
Thesis Project Portfolio

Assistive Chessboard

(Technical Report)

Human vs. Artificial Intelligence (AI) Matchups in Strategy Games have Facilitated the

Growth of AI Technology

(STS Research Paper)

An Undergraduate Thesis

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Iain Ramsey

Fall, 2022

Department of Electrical and Computer Engineering

Table of Contents

Sociotechnical Synthesis

Assistive Chessboard

Human vs. Artificial Intelligence (AI) Matchups in Strategy Games have Facilitated the Growth

of AI Technology

Prospectus

Sociotechnical Synthesis

(Executive Summary)

Human and Artificial Intelligence (AI) Interaction in Strategy Games

“Personally, I rather look forward to a computer program winning the World Chess

Championship. Humanity needs a lesson in humility.” – Richard Dawkings

My technical and STS topics are strongly related because both fundamentally involve

human and AI interaction. In my STS topic, I researched three case studies of newsworthy

human vs. AI matchups in strategy games and found that development of AI technology

increased as an outcome of these events. In my technical report, I designed a chessboard where

players can play against an AI, creating a device to facilitate human and AI interaction. I chose

my technical report because I’m a chess enthusiast who plays against online chess AI almost

daily, but I wanted the opportunity to play against AI in a physical setting as well. I chose my

STS topic because strategy games like chess, go, and poker, have always been interesting to me

and I wanted to find a research topic that intermixed these games with AI technology in a

meaningful way.

For my technical report, I created an electronic chessboard that interfaces with a chess AI

to recommend moves to the players. Using an array of magnetic sensors underneath the board,

the location of each chess piece is detected, and this information is passed to a computer to be

processed. Next, the chess AI calculates one or more recommended moves, and squares

underneath the chessboard are illuminated with light emitting diodes (LED’s) to indicate to the

players which move(s) to make. This process repeats each time a player makes a move until a

win, draw, or loss has occurred. In addition, a graphical user interface (GUI) is used to allow

players to configure a multitude of settings like AI strength, number of recommended moves,

and quantity of time for the AI to think. This assistive LED chessboard serves as a learning tool

for hobbyist chess players and allows for humans to interact with an AI in a physical capacity,

providing a unique experience that otherwise cannot be achieved online.

 Figure 1. Assistive LED Chessboard Figure 2. Graphical User Interface

For my STS research topic, I evaluated how newsworthy human vs. AI matchups in

strategy games have affected the research and development of AI. I used Actor Network Theory

(ANT) and case study analysis to guide my research. First, I analyzed the historic Gary Kasparov

vs. Deep Blue chess match in 1997 and discerned how various actors responded to a computer

overtaking the best human chess player. Next, I researched the AlphaGo vs. Lee Sedol Go match

in 2016 and I speculated on possible implications for computer science theory in the future.

Finally, I studied the Libratus vs. professional poker players event that occurred in 2017 and

evaluated how skills utilized in poker can be translated into real world problems like business

negotiations and diplomacy. The most important takeaway from my research was that successful

victories by AI serve to broaden human’s minds to the potential possibilities of AI and

effectively expedite the development of the technology.

Strategy games and AI have been longstanding passions of mine, and both my STS and

technical report provided opportunities to merge these two interests together in a way that also

expanded my knowledge. My STS research enriched my technical report because I learned about

the history of chess playing AI and how the technology has improved over the past three

decades, enabling for a deeper appreciation of the AI that I was programming in code. My

technical report enriched my STS research because I was able to replicate a similar environment

to the Gary Kasparov vs. Deep Blue game, allowing me to consider things from Kasparov’s

point of view and reflect how it feels to lose against a perfect chess playing robot.

Assistive Chessboard

A Technical Report submitted to the Department of Electrical and Computer Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Iain Ramsey

Fall, 2022

Technical Project Team Members

Srikar Chittari

Ramie Katan

James Weeden

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Harry Powell, Department of Electrical and Computer Engineering

Assistive Chessboard

Ramie Katan, Srikar Chittari, James Weeden, Iain Ramsey

12/13/2022

Capstone Design ECE 4440 / ECE4991

Signatures

Statement of work:

Ramie Katan:

My responsibilities primarily focused on designing an identification system for the chess

pieces. Specifically, I researched Hall Effect sensors that would be both cost effective and act as

a switch. As the Hall Effect sensors are digital sensors, being omni polar would create a more

reliable system as we only need to detect whether a magnet was placed on the tile or not. I also

was in charge of making sure the system was able to receive power as well as designing a way to

power the system and control the sensor board using a Raspberry Pi Pico. I created all the

schematics and board layouts for the PCBs using the capstone project. The voltage regulator

board contains a step-down buck converter which converts 5V to 3.3V. This allows a safe supply

voltage level for the raspberry pi pico and sensor boards to operate. I also was in charge of

creating a power system for the LEDs so Srikar could interface with them. Throughout the

project, I made sure to work closely with Srikar so that the embedded programs would work

without significant modifications. I also helped debug issues with the sensor board, LEDs, and

voltage regulator board to ensure completion of the project.

Iain Ramsey:

My responsibilities were implementing the serial communication between the Raspberry

Pi Pico and PC, developing the finite state machine (FSM) game algorithm, and designing the

physical board in CAD and manufacturing and assembling the acrylic parts. For the serial

communication, I wrote both embedded C and python code to enable two-way communication

between the Pico and PC. For the FSM, I created an algorithm that processes signals sent from

the Pico and determines if a legal chess move has been made. The FSM also recognizes when

illegal moves have been made, interfaces with the Stockfish chess engine, and writes signals to

the Pico to illuminate the LED’s. The FSM serves as the bridge between many different

subsystems because it interacts with the embedded software, GUI, and chess AI simultaneously.

For the mechanical design and manufacturing, I created CAD files in Solidworks to model the

chess board. Then, converting the CAD files into .dxf, I laser cut acrylic sheets using a machine

in the mechanical engineering building. Finally, I used acrylic weld-on and super glue to

assemble the acrylic pieces. I would like to acknowledge that a friend (Alexa Borden) in the

mechanical engineering department provided me access to their laser cutter and advised me on

the design of my CAD files. I would not have been able to build as pretty or robust of a

chessboard without their help.

Srikar Chittari:

My main responsibilities were programming the firmware of the Raspberry Pi Pico and

developing the Graphical User Interface (GUI). I programmed the Pico to read the hall-effect

sensor network and send the chess board state to the PC over USB serial. I worked with Ramie to

test and debug the signals from hall-effect sensors and multiplexers on the sensor board. Using

Progammable I/O from the Pico’s SDK, I programmed the Pico to interface with WS2812b

addressable LEDs and drive a matrix of 64 LEDs under the chess board. I tested and debugged

the protocol and LEDs, and I worked with Ramie to test and debug the logic level translator. I

wrote a library in Python to create format recommendations and errors that would be sent to the

LED driver code. I also built off James’ initial work on the GUI and integrated it with the FSM’s

real-time updates. I implemented features that would allow the user to start at the beginning of a

chess game or in the middle of a game and configure their move recommendations and Stockfish

AI settings during the game. I developed James’ preliminary chess clock to toggle the active

player’s clock automatically and support several time limits options. I improved the UI on the

GUI to provide an intuitive and responsive experience during the game. As a secondary role, I

helped Iain come up with ideas for the FSM implementation and detecting the chess board state.

James Weeden:

For the project my central role revolved around the creation of a graphical user interface (GUI)

in Tkinter that allows for the user to configure settings of the stockfish chess AI in game. In

completing this role, I built out the main Python framework, setting up widget placement and

working to prepare the GUI so that Srikar and Iain could help get it working with the FSM in

real time. Furthermore, I designed a menu system to allow users to control sliders that tune

parameters of the AI that Srikar himself specifically connected the GUI to regardless of the side

that they are playing. I created separate functions to implement countdown timers that were later

transferred to more readable clock displays in standard time by Srikar. To give players a clear

indicator of the connection between the board and the GUI, I created a live time display of the

board that moved pieces in the center of the GUI with respect to actual movements on the board.

This included design of a resizable chess set and implementation of custom piece graphics to

make the board display easier to modify.

Table of Contents

Capstone Design ECE 4440 / ECE4991 1

Signatures 1

Statement of work: 2

Table of Figures 5

Table of Tables 5

Background 6

Physical Constraints 8

Design Constraints 8

Cost Constraints 8

Tools Employed 9

Societal Impact Constraints 9

Environmental Impact and Sustainability 9

Health and Safety

10

Ethical, Social, and Economic Concerns 10

External Considerations 11

External Standards 11

Intellectual Property Issues 11

Detailed Technical Description of Project 13

What it is 13

How it works 13

Hardware 14

Software 23

FSM 23

GUI 25

Project Timeline 37

Test Plan 39

Final Results 41

Costs 43

Future Work 44

References 46

Table of Figures
Figure 1: Block Diagram of the Full System .. 14

Figure 2: Top level of Sensor Board ... 15

Figure 3: Top level of Voltage Regulator Board .. 15

Figure 4:Voltage Regulator... 16

Figure 5: 8 Hall Effect by 1 Mux schematic ... 17

Figure 6: 8 Muxes by 1 Central Mux schematic ... 18

Figure 7: Sensor Board Layout ... 19

Figure 8: Sensor Board Layout ... 20

Figure 9: Flowchart of Algorithm ... 24

Figure 10: FSM Diagram .. 24

Figure 11: GUI starting screen .. 25

Figure 12: Default Recommendation Mode ... 26

Figure 13: Grandmaster Recommendation Mode ... 26

Figure 14: Starting from custom, mid-game screen.. 27

Figure 15: Clock options ... 28

Figure 16: Chess Clock ... 28

Figure 17: CAD Assembly of Top Surface... 29

Figure 18: CAD File of Front and Back of the Chess Board .. 30

Figure 19: CAD File of Input/Output Ports .. 30

Figure 20: Ring Around the Magnet ... 31

Figure 21: Laser Cutting Acrylic Sheets. The Machine can be found in the M.I.L.L of the

Mechanical Engineering Building. ... 32

Figure 22: Assembling the Chessboard Grid .. 33

Figure 23: Finalized Chess Top Surface ... 34

Figure 24: Finalized Chess Top Surface ... 34

Figure 25: Finalized Chess Board ... 35

Figure 26: Initial Proposed Timeline .. 37

Figure 27: Midterm Design Review Proposed Timeline .. 38

Figure 28: Finalized Timeline ... 39

Figure 29: Decision Tree for Test Plan ... 40

Table of Tables
Table 1: Current Consumption of Components .. 16

Table 2: Hall-effect sensor network multiplexing .. 21

Table 3: LED mapping.. 22

Table 4: Grading Rubric ... 42

Table 5: Letter Grade based on Rubric ... 43

Table 6: Cost of Parts .. 43

Abstract

The Assistive LED Chess Board is an educational tool that promotes chess enthusiasts,

beginners, and advanced players alike, to improve their skills. The interactive chess board

illuminates the chess squares showing the user recommendations from a chess engine. Users can

configure the recommendations of the chess engine, from engine strength and frequency to the

number of recommendations in the graphical user interface. Each chess piece has a magnet at its

base, and a network of 64 hall-effect sensors determines the position of the chess pieces. Using a

known chess position, either the starting position or a mid-game position, the sensor network is

scanned repeatedly by the Raspberry Pi Pico, tracking the movements of chess pieces. This

method allows the identities of the pieces to be differentiated in software. Using the board

position and the user’s recommendation settings, chess move recommendations are generated

using Stockfish [12] running on a personal computer (PC). The Raspberry Pi Pico interfaces with

light-emitting diodes (LEDs) to illuminate the chess squares involved in the

recommendations. This chess board integrates artificial intelligence and human-computer

interaction, allowing chess players to study the strategies of a reputable chess engine while

building their intuition and skills.

Background

Why we chose this project

The intersection of artificial intelligence (AI) and human-computer interaction (HCI) is

one that lends itself to game products. In many instances, AI is used to create an opponent for

users, but AI can also help players improve at logic games such as chess. The AI in chess

engines can be harnessed to help beginners learn chess and assist advanced players to sharpen

their skills. In addition, standard online chess lacks the HCI that can help beginners improve. By

letting users interact with physical chess pieces and displaying recommendations visually,

beginners are more likely to retain chess strategies. On the other hand, advanced chess players

would benefit from a physical chess set as it can emulate a tournament-like experience. An

interactive chess board that improves AI and HCI will not only motivate players to improve their

craft, but it has the potential to change the status quo for how players practice chess.

The industry standard for assistive chess boards is ChessUp by Bryght Labs [2]. This

board can interface with an AI, illuminate chess tiles using capacitive touch, and wirelessly track

chess pieces on the board. The product can indicate the optimal move, a mediocre move, and a

blunder based on the configured strength of the AI. ChessUp can also wirelessly interface with

chess.com [22] to update a player’s rankings. However, the steep $370 price tag on ChessUp is a

limitation that may cause amateurs to look for alternatives.

Differentiating Factor

This assistive chess board is a popular concept and has been implemented several times

in the literature. Specifically, piece detection is an active area of research. Muji et al. designed a

chess board using linear hall effect sensors and differing magnets strengths for piece

identification [9]. The chessboard was able to achieve a reliability of 80% on piece recognition.

Kaufman, Patel, and Sun of the University of Illinois also designed a chess board using magnetic

strength and analog hall-effect sensors to differentiate chess pieces [3]. Similar to the product by

Bryght Labs, they used LEDs on the chess board to recommend chess moves. While their

implementation was successful overall, they experienced unexpected behavior from hall-effect

sensors. Another project by Coven of the Massachusetts Institute of Technology implemented

piece detection using capacitive touch sensors and found the method to be highly susceptible to

slight variations in piece alignment [11]. He found that the chess pieces needed to be placed

exactly in the center of each chess square; placing a chess piece off center may cause the sensor

to read the piece as if it was on the adjacent square. Existing implementations have used

capacitive sensors or magnetic strength to differentiate chess pieces, but these methods often

produce unreliable results and are easily influenced by the preciseness of the user’s chess pieces.

This capstone project aims to improve on the aforementioned designs with respect to

piece detection. Digital hall effect sensors are found to be more reliable because they are

dependent on the presence of a sufficiently strong magnet and are not influenced by the strength

of the magnet [23]. The hardware will be responsible for detecting the presence of a piece on a

chess square, and software will handle differentiating chess pieces. Given a known chess

position, either the starting position or a mid-game position, the placement of chess pieces can be

tracked in memory as the game progresses. The software differentiating and tracking pieces will

also check the validity of chess moves. This strategy will simplify the hardware needed for piece

detection and prevent a chess piece from being misidentified by alignment issues between the

piece and sensor. In addition, this project looks to improve on past implementations by creating a

high degree of configuration for chess recommendation including AI engine strength, AI engine

depth, and number of recommendations. This project pairs a simple but elegant hardware design

with robust software game logic to create an intuitive and responsive chess board.

Previous Coursework

This project draws on knowledge gained in several engineering courses in the Electrical

Engineering and Computer Engineering curriculums. Ramie will design the power supply using

concepts taught in ECE Fundamentals I (ECE 2630), ECE Fundamentals II (ECE 2660), and

ECE Fundamentals III (ECE 3750). He will also implement the hall-effect sensor network using

magnets, logic level sensors, and multiplexers, which is material covered in Digital Logic Design

(ECE 2330) and Electromagnetic Fields (ECE 3209). Embedded Systems (ECE 3501/3502) will

play a crucial role in providing Iain and Srikar with an understanding of how to design the

game’s finite state machine (FSM) and Raspberry Pi Pico’s firmware respectively. Srikar will

also draw on concepts from Operating Systems (CS 4414) to synchronize concurrent tasks on the

Pico. The material covered in Advanced Software Development (CS 3240) will help Iain

integrate the Stockfish API and allow Srikar and James to develop the graphical user interface

(GUI). Iain and Srikar will also draw from other computer science courses such as Program and

Data Representation (CS 2150) and Algorithms (CS 4102) to integrate the software and firmware

and implement efficient data processing.

Physical Constraints

Design Constraints

 One of the biggest design constraints for our project is the computational power needed

to run Stockfish to recommend moves in a relatively quick timeframe. The more memory

Stockfish has allocated, the fast it will generate recommendations. We opted to use a PC over a

Raspberry Pi to run Stockfish due to more RAM and multithreading to yield a more responsive

chess board. Furthermore, our PCB would have benefitted from being slightly bigger as the

LEDs on the LED light strip are spaced 1.1 inches apart, while the hall effect sensors are spaced

1 inch apart from each other. Unfortunately, due to the manufacturing limitations from Advanced

PCBs, a 60 square inch board is the maximum size board. Due to the nature of that constraint, we

needed to create two PCBs for this project.

Cost Constraints

One major constraint that we have identified midway through the design process was the

amount of money 3W would charge for soldering the components onto the boards. As we have a

budget of $500, if we were going to use our original design, it would cost us well over $500 just

in soldering the components. Thankfully, we downscaled to a much more reasonable scale. Due

to the downscale, we adjusted the number of parts needed for the project. Therefore, neither cost

nor availability of parts was a concern for the majority of the project.

Tools Employed

For hardware design, KiCad was used to create the schematics and the board layout [14].

WeBench allowed for an easy way to select the voltage regulator components tailored for our

needs [18]. Visual Studio Code was used for software development and debugging the

embedded programs, FSM, and GUI [16]. The Arm GCC compiler was used to compile the

embedded programs on the Raspberry Pi Pico [31]. CMake was used to manage the embedded

build process and produce binaries for the Pico [32]. The embedded toolchain with Arm GCC

compiler and CMake was a new workflow and involved a learning curve early in the project. The

embedded programming was done in C [17]. The chess engine Stockfish was used to implement

the game logic [12]. The FSM and GUI were programmed in Python 3 due its integration with

Stockfish API, serial modules, and GUI libraries [15]. Git was used for software version control

[33].

For the design and manufacturing of the acrylic board, Solidworks was used to design the

CAD files [34]. Acrylic weld-on and super glue were used to assemble the acrylic pieces.

Finally, sandpaper was used to polish the acrylic bases of the chess pieces. Since the light from

the LED’s must be visible through the chess board, we decided to use semitransparent acrylic for

our physical manufacturing. The mechanical engineering’s laser cutter will be used to machine

acrylic sheets into squares that will assemble to form the grid of the chess board. Acrylic panels

will be used on the sides and bottom of the PCB to provide housing for the electronics and

produce an aesthetic project. Laser cutting was chosen over other manufacturing options because

it produces very smooth cuts and mitigates the risk of fracturing which is possible when a blade

is used [24].

Societal Impact Constraints

Environmental Impact and Sustainability

With the use of a personal computer to power the Stockfish artificial intelligence engine,

it was deemed not necessary to use batteries for the power supply, instead relying on power from

the computer of choice. This allows the team to avoid sustainability issues with water

contamination and low recycling rates associated with battery usage [20]. Furthermore, the

Nippon Chemi-Con MVY-series aluminum electrolytic capacitors are given an estimated

lifespan of 5,000 hours [21], and, in general, LEDs are given an estimated lifespan of 50,000

hours. Each of these components are RoHS compliant, ensuring that restricted materials

including “lead (Pb), mercury (Hg), cadmium (Cd), hexavalent chromium (CrVI),

polybrominated biphenyls (PBB), polybrominated diphenyl ethers (PBDE), and four different

phthalates (DEHP, BBP, BBP, DIBP)” [29].

 Some limitations of the board include the use of acrylic for the board surface and casing,

which is not easily recyclable. From an economic standpoint, increased production will allow for

the cost of PCBs replacements to decrease due to economies of scale. The use of 8 separate

controllable LED strips does allow for only one strip needing replacement in the case that a

single LED on a row fails.

Health and Safety

 Given the nature of the project revolving around a chessboard and ai engine running on a

PC, consumer safety issues are relatively minimal and not a significant challenge posed to the

project. However, choking hazards do exist for the integrated magnets within each of the chess

pieces for the hall effect sensors to detect. To mitigate this issue, the magnets will be recessed

within each of the chess pieces and secured using a strong epoxy. The strength of this adherence

will then be tested by attempting to pull the magnets from the chess pieces, modifying the

magnet integration within the pieces as necessary either by changing the epoxy or piece design.

Furthermore, the acrylic top to the chessboard containing the PCB and sensors will be

fastened using screws to ensure that users are not able to easily access the underlying electronics.

Protection against electrical issues including but not restricted to shorts and ground faults will

also be taken into consideration in the design of the PCB, additionally following the RoHS,

NEMA, and IP safety standards detailed in the standards section of the proposal. The PCB will

be designed using nontoxic materials to further ensure safety of the board users.

Ethical, Social, and Economic Concerns

While chess AI can do lots of good when used as a training tool, the technology has

potential for harm when used to cheat. In particular, cheating in online chess has increased

dramatically in the past decade, with chess.com banning on average 500 accounts per day for

cheating [10]. Although our chess engine will run locally and not interface with any online

API’s, the assistive chess board could still be used to cheat if a player had two chess games

going simultaneously, one physical game on the assistive chess board and one online game. The

player could wait for the squares to light up on our assistive chess board and then make the same

move in an online game. However, the typical method that players use to cheat online is by

having a chess engine running on a separate monitor, and this method is both faster and more

accurate than if a cheater used our product. With this in mind, we reason that while our product

could potentially be used to cheat in chess, it would be less effective than conventional cheating

methods, and therefore would not lead to a significant increase in cheating. In addition, mining

silica can have negative effects on the environment [25], and since hall effect sensors use

semiconductors with silicon the ethical constraints on the environment must be considered,

especially because our project will use 64 hall effect sensors. On the economical side of things,

this device costs around $300 to manufacture. This means that economically disadvantaged

people will be unable to purchase this device.

External Considerations

External Standards

 Given the use of a PCB and additional electrical equipment, an enclosure following the

IEC type 1 standard will need to be implemented. This will be designed to protect the user from

hazards such as electric shock and protect the devices from outside particulates and light [4].

Regarding the IP safety standards, the product will need to meet the designated IP11 rating,

which will “provide a degree of protection to personnel against incidental contact with the

enclosed equipment and to provide a degree of protection against falling dirt” [5]. Regarding the

use of a PCB, the IPC-2221 standard will be followed. This standard outlines the proper

implementation of features such as impedance control, PDN bus layouts, and conductor

clearance [6].

With the use of two programming languages, C for embedded design and Python for the

implementation of the AI algorithm, certain coding standards are to be held in order to provide

cleaner and more reliable code. For C development, the Barr coding standard will be adhered to

[7], while the PEP 8 coding standard will be observed for Python development [8].

Intellectual Property Issues

Several patents exist which overlap with the underlying technologies used in our project.

These include chess piece detection, on board lighting of the chessboard tiles, and artificial

intelligence to dictate potential moves. With the existence of these patents, it is assumed that the

assistive chess board does not have potential to be patented. As detailed under patent law in The

U.S. Patent Act, “the invention must be statutory, novel, useful, and non-obvious” in order to be

patentable [35]. While the piece detection approach may satisfy the requirements of being

“statutory, novel, and non-obvious”, it is unclear whether it provides “useful” advantages over

boards such as one patented by Bryght Labs that achieves the same effect [27]. Described below

are three patents that cover material relevant to our chessboard.

One patent granted to Bryght Labs, Inc. details an “apparatus, system, and method for an

electronically assisted chessboard”. Under this patent there are several significant overlaps in

chessboard goals, including “determining a current location on the chessboard of each chess

piece”, displaying “the set of valid moves available for the selected chess piece” through an

“illumination system to display on the chessboard” the three first most valid moves for the

current player. Each of these closely match the intentions of our board, giving a very similar

purpose for piece detection and tile illumination for recommending the three most valid moves

determined by an artificial intelligence actor. Player recommendations are done through,

“selecting a plurality of moves for inclusion in a group of moves based, at least in part, on the

skill level of the human player”. While this same action is achieved by our project, it is done

through the integration of Python StockFish, which is already listed as open source.

Piece detection in the Bryght Labs patent is described as “a capacitive sensing system”

that “can include a capacitive sensing array in contact with the playing surface”. While our

system differs with the use of single hall effect sensors and saved game states to remember piece

locations, it is unclear whether this implementation serves as a “useful” improvement to the

capacitive sensing system in terms of energy consumption, ease of use, and piece detection

interference, since “the capacitive sensing system can include sensing by row and column at an

8x8 resolution or higher resolution grid if desired”. In addition, “the lighting array includes color

RGB LEDs”, mitigating any benefits that our use of driven RGB LED strips may provide. This

patent by Bryght Labs depends on work developed in capacitive sensors and tile illumination set

out in other patents and is thus a dependent claim on previous patents.

An additional patent reviewed is one for an “electronic chess game” designed such that

“each playing piece is encoded in accordance with its identity, and each playing position

automatically responds to the encoding when it is occupied by a playing piece” [28]. The means

of response is “an electrical circuit associated with the playing position causes other positions to

which the playing piece is capable of moving to be illuminated with an appropriate color”. Not

relying on an AI engine to determine the best move, this circuit is designed to simply show all

possible moves a piece can make on the board, not necessarily the most optimal one as

determined by an algorithm. This implementation requires a four-bit signal to be sent from the

piece, resulting in more complex circuitry. This patent is a dependent claim building off of cited

patents in digital encoding and piece detection. Our implementation has the advantage of using a

single bit sensor for detecting whether a piece is present or not on a tile and then referring to

previous board state as a means for discriminating pieces, providing a “statutory, novel, useful,

and non-obvious” improvement to this patent.

Another patent reviewed is a chess game board in which “each of the playing pieces has

different codes which can be detected by sensors”. These sensors have outputs that “are

connected to a signal processing device via which the course of the game is stored and/or

evaluated” [26]. The purpose of this board is to “detect which figure is in which place” in a game

of chess. Similar to our project, the board uses Hall effect sensors, but instead opts for an analog

sensor and an analog to digital converter. The “output of the analog / digital converter is”

connected via “a bus with the input of a microprocessor” to decode which piece is at a given

location. To discriminate between pieces, “all black pieces or all white pieces are given

differently long bar magnets, so that there is a different coding for all figures.” This patent is a

dependent claim building off of cited patents in magnetic piece detection and chess boards that

continuously monitor piece positions. Our team’s novel use of digital hall effect sensors allows

for a lack of need for different strength magnets and shielding to prevent other sensors from

picking up incorrect strengths from magnets on adjacent pieces, only relying on an ON/OFF

signal.

Detailed Technical Description of Project

What it is

The assistive LED chess board is an educational tool for chess enthusiasts, from

beginners to advanced players. Users can employ this chess board in several ways. One player

can play chess against an AI engine of varying difficulties and choose to receive no

recommended moves, a recommendation on every move, or recommendations upon request.

Alternatively, two users can also play against each other, configuring the frequency of

recommendations and AI difficulty to their desire. Due to the varying levels of AI assistance, this

chess board can be used to improve the skills of beginners and professionals alike. This chess

board integrates AI and human-computer interaction, allowing chess players to interact with

physical pieces while learning how to improve their skills.

How it works

The positions of chess pieces are tracked by magnets and hall-effect sensors. Each chess

piece has one magnet at its base. Under each chess square, there is a hall-effect sensor that senses

the presence of a magnet. With a network of 64 hall-effect sensors, each square on the chess

board can be monitored on whether or not a chess piece is at that location. The sensor network is

scanned around 20 times a second, which allows it to recognize positional movement. For

example, if a chess piece is lifted up and placed in a different position, the sensor network would

recognize where the piece was lifted and where it ended up. By continuously scanning the

sensors, the chess pieces can be tracked as they move around the chess board. Once the

Raspberry Pi Pico determines the current position of the chess board, this data is sent to the PC

over serial USB, where the validity of the position is determined. Using the GUI, the user will

select their recommendation settings and the PC interfaces with Stockfish API to produce the

recommended chess move for the current position. The recommendation will be converted into a

matrix that indicates which LEDs need to be illuminated. The matrix will be sent to the Pico via

serial USB, illuminating the LEDs of the squares involved in the recommended move. The user

can make the suggested move or disregard the recommendation, at which point a new board

position is detected causing the process to repeat. This process is more clearly shown in Figure 1,

as we can see the 5V input source powering the LEDs and the voltage regulator powering the

sensor network.

Figure 1: Block Diagram of the Full System

Hardware

 The hardware system consists of two PCBs. Of the two PCBs, one acts as a sensor board, and the

other one acts as a voltage regulation board which contains a Raspberry Pi Pico microcontroller. The

Raspberry Pi Pico is crucial for controlling the logic for the entire system. We chose to split the boards

into two distinct sections because freedfm, the manufacturers of the PCB, did not allow a PCB greater

than 60 square inches. As the sensor board reached 58 square inches, it was deemed necessary to create a

secondary board for the additional functionality. Figures 2 and 3 show the overall schematic of the sensor

board and the voltage regulator board respectively.

Figure 2: Top level of Sensor Board

Figure 3: Top level of Voltage Regulator Board

Voltage Regulation and Microcontroller

 The assistive chessboard system is powered by a wall transformer that connects to a barrel jack

connector on the voltage regulator PCB. Figure 4 shows the components used in the voltage regulator

system.

Figure 4: Voltage Regulator

Our board uses this voltage regulator to power the sensor board. It converts a 5V source

into a 3.3V source required for use to power the sensor board. Furthermore, the 5V input will

also be used to power the LED light strips, as they require quite a significant amount of current

to power on. Table 1 will show a list of components our circuit needs to be able to supply power

too.

Our board uses this voltage regulator to power the sensor board. It converts a 5V source

into a 3.3V source required for use to power the sensor board. Furthermore, the 5V input will

also be used to power the LED light strips, as they require quite a significant amount of current

to power on. Table 1 will show a list of components our circuit needs to be able to supply power

too.

Component Current (A)

Hall Effect Sensors (64) 0.1024

Muxes (9) 0.01024

LEDs (64) 3.84

Total Consumption 3.953

Table 1: Current Consumption of Components

The voltage regulator, designed to take in an input of 5V and output 3.3V, can supply a

maximum current of 0.200A. The maximum current consumption of the sensor board is 0.11A.

This means that the sensor power requires 0.363W. The voltage regulator is operating at 61%

load. The LEDs, on the other hand, will require 19.2W of power while they are on full

brightness.

 The microcontroller will always be connected to a computer for this project to function as

intended. Therefore, the microcontroller will be powered by the computer the chess board is

connected with using a Micro-B USB to USB-A cable.

Sensor Board

 The hall effect sensors were used to detect if a chess piece was on the given tile. These

sensors contained three pins: VCC, Vout, and Ground. The TCS40DPR,LF hall effect sensors we

chose were omnipolar, digital hall effect sensors since we only needed to verify whether a

magnet was on the tile or not. The hall effect sensors allowed for a voltage of 3.3V, which

allowed the hall effect sensors to output into a mux without needing to step the voltage down or

step the voltage up. This hall effect sensor worked well with our project, as knowing the polarity

of the magnet was not a necessity. Furthermore, as the hall effect sensors are digital, we do not

need to worry about the strength of the magnet. As long as the magnet is close to the sensor, the

hall effect sensor would work as intended. One major concern about the hall effect sensors was

the ability to sense the magnets of their nearby neighbor. To prevent this issue from occurring,

we spaced each hall effect sensor 1 inch apart from each other. We also chose smaller, weaker

magnets as an extra precaution.

Figure 5: 8 Hall Effect by 1 Mux schematic

In figure 5, we can see that the hall effect sensors used would send their signal straight

into a CD74HCT251E multiplexor. This multiplexor is able to handle the 3.3V signal given by the hall

effect sensors and safely pass the signal onto the Raspberry Pi Pico. We chose an 8 by 1 digital

multiplexor because it was cost effective and allowed us to sense several tiles with one component. As the

hall effect sensors and multiplexors used in the project are digital, Furthermore, the signal that was passed

through to the multiplexor is a digital signal, which would make the use of an analog multiplexor a

wasted effort. Using the circuit from figure 5, we can copy that circuit and use the output of eight

multiplexors as an input to a central multiplexor. This central multiplexor’s output would subsequently be

used as an input to a raspberry pi pico for sensor data collection. This dynamic is more closely seen in

figure 6.

Figure 6: 8 Muxes by 1 Central Mux schematic

Board Layout:

 As mentioned previously, we needed to design two boards for our project. Figure 7

showcases the sensor board layout. One major concern, while creating the traces of the board,

was to allow the power rails to have many connections with each other. Allowing several

connections between the power rail and the ground rail will allow current to flow in all directions

and reduce inductance in the wire. An important factor in our design was to reduce inductance in

the wire so that the hall effect sensors would not pick up on that magnetic field. The hall effect

sensors are spaced 1 inch apart from each other. Every 8 hall effect sensors will be connected to

a multiplexor, which in turn will be connected to a central multiplexor. This helped reduce the

number of pins needed for input sensing, while allowing the GPIO pins for the Raspberry Pi Pico

to be used for other components in the system. As it was important to make sure that the LEDs

and the hall effect sensors are under each tile, we needed to make sure that the test points were

soldered on the bottom side of the board so that they do not interfere with the pathing of the

LEDs.

Figure 7: Sensor Board Layout

The next board that needed to be created was the voltage regulator. The layout of the

voltage regulator board is shown in figure 8. There are multiple critical components in this board

that ensure the functionality of the device. Specifically, this portion of the project is very

important as it is the power supply for the sensor board and the LED strips. The voltage regulator

board also contains the housing for the microcontroller, which will send signals to the LED light

strips and the sensor board.

Figure 8: Sensor Board Layout

In the voltage regulator board, we made the traces large enough to handle 4A of current at 5

volts. Specifically, these 100 mil traces are designed to support all the LEDs at full brightness as

well as convert the input of 5V to a safe supply voltage that the sensor board can use.

Voltage Level Translator

 One critical aspect of the project was understanding how to implement the LEDs.

Through countless concept designs, we arrived at the idea of using LED light strips. Each LED

contains a mini controller called “WS2812B”. This controller would allow us to easily interface

between the LEDs and the Raspberry Pi Pico. Unfortunately, one major problem arises if we use

that specific LED controller. The LEDs and the WS2812B controller require the use of a 5V

VCC and a 5V data line. Unfortunately, the Raspberry Pi Pico is only capable of supplying a

maximum voltage of 3.3V. This means that we will need to use a voltage level translator that

will boost the 3.3V signal coming from the Raspberry Pi Pico and convert it into a signal of 5V

that is usable for the WS2812B.

Firmware

 The Raspberry Pi Pico was the microcontroller used for this project. It was selected due

its ability to run on FreeRTOS, interfacing with GPIO pins, integration with the WS2812B LED

strip, and built-in serial module. The microcontroller was programmed in C. The FreeRTOS

kernel was used to configure interrupts and run tasks concurrently. Three tasks were used: sensor

network processing, LED interfacing, and serial communication.

Sensor Network Processing

 One FreeRTOS task was used to scan the hall-effect sensors repeatedly (around 20 times

a second) and write the board state to the PC using serial USB communication. The sensor

network board had 64 hall-effect sensors that multiplexed to one GPIO using nine 8:1 digital

multiplexors. There are 8 lower-level multiplexers, and each multiplexer reads the sensors of 8

chess tiles. The outputs of the 8 lower-level multiplexers are inputs to one higher level

multiplexer. This allows us to multiplex 64 hall-effect sensors to one GPIO pin that will be used

to read sensor data. Table 2 shows the mapping of multiplexers to physical chess squares.

Table 2: Hall-effect sensor network multiplexing

In each chess square, the numbers indicate the input of the multiplexers that allow the

square to be selected. The format is as follows: <Higher level mux input number>. <Lower-level

input mux number>. For example: to read sensor D6, the higher-level mux input 2 must be

selected and the lower-level mux input 5 must be selected. A function sets the select bits to read

the desired input number from the multiplexer.

 The sensor network is read by iterating through all 64 sensors and storing the values in a

buffer of 64 chars. Since the hall-effect sensors are active low, the GPIO pin reads the voltage

and determines if a magnet is present on that square. A “1” or “0” is stored if a magnet is present

or not present respectively. The “0” or “1” character is written to a specified location in the

buffer relative to the physical chess square location. In the buffer, each consecutive group of 8

characters represent one row of the chess board. The first 8 characters correspond to row 8 of

the chess board (from column A to column H). The next 8 characters correspond to row 7 of the

chess board (from column A to column H) and so on. The second to last 8 characters correspond

to row 2 of the chess board (from column A to column H). The last 8 characters correspond to

row 1 of the chess board (from column A to column H). Once the buffer is full of sensor data, it

is sent to the PC via serial USB for further processing by the FSM.

LED Interfacing

The Raspberry Pi Pico interfaced with the WS2812B RGB LED strips using the Pico

SDK’s Programmable I/O (PIO). The PIO protocol was chosen due to its straightforward

integration with the WS2812B controller and the Pico’s GPIO pins. It is also valuable because it

uses direct memory access to send data to the LED strips, reducing CPU computation and

overhead. Eight LED strips were used, one for each column on the chess board, and each strip

has eight LEDs. Eight channels were set up using PIO to set the LED colors. The colors were set

by inputting a series of hexcodes to the GPIO pins. The hexcodes would get sent as a pulse-width

modulation (PWM) signal. For example, a long high followed by a short low would be a logical

1 and a short high followed by a long low would be a logical 0. The hexcode, which has 24 bits,

would get sent as PWM through the strip, setting the string of LEDs to the desired color

combination.

Several helper functions were used to scale the LED driving code. Ultimately, the LED

interfacing was abstracted to a function that would receive a string of length 64 and drive the

LED based on the color that was at the particular index. Table 3 shows the mapping of the string

input and the corresponding LEDs. The number in each chess square shows the index in the

string that sets the particular LED. The char value at the particular index in the input string

would determine which hexcode to display on the LED.

Table 3: LED mapping

For more abstraction, a Python library was created to product the format needed to drive

LEDs. For example, a function would receive a recommended move from stock and convert that

to a format that would illuminate the appropriate LEDs. A similar function was implemented for

displaying an illegal move. In addition, an LED start up sequence was created to run through

RGB colors through every LED to debug the LED matrix and check for fault connections.

Serial Communication

Serial over USB was used to communicate between the Raspberry Pi Pico and the PC.

The Pico SDK can configure standard output (stdout) to be set to serial USB, sending print

statements to the PC. A Python serial module was used on the PC to read and write to the serial

session. The sensor network data was sent from the microcontroller to the PC. The LED

configuration was sent from the PC to the microcontroller. Since the LED configuration is a

buffer that the PC writes to and the LED driving function reads from concurrently, a mutex and

condition variable were used to synchronize these concurrent tasks. The FreeRTOS

synchronization primitives were used to implement this.

Software

FSM

The software is composed of three files: FSM.py, LED.py, and ChessInterface.py.

FSM.py is responsible for interfacing with the Raspberry Pi Pico through USB serial connection,

executing algorithms to keep track of the state of the chess game, and interfacing with the

graphical user interface. Figure 9 shows this algorithmic flow. FSM.py has two primary

functions: next State Function and outputFunction. NextStateFunction contains logic that tells

the finite state machine when it should transition between possible states. For example, when the

Stockfish AI detects that a legal chess move has been made, the checkValid state transitions into

the showRecommendation state. The outputFunction contains distinct outputs for each possible

FSM state. In the transition state, the output is reading data from the Pico, in the checkValid

state, the output is determining if a legal chess move has been made, in the

showRecommendation state, the output is writing a signal to the Pico to illuminate LED’s, in the

error state, an error signal is sent to the Pico, and finally in the end state the game is determined

to be either checkmate or stalemate. Figure 10 shows a high-level diagram of the FSM. LED.py

contains helper functions that convert chess moves in algebraic notation into a signal that can be

interpreted by the Pi Pico. For example, if the Stockfish AI recommends the move “e2e4”, the

function in LED.py takes that string as input and returns a string of length 64 indicating which

LEDs on the chess board should be illuminated.

Figure 9: Flowchart of Algorithm

Figure 10: FSM Diagram

GUI

The FSM and embedded device are controlled by the GUI. The ChessInterface.py file

contains all of the software for the graphical user interface. The GUI was programmed in Python

3 with the Tkinter library and the CustomTkinter library to improve the user interface (UI). The

GUI gives the user the ability to modify a range of settings including AI strength, AI depth,

number of recommendations, clock time, and starting position. All these parameters modify

objects running in FSM.py in real time such as Stockfish engine parameters, board state, and

LED recommendations. Figure 11 shows the starting screen of the GUI where users can

configure these settings. On this frame, the user can begin the game using the starting chess

position. When clicking the “Start” button the program will verify that the chess board is set up

correctly. If a piece is out of place, an error message will be displayed alerting the user to fix it.

Figure 11: GUI starting screen

There are two modes for recommendations. The default mode is shown in Figure 12. It

allows the user to configure the Stockfish AI strength, AI depth, and turn on or turn off a

recommendation. In default mode, the user can receive at most one recommendation, but it can

be in any AI strength.

 Figure 12: Default Recommendation Mode

The other recommendation mode is Grandmaster mode, which essentially shows the

recommendations that a grandmaster would suggest at this point in the game. In this mode, the

Stockfish AI strength is fixed at the highest level, but the AI depth and number of

recommendations are configurable. This mode is shown in Figure 13.

Figure 13: Grandmaster Recommendation Mode

The GUI also allows users to start from a custom, mid-game position. In addition, the user’s

have the option of starting a game from the starting position of their last game or the ending

position of their last game. Figure 14 shows this screen, which shows these two positions. If the

user wants to pick up where they left off, they can simply copy and paste the position into the

textbox and start the game. The player can also press the “View position” button to see if the

supplied position matches where they wish to start.

Figure 14: Starting from custom, mid-game screen

Users can select the time limit they wish. The time selected represents the time allocated from

each player, not the total time. Figure 15 shows the clock options.

Figure 15: Clock options

The chess clock automatically toggles and counts down the player that needs to make the

move. Instead of implementing a timer that the users must manually press, this chess clock

interacts with the FSM to read the active player and makes the experience seamless. When a

player’s clock is active, it turns green and when it is inactive it turns gray. There is also a pause

button which the players use to pause and resume the game, stopping and starting the

timers. Figure 16 shows this feature.

Figure 16: Chess Clock

Mechanical:

CAD Design

The CAD files for the acrylic chess board were designed using a software program called

Solidworks. Initially, the design started off by creating the CAD of the top surface of the chess

board box. The dimensions of the top surface of the chess board are 10 inches x 10 inches. The

top surface includes a grid of squares with circles extruded in the center, as well as the alignment

of text on the border to indicate the rows and columns. To ensure the letters are visible on the

outside of the box when manufacturing, we will be using laser cutting to slightly etch the letters

onto the board. Figure 17 shows the CAD Assembly of the top of the surface with the letters on

the top surface as well as the circles extruded in the center. This will allow us to set the pieces

perfectly in the center and let the hall effect sensors pick up the magnetic field emitted by the

magnetic.

Figure 17: CAD Assembly of Top Surface

After the top surface was designed, the side panels and base were created to fit around the

top. The front and the back of the chess board shows where each piece should be placed on the

chess board. For example, on the left and right side of Figure 18, we can see the icon of the rook.

This gives us an easy way to orient the pieces for those who are new to chess.

Figure 18: CAD File of Front and Back of the Chess Board

In Figure 19, we can see the left of the board with two holes. The square hole allows us to

plug the micro-USB cable from the PC to the Raspberry Pi Pico. On the other hand, the circular

hole will allow a passthrough for the power supply barrel jack and seamlessly connect power

into the box.

Figure 19: CAD File of Input/Output Ports

The last CAD file is similar to the previous figure, however there are no cutouts in the

design. This will act as the final wall in the encasing for the PCBs and wiring.

Assembly

Acrylic sheets were utilized when manufacturing the board. During the process of

manufacturing, a laser cutter was used to create fine cuts on the pieces. The laser cutter was

strong enough to cut through the entirety of the acrylic. As shown in the CAD, we have circular

cutouts for the surface of the chess board. This will allow the chess pieces to smoothly fit within

the circular cutout. This ensured that the hall effect sensors would be able to read the pieces

everytime the piece was put back down. We needed to create a hole large enough to fit the

magnet and hold it in place, so the magnet does not fall off in the middle of the game as shown in

Figure 20.

Figure 20: Ring Around the Magnet

Most of the laser cuts went all the way through the material, but the numbers and letters

around the border were engraved instead. We wanted to use the laser to etch the letters onto the

board to give a seamless look to the surface design of the chess board. Figure 21 shows a more

detailed look into how the acrylic sheet was cut for gluing in the later steps.

Figure 21: Laser Cutting Acrylic Sheets. The Machine can be found in the M.I.L.L of the

Mechanical Engineering Building.

Once all the pieces were cut, acrylic weld-on and super glue was used to assemble the

pieces together. Each cutout needed to be glued together on the surface. Figure 22 shows the

assembly of the chessboard grid. After all the pieces are glued together, we needed to create a

second layer of acrylic for the chess pieces to lay on the surface.

Figure 22: Assembling the Chessboard Grid

Figure 23 shows the finalized surface of the chess board. As mentioned before, there is an

extra layer of acrylic underneath the surface that the chess pieces are on top of. To give it a clean

look, we decided to make the bottom of the layer of the surface in white, as the LEDs can visibly

shine through very clearly. Since the top layer was finished, it was not time to move onto

creating the other sides of the chess board.

Figure 23: Finalized Chess Top Surface

 Figure 24 allows us to see a much clearer picture of a finalized version of the chess

board. Now that the encasing has been assembled, it was very important to test the system to

make sure that both the LEDs are shining through clearly, and that the hall effect sensors have

been able to sense the magnetic field from the magnets we chose previously.

Figure 24: Finalized Chess Top Surface

Once we were ready to start testing, we plugged in all the cables needed to start the

boards and input the code into the Raspberry Pi Pico. Figure 25 shows us a clean look of the

LED chess board working in the finalized state.

Figure 25: Finalized Chess Board

Hardware Design Modifications

In our initial hardware design, we were planning to have four hall-effect sensors per

chess square and use binary encoding to detect check pieces. This would allow us to identify

each chess piece using hall effect sensors alone and not rely on the previous position. However,

due to budgetary constraints, the amount of money needed to manufacture the PCBs and

soldering the parts would cost more than the entirety of the $500 budget. Fortunately, we were

able to downscale the size of the project to include one hall effect sensor per square. This not

only reduced the number of components needed, but it also reduced the number of PCBs needed

for manufacturing.

One other hardware modification we needed to change was the power supply and voltage

regulator levels. Initially, we were planning to use a 12V power supply and a 12V-3.3V step

down switching node regulator. The 12V power rail was used initially because the LED

controllers needed a 12V supply voltage. However, we quickly realized that the 12V LED strip

was not suitable for the project since we realized the LED strip was only addressable by every

three LEDs. We decided to use the 5V LED light strip since it was individually addressable

which worked correctly. This required us to change the voltage regulator to accommodate a 5V

power supply rail rather than the 12V power rail. Due to the changes in the amount of current

required for the sensor boards, the amount of current supplied by the voltage regulator was

reduced by a factor of four. This meant that we needed to change the inductor in the circuit as

well as the voltage regulator.

Lastly, one hardware modification we included on the voltage regulator board was an

addition of a logic level translator. The Raspberry Pi Pico supplied 3.3V logic and the LED strip

takes 5V logic. In our initial testing, the Pico was able to supply the data line of the LED strips

without a logic level translator, but we noticed the LEDs flicker at times, especially on the first

LED of each strip. We modified the second revision voltage regulator board to include a logic

level translator that converted the 3.3V being supplied by the Raspberry Pi Pico into a 5V data

signal into the LED controller for the LED light strip. Once the chip was added, the LED

flickering issues were mitigated.

Firmware and Software Design Modifications

In our initial plan to implement the firmware and software, we were planning on having

the Raspberry Pi Pico run the FSM and keep track of the board state while having the PC run the

GUI and make calls to the Stockfish API. In this approach, the bulk of the game logic would run

on the embedded device. However, since the GUI would gather the user’s recommendation

settings and relay that information to the FSM, it would be more difficult to integrate those

subsystems if the FSM is running on the embedded device. Considerably more data on the game

state would have to be sent via serial between the PC and Raspberry Pi Pico, increasing latency

that could otherwise be used to do computation. To work around this, we decided to use the

Raspberry Pi Pico to read the sensor network and interface with the LEDs and use the PC to run

the FSM and GUI. This way the FSM, implemented in Python, would act as an intermediary

between the GUI and embedded device, sending information about recommendation settings and

LED display back and forth. This implementation also allowed for easier debugging since the

FSM script on the PC was inspected as opposed to the Raspberry Pi Pico.

We were also challenged by integrating the GUI and FSM. We were planning on having

the GUI run within the framework of the FSM. However, around late November we were

running into problems having the GUI and FSM run and update in real time. To resolve this

issue, we decided to implement the output and next state functions as functions that are

continuously executed within the GUI. This enabled the two subsystems to run concurrently.

Additionally, we were originally planning on allowing players to configure AI strength

and number of recommended moves independently from one another. However, by testing the

Stockfish engine by having it play against itself, we discovered that when multiple recommended

moves are enabled, the AI always plays at the highest strength. This means that the AI is unable

to recommend multiple amateur or beginner level moves at once. Due to this limitation, we

added additional logic in the GUI so that when multiple recommendations are enabled - the

“grandmaster mode” option - the AI strength is fixed at the highest level. This means that the two

settings are dependent on each other, and when grandmaster mode is enabled, the slider for AI

strength is fixed in place.

Since we were initially planning on having up to four magnets per piece and using binary

encoding to detect the pieces and we redesigned the product to use one magnet per piece, the

game algorithm in the software needed to be redesigned to track the chess positions in memory.

To make the algorithm work for one magnet per piece, we decided to keep track of the previous

state of the chess board and compare it to the new state. If a change is made that reflects a legal

chess move being made, the AI updates the position, and the FSM continues executing.

Project Timeline

 A free Gantt Chart tool was used to create a timeline of the project. The initial timeline

was modified both during the midterm design review and in November. The initial proposed

timeline, shown in Figure 26, was not very detailed in the aspects of the project, as we were not

very much acquainted with the intricacies of the assistive chess board. We proposed a large

timeline for the PCB Design, PCB Testing, and PCB Revision. We also did not specify a

timeline for the interactive GUI or interfacing with the LED light strips.

Figure 26: Initial Proposed Timeline

During our midterm design review, we had a much clearer understanding of how the

project was going to be implemented. We added a section to interface with the LEDs, revise the

boards if necessary, and read data from both the Pico. In Figure 27, we can see a more detailed

midterm design review.

Figure 27: Midterm Design Review Proposed Timeline

In our finalized timeline, as seen in Figure 28, we include all the details needed to

complete the project in time. We designated more accurate timing for PCB design and revisions,

added more detail into the design of software, and finalized the design process to assemble the

capstone project.

Figure 28: Finalized Timeline

The tasks of all the group members have been split to suit our strengths amongst the four

group members. Ramie’s primary focus was designing the sensor and voltage regulation board.

Srikar’s primary focus was programming the Raspberry Pi Pico to interface with the LEDs and

read the sensor network and developing the GUI. James' responsibility was working on the GUI.

Lastly, Iain’s primary responsibility was working on the finite state machine, interfacing between

the Raspberry Pi Pico and manufacturing the acrylic chess board. Overall, using the Gantt chart,

we were able to make sure we were able to make sure we are on track to finish.

Test Plan

Hardware

The hardware section of the project requires multiple steps to follow through to ensure

that the devices are working properly. Due to the use of two PCBs, each one needs to be

thoroughly tested. For the testing of the sensor board, we needed to make sure that the hall effect

sensors are outputting the correct values to the multiplexors. Figure 29 shows the steps we took

to verify the correctness of the sensor network board. The sensor board is working on a 3.3V

supply rail. This means that the multiplexors and the hall effect sensors both will output either

3.3V or 0V due to the digital nature of the sensor board. The hall effect sensors are active low.

This means that when the hall effect sensors are sensing a magnetic field, it will output 0V.

When the magnetic is not present, the hall effect sensor will output the supply voltage. This

digital nature of the hall effect sensor allows for a very easy way to debug the sensors.

Furthermore, the multiplexors will act in a similar way. We will output a signal from the hall

effect sensors into the multiplexor. By controlling the select bits on the multiplexor, we can

sense the output of a specified hall effect sensor. With this knowledge, we can use a multimeter

to measure the signals coming from and towards the multiplexor.

Figure 29: Decision Tree for Test Plan

Once the multiplexor has been verified to be working properly, and the enable bits, select

bits, and output bits are being sent properly, we can begin to verify if the Raspberry Pi Pico is

reading the signals correctly. The Raspberry Pi Pico needs to be able to sense a 3.3V level

coming from the output of the central multiplexor and into a specified GPIO pin on the

Raspberry Pi Pico.

For the testing of the voltage regulator board, we need to ensure that the power supply

rails are 5V for the LEDs and the data signals are being read as 5V for the data line. Using the

test points on the voltage regulator board, we can easily check if the voltage regulator is sending

power to the LEDs. If it is not sending power to the LEDs, we know that the device is not

plugged in as the 5V rail is directly connected to the LEDs. Once that is verified, we can move

towards the voltage regulator aspect of the board where we can verify whether the switching

node is outputting 3.3V onto the voltage rail. Due to simulations done by the Texas Instruments’

WeBench and using the Virtual Bench, we have been able to verify the max load current the

regulator circuit is able to provide to the sensor board.

In the beginning, there was flickering on most of the LEDs which was realized because

the power adapter we were using for testing was not supplying enough current. We then tested

the LEDs using an adapter rated for 15A and noticed most of the flickering go away. However, a

few LEDs consistently flickered: the LED at the beginning of each strip. The first LED in a

WS2812B strip boosts the data line from 3.3V logic to 5V logic. We realized the WS2812B

controller was delayed in boosting the logic signal, causing flickering in particular LEDs. This

problem made us pursue a logic-level translator so that the signal didn’t need to be boosted by

the WS2812B strip itself. This chip solved the problem, making the LEDs work as expected.

Software

 The sensor processing in the embedded program was tested using the sensor network

board. Magnets were placed over sensors and the raw data readings were observed in the serial

monitor. We encountered issues with mismatching the select bits of the multiplexers which

produced wrong readings. We debugged this using a multimeter and fixed the connections at

which point the sensor processing worked as expected. We also experimented with the distance

between the hall effect sensor and the magnet during sensor processing and we found the

distance to be within the tolerance of our design. The LED matrix was tested using several start-

up sequences to debug color mismatches. When we noticed flickering in the LEDs, we had to

identify if it was caused by incorrect PWM signals from the PIO or the LED hardware itself. We

used an oscilloscope to debug the issue and found the PWM to be what we expected: it matched

the hex code of the LED. We then concluded the flickering in the LED was due to a hardware

problem at which point we implemented the logic-level translator to solve the issue.

 The FSM was initially tested using hard-code board states to check if the correct states

would be satisfied. The debugging tool on VS Code was used to step through the FSM and

observe states. Later, the FSM was integrated with the GUI to test the AI settings and

recommendations. This is where the bulk of system-wide testing occurred. The chess board

display in the GUI allowed for easier debugging on the FSM. At times, the FSM would move to

an unexpected state and the chess board on the GUI would show that a chess move was not

recognized. The GUI feature to start mid-game was also a valuable debugging tool as it meant

we could find a sequence of moves that caused erroneous behavior and try to reproduce the bug.

Final Results

Overall, the capstone project functioned successfully. The hall-effect sensor PCB, voltage

regulator PCB, embedded program running on the Raspberry Pi Pico, and GUI all functioned as

expected. The sensor network was consistently able to detect the presence of chess pieces on the

board. Each chess piece was properly recognized, and movements were also detected regularly.

The sensor data was processed on the PC and Stockfish API was incorporated into the game

logic to always suggest the engine’s best move(s). The recommended moves were displayed on

the LED matrix, and all the LED colors for a given recommendation were accurate and

responsive. Lastly, the GUI allowed the user to configure a multitude of settings, including the

AI strength, AI depth, and number of recommendations. The GUI also automatically alternated

the user’s clock time upon completed moves and had several time options for the clock. The

acrylic chess board allows users to move chess pieces and view recommendations easily, making

the design intuitive and responsive.

The rubric submitted in our proposal is shown in Table 4. Due to the functionality

described previously, all four criteria are satisfied in the 3-point range. According to Table 5, this

produces a total score of 12 points, which corresponds to an A grade.

Points

Criteria 1:

Piece

Detection

Criteria 2:

LED Output

Criteria 3:

Chess Engine

Utility

Criteria 4:

User Interface

3 Every Piece is

detected

properly.

All squares on the

chessboard light up

corresponding to the

input from the LED

driver.

The chess engine

always recommends

the (subjectively)

best move based on

the board position.

The players can

configure a

multitude of settings

for the chess engine,

utilize a chess clock,

and the board is

easy to play on.

2 Some pieces

are detected

properly.(ie.

pawns, queens

but not rook)

Some of the squares

on the chessboard

light up based on the

input from the LED

driver.

The engine

sometimes

recommends the best

move based on the

board position.

The players can

configure some

settings, use a chess

clock, and the board

is easy to play on.

1 Very few of

the pieces are

being detected.

Some of the squares

on the chessboard

light up.

The engine

recommends any

move based on the

board position.

The players can’t

configure any

settings, they can

use a chess clock,

and the board is

easy to play on.

0 No piece is

being detected

None of the LEDs

are functional.

The engine does not

recommend a move.

The players can’t

configure any

settings, there’s no

chess clock, and the

board is difficult to

use.

Table 4: Grading Rubric

Grade Total Points

A 10-12

B 7-9

C 4-6

D 0-3

Table 5: Letter Grade based on Rubric

The project also contains several additional features that were not part of the proposed

requirements. The LED functionality exceeded the aims described in our proposal. It was not

only able to illustrate recommendations, but it was also able to display red on the squares that

were involved in an illegal move, showing the user which piece to revert. Similarly, additional

features in the GUI exceeded our initial requirements. The GUI had a feature that allowed the

user to begin a game from the starting position or from a custom, mid-game position. It also

displayed a chess board, which corresponds with the latest moves on the physical board. This

visualization lets the user know what position to revert to in case an error arises.

Costs

The cost of one assistive chessboard system was designed with the budget of $500 in

mind. A detailed breakdown of the costs is shown in Table 6. The total amount of money one

assistive chessboard costs is $296.53, which is within the budget provided to us. However, the

detailed list does not include the amount of time spent laser cutting the acrylic used in the

assistive chessboard. The most expensive portion of our project is the charge for soldering the

boards.

Table 6: Cost of Parts

If 10,000 units were manufactured, there would be massive discounts on the PCB

components prices for buying them in large quantities. The price of the PCB’s would drop from

$66 down to $7, as per Advanced Circuits Custom Quote. One massive expense in our project is

the voltage regulator used in the circuit. One voltage regulator would cost around $9.24.

However, at the scale of 10,000 units, this price would reduce to $4.67. Lastly, since our sensor

board has nearly 100 components, using a machine to solder the components would dramatically

reduce the amount of money being spent on soldering. Currently, at the student rate, 3W charges

$10 per board + $0.50 per component. Lastly, to reduce costs, we can print out the sensor board

and the voltage regulator board in the same board. Furthermore, if that is not an option, we can

solder the voltage regulator board directly to the sensor board and avoid an unnecessary ribbon

cable, reducing $19,500 of costs. Lastly, if we can reduce the price of acrylic by buying in large

quantities, we will be able to reduce the amount of expenditure drastically and increase profits if

this product were to go on sale.

Future Work

While this capstone project was successful in detecting chess pieces and recommending

moves, there are a few limitations that can be improved on. The Assistive LED chess board can

be improved in the following ways.

Gamification

 Our game logic has a few limitations that can be addressed for a more comprehensive

experience. One such limitation is the current software does not allow the user to under promote

their pawn. A feature can be added in the GUI that allows the player to select the piece to which

they wish to promote. In addition, in our current design, a player who makes a blunder is forced

to either proceed with the game or begin a new game starting from a mid-game position. If they

choose to start mid-game, they can copy the ending position of the last game and modify it to

revert the blundered move. This would be inconvenient if it happens several times. Therefore, an

undo button would be valuable to revert a poor move and create a seamless playing experience.

Recommendations

 Although the Stockfish API was comprehensive, there was one limitation we did not

anticipate. When recommending multiple chess moves, the strength of the AI engine is

automatically set to the maximum. If the user wants recommendations from a lower AI setting, a

maximum of one recommendation can be generated. To improve the configurability of chess

recommendations, the Stockfish source code can be modified to use the current AI strength to

retrieve multiple recommendations.

Piece Detection

 The approach of using hardware to solely detect the presence of pieces and relying on

software to identify pieces has limitations. In some instances, especially in between moves, two

chess pieces can be swapped. In this case, the hardware would detect that the same chess squares

are occupied, and since a move hasn’t been made, the software would continue waiting for a

move as if nothing happened. Since this implementation doesn’t differentiate between pieces in

hardware, this is an area for improvement. Bipolar magnets can be used such that, for example,

all white pieces have positive polarity and black pieces have negative polarity. This would

account for swapping pieces of different color but would still have a blind spot for swapping

pieces of the same color. Computer vision and image processing are promising methods to

identify pieces and have the potential to mitigate the limitations found in hardware-based piece

recognition.

Wi-Fi Module

 The current chess board is aimed to be used in-person by one or two players. A user may

want to play another user remotely if they both have the same chess board. A Wi-Fi module can

be incorporated into the chess board that allows users to play other online users. A server can be

implemented that contains networks with various categories of skill level. Players can request to

play other online users of similar skill level with agreed recommendation settings. This feature

would expand the possible use cases for the product and build an online community for

interactive chess boards.

References

[1] Pretorius, Roline. “Why Buy an Electronic Chessboard.” House of Chess, House of

 Chess, 17 Apr. 2018, https://houseofchess.co.za/blogs/the-house-of-chess-b

 log/why-buy-an-electronic-chessboard (accessed Dec. 13, 2022).

[2] “ChessUp - Level Up Your Chess Game.” Bryght Labs, https://bryghtlabs.com/.

 (Accessed Sept. 10, 2022).

[3] Kaufman, Robert, et al. Assistive Chessboard. 2017,

 https://courses.engr.illinois.edu/ece445/getfile.asp?id=12121 (accessed Dec. 13, 2022).

[4] NEMA, 23 Jan. 2019, https://www.nema.org/ (accessed Dec. 13, 2022).

[5] “NEMA Ratings and IP Equivalency Chart.” Siemon, https://Siemon.com/ (accessed 12

 Sept. 2022).

[6] “Generic Standard on Printed Board Design.” IPC, Feb. 1998 (accessed Dec. 13, 2022).

[7] M. Barr, Embedded c coding standard. Germantown, MD: Barr Group, 2018 (accessed

 Dec. 13, 2022).

[8] Van Rossum, Guido, PEP 8 - Style Guide for Python Code. 11 May 2022 (accessed Dec.

 13, 2022).

[9] S. Z. M. Muji, M. H. A. Wahab, R. Ambar and W. K. Loo, "Design and implementation

 of electronic chess set," 2016 International Conference on Advances in Electrical,

 Electronic and Systems Engineering (ICAEES), 2016, pp. 451-456, doi:

 10.1109/ICAEES.2016.7888087.

[10] (chess.com), C., 2022. About Online Chess Cheating. [online] Chess.com. Available at:

 <https://www.chess.com/article/view/online-chess-cheating> (Accessed Sep. 27, 2022).

[11] Fab.cba.mit.edu. 2022. Final Project Tracking. [online] Available at:

 <http://fab.cba.mit.edu/classes/863.17/Harvard/people/joshuacoven/week14_final.html>

 (Accessed Sep. 27, 2022).

[12] “Stockfish 15.” Stockfish, https://stockfishchess.org/ (accessed Dec. 13, 2022).

[13] “Forsyth-Edwards Notation.” Forsyth-Edwards Notation - Chessprogramming Wiki,

 https://www.chessprogramming.org/Forsyth-Edwards_Notation (accessed Dec. 13,

 2022).

[14] “KiCad Eda.” Schematic Capture & PCB Design Software, https://www.kicad.org/

 (accessed Dec. 13, 2022).

[15] “Welcome to Python.org.” Python.org, https://www.python.org/ (accessed Dec. 13,

 2022).

[16] Microsoft. “Visual Studio Code - Code Editing. Redefined.” RSS, Microsoft, 3 Nov.

 2021, https://code.visualstudio.com/ (accessed Dec. 13, 2022).

[17] “C Language.” Cppreference.com, https://en.cppreference.com/w/c/language (accessed

 Dec. 13, 2022).

[18] “WEBENCH® Power Designer | Overview | Design Resources | TI.com.”

 https://www.ti.com/design-resources/design-tools-simulation/webench-power-

 designer.html (accessed Dec. 13, 2022).

[19] Quality Guidelines - Toshiba-Semicon-Storage.com. https://toshiba-semicon-

 storage.com/content/dam/toshiba-ss

 v3/master/en/semiconductor/knowledge/reliability/quality-guidelines-tdsc-en.pdf

 (accessed Dec. 13, 2022).

[20] J. Whiteaker and R. Gardham, Opinion: Let's be honest, batteries are bad for the environment,

 Investment Monitor, 2021 (accessed Dec. 13, 2022).

[21] Mouser, “Surface Mount Aluminum Electrolytic Capacitors,” E1001V, 2021.

 MVYRA_e-2509074; Mouser: El Cajon, CA, US, 2021 (accessed Dec. 13, 2022).

[22] “Play Chess Online - Free Games.” Chess.com, https://www.chess.com/ (accessed Dec.

 13, 2022).

[23] “Tecnotion.” 2022. What is commutation? | Tecnotion. [online] Available at:

<https://www.tecnotion.com/faq/what-is-

 commutation/#:~:text=Analog%20hall%2Dsensors%20measure%20the,negative

 %20(South)%20magnet%20pole.> (Accessed Sep. 27, 2022).

[24] “Weetect.” 2022. [online] Available at: <https://www.weetect.com/laser-cutting-acrylic/>

 (Accessed 27 September 2022).

[25] Academicjournals.org. 2022. [online] Available at:

 <https://academicjournals.org/journal/JGRP/article-full-text-pdf/915EC0C53587>

 (Accessed 27 September 2022).

[26] A. B. Pagel, “Game,” DE3309817A1, Sep. 27, 1984 Accessed: Dec. 13, 2022. [Online].

 Available: https://patents.google.com/patent/DE3309817A1/en

[27] Wigh, J. B. (2022). Apparatus, system, and method for an electronically assisted

 chessboard (United States Patent No. US11217117B1).

 https://patents.google.com/patent/US11217117B1/en?oq=11%2c217%2c117 (accessed

 Dec. 13, 2022).

[28] R. Dudley, “Electronic chess game,” US4391447A, Jul. 05, 1983 Accessed: Dec. 13,

 2022. [Online]. Available: https://patents.google.com/patent/US4391447A/en?

 oq=11%2c217%2c117

[29] “RoHS Compliant Definition | What is RoHS Compliant? | Find RoHS Compliant

 Companies on Thomasnet.com® Certification Search.”

 https://certifications.thomasnet.com/certifications/glossary/other-

 certification_registration/european-commission/rohs-compliant/ (accessed Dec. 13,

 2022).

[30] R. P. Ltd, “Raspberry Pi Pico series,” Raspberry Pi.

 https://www.raspberrypi.com/products/raspberry-pi-pico/ (accessed Dec. 13, 2022).

[31] “CMake.” https://cmake.org/ (accessed Dec. 13, 2022).

[32] “Git.” https://git-scm.com/ (accessed Dec. 13, 2022).

[33] “Solidworks.” https://www.solidworks.com/ (accessed Dec. 13, 2022).

[34] “Patentability Requirements,” Justia, Jun. 05, 2019. https://www.justia.com/intellectual-

 property/patents/patentability-requirements/ (accessed Dec. 13, 2022).

Human vs. Artificial Intelligence (AI) Matchups in Strategy Games have Facilitated the

Growth of AI Technology

A Research Paper submitted to the Department of Engineering and Society

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Iain Ramsey

Fall 2022

Word Count: 3511

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Kathryn A. Neeley, Associate Professor of STS, Department of Engineering and Society

Introduction

Human vs. AI Matchups Facilitate the Growth of AI Technology (Argument)

Humans have a tendency to dismiss AI’s ability to accomplish humanlike feats and this

skepticism has hindered the technology’s development in the past. I will argue that human vs. AI

matchups in competitive strategy games have increased the validity of AI in the public’s

perspective and ultimately expedited the growth of the technology. Increased public awareness

of the benefits that AI can provide leads to more investment and research in artificial

intelligence, which consequently leads to tangible real-world solutions to problems that can

benefit everyone. My research will use Actor Network Theory (ANT), which according to

Rodger is a research framework that “examines the mechanics of power through the construction

and maintenance of networks (both human and non-human)” (Rodger, 2009, p. 647). I chose

ANT for my research because a human vs. AI interaction is fundamentally a relationship

between human and non-human actors. For my methodology I analyzed three case studies of

historically significant human vs. AI events, and for each event I analyzed the implications on

various actors. My topic is worth researching because the more recognition that AI is a powerful

tool, the more AI technology will grow and serve to benefit society.

Background

Everyone Loves Games (Common Ground)

Games have always been an integral part of culture due to their ability to captivate

players, facilitate competitiveness, and often stimulate critical and/or creative thinking.

According to Piccione, to first documented board game was called “Senet” and was played in

ancient Egypt circa 3500 B.C.E. (Piccione, 2007). While the exact rules of Senet are unknown,

Piccione speculates that Senet was a simple racing game where players took turns moving their

pawns across a board, with the first player to reach the opposing side winning (Piccione,

2007), From 3500 B.C.E to today, board games have persistently occupied human’s time and

minds, with humanity’s relationship with games expanding and adapting just as culture has

changed over time. In 2022, games have become pervasive and saturated in society, with there

existing many outlets to get your gaming fix – card games, board games, party games, and

video games – just to name a few. Fiedler states that the United States has the biggest market

for online poker, having approximately $650.5 million in revenue in 2009 alone (Fiedler,

2011). According to the United Nations, 70% of adults have played chess at some point in their

lives, and around 605 million people play regularly (United Nations, 2017). In addition to the

sheer adoption of strategy games by the masses, another way that games have evolved has been

the introduction of professional leagues and the potential to develop a career playing strategy

games at the highest level. Particularly for chess in the United States, playing at the highest

level has gained substantial reputability over the past century with some professional chess

players gaining the reputation as being geniuses or prodigies.

AI is Important to Cultural and Science Based Actors (Cost and Consequences)

Game-playing AI has existed since as early as 1952 when Arthur Samuel at IBM

developed the first program to play checkers against humans (McCarthy, 1990). Since then, the

connection between AI and games has persisted over the past century, and games are

frequently used as a method to convey the status of state of the art AI technology. I will

propose two reasons why the correlation between AI and games is so strong, one considering

cultural actors and one considering science and logic-based actors. First, as stated in my

common ground, there is no doubt that games have significance to our culture. Humans

dedicate countless time and energy towards playing games because of the stimulation it

provides, the fulfillment in mastering a game, and the opportunity for competition. In a similar

vein, humans dedicate time towards developing game-playing AI because it’s simply another

way of enjoying the games they already cherish so much. From a scientific perspective, games

and AI are correlated because games and computer science are correlated. Beyond their

cultural utility, games provide an intuitive way of defining a problem, assigning constraints ,

and posing a desired outcome. This is the essence of computer science. Games are an arbitrary

yet exceedingly convenient tool for applying computer science techniques. In computer science

theory, reduction is a technique where a problem with an unknown solution is converted into a

problem with a known solution so that the same solution can be used to solve both. An even

more pragmatic explanation of why games are studied in computer science is that the technique

of reduction can be used to convert game problems into real-world problems of which

solutions have obvious tangible utility. Take chess for example: if a computer scientist

developed an algorithm or AI that could perfectly solve chess, they could reduce chess (as a

problem) to another problem (e.x. allocating food resources at an international scale) and use the

known solution to solve both problems. As sensationalized as it sounds, if we could solve the

game of chess, we could in theory solve world hunger.

Improving AI Will Help Us Solve P vs. NP (Destabilizing Condition)

P vs. NP is a famous problem in the mathematics and computer science community that

has been studied for the past half century but has yet to be solved (Cook, 2003). Stephen

Cook, the inventor of the problem, defines it as determining “whether every language accepted

by some nondeterministic Turing machine in polynomial time is also accepted by some

deterministic Turing machine in polynomial time.” (Cook, 2003). In layman’s terms, P can be

considered the set of relatively easy problems to solve with a computer, NP can be considered

the set of seemingly very hard problems to solve with a computer, and the P vs. NP debate is

whether these sets are distinct or if they’re the same. Should someone develop a solution to P vs.

NP the implications would be tremendous: most unproven math conjectures would be provable,

lots of real-world problems in industry would be easy to solve, and our entire basis for internet

security and cryptology would be broken (Cook, 2003). Needless to say, the stakes riding on the

P vs. NP problem are high, and the Clay Mathematics Institute is even offering a million-dollar

prize to anyone who is able to solve the problem (Cook, 2003). The P vs. NP debate is relevant

to my research on AI because artificial intelligence is essentially just an algorithm that solves a

problem. Theoretically, if a perfect AI existed that could solve any problem as efficiently as

mathematically possible, we would have an answer to the P vs. NP problem. In this regard it’s

worth investing resources towards the development of AI technology because it brings us one

step closer to resolving the P vs. NP debate.

Using Actor Network Theory and Case Study Analysis (Approach to Resolution)

To approach a resolution to my topic, I chose to analyze three case studies of famous

matches between professional game players and AI: Gary Kasparov vs. Deep Blue (1997), Lee

Sedol vs. AlphaGo (2016), and professional poker players vs. Libratus (2017). The case studies

are in chronological order to convey how attention from the media sources has been a catalyst for

the development of AI over time. For each case study, I applied Actor Network Theory (ANT) to

evaluate how various actors influenced the outcome of each event. According to Rodger, Actor

Network Theory is a research framework that “examines the mechanics of power through the

construction and maintenance of networks (both human and non-human)” (Rodger, 2009, p.

647). I chose Actor Network Theory for my research because a human vs. AI matchup is

fundamentally a relationship between human and non-human actors. Figure 1 shows a

generalized actor network that’s applicable to all three of my case studies. My case studies

demonstrate that AI has the potential to influence professional players, the computer science

community, and various other actors in meaningful ways. A secondary message that is

communicated throughout my research paper is that AI is a powerful tool that has the power to

metaphorically move mountains, therefore, Actor Network Theory is particularly applicable to

my research because it emphasizes that inanimate objects can have significant influence on the

network that it’s a part of.

Figure 1. Actor Network of Case Studies

[Created by Author]

Case Study Analysis

Gary Kasparov vs. IBM’s Deep Blue (1997)

For many centuries humans have used chess as a metric for intelligence, strategy, and

creativity. In 1996, the reigning world chess champion Gary Kasparov played DeepBlue, a chess

AI developed by IBM, in a tournament standard chess match (Goodman, 1997). DeepBlue beat

Kasparov with a final score of 3.5 – 2.5 (Goodman, 1997). While powerful chess engines had

already existed for some time, this match was a pivotal turning point because it conveyed the

message that computers had unequivocally surpassed humans in chess playing abilities. Despite

DeepBlue’s success in chess, many scholars remained adamant that AI would not be capable of

other humanlike activities, with Goodman saying, “The computer may excel at chess, but it

cannot do many other things, both simple (like recognising faces) and complicated…”

(Goodman, 1997, p. 186). Today we know that AI is capable of recognizing faces and much

more, but Goodman’s skepticism is justifiable when considering the context of the time. In 1997

computers were a fraction of the power they are today, and many engineering tasks like

calculating equations, designing schematics, and sending messages were done on paper instead

of a computer. The match between Kasparov and DeepBlue was arguably the first time that AI

widely reached attention other than the computer science community, effectively shedding new

light on AI capabilities, but nonetheless most of the true potential of AI was yet to be discovered.

In response to Gary Kasparov’s loss, many professional chess players readily conceded

human’s inferiority in chess, and instead sought to use AI as a tool to improve their own game.

Yasser Seirawan, a top US Grandmaster, chose to interpret the match as an opportunity rather

than just a defeat, saying “Now we will also have the computer to analyze and tutor us on how to

win or draw key positions” (Seirawan, 1997, p. 22). This sentiment by professional chess players

has only grown over time, with some players going as far as to memorize computer moves prior

to their matches against their opponents. Figure 2 shows the strength of chess engines over time

which further corroborates this behavior because chess engines have continued to improve since

Deep Blue in 1997. Sierawan also mentions that the surpassing of computers in chess has little

consequence towards his own motivations to play the game because his competitive spirit

remains strong, remarking “…I’ll always want to clobber my brother.” (Seirawan, 1997, p. 22).

Considering the cultural actors that pertain to this event, it’s clear that the concession of AI being

better than humans did little to reduce chess player’s motivations to play the game, and in some

respects actually reignited top player’s passion for the game because of chess engine’s novelty as

a training tool.

Figure 2.

Improvements in Chess AI Ratings Over Time.

Source: https://aiimpacts.org/historic-trends-in-chess-ai/

https://aiimpacts.org/historic-trends-in-chess-ai/

Lee Sedol vs. DeepMind’s AlphaGo

The game of Go is revered for having simple rules to understand yet being profoundly

difficult to master. In 2016, the neural network AI AlphaGo developed by DeepMind played Lee

Sedol, the world ranked 2 Go player (Kohs, 2017). In a surprise upset to the Go community,

AlphaGo won 4 out of 5 games and claimed a million-dollar prize (Kohs, 2017). This matchup

shares many similarities to the Kasparov vs. DeepBlue game played 2 decades previously, but is

different because Go is regarded as significantly more complicated as a game than chess. A Go

board is a 19 x 19 grid, whereas a chess board is 8 x 8, so from a brute force numbers perspective

there are 361! or ~10768 possible games of Go, but only 64! or ~1089 possible games of chess

(Chen, 2016). To put that in perspective, there are approximately 1080 atoms in the universe, so it

would take roughly 10688 universes to represent every possible game of Go (Davies, 1978). In

addition to the massive numerical size of Go, the game is difficult for an AI to play because

there’s no easy way to evaluate the state of the game (Chen, 2016). For chess, it’s possible to

evaluate the game because different chess pieces have different corresponding values: a pawn is

worth 1 point, a bishop or knight is worth 3 points, a rook is worth 5 points, and a queen is worth

9 points. It’s easy enough to look at a chess game and see that if black has an extra pawn and

bishop, they should be roughly 4 points better than white. In contrast, for Go the “the number of

stones on the board is a weak indicator of a position’s strength, and a territorial advantage is

difficult to calculate”, so intuition is required for Go players to evaluate the state of the game

(Chen, 2016, p. 6). According to Chen, “A professional human player can make relatively easier

judgments compared to a machine due to instincts that algorithms can’t capture” (Chen, 2016, p.

6). Without a doubt, the game of Go is a tough problem to crack, which makes AlphaGo’s

success all the more impressive because of the AI’s ability to replicate instinctual and “gut

feeling” strategy.

Figure 3.

Comparison of Chess (8 x 8) and Go (19 x 19) boards.

Sources: https://tromp.github.io/go/legal.html

https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg

Go is considered so complicated that some computer science theoreticians posit that the

same technology pioneered by AlphaGo can be implemented to solve virtually any difficult

computer science problem (Wang, 2016). Fei-Yue Wang, a professor at the University of

Arizona and fellow of the IEEE, proposed the “AlphaGo Thesis” which states that “A decision

problem for intelligence is tractable by a human being with limited resources if and only if it is

tractable by an AlphaGo-like program“ (Wang, 2016, p. 116). In other words, the “AlphaGo

Thesis” states that any problem that humans are capable of solving is also solvable by an AI that

has a similar architecture to AlphaGo. The underlying structure of AlphaGo includes deep neural

networks, reinforcement learning, and value functions, all of which can be generalized and used

for other situations (Wang, 2016). Should the “AlphaGo Thesis” prove true, the implications for

https://tromp.github.io/go/legal.html
https://commons.wikimedia.org/wiki/File:AAA_SVG_Chessboard_and_chess_pieces_02.svg

the computer science world would be substantial because programmers would have a reliable

tool for solving NP Hard problems, a group notoriously challenging problems that no one has

found effective solutions for yet (Wang, 2016). While personally I’m doubtful that AlphaGo is

the revolutionary AI that will serve as a cure-all for all computer science problems, I do think

there’s a strong argument to be made that AI will be the method with which we someday in the

future arrive at an answer to these big questions.

Professional Poker Players vs. Carnegie Mellon University’s Libratus

Poker players initially thought that AI could never play poker at a high level because it’s

a game of imperfect information, meaning that players don’t have access to all of the variables

that influence the game. To elaborate, if you’re playing a game of Texas Holdem’ against 8 other

players, each player has 2 personal cards that only they can see, so there is at least 16 completely

unknown variables at large. In contrast, a game of perfect information is a game where all of the

relevant information is always known. Chess is an example of a game of perfect information

because both players can see the entire chess board and consequently have equal access to data.

Games of imperfect information are particularly difficult for AI to play because they rely on

extrapolating unknown information and making educated guesses. AI works best when it has

access to as much data as possible and can synthesize that data to calculate strategy. In this

regard, Poker is much more difficult for a computer to solve than chess. In addition, Poker can be

difficult for an AI because skills like bluffing and reading a player’s expression are an integral

part of the game, but it’s much more difficult to represent these factors in a way that is

interpretable for a computer.

In 2017 the poker AI “Libratus” engineered by Carnegie Mellon University professors

battled against four professional poker players in a “Brains vs. AI” event that spanned 20 days

and 120,000 poker hands (Sandholm, 2017). Libratus won by a large margin and 99.98%

statistical significance (Sandholm, 2017). Not only did Libratus prove that computers are better

than humans at poker, but also that poker itself is “weakly solved” (Bowling, 2015). “Weakly

solved” means that there exists a consistently effective strategy that can be employed to give the

player a winning advantage (Bowling, 2015). The notion that poker has been solved is

particularly relevant because “Many real-world applications can be modeled as imperfect

information games, such as negotiations, business strategy, security interactions, and auctions.”

(Sandholm, 2017, p. 1). In addition to business related problems, the strategies pioneered by

Libratus have applicability for military strategy and war games (Simonite, 2019). One

consequence of the “Brains vs. AI” event receiving such widespread attention from the media

was that the US Army signed a $10 Million contract with Sandholm, the developer of the

Libratus, to reengineer the technology to be used for research at the Pentagon (Simonite, 2019).

Libratus demonstrates that AI can be effective even when working with limited information at its

disposal, effectively shortening the gap between what we consider human and AI capabilities.

Figure 4.

The “Brains vs. AI” Event Played by Libratus

Source: https://www.wired.com/story/poker-playing-robot-goes-to-pentagon/

Conclusion

For my methodology I chose to research three case studies, one for each type of popular

strategy game. For chess, I chose to analyze the Gary Kasparov vs. IBM’s DeepBlue match

because it is one of the most publicized chess matches of the 20th century and has had long

lasting influence on both the worlds of chess and AI. To this day, this matchup is arguably the

most well-known example of human and AI interaction. For Go, I chose to analyze the match of

Lee Sedol vs. DeepMind’s AlphaGo because the game of Go is extremely complicated and

serves as a good proving ground for AI to demonstrate what it’s capable of accomplishing. The

match between Lee Sedol and AlphaGo shares many parallels to that of Kasparov vs. DeepBlue

https://www.wired.com/story/poker-playing-robot-goes-to-pentagon/

because Lee Sedol was (at the time) the 2nd best human Go player in the world, and they were

considered the favorite going into the match. Similarly, Gary Kasparov was the reigning world

chess champion, the undisputed best chess player in the world. The fact that both human players

had such prestige and reputation reinforces that the stakes were very high for both matches. Their

losses demonstrate that computers had unequivocally beaten humans at their respective games. If

AI is better than Gary Kasparov and Lee Sedol, and they’re better than every other human at

their respective games, then by the transitive property AI is better than every human. For Poker, I

chose to analyze Libratus because the AI played against a handful of the best poker players and

was able to beat all of them with a significant statistical margin. I chose the game of Poker

because it differs fundamentally from chess and Go in the sense that it is a game of imperfect

information, meaning that the players are unaware of all of the variables that influence the game.

Games of imperfect information are interesting when studied through the lens of AI because the

AI has to make assumptions and educated guesses about the state of the game, skills that are

considered to be human-like in nature.

My case studies demonstrate that victories by AI cause humans to reevaluate their

preconceptions and truly consider the possibilities of AI. The recognition of AI as a useful tool

consequently leads to more development of the technology. After DeepBlue, chess players

started to use AI as a reference tool for finding the best moves, and chess engines have steadily

improved since (Seirawan, 1997). Following Libratus, computer scientists realized that they

could use AI to solve important and lucrative problems like negotiating (Bowling, 2015). After

AlphaGo, theoreticians began to wonder if AI might be our best option for solving essentially

any problem (Wang, 2016). When considering how AI influences how humans interact with their

favorite games, I speculate that the awareness that AI are the best players mostly serves to

inspire humans to get better. AI has been integrated into the professional chess scene for two

decades, and I speculate that Poker and Go will follow in chess’ footsteps. As shown throughout

my case studies, the improvement of AI has many real-world applications including business

negotiations, long term decision making, and even war strategy. These benefits should serve as

the underlying motivation for further research in this area and continue to shorten the gap in

knowledge between what we speculate AI can accomplish, and the technology’s true limitations.

Works Cited

Bowling, M., Burch, N., Johanson, M., & Tammelin, O. (2015). Heads-up limit hold’em poker is

solved. Science, 347(6218), 145-149.

Brown, N., Sandholm, T., & Machine, S. (2017, January). Libratus: The Superhuman AI for

NoLimit Poker. In IJCAI (pp. 5226-5228).

Campbell, M., Hoane Jr, A. J., & Hsu, F. H. (2002). Deep blue. Artificial Intelligence, 134(1-2),

57-83.

Chen, J. X. (2016). The evolution of computing: AlphaGo. Computing in Science &

Engineering, 18(4), 4-7.

Davies, P. C. W. (1978). The tailor-made universe. Sciences, 18, 6-10.

Donninger, C., Kure, A., & Lorenz, U. (2004, April). Parallel Brutus: the first distributed, FPGA

accelerated chess program. In 18th International Parallel and Distributed Processing Symposium,

2004. Proceedings. (p. 44). IEEE.

Fiedler, I., & Wilcke, A. C. (2011). The Market for Online Poker. SSRN 1747646.

Goodman, D., & Keene, R. (1997). Man versus machine: Kasparov versus deep blue. ICGA

Journal, 20(3), 186-187.

Kohs, Greg, director. AlphaGo, DeepMind, 2017,

https://www.youtube.com/watch?v=WXuK6gekU1Y&ab_channel=DeepMind. Accessed 3 Mar.

2022.

McCarthy, J., & Feigenbaum, E. A. (1990). In memoriam: Arthur Samuel: Pioneer in machine

learning. AI Magazine, 11(3), 10-10.

Omran, A. H., & Abid, Y. M. (2018). Design of smart chess board that can predict the next

position based on FPGA. Advanced Science Technology Engineering Systems. J, 3(4), 193-200.

Piccione, P. A. (2007). The Egyptian game of senet and the migration of the soul. Ancient Board

Games in Perspective, Ancient Board Games in Perspective, 54-63.

Rodger, K., Moore, S. A., & Newsome, D. (2009). Wildlife tourism, science and actor network

theory. Annals of Tourism research, 36(4), 645-666.

Seirawan, Y., Simon, H. A., & Munakata, T. (1997). The implications of kasparov vs. deep blue.

Communications of the ACM, 40(8), 21-25.

Simonite, Tom. (2019). A Poker-Playing Robot Goes to Work for the Pentagon. Wired, Conde

Nast.

United Nations. (2017). World Chess Day. United Nations. Retrieved October 25, 2022.

Wang, F. Y., Zhang, J. J., Zheng, X., Wang, X., Yuan, Y., Dai, X., ... & Yang, L. (2016). Where

does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond. IEEE/CAA Journal

of Automatica Sinica, 3(2), 113-120.

Prospectus

Development of a Portable Chess Engine in an Embedded System

(Technical Topic)

How Human vs. AI Matchups has Changed Public’s Perception Towards Artificial

Intelligence

(STS Topic)

By

Iain Ramsey

March 29th, 2022

Technical Project Team Members: NA

On my honor as a University student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Signed: ______Iain Ramsey___________________________

Technical Advisor: _______Harry Powell________________

STS Advisor: _____Caitlin Wylie_______________________

Introduction

Coinciding with the historical origins of society and culture came the introduction of

games – an outlet for human interaction, stimulation of the mind, and even social status. The

introduction of artificial intelligence (AI) in the past century has changed how we perceive and

interact with games, and have caused us to reevaluate the limitations of the human mind and the

computer. In my technical topic I will design a portable embedded system that runs a chess

engine and recommends moves to the player. In my STS topic, I will look at case studies to

evaluate how human vs. AI matchups have changed the public’s perspective towards artificial

intelligence and aided in the development of the technology. My topics are related because my

portable chess engine is an example of human and AI interaction, similar in nature to my case

studies. These topics are worth studying because games are culturally and economically relevant

to society and because solving seemingly inconsequential games with AI can translate to solving

many significant real-world problems.

Technical Topic

While implementations of a chess engine have existed for many decades, most rely on

using a large powerful computer (Omran, 2018). For example, the IBM Deep Blue computer that

played Gary Kasparov was approximately 6 feet tall and its had a search speed of “50–100

million chess positions per second” (Campbell, 2002, p. 59). For my technical project, I will

design a handheld device containing an embedded system that will run a chess engine. My chess

engine will deviate from existing products because it will be portable and necessitate operation

with a weaker processor with a much smaller search speed. The system will take a board position

represented as a bitboard and return one to three recommended moves as an output. As the chess

game is played and the position on the board changes, the user will update these changes using

buttons as input and the engine will continuously search for the best position.

The target audience for my product are chess players who are interested in improving

their play using the aid of artificial intelligence. In the past two decades demand for artificial

intelligence as a tool for studying chess has increased significantly (Donninger, 2004). Existing

technologies rely on a powerful computer or connection the internet, but my device will operate

independently from any aid and could benefit players anywhere. The idea is that you could play a

game of chess against your friend in the park and then afterwards reference your portable chess

engine and have it evaluate what moves you played well and what moves were blunders. I hope

to achieve a simple yet powerful learning tool for chess players that can improve their chess

performance anywhere they go.

STS Topic

Humans have a history of dismissing AI’s ability to accomplish humanlike feats and this

skepticism has hindered the technology’s development. In my STS topic I will argue that human

vs. AI matchups in competitive strategy games have increased the validity of AI in the public’s

perspective and ultimately facilitated the growth of the technology. My paper will use Actor

Network Theory, a research framework that “examines the mechanics of power through the

construction and maintenance of networks (both human and non-human)” (Rodger, 2009, p.

647). I chose ANT for my research because a human vs. AI matchup is fundamentally a

relationship between human and non-human actors. For my methodology I will analyze three

case studies of historically significant human vs. AI events and analyze the implications for

various actors. My topic is worth researching because the more recognition of AI as a powerful

tool, the more the technology will grow and serve to benefit society.

For many centuries humans have used chess as a metric for intelligence, strategy, and

creativity. In 1996 the reigning world chess champion Gary Kasparov played DeepBlue, a chess

AI developed by IBM, in a tournament standard chess match and Kasparov lost to DeepBlue

(Goodman, 1997). While powerful chess engines had already existed for some time, this match

was a pivotal turning point because it conveyed the message that computers had unequivocally

surpassed humans in chess playing abilities. Despite DeepBlue’s success in chess, many scholars

remained adamant that AI would not be capable of other humanlike activities, saying “The

computer may excel at chess, but it cannot do many other things, both simple (like recognising

faces) and complicated…” (Goodman, 1997, p. 186). In response to the match, many

professional chess players readily conceded human’s loss to machine and instead sought to use it

as a tool to improve their own game. Yasser Seirawan, a top US Grandmaster, chose to interpret

the match as an opportunity rather than just a defeat, saying “Now we will also have the

computer to analyze and tutor us on how to win or draw key positions” (Seirawan, 1997, p. 22).

Sierawan also mentions that the surpassing of computers in chess has little consequence towards

his own motivations to play because his competitive spirit will remain strong, admitting “…I’ll

always want to clobber my brother.” (Seirawan, 1997, p. 22). While Kasparov’s loss against

DeepBlue caused humans to concede that they might be worse at chess than AI, most remained

skeptical of AI’s effectiveness in other circumstances.

Poker players initially thought that AI could never play poker at a high level because it’s

a game of imperfect information, meaning that the players don’t know all of the variables that

influence the game, and consequently skills like bluffing and reading a player’s expression are

necessary to win. In 2017 the poker AI Libratus engineered by Carnegie Mellon professors

battled against four professional poker players in a “Brains vs. AI” event that spanned 20 days

and 120,000 poker hands (Sandholm, 2017). Libratus won by a large margin and 99.98%

statistical significance (Sandholm, 2017). Not only did Libratus prove that computers are better

than humans at poker, but also that poker itself is “weakly solved” (Bowling, 2015). “Weakly

solved” means that there exists a consistently effective strategy that can be employed to give the

player a winning advantage (Bowling, 2015). The notion that poker has been solved is

particularly relevant because “Many real-world applications can be modeled as

imperfectinformation games, such as negotiations, business strategy, security interactions, and

auctions.” (Sandholm, 2017, p. 1). Libratus demonstrates that AI can be an effective even when

working with limited information at its disposal, similar to many human-to-human interactions.

The game of Go is revered for having simple rules to understand yet being profoundly

difficult to master. In 2016, the neural network AI AlphaGo developed by DeepMind played Lee

Sedol, the world ranked 2 Go player (Kohs, 2017). In a surprise upset to the Go community,

AlphaGo won 4 out of 5 of the games and claimed a million-dollar prize (Kohs, 2017). This

matchup shares many similarities to the Kasparov vs. DeepBlue game played 2 decades

previously, but is different in that Go is regarded as significantly more complicated to solve than

chess. Specifically, Go is considered to be a game of intuition with many orders of magnitude

more possibilities to consider than chess, so conventional AI implementations fall short (Chen,

2016). In fact, Go is considered so complicated that some computer science theoreticians posit

that the same technology pioneered by AlphaGo can be used to solve virtually any exceedingly

complicated problem (Wang, 2016). Should these speculations prove true, the implications for

the computer science world would be tremendous because programmers would have a tool for

solving NP Hard problems, a group notoriously challenging problems that no one has found

effective solutions for yet (Wang, 2016). While I’m doubtful that AlphaGo is already the cure-all

solution for our problems, I think it’s indicative that AI will be the technology that gets us to our

final answers.

My case studies demonstrate that victories by AI cause humans to reevaluate their

preconceptions and truly consider the possibilities of AI. The recognition of AI as a useful tool

consequently leads to more development of the technology. After DeepBlue, chess players

started to use AI as a reference tool for finding the best moves, and chess engines have steadily

improved since (Seirawan, 1997). Following Libratus, computer scientists realized that they

could use AI to solve important and lucrative problems like negotiating (Bowling, 2015). After

AlphaGo, theoreticians began to consider that AI might be able to solve any problem (Wang,

2016). When considering how AI influences how humans interact with their favorite games, I

speculate that the awareness that AI are the best players mostly serves to inspire humans to get

better. AI has been integrated into the professional chess scene for two decades, and I speculate

that Poker and Go will follow in chess’ footsteps.

Conclusion

For my technical deliverable I will design a handheld device with an embedded system

that operates a chess AI and recommends chess moves to the user. For my STS deliverable I will

evaluate how significant human vs. AI matchups in strategy games have changed our perspective

towards AI and I will argue that they have served as a catalyst for the development of AI. I’ve

learned from my research that it can be humbling to accept that computers will be able to beat

humans in our favorite games, but also inspiring to know that AI is capable of such powerful and

creative problem solving. Considering that AI continues to have breakthroughs that humans

thought would be impossible, I think it’s evident that there’s much more to learn about the

technology and it’s crucial that computer scientists continue to push the boundaries of AI until

the limits have been reached.

Resources

Bowling, M., Burch, N., Johanson, M., & Tammelin, O. (2015). Heads-up limit hold’em poker is

solved. Science, 347(6218), 145-149.

Brown, N., Sandholm, T., & Machine, S. (2017, January). Libratus: The Superhuman AI for

NoLimit Poker. In IJCAI (pp. 5226-5228).

Campbell, M., Hoane Jr, A. J., & Hsu, F. H. (2002). Deep blue. Artificial intelligence, 134(1-2),

57-83.

Chen, J. X. (2016). The evolution of computing: AlphaGo. Computing in Science & Engineering,

18(4), 4-7.

Donninger, C., Kure, A., & Lorenz, U. (2004, April). Parallel Brutus: the first distributed, FPGA

accelerated chess program. In 18th International Parallel and Distributed Processing

Symposium, 2004. Proceedings. (p. 44). IEEE.

Goodman, D., & Keene, R. (1997). Man versus machine: Kasparov versus deep blue. ICGA

Journal, 20(3), 186-187.

Kohs, Greg, director. AlphaGo, DeepMind, 2017,

https://www.youtube.com/watch?v=WXuK6gekU1Y&ab_channel=DeepMind. Accessed 3

Mar. 2022.

Omran, A. H., & Abid, Y. M. (2018). Design of smart chess board that can predict the next

position based on FPGA. Adv. Sci. Tech. Engin. Syst. J, 3(4), 193-200.

Rodger, K., Moore, S. A., & Newsome, D. (2009). Wildlife tourism, science and actor network

theory. Annals of Tourism research, 36(4), 645-666.

Seirawan, Y., Simon, H. A., & Munakata, T. (1997). The implications of kasparov vs. deep blue.

Communications of the ACM, 40(8), 21-25.

Wang, F. Y., Zhang, J. J., Zheng, X., Wang, X., Yuan, Y., Dai, X., ... & Yang, L. (2016). Where

does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond. IEEE/CAA Journal

of Automatica Sinica, 3(2), 113-120.

