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ABSTRACT 

Vulnerable code detection is one of the 

most critical yet challenging tasks in the 

modern age. Leveraging knowledge of similar 

vulnerabilities across different programming 

languages provides an opportunity for richer 

vulnerability detection. In this work, I built a 

machine learning framework, TranSec, that 

extracts high-level information about 

vulnerabilities to perform vulnerability 

detection. Building from recent works on 

Natural Language Processing (NLP), I 

designed a new model that can detect similar 

vulnerabilities across many different 

programming languages. TranSec 

outperforms various other vulnerability 

detection approaches while requiring 

significantly less training data. Additionally, 

TranSec is exceptional at extracting high-

level information, implying that multi-

language tasks other than vulnerability 

detection, such as language translation, can 

leverage TranSec. In the future, I plan to 

release a complete vulnerability detection 

system based on the TranSec model.  

 

1. INTRODUCTION 

With the increasing threat of cybercrime 

and the ever-growing impact of the internet 

on all sectors of everyday life, code 

vulnerability detection is one of the most 

critical problems today. Machine learning-

based vulnerability detection methods have 

been a hot research topic over the past few 

years, delivering promising results. However, 

current machine learning models fail to learn 

vulnerabilities across different programming 

languages, lack functionality, and fail to 

leverage crucial vulnerability data.  

In order to solve this problem, I designed 

TranSec, a model that learns high-level 

informat ion about vulnerabilities to perform 

detection across many different programming 

languages. I built TranSec on top of a 

particular type of Natural Language 

Processing (NLP) model called Transformers, 

which are used heavily in NLP systems such 

as ChatGPT. Leveraging my novel machine 

learning architecture and training procedure, 

TranSec is able to outperform previous 

vulnerability detection methods while 

requiring significantly less data. 

 

2. BACKGROUND 

This section provides a brief overview of 

two background topics vital to this project: 

Deep Learning and Vulnerability Detection. 

 

2.1 Deep Learning 

Deep Learning is the field that has 

revolutionized machine learning and AI over 

the past decade. Based on artificial neural 

networks and backpropagation, deep learning 

models are characterized by their immense 

size, need for enormous datasets, and ability 

to do challenging tasks, such as image 

generation (Ramesh et al, 2022), language 

generation (OpenAI, n.d.), and language 

translation. Deep learning models utilize 

representation learning by automatically 



 

learning complex features and data 

representations. In most cases, deep learning 

models are iteratively trained by being 

evaluated, punished based on some objective 

(loss function), then adjusted in tiny steps. 

Additionally, Transfer Learning is a 

common Deep Learning technique that uses 

an old model as the starting point for a new 

model. For this project, we use transfer 

learning by taking a “pre-trained” model that 

learns the rules of language and uses it as a 

starting point for our vulnerability detection 

model. Transfer Learning often improves 

performance and reduces the need for data. In 

order to facilitate transfer learning, I used 

Transformers, a popular subset of Deep 

Learning models tailored toward learning 

language. A significant advantage of these 

models is the ability to “pre-train” by feeding 

it text without any human intervention. 

 

2.2 Vulnerability Detection 

Vulnerability detection is identifying code 

that could be exploitable by malicious actors. 

While highly diverse, in this work, we focus 

on web-based vulnerabilities. This code is 

used to build websites and is usually open to 

attackers on the internet. 

 

3. RELATED WORKS 

With the explosion of Deep Learning, 

machine learning based vulnerability 

detection has quickly taken over the field 

(Ghaffarian et al, 2017). Commonly, 

Recurrent Neural Networks, similar but more 

dated than Transformers, have been used to 

great success (Fidalgo et al, 2020; Dam, 

2017). Convolutional Neural Networks, 

which revisualize source code as images, 

have also shown promise (Bilgin, 2021). 

Most recently, Graph Neural Networks, 

which work on abstract syntax tree 

representations of code, have been SOTA 

(Cheng et al, 2021). 

Some works, such as Ahmad, et al. 

(2021), have shown the ability of 

transformers to extract high-level information 

from source code. Representing code in ways 

other than just text has also shown promise 

(Li et al, 2021). While many of these deep 

learning vulnerability detection works have 

shown promise, there is still large room for 

improvement. Throughout my extensive 

research, I have not found any work that has 

been able to successfully transfer semantics 

of vulnerabilities across platforms or leverage 

transfer learning on a large scale. 

 

4. SYSTEM DESIGN 

This section provides an Overview of 

TranSec and details of my implementation.  

 

4.1 Overview 

      TranSec is built in three distinct steps: 1) 

Transformer Pre-training, 2) Vulnerability 

Classification, and 3) Transfer Learning. In 

Step 1, we pre-trained the model on a large 

corpus of C++, Python, and Javascript code. I 

based my model on ALBERT, a popular 

transformer architecture. I trained using the 

Masked-Language Model (MLM) objective, 

in which the model learns by guessing hidden 

words; and the Semantic Sovreighty 

Objective (SSO). By the end of this step, the 

model has been trained to output Semantic 

Embeddings, which are language independent 

representations of the text. 

      In Step 2, I used the Semantic 

Embeddings from Step 1 to train a model for 

Vulnerability Detection in either C++, 

Python, or Javascript. We use standard 

classification techniques. 

      In Step 3, I used the model from step 2 as 

a starting point and train for vulnerability 

detection in a new language.  

 

4.2 Data Preprocessing 

      In order to feed the data into my model in 

each step, I must preprocess the data. To do 

this, I build tokenizers for each language, 

which take the given source code and turn it 

into a list of tokens, which include operators, 



 

keywords, variable names, and identifiers. I 

anonymize all variable names by giving them 

generic names. I create a vocabulary of 

tokens and give each unique token a 

corresponding vocabulary number (0-

vocab_size), which I feed into the model. I 

wrote the preprocesssing code in a variety of 

languages as needed, including Javascript, 

C++, and Python. 

 

4.3 Semantic Sovereignty Objective 

      As mentioned previously, during the pre-

training step (Step 1), I trained the model on 

the Semantic Sovreighty Objective (SSO) in 

addition to the standard MLM objective. 

During training, SSO will take an average of 

the Semantic Embeddings across each 

language and punish the model based on the 

standard deviation between them. This 

optimizes the model to create language-

independent embeddings, where the Semantic 

Embeddings, on average, are the same with 

each language.  

 

4.4 Training 

      I built my system in Python, using 

PyTorch as my main machine learning 

framework. I used HuggingFace 

Transformers as the basis for my model. 

Additionally, I trained my model using GPUs 

on the UVA Computer Science Servers. Each 

model took roughly two days to train. I 

trained one pre-trained model, which I used 

as the basis for vulnerability detection in 

C++, Python, and Javascript. 

 

5. RESULTS  

I compared TranSec with other SOTA 

vulnerability detection methods, using F1 

Score, MCC, and PR AUC as my comparison 

metrics. As shown in Figures 1, 2 and 3 

below, TranSec outperformed other SOTA 

methods for C++, Javascript, and Python, 

reaching F1 scores of 87.7%, 87.1%, and 

82.6%, respectively. 

 

  

Table 1: Results of TranSec 

on the Draper VDISC C/C++ dataset 

compared to other methods 

 

 

 
Table 2: Results of TranSec 

on the RAISE Javascript dataset 

compared to other methods 

 

 

 
Table 3: Results of TranSec on our  

Python dataset in different transfer 

settings compared to other methods 

 

 

      These results show the potential of 

TranSec and multi-language vulnerability 

detection. As a supplement to software 

designing, TranSec can be a powerful tool by 

catching many common vulnerabilities. 

 

 

 



 

6. CONCLUSION 

I built a novel machine-learning system 

called TranSec that leverages recent advances 

in Natural Language Processing and transfer 

learning. Using my  Semantic Sovreignty 

Objective, I can directly embed language-

independent semantic information between 

different programming languages, a task 

infeasible with previous methods. 

Consequently, TranSec outperforms previous 

SOTA methods in vulnerability detection for 

various programming languages. 

 

7. FUTURE WORK 

While this work focuses primarily on 

vulnerability detection, the novel pre-training 

method using the Semantic Sovreignty 

objective has other use cases. Due to 

TranSec’s ability to extract semantic 

knowledge between languages, the same 

architecture can be used directly for tasks 

such as code translation. Additionally, 

TranSec can be extended to other domains, 

such as natural language processing. 

More immediately, this work focuses on 

validating the TranSec framework 

experimentally. The next step is to use 

TranSec to build vulnerability detection 

applications, such as a web API or standalone 

program. 
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