
TranSec: Multi-Language Vulnerability Detection Using Transfer Learning

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Liam Brennan

Spring, 2022

Technical Project Team Members

Liam Brennan

Yuan Tian

Faysal Hussain Shezan

Tamjid Al Rahat

Wentao Chen

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Yuan Tian, Department of Computer Science

TranSec: Multi-Language Vulnerability Detection Using Transfer Learning

CS4991 Capstone Report, 2023

Liam Brennan

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

lfb6ek@virginia.edu

ABSTRACT

Vulnerable code detection is one of the

most critical yet challenging tasks in the

modern age. Leveraging knowledge of similar

vulnerabilities across different programming

languages provides an opportunity for richer

vulnerability detection. In this work, I built a

machine learning framework, TranSec, that

extracts high-level information about

vulnerabilities to perform vulnerability

detection. Building from recent works on

Natural Language Processing (NLP), I

designed a new model that can detect similar

vulnerabilities across many different

programming languages. TranSec

outperforms various other vulnerability

detection approaches while requiring

significantly less training data. Additionally,

TranSec is exceptional at extracting high-

level information, implying that multi-

language tasks other than vulnerability

detection, such as language translation, can

leverage TranSec. In the future, I plan to

release a complete vulnerability detection

system based on the TranSec model.

1. INTRODUCTION

With the increasing threat of cybercrime

and the ever-growing impact of the internet

on all sectors of everyday life, code

vulnerability detection is one of the most

critical problems today. Machine learning-

based vulnerability detection methods have

been a hot research topic over the past few

years, delivering promising results. However,

current machine learning models fail to learn

vulnerabilities across different programming

languages, lack functionality, and fail to

leverage crucial vulnerability data.

In order to solve this problem, I designed

TranSec, a model that learns high-level

informat ion about vulnerabilities to perform

detection across many different programming

languages. I built TranSec on top of a

particular type of Natural Language

Processing (NLP) model called Transformers,

which are used heavily in NLP systems such

as ChatGPT. Leveraging my novel machine

learning architecture and training procedure,

TranSec is able to outperform previous

vulnerability detection methods while

requiring significantly less data.

2. BACKGROUND

This section provides a brief overview of

two background topics vital to this project:

Deep Learning and Vulnerability Detection.

2.1 Deep Learning

Deep Learning is the field that has

revolutionized machine learning and AI over

the past decade. Based on artificial neural

networks and backpropagation, deep learning

models are characterized by their immense

size, need for enormous datasets, and ability

to do challenging tasks, such as image

generation (Ramesh et al, 2022), language

generation (OpenAI, n.d.), and language

translation. Deep learning models utilize

representation learning by automatically

learning complex features and data

representations. In most cases, deep learning

models are iteratively trained by being

evaluated, punished based on some objective

(loss function), then adjusted in tiny steps.

Additionally, Transfer Learning is a

common Deep Learning technique that uses

an old model as the starting point for a new

model. For this project, we use transfer

learning by taking a “pre-trained” model that

learns the rules of language and uses it as a

starting point for our vulnerability detection

model. Transfer Learning often improves

performance and reduces the need for data. In

order to facilitate transfer learning, I used

Transformers, a popular subset of Deep

Learning models tailored toward learning

language. A significant advantage of these

models is the ability to “pre-train” by feeding

it text without any human intervention.

2.2 Vulnerability Detection

Vulnerability detection is identifying code

that could be exploitable by malicious actors.

While highly diverse, in this work, we focus

on web-based vulnerabilities. This code is

used to build websites and is usually open to

attackers on the internet.

3. RELATED WORKS

With the explosion of Deep Learning,

machine learning based vulnerability

detection has quickly taken over the field

(Ghaffarian et al, 2017). Commonly,

Recurrent Neural Networks, similar but more

dated than Transformers, have been used to

great success (Fidalgo et al, 2020; Dam,

2017). Convolutional Neural Networks,

which revisualize source code as images,

have also shown promise (Bilgin, 2021).

Most recently, Graph Neural Networks,

which work on abstract syntax tree

representations of code, have been SOTA

(Cheng et al, 2021).

Some works, such as Ahmad, et al.

(2021), have shown the ability of

transformers to extract high-level information

from source code. Representing code in ways

other than just text has also shown promise

(Li et al, 2021). While many of these deep

learning vulnerability detection works have

shown promise, there is still large room for

improvement. Throughout my extensive

research, I have not found any work that has

been able to successfully transfer semantics

of vulnerabilities across platforms or leverage

transfer learning on a large scale.

4. SYSTEM DESIGN

This section provides an Overview of

TranSec and details of my implementation.

4.1 Overview

 TranSec is built in three distinct steps: 1)

Transformer Pre-training, 2) Vulnerability

Classification, and 3) Transfer Learning. In

Step 1, we pre-trained the model on a large

corpus of C++, Python, and Javascript code. I

based my model on ALBERT, a popular

transformer architecture. I trained using the

Masked-Language Model (MLM) objective,

in which the model learns by guessing hidden

words; and the Semantic Sovreighty

Objective (SSO). By the end of this step, the

model has been trained to output Semantic

Embeddings, which are language independent

representations of the text.

 In Step 2, I used the Semantic

Embeddings from Step 1 to train a model for

Vulnerability Detection in either C++,

Python, or Javascript. We use standard

classification techniques.

 In Step 3, I used the model from step 2 as

a starting point and train for vulnerability

detection in a new language.

4.2 Data Preprocessing

 In order to feed the data into my model in

each step, I must preprocess the data. To do

this, I build tokenizers for each language,

which take the given source code and turn it

into a list of tokens, which include operators,

keywords, variable names, and identifiers. I

anonymize all variable names by giving them

generic names. I create a vocabulary of

tokens and give each unique token a

corresponding vocabulary number (0-

vocab_size), which I feed into the model. I

wrote the preprocesssing code in a variety of

languages as needed, including Javascript,

C++, and Python.

4.3 Semantic Sovereignty Objective

 As mentioned previously, during the pre-

training step (Step 1), I trained the model on

the Semantic Sovreighty Objective (SSO) in

addition to the standard MLM objective.

During training, SSO will take an average of

the Semantic Embeddings across each

language and punish the model based on the

standard deviation between them. This

optimizes the model to create language-

independent embeddings, where the Semantic

Embeddings, on average, are the same with

each language.

4.4 Training

 I built my system in Python, using

PyTorch as my main machine learning

framework. I used HuggingFace

Transformers as the basis for my model.

Additionally, I trained my model using GPUs

on the UVA Computer Science Servers. Each

model took roughly two days to train. I

trained one pre-trained model, which I used

as the basis for vulnerability detection in

C++, Python, and Javascript.

5. RESULTS

I compared TranSec with other SOTA

vulnerability detection methods, using F1

Score, MCC, and PR AUC as my comparison

metrics. As shown in Figures 1, 2 and 3

below, TranSec outperformed other SOTA

methods for C++, Javascript, and Python,

reaching F1 scores of 87.7%, 87.1%, and

82.6%, respectively.

Table 1: Results of TranSec

on the Draper VDISC C/C++ dataset

compared to other methods

Table 2: Results of TranSec

on the RAISE Javascript dataset

compared to other methods

Table 3: Results of TranSec on our

Python dataset in different transfer

settings compared to other methods

 These results show the potential of

TranSec and multi-language vulnerability

detection. As a supplement to software

designing, TranSec can be a powerful tool by

catching many common vulnerabilities.

6. CONCLUSION

I built a novel machine-learning system

called TranSec that leverages recent advances

in Natural Language Processing and transfer

learning. Using my Semantic Sovreignty

Objective, I can directly embed language-

independent semantic information between

different programming languages, a task

infeasible with previous methods.

Consequently, TranSec outperforms previous

SOTA methods in vulnerability detection for

various programming languages.

7. FUTURE WORK

While this work focuses primarily on

vulnerability detection, the novel pre-training

method using the Semantic Sovreignty

objective has other use cases. Due to

TranSec’s ability to extract semantic

knowledge between languages, the same

architecture can be used directly for tasks

such as code translation. Additionally,

TranSec can be extended to other domains,

such as natural language processing.

More immediately, this work focuses on

validating the TranSec framework

experimentally. The next step is to use

TranSec to build vulnerability detection

applications, such as a web API or standalone

program.

8. ACKNOWLEDGMENTS

I would like to thank Professor Yuan Tian

(University of California, Los Angeles),

Tamjid Al Rahat (University of California,

Los Angeles), and Faysal Hussain Shezan

(University of Virginia) for direction and

guidance for this project. Professor Tian

originally proposed building a transfer

learning based vulnerability detection model

named TranSec. Additionally, I would like to

thank the UVA Computer Science department

for funding and computing resources.

REFERENCES

Ramesh, A., Dhariwal, P., Nichol, A., Chu,

C., & Chen, M. (2022). Hierarchical text-

conditional image generation with clip

latents. arXiv preprint arXiv:2204.06125.

OpenAI. (n.d.). Introducing chatgpt.

Introducing ChatGPT. Retrieved April 8,

2023, from https://openai.com/blog/chatgpt

Ghaffarian, Seyed & Shahriari, Hamid Reza.

(2017). Software Vulnerability Analysis and

Discovery Using Machine-Learning and

Data-Mining Techniques: A Survey. ACM

Computing Surveys. 50. 1-36.

10.1145/3092566.

A. Fidalgo, I. Medeiros, P. Antunes and N.

Neves, "Towards a Deep Learning Model for

Vulnerability Detection on Web Application

Variants," 2020 IEEE International

Conference on Software Testing, Verification

and Validation Workshops (ICSTW), Porto,

Portugal, 2020, pp. 465-476, doi:

10.1109/ICSTW50294.2020.00083.

Dam, H. K., Tran, T., Pham, T., Ng, S. W.,

Grundy, J. & Ghose, A. (2017). Automatic

feature learning for vulnerability

prediction. arXiv preprint arXiv:1708.02368.

Bilgin, Z. (2021). Code2image: Intelligent

code analysis by computer vision techniques

and application to vulnerability prediction.

arXiv preprint arXiv:2105.03131.

Shezan, F. H., Cheng, K., Zhang, Z., Cao, Y.

& Tian, Y. (2020). TKPERM: Cross-platform

Permission Knowledge Transfer to Detect

Overprivileged Third-party Applications.

Network and Distributed System Security

Symposium.

Ahmad, W. U., Chakraborty, S., Ray, B. &

Chang, K. W. (2021). Unified pre-training for

program understanding and generation. arXiv

preprint arXiv:2103.06333.

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y. &

Chen, Z. (2021). Sysevr: A framework for

using deep learning to detect software

vulnerabilities. IEEE Transactions on

Dependable and Secure Computing, 19(4),

2244-2258.

Cheng, X & Wang, H & Hua, J & Xu, G &

Sui, Y. (2021). DeepWukong: Statically

Detecting Software Vulnerabilities Using

Deep Graph Neural Network. ACM

Transactions on Software Engineering and

Methodology. 30. 1-33. 10.1145/3436877.

Russell, R., Kim, L., Hamilton, L., Lazovich,

T., Harer, J., Ozdemir, O., ... & McConley,

M. (2018, December). Automated

vulnerability detection in source code using

deep representation learning. In 2018 17th

IEEE international conference on machine

learning and applications (ICMLA) (pp. 757-

762). IEEE

Paaßen, B., McBroom, J., Jeffries, B.,

Koprinska, I., & Yacef, K. (2021). ast2vec:

Utilizing recursive neural encodings of

python programs. arXiv preprint

arXiv:2103.11614.

Tanwar, A., Sundaresan, K., Ashwath, P.,

Ganesan, P., Chandrasekaran, S. K., & Ravi,

S. (2020). Predicting vulnerability in large

codebases with deep code representation.

arXiv preprint arXiv:2004.12783.

Suneja, S., Zheng, Y., Zhuang, Y., Laredo, J.,

& Morari, A. (2020). Learning to map source

code to software vulnerability using code-as-

a-graph. arXiv preprint arXiv:2006.08614.

Ferenc, R., Hegedűs, P., Gyimesi, P., Antal,

G., Bán, D. & Gyimóthy, T. "Challenging

Machine Learning Algorithms in Predicting

Vulnerable JavaScript Functions," 2019

IEEE/ACM 7th International Workshop on

Realizing Artificial Intelligence Synergies in

Software Engineering (RAISE), Montreal,

QC, Canada, 2019, pp. 8-14, doi:

10.1109/RAISE.2019.00010.

Viszkok, T., Hegedűs, P., & Ferenc, R.

(2021). Improving Vulnerability Prediction of

JavaScript Functions Using Process Metrics.

arXiv preprint arXiv:2105.07527.

