
On Providing Fair Circuit/Virtual-Circuit Networking Services

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy

Computer Engineering

by

Mark E. McGinley

May 2012

c⃝ Copyright by

Mark E. McGinley

All rights reserved

May 2012

Abstract

It has become clear that widespread collaboration in the scientific community, which can increas-

ingly be characterized by geographically distributed and large-scale projects, requires predictable

network service [1]. Predictable network service needed by applications such as large file trans-

fers, remote visualization, and remote instrumentation can only be offered on connection-oriented

networks. Circuit-switched and virtual-circuit networks offer such connection-oriented services.

This dissertation addresses four issues that inhibit wider adoption of connection-oriented ser-

vice. From a theoretical perspective, we address reservation systems and queueing systems. An

important consideration for a reservation system with multiple classes, as are necessary to provide

a level of service matched with a specific use, is fairness. First, we present a novel three-step

scheduling algorithm that finds the optimal solution to a multi-class, fairness-considering bin pack-

ing problem, and demonstrate how it can be used to ensure fairness in a reservation system. Sec-

ond, with many types of reservation systems across different disciplines, we recognize a need for

a uniform way to describe reservation systems, and so present a novel general reservation system

model (GRSM), and analyze several examples of commonly encountered reservation and queue-

ing systems to understand why certain systems belonging to the same category of examples use

reservation systems while others use queueing systems.

From an experimental perspective, we address performance and deployment issues with

connection-oriented service. First, data-plane performance is paramount to being able to provide

satisfactory connection-oriented service. To address this, we have performed an in-depth experi-

mental study of the data-plane issues that arise in circuits, as well as comparing existing transport

protocols to a novel implementation designed for circuits. Finally, to provide connection-oriented

iv

v

service to end hosts, we present a solution that allows an off-the-shelf physical switch to be virtu-

alized into multiple logical switches. Thus, connection-oriented service could be provided on the

same existing substrate as connectionless service with no new infrastructure expenditures.

Acknowledgments

Foremost, my sincerest thank you to Prof. Malathi Veeraraghavan, my advisor, who has unceasingly

guided me in the completion of this work. It has been an incredibly valuable experience to benefit

from her knowledge, experience, and generosity, and a pleasure to work with someone who brings

an energy and intellectual curiosity to every discussion.

I thank the postdoctoral fellows and graduate students, Tao Li, Xiangfei Zhu, Xiuduan Fang,

Helali Bhuiyan, Xuan Zheng, and Zhenzhen Yan, with whom I have had the honor of working and

from whom I have learned a great deal.

I would like to thank Professor Marty Humphrey, Professor Maite Brandt-Pearce, Professor

Joanne Bechta Dugan, Professor Alfred Weaver, and Professor Kamin Whitehouse for serving on

my defense committee and providing guidance towards the completion of my work.

I would especially like to thank my wife Anne, my parents Michael and Susan McGinley, my

wife’s parents John and Nancy Hines, and all of our family members who have supported my effort

over the years.

This work was carried out under the sponsorship of National Science Foundation grants

1038058 and 1116081 and the Department of Energy grant DE-SC002350. I would like to thank

the NSF, DOE, and American taxpayers for funding this research.

vi

Contents

Acknowledgments vi

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Problem statement . 5

1.4 Hypothesis formulation . 5

1.5 Related work . 6

1.6 Dissertation organization . 7

1.7 Key contributions . 7

2 On Reservation Systems and Queueing Systems 10

2.1 Introduction . 10

2.1.1 Key differences between queueing systems and reservation systems 10

2.1.2 Advantages and disadvantages of the two types of systems 11

2.2 Related work . 12

2.3 A General Reservation System Model (GRSM) 12

2.3.1 Request . 14

2.3.2 Response . 14

2.3.3 Resource usage . 15

2.4 Examples of reservation and queueing systems 15

2.5 Solving using a Queueing Model . 18

vii

Contents viii

2.5.1 M/M/m/∞ Queueing Model . 18

2.5.1.1 Effect of competition . 21

2.5.1.2 Server pooling . 22

2.5.2 USST Requests with Single Options . 22

2.6 Solving with Discrete Time Markov Chain (DTMC) models 25

2.6.1 Synchronized Server Model . 25

2.6.1.1 Performance metrics . 26

2.6.1.2 Numerical results . 28

2.6.2 Server Vacations Model . 30

2.6.2.1 Performance metrics . 32

2.6.2.2 Numerical results . 35

2.7 Multiple Options Simulation . 37

2.8 Conclusions . 37

3 Fairness in Multi-Class Book-Ahead Scheduling 39

3.1 Introduction . 39

3.1.1 Problem definition . 40

3.1.2 Related work . 40

3.2 System Model . 41

3.2.1 Non-homogeneous Continuous-Time Markov Chain model 42

3.2.2 Discrete-time Markov Chain model . 43

3.3 Scheduling Algorithm . 43

3.4 Model Solution . 50

3.5 Evaluation Approach . 52

3.6 Results . 53

3.6.1 Sensitivity analysis on system variables m and K 53

3.6.2 Sensitivity analysis on system variable r 55

3.6.3 The impact of the fairness weight ω . 56

Contents ix

3.6.4 Relaxing the fairness objective by the optimization variable ε 56

3.6.5 Mis-matched capacity demand . 56

3.6.6 Comparison of Multi-class BA-First to FCFS 59

3.7 Conclusions . 61

4 An in-depth cross-layer experimental study of transport protocols over circuits 62

4.1 Introduction . 62

4.2 Background . 63

4.2.1 Dynamic circuit service deployment . 64

4.2.2 Equipment used in dynamic circuit networks 65

4.2.3 Mismatched-rate circuits and Layer-2 flow control 65

4.2.4 Impact of TCP congestion control on switch buffer occupancy 66

4.2.5 TCP-Ethernet layer interaction within hosts 66

4.3 Prior work . 67

4.4 New CTCP Implementation and BWdetail . 67

4.5 Experiments . 68

4.5.1 Experimental Setup . 68

4.5.2 Findings on cross-layer interactions . 69

4.5.3 Results . 69

4.5.4 Discussion . 74

4.6 Conclusions . 75

5 On Virtualizing Ethernet Switches 76

5.1 Introduction . 76

5.2 Motivation and Related Work . 77

5.2.1 Initial drivers . 77

5.2.2 Broader motivation and related work . 78

5.3 Approach for Virtualization of an off-the-shelf Ethernet Switch 80

5.3.1 Virtualization architecture overview . 80

Contents x

5.3.2 Data-plane support for sliver isolation . 81

5.3.3 Slice Administration Controller (SAC) . 82

5.4 Implementation and Measurements . 84

5.4.1 SAC Design . 85

5.4.1.1 Resource control . 85

5.4.1.2 Access Transparency . 85

5.4.1.3 Security . 85

5.4.1.4 Performance . 86

5.4.1.5 Reliability . 86

5.4.2 Implementation . 86

5.4.2.1 Setup . 86

5.4.2.2 Operation . 87

5.4.2.3 Security . 87

5.4.3 Measurements . 88

5.5 Conclusions . 88

6 Conclusions and Future Work 90

6.1 Conclusions . 90

6.2 Future Work . 92

Bibliography 93

List of Figures

1.1 A classification of switches . 1

1.2 Dimensions of Qos . 3

2.1 Reservation and service timelines . 13

2.2 M/M/m/∞ queueing system; β is ratio of mean waiting time to mean service time . 20

2.3 Solution to requests with a single option. 23

2.4 The comparison of queueing systems with different lengths of time between service

intervals τ. 29

2.5 The comparison of queueing systems with different vacation settings. 36

3.1 An illustration of the BA-First scheduler for multiple classes. 41

3.2 Optimization example; MRT: Mean Response Time. 50

3.3 Sensitivity analysis on system variables m and K 54

3.4 Sensitivity analysis on system variable r . 55

3.5 The impact of the fairness weight ω . 57

3.6 Relaxing the fairness objective by the optimization variable ε 58

3.7 Mis-matched capacity demand . 59

3.8 Comparison of Multi-class BA-First to FCFS . 60

4.1 Internal structure of a Gigabit/sec Ethernet (GigE) line card in an Ethernet-SONET

MSPP . 64

4.2 Experimental Setup . 68

4.3 Circuit Rate = OC3 (155 Mbps) . 69

xi

List of Figures xii

4.4 Reno over OC3 - 1GB Transfer . 71

4.5 BIC over OC3 - 1GB Transfer . 72

4.6 CTCP over OC3 - 1GB Transfer . 73

5.1 Virtualization Architecture . 82

List of Tables

2.1 Categories with reservation and queueing systems 16

2.2 Characterization of reservation categories . 17

5.1 Configuration database for one time interval . 84

5.2 Delay for various commands . 88

xiii

List of Abbreviations

ATCA Advanced Telecommunications Computing Architecture

ATM Asynchronous Transfer Mode

BDP Bandwidth-Delay Product

BIC TCP Binary Increase Congestion control TCP

CBP call blocking probability

CBS Committed Burst Size

CDF Cumulative Distribution Funtion

CERN European Organization for Nuclear Research

CHEETAH Circuit-switched High-speed End-to-End Transport ArcHitecture

CIR Committed Information Rate

CLI Command-Line Interface

CTCP Circuit-TCP

CTMC continuous-time Markov chain

cwnd congestion window

CWR Congestion Window Reduced

DMA Direct Memory Access

DMV Department of Motor Vehicles

DoE Department of Energy

DRAGON Dynamic Resource Allocation via GMPLS Optical Networks

DTMC discrete-time Markov chain

EST Earliest Start Time

xiv

List of Abbreviations xv

FCFS first-come first-served

FPC Flexible Packet Classification

FPGA field-programmable gate array

GB gigabyte

Gbps gigabit per second

GENI Global Environment for Network Innovations

GFP Generic Framing Procedure

GigE Gigabit Ethernet

GRSM general reservation system model

HOPI Hybrid Optical Packet Infrastructure

IEEE Institute of Electrical and Electronic Engineers

ION Interoperable Ondemand Network

IP Internet Protocol

ITU International Telecommunication Union

KB kilobyte

LAN Local Area Network

MB megabyte

Mbps megabit per second

MIB Management Information Base

MPLS Multiprotocol Label Switching

MRT mean response time

MSPP Multi-Service Provisioning Platform

MSPP Multi-Service Provisioning Platform

NIC Network Interface Card

NSF National Science Foundation

OC Optical Carrier

OS Operating System

OSCARS On-Demand Secure Circuits and Advance Reservation System

List of Abbreviations xvi

PMF Probability Mass Function

POTS plain old telephone service

QoS Quality of Service

REN research-and-education network

RTT round-trip time

RWA routing and wavelength assignment

SAC Slice Administration Controller

SAC Slice Administration Controller

SDCS scheduled dynamic circuit service

SNMP Simple Network Management Protocol

SONET Synchronous Optical Networking

SSH2 Secure Shell 2

TCP Transmission Control Protocol

TCP Transmission Control Protocol

USST User-Specified Start Time

VC virtual circuit

VCG virtual-concatenation group

VINI Virtual Network Infrastructure

VLAN Virtual LAN

VLAN Virtual Local Area Network

WDM Wavelength Division Multiplexing

WFQ Weighted Fair Queueing

WRED Weighted Random Early Discard

Chapter 1

Introduction

1.1 Background

In communication services, link bandwidth is a resource that typically must be shared in some

manner. Communication service offerings can be categorized by the method of sharing as either

connection-oriented or connectionless service. In connectionless service, such as IP service, as new

data flows start and finish with no admission control actions, the TCP congestion control bandwidth-

sharing mechanism [2] was introduced to allow flows such as file transfers to dynamically adjust

sending rates so that all ongoing flows sharing a path receive equal shares of the bandwidth (re-

ferred to as proportional fairness). In contrast, admission control is a key component of band-

width sharing in connection-oriented networks. Control-plane software such as OSCARS [3] and

DRAGON [4] perform admission control, handling on-demand and advance-reservation requests

for circuits/virtual-circuits (VCs).

Figure 1.1: A classification of switches

1

Chapter 1. Introduction 2

Connection-oriented networks can be created using two types of network switches: packet

switches and circuit switches, as shown in Fig. 1.1. The key difference between these two switches

is the multiplexing scheme used on the links of the switch. In a circuit switch, the multiplex-

ing scheme used on its links is position-based, be it time, frequency, or space. To support circuit

multiplexing in the data plane, an admission-control mechanism is required in the control plane.

Admission control is typically used to limit the number of customers sharing a resource by keeping

track of the aggregate number of admitted customers. In circuit multiplexing, in addition to track-

ing aggregate bandwidth allocation, specific positions need to be assigned to a flow when the call

is admitted, in order that the user’s process can transmit data at the assigned position (e.g., at an

assigned timeslot).

In a packet switch, the multiplexing scheme used on its links is packet-based multiplexing

in which information carried in the packet header is used to demultiplex packets belonging to a

particular flow. In order to use packet switches for connection-oriented services with guaranteed

bandwidth, an admission-control mechanism is necessary. The admission control mechanism in

connection-oriented packet switches, henceforth referred to as virtual-circuit switches, is similar

to that used in circuit switches. Clearly, the aggregate bandwidth check is required. The step

analogous to assigning positions in a circuit switch is the allocation of “labels” or “virtual-circuit

identifiers” in the packet’s header. Labels and virtual-circuit identifiers are used to demultiplex

packets belonging to the same flow. Since packet switches have buffers, the admission control

algorithm should not only consider aggregate bandwidth but also buffer space when admitting flows.

In addition to admission control, data-plane functions such as policing and scheduling are necessary

to support guaranteed bandwidth. The three functions can be visualized on orthogonal axes, as

shown in Fig. 1.2. Policing enforces that incoming traffic does not exceed the resources allocated

to it (by dropping packets to make the traffic conform), and scheduling influences the egress traffic

with functions such as shaping outgoing traffic and using queueing disciplines.

In order to provide service that meets customer demand for specific bandwidth and delay

requirements without costing as much as a leased line, research-and-education network (REN)

providers as well as commercial network providers have begun offering scheduled dynamic circuit

Chapter 1. Introduction 3

Figure 1.2: Dimensions of Qos

service (SDCS). In SDCS, a customer contracts for an access link to the circuit-switched network,

and then requests circuit service of a specific rate and duration only when required. In that manner,

SDCS is much like plain old telephone service (POTS), where a monthly fee is charged for access

to the telephone network and circuits are requested as an additionally charged action. There are

several key differences, though, between SDCS and POTS, and the most important for this discus-

sion is the number of channels into which a link is divided. For example, a T3 line consists of 672

individual voice channels, while an SDCS request could be to support a high-bandwidth applica-

tion’s OC-12 service requirement across an OC-192 link, representing one-sixteenth of the link. As

the number of servers m increases, a higher utilization is achievable with decreasing blocking prob-

ability. As the number of servers decreases, the utilization falls and the call blocking probability

sharply rises. Therefore, for the high number of channels into which links are divided for POTS, a

queueing system can operate with low blocking but still achieve the high utilization necessary for

profitability. For high-bandwidth circuit service as described above to be able to provide both low

blocking probability and high utilization, a reservation system is required, and hence reservations

are required as in SDCS.

1.2 Motivation

The motivation for this work stems from a recognition that widespread collaboration in the scientific

community, which can increasingly be characterized by geographically distributed and large-scale

Chapter 1. Introduction 4

projects, requires predictable network service [1]. Predictable network service needed by appli-

cations such as large file transfers, remote visualization, and remote instrumentation can only be

offered on connection-oriented networks. Circuit-switched and virtual-circuit networks offer such

connection-oriented services.

Implemented software, such as OSCARS [3] and DRAGON [4] as used in Internet2’s ION net-

work [5], acts as centralized scheduler and performs the control-plane actions required to instantiate

a circuit. The theoretical component of bandwidth sharing for connection-oriented networks has

been studied extensively, including by our research group [6], but there are two additional aspects

further developed in the scope of this work. First, we present a novel general reservation system

model (GRSM) to be able to describe reservation systems in a uniform way, and second, we address

providing fairness in scheduling service. Together those comprise the theoretical component of this

work.

Though circuits are used in the providers’ networks, a packet-switched infrastructure is typically

involved on both ends of the connection. Multi-Service Provisioning Platforms (MSPPs), which

can include both packet-switched and circuit-switched line cards, function as gateways between

the customer’s packet-switched infrastructure and the service providers circuit-switched network.

A virtual circuit can be established across the customer’s packet-switched infrastructure to provide

connection-oriented service to the MSPP, and again on the other side of connection, to ensure

end-to-end connection-oriented service. The various factors involved in the end-to-end connection,

such as mismatched rates between the customer’s packet-switched infrastructure and the providers

circuit service, can cause performance problems, which are explored as part of the experimental

component. The scope of this work includes addressing the cross-layer issues present in extending

the connection-oriented service into the customer’s packet-switched infrastructure, and includes

our method for providing both connection-oriented and connectionless service on the customer’s

packet-switched infrastructure.

Chapter 1. Introduction 5

1.3 Problem statement

The hypothesis of this research is that connection-oriented service can be provided with a fairness-

considering advance-reservation system on both circuit-switched and packet-switched infrastruc-

tures.

There are two main components in this work:

1. Theoretical component: the development of both a general reservation system model and

analysis of using queueing and reservation systems in general, and an analytical model for a

multi-class advance-reservation scheduling system to achieve fairness and,

2. Experimental component: a cross-layer study of transport protocols on circuits as well as a

novel method to offer both connection-oriented and connectionless service on a single sub-

strate of packet switches.

A combination of analytical, simulation, and experimental methods are used throughout this work.

1.4 Hypothesis formulation

Theoretical component: As our research group has developed scheduling algorithms, we have

continually encountered the need to compare reservation and queueing systems. There has not

been a comprehensive treatment on the question of how to choose whether a system should use

reservation scheduling or simply queueing, and so we have sought to answer that question. In

doing so, we recognized the need for a uniform way to describe the various reservation systems we

were investigating. To accomplish this, we developed a general reservation system model (GRSM).

Our interest in furthering the analytical work on scheduling led us to pursue the issue of fair-

ness in multi-class advance-reservation scheduling systems. We hypothesize that an optimization

can be performed to provide fair scheduling while taking into account mean waiting time and block-

ing probability, and that we can allow the fairness to be tuned by the system operator to improve

performance metrics by relaxing fairness constraints.

Chapter 1. Introduction 6

Experimental component: The data-plane performance is paramount to being able to provide

satisfactory connection-oriented service. To address this, we have performed an in-depth experi-

mental study of the data-plane issues that arise in circuits, as well as comparing existing transport

protocols to a novel implementation designed for circuits.

Further, in the customer’s packet-switched infrastructure, packet switches between the data

source and sink that are heavily loaded must be configured to provide connection-oriented service1.

Typically, this configuration is performed by the control-plane software. Administrators controlling

the network would be wary of granting the control-plane software unfettered access to existing

switches. We hypothesize that a solution can be created to enable the existing substrate of switches

to be used for connectionless traffic as well as virtual circuits, such that no new infrastructure

expenditures would be necessary to provide connection-oriented service.

1.5 Related work

The scope of this work includes four unaddressed issues. In terms of the discussion on reservations

and queueing, there is clearly deep research within specific topics, e.g., variations on customer

behavior regarding queue abandonments [7], but in general, a lack of the identification of common-

alities across disciplines. More specifically, on advance reservation scheduling, most of the work

involves the use of simulations, as the state-space of the models hinders analytical approaches. Fur-

ther, none considers the fairness issue of advance reservations across multiple classes. Relevant

to our experimental component, high-speed transport protocols (e.g., HighSpeed TCP [8]) were

not designed specifically for circuits. Circuit-TCP [9] was designed for circuits, but the cross-

layer interactions that are part of this work were not considered. Finally, while there are other

hardware-based or software-based solutions to offer connection-oriented and connectionless ser-

vice on a packet-switched infrastructure, our approach capitalizes on existing infrastructure without

any data-plane performance sacrifice. Subsequent to the publication of our work, OpenFlow [10]

has risen in prominence, with commercial and educational participation.

1In practice, data-plane functions do not need to be instantiated on switches that are lightly loaded, since the rate
guarantees would likely be met simply by an excess of capacity.

Chapter 1. Introduction 7

1.6 Dissertation organization

This dissertation is organized into six chapters. The motivation for this work, relevant background

and related work, and a summary of this work’s key contributions are provided in this chapter.

In Chapter 2, these differences between reservation systems and queueing systems are charac-

terized, and a general reservation system model (GRSM) is proposed. Under four different sets of

assumptions, the GRSM is reduced to analytically tractable models for which solutions are pro-

vided, and solved with simulations under a fifth set of assumptions. Several examples of commonly

encountered reservation and queueing systems are identified and analyzed to understand why cer-

tain systems belonging to the same category of examples use reservation systems while others use

queueing systems.

In Chapter 3, a multi-class advance-reservation scheduling system is developed for use in cir-

cuit/VC networks. An important consideration for a scheduling system with multiple classes is

fairness. Our scheduling algorithm applies to any bin packing problem or advance-reservation sce-

nario where a flexible class boundary is allowed.

In Chapter 4, an in-depth experimental investigation is performed to gain insights into the com-

plex interactions between the TCP layer, ON/OFF flow control at the Ethernet layer, and switch

buffer sizes (the Ethernet line cards have buffers). Using a novel tool and transport protocol de-

signed for circuits, these interactions are characterized.

In Chapter 5, we propose an approach for virtualizing off-the-shelf Ethernet switches that have

built-in support for creating isolated bandwidth partitions on their data-plane interfaces.

Finally, this work’s contributions are summarized, future work is discussed and the dissertation

is concluded in Chapter 6.

1.7 Key contributions

The key contributions are as follows.

1. A general reservation system model (GRSM) is proposed to uniformly describe reservation

systems. The differences between reservation systems and queueing systems are character-

Chapter 1. Introduction 8

ized, and categories of reservation systems and queueing systems are analyzed to understand

the factors that influence why reservation systems and queueing systems may be used by

different systems in the same category. This work has been submitted in a paper to Manufac-

turing and Service Operations Management [11].

2. We present a novel three-step scheduling algorithm that finds the optimal solution to a multi-

class, fairness-considering bin packing problem. This model extends our previous single-

class book-ahead BA-First algorithm into a multi-class algorithm, and provide an analytical

discrete-time Markov chain (DTMC) model. The system model is solved using analytical

techniques (for small-scale systems), and simulations (for small and larger scale systems),

and sensitivity analysis is performed to characterize the algorithm’s performance and explore

the tradeoff between fairness, mean response time, and utilization. This work has been sub-

mitted in a paper to IEEE Transactions on Networking [12].

3. An interesting new dynamic was found between flow control at the data-link layer and con-

gestion control at the transport layer. With this in-depth characterization, it is clear that auto-

mated mechanisms are necessary to not only configure end-host TCP send and receive buffer

sizes as is required for high throughput across IP-routed networks, but for circuit networks,

additionally, Ethernet-layer output queue (called qdisc in Linux) size needs to be set, along

with flow-control related parameters within switches. This work is published in a paper in the

Proceedings of IEEE International Conference on Computer Communications and Networks

(ICCCN2010) [13].

4. An approach to virtualize off-the-shelf Ethernet switches is presented. Our solution is to im-

plement two software modules that are run external to the switches, a slice scheduler, which

acts as a reservation scheduler, and a Slice Administration Controller (SAC). We applied our

approach to virtualizing a specific Ethernet switch, i.e., the Force10 E600 model. We describe

our implementation, and show how a slowdown of 3% to 26%, based on the type of admin-

istrative command issued, is experienced when using the SAC. This work is published in a

Chapter 1. Introduction 9

paper in the Proceedings of IEEE International Conference on Computer Communications

and Networks (ICCCN2008) [14].

Chapter 2

On Reservation Systems and Queueing Systems

2.1 Introduction

Resource-sharing mechanisms, in which a set of servers are shared spatially and temporally (i.e,

simultaneously by multiple customers), can be classified into the broad categories of reservation

systems and queueing systems. The word “queue” is defined in Webster’s dictionary as a “waiting

line of persons or vehicles.” The word “reserve” is defined as “to retain or hold over to a future

time or place.” What are the key differences between a reservation system and a queueing system?

When should one or the other type of system be implemented?

This paper examines these questions to better characterize the two types of systems. Reservation

systems considered here are restricted to online systems, thus excluding batch scheduling systems.

The difference is that in online systems, each reservation request is processed immediately and a

response is generated, while requests are batched and processed together allowing for optimization

in batch systems.

2.1.1 Key differences between queueing systems and reservation systems

1. In addition to the resources being accessed (also referred to as “servers”), reservation sys-

tems include a control entity called a reservation scheduler, which is not present in queueing

systems.

10

Chapter 2. On Reservation Systems and Queueing Systems 11

2. In reservation systems, customers are required to specify anticipated service durations in their

reservation requests. This is required because a reservation scheduler needs to know when

in-service and previously scheduled jobs are going to depart in order to to be able to assign

a future start time for a new reservation request. In contrast, in queueing systems, customers

do not declare their anticipated service durations prior to service.

3. In reservation systems, customers can request advance reservations. This is not a requirement

for reservation systems, but given that a reservation scheduler is present, this feature can be

supported readily. In other words, a reservation scheduler can support (i) immediate requests

and return an earliest start time at which the requested resources are available (we refer to

these as Earliest Start Time (EST) requests), as well as (ii) advance-reservation requests where

users specify a set of start times acceptable to them based on other considerations (we refer to

these as User-Specified Start Time (USST) requests). In contrast, queueing systems can only

support immediate requests as there is no scheduler to accept requests for service in advance.

2.1.2 Advantages and disadvantages of the two types of systems

Queueing systems avoid the costs of having to maintain reservation schedulers, and the need to

design penalties for no-shows and cancelations without customer alienation. Furthermore, they

offer users more flexibility as customers are not required to specify service durations before the

start of service. A disadvantage of a queueing system, however, is that the customer has to wait

in a queue between arrival instant and service-start time, while in a reservation system, customers

do not need to wait in a queue. Instead, once assigned a service start time, the customer can arrive

just before that instant. A second disadvantage of queueing systems is that customers cannot make

advance requests as there is no controller to accept such requests.

The objective of this work is threefold: (i) to develop a general model for reservation systems

by considering several examples of current reservation systems, (ii) to provide analytical solutions

to a subset of specific models derived from the general reservation model under certain sets of

assumptions, and (iii) to use these solutions to analyze example reservation systems to determine

the conditions under which a reservation system is advisable instead of a simpler queueing system.

Chapter 2. On Reservation Systems and Queueing Systems 12

After reviewing related work in Section 2.2, Section 2.3 describes a general reservation system

model (GSRM). Examples of reservation and queueing systems are presented in Section 2.4. For

two sets of assumptions, the GSRM is solved using queueing models as presented in Section 2.5.

Under other sets of assumptions, the GSRM is solved with Markov chain techniques, as described in

Section 2.6, or with simulations, as described in Section 2.7. The paper is concluded in Section 2.8.

2.2 Related work

Queueing and reservations systems are diversely applied and ubiquitous. Correspondingly, the rel-

evant body of work ranges from general queueing theory and scheduling algorithms to specific

concerns such as variations on customer behavior regarding queue abandonments [7]. Typically,

researchers from various fields do not communicate across disciplines in a way that enables simi-

larities to be recognized. For example, scheduling algorithms as well as theory being developed in

the context of high performance computing resource management systems [15] may have practical

overlap with that of real-time systems [16] but the discovery of such is hindered by a lack of a uni-

form way to frame reservation problems. Similar to the Kendall notation [17] for queueing theory,

we contribute toward creating a general reservation system model. This model and its notation is

developed in the following section.

2.3 A General Reservation System Model (GRSM)

A reservation system model is developed in this section to characterize different types of reserva-

tion systems used in everyday life. We refer to this model as a general single-resource reservation

model. Fig. 2.1 shows two timelines, a reservation timeline and a service timeline. There is a

periodicity in both timelines, with Tr and Ts being the reservation period and service period, re-

spectively. Within a service period, service intervals are interspersed with idle intervals. Similarly,

a reservation period also has reservation intervals interspersed with idle intervals (as reservation

schedulers could be human agents who take breaks). Within a reservation period Tr, reservations

can be accepted during reservation intervals for service within the reservation window, which is a

Chapter 2. On Reservation Systems and Queueing Systems 13

Figure 2.1: Reservation and service timelines

multiple of Tr, shown as V Tr in Fig. 2.1. This may or may not equal an integral multiple of service

periods, as shown in Fig. 2.1. The last service period TsK may extend into the next reservation win-

dow. For example, a current airline’s reservation system advances the reservation window at the end

of each day, making Tr equal to 1 day, and it accepts reservations for up to 337 days in advance. The

service period is 1 week since the same pattern of flights repeats each week with some exceptions.

Reservation requests are accepted for processing in reservation intervals: (rib,rie), 1 ≤ i ≤ p,

where p is the number of reservation intervals within a reservation period Tr, while the resources

are reserved for use within service intervals: (sib, j,sie, j), 1 ≤ i ≤ q, 1 ≤ j ≤ K, where b and e stand

for “beginning” and “end,” respectively, q is the number of service intervals within a service period

Ts, and K is the number of service periods within a reservation window (as stated earlier, the last

service period may not fit entirely in the reservation window).

A service interval consists of one or more service timeslots, where a service timeslot is the min-

imum service reservation duration. The number of resources available for sharing in each service

interval is denoted Mi j, 1 ≤ i ≤ q, 1 ≤ j ≤ J, and J is the number of server groups.

As an example, consider airline seats on a particular airline between two cities as the shared

resource. There could be several flights each week between these two cities. In this example,

each service period, Ts, is 1 week. Each flight occupies one service interval. The number of seats

available in each class of service (e.g., business and economy) on each flight corresponds to Mi j,

1 ≤ i ≤ q,1 ≤ j ≤ 2. Most airlines have web-based systems that process reservations anytime,

Chapter 2. On Reservation Systems and Queueing Systems 14

which means there are no idle intervals in the reservation timeline.

2.3.1 Request

A reservation request from a user is characterized by {U , {h,n, j,T req}, tarr}, where h is the

requested duration (holding time), n is the requested number of resources, j, 1 ≤ j ≤ J, is the server

group requested, and T req, an optional parameter, is a set of acceptable start times. tarr denotes

the arrival time of the reservation request. Some systems could deploy multiple request classes

per server group, in which case, instead of specifying h and n, a request may simply specify the

request class. Thus, if server group j, 1 ≤ j ≤ J supports L j request classes, a user request could

be characterized as {U , {l, j,T req}, tarr}, where 1 ≤ l ≤ L j. Requests are of two types: User-

Specified Start Time (USST) and Earliest Start Time (EST). For USST requests, T req is present, and

the scheduler interprets this parameter as follows: if the requested resources are available starting at

any one of the specified start times in T req, then the request is granted. If not, the request is rejected.

For EST requests, T req is absent, and the scheduler interprets the request as follows: schedule the

request for the earliest possible start time at which the requested resources become available. A

performance metric for both types of calls, USST and EST, is call blocking probability, and an

additional metric for EST calls is mean waiting time.

2.3.2 Response

In response, the scheduler returns tallocated , i.e., the allocated start time at which the requested

resources will be available to the user. For a given tarr within the period [0,Tr], the allocated service-

start time for the request is such that tarr ≤ tallocated ≤ sie, j for some i, 1 ≤ i ≤ q, and some j,

1 ≤ j ≤ K, and (sie, j − tallocated) ≥ h. This assumes that the requested service holding time is not

split between multiple service intervals. This can be relaxed in future models. Further, for USST

requests, tallocated ∈ T req. Lastly, tallocated necessarily falls on service timeslot boundaries.

Chapter 2. On Reservation Systems and Queueing Systems 15

2.3.3 Resource usage

Finally, tactual represents the actual time at which service starts for a particular user request. Ide-

ally tactual = tallocated . However, in many practical systems, tactual > tallocated ; for example, a

flight’s departure is delayed or a physician is running late for an appointment. In some instances,

tactual < tallocated , for example, if a patient arrives early for a physician appointment and the physi-

cian completes the previous appointment before anticipated. However, this variability does not

influence the reservation scheduling process itself, in terms of allocated start times, as well as ac-

cept/reject decisions. It does not impact the rate of blocked requests in the short term. A long-term

analysis of tallocated and tactual times can be carried out to determine if the class definitions, service

intervals, and service periods need to be modified. For example, it could lead to a revision of the

service timeslot duration and/or a better estimator of required service holding time in systems such

as physicians’ offices.

More sophisticated reservation systems can be designed in which users provide several param-

eters characterizing the distribution of service duration (or at least first and second moments). This

will allow schedulers to implement algorithms in which users are provided probabilistic characteri-

zations of their tallocated times, which could result in better server utilization through statistical mul-

tiplexing. However, we will see in Section 2.4 that this level of sophistication is not implemented

in practice. For example, a physician’s administrative assistant simply estimates the required ap-

pointment period by asking the patient the reasons for scheduling a visit.

2.4 Examples of reservation and queueing systems

One-time events, such as sporting events or concerts, typically use reservation systems if the number

of resources (e.g., seats) is large, and queueing systems if the number is small, e.g., a music band in

a bar. If the number of resources is large, there would be long queue build-up if all customers had

to stand in line to purchase tickets, which is why reservation systems are used for one-time events.

The more interesting examples are of periodic systems, in which a set of resources is shared over

multiple recurring periods. A categorization of examples of periodic systems is given in Table 2.1,

Chapter 2. On Reservation Systems and Queueing Systems 16

Table 2.1: Categories with reservation and queueing systems

Category Queueing Examples Reservation Examples
Transportation Seats on commuter buses, sub-

ways
Seats on airlines, Amtrak-type
trains

Restaurants Fast-food Reservations accepted or re-
quired

Human servers Bank tellers Physicians’ offices
Equipment / physical
space

Weight-training machines / pub-
lic restrooms

Medical equipment / university
classrooms

Government facilities Renewing drivers’ licenses DMV commercial license
Communications
bandwidth

Plain old telephone service
(POTS) and packet switching

Scheduled dynamic circuit ser-
vice (SDCS)

with both reservation and queueing examples for each category.

In Table 2.1, there are examples of both reservation systems and queueing systems within each

category. In transportation, seats on flights and Amtrak-type trains are shared with a reservation

system, while subway and bus seats, road lanes and street parking spots are shared in queueing

mode. In the restaurant category, high-end restaurants accept phone reservations for several days

in advance, while at the other end of the spectrum, fast-food restaurants are queueing based. In

the human servers category, physician offices have reservation systems while customers queue up

for bank tellers. The equipment/physical space category includes sporting equipment and facilities,

university facilities, medical equipment, homeowner rental equipment, and out-of-towner needs

such as hotel rooms and rental cars. While physical space such as racquetball courts, university

classrooms, hotel rooms, and equipment such as medical equipment, homeowner equipment, and

rental cars, are shared with reservation systems, other physical space such as public restrooms,

and equipment such as weight-training machines, are shared in queueing mode. Some government

agencies, such as the Department of Motor Vehicles, offer some services, such as drivers’ licenses

with a queueing system, and other services, such as commercial licenses with a reservation system.

Link bandwidth can likewise be shared using either a reservation system, such as provided by ES-

nets’s dynamic circuit service [18], or as a queueing system as in the Plain Old Telephone Service

(POTS) or packets in an IP router.

Chapter 2. On Reservation Systems and Queueing Systems 17

Table 2.2: Characterization of reservation categories

EST Criteria USST Cri-
terion

Example Request
type

Service
time

Vacations Synchronized
servers

Number
of options

Solution

Transportation (as soon as
possible, e.g., emergency trip)

EST 1 timeslot Yes Yes N/A Synchronized Server Model,
Sec. 2.6.1

Transportation (1 option, e.g.,
business trip)

USST N/A N/A N/A 1 Requests with Single Options,
Sec. 2.5.2

Transportation (many options,
e.g., leisure)

USST N/A N/A N/A Many Multiple Options Simulation,
Sec. 2.7

Restaurants (1 option, e.g.,
special occasions)

USST N/A N/A N/A 1 Requests with Single Options,
Sec. 2.5.2

Restaurants (many options,
e.g., high-end)

USST N/A N/A N/A Many Multiple Options Simulation,
Sec. 2.7

Human servers (vacations for-
given)

EST Random No No N/A M/M/m/∞ Queueing Model,
Sec. 2.5.1

Human servers (vacations in-
cluded)

EST 1 timeslot Yes No N/A Server Vacations Model,
Sec. 2.6.2

Equipment/physical space
(e.g., car rental, hotel room
for a particular day)

USST N/A N/A N/A 1 Requests with Single Options,
Sec. 2.5.2

Equipment/physical space
(flexible users)

USST N/A N/A N/A Many Multiple Options Simulation,
Sec. 2.7

Government facilities, e.g.,
DMV commercial license

EST Random No No N/A M/M/m/∞ Queueing Model,
Sec. 2.5.1

Communications bandwidth
(e.g., SDCS)

USST N/A N/A N/A 1 Requests with Single Options,
Sec. 2.5.2

Shown in Table 2.2 are the key characteristics of the reservation system examples from Ta-

ble 2.1. The first distinction is which type of requests the system accepts: Earliest Start Time (EST)

or User-Specified Start Time (USST), as described in Section 2.1. For EST systems, there are three

classifying criteria: the service time distribution, whether or not the service timeline has idle inter-

vals (i.e., servers taking vacations), and whether or not the servers are synchronized (e.g., as with

an airplane in which the seats are servers, and all servers simultaneously begin and end service on a

flight). For USST systems, the criterion is whether one option or many options are specified in the

request. The reservation system examples in Table 2.1 fit one of the groups according to this set of

criteria, and models are solved for each group as presented in the following sections.

In all examples of queueing systems in Table 2.1, there is no scheduler to accept reservations

for servers a priori. Instead a customer must simply wait in line until a server becomes available.

For all examples of reservation systems, there is a scheduler and customers are required to provide

it the required service duration (or at least an estimate of it) in the reservation request. The question

Chapter 2. On Reservation Systems and Queueing Systems 18

of how to choose between these two modes is answered in the following sections.

2.5 Solving using a Queueing Model

2.5.1 M/M/m/∞ Queueing Model

This section considers the first of three solution methods used to solve the reservation and queueing

systems described. For a certain set of assumptions, the GRSM described in Section 2.3 is reduced

to a form equivalent to an M/M/m/∞ queueing model, for which an analytical solution is known.

Consider the following set of assumptions that simplify the GRSM:

1. There are no idle intervals in the reservation or service timelines.

2. One reservation period consists of a single reservation interval (p = 1), which in turn consists

of a single service timeslot.

3. The reservation window consists of a single service period (K = 1) with a single service

interval (q = 1). There are ∞ service timeslots in this single service interval, i.e., since the

reservation period Tr is one service timeslot, V in Fig. 2.1 is ∞.

4. There is only a single server group, which consists of m servers.

5. All requests are for a single server, and there is only one request class. All requests are

handled in first-come, first-served mode.

6. Inter-arrival times between requests are exponentially distributed and independent.

7. All requests are of the EST type.

8. Service durations in reservation systems are discrete, since durations are specified as integral

multiples of the service timeslot in reservation requests. In this simplified model, service

durations are assumed to be geometrically distributed, and the service timeslot is assumed to

be infinitesimally small. The latter assumption is made so that the service duration distribu-

tion is approximately exponential, which allows for the use of the M/M/m/∞ queueing model

solution.

Chapter 2. On Reservation Systems and Queueing Systems 19

As shown in Table 2.2, the example categories of human servers (vacations forgiven) and govern-

ment facilities fall in this group. As customers only solicit service during open hours, the idle in-

tervals are ignored in this model, and service intervals are arranged back-to-back in one continuous

service timeline. The service time for these examples may not always be exponentially distributed,

but we make this simplifying assumption here for analytical tractability so as to be able to answer

the question of when a reservation system is required and when a queueing system is sufficient.

The solution to the simplified GRSM is the same as that of the M/M/m/∞ queueing model. The

reservation window is equivalent to the buffer in the queueing system.

The analytical solution for the M/M/m/∞ queueing model is well known [19]. The mean waiting

time, E[W], can be expressed in closed form as a function of customer arrival rate, λ, service

completion rate, µ, and the number of servers m. Of interest, is the factor

β = E[W]/E[S]

where the mean service time, E[S] = 1/µ. Per-server utilization, U , is given by

U = ρ/m

where the offered load, ρ = λ/µ.

Fig. 2.2 plots per-server utilization, U , against the number of servers, m, for fixed values of β.

These plots allow a resource owner to determine a suitable operating point. The owner of any set

of resources for which there is a customer base typically has a target revenue level and a target cost

level. The revenue level determines the desired offered load, ρ, and the target cost level determines

the number of servers (resources), m, that the owner can deploy for simultaneous operation.

Consider a system in which the owner determines from a target revenue and cost consideration

to operate with ρ value of 1.635 and with m, the number of servers, set to 2. This corresponds to

the point X = 2;Y = 0.8175 on the lower plot of Fig. 2.2. The ratio of mean waiting time to mean

service time, β, is 2 at this point of operation. This means a customer has to, on average, wait two

times as long as the average time it takes for a server to serve one customer. Compare this point of

Chapter 2. On Reservation Systems and Queueing Systems 20

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

← Beta=2

← Beta=6

X: 1
Y: 0.855

Number of servers (m)

U
til

iz
at

io
n

Utilization per server for an M/M/m/∞ queueing system for fixed values of β

X: 2
Y: 0.925

X: 2
Y: 0.8175

X: 1
Y: 0.665

X: 4
Y: 0.9013

X: 5
Y: 0.919

Figure 2.2: M/M/m/∞ queueing system; β is ratio of mean waiting time to mean service time

operation with the point of operation at the same value of m, i.e., 2 servers, but for a β of 6. On the

upper plot of Fig. 2.2, corresponding to β = 6, the utilization per server is 0.925 in contrast to the

0.8175 for β = 2, for m = 2.

As examples of these two operating points, consider the human servers category, with physi-

cians and bank tellers, from Section 2.4. Given the relatively higher salaries of physicians when

compared to bank tellers, it is more likely that a physicians’ office operates with a per-server

(physician) utilization of 92.5%, while a bank teller operates at 81.75%. To operate at this higher

utilization level, the owner of the physicians’ office should have engineered the load ρ to be

0.925×2 = 1.85, while the load to the bank tellers is 0.8175×2 = 1.635.

Now consider the implication of the higher β for the physicians. A higher β implies a higher

mean waiting time for customers. If for example, the mean service time at the physicians’ office is

30 minutes, it means the mean waiting time will be 3 hours when β = 6. It is the combination of

the

1. desired β, which is determined by the target (desired) offered load, ρ (a measure of revenues),

Chapter 2. On Reservation Systems and Queueing Systems 21

and target number of servers, m (a measure of costs), and

2. mean service time

that together determine the mean waiting time for customers. The next question is “are customers

willing to wait in a queue for this length of time on average” or is the expected waiting time long

enough to warrant a reservation system so that customers can carry out other activities between

their times of request and allocated start times rather than wait in a queue. This is the key advantage

provided by reservation systems relative to queueing systems as noted in Section 2.1. The disad-

vantages of reservation systems, i.e., the requirement for users to specify service durations, and the

cost of running a scheduler and handling no-shows have to be borne if (i) the target β is high (which

stems from a desired high per-server utilization), and (ii) mean service time is large. This explains

why physicians have reservation systems while bank tellers do not.

In summary, with EST-type requests, the answer to the question of when to implement a reser-

vation system is as follows. If the mean waiting time for customers is large at the optimal point of

operation (which is determined by a consideration of revenues and costs), then a reservation system

should be deployed so that customers can carry out other activities between their time of service

request and start of service instead of waiting in a queue.

2.5.1.1 Effect of competition

The β value is often dictated by competition as customers will perceive differences in average wait

times. It is easier for an owner to adjust the number of servers, m, than to alter offered load ρ through

marketing and other indirect means. For a given ρ, say 0.9, the owner can choose to operate with

just one server m = 1 but the corresponding β is 10. If a competitor operates with 2 servers to

handle this same load of 0.9, the β value falls significantly to just 0.1. The competitor’s customers

will experience far smaller waiting times forcing the first owner to add a server.

Chapter 2. On Reservation Systems and Queueing Systems 22

2.5.1.2 Server pooling

If it is possible to pool servers together and direct a correspondingly larger load to this server pool,

then efficiencies can be realized. For example, instead of operating with 2 servers at β = 6 (with

a per-server utilization of 0.925), if the owner can pool together servers and operate a system with

5 servers, then a nearly equal per-server utilization of 0.919 can be achieved with a β of just 2, as

seen in Fig. 2.2, or higher per-server utilization of 0.97 can be achieved while maintaining a β of 6.

This is the economies of scale advantage.

2.5.2 USST Requests with Single Options

A system in which all requests contain a single option can be modeled as an M/G/m/m queueing

system. Each timeslot is modeled with a single M/G/m/m queue, the solution for which is Erlang-

B. The same simplifying assumptions as in Section 2.5.1 are made with the following changes in

certain assumptions:

1. Assumption 3: Instead of the infinite reservation window, here the reservation window is

assumed to be finite, with V service timeslots.

2. Assumption 7: All requests are of USST type, not of EST type.

3. Assumption 8: Typically, for single-option USST systems, the requests are for a single times-

lot.

As discussed in Section 2.5.1, the offered load is a measure of expected revenues and the number

of servers, m, is an estimate of costs. Fig. 2.3 shows that the lower the desired blocking probability,

the lower the utilization for fixed values of m and offered load (ρ). Per the Erlang-B formula, only

2 of the 4 variables, offered load, number of servers, blocking probability, and utilization, can be

chosen independently. For example, if m = 30, and the desired call blocking probability is 5%, the

only feasible per-server offered load ρ/m is approximately .83, and correspondingly, the utilization

is approximately 78.5%.

Of the example reservation systems listed in Table 2.2 that fit this model, the communications

bandwidth and the equipment/physical space categories are used to answer the question of how

Chapter 2. On Reservation Systems and Queueing Systems 23

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of servers

U
til

iz
at

io
n

ρ/m=.8
ρ/m=.9
ρ/m=1.0
ρ/m=1.1

(a) Utilization

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of servers

B
lo

ck
in

g
pr

ob
ab

ili
ty

ρ/m=.8
ρ/m=.9
ρ/m=1.0
ρ/m=1.1

(b) Blocking probability

Figure 2.3: Solution to requests with a single option.

to choose between reservation and queueing systems. Research and education network (REN)

providers as well as commercial network providers have begun offering scheduled dynamic circuit

service (SDCS). In SDCS, a customer contracts for an access link to the circuit-switched network,

and then requests circuit service of a specific rate and duration only when required. In this respect,

SDCS is similar to plain old telephone service (POTS), where a monthly fee is charged for access to

the telephone network and circuits are requested as an additionally charged action. However, SDCS

is operated with a reservation scheduler, while POTS is a bufferless queueing system. There is no

reservation scheduler in POTS, and users are not required to specify call durations when making

their call requests. The reason we describe POTS as a “bufferless” queueing system is as follows.

POTS is implemented as strictly a call blocking system because it needs bandwidth on multiple

links of end-to-end paths, and holding resources at upstream switches while waiting for bandwidth

at downstream switches will make the system under-utilized. Therefore, there are no buffers to hold

calls, and calls are simply rejected if bandwidth is not available on any single link of the end-to-end

path. This makes POTS a bufferless queueing system. As an aside, another example of a bufferless

queueing system is street parking for the night in residential neighborhoods.

Consider the question of why SDCS designers felt the need for a reservation scheduler when

POTS has been in operation without such a scheduler. The reason is because given the low band-

width required per POTS call (i.e., 64 kbps), the number of channels into which a link is divided

Chapter 2. On Reservation Systems and Queueing Systems 24

can be large. For example, a T3 line can carry 672 individual voice channels. When the number of

channels (“servers” in Fig. 2.3) is large, the system can be operated at a low call blocking probabil-

ity without sacrificing utilization. In contrast, with SDCS, requests are expected to be a significant

portion of link capacity, e.g., a 1 Gbps virtual circuit on a 10 Gbps Ethernet link, making the num-

ber of channels only 10. With this number of servers, high utilization cannot be achieved without

high call blocking probability as shown in Fig. 2.3. High utilization is necessary for profitability. If

users are only allowed a single option in their start time specifications, the call blocking probability

will be just as high as with POTS. However, the cost of rejecting a call starting at a future time

instant (which is feasible with a reservation scheduler) is smaller than in a system like POTS that

does not have a scheduler to accept future start time requests. Furthermore, as Section 2.7 shows,

call blocking probability falls significantly with multiple start time options.

As a second example, consider the equipment/physical space category, and specifically car

rentals/hotel rooms. Users often request these facilities for a specific day/night to match their out-

of-town visits, making this category fit the USST single option case. A user’s desire for guaranteed

service is the dominant characteristic. If these systems are operated in a queueing mode, the cus-

tomer would be severely inconvenienced if stranded without a rental car after having arrived at their

destination. They would be disappointed with that provider, damaging the provider’s reputation and

affecting future demand for that provider’s service. The cost to the provider to reduce blocking to

very low levels would be high (both in terms of buying enough cars and maintaining a large fleet).

With a larger fleet, the utilization would be lower, decreasing the provider’s return on investment.

Conversely, by operating with a reservation system, the inconvenience experienced by a customer

being blocked is relatively minor, as they presumably can reserve a rental car with another company

in a matter of minutes with online reservations. Therefore, the provider does not need to operate at

a low blocking probability, and hence can limit the size of the fleet to enable a higher utilization and

return on investment. This explains the use of reservation systems instead of the simpler queueing

system for this category of examples.

Chapter 2. On Reservation Systems and Queueing Systems 25

2.6 Solving with Discrete Time Markov Chain (DTMC) models

The second of the three solution methods to solve the reservation and queueing system models

is using Discrete Time Markov Chain (DTMC) models. In each of the two following sections, a

specific set of assumptions are applied to the GRSM to model example systems from Table 2.2.

2.6.1 Synchronized Server Model

Here we consider a synchronized server model, such as an airline flight, where a seat is considered

a server and the servers must begin and end service simultaneously. If the system is considered at

the instant before service begins, the system can be modeled as a DTMC (e.g., just before a flight

departs). The system state is simply (n), the number of customers in the queue at the instant just

before the start of a service interval.

The GRSM reduces to this synchronized server model under a certain set of assumptions, which

differ from those of Section 2.5.1 only as follows:

1. Assumption 1: There are idle intervals in the service timeline, but none in the reservation

timeline.

2. Assumption 2: One reservation period consists of a single reservation interval (p = 1).

3. Assumption 3: The reservation window consists of Z/m service periods, where m is the

number of servers. Each service period has one service interval and one idle interval. The

service interval plus idle interval is τ.

4. Assumption 8: Service intervals consist of a single timeslot of a short duration.

The system state space S is defined as

S , {s = n : 0 ≤ n ≤ Z},

i.e., a newly arriving customer who finds Z customers already assigned for service in all available

timeslots will be blocked.

Chapter 2. On Reservation Systems and Queueing Systems 26

The transition probability in the DTMC from state n to state n′, denoted by pn,n′ , is

pn,n′ =

 P(n′) if n ≤ m,

P(n′− (n−m)) if n > m,
(2.1)

where P(a) is defined as

P(a) =

 PA(a) if a < Z,

1−FA(Z −1) if a ≥ Z,
(2.2)

where PA(a) and FA(a) are the Probability Mass Function (PMF) and Cumulative Distribution Func-

tion (CDF), respectively, of A, a Poisson random variable with parameter λτ, representing the num-

ber of customer arrivals within the interval between the beginnings of two consecutive timeslots.

2.6.1.1 Performance metrics

To characterize the performance of queueing systems with vacations, we use the following three

metrics: PB, the blocking probability, which is defined as the ratio of customers blocked to the

total number of customer arrivals in a long observation interval [20], W , the mean waiting time for

admitted customers, and U , the long-run utilization of the system. To calculate these three metrics,

we first calculate the steady-state probabilities, denoted by vector π, of this DTMC based on the

transition matrix given in Eq. (2.1) using well-known techniques [20].

2.6.1.1.1 Blocking probability In any time interval between the beginnings of two consecutive

service timeslots, τ, the average number of customer arrivals is λτ. The number of customers

blocked in this interval depends upon the state of the system at the start of the interval. We therefore

use a vector (b , bn,n ∈ S), where each element bn denotes the blocked-request ratio in this interval

if the system is in state n at the start of the interval. We define the accepted-request ratio as Qn. We

can compute bn as follows:

bn = 1−Qn

= 1−
∑dn

j=0 jPA(j)+dn(1−FA(dn))

λτ
,

(2.3)

Chapter 2. On Reservation Systems and Queueing Systems 27

where PA(i) and FA(i) are the PMF and CDF of the previously defined random variable A, respec-

tively, and dn is the number of empty spaces in the queue in that interval, which can be calculated

as

dn =

 Z if n ≤ m,

Z − (n−m) if n > m.
(2.4)

The long-run blocking probability, PB, can then be computed as

PB = πbT , (2.5)

where the components of the vector b are the blocked-request ratios computed in Eq. (2.3).

2.6.1.1.2 Mean waiting time The waiting time of a customer consists of a fractional part, which

is the delay within the arrival interval, and an integral part, which is a multiple of τ before the actual

service is provided. Consider the interval between the beginnings of two arbitrary consecutive

service timeslots τ =(t, t +∆t]. Let wn be the average waiting time conditioned on the embedded

DTMC being in state n at time t. The average is calculated over the customers admitted during the

interval of interest. Denote rn and zn as averages of the fractional parts and integral parts of waiting

times, respectively. We have wn = rn + zn. Using the same derivation as the one used in [21], we

can compute rn and zn as follows.

rn = τ
(

1− 1
2

FA(dn)−
dn +1

2λ
(1−FA(dn +1))

)
, (2.6)

zn =
1
an

(
dn−1

∑
j=1

PA(j)v(n, j)+(1−FA(dn −1))v(n,dn)

)
, (2.7)

where dn is given in Eq. (2.4), PA(i) and FA(i) are the PMF and CDF of the previously defined

random variable A, respectively, an is the conditional expected number of customers admitted in the

interval, which can be computed as

an = Σdn−1
j=1 jPA(j)+dn(1−FA(dn −1)), (2.8)

Chapter 2. On Reservation Systems and Queueing Systems 28

and v(n, j) is the sum of the integral parts of waiting times conditioned on the DTMC being in state

n with j customers admitted in the interval, which can be computed as

v(n, j) = Σ j
l=1⌊

l +max((n−m),0)
m

⌋)τ). (2.9)

The long-run mean waiting time W is

W =
Σn∈Sπnanwn

Σn∈Sπnan
. (2.10)

2.6.1.1.3 Utilization System utilization in a time interval (t, t + τ] depends upon the number of

customers waiting to be served at time t. We define the vector (u , un,n ∈ S), where each element

un is the utilization if the system is in state n in any interval. Therefore un can be calculated as

un =


n
m if n < m,

1 if n ≥ m.
(2.11)

The long-run utilization can then be calculated by

U = πuT . (2.12)

2.6.1.2 Numerical results

The impact of varying the inter-service time τ is illustrated in Fig. 2.4. As τ increases, there are

more customer arrivals relative to the servers, which causes an increase in all performance metrics.

The increase is also more pronounced as τ increases, as evidenced by the clearly higher slope of the

utilization and mean waiting time curves.

Consider the transportation category from Table 2.2. Increasing the number of seats on an

airplane from m = 90,τ = 100 to a larger m = 100 with the same τ = 100 causes a decrease in

blocking probability but also a decrease in utilization. Holding the number of seats constant at m =

90 while increasing the τ from 100 to 110 increases the blocking probability while simultaneously

Chapter 2. On Reservation Systems and Queueing Systems 29

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Offered System Load per Server

B
lo

ck
in

g
pr

ob
ab

ili
ty

m=90, τ=90
m=90, τ=100
m=90, τ=110
m=100, τ=100

m=90, τ=90 &
m=100, τ=100

(a) Blocking probability

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Offered System Load per Server

U
til

iz
at

io
n

m=90, τ=90

m=90, τ=100

m=90, τ=110

m=100, τ=100

m=90, τ=90 &
m=100, τ=100

(b) Utilization

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

500

1000

1500

2000

2500

Offered System Load per Server

M
ea

n
w

ai
tin

g
tim

e

m=90, τ=90
m=90, τ=100
m=90, τ=110
m=100, τ=100

(c) Mean waiting time

Figure 2.4: The comparison of queueing systems with different lengths of time between service
intervals τ.

Chapter 2. On Reservation Systems and Queueing Systems 30

increasing utilization. Now consider the blocking probability and mean waiting time curves. Of

the cases considered, the system with m = 90 and τ = 110 has the highest blocking probability and

at the same time, the highest mean waiting time. While blocking probability can be dropped by

increasing m or decreasing τ, the latter is the better option from a consideration of mean waiting

time, though both these options lower utilization.

Both utilization and mean waiting time are factors considered in the choice of operating as a

reservation system rather a queueing system. For profitability, it is necessary to operate at high

utilization. Systems with higher operating costs must aggregate customer arrivals over a longer τ

or decrease the number of seats m in order to achieve the high utilization necessary for profitability.

The costs per flight, such as the pilot, crew, airport fees, fuel, etc., are such that operating a larger

flight is more cost effective than multiple smaller flights. Therefore, to achieve a higher utilization,

a longer τ is required. Buses, conversely, are less expensive to purchase and operate (e.g., lower fuel

costs, no airport fees, lower paid operators, no flight attendants, etc.). To achieve profitability, buses

can operate at lower utilization, and therefore can have a lower τ. With a lower τ, mean waiting time

is lower, making it acceptable to have customers wait for service as would be needed in a queueing

system rather than deal with the cost and complexity of instituting a reservation system. But if the τ

required to operate a large aircraft (with large m) at high utilization is high, then to save customers

from having to wait in a queue (as described in Section 2.5.1), a reservation scheduler is required

as with airlines.

2.6.2 Server Vacations Model

In most of the example systems listed in Section 2.4, there are idle intervals in the service timeline.

To account for the idle periods as part of the waiting time, the simplifying assumptions made in Sec-

tion 2.5.1, which allowed for the use of the M/M/m/∞ queueing model solution, must be changed.

Therefore, a different set of assumptions are considered here, which allows for solving the model

with a DTMC.

1. There are no idle intervals in the reservation timeline, but there are idle intervals in the service

timeline.

Chapter 2. On Reservation Systems and Queueing Systems 31

2. One reservation period (which is also one reservation interval) is equal to one service timeslot.

3. A service period has a single service interval followed by a single idle interval. There are Ns

service timeslots, each of duration τ, in the single service interval, and the idle interval is Nvτ

in length. The reservation window consists of V/(Ns +Nv) service periods.

4. There is only a single server group, which consists of m servers.

5. All requests are for a single server, and there is only one request class. All requests are

handled in first-come, first-served mode.

6. Inter-arrival times between requests are exponentially distributed and independent.

7. All requests are of the EST type.

8. All requests specify a service duration of one service timeslot.

The solution to this model is similar to the synchronized server solution above, so for brevity

we will only point out the differences. The system state is now represented by a 2-tuple (i,n), where

i identifies which timeslot the system is about to enter, and n represents the number of customers in

the system waiting to be served.

The system state space S is defined as

S , {s = (i,n) : 1 ≤ i ≤ Ns & 0 ≤ n ≤ Z},

where Ns is the number of service timeslots per service interval, and Z is V mNs/(Ns +Nv).

The transition probability in the DTMC from state (i,n) to state (j,q), denoted by p(i,n),(j,q), is

p(i,n),(j,q) =



P(q) if j = 1+ i%Ns

& n ≤ m,

P(q− (n−m)) if j = 1+ i%Ns

& n > m,

0 otherwise,

(2.13)

Chapter 2. On Reservation Systems and Queueing Systems 32

where P(a) is defined as

P(a) =

 PA(a) if a < Z,

1−FA(Z −1) if a ≥ Z,
(2.14)

where PA(a) and FA(a) are the Probability Mass Function (PMF) and Cumulative Distribution Func-

tion (CDF), respectively, of A, a Poisson random variable with parameter λ∆t, representing the

number of customer arrivals within the interval between the beginnings of two consecutive times-

lots. The length of ∆t depends on whether there is a vacation interval between the two service

timeslots, i.e.,

∆t =

 τ if i < Ns,

(Nv +1)τ if i = Ns.
(2.15)

2.6.2.1 Performance metrics

The performance is characterized using the same three metrics: the blocking probability PB, mean

waiting time W , and long-run utilization U .

2.6.2.1.1 Blocking probability The blocking probability is determined in the same way, with

the only notational difference being to accommodate the different state definition. We now use

a vector (b , b(i,n),(i,n) ∈ S), where each element b(i,n) denotes the blocked-request ratio in this

interval if the system is in state (i,n) at the start of the interval. We define the accepted-request ratio

as Q(i,n) and compute b(i,n) as follows:

b(i,n) = 1−Q(i,n)

= 1−
∑

d(i,n)
j=0 jPA(j)+d(i,n)(1−FA(d(i,n)))

λ∆t
,

(2.16)

where PA(i) and FA(i) are the PMF and CDF of the previously defined random variable A, respec-

tively, and d(i,n) is the number of empty spaces in the queue in that interval, which can be calculated

as

Chapter 2. On Reservation Systems and Queueing Systems 33

d(i,n) =

 Z if n ≤ m,

Z − (n−m) if n > m.
(2.17)

The long-run blocking probability, PB, can then be computed as

PB = πbT , (2.18)

where the components of the vector b are the blocked-request ratios computed in Eq. (2.16).

2.6.2.1.2 Mean waiting time The waiting time of a customer consists of a fractional part, which

is the delay within the arrival interval, and an integral part, which is the number of service and

vacation timeslots before the actual service is provided. Until the computation of the integral part,

however, the only difference is state notation.

Denote r(i,n) and z(i,n) as averages of the fractional parts and integral parts of waiting times,

respectively. We have w(i,n) = r(i,n)+z(i,n). The computation is the same as above, except where the

integral parts are computed.

r(i,n) =
(

1− 1
2

FA(d(i,n))−
d(i,n)+1

2λ
(1−FA(d(i,n)+1))

)
∆t, (2.19)

zn =
1
an

(
dn−1

∑
j=1

PA(j)v(n, j)+(1−FA(dn −1))v(n,dn)

)
, (2.20)

where ∆t is given in Eq. (2.15), d(i,n) is given in Eq. (2.17), PA(i) and FA(i) are the PMF and

CDF of the previously defined random variable A, respectively, a(i,n) is the conditional expected

number of customers admitted in the interval, which can be computed as

a(i,n) = Σd(i,n)−1
j=1 jPA(j)+d(i,n)(1−FA(d(i,n)−1)), (2.21)

and v(i,n, j) is the sum of the integral parts of waiting times conditioned on the DTMC being in

Chapter 2. On Reservation Systems and Queueing Systems 34

state (i,n) at time t for j customers admitted in the interval, which can be computed as

v(i,n, j) = Σ j
l=1((s(l,n)+ ⌊s(l,n)+ i

Ns
⌋Nv)τ) (2.22)

where s(l,n) is the number of service timeslots the jth customer needs to wait before being served,

and can be calculated as

s(l,n) = ⌊ l +max((n−m),0)
m

⌋ (2.23)

The long-run mean waiting time W is

W =
Σ(i,n)∈Sπ(i,n)a(i,n)w(i,n)

Σ(i,n)∈Sπ(i,n)a(i,n)
. (2.24)

2.6.2.1.3 Utilization The system utilization likewise differs to include the state notation, but

also has a substantive difference due to the consideration of the period of time the servers are

active. We define the vector (u , u(i,n),(i,n) ∈ S), where each element u(i,n) is the utilization if the

system is in state (i,n). Therefore u(i,n) can be calculated as

u(i,n) =


n
m if n < m,

1 if n ≥ m.
(2.25)

The long-run utilization while the servers are active U can then be calculated by

U = πuT . (2.26)

Additionally, we define a scaled long-run link utilization that is the long-run utilization scaled by

the portion of time the servers are active as

U ′ =
Ns

Ns +Nv
πuT . (2.27)

Chapter 2. On Reservation Systems and Queueing Systems 35

2.6.2.2 Numerical results

Consider the human services (vacations included) category from Table 2.2. In physicians’ offices,

the minimum service duration, which is set to be the service timeslot, is typically 15 minutes.

Physicians work continuously for several service timeslots and then take a “vacation” to handle

paperwork and other non-billable functions within a business day. Assume that the customer arrival

rate, λ = 6. The blocking probability, scaled utilization, and mean waiting time of four combina-

tions of doctors serving patients verses taking vacations are plotted in Fig. 2.5. The x-axis is the

number of servers and one can see an appreciable decrease in scaled utilization can be seen only

when increasing beyond 6 servers operating fully, after which the blocking probability and mean

waiting time are relatively negligible. One interesting characteristic is the increasing difference

(most noticeable for m = 2) in mean waiting time from Ns = 8,Nv = 0 to Ns = 6,Nv = 2 and so on.

The increasing difference comes from the correspondingly increased vacation, whereby a customer

in the fully serving case might be scheduled for the 5th timeslot, but for the Ns = 2,Nv = 6 case, the

5th effective service timeslot might actually be 2+6+2+6+1 = 17 timeslots away. The results

identify the impact of increasing or decreasing the number of doctors and the amount of service

time and vacation time. For example, a 4 doctor practice going from 4 hours of seeing patients in

an eight hour workday to 6 hours would result in a 6% decrease in blocking probability and an

approximately one-third reduction in mean waiting time.

The above includes the assumptions that the demand for physicians service is high, and becom-

ing a physician is difficult and expensive. Thus, a high overall utilization is experienced (due to

high demand and low supply), and the above discussion focuses on the adjustable vacation vari-

able, resulting in the scaled utilization. Comparing the physician’s office to the queueing example

in the human services category, bank tellers, a crucial distinction must be made. When the demand

for bank services is high (certain portions of the day, such as around midday corresponding to

lunch breaks), banks can have more bank tellers working to handle higher demand, but with some

tellers working part-time. The low cost and relative ease of hiring a part-time teller means the bank

can anticipate for and adjust the number of tellers to accommodate temporal increases in demand,

preventing too much waiting time, and therefore operates as queueing system.

Chapter 2. On Reservation Systems and Queueing Systems 36

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of servers (m)

B
lo

ck
in

g
pr

ob
ab

ili
ty

N

s
=8, N

v
=0

N
s
=6, N

v
=2

N
s
=4, N

v
=4

N
s
=2, N

v
=6

(a) Blocking probability

2 3 4 5 6 7 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of servers (m)

U
til

iz
at

io
n

N

s
=8, N

v
=0

N
s
=6, N

v
=2

N
s
=4, N

v
=4

N
s
=2, N

v
=6

(b) Scaled utilization

2 3 4 5 6 7 8
0

20

40

60

80

100

120

Number of servers (m)

M
ea

n
w

ai
tin

g
tim

e

N

s
=8, N

v
=0

N
s
=6, N

v
=2

N
s
=4, N

v
=4

N
s
=2, N

v
=6

(c) Mean waiting time

Figure 2.5: The comparison of queueing systems with different vacation settings.

Chapter 2. On Reservation Systems and Queueing Systems 37

2.7 Multiple Options Simulation

For systems that are USST with many options specified, there are several complications that make

it difficult to solve with a DTMC. In several of the example reservation systems listed in Table 2.2,

such as an airlines, the customer is shown the available resources (or a subset thereof) as part of the

scheduling action; therefore, options are not independent of the state of the system. Furthermore,

since requests can arrive at any point and each request may take resources that affect subsequent

requests and thereby affect the destination state, the order in which requests are received is a critical

characteristic. Hence, simulations are used to model USST systems with multiple options.

A relevant solution to such multiple option systems was published in [22]. It showed that for

even a small number of alternatives, e.g., 3, the system performed almost as well as one in which

the customer is ready to accept any available option, and, better than when only a single option is

provided. For example, an SDCS system in which the customer is ready to accept any available

option achieves 95% utilization with a call-blocking probability of only 1%, while with POTS, call

blocking probability is 23% even when utilization is only 80%. A USST reservation system in

which users specified only 1 start time option performed similar to the latter, while with 3 options,

the system performed close to the former case.

2.8 Conclusions

The general reservation system model (GRSM) developed in this work can serve as a way to uni-

formly express the key set of characteristics common to all reservation systems. Several examples

of reservation systems and queueing systems were used to illustrate the variations on those charac-

teristics, such as whether a customer wants the first available timeslot or wants to specify a timeslot.

This work answers the important question of when to use a reservation system instead of a queueing

system, as determined by a consideration of revenues (considering load), costs (including servers),

and competition. When choosing between a buffered queueing system with an Earliest Start Time

(EST) reservation system, if the operational point of the system for profitability is such that the

waiting time for customers is large, then a reservation system should be used. When comparing

Chapter 2. On Reservation Systems and Queueing Systems 38

bufferless queueing systems with User Specified Start Time (USST) reservation systems, if the op-

erational point of the system for profitability is such that the blocking probability is high, then a

reservation system should be selected. Finally, we provided five distinct solutions for simplified

models drawn from the GRSM under more certain sets of assumptions into which the example sys-

tems could be divided, showing the influence of such factors as reservation window size and server

vacations.

Chapter 3

Fairness in Multi-Class Book-Ahead Scheduling

3.1 Introduction

It has become clear that widespread collaboration in the scientific community, which can increas-

ingly be characterized by geographically distributed and large-scale projects, requires predictable

network service [1]. Predictable network service needed by applications such as large file trans-

fers, remote visualization, and remote instrumentation is typically supported in circuit-switched

and virtual-circuit (VC) networks [23]. Significant work in the CHEETAH project [24] focused on

various problems related to using circuit-switched networks for file transfers (e.g., [9,21,22,25,26]).

In this work, the focus is on an advance-reservation scheduler.

An important consideration for a scheduling system with multiple classes is fairness. The ob-

jective of the scheduling algorithm is to minimize mean response time while meeting a tunable

fairness constraint in terms of the blocked-call ratio and response-time ratio for each class, and also

maximizing the number of allocated channels across all time intervals.

The contributions of this work are three-fold:

• a novel three-step optimization-based solution to a multi-class, fairness-considering bin pack-

ing problem

• the extension of our BA-First algorithm [21] into a multi-class algorithm, and the formulation

of the discrete-time Markov chain (DTMC) model

39

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 40

• a solution to this model of the multi-class BA-First algorithm with sensitivity analysis.

3.1.1 Problem definition

In connection-oriented networks, bandwidth can be shared using an advance-reservation scheduler.

The current state-of-the-art in bandwidth scheduling lacks analytical models for multiple classes

of calls. In this work, a multi-class advance-reservation scheduling system is developed for use in

circuit/VC networks. The scheduling algorithm developed in this work applies to any bin packing

problem or advance-reservation scenario where a flexible class boundary is allowed. The schedul-

ing system is modeled with a Markov chain. Further, simulations are used to compare different

scheduling algorithms that are designed to achieve fairness among classes in terms of call-blocking

probability and response time.

This work extends our BA-First algorithm to accommodate multiple classes. BA-First is a

single-class algorithm in that it discretizes the capacity C of a link into m equal channels with ca-

pacity C/m, and assumes that each request is for one channel and one unit of time τ, referred to

as a timeslot. The system maintains a reservation window of size K, which tracks the number of

channels reserved for calls in each time interval, for K future time intervals. The reservation capac-

ity of the system is mK timeslots. BA-First fulfills a request with the earliest available timeslot, or

rejects the request if a channel is unavailable in the whole K-timeslot advance-reservation window.

As not all sessions require identical bandwidth, the original BA-First algorithm needs to be modi-

fied to handle multiple types of requests. For example, a remote visualization session may require

300 Mbps to display large amounts of data while a distance-learning session may only require 100

Mbps. Hence we design an advance-reservation scheme to support multiple classes.

3.1.2 Related work

There has been a significant amount of theoretical work on advance-reservation scheduling

schemes, [22, 27–77], as well as [21] which this work extends. Our problem definition is unique

in that we are concerned with minimizing mean response time while considering fairness experi-

enced by calls of each class in terms of call-blocking probability and waiting time in a multi-class,

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 41

centralized scheduler. In most work, either one fairness metric or the other is considered. For

example, in routing and wavelength assignment (RWA) work, the fairness metric is primarily call-

blocking probability. In multiprocessor/job scheduling, the primary metric is typically the total time

to complete a set of jobs (the “makespan”), and, sometimes, the waiting time experienced by jobs.

However, since increasing the probability of blocking lowers the waiting time and makespan, and

vice versa, this work pursues a book-ahead scheduler that considers both the blocking probability

and waiting time, in addition to the objective of minimizing the mean response time.

3.2 System Model

Figure 3.1: An illustration of the BA-First scheduler for multiple classes.

Link capacity C is discretized into m channels with equal bandwidth C/m. To accommodate

multiple classes of calls, cx denotes the number of channels requested by a class-x call. To gain a

basic understanding of the impact of multiple classes, we limit our model to a 2-class system (i.e.,

x = {1,2}). The call-arrival process for each class-x is assumed to be Poisson with rate λx, and

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 42

we define β = λ2
λ1

. We define r = c2
c1

, normalizing c1 to equal one channel, and c2 = r. Time is

discretized into equal-length intervals of duration τ, as shown in Fig. 3.1. Each time interval can

be thought of as a “bin,” such that there are K bins in the reservation window, each with capacity

m. Though requests can arrive at any instant, service for calls begins and ends only at interval

boundaries. This approximation is made for analytical tractability.

At each time interval boundary, the scheduling algorithms schedules calls that have arrived

during the just-past interval. It is responsible for achieving fairness between the two classes in

terms of call-blocking probability and mean waiting time. To accomplish this, an optimization

function determines how the newly arrived calls should be scheduled. Calls that arrived in the

interval but could not be accommodated are blocked. In Fig. 3.1, this scheduling algorithm is

denoted as occurring between the top set of bins and the bottom set of bins, where the vertical

arrows between the top and bottom show how assigned calls “move up” one bin. In the top set, the

white space at the top of bin i is an example of the case when there are unallocated channels in a

preceding bin, but a subsequent bin has allocated channels to only class-2 calls, shown in the bin

i+1. Newly arrived calls are scheduled and any new class-1 calls would fill in that gap in bin i at

the top, which becomes a full bin i−1 in the bottom set.

As discussed in Section , a reservation system is required when the number of channels into

which a link is divided is relatively small, i.e., around 10. In such systems, the reservation window

does not need to be very large to achieve low blocking probability [22]. Therefore, the systems

for which this reservation scheduler would be applicable are small, and the optimization can be

performed with an exhaustive search.

3.2.1 Non-homogeneous Continuous-Time Markov Chain model

The system state is described by a 2+ 2 ·K-element vector, (n11,n12,n21,n22, . . . ,nK1,nK2,a1,a2),

where nix is the number of assigned channels, i being the index for the bin, and x being the index for

the class. The elements a1 and a2 are the numbers of newly arrived and as yet unassigned class-1

and class-2 calls.

The state space S is defined as

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 43

S ,


n = (n11,n12,n21,n22, . . . ,nK1,nK2,a1,a2) :

∀ j,1 ≤ j ≤ K,n j1 +n j2r ≤ m and a1,a2 ∈Z+

and 1 ≤ j ≤ K,n j2 mod r = 0

 ,

where Z+ is the set of all non-negative integers.

Given the difference in how the system transitions states within an interval and how it transi-

tions states at interval boundaries, the system can be modeled as a non-homogeneous continuous-

time Markov chain (CTMC). However, it contains an embedded time-homogeneous discrete-time

Markov chain (DTMC) if only the time interval boundaries are considered.

3.2.2 Discrete-time Markov Chain model

The discrete time instants in the DTMC are the instants just before the scheduling mechanism is

executed.

The transition probability from an origin state n to a destination state n′, denoted p
(n,n′), is

p
(n,n′) =

 PA1(a
′
1) ·PA2(a

′
2) if n′jx = n(j+1)x +q jx, where x = 1,2 & 1 ≤ j ≤ K & n(K+1)x = 0,

0 otherwise,
(3.1)

where PAx(a) is the Probability Mass Function (PMF) of Ax, a Poisson random variable with

parameter λxτ, representing the number of class-x call arrivals within a time interval, and q jx are

elements of qn, as determined by the scheduling algorithm. The scheduling algorithm takes the

origin state n and outputs a vector qn , (q11,q12,q21,q22, . . . ,qK1,qK2), n∈ S, where qix is the

number of additional channels reserved in bin i for a class-x call. The qn values are determined by

the scheduling algorithm in the next section.

3.3 Scheduling Algorithm

The scheduling algorithm can be described as a bin packing problem in which there are a series of

bins, each of which may be fully or partially filled, and the algorithm must place new items (the

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 44

calls) into the bins in a way that considers both the number of the bin (lower numbered bins equating

to lower mean response time) and the relative number of items that are accepted into the bins (versus

rejected) to ensure a fair allocation of resources between the two classes. The state space and the

various system parameters are input parameters to this bin packing optimization, which is solved

independently for each state in the state space. The optimization function, OPT (n), determines the

division of free space in all bins to the arrived but unscheduled calls with the objective of minimizing

the mean response time while meeting a tunable fairness constraint in terms of the blocked-call ratio

and waiting time for each class, and maximizing the number of allocated channels across all bins.

The optimization determines the allocation vector qn based on the origin state, n =

(n11, . . . ,nK2,a1,a2). For simplicity, n is omitted from the notation, i.e. qn is denoted as q with

n being implicit. This omission applies to the following variables and output metrics as well, all of

which are state-dependent:

• q⋆n as q⋆, the most fair allocation vector

• Rn as R, the mean response time for admitted calls

• bn,x as bx, the blocked-call ratio for each class

• fn,b as fb, the blocked-call ratio fairness metric

• wn,x as wx, the total response time for each class (the time between call arrival and the time

interval boundary when the call is scheduled is ignored)

• fn,w as fw, the response-time ratio fairness metric

• f ⋆n,b as f ⋆b , the specific value of the blocked-call ratio fairness metric given by q⋆

• f ⋆n,w as f ⋆w, the specific value of the response-time ratio fairness metric given by q⋆

• V n as V , the set of candidate q vectors

• Ln as L, the maximum number of channels that can be scheduled.

The omission does not apply to the system variables, which are state-independent:

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 45

• C, the link capacity

• m, the number of channels with equal bandwidth C
m

• cx, the number of channels requested by a class-x call

• r, with r = c2
c1

(class-1 call bandwidth is defined as a single channel)

• K, the reservation window.

Further, there are additional system variables used only in the optimization, which are also state-

independent:

• ε, a fairness-relaxation variable to tradeoff fairness and mean response time for admitted calls

• ω, the weight used to dictate the value of each fairness metric (e.g., ω = 0.5 would value the

blocked-call and response-time ratio fairness metrics equally).

The overall optimization problem for a given origin state, OPT (n), is divided into three op-

timization subproblems. Each optimization subproblem acts as a constraint, narrowing down the

possible allocations such that the final allocation is optimal, based on the system variables.

• Subproblem 1 finds the allocation vectors that maximize the number of allocated channels

across all bins.

• Subproblem 2 finds the most fair allocation vector from among those found in subproblem 1.

• Subproblem 3 finds the allocation vector with the minimum mean response time that achieves

fairness within a range specified by ε of the fairness of the most fair allocation, as determined

in subproblem 2.

In the first subproblem, the optimization finds the maximum number of channels that can be

allocated given the bin occupancy of state n. The purpose of this step is to minimize blocked-call

ratios in a way that does not give preference to class-1 calls. That is, if we simply tried to minimize

the number of blocked calls, we would schedule as many class-1 calls as possible, and then schedule

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 46

as many class-2 calls as could fit, treating class-2 unfairly. Instead, we find all possible ways to

schedule the arrived calls that would equally use the available capacity given the bin occupancy

of state n. The objective function of the first subproblem is to find L, the maximum amount of

channels that can be allocated given the bin occupancy of state n (limited by the number of arrived

but unscheduled calls in n), from which the vector set V is determined. The vectors in the candidate

vector set V are then evaluated in subproblems 2 and 3. Each of the vectors in V is a candidate

vector because it meets the criteria of maximizing the number of allocated channels, but must be

evaluated further for fairness concerns.

Given:

• The state n and the system variables listed above.

Output:

• The set of candidate vectors V defined as V ,
{

v jx,where x = 1,2 & 1 ≤ j ≤ K
}

Subproblem 1 objective function:

maxL ,
2

∑
x=1

K

∑
j=1

v jx (3.2)

subject to

n(j+1)x + v jx ≤ m, for all x = 1,2 & 1 ≤ j ≤ K & n(K+1)x = 0, (3.3)

K

∑
j=1

v jx ≤ ax · cx,where x = 1,2, (3.4)

v j2 mod r = 0,where 1 ≤ j ≤ K, (3.5)

v j1 = 0, if n jx + v(j−1)x < m,where x = 1,2, & 2 ≤ j ≤ K, (3.6)

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 47

v j1 + v j2 = 0, if n jx + v(j−1)x ≤ m− r,where x = 1,2, & 2 ≤ j ≤ K. (3.7)

The candidate vector set V can be formed such that every vector v ∈V , ∑2
x=1 ∑K

j=1 v jx = L, and

for every vector not a member of the set V , v̄ /∈V , ∑2
x=1 ∑K

j=1 v̄ jx < L. Therefore, every vector in V

equally maximizes the number of channels allocated and ensures the system is work-conserving.

The constraint Eq. (3.3) ensures that the allocation does not cause m to be exceeded. The

constraint Eq. (3.4) limits the vector v to the capacity requested by the actual number of calls to be

scheduled. The constraint Eq. (3.5) ensures that the number of channels in each bin allocated to

class-2 calls is a multiple of r. Constraints Eq. (3.6) and Eq. (3.7) ensure that calls are scheduled

such that lower bins are filled before higher bins.

In the second subproblem, the objective function is to find the vector q⋆ ∈V that yields the most

fair allocation. For each state, there is (at least one) most fair allocation, q⋆, which results in best-

case fairness metrics f ⋆b and f ⋆w. These values are state-dependent. To avoid having to provide as

input absolute values for fairness metrics, which would be state-dependent, we solve this problem

by finding the state-dependent best-case values and then use the same fairness-relaxation metric ε

to allow for a mean response time/fairness tradeoff in subproblem 3.

Given:

• The set of candidate vectors V found in subproblem 1.

Outputs:

• The vector q⋆ that yields the most fair allocation.

• The best-case fairness metrics f ⋆b and f ⋆w.

Subproblem 2 objective function:

min(ω f ⋆b +(1−ω) f ⋆w) (3.8)

subject to

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 48

q⋆ ∈V . (3.9)

For q⋆, the fairness metrics, f ⋆b and f ⋆w, are specific (best-case) values of the blocked-call ratio

fairness metric, fb, and the response-time ratio fairness metric, fw, respectively. The measure from

[78] is used to compute the fairness metrics. With this measure, the metrics experienced by calls

of each class are expressed with a value of 1 being the most fair and 0.5 being the least fair (since

there are two classes), while allowing an intuitive percentage-based fairness-relaxation variable to

be used.

The blocked-call ratio fairness metric, fb, is defined as

fb =



1, if a1 = 0 and a2 = 0,

1, if d1 = 1 and d2 = 1,

0, if d1 = 0 or d2 = 0,

(2−d1−d2)
2

2((1−d1)2+(1−d2)2)
, otherwise,

(3.10)

where dx is the accepted-call ratio for each class, defined as

dx ,
1

cx ·ax

K

∑
j=1

q jx,where x = 1,2. (3.11)

Likewise, the response-time ratio fairness metric, fw, is defined as

fw =


1, if a1 = 0 and a2 = 0,

0, if ∑K
j=1 q j1 = 0 or ∑K

j=1 q j2 = 0,

(w1+w2)
2

2(w2
1+w2

2)
, otherwise,

(3.12)

where wx is given by

wx ,
1
cx

K

∑
j=1

j ·q jx,where x = 1,2. (3.13)

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 49

In the third optimization subproblem, the objective function is to choose the vector q ∈V that

minimizes the mean response time R for admitted calls, but will result in fairness metrics con-

strained by a relaxed-fairness range determined by the fairness-relaxation metric. Mean response

time is the average time until a call has been completed (the time between call arrival and the time

interval boundary when the call is scheduled is ignored), defined as

R , w1 +w2

∑K
j=1 q j1 +∑K

j=1
q j2
c2

. (3.14)

Given:

• The set of candidate vectors V found in subproblem 1.

• The fairness metrics f ⋆b and f ⋆w found in subproblem 2.

Outputs:

• The vector q that yields the minimum mean response time.

• The fairness metrics fb and fw, and minimum mean response time R.

Subproblem 3 objective function:

minR (3.15)

subject to

ω f ⋆b +(1−ω) f ⋆w ≥ ω fb +(1−ω) fw ≥ (ω f ⋆b +(1−ω) f ⋆w)− ε (3.16)

The constraint Eq. (3.16) allows for a tradeoff between relaxing fairness and minimizing the

mean response time by varying the fairness scaling factor, ε. For q⋆, the most fair allocation, the

mean response time would be R⋆. The scaling factor allows a less fair solution to be found that

would result in fairness metrics fb and fw within the range given in Eq. (3.16), for which there

might be an allocation that yields R < R⋆. By varying ε within the range 0 ≤ ε < ∞, a tradeoff

between fairness and mean response time can be explored. For ε → 0, the allocation will be more

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 50

Figure 3.2: Optimization example; MRT: Mean Response Time.

fair at the possible expense of a longer mean response time, while for ε → ∞, the shortest mean

response time will be experienced but with decreasing concern for fairness.

In summary, the output of the overall optimization is the vector q , q11,q12, . . . ,qK1,qK2 de-

tailing the allocation of channels to new calls, the fairness metrics and mean response time of the

most fair allocation, f ⋆b , f ⋆w, and R⋆, and the fairness metrics and mean response time of the relaxed-

fairness optimization, fb, fw, and R.

For example, in Fig. 3.2, (a) through (j) denote vectors in set V , which are determined by

subproblem 1. The vector (j) denotes the vector which is found in subproblem 2 to be the most fair

allocation, with fairness f ⋆b and f ⋆w, and mean response time R⋆. Therefore, q⋆ ≡ (j) in Fig. 3.2. In

subproblem 3, the relaxed-fairness constraint has a range given by Eq. (3.16), which allows vectors

(d) through (i) to be considered. Minimizing for R as per Eq. (3.15), the optimization determines

that the vector (f) has the minimum R. Therefore, q ≡ (f) in Fig. 3.2.

3.4 Model Solution

The scheduling algorithm determines how newly arrived calls are placed into bins. The metrics such

as bx and fw from above are solved for each state as described, and are now used in this section to

solve the overall model. The system performance metrics are defined as:

• R, the mean response time (MRT)

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 51

• Bx, the call blocking probability for each class

• Fb, the call blocking fairness metric

• Wx, the waiting time for each class

• Fw, the response time fairness metric

• Ft , the overall fairness metric

• U , the long-run utilization of the system

In order to calculate the above metrics, the steady-state probabilities, denoted by the vector π,

of the DTMC must first be calculated. As a result of the optimization process, the other parameters

necessary to compute the system performance metrics are pre-determined. That is, at the moment of

the state transition, the waiting time of class-2 calls, for example, is explicitly known, since, based

on the state, the optimization will determine the sole possible transition. Since the states with no call

arrivals should not be factored into the metrics, simply multiplying the steady-state probabilities π

by the transpose of the state-dependent optimization-determined metrics is not sufficient. Instead,

an |S|-element vector ae is created such that its nth element is 1 only if at least one call of either

class arrived in state n, and 0 otherwise. Thus, the optimization-determined metrics are solved as

follows:

• R= πRT

πae

• Bx =
πbT

x
πae

• Fb =
π f T

b
πae

• Wx =
πwT

x
πae

• Fw = π f T
w

πae

• Ft =
π f T

t
πae

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 52

The MRT R is used here to measure the elapsed time from the interval boundary at which

the call is scheduled to the interval boundary at which the call’s service is completed. Recall that

requests can arrive at any instant but the scheduling action occurs only at interval boundaries (calls

received between interval boundaries are held and scheduled as a batch). Therefore, there is some

time experienced by each request, spent waiting to be scheduled. This time is the “cost” of doing

batch processing, and is both unavoidable as well as uncontrollable by the algorithm; hence, it is

not considered.

The utilization of a given state is calculated by the occupancy of the first bin divided by the

number of channels, so we can define the per-state utilization un = n11+n12
m . Therefore, the utilization

of the system is given by U =πuT
n.

3.5 Evaluation Approach

There are two steps in our evaluation approach. First, we execute the scheduling algorithm for the

given system parameters to obtain the q allocations for all possible states, which determines how

newly arrived calls are placed into bins. Second, we solve the system model using “lookups” to

find the computed q allocation for a given state. The model could be solved in two ways. For

small systems, we solved it both analytically and with simulations, and for larger systems we used

simulations. The two models were effectively verified through a comparison of the output from the

analytical solution with the output from simulations for the same-scale systems. The results from

the two models were nearly identical.

Recall from Section 3.2 that the number of newly arrived calls for each class are contained in the

system state vector, making the state space infinite. For tractability, an upper limit for the number

of call arrivals per class per time interval was established at 7∗m. At that limit, there is a balance

between very small probabilities of exceeding that limit (between 10−10 and 10−16 depending on

β and r at the highest system load evaluated) and keeping the state space to a limited size for

which steady-state probabilities could be found using Matlab on a large-memory cluster node with

32GB of memory. The state space increases to untenable levels quickly as m and K are increased.

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 53

Therefore as stated before, the model was solved analytically for a small system (m = 4,K = 2),

and simulations were used to perform sensitivity analysis.

For our evaluation, we chose to run the optimization “a priori” instead of invoking it for the

given state within the simulation. The number of per-class call arrivals in each interval is the only

random number generated. Therefore, we pre-computed all the possible states, such that from

within the simulation it required only a lookup to the optimization’s output to determine the proper

transition. This reduced the processing time to run a simulation, which was still considerable despite

using parallel processing on a Linux cluster. For example, for an m = 6,K = 4 system, each change

in a variable required approximately 16 hours on a high-end compute node, and hence changing

a variable over a range required 16 hours multiplied by the number of points in the range. Each

experiment consisted of 80 simulation runs, and for each combination of system parameters, the

experiment was repeated 500 times.

3.6 Results

This results section evaluates the impact of the different variables, explores the tradeoffs between

fairness and performance, and compares the multi-class BA-First and first-come first-served (FCFS)

algorithms.

3.6.1 Sensitivity analysis on system variables m and K

The system variables m and K are basic design parameters that, holding all other variables equal,

form the fundamental tradeoff between a quicker MRT R and a lower call blocking probability.

This is best demonstrated by looking at only one class. Figs. 3.3(a) and 3.3(b) show there is a

somewhat counter-intuitive result in that the utilization increases as the reservation capacity of the

system increases, but likewise the call blocking probability (CBP) for class-1 calls is lower for

larger reservation capacity systems. Typically, a higher CBP is incurred to gain a higher utilization,

and within each system this is of course true. Comparing across systems reveals that increasing

the reservation capacity simultaneously increases utilization and decreases CBP. However, this is

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 54

(a) Utilization

(b) Call Blocking Probability

(c) Mean Response Time

Figure 3.3: Sensitivity analysis on system variables m and K

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 55

(a) Utilization (b) Fairness CBP

Figure 3.4: Sensitivity analysis on system variable r

an artifact of the overall relative smallness of the reservation capacities chosen: one can note the

disparity is larger between the m= 4,K = 2 and m= 6,K = 2 systems than between the m= 4,K = 4

and m = 6,K = 4 systems, even though in both comparisons the larger system is 50% larger than

the smaller system.

The lower mean response time experienced in a K = 2 system compared to a K = 4 system is

shown in Fig. 3.3(c). The systems with larger reservation windows incur larger mean response times

but gain increased utilization. The crossover point for the K = 4 systems when the offered system

load per channel exceeds 1 is the result of the slightly higher degree of CBP fairness being achieved

by the larger system. The larger number of calls of both classes arriving in the larger system affords

the optimization a greater opportunity to enforce CBP fairness, but the cost is a higher MRT.

3.6.2 Sensitivity analysis on system variable r

The graphs in Figs. 3.4(a)-3.4(b) illustrate the effect of the system variable r. For a larger r, the

system has a more difficult time achieving fairness, as calls of the larger class are unable to be

accommodated in situations if there are less than r channels available in a bin. The graphs are for

an m = 4,K = 2 system, which makes the difference between r = 2 and r = 3 significant. As the

load increases, however, the optimization has more calls to place and therefore more opportunity to

enforce fairness, as seen in Fig. 3.4(b).

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 56

3.6.3 The impact of the fairness weight ω

For ω → 0 (favors Fw) or ω → 1 (favors Fb), the system is either very fair in terms of one met-

ric or the other, but not both. The MRT shown in Fig. 3.5(a) reveals that either choice does not

significantly impact the MRT. The graphs are for an m = 6,K = 4,r = 2 system. With ω = 1 in

Fig. 3.5(b), the optimization only considers CBP fairness. The large dip is somewhat misleading;

the fairness of 1 before the dip is because there were no calls that needed to be blocked, given the

large reservation capacity and low per-channel load, but with the slightly higher per-channel load

of 0.7 an extremely low percent of calls needed to be blocked and at these low blocking rates it was

difficult to ensure CBP fairness. For lower loads, the optimization has fewer combinations from

which to choose, leading to a less fair outcome.

3.6.4 Relaxing the fairness objective by the optimization variable ε

The cost for fairness is a higher MRT R. The fairness-relaxation variable allows the optimization to

schedule calls in a way that is less fair but would result in a lower MRT. In Figs. 3.6(a)-3.6(c), the

system is m = 6,K = 4,r = 2 and ω = 0 so the optimization is solely concerned with response-time

fairness. By increasing ε, up to nearly 20% of transitions are chosen that have a lower MRT but are

less fair. The decrease in fairness is evident in Fig. 3.6(b), but the corresponding decrease in MRT

is very slight, amounting to only a 1% decrease in MRT at high load.

3.6.5 Mis-matched capacity demand

Under normal circumstances, over the long run, we would expect the algorithm to operate in con-

ditions where the requested capacity by each class is fairly similar. The preceding results all follow

that assumption. However, it is important to test how well the algorithm performs when there is a

disparity in the requested capacity between the classes, which is shown in Fig. 3.7. The graphs are

for an m = 6,K = 4 system.

Starting with Fig. 3.7(b), at an offered system load per channel of 0.7, for a given r, the system

is increasingly more fair as β= λ2
λ1

increases, showing that the more calls of class-2 there are relative

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 57

(a) Mean Response Time

(b) Fairness CBP

(c) Fairness Response Time

Figure 3.5: The impact of the fairness weight ω

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 58

(a) Mean Response Time

(b) Fairness Response Time

(c) Portion of transitions influenced by ε

Figure 3.6: Relaxing the fairness objective by the optimization variable ε

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 59

(a) Mean Response Time (b) Fairness CBP

Figure 3.7: Mis-matched capacity demand

to calls of class-1, the more fair the algorithm will be. This follows rather clearly from the fact that

the more availability of calls of either class, the more opportunity there is for the optimization to

select a fair allocation.

Somewhat less clear, however, is the complete crossover in order from lowest to highest mean

response time that occurs at an offered system load per channel of 1.0 in Fig. 3.7(a). For a per

channel load of less than 1.0, the order is, from lowest to highest, β = 1
4 to β = 1 for r = 2, then

β = 1
6 to β = 2

3 for r = 3. Greater than 1.0, the ordering is precisely opposite. This is directly related

to the availability of calls of either class for the optimization to allocate, as well as the selection

of ω = 1 for this example. Less than a per channel load of 1.0, with very few blocked calls, the

optimization will default to placing the higher capacity class-2 calls in higher bins. The larger r,

or the more class-2 calls there are, the more likely they will be allocated to higher bins than the

majority of the class-1 calls, thereby increasing the MRT. Conversely, for per channel load greater

than 1.0, the system will be operating at a very high utilization, and the results are heavily influenced

by the likelihood that only the final bin will have space. In that case, the more class-2 calls that are

allocated, or the larger the r, the lower the MRT will be, since each class-2 call prevents multiple

class-1 calls at the same high MRT from being allocated.

3.6.6 Comparison of Multi-class BA-First to FCFS

In this section the multi-class BA-First algorithm is directly compared to a non-optimizing algo-

rithm, in which calls are simply scheduled according to the order in which they arrive (FCFS).

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 60

(a) Utilization

(b) Mean Response Time

(c) Fairness CBP

Figure 3.8: Comparison of Multi-class BA-First to FCFS

Chapter 3. Fairness in Multi-Class Book-Ahead Scheduling 61

Though it is obvious the FCFS algorithm will be less fair, the performance tradeoff incurred to re-

alize fairness is not so obvious. Fig. 3.8(a) shows the utilization as the per-channel load increases.

At low load, the algorithms are nearly equal, since few calls are blocked in either case. As load

increases, the ability of the multi-class BA-First algorithm to fill more available space (i.e., does

not leave gaps as FCFS might) leads to a higher utilization. Along with that, though, the work-

conserving aspect also causes the cross-over point at a per-channel load of 1.1 in Fig. 3.8(b). In

high load, when enough calls have been received for the optimization to fully fill the reservation

window with greater frequency (leading to higher utilization), that also creates a higher MRT as the

last bin is more likely to be filled, compared to FCFS.

3.7 Conclusions

The scheduling algorithm developed in this work applies to any bin packing problem or advance-

reservation scenario where a flexible class boundary is allowed. The algorithm determines how

newly arrived calls are allocated, and those allocations for all states are used by the analytical

model and simulations as solutions to the system model. Sensitivity analysis completed with the

use of simulations showed how the system performs with varied inputs. We found that with more

channels in a bin and an increased number of bins, the larger system affords the optimization a

greater opportunity to enforce fairness, but the cost is a higher mean response time. The system

has difficultly ensuring fairness when the per-channel loads are lower, as there are fewer possible

choices for the algorithm to make. It enforces fairness quite well at higher loads, and the fairness

can be relaxed by a tunable variable to achieve lower mean response time by decreasing the fairness.

Finally, the algorithm is compared to a non-optimizing first-come first-served algorithm to illustrate

the performance tradeoff incurred in achieving fairness.

Chapter 4

An in-depth cross-layer experimental study of transport

protocols over circuits

4.1 Introduction

Recently, both research-and-education networks (RENs) and commercial networks have added a

dynamic circuit service. With this service, users can request and obtain dedicated bandwidth for

short durations (on the order of minutes to hours). RENs are motivated by eScience applications

such as the high-energy physics projects enabled by the Large Hadron Collider in CERN, Geneva

[79]. Commercial providers refer to this service as “bandwidth-on-demand.”

The deployed dynamic circuit networks use newly developed equipment called multi-service

provisioning platforms (MSPPs), which are fundamentally SONET/WDM circuit switches with

additional Ethernet line cards that implement Ethernet-to-SONET or Ethernet-to-WDM frame map-

ping technologies. These mappings have to be provisioned prior to data transfer, making the end-to-

end communication path effectively a virtual circuit. The addition of Ethernet line cards to circuit

switches has enabled the use of dedicated-bandwidth end-to-end circuits between computers. The

end-to-end circuits consist of Ethernet segments between computers and MSPPs, and wide-area

SONET/WDM circuits between MSPPs.

The main application for end-to-end high-speed dedicated circuits is large file transfers. Toward

supporting this application, the problem statement of this work is to design, implement, and test

62

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 63

a transport protocol for use across dedicated end-to-end circuits. More specifically, the type of

circuits considered here are what we term mismatched-rate circuits. Such circuits are created

when a high-speed port, such as a GigE (gigabit per second (Gbps) Ethernet) port, is mapped on

to a lower-rate circuit, e.g., a 400Mbps virtually concatenated SONET circuit. First, the MSPP

technology allows for such mismatched-rate mappings. Second, the reason for provisioning such

mismatched-rate circuits is as follows. For file transfers, disk-write speeds are often the bottleneck.

They are typically on the order of 400Mbps per host. This means even if the link from the host to

the MSPP is a GigE, by making the wide-area SONET circuit between the MSPPs just 400Mbps,

we can ensure that there is no under-utilization of wide-area circuits. Therefore, the goal of this

work is to design and configure transport protocols for use on such mismatched-rate circuits.

Our key contribution is a characterization of the interaction between multiple layers: TCP,

switch (MSPP) buffers and Ethernet layer. Rate mismatches across circuits are handled by enabling

ON/OFF flow control in the MSPP Ethernet line cards. This, in turn, causes a Layer-2 parameter,

txqueuelen, the size of the output queue (qdisc), at the sending host to play an important role. The

TCP congestion window is limited by the sum of txqueuelen, the Pause ON threshold set in the

switch buffer, and the product of the circuit rate and round-trip propagation delay.

Using recently available features in Linux, a new tool, BWdetail, is developed to capture these

complex interactions between (i) transport protocols, (ii) Ethernet drivers at hosts, (iii) switch

buffers, and (iv) Layer-2 flow control. This in-depth study shows how TCP layer parameters, Eth-

ernet layer parameters at hosts and switches, and switch buffer allocations should be configured

to achieve better performance and fully leverage circuit infrastructure advances. Such an in-depth

characterization can only be obtained with experimental methods, and not with analytical modeling

and/or simulation. Therefore, this work is an experimental study not an abstracted modeling study.

4.2 Background

Section 4.2.1 describes newly deployed circuit networks, and more detail is provided on the MSPPs

used in these networks in Section 4.2.2. The likely scenario of mismatched-rate circuits is de-

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 64

scribed in Section 4.2.3. Sections 4.2.4 and 4.2.5 provide the necessary background on interactions

between TCP, switch buffers and the Ethernet layer.

4.2.1 Dynamic circuit service deployment

MAC

MAC

MAC

PHY

PHY

PHY

GigE

Signals

2

10

Traffic Classification

and Policing

VCG-1

VCG-2

VCG-15

VC

Framer

To backplane

GFP

1

Shared buffer:

need not to be

very large since

processing

delay is small

10Gbps

Stage One: Wire-rate processing
 Stage Two: Implemented

in FPGA

Stage Three: Wire-

rate processing

Limited buffer per VCG

Flow-VCG

mapping

OC192

SONET

Signal

Figure 4.1: Internal structure of a Gigabit/sec Ethernet (GigE) line card in an Ethernet-SONET
MSPP

Three US-wide core (backbone) REN providers, Internet2 [80], the Department of Energy’s

(DOE’s) ESNet4 [81], and NLR [82], offer a dynamic circuit service in addition to their IP-routed

service offering. Similar deployments include Europe’s AutoBAHN [83], Japan’s JGN2plus [84],

and Canada’s UCLP [85], among others. Motivated to support eScience applications that require

rate guarantees, these networks provide users the ability to request on-demand high-speed circuits

for short durations (on the order of minutes to hours). High-energy physics, climate studies, bio-

informatics, and a number of other eScience projects are using these dynamic circuit services.

As an example, consider the Internet2 network. Its dynamic circuit network is referred to as

Interoperable Ondemand Network (ION). The ION consists of twenty-two Ciena CD-CI systems,

which are Ethernet/SONET MSPPs. The IP-routed network consists of Juniper routers. Two wave-

lengths are leased by Internet2 on its entire national footprint, one to interconnect ION nodes, and

the second to interconnect IP routers. Connectors, which are regional RENs, connect via separate

links to these two networks. The Internet2 dynamic software suite [86] provides the control-plane

software, which includes a bandwidth reservation scheduler, through which individual users or ap-

plication software can request bandwidth, specifying start times, bandwidth amount, and durations.

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 65

4.2.2 Equipment used in dynamic circuit networks

Given the ubiquity of Ethernet, circuit switch vendors have added Ethernet line cards to their

SONET/WDM circuit switches to create the so-called MultiService Provisioning Platforms

(MSPPs). The operation of an Ethernet line card designed for an MSPP is described below.

Fig. 4.1 shows the internal structure of a 10-port GigE line card in an Ethernet/SONET MSPP.

It has Ethernet ports on the front end (left edge of Stage One in Fig. 4.1) and SONET (virtual) ports

on the back end (right edge of Stage Three in Fig. 4.1) through which the card is connected to the

backplane. The backplane thus brings SONET signals from all interface cards, both Ethernet and

SONET, to the switch fabric card where the signals are cross-connected according to programmed

configuration information.

Stage One classifies frames and does traffic policing on “Layer-2 flows,” which are defined as

all packets entering the line card at a specific physical port, or tagged with specific virtual LAN

identifiers (VLAN IDs). Virtual-concatenation groups (VCGs) are configured as shown in Stage

Two of Fig. 4.1. An example VCG is a OC3c-7v, which consists of seven virtually concatenated

OC3 signals, for an aggregate rate of 1.09Gbps. The “flow-VCG” mapping shown in Stage Two

allows for the mapping of an Ethernet port or VLAN based Layer-2 flow to a VCG. As the VCG

rate does not necessarily have to match the port or VLAN rate, mismatched-rate circuits can be

created. Stage Three implements generic framing procedure (GFP) [87] in a VC framer to map

Ethernet frames onto SONET frames. In Ethernet-WDM MSPPs, the ITU-T G.709 digital wrapper

standard is implemented to map Ethernet frames on to wavelengths.

4.2.3 Mismatched-rate circuits and Layer-2 flow control

In a mismatched-rate circuit, Ethernet frames could arrive at a rate faster than the rate of the SONET

circuit to which the incoming port is mapped. The rate mismatch will cause the VCG buffer, shown

in Stage Two of Fig. 4.1, to fill. The GigE line card in the MSPP issues Layer-2 Pause frames to

stop the sender, in accordance with IEEE 802.3x ON/OFF flow control, to prevent buffer overflows

and corresponding packet losses. The switch sends Pause frames when the Pause ON threshold

(typically configurable) is crossed. Within each Pause frame, a field specifies the time period during

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 66

which the sender should not transmit any frames. At the end of the specified time period, or after

receiving a Pause frame with zero in the time field, the sender resumes normal transmission of

frames. A switch sends the Pause frame with zero in the time field when the buffer size falls below

the Pause OFF threshold.

4.2.4 Impact of TCP congestion control on switch buffer occupancy

TCP congestion control consists of two phases: slow start and congestion avoidance. In the slow-

start phase, TCP congestion window cwnd increases at an exponential rate. In this phase, if the size

of the congestion window is x, x
2 packets will be queued in switch/router buffers. A full explanation

of why this occurs is given in [88].

Similarly, during the congestion avoidance phase, there will always be (cwnd - 2tpropr) number

of packets queued inside switch/router buffers, where tprop is the one-way propagation delay and

r is the bottleneck link rate. This assumes that the receive buffer is set to a large value to avoid

becoming the bottleneck. As acknowledgments are received by the sender, the congestion window

keeps growing by one packet per round-trip time (RTT). Eventually, for long flows, there could be

packet loss once the congestion window grows beyond the capacity of the end-to-end path between

the end hosts, where capacity is the sum of 2tpropr and switch/router buffer size.

4.2.5 TCP-Ethernet layer interaction within hosts

An application writes data into the TCP send buffer by calling the write() system call. The TCP

layer assembles a segment when data is available in the send buffer. Each segment is pushed down

to the IP layer for transmission. The IP layer enqueues each packet in an output queue (qdisc)

associated with the appropriate network interface card (NIC). The size of the qdisc can be modified

by assigning a value to the txqueuelen variable associated with each NIC card. After a packet is

successfully queued inside the output queue, the packet descriptor is then placed in a output ring

buffer. When there are packet descriptors queued in the ring buffer, the device driver invokes the

NIC direct memory access (DMA) engine to transmit packets onto the wire.

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 67

4.3 Prior work

There has been significant work developing protocols to offer high performance for data transfers,

e.g., NETBLT [89], UDT [90], RAPID [91], and TCP variants such as HSTCP [8] and FAST [92].

However, none of these protocols were designed for circuits.

One protocol which was specifically designed for use on circuits is a variant of TCP called

Circuit-TCP (CTCP) [9]. The key modifications to TCP are that the congestion window is set to

a fixed value equal to the bandwidth-delay product of the path and that the TCP slow start and

congestion avoidance algorithms are disabled. The rationale is that by reserving bandwidth and

provisioning a dedicated circuit between two end hosts (or computer clusters), there can be no

congestion-related losses in the data plane. Losses, if any, are due only to link errors, which is no

reason to change the sending rate. In the experiments presented in [9], the effects of running CTCP

on mismatched-rate circuits, interaction with Layer-2 ON/OFF flow control, and MSPP’s buffering

capability were not studied. These aspects are the main focus of this chapter.

4.4 New CTCP Implementation and BWdetail

A limitation of the CTCP implementation used in [9] is the need to patch the Linux kernel. To

make CTCP more accessible to circuit users in the deployed dynamic circuit networks, in this

work a new CTCP implementation has been developed. Starting with Linux 2.6.13, congestion

control algorithms can be dynamically loaded in as kernel modules. This capability is leveraged

in the new CTCP implementation. In CTCP, a configurable parameter sets the congestion window

value, which remains unchanged for the duration of the connection. Thus, slow start and congestion

avoidance algorithms are disabled in CTCP. Also, the TCP feature that resets the congestion window

to the restart window value when idle periods are larger than one retransmission timeout [93] is

disabled. By fixing the congestion window size, the number of unacknowledged packets allowable

is “capped,” enforcing a strict upper limit on the resources (buffer space, bandwidth, host memory,

etc.) a CTCP flow will use.

To characterize the behavior of CTCP, BIC TCP and Reno TCP across circuits, a new tool called

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 68

Figure 4.2: Experimental Setup

BWdetail was developed in this work [94]. BWdetail is similar to Iperf [95], in that it is used to

measure throughput. BWdetail, however, additionally provides detailed information relating to the

TCP stack without requiring kernel modification. BWdetail takes advantage of the exposed kernel

information to record information such as the current congestion window. No kernel modifications

such as Web100 are necessary to record TCP stack information.

4.5 Experiments

4.5.1 Experimental Setup

Fig. 4.2 shows the experimental setup. Two end hosts, Zelda1 and Wuneng , are connected to GigE

interfaces of MSPPs. A SONET circuit is provisioned between two MSPPs and the Ethernet ports

are mapped to the SONET circuit. Specifically, the Ethernet/SONET MSPPs shown in Fig. 4.2 are

Sycamore SN16000 systems, and the hosts are off-the-shelf Linux machines.

BWdetail is used to execute memory-to-memory data transfers of variable sizes from Zelda1 to

Wuneng using Reno, BIC, or CTCP as the transport protocol. The experiments are performed with

a SONET circuit rate of OC3. For each of these transfers, the instantaneous throughput is recorded

every 100 ms, and the cwnd and RTT every 5 ms. The entire transmission is also captured using

tcpdump . The initial RTT between these two hosts, i.e., with no buffered packets, is 8.85 ms. The

txqueuelen is set to 1000 packets. The MSPPs are configured with a Pause ON threshold of 1 MB

and a Pause OFF threshold of 512 KB. Maximum frame size is 1500 bytes, which makes emission

delay at OC3 rate approximately 80µs, and correspondingly, the initial bandwidth-delay product

(BDP), i.e., with no buffered packets, is 100 packets. The receive-side buffer is set to a large value

so that the effects of congestion window growth can be isolated.

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 69

Pause ON

0.027967s 0.004965s

Pause ONPause OFF

A B C

Figure 4.3: Circuit Rate = OC3 (155 Mbps)

4.5.2 Findings on cross-layer interactions

Our key finding is about the interaction between TCP congestion control, buffering within switches,

and data-link layer flow control. Given the presence of ON/OFF flow control at the data-link layer,

whereby Pause frames are sent to the sending host as the switch (MSPP) buffer fills up, there are no

packet losses. Instead, when the sending end host’s Ethernet layer receives a Pause frame, it stops

transmissions. This causes the Ethernet-layer output queue (qdisc) to fill up because the TCP layer

keeps adding packets to this queue as acknowledgments are received.

When the Ethernet-layer output queue (qdisc) is full, an attempt to enqueue a packet generates

a local-congestion event, which is propagated upward to the TCP layer. The TCP congestion-

control algorithm then enters into the Congestion Window Reduced (CWR) state, and reduces the

congestion window by one every other acknowledgement (known as rate halving).

The cwnd value at which the CWR state is reached is given by:

cwndCWR > 2tpropr+PauseON + txqueuelen (4.1)

where tprop is one-way propagation delay, r is the circuit rate, PauseON is the Pause ON threshold

set in the bottleneck switch (MSPP) buffer, and txqueuelen is the size of the output queue (qdisc) at

the sending host’s Ethernet NIC.

4.5.3 Results

The periodic nature of Pause frames is explained by examining the lengths of the Pause ON periods,

Pause OFF periods, and the number of Pause frames seen in each of these Pause ON periods

(Fig. 4.3). During the Pause ON periods, the sender NIC sits idle, while the MSPP drains data from

its buffer at the SONET circuit rate. For the OC3 rate (Fig. 4.3), the average length of the Pause ON

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 70

period is 0.027967s, during which time the MSPP drains 529 KB of data. This causes the MSPP

buffer to fall below the Pause OFF threshold. As the sending host resumes transmission after the

Pause ON period, it transmits data at a 1 Gbps rate during the following Pause OFF period. This

causes data to be queued in the switch buffer at (1000− 155) Mbps rate, resulting in 512 KB of

data queued in 0.004965s. Hence, the switch crosses the Pause ON threshold again, and enters into

another Pause ON period.

In Figures 4.4, 4.5, and 4.6, the throughput, cwnd, and RTT are shown for a 1 GB transfer over

an OC3 circuit using Reno, BIC, and CTCP. Due to regular Pause ON and Pause OFF periods, the

throughput graph for Reno (Fig. 4.4(a)) shows drops at regular intervals. The average throughput

of the entire 1 GB transmission is 142 Mbps for all three transport protocols. As predicted by

Eq. 4.1, the congestion window plot (Fig. 4.4(b)) for Reno after the initial slow-start period, and

at regular intervals in BIC (Fig. 4.5(b)), drops after crossing 1750 packets as TCP enters the CWR

state. In these experiments, the NIC transmit-queue length (txqueuelen) is set to 1000 packets, the

switch buffer can hold 700 packets (1 MB Pause ON threshold) before entering into a Pause ON

period, and there are approximately 50 packets on the wires; therefore, a local congestion event

is received from the NIC buffer when the congestion window crosses 1750 packets. Hence, when

TCP enters the CWR state, both Reno and BIC reduce their congestion windows by half shortly

after reaching 1750 packets (the amount of time it takes to reduce the congestion window by half

is very small, given the relatively short RTT, and appears in the figures to be instant, but is in fact

not).

Following the CWR state and rate halving, Reno enters the congestion avoidance state, and

increases the congestion window by only one packet in each RTT. Being more aggressive than

Reno, BIC quickly recovers from the cwnd reduction. If the BDP of a path is large, this slow

increase of the congestion window will hurt the overall throughput [8]. No drops in cwnd occur

with CTCP, as this is held constant.

The difference in RTT between Reno/BIC and CTCP is significant. Queued packets in the NIC

buffer and the MSPP buffer cause the RTT to build up. When these buffers are full, each new

packet will be queued behind a maximum 1700 packets. For an OC3 circuit, the service time for

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 71

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Throughput over OC3 - Reno

Throughput

(a) Throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 10 20 30 40 50 60

cw
nd

Time (s)

Reno over OC3

cwnd

(b) Congestion window (cwnd)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

R
T

T
 (

m
s)

Time (s)

Reno over OC3

RTT

(c) Round-trip time (RTT)

Figure 4.4: Reno over OC3 - 1GB Transfer

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 72

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Throughput over OC3 - BIC

Throughput

(a) Throughput

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60

cw
nd

Time (s)

BIC over OC3

cwnd

(b) Congestion window (cwnd)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

R
T

T
 (

m
s)

Time (s)

BIC over OC3

RTT

(c) Round-trip time (RTT)

Figure 4.5: BIC over OC3 - 1GB Transfer

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 73

 100

 110

 120

 130

 140

 150

 160

 170

 180

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Throughput over OC3 - CTCP

Throughput

(a) Throughput

 128.5

 129

 129.5

 130

 130.5

 131

 131.5

 0 10 20 30 40 50 60

cw
nd

Time (s)

CTCP over OC3

cwnd

(b) Congestion window (cwnd)

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 0 10 20 30 40 50 60

R
T

T
 (

m
s)

Time (s)

CTCP over OC3

RTT

(c) Round-trip time (RTT)

Figure 4.6: CTCP over OC3 - 1GB Transfer

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 74

a standard 1500B packet is 77µs. Hence, a packet may experience a maximum queueing delay of

1700×77µs or 131ms. Therefore, the maximum RTT observed when using Reno (Fig. 4.4(c)) and

BIC (Fig. 4.5(c)) is as large as (131+ 8.85) ≈140ms. In contrast, for CTCP, RTT holds steady

at a value slightly higher than the base 8.85ms, since as seen in Fig. 4.6(b), cwnd is capped at

130 packets. This point is important when considering how a large flow could severely impact the

latency of packets in a small flow if both are mapped to the same VCG.

4.5.4 Discussion

With the in-depth understanding from this work, several options can be suggested to improve per-

formance. Given there is a control-plane procedure for circuit provisioning, this phase should get

information about buffer sizes, select an appropriate TCP congestion control module, and config-

ure TCP-layer receive and transmit buffers and Ethernet-layer txqueuelen, in order to achieve the

best performance. Different options may be more or less easily implementable depending on one’s

situation.

One approach to limit the number of outstanding packets in Reno or BIC is to set the receive-

side buffer to equal or be slightly larger than the initial BDP (with no buffered packets). In this

example, this would limit the number of outstanding packets to a value of 100 packets even if cwnd

keeps increasing to 1750. The RTT would then be held to a value close to 8.85ms. The receive-

buffer size should be initialized on a per-socket basis within the application but this requires appli-

cation code modification. If set using external OS commands, it becomes a system-wide parameter

used for all TCP flows. If the value chosen is too small, it will hurt throughput of large BDP

connections. If it is too large, it will impact RTT as shown with the above experiment.

With CTCP, the effect of bursting a whole BDP-sized window at the Gbps NIC rate when a

transfer starts needs to be considered since slow start is disabled. If the ingress MSPP, where the

GigE port is mapped to a lower-rate SONET circuit, does not have sufficient buffer space to hold

this whole window of packets, Pause frames will be generated. Care should be taken to configure

the txqueuelen variable within the sending host to a large value to prevent a CWR state.

The importance of this work is not limited to circuits. Implications for connectionless traffic

Chapter 4. An in-depth cross-layer experimental study of transport protocols over circuits 75

can be drawn from these results with respect to how “elephant” flows, if allowed to grow to a large

congestion window, will cause “mice” flows to incur unnecessary packet delay and/or losses, and

streamed flows to suffer jitter.

4.6 Conclusions

The key contribution of this work is a detailed understanding of the interactions between TCP

congestion control algorithms, data-link layer flow control algorithms, and switch buffering. These

interactions are observed using a new tool called BWdetail. The behavior of three variants of TCP:

Reno, BIC, and CTCP, are observed across an Ethernet-SONET mismatched-rate circuit. These

types of circuits will increasingly be used across the newly deployed dynamic circuit networks

in research-and-education networks, such as Internet2 and ESnet4, and in commercial bandwidth-

on-demand services. As there is a circuit provisioning phase, this phase can be used to obtain

parameters such as end-to-end propagation delay. Using these values and the circuit rate, flow-

control parameters such as Pause ON and Pause OFF threshold should be set within the circuit

switches in the provisioning phase. Furthermore, in addition to tuning TCP send and receive buffer

sizes, Ethernet-layer output queue length should be configured at the end hosts on a per-circuit

basis. Such configurations are critical to exploiting the full transmission rate allocated to the circuit

to achieve better performance (lower file transfer delays).

Chapter 5

On Virtualizing Ethernet Switches

5.1 Introduction

Virtualization is a central concept in the NSF initiative to create a Global Environment for Net-

work Innovations (GENI) [96]. As the GENI testbed is expected to have both host systems and

network switches/routers (among other entities), techniques are needed for virtualizing both hosts

and switches/routers. The concept of virtualizing a computer host to create virtual machines has

been widely implemented. There are several techniques for virtualizing hosts in both commercial

and research/education communities such as VMware [97], Virtual Server [98], Xen [99], Planet-

Lab [100], etc.

Two types of virtualizable switches/routers, which fall at opposite ends of the flexibil-

ity/performance spectrum, are: (i) software-based switches/routers created using off-the-shelf

servers, as implemented in the Virtual Network Infrastructure (VINI) project [101], and (ii) a

hardware-based high-speed router/switch with Advanced Telecommunications Computing Archi-

tecture (ATCA) components and network processors as proposed in [102].

We propose a switch/router virtualization solution that lies between these two extremes. It is

based on using off-the-shelf switches/routers and poses only one requirement on these switches,

i.e., that the switch/router has built-in capabilities to support isolated slivers (bandwidth partitions)

on its data-plane interfaces. Ideally to create multiple logical switches from one physical switch, in

addition to support for separable slivers on the data-plane, the switch should have built-in capabil-

76

Chapter 5. On Virtualizing Ethernet Switches 77

ities to support multiple, separable (a) control-plane instances, e.g., routing protocol and signaling

protocol processes, (b) management-plane instances, e.g., Simple Network Management Protocol

(SNMP) agents with partitioned management information bases (MIBs), and (c) Command-Line

Interface (CLI) processing instances. In our proposed solution for switch/router virtualization,

software external to the switch is used to partition the control plane, management plane and CLI

administrative-access, thus requiring built-in support for only data-plane partitioning.

In Section 5.2, we explain our motivation for carrying out this work, and contrast the goals of

the VINI, ATCA and our approach to switch/router virtualization. In Section 5.3, we describe our

overall virtualization approach, and then focus on one aspect, the sharing of the administrative CLI.

Section 5.4 describes our implementation of a software module called the Slice Administration

Controller (SAC), and reports on obtained measurements. We conclude the chapter in Section 5.5.

5.2 Motivation and Related Work

5.2.1 Initial drivers

Our initial interest in virtualization came about when we wanted to run some experiments on Inter-

net2’s Hybrid Optical Packet Infrastructure (HOPI) [103] testbed while another research group was

simultaneously using the testbed. HOPI is an experimental testbed available for use by networking

and other scientific researchers. When considered in the context of HOPI, GENI, and similar sit-

uations in which multiple researchers are using the same physical infrastructure, there is a strong

motivation to virtualize a node in order to allow researchers to operate without interfering with each

other.

The HOPI network consists of Force10 E600 nodes deployed at five cities, Washington, New

York, Chicago, Seattle and Los Angeles. The Force10 E600 does meet our requirement of built-

in support for sliver isolation on its data-plane interfaces. Therefore, we used this model in an

implementation of our virtualization approach.

The E600 equipment can be configured to operate as an Ethernet switch (“layer-2 (L2)” switch),

an IP router (“layer-3 (L3)” router), or a combination thereof. In our studies on the feasibility

Chapter 5. On Virtualizing Ethernet Switches 78

of virtualization of this model, we configured it strictly as an Ethernet switch. This was partly

because this was the intended mode of operation on the HOPI network, and also because the set

of functions/features that need to be virtualized is much smaller in this mode, making it the better

first-step choice.

5.2.2 Broader motivation and related work

In this section, we compare goals and usability of four different approaches to switch/router virtual-

ization. In addition to the VINI, ATCA router, and our approach, we describe commercial interests

in virtualization.

In VINI, the goal is to provide researchers access to virtualized high-end servers for a simulta-

neous testing of new protocols and services. Reference [101] mentions the possibility of eventually

using “programmable hardware devices” instead of servers. A VINI implementation on PlanetLab

runs XORP [104] routing software and Click packet forwarding software [105]. This testbed is

suitable for researchers whose work can be evaluated in an overlay mode.

For high-speed data-plane experiments, the ATCA programmable router [102] is ideal. These

routers allow data-plane researchers to download code for functions such as packet scheduling,

forwarding table lookups, etc., to network processors/FPGAs on the line cards for testing and eval-

uation.

In our virtualization approach, which uses off-the-shelf switches and routers, this level of pro-

grammability, i.e., support for code downloads, is not available. Nevertheless these switches offer

researchers the ability to configure node operation via the CLI. Given the vast number of features

implemented in commercial switches, such configurability access will open up several lines of ex-

perimental research.

We list several examples of the type of networking research (in data, control, and management

planes) possible with just such configurability access of switches: (1) data-plane research com-

bining Weighted Random Early Discard (WRED) and transport protocols (WRED profiles can be

set through the CLI), (2) data-plane research on QoS-support mechanisms, which, while limited

by the capabilities of the switches, still offer much scope for experimental work to understand

Chapter 5. On Virtualizing Ethernet Switches 79

how these capabilities should be configured for desired operations, (3) data-plane research on se-

curity and access-control lists by configuring various parameters related to these functions, (4)

control-plane research in connection-oriented networks for advancing signaling protocols, routing

protocols, advance-reservation schedulers, etc., as is being carried out on the CHEETAH [24] and

DRAGON [4] testbeds, (5) control-plane research on routing protocols for IP networks, such as

XORP [104], (6) management-plane research on algorithms and open-source tools [106], (7) mea-

surement tools to estimate bandwidth, capacity, loss rates, and delay on end-to-end paths, such as

those listed in [107]; visibility to the switches and routers could open up a new set for innovations,

as current tools operate without such access.

Given this rich set of experimental lines of work enabled by offering researchers configurability

access to switches through the CLI, we found a broader motivation than our initial HOPI-oriented

driver for virtualizing off-the-shelf switches. Thus, even without the ability to download code to

these switches, i.e., the “programmability” attribute defined in [96], there is value in virtualizing

off-the-shelf switches.

There is growing interest in the commercial sector among equipment vendors to support built-

in capabilities for switch/router virtualization of all four levels (the data, control, and management

planes, and administrative access). Interestingly, new products are being created to virtualize both

data-center switches [108] as well as high-end service-provider routers [109], [110]. For example,

various departments of an organization can share the computers and switches in an enterprise data

center. As these switches become more widely available, based on their supported capabilities, our

software will need to be adapted to offer researchers the required flexibility. Just as PlanetLab OS

virtualizes hosts in an environment suitable for researchers in spite of the availability of commer-

cial tools, e.g., VMware, we expect that researchers will need open-source software support for

virtualization of commercial switches/routers, a gap filled by this work.

Chapter 5. On Virtualizing Ethernet Switches 80

5.3 Approach for Virtualization of an off-the-shelf Ethernet Switch

5.3.1 Virtualization architecture overview

In this section, we describe our approach for virtualizing an off-the-shelf Ethernet switch that has

built-in support for sliver isolation on its data-plane interfaces. Fig. 5.1 shows our virtualization

architecture. The Force10 E600 switch is used as an example of the type of commercial switch that

can be virtualized with this approach.

First, we define a few terms. The term sliver is defined as a bandwidth partition on a port with

a set of associated multiplexing/demultiplexing identifiers, e.g. VLAN identifiers. The term slice is

used to represent a logical switch, which consists of a set of slivers on a specific set of ports of the

physical switch. Our definition of the word “slice” is for a single switch, though this term has been

used in the GENI community to represent a set of resources across a whole network (i.e., multiple

switches). We decided to focus this paper on the virtualization problem for a single switch before

tackling the broader problem of providing a researcher a virtual set of resources across a network

of switches. Therefore, Fig. 5.1 shows just a single switch and associated software. Some of the

software modules, such as the slice scheduler, could be generalized for a network of switches. The

next term we define is entity. This represents both a human administrator of a logical switch (slice)

as well as software modules implemented by the slice owner to interface with the slice scheduler

and Slice Administration Controller (SAC) of Fig. 5.1, as these software modules offer both graphic

and programmatic interfaces.

The main components of our virtualization software architecture are shown in Fig. 5.1. As stated

in Section 5.1, multiple control-plane instances and management-plane instances are run outside

the switches to provide corresponding functionality to the logical switches. Researchers access the

slice scheduler (via a graphic or programmatic interface) to request reservations for switch slices for

a fixed duration of time. The slice scheduler maintains reservations for discrete time periods (e.g.,

hourly basis). The slice scheduler translates a slice request into a set of required slivers, and checks

whether the request can be accepted, based on resource availability in the requested time period.

Sliver allocations for accepted reservations are written into the configuration database shown in

Chapter 5. On Virtualizing Ethernet Switches 81

Fig. 5.1.

The last component of the virtualization software architecture shown in Fig. 5.1 is the Slice

Administration Controller (SAC). The purpose of the SAC is to enable sharing of the administra-

tive command-line interface. It is an important module to allow multiple researchers to configure

operation of their logical switches, enabling the types of research listed in Section 5.2.2.

In this first phase of the work, we focused on testing the switch data-plane mechanisms for sliver

isolation, and implemented and evaluated the SAC. Therefore, in the following two subsections, we

provide details on these two aspects of the overall architecture.

5.3.2 Data-plane support for sliver isolation

The Force10 E600 switch implements the IEEE 802.1Q standard, which is a multiplexing scheme

based on 12-bit Virtual LAN identifiers (IDs) and the 3-bit priority field. We use the term “class”

when referring to the latter because in the virtualization application all slivers are treated equally.

Force10’s E600 switch implements a rich set of QoS features for traffic control on the date

plane. These features include rate policing for ingress traffic, per-class queueing, rate limiting for

egress traffic, and rate shaping. When a packet enters a port on a line card, it is first processed

by a Flexible Packet Classification engine (FPC). The FPC examines information in the Ethernet,

IEEE 802.1Q, and IP headers, and performs a lookup on a stored policy table to determine how

this packet should be marked according to configured policies. After classification, the packet is

processed using a two-rate three-color rate-policing mechanism [111], and placed into one of the

eight queues according to the policies installed by a switch administrator through the CLI. The

service order of these queues is controlled by a scheduler according to a Weighted Fair Queueing

(WFQ) algorithm. Packets are then served out of the queues and passed through a set of switch

fabric cards to egress line cards. In the egress direction, packets are again placed into eight separate

queues and processed by a two-rate three-color marking mechanism. The queues are serviced using

a WFQ algorithm.

On each physical port, the administrator can use a rate-policing command to control the opera-

tion of the two-rate three-color marking module in the ingress direction. A rate-limiting command

Chapter 5. On Virtualizing Ethernet Switches 82

Slice A dm inistration
C ontroller (SA C)

Force10
E 600

sw itch

Entity 1

E ntity |L |

C onfiguration
database

Slice scheduler

C om m and/
response

read

w rite

Screened
com m and/response

R equest

R equest

C ontrol-
p lane

instances

 M anagem ent-plane
instances

Figure 5.1: Virtualization Architecture

can be applied to the same port for the operation of the two-rate three-color marking module in the

egress direction. If packets are classified by VLAN ID, we can specify at most six rate-policing

commands and/or six rate-limiting commands on each physical port in the E600 switch. Data-plane

isolation is ensured by a combination of actions performed in these data-plane circuits, along with

actions performed in the slice scheduler and SAC. The slice scheduler tracks aggregate port band-

width when granting slice reservations and the SAC monitors usage of assigned bandwidth when

checking configuration commands from slice entities. Through experimentation, we have verified

that the bandwidth partitions assigned to the various entities sharing the switch are enforced.

5.3.3 Slice Administration Controller (SAC)

The purpose of the SAC is to enforce that the instantiation of slices by entities is within the bounds

the slice scheduler has assigned. In other words, the SAC makes sure an entity does not attempt to

manipulate resources that have not been assigned to it by the slice scheduler. As shown in Fig. 5.1,

the SAC reads the configuration database, updated by the slice scheduler, to discover the resources

to which each entity has access in each time interval. The SAC then checks commands issued

from each entity. It screens each command to verify that it only requires operations on resources

allocated to the slice granted to the corresponding command-issuing entity, and then passes on

approved commands to the Ethernet switch. Responses are relayed from the switch back to the

entity.

Chapter 5. On Virtualizing Ethernet Switches 83

A slice allocation for a given time interval is represented as follows: (R,B,P,V), where (R =

re
l ,1 ≤ l ≤ L,e ∈ E) is the set of requested rates on all the links of the switch, E is the set of entities,

and L is the number of links (interfaces) on the switch. Similarly, the set of requested buffer sizers

on all the links is represented by (B = be
l ,1 ≤ l ≤ L,e ∈ E). Sets P and V represent the set of class

identifiers, and the set of VLAN IDs, respectively.

Slices allocated in a given time interval, T , will be assigned resources such that:



Pi ∩P j = /0,1 ≤ i, j ≤ |ET |,

Vi ∩V j = /0,1 ≤ i, j ≤ |ET |,

∑e∈ET re
l =Cl,1 ≤ l ≤ L,

∑e∈ET be
l = Bl,1 ≤ l ≤ L

(5.1)

where ET ⊆ E presents the set of entities that requested slices in a given time interval, T, i ̸= j, and

Cl and Bl are the capacity of and buffer size associated with link l, respectively.

We show an example of slice allocations for one time interval in Table 5.1. In this example,

two entities are sharing this switch and the switch has four links. In Table 5.1, since QoS functions

can be applied to either classes or VLANs, but not both, the slice scheduler pre-determined that

Link1 and Link3 will operate in class mode, and Link2 and Link4 will operate in VLAN mode.

This determination can be changed for every time interval based on the received requests. If, for

example, P1 = {0,1,2,3}, and P2 = /0, the empty set, it means that entity 1 can issue rate limiting

and rate policing commands for interfaces Link1 and Link3 for classes {0,1,2,3}. By not specifying

classes for entity 2 (since P2 = /0), we know that its allocations r2
1 = 0 and r2

3 = 0. If an entity wants

the full rate of a link, e.g., r1
1 = c1, where c1 is the capacity of link 1, then it must indicate a

priority class value for this link. The Force10 supports a command for setting a priority value for

all frames arriving on a given interface. Thus, in our example, entity 1 can issue this command

to have the switch mark all frames entering Link1 with one of its four assigned priority classes

before transmission. VLAN IDs are handled similarly. For example, V1 = {101−200} and V2 =

{201−300}. In this case, both entities would have non-zero rate/buffer tuples for Link2 and Link4.

Let us consider an example of how the SAC handles a command from an entity. Rate polic-

Chapter 5. On Virtualizing Ethernet Switches 84

Table 5.1: Configuration database for one time interval

Class-mode VLAN-mode
Entity Link1 Link3 Link2 Link4 P V

1 r1
1,b

1
1 r1

3,b
1
3 r1

2,b
1
2 r1

4,b
1
4 P1 V1

2 r2
1,b

2
1 r2

3,b
2
3 r2

2,b
2
2 r2

4,b
2
4 P2 V2

ing/limiting QoS commands specify a Committed Information Rate (CIR), and optionally Commit-

ted Burst Size (CBS), corresponding to the committed rate and committed burst size for a VLAN

or a class. These commands are issued in “interface” mode, which means they apply to a specific

interface. Let us represent such a command from entity e as (e:l,v,cir,cbr), where l identifies the

interface, v, the VLAN ID, cir, the CIR value, and cbs, the CBS value. The SAC maintains a table

of aggregate rates already assigned by each entity to VLANs and/or classes for all the links on

the switch. We represent the aggregate rate assigned to already-configured VLANs by entity e on

a VLAN-mode link l as Ae
l . We use the symbol De

l to represent the already-assigned total buffer

space on link l by entity e. Upon receiving the command, the SAC first checks that link l is set to

be shared in VLAN mode at this time interval. If it passes this test, it then subjects the command

parameters to the following tests:

v ∈ Ve,cir ≤ re
l −Ae

l ,cbs ≤ be
l −De

l (5.2)

If these conditions are met, the SAC allows the command to be sent through to the switch. If not,

the command is rejected.

5.4 Implementation and Measurements

We implemented the SAC software component of our virtualization architecture. In this section, we

first describe design points, then the implementation of the SAC software component, and finally

present our measurements of how much overhead the SAC introduces.

This case study proceeds from our initial motivation of virtualizing the common infrastructure

Chapter 5. On Virtualizing Ethernet Switches 85

of Force10 Ethernet switches in the HOPI testbed to enable concurrent control-plane instances to

coexist. Specifically, this scenario involves using VLANs and rate policing/limiting for data-plane

virtualization, no changes to the control plane, and an external program to virtualize a small set of

administrative functions.

5.4.1 SAC Design

We now discuss some design criteria for the SAC. There were five distinct design goals relating to

the SAC: resource control, transparency, security, performance, and reliability.

5.4.1.1 Resource control

The primary function of the SAC is as described in Section 5.3.3, to control access to switch re-

sources. The SAC implementation must, of course, support this function.

5.4.1.2 Access Transparency

An entity is not generally aware that it is issuing commands to the SAC instead of to the switch

directly. The SAC provides access transparency as opposed to content transparency. Full content

transparency is not provided. By limiting the transparency, we can give an entity the illusion of a

fully functional switch over which it has full control, rather than a shared switch over which it can

only control some resources.

5.4.1.3 Security

The SAC software module serves as a intermediary between entities and the switch as shown in

Fig. 5.1, therefore communication into and out of the SAC must be secure. Access control to the

SAC is limited only to authorized entities. The SAC holds the sole (with the exception of the switch

owner) login to the switch. The resource control functions of the SAC provide a measure of security

against unauthorized manipulation of resources at the switch. A compromised entity will be unable

to effect other entities’ experiments or any resources segmented off for production use.

Chapter 5. On Virtualizing Ethernet Switches 86

5.4.1.4 Performance

With the motivation of accommodating multiple control-plane software solutions that may be issu-

ing commands to the SAC at a relatively high rate (compared to a human user), we have a goal of

not paying too high a performance cost in terms of added delay in command processing. The SAC

performs as little processing on incoming commands as possible and delivers return information

from the switch without alteration or any processing at all, in order to keep the SAC from creating

too much overhead.

5.4.1.5 Reliability

The SAC and the switch could potentially crash or be administratively reset. This introduces a risk

of the SAC becoming out of synchronization with the state of the switch. In order to provide reliable

enforcing of resource sets, upon initialization the SAC discovers the current state of resources by

querying the switch.

5.4.2 Implementation

5.4.2.1 Setup

The SAC is an application which is executed in lieu of a entity’s shell in a Linux environment. A

typical entry in /etc/passwd might end with :/bin/bash, so that upon login an instance of the bash

shell is instantiated to receive commands from the entity. Instead, to use the SAC, the entry for an

account ends with :/home/account/vr. Each entity that requires access to a switch is assigned its

own separate account on a Linux machine. This scheme accomplishes several goals:

1. account management is performed on the Linux machine using the familiar account cre-

ation/deletion mechanisms

2. since each entity has its own account, each entity’s resource set can be enumerated in a config-

uration file which resides in that account’s home directory such as :/home/account/vr config

3. secure authentication is handled by the Linux system

Chapter 5. On Virtualizing Ethernet Switches 87

4. with the shell effectively replaced by the SAC, no access to the Linux system is granted to

the entity

Each entity’s vr config file is defined by the administrator and stored in that entity’s home direc-

tory. Upon instantiation, the SAC initializes the appropriate resource set for that entity by reading

in the values from vr config. These values would be obtained from the database shown in Fig. 5.1

if the complete virtualization architecture was implemented.

5.4.2.2 Operation

Once an entity has logged in to the Linux machine, and the SAC has initialized its values, according

to Section 5.4.2.1, the SAC securely connects to the switch using SSH2. The prompt (e.g., LOSA-

Force10#) returned upon login to the switch is immediately passed to the entity by the SAC, so the

entity is transparently presented with the command prompt from the switch upon logging into the

Linux machine. The entity then issues commands which are terminated at the SAC. All commands

issued from the entity, which deal with resources, are parsed and checked against the resource set

in order to verify that the resource is able to be manipulated by the entity. If the command is

acceptable (i.e., the resource specified in the command is contained in the entity’s resource set),

then the command is passed to the switch unchanged. If, however, the resource specified in the

command is not in the entity’s resource set, then the SAC prints an error message (e.g., % Error:

Permission Denied for VLAN xx) and sends a single new-line character to the switch to cause a

command prompt to be returned, which is then passed to the user.

5.4.2.3 Security

Security between the SAC and both the entities and switch is provided by SSH2 in our implementa-

tion. Specifically, the libssh2 [112] library is integrated into the SAC. In general, security between

the entity and the Linux machine is dependent on which methods the administrator allows, though

SSH2 is desired. Upon instantiation, the SAC attempts to connect using the SSH2 protocol to the

switch with username/password authentication.

Chapter 5. On Virtualizing Ethernet Switches 88

Table 5.2: Delay for various commands

(ms) (ms) (%)
COMMAND Direct SAC Overhead
show vlan id 111.7 140.8 26%
configure 71.7 73.8 3%
interface gi allowed 75.9 84.5 11%
interface gi denied N/A 55.5 N/A
exit from if-gi to conf 57.3 64.6 13%
interface VLAN allowed 85.1 105.8 24%
interface VLAN denied N/A 55.6 N/A
exit from VLAN to conf 57.1 66.8 17%
show config in conf-if 105.7 127.0 20%
rate limit allowed 135.0 142.5 6%
rate limit rate denied N/A 51.5 N/A
rate limit VLAN denied N/A 54.9 N/A
no rate limit 148.5 158.8 7%

5.4.3 Measurements

We gathered measurements, presented in Table 5.2, to discover the level of overhead from issuing

commands through the SAC. Since the research entities we were supporting with the SAC could

potentially be issuing commands at relatively high rates, the SAC should not introduce unacceptably

high delay for processing commands. The column marked Direct contains the delay for processing

commands issued directly to the switch, not through the SAC. The column SAC shows delay for

commands which were issued to the SAC. Entries in the table marked “N/A” are not applicable

since they correspond to functions where the SAC checks commands against a resource set, and

this does not apply to a direct login session. Overall, the delay is acceptable relative to the research

projects for which we designed the SAC.

5.5 Conclusions

We proposed a technique for virtualizing an off-the-shelf Ethernet switch, with built-in capabilities

for isolating bandwidth partitions on its data-plane interfaces, using external software. Such virtual-

Chapter 5. On Virtualizing Ethernet Switches 89

ization would enable the sharing of a physical switch by multiple, concurrent research experiments,

with each experiment being assigned its own logical switch. Even without the ability to download

code into the switches (i.e., programmability), many experiments can be conducted by offering re-

searchers the ability to configure logical switch operation through a shared access to the switch’s

administrative command-line interface (CLI). We demonstrated our approach by implementing a

Slice Administration Controller that enables shared, but policed, access of the CLI, for the Force10

E600 system, configured as a Layer-2 (Ethernet) switch.

Chapter 6

Conclusions and Future Work

In his chapter we summarize the dissertation, and discuss future work that could be done to extend

this research.

6.1 Conclusions

We have studied connection-oriented service with fairness-considering advance-reservation

scheduling on circuit-switched and packet-switched infrastructures. The work is divided into a

theoretical component and an experimental component. Chapters 3 and 2 deal with the theoret-

ical component, in which we studied advance-reservation scheduling, and compared reservation

systems to queueing systems.

A fairness-considering advance-reservation system was presented in Chapter 3. The scheduling

algorithm applies to any bin packing problem or advance-reservation scenario where a flexible

class boundary is allowed. We found that with more channels in a bin and an increased number

of bins, the larger system affords the optimization a greater opportunity to enforce fairness, but the

cost is a higher mean response time. The system has difficultly ensuring fairness when the per-

channel loads are lower, as there are fewer possible choices for the algorithm to make. It enforces

fairness quite well at higher loads, and the fairness can be relaxed by a tunable variable to achieve

lower mean response time by decreasing the fairness. Finally, the algorithm is compared to a

non-optimizing first-come first-served algorithm to illustrate the performance tradeoff incurred in

90

Chapter 6. Conclusions and Future Work 91

achieving fairness.

In Chapter 2, a general reservation system model (GRSM) was shown as a way to uniformly

express the key set of characteristics common to all reservation systems. Several examples of reser-

vation systems and queueing systems were used to illustrate the variations on those characteristics,

such as whether a customer wants the first available timeslot or wants to specify a timeslot. This

work answers the important question of when to use a reservation system instead of a queueing

system, as determined by a consideration of revenues (considering load), costs (including servers),

and competition. Finally, we provided five distinct solutions for simplified models drawn from the

GRSM under more certain sets of assumptions into which the example systems could be divided,

showing the influence of such factors as reservation window size and server vacations.

Chapters 4 and 5 comprise the experimental component, in which we studied the data-plane

considerations of providing connection-oriented service, and the issue of creating connection-

oriented service on a packet-switched infrastructure.

Chapter 4 detailed the interactions between TCP congestion control algorithms, data-link layer

flow control algorithms, and switch buffering. These interactions are observed using a new tool

called BWdetail. The behavior of three variants of TCP: Reno, BIC, and CTCP, are observed across

an Ethernet-SONET mismatched-rate circuit. These types of circuits will increasingly be used

across the newly deployed dynamic circuit networks in research-and-education networks, such as

Internet2 and ESnet4, and in commercial bandwidth-on-demand services. As there is a circuit pro-

visioning phase, this phase can be used to obtain parameters such as end-to-end propagation delay.

Using these values and the circuit rate, flow-control parameters such as the Pause ON and Pause

OFF thresholds should be set within the circuit switches in the provisioning phase. Furthermore,

in addition to tuning TCP send and receive buffer sizes, Ethernet-layer output queue length should

be configured at the end hosts on a per-circuit basis. Such configurations are critical to exploiting

the full transmission rate allocated to the circuit to achieve better performance (lower file transfer

delays).

Finally, in Chapter 5 we proposed a technique for virtualizing an off-the-shelf Ethernet switch,

with built-in capabilities for isolating bandwidth partitions on its data-plane interfaces, using ex-

Chapter 6. Conclusions and Future Work 92

ternal software. This includes a slice scheduler that acts as a reservation scheduler. In this way, a

single physical switch can be divided into multiple logical switches. This allows a logical switch to

be configured by control-plane software without exposing the entire packet-switched infrastructure.

6.2 Future Work

We discuss the following as possible extensions to this work:

1. The fairness-considering multi-class reservation system is designed for a single link. The

system could be extended to consider multiple links. Domain administrators do not typically

share full topology, so a multiple link treatment could include the concept of distributed

scheduling.

2. The various reservation systems we investigated have a considerable component of human

behavior that is difficult to quantify. Extensive field study and polling to characterize con-

sumer behavior would allow more fine-tuned analyses of the different systems considered.

Further, many assumptions were made for model tractability that could be removed and re-

placed with complex representations in terms of capturing the nuances of human decision

making.

3. Just as we performed an in-depth study for circuits, a similar study would be necessary to

understand virtual circuits in terms of the policing and shaping mechanisms used to pro-

vide connection-oriented service on packet-switched infrastructures. Likewise, extending on

CTCP as a transport protocol for circuits could result in one specifically designed for virtual

circuits.

Bibliography

[1] C. Guok, D. Robertson, E. Chaniotakis, M. Thompson, W. Johnston, and B. Tierney, “A

User Driven Dynamic Circuit Network Implementation,” in Proceedings of the Distributed

Autonomous Network Magagement Systems Workshop, New Orleans, LA, Nov 2008.

[2] V. Jacobson, “Congestion Avoidance and Control,” in Proceedings of SIGCOMM, Stanford,

CA, Aug. 1988.

[3] On-demand secure circuits and advance reservation system. [Online]. Available:

http://www.es.net/oscars/index.html

[4] Dynamic Resource Allocation via GMPLS Optical Networks (DRAGON). [Online].

Available: http://dragon.maxgigapop.net/

[5] Internet2 ION. [Online]. Available: http://www.internet2.edu/ion/

[6] X. Zhu, “A study of bandwidth-sharing mechanisms in connection-oriented networks,” Ph.D.

dissertation, University of Virginia, Virginia, Feb. 2008.

[7] S. Kapodistria, “The m/m/1 queue with synchronized abandonments,” Queueing Systems,

vol. 68, pp. 79–109, 2011.

[8] S. Floyd, “HighSpeed TCP for large congestion windows,” Feb. 2003. [Online]. Available:

http://www.icir.org/floyd/hstcp.html

[9] A. P. Mudambi, X. Zheng, and M. Veeraraghavan, “A Transport Protocol for Dedicated End-

to-End Circuits,” in Proc. of IEEE ICC 2006, Istanbul, Turkey, Jun. 2006.

93

Bibliography 94

[10] OpenFlow. [Online]. Available: https://www.opennetworking.org/index.php

[11] M. McGinley, X. Zhu, and M. Veeraraghavan, “On Reservations Systems and Queueing

Systems,” Submitted to Manufacturing and Service Operations Management, 2011.

[12] M. McGinley and M. Veeraraghavan, “Fairness in Multi-Class Book-Ahead Scheduling,”

Submitted to IEEE Transactions Networking, 2011.

[13] M. McGinley, H. Bhuiyan, T. Li, and M. Veeraraghavan, “An in-depth cross-layer experi-

mental study of transport protocols over circuits,” in Proc. of IEEE ICCCN 2010, Zurich,

Switzerland, Aug. 2010.

[14] M. E. McGinley, T. Li, and M. Veeraraghavan, “On Virtualizing Ethernet Switches,” in Proc.

of IEEE ICCCN 2008, St. Thomas, USVI, Aug 2008.

[15] M. Hovestadt, O. Kao, A. Keller1, and A. Streit1, “Scheduling in HPC resource management

systems: Queuing vs. planning,” in Book Series: Lecture Notes in Computer Science, Job

Scheduling Strategies for Parallel Processing, vol. 2862. Springer Berlin, Heidelberg, 2003,

pp. 1–20.

[16] L. Abeni and G. Buttazzo, “Resource reservation in dynamic real-time systems,” Journal of

Real-Time Systems, Springer, Netherlands, vol. 27, no. 2.

[17] D. G. Kendall, “Stochastic Processes Occurring in the Theory of Queues and their Analysis

by the Method of the Imbedded Markov Chain,” The Annals of Mathematical Statistics,

vol. 24, no. 3, pp. 338–354, 1953.

[18] W. E. Johnston. Networking for the Future of DOE Science. [Online]. Available: http://www.

es.net/ESnet4/ESnet4-Networking-for-the-Future-of-Science-2008-02-09-FORTH-Crete.

ppt

[19] L. Kleinrock, Queueing Systems Volume 1: Theory, 1st ed. Wiley, John and Sons, Incorpo-

rated, 1975.

Bibliography 95

[20] M. Schwartz, Telecommunication networks: protocols, modeling and analysis. Boston,

MA: Addison-Wesley, 1986.

[21] X. Zhu, M. E. McGinley, T. Li, and M. Veeraraghavan, “An Analytical Model for a Book-

ahead Bandwidth Scheduler,” in Proc. of IEEE Globecom’07, Washington, DC, Nov. 2007.

[22] X. Zhu and M. Veeraraghavan, “Analysis and Design of Book-ahead Bandwidth-Sharing

Mechanisms,” IEEE Transactions on Communications, vol. 56, no. 12, pp. 2156–2165, Dec.

2008.

[23] ESnet. [Online]. Available: http://www.es.net/

[24] CHEETAH. [Online]. Available: http://www.ece.virginia.edu/cheetah/

[25] X. Fang and M. Veeraraghavan, “On using circuit-switched networks for file transfers,” in

Proc. of IEEE Globecom, New Orleans, LA, Nov. 2008.

[26] X. Fang, M. Veeraraghavan, M. E. McGinley, and R. W. Gisiger, “An overlay approach

for enabling access to dynamically shared backbone GMPLS networks,” in IEEE ICCCN,

Honolulu, Hawaii, Aug 2007.

[27] A. Banerjee, N. Singhal, J. Zhang, D. Ghosal, C.-N. Chuah, and B. Mukherjee, “A Time-Path

Scheduling Problem (TPSP) for Aggregating Large Data Files from Distributed Databases

using an Optical Burst-Switched Network,” in Proc. of IEEE ICC 2004, Paris, France, Jun.

2004.

[28] N. Boudriga, M. Obaidat, M. Cherif, and S. Guemara-EIFatmi, “An Advance Dynamic Re-

source Reservation Algorithm for OBS Networks: Design and Performance,” in Proc. of

IEEE ICECS 2005, 2005, pp. 1–4.

[29] L.-O. Burchard, “On the Performance of Computer Networks with Advance Reservation

Mechanisms,” in Proc. of the 11th International Conference on Networks, Sydney, Australia,

2003.

Bibliography 96

[30] C. Castillo, G. N. Rouskas, and K. Harfoush, “On The Design of Online Scheduling Algo-

rithms for Advance Reservations and QoS in Grids,” in Proc. of IEEE IPDPS 2007, Long

Beach, California, Mar. 2007.

[31] E. G. Coffman, P. Jelenkovic, and B. Poonen, “Reservation Probabilities,” Advances in Per-

formance Analysis, vol. 2, no. 2, pp. 129–158, 1999.

[32] T. Erlebach, “Call Admission Control for Advance Reservation Requests with Alternatives,”

in Proceedings of the 3rd Workshop on Approximation and Randomization Algorithms in

Communication Networks, Rome, Italy, Sep 2002, pp. 51–64.

[33] D. Ferrari, A. Gupta, and G. Ventre, “Distributed advance reservation of real-time connec-

tions,” in Proc. of the Fifth International Workshop on Network and Operating System Sup-

port for Digital Audio and Video, Durham, NH, Apr. 1995.

[34] C. Curti, T. Ferrari, L. Gommans, B. van Oudenaarde, E. Ronchieri, F. Giacomini, and

C. Vistoli, “On Advance Reservation of Heterogeneous Network Paths,” Future Generation

Computer Systems Journal, vol. 21, no. 4, pp. 525–538, 2005.

[35] S. Figueira, N. Kaushik, S. Naiksatam, S. A. Chiappari, and N. Bhatnagar, “Advance Reser-

vation of Lightpaths in Optical Network Based Grids,” in ICST/IEEE GridNets 2004, San

Jose, CA, 2004.

[36] S. Figuerola, J. A. Garca, ngel Snchez, C. de Waal, and A. Willner, “The Network Service

Plane: An Approach for Inter-Domain Network Reservations,” in Proc. of IEEE ICOTN

2008, Athens, Greece, 2008.

[37] A. G. Greenberg, R. Srikant, and W. Whitt, “Resource Sharing for Book-Ahead and

Instantaneous-Request Calls,” IEEE/ACM Trans. Netw., vol. 7, no. 1, pp. 10–22, 1999.

[38] R. Guérin and A. Orda, “Networks with Advance Reservations: The Routing Perspective,”

in Proc. of IEEE INFOCOM, Tel Aviv, Israel, 2000.

Bibliography 97

[39] M. Hayashi, T. Miyamoto, and H. Tanaka, “Advance reservation-based network resource

manager with adaptive path discovery scheme for SOA-based networking,” in Proc. of IEEE

OFC/NFOEC 2007, Anaheim, CA, 2008.

[40] R. Hayashi, K. Shimizu, I. Inoue, and K. Shiomoto, “Novel Traffic Engineering for Reserva-

tion Services Network,” in 7th Asia-Pacific Symposium on Information and Telecommunica-

tion Technologies, 2008, Bandos Island, Maldives, 2008.

[41] E. He, X. Wang, and J. Leigh, “A Flexible Advance Reservation Model for Multi-Domain

WDM Optical Networks,” in Proc. of BROADNETS 2006, San Jose, CA, 2006.

[42] E. He, X. Wang, V. Vishwanath, and J. Leigh, “AR-PIN/PDC: Flexible Advance Reserva-

tion of Intradomain and Interdomain Lightpaths,” in Proc. of IEEE Globecom 2006, San

Francisco, CA, 2006.

[43] D. Hetzer, I. Miloucheva, and K. Jonas, “Resource Reservation in Advance for Content On-

demand Services,” in Proc. of IEEE Networks 2006, New Delhi, India, 2006.

[44] A. Jaekel, “Lightpath Scheduling and Allocation Under a Flexible Scheduled Traffic Model,”

in Proc. of IEEE Globecom 2006, San Francisco, CA, 2006.

[45] A. Kaheel and H. Alnuweiri, “Batch Scheduling Algorithms: A Class of Wavelength Sched-

ulers in Optical Burst Switching Networks,” in Proc. of IEEE ICC 2005, Seoul, Korea, 2005.

[46] J. S. Kaufman, “Blocking in a Shared Resource Environment,” IEEE Transactions on Net-

working, vol. 29, no. 10, pp. 1474–1481, 1981.

[47] N. R. Kaushik and S. M. Figueira, “A Dynamically Adaptive Hybrid Algorithm for Schedul-

ing Lightpaths in Lambda-Grids,” in Proc. of IEEE/ACM CCGRID/GAN 2005, Cardiff, UK,

2005.

[48] N. R. Kaushik, S. M. Figueira, and S. Chiappari, “Flexible Time-Windows for Advance

Reservation Scheduling,” in Proc. of IEEE MASCOTS 2006, Monterey, California, 2006.

Bibliography 98

[49] K. Kim and K. Nahrstedt, “A Resource Broker Model with Integrated Reservation Scheme,”

in Proc. of IEEE ICME 2000, New York, NY, 2000.

[50] D. Kuo and M. Mckeown, “Advance Reservation and Co-Allocation Protocol for Grid Com-

puting,” in Proc. of the First International Conference on e-Science and Grid Computing,

2005, Melbourne, Australia, 2005.

[51] B. Li, J. Chen, and D. Zhao, “Looking-ahead Algorithms for Single Machine Schedulers to

Support Advance Reservation of Grid Jobs,” in Proc. of IEEE HPCC 2008, Dalian, China,

2008.

[52] H. R. Moaddeli, G. Dastghaibyfard, and M. R. Moosavi, “Flexible Advance Reservation

Impact on Backfilling Scheduling Strategies,” in Proc. of IEEE GCC 2008, Shenzhen, China,

2008.

[53] M. A. S. Netto and R. Buyya, “Rescheduling Co-Allocation Requests based on Flexible Ad-

vance Reservations and Processor Remapping,” in Proc. of IEEE/ACM Grid 2008, Tsukuba,

Japan, 2008.

[54] S. Norden and J. Turner, “DRES: Network Resource Management using Deferred Reserva-

tions,” in Proc. of IEEE Globecom 2001, San Antonio, Texas, 2001.

[55] M. Degermark, T. Khler, S. Pink, and O. Schelen, “Advance Reservations for Predictive

Service in the Internet,” ACM/Springer Journal of Multimedia Systems, vol. 5, no. 3, pp.

177–186, 1997.

[56] O. Schelen and S. Pink, “An Agent-based Architecture for Advance Reservations,” in Proc.

of 22nd IEEE Conference on Local Computer Networks, Minneapolis, Minnesota, 1997.

[57] ——, “Resource sharing in advance reservation agents,” Journal of High Speed Networks,

Special issue on Multimedia Networking, vol. 7, no. 3, 1998.

[58] K. Rajah, S. Ranka, and Y. Xia, “Advance Reservation and Scheduling for Bulk Transfers in

Research Networks,” IEEE Transactions on Parallel and Distributed Systems, to appear.

Bibliography 99

[59] W. Reinhardt, “Advance Reservation of Network Resources for Multimedia Applications,”

in Proceedings of the International Workshop on Advanced Teleservices and High-Speed

Communication Architectures (IWACA), Heidelberg, Germany, 1994.

[60] E. Schill, S. Khn, and F. Breiter, “Resource Reservation in Advance in Heterogeneous Net-

works with Partial ATM Infrastructures,” in Proc. of IEEE INFOCOM, 1997, pp. 612–619.

[61] S. Schmidt and J. Kunegis, “Scalable Bandwidth Optimization in Advance Reservation Net-

works,” in Proc. of IEEE ICON 2007, Nov. 2007, pp. 95–100.

[62] W. Smith, I. Foster, and V. Taylor, “Scheduling with Advanced Reservations,” in Proc. of

IPDPS 2000, Cancun, Mexico, 2000.

[63] C.-N. Chuah, L. Subramanian, R. H. Katz, and A. D. Joseph, “QoS Provisioning using a

Clearing House Architecture,” in Proc. of IWQOS 2000, Pittsburgh, PA, 2000.

[64] S. Tanwir, L. Battestilli, H. Perros, and G. Karmous-Edwards, “Dynamic Scheduling of Net-

work Resources with Advance Reservations in Optical Grids,” Int. J. Netw. Manag., vol. 18,

no. 2, pp. 79–105, 2008.

[65] J. Ni, D. H. Tsang, S. Tatikonda, and B. Bensaou, “Optimal and Structured Call Admission

Control Policies for Resource-Sharing Systems,” IEEE Transactions on Communications,

vol. 55, no. 1, pp. 158–170, 2007.

[66] H. Lee, M. Veeraraghavan, H. Li, and E. K. P. Chong, “Lambda scheduling algorithm for file

transfers on high-speed optical circuits,” in Proc. of IEEE CCGrid 2004, Chicago, IL, 2004.

[67] J. T. Virtamo, “A Model of Reservation Systems,” IEEE Transactions on Communications,

vol. 40, pp. 109–118, 1992.

[68] T. D. Wallace and A. Shami, “Connection Management Algorithm for Advance Lightpath

Reservation in WDM Networks,” in Proc. of BROADNETS 2007, Raleigh, NC, 2007.

Bibliography 100

[69] T. Wallace, A. Shami, and C. Assi, “Scheduling advance reservation requests for wavelength

division multiplexed networks with static traffic demands,” IET Communications, vol. 2, pp.

1023–1033, 2008.

[70] P. Wieder, O. Waldrich, and W. Ziegler, “Advanced Techniques for Scheduling, Reservation,

and Access Management for Remote Laboratories,” in Proc. of the Second International

Conference on e-Science and Grid Computing, 2006, Amsterdam, Netherlands, 2006.

[71] L. C. Wolf and R. Steinmetz, “Concepts for Resource Reservation in Advance,” Multimedia

Tools Appl., vol. 4, no. 3, pp. 255–278, 1997.

[72] L. Wu, C. Wu, J. Cui, and J. Xing, “An Adaptive Advance Reservation Mechanism for Grid

Computing,” in Proc. of PDCAT 2005, Dalian, China, 2005.

[73] J. Yin, Y. Wang, M. Hu, and C. Wu, “Predictive Admission Control Algorithm for Advance

Reservation in Equipment Grid,” in Proc. of the IEEE International Conference on Services

Computing (SCC), Honolulu, Hawaii, 2008.

[74] J. Zheng and H. T. Mouftah, “A Framework for Supporting Advance Reservation Service in

GMPLS-based WDM Networks,” in Proc. of PACRIM 2003, Victoria, B.C., Canada, 2003.

[75] ——, “Routing and Wavelength Assignment for Advance Reservation in Wavelength-

Routed WDM Optical Networks,” in Proc. of ICC 2002, New York, NY, 2002.

[76] ——, “Supporting Advance Reservations in Wavelength-Routed WDM Networks,” in Proc.

of ICCCN 2001, Scottsdale, Arizona, 2001.

[77] J. Zheng, B. Zhang, and H. T. Mouftah, “Toward Automated Provisioning of Advance

Reservation Service in Next-Generation Optical Internet,” IEEE Communications Magazine,

vol. 44, no. 12, pp. 68–74, 2006.

[78] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure Of Fairness And Discrimination

For Resource Allocation In Shared Computer Systems,” DEC Research Report TR-301, Sep.

1984.

Bibliography 101

[79] LHC - Large Hadgron Collider. [Online]. Available: http://lhc.web.cern.ch/lhc/

[80] Internet2 Network. [Online]. Available: http://www.internet2.edu/network/

[81] ESnet. [Online]. Available: http://www.es.net/

[82] FrameNet: Ethernet-Based Services; Sherpa VLAN Configuration Tool. [Online]. Available:

http://www.nlr.net/framenet.php

[83] GEANT2 AutoBAHN. [Online]. Available: http://www.geant2.net/server/show/nav.756

[84] JGN2plus services. [Online]. Available: http://www.jgn.nict.go.jp/english/about us/service.

html

[85] User-controlled lightpaths (UCLP). [Online]. Available: http://www.canarie.ca/canet4/uclp/

[86] Internet2 DNC Software Suite. [Online]. Available: https://wiki.internet2.edu/confluence/

display/DCNSS/Home

[87] T. Armstrong and S. S. Gorshe, Eds., IEEE Commun. Mag., Special issue on Generic Fram-

ing Procedure (GFP) and Data over SONET/SDH and OTN, vol. 40, no. 5, May 2002.

[88] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the performance of TCP pacing,”

in Proceedings of the 2000 IEEE INFOCOM Conference, Tel-Aviv, Israel, Mar 2000.

[89] D. D. Clark, M. L. Lambert, and L. Zhang, “NETBLT: A Bulk Data Transfer Protocol,” IETF

RFC 998, Mar. 1987.

[90] Y. Gu and R. L. Grossman, “UDT: An application level transport protocol for grid comput-

ing.” 2nd International Workshop on Protocols for Long-Distance Networks PFLDNet, Feb.

2005.

[91] A. Banerjee, W. Feng, B. Mukherjee, and D. Ghosal, “RAPID: An end-system aware pro-

tocol for intelligent data transfer over lambda-grids.” in Proceedings of 20th International

Parallel and Distributed Processing Symposium (IPDPS 2006), Rhode Island, Greece, 2006.

Bibliography 102

[92] C. Jin, D. X. Wei, and S. H. Low, “Fast tcp: Motivation, architecture, algorithms, perfor-

mance,” in Proceedings of IEEE INFOCOM, Mar. 2004.

[93] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” IETF RFC 2581, Apr.

1999.

[94] X. Zheng and M. Veeraraghavan. CHEETAH end-host software design document. [Online].

Available: http://cheetah.cs.virginia.edu/software/software-document.pdf

[95] Iperf. [Online]. Available: http://sourceforge.net/projects/iperf

[96] Global Environment for Network Innovations (GENI). [Online]. Available: http:

//www.geni.net/

[97] The VMware Website. [Online]. Available: http://www.wmware.com

[98] Microsoft Virtual Server. [Online]. Available: http://www.microsoft.com/

windowsserversystem/virtualserver

[99] Xen. [Online]. Available: http://xen.xensource.com

[100] PlanetLab. [Online]. Available: http://www.planet-lab.org

[101] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI Veritas: Realis-

tic and Controlled Network Experimentation,” in SIGCOMM ’06: Proceedings of the 2006

conference on Applications, technologies, architectures, and protocols for computer commu-

nications. New York, NY, USA: ACM Press, 2006, pp. 3–14.

[102] J. Turner. A proposed architecture for the GENI backbone platform. [Online]. Available:

http://www.geni.net/GDD/GDD-06-09.pdf

[103] The Hybrid Optical and Packet Infrastructure Project (HOPI). [Online]. Available:

http://networks.internet2.edu/hopi/

[104] XORP Open Source IP Router. [Online]. Available: http://xorp.org

Bibliography 103

[105] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click modular router,”

ACM Transactions on Computer Systems, vol. 18, no. 3, pp. 263–297, 2000. [Online].

Available: http://citeseer.ist.psu.edu/article/kohler00click.html

[106] Internet2 Network NOC, Global NOC Software Distribution. [Online]. Available:

http://noc.net.internet2.edu/i2network/grnoc-tool-set.html

[107] Tools for Bandwidth Estimation. [Online]. Available: http://www.icir.org/models/tools.html

[108] Cisco VFrame Data Center 1.1. [Online]. Available: http://www.cisco.com/en/US/products/

ps8463/index.html

[109] M. Kolon, “Intelligent logical router service,” White Paper, Juniper. [Online]. Available:

http://www.juniper.net/solutions/literature/white\ papers/200097.pdf

[110] “Cisco XR 12000 series service separation architecture tests,” White Paper, EANTC, May

2005. [Online]. Available: http://www.eantc.de/fileadmin/eantc/downloads/test\ reports/

2003-2005/EANTC-Summary-Report-Cisco-12kXR.FINAL.pdf

[111] J. Heinanen and R. Guerin, “A two rate three color marker,” RFC 2698, Sep. 1999.

[112] libssh2. [Online]. Available: http://www.libssh2.org

