = 1 forn € [N] := {1,--- , N}.
In writing down the discrete-time baseband-equivalent model, we shall assume, for simplicity
of exposition, that the primary and secondary signals are synchronized at the symbol level —
otherwise writing down the model is cumbersome. However, such an assumption is not required
for our approach to work, and we shall later present an algorithm that can lock on the secondary
user signal at the SRx. All our laboratory experiments are concerned with this asynchronous
setup.

The discrete-time synchronous baseband-equivalent model of the received signal, Ys €

CMsxN " at the secondary receiver is given by
Y, = a,hx? + ,/ozphpsxg + W, (5.2)

where os and o, are the transmit power of the STx and PTx, respectively. The term W, €
CMsxN contains independent identically (i.i.d) distributed elements with each entry drawn from

a complex Gaussian distribution with zero mean and variance o2. Similarly, the received signal

at the primary receiver, Y, € CM»xN "ig given by
Y, = Vashgx! + Japh,x! + W, (5.3)

where W, € CM»*¥ s the noise term at the primary receiver with i.i.d entries drawn from a
complex Gaussian distribution with zero mean and variance ag.

The goal of this work is to show that, in the absence of channel state information at the
STx/SRx and without any coordination between the primary and secondary users, seamless
secondary underlay communication is possible without affecting the primary network perfor-

mance. To do this, we will first present a simple secondary transmission protocol together with
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a data-driven (unsupervised learning-based) approach that allow i) the STx to transmit its sig-
nal at very low power so that it does not affect the detection performance at the PRx, thereby
keeping the resulting interference close to the PRx noise floor (the PRx can reliably decode its
signal even with one receive antenna), and ii) the SRx to reliably decode its intended signal at
significantly low SINR (e.g., -40 dB).

5.3 Secondary Transmission Protocol

In this section, we will present a simple transmission protocol that will assist the secondary
transmitter to reliably communicate with its receiver over the same channel occupied by the
primary network, and without degrading the primary user’s performance.

The secondary transmission scheme is described as follows. If a secondary user desires to
transmit in a channel occupied by a primary user, it simply transmits the same sequence twice
at very low power — enough to be received above the thermal noise floor at the SRx, but far
below what is required to be directly decoded in the face of possibly overwhelming interference
by the PTx. The repetition of the secondary user’s sequence can happen at the symbol or block
level; we assume block-repetition for simplicity of exposition. To do this, we write x; as two
back-to-back repeated blocks, i.e., x, = [s7s”]T, where s € CN/2 is the transmitted QPSK
I

symbols by the secondary user over each block. Partitioning x, = [PTpI1T in two blocks for

convenience, the received signal at the secondary receiver in (5.2) can be rewritten as

T

R (5.4)

Y,=H,
S P2

where H; is an My X 2 matrix that holds on the first column the channel vector containing the
channel coefficients between the STx and SRx, hy, and on the second column the channel from
the PTx to the SRx, h,,. Notice that the transmit power terms of both the STx and PTx have
been absorbed in the respective channel vectors, for brevity.

As noted earlier, the proposed transmission scheme can be interpreted as repetition cod-
ing [108], or equivalently as direct-sequence spreading of the secondary user’s transmission with
spreading gain equal to two [109]. Treating this situation as CDMA or as an error control prob-
lem will not work, because the primary user dominates the received signal, and small spreading
/ coding gains cannot make up for the large power difference between the secondary and primary
user. CDMA performance is known to suffer from the so-called near-far problem which is clearly
the case for the setup considered herein.

We will next present a low-complexity learning-based approach that allows the SRx to reliably

decode its intended signal, s, even if the received SINR is significantly low.
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5.4 Secondary Signal Detection via CCA

By exploiting the repetition structure, the SRx can split Y, and Wy into two blocks, Yy =
[Y; Y], and W, = [W; Wy, for which we have

Y, =H; [S pl]T + Wy, (55)
Y2 = HS [S pQ]T + WQ. (56)

Now, given the two signal views in (5.5), CCA will be invoked to show that reliable detection
of the secondary signal, s, is possible even at low SINR. To see how we can utilize CCA to identify
the secondary signal, s, from Y; € CMs*N/2 and Y, € CM:*N/2 we will use the MAX-VAR

formulation of CCA assuming a single common component, i.e.,

2
i Y q, — gl?, 5.7
Jmin ;II Tae —gll3 (5.7a)
st |gllz = 1. (5.7b)

Recall that the MAX-VAR formulation aims at finding a direction g € C/2 that is maximally
correlated after the linear projections of Y; and Y, on q; € CMs and qy € CMs, respectively.
Further, the optimal canonical vectors can be obtained via first solving the following generalized

eigenvalue problem to obtain qj and \*,
R12R51R21q1 = )\qul- (58)

where R; = %YiYZH is the sample auto-covariance of the random vector y;, and R;; := %Yinl
is the sample cross-covariance of the two random vectors y; and y;, respectively, for ¢,j = 1,2
and i # j. Notice that as explained in Chapter 2, it can be easily verified that the term
A* represents the square of the correlation coefficient, p(q7,q3), associated with the optimal

canonical pair ] and g}, where
plal, a5) = Re{q; "Y1 Y3 q5}. (5.9)

In Chapter 3, we have shown that given two multi-antenna signal views that include one
shared (common) component and multiple individual (“private”, not shared) components in
each view, CCA can efficiently extract the common component up to scaling ambiguity no
matter how strong the individual components are. One can see from (??) and (??) that each
block (view) is subject to strong interference by the primary user, but, in general, the interference
is different in the two blocks — thus there is a unique common subspace, namely (the span of)

s that conveys the secondary transmission. Building upon our theoretical findings, we will next
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show that our CCA interpretation applies, and under very mild conditions will recover s up to
scaling , even if x,, is several orders of magnitude stronger than x;,.

The following theorem, which is a slight modification of the results we presented in Chapter 3,

states the conditions for identifying the secondary transmitted signal s at the SRx.

Theorem 3. In the noiseless case, if the matrices By := [s, pg] € CN/?%2, for £ € {1,2}, and
H, € CM:*2 gre full column rank , then the optimal solution g* of problem (5.7) is given by

g* = s, where v € C, v # 0 is the scaling ambiguity.
Proof. The proof is provided in Theorem 1 in Chapter 3. O

Note that the full rank condition on the matrices B, needs the signals s and p, to be linearly
independent which is practically always the case for any reasonable “packet” length N, because
these signals are drawn from statistically independent sources. On the other hand, the full rank
condition on Hj is in fact the more restrictive one as it requires i) the number of antennas at the
SRx to be greater than or equal to the number of co-channel signals (two in our setting) and ii)
the channel vectors to be linearly independent. The latter is realistic, these being statistically
independent channel vectors from the PTx and the STx to the SRx.

5.4.1 Time-varying channel directions, fading, and intermittent trans-

missions.

Although the two signal views in (5.5) implicitly assume that the channel is constant across
the two secondary repetition blocks, our proposed method in fact can work even if the two
channel matrices are different, see Theorem 1 in Chapter 3. Therefore, with block repetition, the
coherence time needs to be only greater than one block duration. We will see in the experiments

how this feature grants our proposed method robustness against time varying channels.

5.4.2 Interference cancellation

It is worth pointing out that if the primary user signal is order(s) of magnitude stronger and
the primary channel remains constant (no intermittent transmissions, no time-division duplex,
insignificant channel direction changes) then one can cancel the primary interference by sim-
ply projecting the received signal on the minor left singular vector of the matrix Yy, thereby
“revealing” the secondary transmission. This can only work when the spatial channels are time-
invariant. In practice, the channel gains fluctuate over time, and even if the average secondary
signal to interference ratio is low (e.g., -40 dB), there are times when it becomes relatively high
(e.g., -20 dB). These fluctuations quickly degrade the subspace estimate, leading to complete

failure to detect the secondary signal, as we will see in the laboratory experiments.
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5.4.3 Multiple secondary users

Note that our theoretical results dictate that our proposed CCA approach can identify the
secondary signal in a network with only one secondary user, and we have argued that finding the
secondary user signal is tantamount to solving for a principal eigenvector which can be cheaply
computed via the power method. Even with multiple secondary users, our recovery claim holds
and receiver complexity is roughly the same, provided that i) each secondary receiver has enough
antennas (as many as the maximum number of active users at any given time, see Theorem 1);
and ii) there are no persistent and perfectly aligned collisions between any of the secondary
users. In other words, no two secondary users transmit their packet pairs at the exact same
times. With asynchronous wake-up type devices serving intermittent communication needs, this

situation is highly likely.

5.5 Secondary Synchronization

One critical issue that we always face in practice is synchronization. The overall synchronization
task comprises time, carrier frequency offset (CFO), and phase synchronization. While effective
solutions to these problems are well-established for classical communication modalities, here we
are dealing with a secondary signal that is potentially buried under the primary one, which
makes secondary time synchronization and CFO acquisition much more challenging.

A standard receiver will naturally lock on the primary user, which means that the secondary
signal will present itself with an unknown CFO and unknown start time within the received
sequence. Fortunately, the presence of CFO does not destroy the alignment of the two copies
of the secondary packet: owing to the temporal shift invariance property of pure complex expo-
nential signals, the second copy is the same as the first except for a complex phase shift. Hence
we can proceed with CCA and correct the CFO after recovering the CFO-modulated secondary
packet. On the other hand, secondary timing acquisition is a challenge, due to the large power
imbalance between the primary and the secondary signal. To deal with this problem, we pro-
pose a blind CCA-based algorithm that is practically effective in finding the start time of the
secondary packet under such a large power imbalance between the two users.

In practice, the secondary receiver receives a long sequence, ?S € RM*N where N > N.
The goal is to find the sample index, k, so that we can extract the desired signal Y, from 3?5,
and then use the proposed method in Section 5.4 to decode the secondary user signal.

By exploiting the repetition structure of the transmitted signal, we start with £k = 1 and
construct the two views ng) =Y,(,k:N/2+k—1) and ng) =Y., N/2+k:k+N—1)
followed by solving (5.8) to obtain the associated correlation coefficient p, (we use MATLAB
notation, i.e., X*) = X(:yk : N+ k — 1) contains all the rows of matrix X and a subset of
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columns of X starting from the k-th column and ending with the (N + k& — 1)-th column). Then,
we store pi, set k = k + 1 and repeat the previous procedure. If we hit the start point of the
two copies of the same packet, then CCA of these ”views” will yield its maximum correlation
coefficient. In other words, the correlation coefficient, pi defined in (5.9), associated with cach
pair of canonical directions qgk) and qék) obtained by solving (5.7) at the k-th step, will be at its
maximum only when we have all the N/2 symbols in both views. This is because the secondary
information sequence is uncorrelated, thus even if k is off by one, the two partial sequences will
decorrelate. The higher N is, the higher the correlation peak we obtain as we will see in the
experiments, but even moderate N, in the order of 128 symbols, can yield very good detection
performance. Notice that the procedure utilizes the special frame structure that is designed to
enable CCA, but is otherwise agnostic to the specific information sequence that is being sent by
the secondary transmitter. In this sense, it is a blind synchronization strategy that leverages
the power of CCA to enable reliable timing acquisition at very low SINR. The procedure is

summarized as Algorithm 3.

Algorithm 3 Secondary Synchronization
Input: Y, € (CMlXN,
Initialization: k =1,
while k € [N — N + 1] do
Construct Y = Y, (., k: N/2+k—1) and Y = Y, (. N/2+ k1 k+ N —1)

Compute py, after solving (5.7) using ng) and Yék)

Store (k, px) in a stack

Set k:=k+1
end

Selection: pick the k* := maxy pi.

The computational complexity of Algorithm 3 is determined by the complexity of solving a
series of CCA problems, which is equivalent to solving for the principal component (canonical
pair) of (5.8) a number of times (equal to the search window size). The canonical pair can
be cheaply computed via a power iteration. Further, each CCA problem requires inversion of
correlation matrices of size My x M, each — these inverses can be computed analytically since
M, = 2. To minimize the search window length, one can start with a coarse estimate for the
region with high correlation coefficient and then do a narrow search within a small window size
to get the final start time index, as we will see in the experiments. Furthermore, if the secondary
transmitter is continuously transmitting, we do not need to run the full Algorithm 3 for each

received packet — we only need to do a narrow timing search to compensate for jitter.
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Figure 5.2: Experimental Setup.

wro

Figure 5.3: (a) Primary Transmitter. (b) Primary Receiver. (¢) Secondary Transmitter. (d)
Secondary Receiver.

5.6 Experiments

In this section, we evaluate the performance of the proposed CCA approach for low-power
secondary underlay communication in practice (for simplified simulations, see [16]). To do so,
we have built a prototype of the proposed CCA underlay scheme using software defined radios

(SDR).

5.6.1 Experimental Setup

Both the primary and secondary links are realized using USRP-2920 devices and general-purpose
computers. The USRPs are used for radio signal transmission / reception, while the computers
are used for baseband signal processing. The experimental layout is shown in Fig. 5.2. We used
five USRPs: one for the primary transmitter, one for the primary receiver, one for the secondary
transmitter, and two for the secondary receiver, see Fig. 5.2. Each USRP is equipped with a
single antenna. The two USRPs of the secondary receiver are connected together with a MIMO
cable to synchronize the two receive radio frequency chains, as shown in Fig. 5.3(d).

The locations of the PTx, PRx, STx, SRx are fixed throughout the experiments. The



Parameter Primary Secondary
Bandwidth (KHz) 100 100
Carrier frequency (GHz) 1.2 1.2
Modulation QPSK QPSK
Sample rate (MSps) 1 1
Maximum transmit power | 20 -15

(dBm)

Number of antennas 1 Tx, 1Rx 1 Tx, 2 Rx
Number of symbols 256 128
Oversampling factor 10 10
Number of packets 2000 2000
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Table 5.1: Parameter settings for the experiments.

distances between the PTx and PRx, PTx and SRx, STx and PRx, and STx and SRx are 5, 3,
4.5, and 4 meters, respectively. The transmit power of the PTx is set to the maximum possible
value, as shown in Table 5.1 unless stated otherwise, while the transmit power of the STx is
adjusted for low-power secondary transmission. The sampling rate for both users is set to 1
Mega samples per second (MS/sec), the signal bandwidth is 100 KHz, and the carrier frequency
is 1.2 GHz. The PTx uses a block of 256 QPSK symbols and the STx uses repetition over
two blocks, each of length 128 QPSK symbols. The parameter settings for our experiments are
summarized in Table 5.1.
Signal processing at the transmitters. At each Tx, the constructed block is oversampled
by a factor of 10, then the resulting oversampled signal is pulse-shaped using a square-root
raised cosine (SRRC) with roll-off factor and amplitude set to 0.5 and 6, respectively. The pulse
shaped signal is zero-padded with a number of zeros equal to one third of the packet, yielding a
sequence of length 4020 samples. This results in a transmission rate of 128 Kbps for the primary
user and 64 Kbps for the secondary user. The zero-padding (used to emulate intermittent packet
transmission) is also used at the receiver side to measure the received SNR and SINR, as we
will see later. Symbol generation, up-sampling, and pulse shaping are done in MATLAB. Then,
the transmit data of each user is fed to GNU radio before being transmitted over the air.
Secondary receiver. We use the proposed CCA algorithm in Section 5.5 to detect both the
secondary packet and the start of the 256 x 2 complex signal. After SRRC matched filtering,
down-sampling to the symbol rate, and secondary synchronization, we construct the two signal
views by separating the two back-to-back blocks, and then use CCA to recover the secondary
signal. After solving the CCA problem (5.7), we average the two soft estimates of s obtained
via Y q; and Y4 qo, before hard thresholding.

To benchmark the performance of the proposed CCA approach, we use the following base-

lines.
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SVD without interference: we will use the singular value decomposition (SVD) to estimate
the channel direction during a period when the primary user is inactive, i.e., there is no inter-
ference from the primary user. To do that, we first exploit the repetition structure to construct
the signal Y = [YTYZ]7 € C?Ms*N/2_ Then, the secondary user signal can be estimated by
projecting the received signal Y on the left principal vector. Note that our use of the SVD
“baseline” without interference (which is more appropriately called an “oracle” method here) is
purely to show how well the proposed method works — close to an oracle which operates in a
fictitious interference-free environment.
SVD with interference: we will use SVD to project away the interference subspace by pro-
jecting on the third principal component of the matrix Y to estimate the secondary signal.
Notice that projecting on the first two components yields the subspace containing the primary
user signals, p; and ps.

In order to resolve the scaling ambiguity that is inherent both in the proposed CCA method
and the SVD-based baselines, we assume that the first four secondary symbols are known at
the SRx. Note that these symbols can be drawn from the packet header that contains the STx

identification sequence.

Remark 10. It is worth noting that for the second baseline (SVD with interference), we use
our proposed blind method in Section 5.5 to recover the secondary packet start time index at
the SRz, thereby giving a big advantage to the SVD based method. The typical synchronization
method that would be used with SVD is to allow the STx to transmit a long pilot sequence, long
enough to make up for the large power difference between the two users. Then, we would use
knowledge of this pilot sequence at the SRz to find the start time index of the secondary signal
via cross-correlation / matched filtering. This would seriously reduce the transmission rate of
the secondary user relative to our proposed blind method, especially for the setting considered
herein where the secondary user is much weaker than the primary. Further, and perhaps worse,
such training-based timing recovery requires the SRz to estimate the secondary CFO before (or
together with) timing synchronization, which is in another serious complication given the low
SINR and moderate SNR of the secondary user.

Primary receiver. At the PRx, we use energy detection for the primary packet detection.
Then, we use primary training symbols to detect the start index of the 256 x 1 received signal
of the primary user. To decode the primary symbols, we use 10 training pilots to estimate the

primary channel coefficient and then do the hard detection of the equalized signal.
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Figure 5.4: GNU radio spectrum analyzer showing 40 dB received power difference between the
PTx and STx at the SRx. The received signal of the PTx is shown in red while that of the STx
is depicted in purple, and the noise in blue.

Tx power difference (dB) 20 25 30 35 40
SINR (1%* antenna ) -17.1213 | -20.1632 | -27.1965 | -29.1996 | -32.2388
SINR (2" antenna) -15.1248 | -18.1909 | -25.2433 | -30.2522 | -31.2015

Table 5.2: Estimated secondary SINR at the SRx over the two receive channels, across the
different transmit power imbalance scenarios. The measured average secondary SNR is around
8 dB.

5.6.2 Performance Evaluation

Since we assume digitally-modulated signals for both users, we will use the symbol error rate
(SER) as a performance metric (but recall that our method can also work with analog modula-

tion for the primary and the secondary user).

In the first experiment, we test the performance of the proposed approach under different
levels of primary interference at the secondary receiver. To do so, we fix the secondary transmit
power to —18 dBm. This makes the corresponding measured average received SNR at the SRx
equal to approximately 8 dB. We vary the primary transmit power from 0 to 20 dBm in 5 dB
steps, thus generating transmit power differences from approximately —20 dB down to a rather
extreme —40 dB. To validate the power difference between the two users at the SRx, Fig. 5.4
shows the GNU radio spectrum analyzer at the SRx with the received signal strength level of
the PTx and STx in addition to the noise level — the transmit power of the PTx is set to 20
dBm, and Fig. 5.4 shows close to 40 dB power difference between the two users. Furthermore,
Fig. 5.5 depicts the squared samples of one of the received packets at the SRx after matched
filtering with the SRRC, for primary transmit power set to 15 dBm. It is clear that part of the
secondary transmitted packet overlaps with the padded zeros of the primary packet, showcasing

the power difference between the two users. Further, the remaining zeros show the low received
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Figure 5.5: Squared samples of one of the received packets after matched filtering with the
SRRC. Notice the overlap between part of the secondary packet and the zeros of the primary,
and also the low SNR of the secondary.

SNR range of the secondary user.

To compute the received SNR and SINR of the secondary signal at the SRx, we exploit
the padded zeros in both the primary and secondary signals to measure the noise power, the
secondary signal power, and the primary signal power at the SRx. In particular, we estimate the
probability distribution of the symbol energy across 1500 packets, each of length 400 symbols.
From the distribution, one can estimate either two peaks or three peaks, depending on the
overlap between the secondary (primary) and the zeros of the primary (secondary). For instance,
Fig. 5.6(a) clearly shows one of the received packets in one of the channels for the 20 dB transmit
power imbalance case. One can clearly see the three different energy levels: one for the (primary,
secondary and noise), another for (secondary and noise), and one for noise only. Notice that
the first level can also be primary and noise, but since the primary is very strong, treating the
first level as (primary and noise) or (primary, secondary and noise) will have negligible impact
on the SINR and SNR measurements of the secondary user. Fig. 5.6(c), shows the histogram
of the collected data across 1500 packets for the 20 dB transmit power difference, where three
distinct peaks are observed. In Fig. 5.6(b), however, one can see a complete overlap between
part of the secondary signal and the padded zeros of the primary user for the 40 dB transmit
power difference, and hence, only two peaks can be seen in the distribution shown in Fig. 5.6(d).

We use the data collected for the 20 dB transmit power difference to measure the energy

levels corresponding to the three observed probability density peaks, see Fig. 5.6(c). We use
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Figure 5.6: Example of the received primary user’s packets at the SRx after matched filtering
with the SRRC for 20 dB and 40 dB transmit power difference. Plots a) and b) depict the
symbol energy of the detected packet, for the two transmit power imbalance scenarios, while
(c) and (d) correspond to the estimated probability distribution of the energy (in dB) of the
detected symbols for the 20 dB and 40 dB transmit power difference cases, respectively.

these values to solve a system of linear equations (three equations in three unknowns) to com-
pute the received SNR and SINR at the secondary receiver. We repeat the same procedure for
the different transmit power difference cases to calculate the associated SINR and SNR. values.
Note that, since the secondary transmit power is fixed throughout this experiment, we observed
approximately the same average energy level (peak value) for either the noise level or the (sec-
ondary and noise) level, across all the transmit power difference cases. However, as expected, we
observed increase in the estimated energy level that corresponds to the primary, secondary and
noise. To confirm this, one can see from Fig. 5.6(b) a complete overlap between part of the sec-
ondary signal and the padded zeros of the primary user for the 40 dB transmit power difference
case, and hence, only two peaks can be seen in the distribution shown in Fig. 5.6(d). Notice
that the energy level associated with the smallest peak (secondary and noise) in Fig. 5.6(d) is
roughly equivalent to the energy level associated with the middle peak in Fig. 5.6(c), while one
can easily see close to 20 dB increase in the highest peak (primary, secondary and noise) in
Fig. 5.6(d) relative to Fig. 5.6(c). The measured SINR values for the different transmit power
cases are reported in Table II.

In order to demonstrate the capability of our proposed approach to correctly decode the
secondary transmission at very low SINR, we report the SER of the secondary user obtained by
our proposed CCA method at five different levels of the (average) transmit power imbalance:
from —20 dB to —40 dB (corresponding secondary SINR levels are reported in Table III).
Fig. 5.7 depicts SER results obtained by our proposed CCA method, for all five levels of primary
interference, and the corresponding SER curve obtained using the SVD-based method at the
same SNR without any interference. The results are striking: CCA is remarkably insensitive to
interference from the primary user. In particular, CCA achieves almost the same performance
at power difference levels (—35, —30, —20, —25) dB. On the other hand, at the —40 dB level, the
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Figure 5.7: Secondary user detection performance at different average SINR levels. The mea-
sured average secondary SNR is approximately 8 dB.

CCA performance degrades. This mainly happens due to the limited resolution of the analog
to digital converter of our USRP for the wide dynamic range of the input signal — while the
average SINR is —32 dB, there are several instances where it drops below —40 dB, and these
occasional quantization errors ultimately dominate CCA performance. Despite that, CCA still
achieves close to 1072 SER. Finally, one can see that CCA significantly outperforms the SVD
method used for interference cancellation, even though the latter is in fact aided by the CCA
frame structure to acquire timing — a benefit which it won’t have in practice. As shown in
Fig. 5.7, SVD performance breaks at 25 dB transmit power difference, where primary subspace
estimation becomes very difficult, and hence interference cancellation does not work.
Considering the primary user’s performance, we observed that the single-antenna primary
receiver is completely insensitive to the secondary interference. Fig. 5.9(a) shows one of the
received packets at the PRx (before down sampling), with the primary transmit power set to 0
dBm (minimum primary power in this experiment), while the secondary user is inactive. On the
other hand, Fig. 5.9(b) shows one of the received packets at the PRx (before down sampling)
when the secondary user is active, where there is approximately 70% overlap between the two
users’ packets. We observed that in the worst case setting, where the primary user power is
fixed to its minimum level (highest interference from the secondary user), the same detection
performance can be attained regardless whether the secondary user is active or not. This is
due to the fact that the secondary interference is close to the primary’s noise floor, as one can
see from Fig. 5.9(c) and Fig. 5.9(d), where the two smaller peaks in Fig. 5.9(c) and Fig. 5.9(d)
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Figure 5.9: (a) primary packet samples when the STX is inactive. (b) primary packet samples
when the STX is active. (c) energy distribution when the STx is inactive. (d) energy distribution
when the STx is active.

correspond to the noise level and the secondary plus noise level, respectively. We observed that
the SNR of the primary user is 28 dB when the secondary user is inactive, while the primary
user’s SINR is 25 dB when the secondary user is active.

Next, we consider another experiment to see the performance of the proposed method under
different SNR, values for the secondary user. To do so, we fixed the primary transmit power
to 10 dBm and varied the secondary transmit power from —23 to —17 dBm which corresponds
to average SNR values between 2 dB and 10 dB, as observed. At each SNR value, we report
the SER of the secondary user. Fig. 5.8 depicts the SER performance of the secondary user
versus its SNR. It is obvious how well our proposed method works at very low SNR / SINR
values. In particular, our method can achieve 1072 SER at 7 dB and closely approaches what is

attained by the interference-free SVD baseline at low SNR values. Further, one can see that the
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Figure 5.10: Secondary user detection performance for different packet sizes of the secondary
user. The packet length of the primary user is fixed to 256 QPSK symbols.

SVD with interference completely fails at both the low SNR and high SNR regions, where in
the latter, the secondary user becomes a bit more stronger and then accurate primary subspace
estimation becomes more difficult as explained in the previous experiment.

On the other hand, we observed that the secondary user does not affect the primary perfor-
mance, which remains the same as is attained when the secondary user is inactive. The same
SER is observed at the PRx, even at the extreme case where the secondary transmit power is
—17 dBm (i.e., the highest interference to the primary).

In our next experiment, we test the performance of the proposed method as a function of
secondary packet size. The secondary and primary transmit powers are fixed to —20 dBm
and 5 dBm, respectively. The measured average SNR at the secondary receiver is 7 dB. The
primary packet length is set to 256 QPSK symbols. Fig. 5.10 shows the SER performance of
the proposed approach versus the packet size of the secondary user. We observe a significant
improvement in the secondary SER when the secondary packet length increases. This is due
to the fact that increasing N renders the transmit sequences closer to being orthogonal and
having low auto-correlation sidelobes, which improves the performance of CCA and secondary
timing synchronization. Note that our performance analysis in A.1 shows that increasing the
packet length yields higher canonical correlation coefficient, and hence a better estimate for
the common signal. This suggests that transmitting longer secondary packets provides better

secondary detection performance. On the other hand, one can argue that if the channel is fast
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Figure 5.11: Secondary user synchronization using CCA.

time varying, then the higher the packet length, the higher the probability of each block being
subject to channel variation, thus violating the presumed mode. Hence, in setting the secondary
packet length one has to take into account the coherence time of the channel, in order to choose
the optimal packet length for the secondary user.

Finally, we evaluate the performance of the proposed algorithm for finding the start time of
the secondary packet. We use the same parameters as the previous experiment but the secondary
packet is fixed to 256 symbols. Recall that the received packet length, before down-sampling,
is 4020 samples. To find the start of the 256 x 2 signal, we run Algorithm 3 with a step of
10 symbols on the received signal, which resulted in solving approximately a series of 40 CCA
problems. Fig. 5.11 shows that the highest correlation coefficient is attained at symbols index
60. We then performed an additional narrow (fine) search over a window size of 10 symbols

centered at the obtained symbol index from the wide search.

5.7 Summary

In this chapter, we proposed a practical low-complexity data-driven spectrum sharing approach
for an asynchronous underlay scenario involving a high-power primary user and a low-power
secondary link. The proposed method allows the secondary user to reliably communicate over

the same channel occupied by the primary, without any coordination, and without any channel
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state information. Our proposed solution is based on “repetition coding”: the secondary user
transmits its signal twice at very low power such that it does not affect the primary user detection
performance. Constructing two signal views at the SRx and applying CCA to these views, we
showed that the secondary receiver can reliably decode its intended signal at moderate SNR even
if it is buried under strong interference from the primary user transmission. We proposed a low-
complexity unsupervised based approach that can resolve the crucial low-SINR synchronization
issue at the secondary receiver. Laboratory experiments using a custom-built USRP testbed
confirmed the efficacy of the proposed method in decoding the secondary signal at very low
SINR in real world wireless environments.

The proposed framework can guarantee reliable reception of the secondary underlay signal
even under time-varying and intermittent interference from the primary user. Specifically, our
theoretical results show that the secondary signal can be identified even if the primary channel
is different across the two secondary signal blocks. To the best of our knowledge, this is the first
spectrum underlay work that allows a low-power secondary user to occupy the channel with a
time varying primary user in a realistic wireless environment, without i) requiring any knowl-
edge about the primary network (waveform, modulation, channel, timing, etc.), ii) coordination
between the primary and the secondary system, iii) long pilot sequences for acquisition and

channel estimation for the secondary user.



Chapter 6

Summary and Future Research

Directions

This dissertation introduced new and widely useful theortical findings of CCA and its multiview
generalization GCCA, that allowed for innovative solutions of challenging problems in next-
generation cellular systems. In this chapter, we will summarize our main contributions and refer

to other possible research directions to pursue.

6.1 Dissertation Summary

In this dissertation, we studied the widely-used statistical learning tool, CCA, in the context
of modern wireless communications. Chapter 2 introduced CCA and GGCA by i) presenting
their various formulations and the corresponding computational complexities, ii) referring to the
wide domain of applications that have been handled by (G)CCA, iii) explaining the plain-vanilla
probabilistic interpretation of CCA, and iv) introducing our new algebraic interpretation of CCA
as a method that can identify a common (shared) subspace between two or more matrices.

In the subsequent chapters, we showed how effective our algebraic interpretation is, through
showing the potential of (G)CCA in handling challenging problems in wireless communications.
In Chapter 3, we made two theortical contributions of broader interest. First, we provided
an identifiability analysis of broader interest, and can have impact in several other disciplines.
First, we showed that CCA can identify the common subspace between two matrices under mild
conditions, assuming a linear general model, no matter how strong the individual components
are. Second, we derived performance analysis for practical application under non-ideal conditions

(notably noise). We showed through those theortical findings that CCA can efficiently handle the

69



70

challenging problem of reliably detecting cell-edge users in cellular wireless systems, even when
they are buried under intra and inter-cell interference. Further, we developed an algorithmic
framework based on CCA to resolve synchronizations issues.

Chapter 4 generalized the cell-edge problem setting considered in Chapter 3 to the more
challenging setup comprising multiple BSs. We showed that the best detection performance
can be attained when using GCCA on the received signals from three closest BSs, and that
adding more BSs (more than three) never helps but degrades the performance. We present a
performance analysis which showed that the cell-edge user signal subspace can be accurately
estimated via applying GCCA on the received signals from the three closest BSs. We also
GCCA based technique that can accurately estimate the common subspace dimension, i.e., the
technique can correctly classify whether a user is cell-edge or cell-center.

In Chapter 5, we showed how CCA can be invoked to improve spectrum utilization. We
proposed an underlay strategy that allows simultaneous operation of two independent networks
without affecting each others. The starting point was to design a simple secondary transmission
protocol that operates at very low power, but allows reliable secondary communication without
requiring any channel knowledge or coordination with the primary system. We showed that via
a repetition coding based scheme employed at the secondary transmitter together with applying
CCA at the secondary receiver, the secondary signal can be blindly decoded at very low SINR.
The end-to-end approach is practically appealing at it merely requires solving for a principal
eigenvector that can be cheaply computed via the power method. We validated our proposed
framework in the lab, where we demonstrated that our approach works in real world wireless
environment. In particular, we have developed a testbed comprising several USRPs to show
that seamless secondary communication is possible in the presence of strong interference from

the primary network.

6.2 Future Directions

Based on this dissertation, our future and ongoing research will be focused on the following

extensions and applications:

e Weak target detection in MIMO radar. The radar technology has witnessed signifi-
cant progression over the last years. With a variety of applications ranging from air traffic
control, security surveillance, military applications, to a plethora of medical applications,
modern radar systems are now deployed worldwide. Conventional radar detection and es-
timation methods usually suffer from scalability issues, and hence, it is desirable to develop
new low complexity detection and estimation tools that can efficiently detect and estimate

the targets’ parameters of interest. In our recent work [31], a CCA-based approach was
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developed to reliably detect and accurately estimate the parameter of interests of weak
targets. It was shown that by designing two partially overlapping spatial beams and ju-
diciously controlling the degree of their overlap, it is possible to create two views of the
signal space that share only the (potential) target of interest at a certain range-DOA cell.
Using CCA on these two views, it is possible to detect the sought target, at low SNR and
even under strong nearby interference. The promising preliminary results obtained from
our simple CCA approach in [31] prompt us to pursue further analytic and experimental
development of the CCA approach. In particular, our theortical results in [14, 15] are
not directly applicable to the considered beam space model which assumes Vandermonde
structure on some of the matrices [31]. Therefore, We seek to deepen the CCA theory
through developing a new performance analysis, that shows under which conditions on the
angle of arrivals (AoA) and angles of departures (AoD) of the targets, the weak target can

be recovered via CCA, thereby discovering under which radar scenarios CCA can work.

Another interesting problem to look at is how to create the two data views to accurately es-
timate the parameters of interest. Although the two data views were constructed through
creating two partially overlapping spatial beams and carefully controlling the overlap de-
gree, it will be more interesting if we create the two views via designing two partially
overlapping band-pass filters in the Doppler domain, and then use CCA to estimate the
AoA and AoD of the weak target. This way, one can deal with the clutter effect (reflec-
tions from ground, oceans, ---, etc.), which was assumed to be filtered out on [31]. In
particular, designing band-pass filter in the Doppler domain can aggressively suppress the
clutter term because in practice the Doppler frequency of the clutter is significantly lower
than that of the targets. Therefore, we aim at designing new CCA-based method that
can solve the problem under more realistic scenarios, and to test it in real experiments as

clutter data is publicly available.

Unsupervised signal detection in unknown multipath channels. Multipath effect
refers to the reception of multiple independently faded/attenuated and delayed copies of
the original transmitted signal. The superposition of these versions of the signal is quite
different form the original signal given that destructive and constructive interference might
occur. On one hand, owing to the time shift, multipath components introduce inter-symbol
interference which together with the co-channel interference represent two major obstacles
that can significantly degrade the quality of the received signal and severely impact the
reliability of communication. On the other hand, this availability of several copies of
the signal results in an increase in the number of degrees of freedom, which if exploited

effectively, can enhance the reliability of communication.



72

Given a mixture of co-channel user signals subject to frequency-selective multipath, sensed
through an array of co-located antennas, how can we recover the user signals? In our recent
work [38], we have proposed a CCA-based framework for reliably recovering user signals
in unknown multipath environment. The method was shown very effective in terms of
accurately identifying the user relative delays and reliably decoding the user signals at low
SNR. However, the CCA-based approach was developed for a special scenario, where it was
assumed that i) different users have distinct relative delay profiles, and ii) each user receives
its signal through two paths. It will be interesting to study the more general setting of the
problem where the number of paths for the k-th user is Ly > 2, where k € {1,--- , K}.
This is in fact renders the problem much more challenging as it introduces more ISI, and
more importantly, the number of relative delays in that case will be Zszl (L2’“) Thus, a
selection scheme needs to be developed to identify which relative delays can be chosen to
recover the user signals. Another interesting point is to consider time varying channels
and see how CCA works in that case, and developing an analysis that puts conditions on

the range of the Doppler frequencies under which can still identify the user signals.

Performance analysis for fading channels and connections to multi-terminal
information theory. It will be very interesting to see how well our proposed underlay
approach, in Chapter 5, works under fading scenarios. Our results indicate that CCA still
works well under random fading, but GCCA with more than two views can certainly help
here, together with error control coding. Performance analysis under Rician fading (to
better model the primary user) and under time-selective fading models will be of broad
interest. There is very limited performance analysis available for CCA, and almost none
for GCCA, with the exception of our own prior work that employed a simple i.i.d. Rayleigh
model for fading [14,15]. The other key performance analysis question is how well does the
proposed approach fare relative to information-theoretic capacity analysis of the two-user
multi-terminal interference channel. Note that our scheme does not assume non causal
knowledge of interference or even channel state information, and no coordination between
the two users. It is interesting to see how well it fares in terms of the pair of rates it can

support relative to the attainable rates (capacity region).
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Appendix A

Proofs and Technical Claims

A.1 Proof of Proposition 1

In order to see how CCA can identify cell-edge user signals in the noisy and inter-cell interference

case, let us first rewrite the received signal at the /-th BS as
Y, =Hy, S}, + HeeST +Hyy, S) + W, (A1)

where ¢,j € {1,2} and j # ¢. Recall that, from (3.1) and (3.2), one can easily see that the
channel matrix Hy,, in (3.1) can be factored into Zg,,P'/? where Z,,, € CMex(Ke=Ke) holds
in its columns the small-scale fading vectors defined in (3.1) while Py, € RE¢=F< is a diagonal
matrix whose entries model the received signal power (product of path loss and transmitted
signal power) for each of the cell-center users served by the ¢-th BS, and likewise for Hy. and
Hy,,. Therefore, (A.1) can be equivalently written as

Yo = 24, P)2ST, + 24Py ?ST + 2, PYST + W, (A.2)

e J J

Let us first consider a simple scenario with two cell-center users (one at each BS) and one
cell-edge user located at the common edge between the two BSs. We define ), 3. and 7 as the
received signal power (RSP) of the ¢-th cell-center user at the ¢-th BS, the RSP of the cell-edge
user at the ¢-th BS, and the RSP of the j-th cell-center user at the /-th BS, respectively, for
£ # j. Furthermore, for the sake of simplicity, we assume here that the cell-edge user signal is
received with equal power at both BSs, i.e., the cell-edge user is exactly on the edge between
the two BSs. Then (A.2) can be expressed as

Y, =2z,P/*BT + W, (A.3)
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where B = [s,s,,,Sp,] holds in its columns the temporal signals of the three users, P; =
Diag([Be. Bp, Br]), P2 = Diag([Be, By, Bp]) and B = [s., S, , Sp, |, where D = Diag(d) is a diagonal
matrix with the vector d on its diagonal. The entries of Z, represent the small scale fading
between each user and the antennas at BS ¢. Z, is modeled as i.i.d. circularly symmetric
zero-mean Gaussian with variance 1/M, (corresponding to a rich scattering scenario).

We will now compute the cross- and auto-correlation matrices Ry, y,, Ry,y, as follows. Since

the cross correlation matrix, Ry, y,, is given by %YlYf , then it follows that Ry, , is given by

1
iy = T(zlpi/ BT + W,)(Z,PY*B + W) (A4

=Z,P,HY

R

where P15 = (P2P1)/2. Note that, in (A.4), in addition to the assumption that +B7B = I, we
exploited the fact that, for large T, %WngI ~ 0 and %BTW;LI ~ 0, for j,¢ € {1,2}. Similarly,

the auto-correlation matrix of the received signal of the ¢-th BS can be expressed as
RWye = ZEPZZ? +0°1 (A5)
Now, we substitute with (A.4) and (A.5) in (2.9) to obtain

7P, ZM (Z,PyZE + 0*1) ' Z,P 10 Z

_\2 H 2 (A-6)
=\ (lelzl +o I)ql

which can be equivalently written as

7111525 (ZoToZ + 1) 71257152 o

e " (A7)
= N(Z.IMZ7 + D)y

where T'y = Diag([Ve, p, V1), T2 = Diag([ve,Vs,7p]) and T2 = (ToI'1)Y/2, with v, = B./0?
be the received SNR of the cell-edge user, v, = ,/02 be the received SNR of each cell-center
user at its serving BS, and vf = Bf/0? be the received SNR of each cell-center at the other
(non-serving) BS. By left multiplying the two sides of (A.7) by HL we obtain

T12Z (ZoT2Z8 + 1)1 ZoT 1224 qy

= (1,27 + 7) (4.8)
147 1)4d1

By substituting with Z1 = (ZFZ,)~'Z, and by letting v = Z” q;, (A.8) can be expressed as

T2 Z (ZoToZ + 1)1 ZoT 1ov = N1y + (ZHZ,) v (A.9)
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By defining the matrix Z := Z& (ZsT'2ZE + 1)~ Z,, it then follows that Z can be simplified as

Z =175 (2,022 +1)7'Z, (A.10a)
= 735 (Z}(Z5T> 24" + 1)1 (A.10b)
=25 (25 (T2 + (252,) 1) (A.10c)
= (T2 +(Z5'Z2)" 1) (A.10d)

Note that in (A.10b) and (A.10c¢), we have exploited the following two properties of the pseu-

doinverse
P 1. For any square matrix A, if A is invertible, its pseudoinverse is its inverse, i.e., AT = A~1
P 2. (BA) = ATBT
By substituting with (A.10d) in (A.9), we obtain
T12(Ts + (28 Z5) ) 'T1av = (T4 +(Z17Z)) v (A.11)
which can be equivalently expressed as
Fv = \’v (A.12)

where F:=([1+(ZZ,) 1)1 (To+ (2 Z5)71) 7115 is an K, x K, matrix, and K, = 3 for
the particular scenario considered here. For ease of exposition, we will assume here that the
number of antennas M, is large enough so that (Zf Z,)~! is approximately identity. Thus,

matrix F can be expressed as

(57)° 0 0
o Yf Ve K xKg
F .= 0 m 0 € R*=% s
YfVe
0 0 G0

If each cell-center user is close to its serving BS, then 7y << 1 and . >> 1. Therefore,

the term

(W—-&% will be approximately equal to ;. Then, it can be easily seen that the
,yﬁ

maximum eigenvalue of the matrix F is equal to (7 e

e

)2 and the other two eigenvalues will be
approximately equal to . Since the maximum eigenvalue of the matrix F is nothing but the
square of the correlation coefficient that is associated with the vectors Y7 q; and Y2 qs. Then,
it turns out that the maximum correlation coefficient is given by

Ve
max — A.13
p P (A.13)

Now, we need to compute the eigenvectors q; and qs. Since the maximum eigenvector of the
diagonal matrix F is given by
v = [+1,0,0) (A.14)
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the eigenvector q; can be obtained by solving the following system of linear equations
v=27"q (A.15)

Without loss of generality, we can let qf = Z;(Z#Z,)~'v. The reason is that we can always
find two components to the vector qi; one in the subspace spanned by Z; and one orthogonal
to it, however, the latter will vanish after multiplication with Z#. By substituting with q}
in (2.8), it can be easily proved that the corresponding canonical component of the second view

a5 = Z2(Z4Zy)"'v. Define §;. := Y} q} and substitute with qj, we get the following
Sec = ﬁecsc +1ny (Alﬁ)

where ny, = Wfq}‘f € CT and ¢ = +1. This means that, in the case of single cell-edge user, the
proposed detector can efficiently recover cell-edge user signals at low SNR even in the presence
of inter-cell interference.

The generalization to K, > 1 and K; — K. > 1 now follows directly. In that case, the matrix
F will have the vector f € R on its diagonal, where

(524702, je{l,- K}

. Ve +1
f(j) - ’ Vfi Vi

[ B BE—
(v +D (1)

je{Ke+17"' 7KS}

Assume that vy, << 1,Vj € {K. +1,---,K,}. Then it can be easily seen that the largest K.
eigen vectors are the first K. columns of an K, x K, identity matrix. Upon letting V = I(:
,1: K.), the optimal solution Q} = Hy(ZHZ,)"1VM,, where My is any K, x K. non singular
matrix that satisfies the ¢-th orthonormality constraint in (2.13). Define Sy, := YZQ; and
substitute in (A.2), we obtain

Sie = S.PY/2M, + N, (A.17)

where P, = Diag([Be,, -, Bex,]), and Ny = W Qj. Note that, after obtaining Sy., we pass it
to RACMA to identify the cell-edge user signals S..

A.2 Proof of Proposition 2

In this section, we will show that the principal K. eigenvectors of the matrix
A = 25:1 Y (Y, YE) 1Y, is approximately the column space of the cell-edge user signals.

We first write the auto-correlation matrix Y, Y’ as
Y. YZ =2Z,P,Z +05°1, (A.18)

where we have exploited the facts that, at N > Ky, XTX/N ~ Iy, and E[N,NH] = ¢21,.

Define the diagonal matrix I'y := P,/0? € R¥s*Es that contains the received SNR of each user
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at the /-th BS, and Uy := Nf/o € CVXMe  and the matrix Ay := Yf(Y@Yf)_lYg. Then, by
direct substitution of (4.8) and (A.18) in the matrix Ay, we obtain

A, = XTI,z (2,0 2l +1)7 2,1} *XT

(A.19)
+UNZTZE + 1)Ul 1+ 6, +8f,

where 8, := U,(Z, L Z + I)_IZgl"éﬂXT. By applying the Woodbury matrix identity on the
matrix Cy := (Z,TZH + 1), we get

C, = (Z,T,Z +1)7! (A.20a)
=1-Z,T, ' +20Z,)'Z} (A.20D)
~1-ZT, '+ 1)1zl (A.20c)
=1-2,D,Z}, (A.20d)

where D, = T'y(T'y + I)~!. It now follows that the first term in (A.19) can be expressed as

T = Xr}/*z/ C,Z,1,* X" (A.21a)
~ XT,*(1 - D,)T,/*X” (A.21b)
= XD,XT, (A.21c)

On the other hand, the second term in (A.19) can be written as

T = Uu,c, Ul (A.22a)
=u,ul —u,z,D,ZFUl, (A.22b)

Given that Uy contains i.i.d entries with zero mean and variance 1/N while Z, contains i.i.d
entries with zero mean and variance 1/M,, both Z, and Uy are uncorrelated, and Dy < I, (=
interpreted element-wise), then it follows that the summation in (A.22b) will be dominated by

the matrix UgUf . Therefore, Tf) can be approximately written as

T ~ U, Ul (A.23)
Then, the expression §, can written as
8, = U,C,/Z,T}*X" (A.24a)
~ U,Z(1— D),/ * X" (A.24b)
— U, Z(T +1)~'T,/?XT, (A.24c)

By summing (A.23) and (A.24c), we get

T + 6, = Up(UY +Z,(T, +1)7'T}/X7), (A.25)
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where the summation on the right hand side of (A.25) is nothing but adding two Gaussian

matrices; one with variance 02 = 1/N and the other with variance o3 = %]%“ Do (—7‘_%,

where it can be easily seen that, even for modest My, 03 << o}. Therefore, the summation
in (A.25) will be dominated by T'”. Thus, combining (A.21) with (A.23), (A.19) can be written
as

A, = XD, X" + U, U, (A.26)

Recall that the optimal solution G* of (4.6) is the K. principal eigenvectors of the following

matrix
L
A=) A, (A.27a)
=1
L
=XDX" + > U, U/, (A.27D)
=1

where D := Y21, D, € RE-*K: By defining V = [X,Uy,--- , U] € CN¥(Es+Zi M) apd
Y := Diag(D, Iy, - ,Iar, ), (A.27) can be equivalently expressed as

A=VEVH (A.28)

Since XX a I, and by definition Ung ~ I, V¢, then VAV =~ Ik i, it can be readily
seen that the right hand side of (A.28) is nothing but the eigendecomposition of the matrix A.
Recall that the i-th diagonal entry of the matrix D is given by

L

D = Z Tie, (A.29)
=1

From (AS2) and by assuming that the received signal power of the k-th cell-edge user at the ¢-th
BS is few dBs above the noise floor, i.e., 7y > 0.5 Vk=1,--- | K. and £ = 1,2, 3, the eigenspace

of the K principal components of the matrix A is given by
G"=X.P, (A.30)

where P is any K. X K. non-singular matrix.



Appendix B

Acronyms

This appendix contains a table of acronyms and their meaning.

Table B.1: Acronyms

Acronym Meaning

CCA Canonical Correlation Analysis

GCCA Generalized Canonical Correlation Analysis
5G Fifth Generation

LTE Long-Term Evolution

MIMO Multiple-Input Multiple-Output

UE User Equipment

SDR Semidefinite Relaxation

BER Bit Error Rate

SER Symbol Error Rate

MLD Maximum Likelihood Detector

ZF Zero Forcing

MMSE Minimum Mean Squared Error

SIC Successive Interference Cancellation
IoT Internet of Things

DSA Dynamic Spectrum Access

SNR Signal to Noise Ratio

SINR Signal to Interference plus Noise Ratio
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