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Data-Driven Scalable AI for Addressing Problems in the Study
of Smart Grids

Swapna Thorve

(ABSTRACT)

The wave of grid modernization and climate change is rapidly changing the landscape

of residential energy demands. For example, hotter summers suggest increased use of

A/C units, use of electric vehicles implies increased energy demands and use of rooftop

solar indicates local generation. A central question thus is to understand how energy

is consumed at granular social, spatial, and temporal resolutions. Such an under-

standing can lead to better solutions to demand-response events, study the diffusion

process of solar adoption, predict household-level energy use, or analyze the impacts

of weather. In order to answer these social impact questions, several ‘Modeling &

Simulation’ solutions are appearing in the literature at a noteworthy rate. However,

we observe some critical problems that still need to be addressed, especially in the

areas data quality, robust and scalable energy modeling infrastructure, and effective

analysis tools for complex behavior simulations. Due to these drawbacks, many public

policies and social impact questions requiring detailed data and knowledge of the do-

main remain unexplored. To facilitate large-scale analytics, personalized (or detailed)

energy policy recommendations, and solve social impact questions, I address these re-

search gaps in my dissertation. First, I resolve the data & infrastructure problem by

generating a digital twin of residential disaggregated energy use time series for U.S.

households. In order to generate this large data (approx. 30TB), I have designed a

scalable and extensible big-data pipeline infrastructure using a microservices-oriented
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architecture. To ensure the quality of the digital twin, this thesis contributes by

proposing novel validation metrics for the household-level energy time series. In the

second part of the dissertation, I propose the use of machine learning techniques and

agent-based models for solving fairness and sustainability questions in residential en-

ergy in two topics: (a) fairness in residential dynamic pricing; (b) comparison of solar

adoption models in rural and urban areas.
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Chapter 1

Introduction

Energy is considered one of the basic necessities in the modern day. In the last few

years, energy systems are becoming a major focus of many strategies to promote

environmental, economic, and social sustainability [76]. Some prominent examples

are switching to renewables and net-zero carbon for achieving both climate change

and air-quality targets. At the international platform, the significance of energy

sustainability, accessibility, & consumption is highlighted through at least 3 out of the

17 United Nations (UN) Sustainable Development Goals (SDG)1. Goal 7 is Affordable

and Clean Energy that is specifically devoted to energy and expresses the intent

– ‘Ensuring access to affordable, reliable, sustainable, and modern energy for all’.

Other relevant goals where energy will make a significant impact are – Goal 3 Good

health & well-being; Goal 11 Sustainable cities & communities; Goal 12 Responsible

consumption & production; and Goal 13 Climate Change. Improvement in residential

energy demand alone has a remarkable potential to affect all the energy-related goals

stated above.

Currently, residential energy comprises almost one-third of the total national annual

energy consumption for most countries. However, the wave of grid modernization and

climate change is rapidly changing the landscape of residential energy demands. For

example, hotter summers suggest increased use of A/C units, use of electric vehicles

1https://sdgs.un.org/goals

https://sdgs.un.org/goals
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implies increased energy demands and use of rooftop solar indicates local generation.

Figure 1.1(a) shows the breakdown of energy consumption in households in the U.S.

in 2015. (Source: EIA2).

(a) Household energy consumption in U.S. (b) Preference for energy efficiency

Figure 1.1: Landscape of residential energy demands and preferences towards energy
efficiency.

A substantial literature has shown that a significant part of energy use can be im-

proved by modifying occupant behavior and activity regimes, updating appliances,

building sustainable dwelling structures, and boosting awareness among people for

reducing energy footprint. Figure 1.1(b) shows that people are beginning to support

clean energy (Source: Park Associates3). There exists a massive pool of opportuni-

ties for boosting residential energy efficiency since numerous fields such as behavioral

science, urban science, electrical and mechanical engineering, environmental sciences,

economics, physics, computer science, building & construction engineering, and in-

dustrial engineering can provide expertise from different perspectives. Literature from

these domains has successfully tackled several aspects of complex residential energy

systems. With the increasing penetration of smart meters, renewable sources, elec-

tric vehicles, recent work-from-home options for occupants, and grid infrastructure

changes, the electric grid is constantly changing and is likely to experience instability.
2https://www.eia.gov/todayinenergy/detail.php?id=36412
3http://www.parksassociates.com/blog/article/building-the-path-for-net-zero-energy-homes

https://www.eia.gov/todayinenergy/detail.php?id=36412
http://www.parksassociates.com/blog/article/building-the-path-for-net-zero-energy-homes
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Artificial intelligence (AI) is rapidly gaining importance in the field of energy sys-

tems. In the residential energy sector, AI has found wide applicability, especially in

developing power network and demand profile digital twins, extracting patterns from

occupant energy use in households, predicting solar and EV adoption in a population,

forecasting energy demand for a household, designing economic incentives to optimize

energy demand profiles, and so on. Donti et al. [76] and Ponnusamy et al. [218] have

summarized some applications and future directions for employing AI and big-data

techniques in energy systems.

One of the important challenges identified for conducting residential energy research

using AI is the lack of sufficient data. The research community also faces a challenge

to develop robust, realistic, and reliable models on a large scale from which meaning-

ful solutions can be computed, without imposing strong or unrealistic assumptions.

One of the central questions is to understand how energy is consumed at granular

social, spatial, and temporal resolutions. Such an understanding can lead to better

solutions to demand-response events, study the diffusion process of solar adoption,

predict household-level energy use, or analyze the impacts of weather. In order to

answer these social impact questions, several ‘Modeling & Simulation’ solutions are

appearing in the literature at a noteworthy rate. However, multiple critical prob-

lems still remain open, especially in the areas of data quality and robust and scalable

energy modeling infrastructure. It is essential to address these challenges, in order

to answer sustainability and fairness questions in residential energy. Due to these

drawbacks, many public policies and social impact questions requiring detailed data

and knowledge of the domain remain unexplored. To facilitate large-scale analytics,

personalized (or detailed) energy policy recommendations, and solve social impact

questions, I address these research gaps in my dissertation.
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1.1 Problem Statement and Contributions

In this thesis, I seek to address the following question:

How can AI augment smart grid analytics at scale for studying social

impact problems in residential energy?

In pursuit of addressing this question, my key contributions are

1. a digital twin of residential disaggregated energy use time series at the household

level for the U.S. According to our knowledge, this is the first open-source

comprehensive synthetic residential energy use dataset that will be available to

a broader research community for analyses of the residential sector at a national

scale and household resolution for the U.S.;

2. a microservices inspired big-data pipeline modeling infrastructure for supporting

the generation of nationwide synthetic energy demand profiles comprised of

multi-layered data pipelines, machine learning & first principle models, and a

large number of disparate datasets. The conceptual approach of our pipelines

satisfies reproducibility, reusability, separation of concern, high maintainability,

and extensibility properties of efficient software design;

3. an improved validation metrics in terms of precision, recall, and coverage com-

puted using unsupervised learning techniques for evaluating fidelity and diver-

sity of the digital twin;

4. study two social impact problems in residential energy: (a) use active learning

to discern fairness boundaries in the dynamic pricing parameter space for LMI

(Low-to-moderate income) and non-LMI communities by modeling agent-based
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preferences & behavior change flexibility in response to changes in peak and

non-peak prices; (b) design a machine learning framework for comparing so-

lar adoption agent-based diffusion models in high-dimensional parameter space

by developing a methodology inspired by active learning and response surface

methodology to compare & explain the decision boundaries between high and

low adoptions in different geographical regions using characteristic distributions

and disagreement between model outcomes.

1.2 Chapter organization

• Chapter 2. This chapter describes a comprehensive data-driven AI framework

for modeling the digital twin of household-level energy demand by leveraging

synthetic populations. Energy consumption patterns are modeled in-depth for

a wide range of household activities (e.g. cooking, dishwashing) and passive

appliances (e.g. air conditioners). A data-driven first principles approach in

conjunction with machine learning and statistical models are used to generate

hourly disaggregated energy use profiles. An exhaustive number of datasets

are cured and incorporated into the data-intensive framework for modeling and

enriching household energy behaviors.

• Chapter 3. In this chapter, I develop a big data pipeline software framework

and implementation to support energy demand modeling in ways that are scal-

able and can harness high-performance computing infrastructure. This makes it

possible to generate a large-scale high-resolution dis-aggregated synthetic hourly

energy demand profile at the household level at a national scale (for the U.S.)

efficiently. The datasets are compiled and incorporated into the computational
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framework by building data pipelines in a multi-layer approach. This imparts

modularity, flexibility, and extensibility to the AI framework for simulating

intervention scenarios useful in the sustainable energy domain within a short

time thereby improving human productivity. Finally, I summarize the findings

of the framework scaling study to optimize memory, CPU, and runtime.

• Chapter 4. When synthetic data is applied in solving social impact questions

and/or inferring behaviors, it is crucial that the synthetic information is repre-

sentative of the actual data. An important task during the process of generating

good-quality synthetic data is robust validation. This chapter is dedicated to

comprehensive V&V of multiple facets of energy demand by considering ex-

ternal variables such as climate, and energy use behaviors as well as intrinsic

attributes of the energy demand such as load shape and magnitude. Apart

from traditional statistical metrics, I propose a 3-dimensional metric (precision

α, recall β, coverage γ) to describe the fidelity and diversity of the synthetic

data leveraging unsupervised learning techniques and hierarchy in the internal

structures of the synthetic data.

• Chapter 5. The significance of the digital twin is illustrated in solving impor-

tant social impact, policy, sustainability, and fairness questions in residential

energy. Apart from case studies presented throughout different chapters, I

study two specific examples in Chapters 6 and 7.

• Chapter 6. In chapter 6, I present a scalable methodology for comparing agent-

based models developed in the same domain (e.g. solar adoption) but may differ

in the data sets (e.g. geographic region) to which they are applied and in the

structure of the model. This is achieved by learning response surfaces and using

active learning to facilitate efficient comparisons of parameter spaces in high
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dimensions.

• Chapter 7. In chapter 7, we study fairness in residential dynamic pricing in

LMI (Low-to-moderate income) and non-LMI communities by using an active

learning framework and the disagreement metric to compare different fairness

scenarios. Two fairness criteria are described using monthly bills and peak-time

energy demand reduction. I design a detailed behavior change agent-based

model responsive to changes in the pricing schemes.

• Chapter 8. The ‘Conclusions’ chapter provides a discussion of the significance

of the work done in this dissertation, ongoing work, and future directions for

AI and interdisciplinary research in the field of smart grid for the residential

sector.
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Chapter 2

Generating High-Resolution Large

Scale Synthetic Residential Energy

Use Data for the United States

Efficient energy consumption is crucial for achieving sustainable energy goals in the

era of climate change and grid modernization. Thus, it is vital to understand how

energy is consumed at finer resolutions such as households in order to plan demand-

response events or analyze the impacts of weather, electricity prices, electric vehicles,

solar, and occupancy schedules on energy consumption. However, availability and

access to detailed energy-use data, which would enable detailed studies, has been

rare.

In this work, we release a unique, large-scale, synthetic, residential energy-use dataset

for the residential sector across the contiguous United States covering millions of

households. The data comprise hourly energy use profiles for synthetic households,

disaggregated into Thermostatically Controlled Loads (TCL) and appliance use. The

underlying framework is constructed using a bottom-up approach. Diverse open-

source surveys and first principles models are used for end-use modeling. We present

a detailed, open, high-resolution, residential energy-use dataset for the United States.
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2.1 Introduction

Modernization of the U.S. electric grid is occurring at a noteworthy rate due to the

installation of new technologies within the grid such as smart meters. They enable

two-way communication between the customer and utilities, providing information

and granular control of power usage for individual households [103, 172]. The grid

is also witnessing rapid transformations due to the increasing penetration of electric

vehicles (EV) and distributed energy resources (DER) such as rooftop photovoltaics

(PV), community solar, and wind energy. While this wave of modernization is ben-

eficial, the electric grid is simultaneously facing a sharp increase in crisis situations

as a result of climate change phenomena [15, 102] such as extreme weather events

and global warming. One example of extreme weather is the February 2021 North

American cold wave that caused a tremendous strain on the power grid, especially

in Texas where millions lost power for days [46]. Another example is where global

warming impacts household HVAC energy use. Although the rise of 1◦ to 2◦C in

winter temperatures is expected to decrease heating requirements, a similar rise in

summer temperatures is expected to increase cooling needs significantly [216].

In the face of these challenges, achieving sustainable energy goals has become paramount

for maintaining a healthy grid. To this end, the research community is faced with

important questions regarding the reduction of carbon footprints [31, 32, 92, 94, 190],

incentivizing DER adoption [122], studying benefits of building energy retrofit [72, 92,

198], integration of electric vehicles [177] and consumer behavior [157] in the grid, and

mechanisms for designing electricity pricing [261, 271] to create efficient residential

consumption patterns. Answering many of these questions requires comprehensive

knowledge of energy-use patterns, building stock, the structure of distribution net-

works, consumer behaviors, and so on. However, such exhaustive datasets are rarely
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freely available (or available at all) for research use, making it hard for the research

community to pursue these endeavours [191]. Reasons for the unavailability of such

data range from privacy concerns to the lack of a system for making data available

to researchers.

Figure 2.1: Data overview. This figure shows examples of the spatio-temporal res-
olutions of multiple facets of the disaggregated synthetic energy demand data. The
figure shows sample data at the state, county, and household levels at different tem-
poral granularities. The data is generated for all households in the U.S.

Most of the published energy use data are metered data, a result of longitudinal

studies conducted by researchers with relatively small samples of households that

may not be representative of the wider geographical region and demographics. Some

of these studies monitor households over a longer period of time (e.g. two years),

however, the downside of such experiments is that it takes a considerable amount of

time (e.g. participant consent, equipment setup, monitoring) and manual effort (e.g.,

data cleaning, imputing missing values) before such data is usable. Although these
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studies release energy data for free use, many of them limit publishing participant

details (e.g. building characteristics and location, household level demographics).

Participant details are usually withheld due to privacy reasons/participant consent,

lack of information, or unavailability of these attributes in the free version of the data.

Literature has attempted to address some of these issues by creating appropriate data

structures for releasing appliance metadata information for households alongwith their

energy use data [125, 127]. However, we observe that many of the issues still persist in

the U.S. context. One such example is the Pecan Street Dataport [280]. Pecan Street

Inc. [187] is the largest publisher of energy-use data in the U.S. through their portal

– Dataport. They collect energy-use data in California (CA), Texas (TX), New York

(NY), and Colorado (CO). This is a potentially very useful data set. However, only a

small sample (∼25 households in CA and TX) of energy-use data is freely available for

public use and do not contain sufficient (or any) demographic or building information.

A dataset synthesized over a larger spatial scope offers the opportunity to study

regional and temporal differences in energy use while a smaller region dataset offers

studying energy use patterns that may be particular to the region. Irrespective of

spatial scope, small sample size makes it difficult to get a good representation of

the population variation in the region (e.g. explaining/exploiting role of household

demographics, behavior, and building characteristics in energy use). In addition to the

spatial scope and number of samples, many of the datasets do not release sufficient (or

any) participant details. Such limited data restricts the usage of these energy-use data

for detailed practical analyses or studying scenario interventions and equity questions

in the grid (e.g., which type of demographic and building stock is best suited for EV

adoption, or how much carbon footprint can be reduced by retrofitting buildings).

Thus, we observe that there is a general sparsity of large scale high resolution energy
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use datasets along with detailed metadata information at household level such as

appliance ownership, building data, important demographic features.

We summarize key drawbacks of energy datasets for the U.S. as follows – limited

spatial scope, small sample size, lack of sufficient household, appliance, & building

metadata. Given these wide array of problems with the state-of-art energy-use data

availability, we introduce synthetic energy use datasets that are able to address many

of these issues. Synthetic data is defined as data generated by models that provide

accurate statistical representations of the real world. Examples of such data for

the smart grid are synthetic power distribution networks [165], energy consumption

profiles for offices and commercial buildings [145] and for residential buildings [29,

132, 231, 264, 268]. Our work specifically addresses the data scarcity gap in energy

use research for the U.S. residential sector. We propose a synthetic framework for

modeling large-scale high resolution energy use data by integrating diverse datasets

and end-use models for bottom-up dis-aggregate energy modeling. This results in a

novel synthetic energy use dataset comprising hourly electrical energy demand pro-

files for U.S. households. The total electrical energy use is published as a composition

of eight primary end-uses in a household – heating/air-conditioning (HVAC), light-

ing, dishwashing, cooking, laundry (clothes washer and clothes dryer), refrigeration,

hot water, and miscellaneous plug load (vacuuming, computer use, TV). A detailed

data-intensive bottom-up framework is developed to generate synthetic energy-use

profiles by integrating multiple open-source surveys and a synthetic population for

the U.S. [35]. A mixture of methods (stochastic, machine learning, physics-based en-

gineering methods) is used to model different end-uses in all households that consume

electricity as a primary fuel across the 48 contiguous states and Washington, D.C. in

North America. To the best of our knowledge, this synthetic energy-use dataset is the
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first detailed, large-scale, freely available household-level electricity consumption be-

haviors dataset for the U.S. Our synthetic energy-use infrastructure is well-suited to

solve the newer smart grid problems mentioned earlier. We publish the dis-aggregated

energy use timeseries for all the synthetic households. The published data is repre-

sentative of the U.S. households, provide household level metadata, and are a good

representation of the real world energy use.

2.2 Related Work

The recent research in residential modeling has become more dynamic and interesting

due to the penetration of smart meters, solar and electric vehicles, and the incentive

for shifting household activities through demand-response. This shift in technologies

has led to difficulties and sometimes instability in the grid. The existing statistical

and theoretical models are not always able to accommodate the increasing dynamism

and complexity while estimating building and activity demands and inferring people’s

responsiveness to incentivization. The area has started attracting the attention of AI

researchers in terms of supervised and unsupervised learning, pattern recognition,

ensemble modeling, neural networks, and big data ML platforms.

I have separated the literature into two categories: types of methodologies that exist

for residential demand modeling and the residential energy demand datasets that

exist in the literature.
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2.2.1 Residential demand modeling techniques

Well-established tools and theoretical models

After surveying literature, well-established tools for residential energy demand can

be divided into two categories:

i) Top-down long range energy prediction models such as MARKAL, NEMO, Res-

Stock, MEDEE, MAED, LEAP, and ENERGYPlan.

ii) Thermal profiling models such as eQuest, EnergyPlus, UBEM. These tools and

models provide benchmark building stock models as well as provide ample opportu-

nity to develop methodologies using such workflows and tools to create new building

stock profiling models. For example, in [74], parametric simulations are run to gener-

ate 351 EnergyPlus models. Further analysis is conducted by performing regression

analysis.

Theoretical models are mainly those stemming from physics theory such as Fourier

law or other heat transfer theories. This model can be plugged directly to estimate

the amount of energy required to heat or cool a space. For example, [239] used this

class of model.

[147] discusses a variety of building stock energy models ranging from theoretical

physics model, to geo-spatial techniques in top-down and bottom-up approaches.

Statistical and machine learning models

This section describes statistical and machine learning techniques employed for cali-

brating energy consumed by occupant activities and building stock.
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Some models calculate aggregate demand [41, 225, 226] using regression techniques

while others [168] use reinforcement learning and deep belief networks to calibrate

energy via an unsupervised approach. Survey papers such as [242] and [151] describe

role of ML techniques and neural networks in the field energy modeling respectively.

Energy modeling for occupant activities

Occupant behavior is dynamic and complex in nature; therefore, researchers attempt

to model occupants’ presence and adaptive actions more realistically. Literature shows

a proliferation of increasingly complex, data-based models that well fit the cases

analyzed. However, the actual use of these models by practitioners is very limited.

Moreover, simpler models might be preferable, depending on the aim of investigation.

We will look at models which have components such as activity recognition and user

behavior for energy activities sequence generation.

Data sources. Heterogeneity is observed in data sources employed in finding occu-

pancy patterns and mining activity sequences. We observe the following sources in

literature: smart meters, time-use, diaries/surveys, sensors employed in the build-

ing stock and/or households (wireless sensor networks, wearable sensors), appliance

related information.

Techniques. Stochastic and Bayesian modeling [105] techniques are used on a large

scale for identification of appliance on/off events and occupancy times in the house-

holds. Markov chain and its variants [2, 228, 239, 283, 286, 296] seem to be very pop-

ular in the literature. ML techniques such as sequence-mining [75], regression [135,

277], pattern recognition and clustering techniques. A longitudinal study is designed

in [162], where the collected data is processed to create population and their activities
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are allocated by assigning appliances to each activity to measure energy usage . [90]

used to identify similar behavior segments and recognize potential activity sequences.

[90] uses hierarchical clustering on smart meter data to find households with similar

activity schedules by clustering the probabilities of appliance turn ON events in each

hour. Further, Grade Correspondence Analysis (GCA) is applied to build segments

with similar distributions. These are then mined using sequence pattern detection to

find order in which these appliances will be used. Bootstrap sampling method [62],

and machine learning techniques such as fitted value method based on regression [262]

and decision tree [255, 256] are used to extract activity patterns of occupants from

time-use survey data. Markov modeling techniques [154, 204], episode mining [36],

ARIMA [196] are techniques used when data is obtained from sensors. In [217], the

wifi router’s power consumption is used to model the presence of occupants in the

house and the respective energy they consume. Moving average filter and random

forest technique are used in this paper. Room-level and house-level occupancy is

detected in [148] and compared to commonly used models such as Probability Sam-

pling, Artificial Neural Network, and Support Vector Regression. [2, 89, 293] provides

a brief comparison of methods for occupant modeling.

Evaluation and validation. Mean square error (MSE) and Mean absolute percentage

error (MAPE) are popular error metrics to evaluate correctness. Statistical distri-

butions are obtained for variables such as cumulative presence per day, per week,

arrival and departure times from source data and developed models/simulation are

compared to check performance of the data [204]. In experimental setups with sensor

deployments, validation is merely done by replicating environmental setting param-

eters in the simulation and real world deployment setting. The measured variables

are then compared to check the performance of the model [154].
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Challenges. A lot of these models are built on small samples. So, generalizability

and scalability of these models could be an issue. Computational problems w.r.t.

memory allocation have been briefly reported due to data size. Time slicing and

Gibbs Sampling were applied in such cases, however, both these solutions were time

consuming.

Energy modeling for building stock

The building stock models are designed to maintain a predefined indoor temperature

Tindoor by controlling the heating and cooling systems and their sizes, fuel mixes

and their efficiency, environmental conditions such as climate, outside temperature,

solar radiation, and hot water related appliances, and structural properties such as

insulation, roof materials, window materials, square footage, internal volume of the

space under consideration. Some models also consider another aspect involved with

occupancy and appliances.

Data sources. Sensors employed in the buildings, national statistics and surveys (e.g.

Residential Energy Consumption Surveys), building archetypes, climate data (e.g.

outside temperature), heating and cooling appliances data.

Techniques. The traditional and popular theoretical model based on Fourier Law

has been used to model building enclosures since a long time [5, 6, 123]. However,

with this type of model, it becomes challenging to include temporal effects, different

insulation types, and historical temperature data. Hidden Markov Model (HMM) is

used to generate thermal profiles in response to outside temperatures [6]. [18, 37, 118,

156] develop thermal profiling models with neural networks and variants such as feed-

forward time-delay neural networks (TDNN), neural network ensembles. In [123], a
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bottom-up technique is used to generate thermal energy demand profiles using sample

of representative buildings. Popular machine learning techniques include regression,

trees [3, 135, 139, 189]. A geo-spatial bottom-up thermal profiling model is developed

in [169] using a multiple linear regression setting. [250] uses Bayesian calibration

with UBEM for developing building archetypes (and their energy consumption) with

parameter variations that result in the lowest calibration error.

Evaluation and validation: MSE and MAE are used to compare performance of

Fourier Law model, Deep Learning model and real data observations on 20% of the

data [18, 37]. MAPE, quantile percentage significance is compared at an hourly level

with REDD dataset and simulated profiles and R2 are used in [6]. Some studies have

compared coefficient of determination between models [37]. Validation techniques

such as deterministic 2-fold cross-validation approach can be adopted [5].

Challenges: The EM algorithm used for model estimation is quadratic in terms of the

hidden states K. Thus, when working with larger datasets, models with smaller K

need to be implemented. Appropriate load balancing strategies need to be adopted

for desirable performance. With neural networks, data size and parameter tuning was

considered to be a challenging task. The most challenging part of thermal modeling

has been parameter setting for the building stock in different countries or regions and

is highly climate dependent.

Geo-spatial modeling

Geo spatial modeling is used to identify energy performance indicators, building char-

acteristics and their distribution in a geographical area (country, city, census tract).

Output of such models is building archetypes. Information such as energy audits, con-
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struction periods, size, surface to volume ratios, building enclosure, lighting power

density, equipment power density, HVAC schedule are used to evaluate building stock

[70, 79, 84, 86, 101, 106, 112, 169, 171, 184, 201, 246, 278]. The theoretical Fourier

framework can easily be attached to this model to calibrate energy demand.

These methodological frameworks are popular for tagging building stock information,

and comprehensive characterization of space heating/thermal energy profiles over

larger areas such as city or country. Thus, these models are used to perform top-

down as well as bottom-up analyses [183].

Data sources. Sensors employed in the building stock, energy audits, national surveys,

cadaster data, satellite images.

Techniques. Spatio-temporal modeling techniques such as using multivariate autore-

gressive model (MAR) [171] and spatial autoregressive model (SAR) [86] are used.

[84] uses Total night lights (TNL) and regression to process the night time satellite

imagery for the United States at a resolution of 200 square meter.

Evaluation and validation. Database generated from GIS models is validated with

survey data found in literature.

Challenges. Models and their resultant databases differ in terms of granularity of

available data. A lot of the times such data is difficult to obtain or is scarce.

Applications. Primary use case of such models is to perform analyses at various

geographical scales (census tract to national) to calibrate energy consumption due to

thermal comfort [184, 246]. An interesting use case scenario is demonstrated by [84],

to identifying energy efficiency opportunities and planning electricity transmission,

and generate electricity and fuel consumption maps.
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Agent-based modeling

Agent-based models employ a bottom-up approach for modeling the influence of occu-

pants by modeling individuals, their mutual interactions and the interaction with the

building stock/dwelling. Since each individual or household is modeled separately,

the resolution and complexity of such models is high. Earliest work on agent-based

modeling was reported in 1994 in [50]. ABMS have been recently used to create holis-

tic residential demand models. Individual and group energy related activity/behavior

modeling [8, 95, 121, 124, 162, 229, 255, 256, 262], household/building level thermal

models [95, 101, 235, 256, 262], domestic water use models[95, 150] have been devel-

oped. [101, 256, 262] have generated/used synthetic populations to perform granular

level synthesis of energy demand.

Data sources. National energy consumption surveys, synthetic populations, census

data, cadaster datasets, time use diaries, building archetypes, climate data, and any

other minute detailed relevant datasets are commonly used in ABMs.

Evaluation and validation. Validation in agent-based models is mainly done by com-

paring weekly, annual average demands and their standard deviations [47, 229, 256].

[229] presents extensive validation at 1-min intervals using time-coincident demand

(diversity factor), ‘after diversity maximum demand (ADMD)’ and power factor.

However, their sample size is very small. Dynamic time warping technique with a

flexible 3-hour window is used in [262], to validate hourly simulated profiles and

real-world hourly profiles.

Challenges. Information needs of such models is high. This type of granular infor-

mation may not be always available. ABMs can quickly become computationally ex-

pensive because of the granularity and scale of data and input parameters. However,
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[47, 256, 262] have shown great promise for handling big data scenarios via ABMs.

With careful design, agent-based models can be characterized by different levels of

complexity, depending on the complexity of the sub-models which they include.

Applications. Residential demand agent-based simulators have been used for a variety

of applications such as assessing EV and heat pump impact, energy related activity

modeling case studies, studying penetration of rooftop solar, household-level energy

efficiency adoption, devising DR policies such as reducing electricity bills [47, 170,

203, 235, 256].

Table 2.1 summarizes the techniques and algorithms used in different modeling cate-

gories for different modules.

Table 2.1: Techniques and algorithms for different energy demand calibration mod-
ules.

Type Model Category Techniques
Energy
Modeling for
Occupant
Behavior

Machine learning

Statistical
Agent-based

Clustering, Sequence mining, Fitted value
method, Decision trees, Episode mining,
ARIMA, Markov chain, HMM, MCMC
–

Energy
Modeling for
Building
Stock

Statistical
Theoretical
Machine learning
Agent-based
Geo-spatial

Well-established

HMM, Bayesian calibration
Fourier
Deep Learning, TDNN, NN
–
Parametric analysis, Spatial autoregressive,
TNL Regression,
UBEM, eQuest, EnergyPlus

Energy
Modeling for
Aggregate
Demand

Theoretical
Statistical
Machine learning

Agent-based
Well-established

Econometric
Regression, Markov chains, HMM
Clustering, Deep Belief Network,
Reinforcement Learning
–
MARKAL, NEMO, ENERGYPlan,
LEAP, MEDEE, MAED, ResStock
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Table 2.2: Popular datasets used in residential energy modeling

Type Dataset

Top-down
Paradigm

IEA Annual Report
Odyssee Database
MURE Database
TABULA
ASIEPI
European Intelligent
Energy Efficiency (IEE) standards

Activity and
Behavior

Data from sensors
Smart Meter
Time Use Data from Surveys

Thermal sensors &
Building data

Data from building sensors
National Surveys (RECS)
Cadaster datasets
Building Archetypes

Climate Weather Underground
NOAA

2.2.2 Existing residential energy demand datasets

Several residential energy demand datasets have been published for multiple countries.

Here, I have described some of the important datasets that have been published in

the literature.

Well-known datasets. Kolter et al. [136, 137] published REDD dataset, is one of

most first energy datasets to be made available to the public for use. The Refer-

ence Energy Disaggregation Data Set (REDD) is published by MIT. The dataset

contains high-frequency current/voltage waveform data of the power mains in house-

holds along with labeled circuits in the house. Pecan Street Dataport [187, 280]

currently offers residential energy demand data at granular intervals. Labeled circuit

data for households across major cities in the U.S. ResStock [193] is a tool developed
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by The National Renewable Energy Laboratory (NREL) in the U.S. for performing

large-scale residential energy analysis. ResStock helps answer questions such as how

much saving can be done by home improvements, and what should be the carbon

emission and demand reduction goals in the residential sector. Kelly et al. [126, 127]

have published a dataset of power demand recorded from five houses UK houses at

two levels – whole house and individual appliances. This dataset is referred to as the

UK-Dale dataset. Two versions of this dataset have been released. This dataset has

been used extensively by research community alongside Pecan Street Dataport and

REDD dataset.

Datasets for U.S. residential energy demand. Pecan Street Dataport is said to

be the most comprehensive dis-aggregate energy data available for the U.S. The Rain-

forest Automation Energy (RAE) [158] dataset was published by Harvard in 2017.

The dataset contains 1Hz data (mains and sub-meters) from two residential houses.

The flEECe dataset [205, 206] provides energy data at a 1Hz sampling rate for four

circuits for six net-zero energy senior housing units in Virginia, USA for nine months.

Anderson et al. [9, 10] have a ‘Building-Level fUlly-labeled dataset for Electricity Dis-

aggregation’ (BLUED) for one household in Pittsburg U.S. for one week. State tran-

sitions of appliances are labeled and time-stamped, providing the necessary ground

truth for the evaluation of NILM algorithms. Barker et al. [22, 23] have released a

electricity usage data monitored every minute from nearly every plug load from 400

anonymous homes in U.S.

Datasets from E.U. and other countries. Recently, Klemanjak et al. [132, 133]

published a synthetic energy demand dataset for 21 appliances in Austria. Data was

collected from two households was used to train models and then appropriate noise

was added for appliance start times and durations to mimic variations in actual con-
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sumption patterns. Beckel et al. [27] publish electricity consumption data monitored

via smart plugs for six households in Switzerland over a period of 8 months. Pereira

et al. [211–213] publish power usage for 44 apartments and 6 homes in Portugal that

is collected for 264 days at 30 minute intervals. The advanced version of this dataset

‘SustDataED2’ dataset contains 96 days of aggregated and individual appliance con-

sumption from one household in Portugal. Monacchi et al. [173, 174] publish a dataset

called GREEND for common household devices monitored for power consumption in

Austria and Italy. Ruhnau et al. [233, 234] publish a unique synthetic data that repre-

sents national level heat demand time series for over 16 countries in the EU from 2008

to 2018. UK-Dale is one of most well-known datasets for U.K. Murray et al. [181,

182] published data from a two year longitudinal study about load measurements

from 20 households of UK. Pullinger et al. [93, 221] release a electricity dataset for

255 UK homes at a 1-second interval over a period of 23 months (IDEAL household

energy dataset). The first Korean dataset measuring appliance-level energy data was

released in 2019 for 22 houses in Korea by Shin et al. [244, 245].

2.3 Datasets employed in this framework

This section summarizes a large number of diverse datasets used in my work for

constructing the digital twin of residential household-level energy demand profiles.

American Time Use Survey (ATUS 2015). ATUS provides nationally represen-

tative estimates of how, where, and with whom people in the U.S. spend their time,

and is the only federal survey providing data on the full range of activities, from

childcare to volunteering. This survey provides demographic information as well as
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information on energy-related activities [14]. 24-hour data is recorded for 5115 par-

ticipants.

Synthetic Populations and Ecosystems of the World (SPEW). SPEW [35, 91]

is a framework that produces synthetic populations for various countries. We used the

open-sourced version of the synthetic population available for the U.S. constructed for

the year 2013. The sampled base population is the byproduct of American Community

Survey (ACS) Public Use Microdata Sample (PUMS) data. Statistical methods such

as Simple Random Sampling (SRS) and Iterative Proportional Fitting (IPF) [73,

85] are used to estimate joint distributions of population characteristics given their

marginal distributions at a small geographic level (e.g. PUMA-level for the U.S.).

Data records are available at household level for all of U.S. Descriptors are available

for mapping records from PUMS data onto the base synthetic population.

Public Use Microdata Sample (PUMS 2013). PUMS is a 5% representative

sample for a larger region than block group referred to as a Public Use Microdata

Area (PUMA) [220]. PUMAs are described by the Census as “a collection of counties

or tracts within counties with more than 100,000 people”. These statistical areas are

defined for the circulation of PUMS data. PUMS contains individual records of the

characteristics for a 5% sample of people and their households. One PUMS record is

a complete Census record.

North American Land Data Assimilation System (NLDAS). Hourly temper-

ature data for North America. Data resolution is at 1/8th-degree grid over North

America [142]. Data is present in UTC timestamp.

Residential Energy Consumption Survey (RECS 2015). U.S. Energy Infor-

mation Administration (EIA) Residential Energy Consumption Survey (RECS) [273]
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data is a national sample survey that collects energy-related data for housing units.

For 2015, data was collected from 5,686 households to represent 118.2 million U.S.

households. We use this dataset to obtain housing unit-specific information such as

floor area, main heating fuel, fuel equipment, indoor temperature setting, presence

of air conditioner, dishwasher, washer, dryer, refrigerator, water heater fuel, water

heater size, water heater age, number of lighting units, etc,.

National Solar Radiation Database (NSRDB). NREL provides solar radiation

data for the U.S. We use hourly data that comes from the physics-based approach

called the Physical Solar Model (PSM). Data is available for the U.S. for 1998–

2014 [192].The GHI variable is used as an indicator of irradiance level in the lighting

model. GHI is modeled solar radiation on a horizontal surface received from the sky.

This is measured in watt
meter2

Miscellaneous datasets. Appliance power and efficiencies, gallons of hot water

required for activities, and any other input data required for models are drawn from

surveys and data collected from the ground and/or testing [55, 117, 185, 285].

2.4 Modeling framework

This section describes the models employed to generate synthetic energy use time

series at the household level. All notations used in this chapter are described in

Table 2.3.

The presented framework is composed of a synthetic representation of the U.S. popu-

lation, regression models for surveys, and bottom-up energy use models. A synthetic

population is composed of households and people in households. The synthetic house-
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Table 2.3: Notations

Notation Description

Hi Household i drawn from the synthetic population
Pi,j Synthetic household member j of household Hi

Ak Respondent k from ATUS survey
Sl Household l from RECS survey
Irri Irradiance threshold for Hi.
⟨Oi,0, . . . , Oi,t, . . . , Oi,23⟩ Occupancy time series of synthetic household i

⟨Irr0, . . . , Irrt, . . . , Irr23⟩ Hourly irradiance time series of a census tract.
⟨T out

0 , . . . , T out
t , . . . , T out

23 ⟩ Hourly temperature for a given day
⟨T in

0 , . . . , T in
t , . . . , T in

23⟩ Thermostat setpoint (◦F )
η Efficiency of the HVAC equipment and water heaters
Rroof , Rwall Thermal resistance coefficient for roof and wall

T hot
v

Temperature (◦F ) of hot water end-point category
v,
where v ∈ {shower, bath, cwasher, dishwasher}

T cold
m,z

Mains water temperature (◦F ) for month m and
climate zone z

d ∈ D
End-use d ∈ D where D =
{hvac, h2o, light, refr, dwasher, cook, cwasher, cdryer,TV,
computer, cleaning}

⟨Ed
i,0, E

d
i,t, . . . , E

d
i,23⟩

Hourly energy use profile of Hi for a end-use d and
t ∈ {0, . . . , 23}

Ed
i

Daily energy consumed over 24 hours by end-use
d in household Hi. Ed

i =
∑23

t=0 E
d
i,t and d ∈ D and

t ∈ {0, 1, . . . , 23}

⟨Gh2o
i,0 , G

h2o
i,t , . . . , G

h2o
i,23⟩

Hourly profile of hot-water use (gallons per
hour) of Hi for a end-use h2o and t ∈
{0, . . . , 23}. Gh2o

i,t =
∑

v∈V Gh2o
i,t,v where V =

{shower, bath, dishwasher, clothes washer}

Gh2o
i

Daily amount of hot water consumed (in gallons)
by a household Hi in a day.
Gh2o

i =
∑23

t=0 G
h2o
i,t

Gh2o
i,v

The daily amount of water consumed (in gallons)
by a household Hi in a day by an event v.
Gh2o

i,v =
∑23

t=0 G
h2o
i,t,v
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Figure 2.2: Overview of the energy modeling infrastructure. Inputs are de-
picted in the green box at the top. Models are described in the red box. The bottom
rectangle describes the datasets used for validation of the synthetic energy-use time
series. The validation block (yellow backdrop) describes three components of V&V.
The blue text refers to the V’s of big data. Each colored block possesses the given V
characteristic.

holds are generated using census surveys and statistical methods such that the syn-

thetic population is statistically similar to the original population. An open-source
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version of the U.S. synthetic population – Synthetic Populations and Ecosystems of

the World (SPEW) [35, 91] is used in our framework. The SPEW synthetic population

is comprised of demographic characteristics of synthetic households and synthetic in-

dividuals. The synthetic population is created using U.S. census data such as PUMS

and statistical methods such as sampling and the Iterative Proportional Fitting (IPF)

method [28].

The SPEW households are made of basic demographic (e.g., income, age) and locality

information. Although the SPEW population is representative of the U.S. popula-

tion on a finer spatial resolution, it is not equipped with energy and activity-related

information (e.g., building characteristics, time spent at home, number of cooking

activities) necessary for estimating energy use at the household level or person-level.

Building stock, energy, and activity-related information is collected by national sur-

veys in the U.S. – Residential Energy Consumption Survey RECS [273] and Amer-

ican Time Use Survey ATUS [14] respectively. The basic synthetic population is

augmented with energy and activity-related attributes by building machine learning

models. This augmentation is called the enrichment step. The enriched synthetic

population along with other freely available data sources can be used together as in-

puts to the energy use modeling framework. The energy use modeling framework has

six models for representing nine energy uses – HVAC, lighting, domestic hot water,

refrigerator, dishwasher, cooking, clothes washer, clothes dryer, and miscellaneous

plug load such as TV, computer use, cleaning activities (e.g., vacuuming). The first

subsection describes the modeling details of the enrichment step and the following

subsection describes energy demand models.
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2.4.1 Augmentation models

The augmentation/enrichment models support creating comprehensive synthetic struc-

tures for calculating residential energy usage. This step is called the enrichment step.

Refer to Figure 2.2 for a pictorial representation of the overview of the framework.

Since the demographic features available in the synthetic population are not sufficient

for computing energy usage, it is made richer by adding layers of information related

to building stock and energy consumption from the RECS survey such as building

characteristics, appliance ownership, and thermostat set-point behaviors. This map-

ping of features is made by building inference tree models. Activity schedules for a

normative day of an ATUS survey respondent are attached to a synthetic individ-

ual by building a multivariate random forest regression model. These models are

described below.

The ATUS model

The ATUS data provides nationally representative surveys of people’s activities in

different location types such as childcare in or outside the house, time spent at work,

laundry time at home, waiting times in hospital, and so on, see Section 2.3 for a de-

scription. The time-use diaries of the survey individuals can be attached to synthetic

individuals by matching an appropriate survey individual to a synthetic individual.

In our work, we consider appropriate matching based on the amount of time a person

spends in different location types such as home, work, school, shopping, and other

miscellaneous locations. This seems a reasonable approach because we are interested

in learning how an individual spends 24 hours of the day by categorizing the amount

of time spent at important location types – for e.g., the time spent in different location
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types for a person works full-time is quite different than a housebound senior citi-

zen or a college student. This rationale of assigning survey respondents to synthetic

individuals is also presented in prior work by Lum et al [155].

Random forest regression method is used to build a model that predicts the amount

of time a person spends in locations types such as home, work, shopping, other,

school, and trip counts during the day. Thus, six dependent variables are modeled

– trip count during the day and time spent at each location type - home, work,

shopping, other, school. Independent variables used to build the model are as fol-

lows – number of members in the household (hsize), number of children (nchild),

age (age), working hours (wrkhrs), gender (gender), income modeled as a categori-

cal variable (hinc2, hinc3), and binary variables such as an American citizen or not

(nativity), worker or not (worker), owns home or not (ownhome), has a phone or not

(tel), and race related variables such as if person is white, Hispanic, black, or Asian

(white, hispanic, black, asian). Figure 2.3 shows example of feature importance for two

dependent variables.

Once the model is trained on ATUS respondents, a synthetic person Pi,j is randomly

assigned a survey individual from the leaf nodes in the trained ensemble model. Thus,

the result gives every synthetic individual a time-use diary. The energy-use models

will extract home activities from a time-diary and also build a household-level oc-

cupancy schedule over the 24-hour duration, denoted as ⟨Oi,0, Oi,1, . . . , Oi,23⟩. These

are used as an input to the energy use models. Synthetic household member activity

scheduling conflicts are handled in the activity model.
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Figure 2.3: Impurity-based feature importance and correlation. Each plot
shows Gini importance of features for two dependent variables – home and work.
The x-axis shows independent variables in order of importance based on IncNodePu-
rity. The selection of the parameters for ‘ntree’ (number of decision trees) and ‘node
size’ (minimum size of terminal nodes). Eight conditions are tested for the combina-
tion of the two parameters: ntree=500, 1000, 1500, and 2000; node size=5, and 10.
The plots show robust results across the different conditions. According to the plots,
the following five independent variables – wrkhrs,worker, age, hinc3, hsize mostly affect
all the dependent variables. The right-hand y-axis shows the absolute Pearson Cor-
relation Coefficient. The positive and negative coefficients are distinguished by blue
dots and squares, respectively. Except wrkhrs,worker, all other independent variables
weakly correlated with the dependent variables.

The RECS mapping model

The baseline synthetic population does not have any building structural character-

istics and appliance ownership information. These salient features are important

for modeling different categories of energy use and are available in the RECS sur-

vey. We overlay RECS household attributes onto a synthetic household by building

multivariate conditional inference trees [111, 269]. A conditional inference tree is a

non-parametric class of regression trees that uses recursive partitioning of dependent

variables based on the value of correlations. Four dependent variables are modeled –

square footage of the dwelling, presence of laundry appliances, presence of air condi-

tioner, and presence of dishwasher. The independent variables are the year in which

the house was built, occupancy time of the current tenants, own or rent the resi-
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Figure 2.4: Augmentation Models. This figures describes the ML methods used in
augmenting the synthetic populations with residential energy use related attributes
from RECS survey and ATUS survey.

dence, total number of rooms, income, number of refrigerators, number of members

in the household, dwelling type, dwelling is located in an urban or rural area, pri-

mary heating fuel type. The independent variables are common attributes between

RECS survey records and synthetic household records. Conditional inference trees

are trained on different census regions in the U.S. to tease out regional differences.

A RECS household Sl is randomly selected from the appropriate leaf nodes of the

conditional inference tree and assigned to the synthetic household Hi every time a

new simulation is run. This dynamic assignment introduces stochasticity when the

simulation is executed for the same and/or different days.
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2.4.2 Energy use modeling

The enriched synthetic population (i.e., the output of the enrichment step) enables en-

coding of behaviors (time spent in different energy-related activities at home), norma-

tive attributes (e.g., square footage, age, income, gender), declarative attributes (e.g.,

individual activities as a sequence) and procedural attributes (e.g., behaviors captur-

ing dependencies, interactions, frequency of performing activities) into the knowledge

required for building energy use profiles [24]. The synthetic infrastructure is leveraged

to build six energy use models (Figure 2.2). Nine end-uses are synthesized for each

household. These end-uses are divided into two parts – Thermostatically Controlled

Loads (TCL) and appliance use. For a household i, nine end-uses published in the

data are –

1. HVAC (Ehvac). This category includes heating and cooling electric load from

central air conditioning during hot days and electric furnace/heater used during

cold days. This is a TCL load.

2. Domestic hot water use (Eh2o). Energy consumed for heating water that is

needed for personal grooming activities such as shower/bath, laundry activities

such as using clothes washer, and dishwasher. This is a TCL load.

3. Dishwasher (Edwasher). Energy used by dishwashers.

4. Clothes Washer (Ecwasher). Energy used by electric clothes washers.

5. Clothes Dryer (Ecdyer). Energy consumed by dryer.

6. Cooking (Ecook). Energy consumed by electric cooking range, oven, and other

kitchen appliances such as coffee maker, microwave, toaster, etc.



38

7. Miscellaneous plug load (Emisc). This type of energy indicates plug load

attributed to cleaning activities and electronic devices such as TV, computers,

other smaller electronic gadgets.

8. Refrigeration (Erefr). Energy consumed by refrigerators.

9. Lighting (E light). Energy consumed by lighting units.

Table 2.3 describes the notations used in the methodology section. The total energy

summed over 24 hours (Etotal
i ) of a household i is given by the equations below –

Etotal
i = ETCL

i + Eappliances
i (2.1a)

ETCL
i = Ehvac

i + Eh2o
i (2.1b)

Eappliances
i = Edwahser

i + Ecook
i + Ecwasher

i + Ecdryer
i + E light

i + Erefr
i + Emisc

i (2.1c)

Emisc
i = Etv

i + Ecomputer
i + Ecleaning

i (2.1d)

HVAC model Ehvac

According to the U.S. Energy Information Administration, HVAC is responsible for

the highest proportion of energy consumption in households.1,2,3 The HVAC model

calculates how much energy is required to maintain ambient/comfort temperature

indoors. This is dependent on factors ranging from the area of the house, outdoor

temperature, efficiency of HVAC equipment, and so on. Occupant behaviour of ther-

mostat settings in different seasons and household occupancy during the day play an
1https://www.eia.gov/energyexplained/use-of-energy/homes.php
2https://www.eia.gov/todayinenergy/detail.php?id=10271
3https://www.energy.gov/sites/prod/files/2017/03/f34/qtr-2015-chapter5.pdf

https://www.eia.gov/energyexplained/use-of-energy/homes.php
https://www.eia.gov/todayinenergy/detail.php?id=10271
https://www.energy.gov/sites/prod/files/2017/03/f34/qtr-2015-chapter5.pdf
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important role in understanding thermal comfort levels and how its effect on elec-

tricity consumption. Engineering and statistical approaches [259] are presented in

the literature to simulate energy consumption of heaters/furnace and air condition-

ers [130, 178, 243, 257]. We adopt the engineering based approach from Subbiah et

al. [257] where the function of heating/cooling a household Hi at hourly intervals is

defined as:

Ehvac
i,t =

∆T

η
×
(
FloorAreai

Rroof +
WallAreai

Rwall

)
(2.2)

Here Ehvac
i,t is the energy consumed by household Hi at the end of hour t in kWh by

heating/cooling equipment to maintain thermal comfort. FloorAreai is the floor area

and WallAreai is the wall area (extrapolated from floor area [257]) of Hi. The quan-

tities Rroof and Rwall are R-values (insulation level) for households in different climate

zones, while η is defined in Table 2.3. Next, ∆T is the absolute difference between

T in
t and T out

t , and T in
t is indoor thermostat temperature at hour t. The hourly outside

temperature (T out
t ) is obtained from NOAA NLDAS data mentioned in Section 2.3.

Efficiency and insulation data is obtained from guidelines published by EIA. All other

household attributes are obtained from the enriched synthetic population. Depending

upon occupancy patterns throughout the day, changes in thermostat behaviors are

assigned to each household. Heating and cooling threshold temperatures for appliance

on/off times are taken from the thermostat study published by NREL in 2017 [64].

Domestic Water Heating Model Eh2o

The EIA shows that 17%-32% of the household energy use is attributed to domestic

hot water use (DHW) 4. Literature shows models used for estimating hot water de-

mand at multiple temporal resolutions – annual, daily, hourly, and minute intervals.
4https://www.eia.gov/todayinenergy/detail.php?id=37433

https://www.eia.gov/todayinenergy/detail.php?id=37433
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One of the initial models for estimating load profiles of hot water demand was devel-

oped in 2001 by Jordan et al. [272] for a period of one year for temporal resolutions

of 1 min, 6 min, and 1 hour. However, this work does not consider historical nor fac-

tual flow rates to determine how much hot water (gallons/day) is used by a household.

A follow-up paper was developed for synthesizing water demand profiles for Switzer-

land [71] by calibrating this model using field data. A model to simulate yearly DHW

event schedule for a single-family household was developed by Hendron et al. [39] from

the National Renewable Energy Laboratory (NREL) in 2010. The simulator used two

surveys that collected information about water demand in U.S. households for five

categories: sink, bath, shower, clothes washer, and dishwasher. This model has been

widely accepted in the literature. One recent example of the adaptation of Hendron’s

model is for simulating hot water demand in Canadian households [232]. The model

is calibrated for survey data collected for Canada and appropriate adjustments are

made with respect to Canadian lifestyles.

For our model, we use the distributions of duration and flow rates of activities in-

volving hot water usage such as bath/shower, clothes washer, and dishwasher from

Hendron et al. Note that duration and flow rates can take negative values (Table 2.4).

The flow rate is capped to 0.05gpm and the duration is capped to 1 minute for any

negative value [39]. Table 2.4 characterizes the average count of daily events, du-

ration, and flow rates. The values of hot water temperature for different uses and

the cold water inlet temperature are obtained from studies conducted by NREL in

different regions of U.S. [107, 117, 285] An engineering based approach is used to

estimate hot water usage [117, 257] in household i for event v at time t

Ehot
v =

Ghot
v,i,t × ∆T

η
× 0.00189 , where

Ghot
v,i,t = durationv × flow_ratev , and ∆T = T cold

m,z − T hot
v .

(2.3)
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The gallons of hot water Ghot
v,i,t consumed by event v is computed as a product of

flow_rate (gpm) and duration (minutes). Both these characteristics are drawn from

distributions in Table 2.4. Ehot
v is the energy consumed by the event v to heat Ghot

v

gallons of water. Last four entries in the Table 2.3 shows summation of multiple

events occurring across the time horizon. Here η is the efficiency of the electric

water heaters. Surveys conducted by NREL have shown that η is a complex function

of storage capacity of water heater, type of water heater, age of water heater. No

distributions are available for η in the current studies. Field data collected from

NREL surveys [107, 117, 285] show that the efficiency varies anywhere between 80%-

99%. Here 0.00189 ( kWh
gal ◦F) is a conversion constant obtained from Subbiah et al. [257],

and ∆T is the temperature difference (◦F) between mains (inlet) water temperature

T cold
m,z for a given month m in a climate zone z and the water temperature required

for a particular end-point. The values for T cold
m,z and T hot

v are obtained from NREL

surveys [117, 285]. Whenever the activity model detects the presence of an event v,

we calculate the energy used by hot-water for the event using Equation 2.3. Note

that we compute hot water energy usage only for synthetic households having electric

water heaters.

Table 2.4: Hot water model characteristics

Event v T hot
v (F) Flow rate (gpm)

µ, σ, distribution
Duration (minutes)
µ, σ, distribution

Shower [105,116] 2.25, 0.68, Normal 7.81, 3.52, Normal
Bath [105,116] 4.40, 1.17, Normal 5.65, 2.09, Normal

Dishwasher [120,140] 1.39, 0.20, Normal 1.53, 0.41, LogNormal
Clothes washer [60,130] 2.20, 0.62, Normal 3.05, 1.62, Normal
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Lighting E light

Lighting accounts for 5–10% of the residential consumption5 with lighting usage in

residential setting mainly characterized by outdoor lighting conditions and occupancy

schedules in households [51]. A Markov-chain approach is adopted by Widen et

al. [284] for modeling lighting demand in Swedish households using time use data

in Sweden. A stochastic model is developed for residential lighting estimation for

the city of Cordova in Spain by Palacios-Garcia [207] based on a model developed by

Stokes et al. [253] using measured lighting data for 100 UK homes. Another stochastic

model is developed by Richardson et al. [230] for UK households using time-use data

and lighting data from the Energy Information Administration(EIA).

We build a stochastic model for lighting demand in U.S. dwellings by building on

design concepts from work done by Richardson et al. [230], Stokes et al [253], and

Paatero & Lund et al. [202]. Richardson’s model is particularly interesting since it

supports important characteristics of light usage such as ‘co-use’ and ‘relative weights’.

The model uses the concept of ‘co-use’ of lighting, i.e., lighting in a dwelling is often

shared by household members in the same space of the dwelling at the same time.

The model also considers that all lighting units are not used at the same frequency

(e.g. frequently occupied rooms such as kitchen space and living area will use more

lighting than other rooms) and employs a weighting scheme to indicate relative usage.

Outdoor lighting conditions are modeled using irradiance time series. It is obtained

from NSRDB described in Section 2.3. Hourly irradiance data is collected using the

NSRDB API for the 365 days of the year 2014 at census tract resolution for the U.S.

Thus, all synthetic households in a census tract use the same irradiance time series

for a given day. The household level hourly occupancy profile ⟨Oi,0, Oi,1, . . . , Oi,23⟩
5https://www.eia.gov/todayinenergy/detail.php?id=38452

https://www.eia.gov/todayinenergy/detail.php?id=38452
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is developed by examining activities of awake synthetic household members of Hi at

home. Presence of awake occupants in the dwelling support the decision making of

light switch-on event. The distribution of lighting units in households are derived

from the RECS survey. In general, distribution of lighting units of a Hi is taken from

the matching Sl. Three types of lighting units are considered: incandescent, CFL,

and LED. Power ratings of lighting unit categories are taken from a study conducted

by the Bonneville Power Administration (U.S.) where lighting fixtures were analyzed

for a sample of 161 Northwest residences [270]. For a given simulation day, we define

an irradiance threshold (Irri) for a household Hi. It indicates that occupants may

consider switching on lights when outdoor lighting is less than Irri. Irri is sampled

from a normal distribution [230] Normal(60, 10). All notations used in the model are

described in Table 2.3. Annual lighting data for the U.S. are summarized for different

household sizes from the RECS survey.

Literature shows that lighting usage increases by number of occupants in the house-

hold, however, the lighting usage does not double for every occupant added in the

house. In order to simulate shared lighting usage, the concept of effective occu-

pancy [230] of a household ⟨Ôi,0, Ôi,t, . . . , Ôi,23⟩ is introduced. Effective occupancy

(Ôi,t) is defined as a function of active occupancy (Oi,t). The values for effective

occupancy are derived by scaling the annual lighting demand by household size such

that the effective occupancy of a dwelling with one active occupant is one. The

next step is to obtain the details of lighting units in a household. The proportion of

lighting unit types are obtained from a RECS household Sl that matches Hi (RECS

Model). Power ratings are attached to each lighting unit. In general, not all lighting

units are used at the same frequency. This is observed in literature surveys such as

DECADE report [38]. The frequency of usage of lighting units in households can be
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roughly modeled as a natural log curve [230], however, no formal methods have been

presented in the literature due to lack of quantitative data. We use the natural log

curve presented in Richardson et al. [230] to model the relative usage of a lighting

unit. Once weights are assigned to lighting units, the probability of a switch-on event

for every lighting unit is calculated at a regular time interval (in our case 1 hour).

The probability of a switch-on event P on
b of lighting unit b at hour t is calculated as

P on
b = Ib × bweight × Ôi,t × γ , where

Ib =


1 irradiance threshold condition is True for bulb b at time t if Irrt ≤ Irri ,

0 otherwise.
(2.4)

Here bweight is sampled from a natural logarithmic curve, γ is a calibration constant

used to achieve the appropriate annual lighting consumption for the U.S., and Ôi,t

is the effective occupancy of Hi at time t. If a switch-on event occurs, then energy

consumption is calculated for the respective lighting unit b. The lighting duration is

picked randomly from the distribution described in Stokes et al. [253].

Refrigeration Erefr

The energy consumed by a refrigerator depends upon its size, age, ambient temper-

ature, and several other factors as described in literature. They consume 3%–5% of

the total residential energy usage. Shimoda et al. [243] show that the daily refrig-

erator consumption is affected by outside temperature, while Tsuji et al [130] show

a linear relationship between outside temperature and annual refrigerator demand.

Both these work are done in context of refrigerators in Japan. The Lawrence Berke-

ley National Laboratory in California uses field metered energy use data from ∼1500
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refrigerators and freezers to develop a model that predicts annual usage of different

freezer and refrigerator categories [96]. All of the above models collected relevant

data from the field or utilized detailed surveys on refrigeration.

Our approach is to develop a regression model for predicting daily refrigerator usage

(kWh/day) of a household (Erefr
i ) as a function of outside environment temperature.

The model is trained with the metered refrigerator usage data from Pecan Street Inc,

where 30% of the total metered data is used for training and testing the model. The

30% data is obtained by conducting stratified sampling based on climate zones and

daily average temperature bins. The dependent variable is the daily refrigerator usage

Erefr
i in kWh/day for Hi. The independent variables are daily average temperature

T̂ out (◦F ) and categorical attributes indicating three major climate zones. The 24

hour load profile of a refrigerator ⟨Erefr
i,0 , E

refr
i,1 , . . . , E

refr
i,23⟩ is constructed from the daily

usage, and the variation in the hourly usage of the refrigerator is modeled using a

Guassian distribution. The refrigerator operates in an automated/standby mode, that

is, occupant presence does not influence the energy consumption of this activity [130,

257]. Thus, computing the 24 hour profile of the refrigerator by adding a small

Gaussian noise to the hourly load can be considered acceptable. The validation

section shows that addition of this noise creates good match to real data.

Appliance model Eappliances

The energy consumption in a households that is attributed to appliance usage and

plug load is 20%–26%. This energy is a result of the occupants’ desires to perform ac-

tivities such as taking baths, making hot meals, using the dishwasher, doing laundry,

charging electronics such as TVs and computers, or using any other appliances that

consume electricity. Equations 2.1b and 2.1c are used in this model. Based on the
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aforementioned end-uses, appliance usage behavior is characterized by [130] through

operational mode of appliances, duration of operation, power consumption, limit on

daily event occurrence, and saturation rate. Operational mode of appliances describes

the functioning appliances and related behavior that can be categorized into three

types: automatic (appliance use is independent of person), semi-automatic (appliance

turned on by household member but turned off automatically), and manual (appli-

ance turned off and on manually). The saturation rate can be used to determine the

presence and/or penetration of certain appliances in households. Generally, the op-

erational mode of appliances and saturation rate is deterministic in nature. However,

parameters such as the probability of activity occurrence, start time, duration, power

consumption, and maximum occurrences vary from household to household and day

to day. In general, some appliance usages can overlap and/or occur in parallel. These

details are handled in this model.

The table in fig 2.5 outlines all the modeled activities and related appliances, their

modes of operation, maximum allowed daily occurrences, activity duration, and power

consumption. The distributions marked with an asterisk (*) denote that they are

modeled by engineering judgment and/or other sources 6. Power rating distributions

for dishwashers are obtained from a survey conducted by NIST [55, 63]. Power rat-

ings and duration distributions for laundry appliances are derived from literature [257,

264] and surveys [63]; power ratings for appliances in cook activity include electric

ovens, microwaves, and electric cooktops (small- and large burners.) Power rating

distributions for these appliances are derived from the NIST efficiency study [185],

and durations of appliance usage are obtained from ATUS data, where the maximum

limit for cooking activities is capped to three. Sample power ratings for TVs are ob-

6https://energyusecalculator.com/

https://energyusecalculator.com/
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served from EnergyStar reports [81] and modeled using a normal distribution. The tv

activity duration is modeled as a log-normal distribution after examining the ATUS

survey data. Power ratings for computer use activity are derived from a small study

conducted by EnergyStar [80]. Standard values for charging duration are used from

reputed laptop manufacturers. Vacuum-related data are obtained from the EnergyS-

tar vacuum report and a survey conducted by Electrolux covering 28,000 consumers

from 23 countries including U.S. [208, 209]. We assume that all households have vac-

uum cleaners. The usage frequency of vacuuming is 1-5 times per week [208] and the

maximum number of daily occurrences is 1. Assuming Normal distribution for power

ratings and duration of appliance usage is reasonable after examining rudimentary

results from surveys/reports. The results of the hot water usage study conducted by

NREL [39, 107] as summarized in Table 2.4 show that most of the processes can be

modeled as a Normal distribution.

Figure 2.5: Modeled activity and appliance usage behaviors.

The activity model simulates appliance usage based on activity indicators provided

by ATUS when the occupant is present in the house. Considering the presence of

appliances in each household (from matching RECS household) The time use diaries
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of adults in the synthetic population and frequency of occurrence of appliance usage

such as dishwasher and laundry and activities such as cooking are taken from RECS

households. The activity model focuses on activities performed by an individual

when at home. Similar to lighting, activities such as cooking, vacuuming, and leisure

activities such as watching TV are shared by household members. A procedure is

outlined below for generating household-level activity sequence ActSeqi. Let M be

the number of adult members in the synthetic household. Then each household

member Pi,j has an activity sequence ActSeqi,j. The goal is to find one household-

level activity sequence ActSeqi composed of n activities (individual + shared appliance

usage-related activities) such that the sequence satisfies the following constraints:

1. Each activity is performed when at least one occupant is home.

2. The limit on repeated usage is respected for each activity type.

3. Presence of appliance is considered for activities such as dishwasher, and laundry

appliances.

Once the above constraints are satisfied, a start time is randomly selected for each

activity from the activity duration reported by ATUS. The actual duration and power

ratings for appliances used in different activities are chosen from Table 2.5.
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(a) Arlington, VA (b) Cook, IL (c) Houston, TX

(d) Maricopa, AZ (e) King, WA (f) Legend

Figure 2.6: Composition of synthetic electric consumption in the repre-
sentative target locations. Heating and cooling constitute the majority part of
residential energy (electricity) consumption. Refrigerators consume slightly higher
energy in hotter regions such as Maricopa and Houston. Activities such as dishwash-
ing, laundry, and cooking represent between 8-17% for different regions. Lighting
and water heating have a consistent proportion of consumption across all locations.
The proportions bear similarities with data published by EIA.

2.5 Case studies

2.5.1 Observing differences and similarities in synthetic en-

ergy use data in spatially representative locations

This empirical study uses only the synthetic data to conduct comparative regional

analyses to examine similarities and dissimilarities between energy use for different
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end-uses. We observe the spatio-temporal patterns and variations in different end-

uses with respect to environmental elements such as irradiance and temperature as

well as demographic and structural characteristics of the households. The selected

target locations are spatially representative of different climate zones of the U.S.:

Arlington, VA; Cook County, IL; Houston County, TX ; Maricopa County, AZ ; King

County, WA

The composition of electric consumption by end-uses is shown in the form of pie

diagrams in Figure 2.6. EIA reports the shares of the major end-uses as follows:

DHW 17-32%, lighting 5-10%, refrigerator 3-5%, activities/appliances 20-26%, space

heating 25-47%, and air conditioning 5-10%. In general, the percentages of major end-

use categories lie in ranges similar to those reported by EIA. HVAC has a dominant

share in energy consumption in households as compared to the usage of appliances

and/or other activities.

Seasonal energy use variations for HVAC, refrigerator, and hot water are captured in

Figure 2.7. The plot shows variation in daily average energy use of the four end-uses

on a monthly basis alongwith temperature across the year 2014. Refrigerator energy

use increases slightly with temperature while the energy used to heat water decreases

with an increase in temperature.

Electricity usage for heating water is the lowest during summer months for all loca-

tions (Figure 2.7c). In particular, regions from hot-humid and hot-dry climate zones

consume the least amount of energy. This observation stems from the relation be-

tween Eh2o,v and T cold
m,z described in Equation 2.3. The water inlet temperature ( T cold

m,z )

differs across temporal as well as spatial scales and is dependent on outside environ-

ment temperatures [117] (Details in Appendix). Figure 2.10 shows plots describing
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(a) HVAC energy use (b) Refrigerator energy use

(c) Hot water energy use (d) Outside temperature

Figure 2.7: Monthly synthetic energy use changes in end-uses such as
HVAC, refrigerator, domestic hot water w.r.t. temperature. The above
line charts monthly energy use changes in end-uses such as HVAC, refrigerator, do-
mestic hot water w.r.t. outside temperature. The line chart shows the average daily
consumption of all households in the target regions. The scatter plot in the back-
ground describes the average daily consumption for an end-use for sampled days
color-coded by location. The size of the markers denotes the standard deviation of
the end-use consumption. Legend: Arlington, VA (green); Cook County, IL (blue);
Houston County, TX (yellow); Maricopa County, AZ (brown); King County, WA
(cyan)

the relation between household size and the number of gallons of hot water consumed

and energy required to heat water. Note that, we consider only electric water heaters

in this work.

Figure 2.7(a) shows that the HVAC consumption varies significantly throughout the

year. HVAC use is higher in hot-dry areas in summer as compared to other regions

possibly due to higher temperatures. Structural characteristics such as dwelling size

(square footage), insulation quality, age and efficiency of HVAC equipment also af-
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(a) Dishwasher (b) Laundry

(c) Cook (d) Cleaning

(e) TV use (f) Computer use

Figure 2.8: Synthetic appliance energy use variation in target locations
throughout the year. The line charts show variation in daily energy consumption
for different appliance energy use throughout the year averaged by month. The lines
depict the average daily consumption of all households in the target region. The
scatter plot in the background describes the average daily consumption for an end-
use for sampled days color-coded by location. The size of the markers denotes the
standard deviation of the end-use consumption. Arlington, VA (green); Cook County,
IL (blue); Houston County, TX (yellow); Maricopa County, AZ (brown); King County,
WA (cyan)

fect household HVAC consumption. Another important variable that drives HVAC

consumption is indoor thermostat behavior which is related to household occupants’

behavior/actions. In this work, indoor thermostat temperatures are set constant
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throughout the day. Insulation quality is not monitored in households (due to lack

of data). We assume that the dwelling is well-insulated and the insulation values

are implemented according to the DOE standards for the respective climate zones.

In Figure 2.9a we show effect of square footage (conditioned space) of a dwelling on

hvac energy use. In general, we observe that as the conditioned space in the dwelling

increases, the HVAC consumption increases.

Lighting energy-use varies by seasons in all regions as irradiance levels change with

weather events and seasons. Figure 2.11b shows average irradiance time series for the

target locations. The corresponding lighting usage is shown in Figure 2.11a. As an

example, we look at monthly irrandiance profiles across 24 hours in Virginia for the

year 2014 (Figure 2.11d). The corresponding monthly lighting energy use time series

is shown in Figure 2.11c. An example of lighting consumption w.r.t. household size

is explored in Figure 2.9b.

Figure 2.8 shows the breakdown of appliance usage for different appliances and elec-

tronic devices. Both figures show a line chart indicating the average daily consump-

tion for the month. The scatter plot in the background describes the average daily

consumption for an end-use for sampled days color-coded by location, where the size

of the markers denotes the standard deviation of the end-use consumption. It is ob-

served that appliance usage in activities such as cooking, dishwashing, performing

laundry, watching TV, using the computer, and cleaning are fairly similar in different

regions. The above comment is intuitively true since appliance use duration and their

ratings may not vary across regions. However, the occurrence timing throughout the

day may vary from house to house depending upon occupant schedules irrespective

of which geographic regions they belong to.
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(a) HVAC vs. house area (i.e. floor area) (b) Lighting vs. household size

Figure 2.9: (a) Synthetic HVAC use and house area (i.e. floor area). Boxplot
comparing daily HVAC consumption in a winter day for the selected target locations
by house area (i.e. floor area). The x-axis groups the floor area of houses in five bins
denoted in two units sq. ft (ft2) and sq m (m2). The bins are as follows : ≤ 1000 ft2,
1000 - 1500 ft2, 1500 - 2000 ft2, 2000 - 3000 ft2, ≥ 3000 ft2. It is observed that as
floor area of the house increases HVAC consumption increases in all regions. Winter
temperatures are relatively moderate in AZ and TX, thus, the HVAC consumption
is less as compared to other regions. (b) Synthetic lighting use and household
size. Lighting consumption increases as household size increases. Household size
indicates the number of members in a household.

(a) Hot water (gallons) vs. household size (b) Hot water (energy) vs. household size

Figure 2.10: Synthetic hot water usage and energy vs. synthetic household
size. Household size indicates the number of household members. The clustered bar
charts show the amount of hot water consumed (in gallons in (a)) and corresponding
energy usage in (b) according to household size on a winter day. The vertical black
line on each bar shows the variation. Water usage and its variation increase with
household size. The amount of energy for hot water end-use increases with household
size and differs by region.
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(a) Lighting profile (b) Irradiance profile

(c) VA lighting profile (d) VA irradiance profile

Figure 2.11: Heatmap depicting relation between hourly synthetic light-
ing usage and hourly irradiance. (a) shows the average annual 24-hour lighting
profiles of representative target locations. (b) shows the average annual 24-hour irra-
diance profile of representative target locations. (c) and (d) present the variation in
lighting usage and corresponding irradiance profiles at the monthly level for Arling-
ton, VA. (c) presents lighting consumption variation throughout the day in different
months across the year. (d) shows variation in the monthly irradiance profile. The
units of measurement for energy usage is kWh and irradiance is Watts/m2. The
lighting energy use is inversely proportional to the irradiance. The energy usage is
higher in the evening and night hours when the occupant is active in the dwelling.
The average lighting and irradiance profiles show regional differences in irradiance
availability and subsequent lighting energy usage. The VA profiles show that day-
light is available for longer durations leading to lower lighting energy consumption as
compared to winter.
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2.6 Discussion

This chapter describes a bottom-up approach to generate a large-scale, dis-aggregated

digital twin of residential energy-use hourly time series for the residential sector at

household resolution across the contiguous United States for millions of households.

The approach integrates diverse open-source surveys and datasets, where the end-use

models are developed by either extending well-established methods or by building

new models. Extensive validation of the synthetic datasets is conducted using re-

al/recorded energy-use data across spatial and temporal resolutions.

2.6.1 Applicability and benefits of the dataset

We are releasing a comprehensive household-level dataset for energy use. In addition

to the household-level disaggregated energy use data, the household composition is

also included in census data. This work was reviewed by the University of Virginia’s

Institutional Review Board (IRB) and was determined to be exempt from board IRB

approval, as this research project did not involve human subject research. The dataset

can be effectively employed in various applications such as NILM (non-intrusive load

monitoring), load profile analyses for observing similarities/differences between end-

use consumption of different regions and seasons, evaluating effects of retrofits in

buildings, studying effects of temperature rise in different regions, and so on. In ad-

dition, this data can also be used for energy model calibration, occupant behavior

evaluation, and implementing demand response strategies and policy interventions.

The dataset can be especially leveraged in training deep learning models where a mas-

sive amount of data is appreciated. Such models can be used for real-time residential

demand forecasting.
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2.6.2 Challenges and limitations

The use of synthetic residential energy demand data has its pros and cons. National

scale hourly synthetic data can be used to carry out national and even potentially

international policy analysis. Spatio-temporal variability allows one to access impor-

tant emerging questions related to equity, fairness, and accessibility at a fine scale. A

systems-level approach can be taken to vexing questions outlined in the 2030 Inter-

governmental Panel on Climate Change (IPCC) goals 7. On the other hand, synthetic

data sets have their limitations as well. For instance, the fine-scale variability of usage

amongst households cannot be captured easily in such synthetic data sets. Addition-

ally, the behavior exhibited by any single synthetic family might be biased by the

data used for synthesis. Thus, any insight generated from high-resolution analyses

should be considered carefully.

An important challenge in developing realistic synthetic residential load profiles at a

national scale and at a high spatio-temporal resolution is to find appropriate datasets

for representing different types of climates, demographics, appliances, and activity

patterns. Accessibility and availability of all the above information from legitimate

sources are crucial to maintaining trustworthiness in the resulting models. A ro-

bust and extensible infrastructure is developed to synthesize diverse data sources

into detailed information structures at various spatial resolutions (e.g. combining

household-level data with climate zone-related data such as insulation values). The

infrastructure consists of methods to compose multiple models and data sets. The

overall time to generate the synthetic data was reduced by using high-performance

computing capabilities.

7https://unric.org/en/new-ipcc-report-emissions-can-be-halved-by-2030/#:~:
text=We%20have%20options%20in%20all,fuels%20(such%20as%20hydrogen)

https://unric.org/en/new-ipcc-report-emissions-can-be-halved-by-2030/#:~:text=We%20have%20options%20in%20all,fuels%20(such%20as%20hydrogen)
https://unric.org/en/new-ipcc-report-emissions-can-be-halved-by-2030/#:~:text=We%20have%20options%20in%20all,fuels%20(such%20as%20hydrogen)
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Some of the limitations of our work are discussed. The current synthetic data does not

include power consumption by electric vehicles and energy generation via renewable

generation (e.g. solar panels). The ATUS data is available for a normative day

for individuals. Thus, activity and appliance-related demands are generated for a

normative day with minor variations coming from the activity model. Hence, our

synthetic data might not be able to capture daily activity variation appropriately (e.g.

as expected by real-time smart metering). This can be difficult to work with especially

when studying demand response scenarios. The building envelope considered for a

synthetic household is simplified due to the lack of information needed to represent

a large population group, thus limiting our ability to employ state-of-the-art and

sophisticated modeling techniques. (e.g. we use a simple HVAC physics-based model

to generate heating and cooling-related energy demand). However, these models are

complex and require detailed information on the household structure which may be

difficult to acquire.
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Chapter 3

Modular and extensible pipelines

for a scalable residential energy

demand modeling and simulation

framework

The landscape of residential energy modeling is changing rapidly. With an increase

in the availability of data, ‘Modeling & Simulation’ systems are becoming ubiqui-

tous. However, reusing or extending these simulations is complicated due to sparse

commonality in design and interoperability. One solution to this conundrum is de-

veloping modular and extensible pipelines. In this paper, we define a set of five

pipelines inspired by microservices-oriented architecture. Four modular pipeline tem-

plates are defined, Data Processing Pipeline, Modeling and Simulation Pipeline, Val-

idation Pipeline, Visual Analytics Pipeline; each encapsulating details of important

tasks in modern-day complex systems. In addition, one custom pipeline is developed,

for composing tasks that can be executed concurrently, called Parallelizable Pipeline.

We instantiate this pipeline architecture for designing a synthetic energy demand

modeling system. The value of the pipeline is demonstrated via three case studies

– two of these studies provide new insights into issues related to equity and climate
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change impact.

3.1 Introduction

Modeling energy demand in the residential sector is becoming increasingly important

to understand how to mitigate climate change, develop sustainable policies, perform

energy efficiency retrofits, improve grid operations, and plan for future energy gen-

eration. Energy-related datasets are becoming available to researchers from open

and proprietary sources for analyses and developing models. This has led to mas-

sive growth in techniques used for modeling residential sector energy consumption.

A detailed review of techniques and types of datasets used in modeling efforts are

listed in the following works [258, 275]. Due to lack of space, we only cite important

methodology reviews and not individual models.

In particular, bottom-up modeling (e.g., agent-based models) and simulations are

gaining importance in this domain since it allows for a detailed modeling approach [49,

222, 267]. Simulations developed using a bottom-up approach for modeling energy

demands offer ample opportunities to understand heterogeneity in occupant behav-

iors, study effects of climate change on different population segments, or plan for

solar adoptions in particular neighborhoods. For example, they allow simulation of

disaggregated energy demand [265] or simulate effects of electric vehicle adoption in

a region [48].

Bottom-up modeling techniques are highly data-driven and may become complex

very quickly, thus making it hard to maintain them or replicate them. As a result,

there can be multiple models with a similar goal, but dissimilar in input data, a

modeling component, or applicable to a limited spatial and temporal scope. This



61

makes it difficult to re-use these modeling frameworks even if researchers make their

simulation source code available. This is mainly because these frameworks have little

commonality in design, e.g., there is no separation of concerns, making the frame-

work tightly coupled and inflexible. There is also a lack of software infrastructure

for addressing extensibility, reproducibility, composability, reusability, and interoper-

ability for simulations. Establishing software design principles for developing modular

and extensible frameworks for simulation tasks has great value in terms of acceler-

ating development of bottom-up approach modeling frameworks in a reliable way

and increasing human productivity. This will also be an important step towards

democratization of simulations.

3.1.1 Contributions

We propose a design process rooted in software engineering principles for devel-

oping a flexible system architecture for energy demand modeling and simulation.

Microservices-oriented architecture and Pipes & Filters architectural styles are ap-

plied to develop pipelines in simulations.

A set of five highly composable pipelines are defined to resemble the algorithmic

workflows representing common processes such as data munging, modeling, valida-

tion, and visualization in modeling and simulation frameworks. The four pipelines are

– (i) Data Processing Pipeline (DPP), (ii) Modeling and Simulation Pipeline (MSP), (iii)

Validation Pipeline (VP), and (iv) Visual Analytics Pipeline (VAP). The fifth pipeline

is called Parallelizable Pipeline (PP) that is influenced by dataflow paradigm for com-

posing tasks that can be executed simultaneously.

The proposed pipelines handle big data efficiently in a multi-level data processing



62

approach. Multiple DPPs can be employed for processing different aspects of a dataset

(e.g. convert raw data into a processed format, combine two processed datasets, store

dataset in multiple formats and so on). Energy demand modeling requires domain

knowledge and data context to fully understand its potential. This is accomplished

in two ways – creating specialized functions in pipelines, and creating interface for

handling domain context for datasets.

The value proposition of the proposed pipeline architecture is shown through three

case studies. They provide an insight into three types of perspectives of the pipelines.

The first case study demonstrates that pipelines are highly extensible, reduce effort

involved in reproducibility, thereby enabling rapid development. As an example we

show the process of substituting existing datasets in the simulations. The second

study performs analyses of the simulation data by adding metadata from census to

study effects of socio-economic variables on energy use. The analytics pipelines in-

gests large amount of data and generates insights via visualizations even at high

spatial resolution. The third case study simulates climate change scenarios for ob-

serving change in energy demand at high spatial resolution. We can study important

social good questions by modifying, adding, and reusing our pipelines in a timely and

efficient manner.

Chapter organization. First, I provide a brief literature review about pipelines and

energy modeling. Then, I describe the general structure of pipelines, microservices,

and their responsibilities. Once the formal model of our pipeline templates is defined,

the proposed pipeline architecture is instantiated for energy demand modeling that

generates high-resolution synthetic energy data. Three case studies are described to

illustrate the modularity, reusability, maintainability, and extensibility of the pipeline

framework followed by a summary section.
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3.2 Literature review

Workflows and pipelines have been designed in many domains (e.g. genetics, bioin-

formatics, smart grid, online games) for automation of tasks, improved efficiency,

re-usability, and better control of elements [13, 56, 129, 248, 254]. These works have

shown that pipeline/workflow frameworks have supported streamlining of complex

analyses tasks and duplicating or updating micro-tasks in tedious experiments much

simpler.

Several works have focused on designing reusable and reliable workflows in different

application areas. Some examples are [129, 223, 247]. Data processing is an integral

part of a large scale system and comes with many challenges [215]. It is essential to

focus on understanding data and processing it appropriately to retain its value [238].

Koehler et al. [134] present a methodology to automate data wrangling process by

incorporating data context via user annotated schemas and rule based data repairs.

[129] presents a scalable time series data processing pipeline for building-level energy

data on a HPC platform. [248] presents a cloud-based machine learning pipeline for

dynamic demand response in smart grids. This pipeline performs data ingestion,

machine learning modeling, and interaction with the system.

In spite of these efforts, there is scarcity of guidelines on software infrastructure

for developing ABM simulations in the domain of energy demand modeling. The

importance of designing a complete system, including software for all stages of the

process, such as data processing, modeling and simulation, validation, visualization,

and analytics, has not been addressed. Thus, we propose a set of five composable

and extensible pipelines for designing ABM systems and simulations.
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3.3 Pipelines

Our pipelines are inspired by two designs: the microservices-oriented architecture

(MSA) [26, 59, 161, 237, 287] and the Pipes and Filters architectural design pat-

tern [143]. One of the biggest benefits of MSA is its usefulness for big data ap-

plications because of the ease of extensibility it provides. MSA consists of loosely

coupled, reusable, specialized, and independent modules/functions that often work

independently of one another. Thus, one unit module can work with its input(s) as

a standalone entity with little to no dependencies. This gives the function enough

room to be scaled in an individual fashion. The pipe and filter design pattern treats

the filter as a black box function that can communicate with another filter using

specific sets of channels called pipes. These pipes can be data, messages, or other

information required by the filter. This type of architecture makes it easy to maintain

the system for rapid development and integration of workflows. These architectures

provide flexibility so that only certain processes can be activated while keeping the

remaining system untouched. Thus, they provide many benefits that are desirable

properties for building bottom-up simulations.

A pipeline is a sequence of components, where each component takes a set of input(s)

and produces a set of output(s). We define each component of the pipeline as a

microservice (or h-function). Modularity and loose coupling characteristics of a mi-

croservice gives a clean structure to the pipelines, resulting in application of the Pipes

and Filters pattern [143]. In our case, filters are microservices which encapsulate a

functionality and pipes serve as connectors for data streams between two filters. Thus,

a pipeline has chained and cooperative microservices assembled in a Pipe and Filter

pattern to provide functionalities. We proceed by formalizing the pipeline framework

and instantiating it for our application. Notations for the pipelines are described in



65

(a) Data processing pipeline (DPP). (b) Modeling pipeline (MSP).

(c) Validation pipeline (VP). (d) Visual analytics pipeline (VAP).

(e) Parallelizable pipeline (PP).
(f) Legend.

Figure 3.1: Proposed pipeline templates. Five pipeline templates following the
pipe and filter architectural design pattern are proposed for different stages of data-
driven simulations. Filters are composed of modular functions (h-functions) that have
properties of microservices-oriented architecture. Functions are chained together by
data pipes. The user icon indicates that some functions require user input/domain
expertise.

Table 3.1.

Energy demand modeling requires domain knowledge and context to fully understand

the data potential. One way to achieve this is by creating interfaces for handling

domain context for datasets. We call this interface Data Specification Interface (DSI)

that incorporates domain knowledge while synthesizing data from disparate sources.

The domain expert/analyst aids in defining and annotating schemas for datasets.

Our DSI has a global scope and is used for specifying a data-product schema sd that

will be populated by a data processing pipeline after ingesting a data source. The

analyst/domain expert defines target schemas and annotates datasets. Let I be the
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Table 3.1: Notations.

Notation Description
P The set of instances of pipeline templates.

DPP The Data Processing Pipeline DPP ∈ P.
MSP The Modeling and Simulation Pipeline MSP ∈ P.
V AP The Visual Analytics Pipeline V P ∈ P.
V P The Validation Pipeline V P ∈ P.
PP The Parallelization Pipeline PP ∈ P.
H The set of all microservices in the pipeline framework/system.
H The set of microservices employed in a pipeline; H ⊂ H.

h
A software implementation of a function as a microservice
(h-function); h ∈ H.

R

A collection of all the datasets employed in the system
stored in their original format along with any metadata.
Our system stores raw data in formats such as flat files
(e.g. csv files), pdf, images, and shapefiles.

r An unprocessed dataset in its original format; r ∈ R.

D

A collection of curated, verified, and usable datasets ob-
tained by processing datasets from collection R. Datasets
in D are cleaned and stored in readily usable formats such
as csv files, text files, and excel sheets so they can be easily
utilised by other services in the system.

d A curated, verified, and usable dataset; d ∈ D.

I

A Data Specification Interface (DSI) stores informa-
tion/metadata about different datasets d ∈ D for lookup
purposes.

Id

A tuple Id = (ad, sd, fd, ld, ed) ∈ I for the dataset d where ad
is the access type of d, sd is the schema, ld is the location
where d is stored, and ed is the name of the dataset.

DSI. Let I be a tuple in I which corresponds to a record for dataset d employed in the

framework. Then, I ∈ I and I = (ad, sd, fd, ld, ed), where ad stores access type and

access properties of the data d, sd is the target schema for data d, fd is the storage

format of d (e.g. database, flat files, etc), ld is the location of the data, ed is the name

of the data. The user can perform classic CRUD (create, read, update and delete)

operations on I.

We define five pipelines in this work: four pipeline templates referred to as the (i)
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Data Processing Pipeline (DPP), (ii) Modeling and Simulation Pipeline (MSP), (iii)

Validation Pipeline (VP), (iv) Visual Analytics Pipeline (VAP), and a custom pipeline

called the (v) Parallelization Pipeline (PP) based on dataflow paradigms. A pipeline

is constructed through a composition of microservices/h-functions and/or pipelines

as building blocks. The ‘composability’ attribute of h-functions makes them highly

reusable, modular, and independent. They can encapsulate a number of specialized

services, support parallelization, and can flexibly be adapted for specific tasks.

Data Processing Pipeline DPP(R,H). The goal of this type of pipeline is to ingest

raw data r ∈ R and produce verified and usable data d ∈ D in a specific format

(i.e. target schema) sd. This pipeline can also perform operations on multiple data

d ∈ D to produce a new data d
′ ∈ D. In this process, the pipeline ingests data,

cleans data, performs EDA (exploratory data analysis), create/update records in DSI

(create mappings and schema definition), and store the verified data on a file system

(optional). First, data access type is determined (e.g., read file, query database),

unsupported requirements are addressed, and are then converted into h-functions.

This is followed by data cleaning activities such as missing value omission/imputa-

tion, addressing duplication, and other EDA tasks. If multiple datasets are input to

the pipeline, then data augmentation may also be a function in the pipeline. Once

the data is formatted per target schema defined by user, the pipeline adds record(s)

Id = (ad, sd, fd, ld, ed) in the DSI I and stores ‘verified and usable data’ on the disk at

location ld. Figure 3.1(a) shows a DPP template. This pipeline performs the heavy

lifting tasks such as data munging, data profiling, data synthesis, and creating/anno-

tating schemas so that they can be easily assimilated in other pipelines in a uniform

way. DPP pipelines are a first line of action for many long workflows in the framework

(e.g., adding/replacing a dataset ). Although this pipeline resembles many features
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of a typical data munging pipeline, we distinguish it by adding a way to handle data

context/domain knowledge by defining a DSI. Thus, a DPP is defined as a transfor-

mation DPP : R×H → D× I sending (r, h) to (d, Id). This supports the separation

of concern and adds value to our pipelines.

Modeling and Simulation Pipeline MSP(D,H). Output of one or more DPPs is input to

a MSP. Some of the h-functions in this pipeline may run simulations, invoke already

trained ML models, train and test a ML model, perform model predictions, develop

first-principle models, or validate model generated data. Some other data related

functions include data conversions, and schema verification for input- and output

data that are encapsulated by the DPP in this pipeline. Figure 3.1(b) shows a MSP

template.

Validation Pipeline VP(D,H,v). The input to the VP comes from two different datasets

to be compared/evaluated. The validation task v is also an input (user defined) so as

to trigger and initialize the correct VP. The data is then converted to the required

format and fed into the verification and validation (V&V) function/model/task. Re-

sults are then verified, visualized, and arrive at a conclusion depending upon v. Fig-

ure 3.1(c) shows a VP template. Thus, a VP is a transformation that maps data sets

D = (d1, . . . , dn) to a verified result using the h-functions H = (h1, . . . , hn).

Visual Analytics Pipeline VAP. We define this pipeline in our application for special

purpose. This pipeline extends the framework to incorporate scenario/intervention

analysis. One example of this pipeline use is to study how energy use differs in income

groups and population groups in a region. Our simulations generate high resolution

data, and this pipeline is apt at converting data into insight. Figure 3.1(d) shows a

VAP template. It is important to note that this pipeline takes domain expert/analyst

queries as one of the inputs and the conceptualizes the task.
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Parallelization Pipeline PP(DPP1, . . . , DPPn,MSP1, . . . ,MSPm, D,H, z). This type

of pipeline can be built to run parallel instances of slow pipelines/h-functions within

pipelines to improve runtime of the system or individual pipeline. The composition

of such pipelines is completely user defined. Once the elements are appropriately

assembled for the given task and computation details (e.g. number of instances) are

provided in input z, the pipeline execution can be automated to produce desired

results.

3.4 Energy demand modeling pipeline framework

The residential energy demand modeling framework generates household-level syn-

thetic energy demand profiles for different end-uses at an hourly resolution using a

bottom-up modeling approach. End-uses modeled are heating and cooling, hot wa-

ter use, refrigerator, lighting, TV, and other appliances such as cooktops and oven,

dishwasher, washer and dryer. Different models and multiple datasets from disparate

sources are used in modeling different end-uses. Figure 3.2 shows this in the blue

dotted box ‘Energy Modeling Block’.

We design the energy modeling simulation in a bottom-up approach. A bottom-up

approach in simulations relies on detailed designing of components of system and

then integrate these components in a meaningful and recursive way until the system

is whole. This gives way to formulating a pipeline framework and delineation of

different types of tasks in large-scale systems such as data processing, modeling, and

validation. We instantiate the pipeline templates to outline our residential energy

demand modeling framework as shown in Figure 3.2.

Data processing is one of the most important tasks in our system since we have data
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Figure 3.2: Pipeline framework for residential energy demand modeling. The
figure shows a system-level view of pipeline interactions for the modeling and gen-
eration of synthetic energy demand. All the blocks marked with A indicate these
are the first set of processes for ingesting a variety of data sources in different for-
mats and converting them into usable data. Once the datasets are ready, we proceed
with augmentation of a few important datasets (e.g. synthetic population) with
domain-related information. These processes lay the foundation for high resolution
simulations. The DPP and MSP pipelines for augmentation of synthetic population
are shown in the Augmentation Block denoted by B. Pipelines encapsulated in Par-
allelizable Pipelines reduce execution time of larger tasks (e.g. PP1 runs pipeline
chains independently in the Augmentation Block). Energy Modeling Block (C) takes
inputs from datasets in D. Several data-driven and first principle MSPs generate
disaggregated energy demand timeseries at household level. Then, we validate (de-
noted by D) the simulated data with ground truth with multiple procedures (VP).
One can process this high resolution data to study characteristics of the generated
dataset using VAP. The box in pink is highlighted for case study 1.

from a variety of sources. The datasets have multiple formats and resolutions (e.g. by

minute, normative day, annual, statistical representations of the entire population,

small samples of population groups). These datasets differ largely in volume. For

example, the synthetic population is statistical representation of households in a
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region (e.g. Virginia state has 3M households) whereas the energy use survey is

available for 5k households. We follow a multi-layered approach for processing the

data through DPPs. In the first stage, raw datasets employed in the system are

converted into a verified and usable data via a DPP. These are marked by A in

Figure 3.2. Then, as required by the modeling task, we harmonise different datasets

and/or engineer model features to create appropriate inputs for DPPs.

Depending upon the runtime of subsequent pipelines, the outputs may or may not be

written to disk. This is one of the advantages of having microservices. Data can be

stored on disk after benchmark actions so as to avoid re-running tedious pipelines.

MSPs denote modeling pipelines in the framework. MSPs perform specialized data

transformations, feature engineering, and build the model. For example, MSP31

trains a multivariate ML model using a survey population and is used for prediction

on synthetic population. The output (‘RECS mappings’) of this pipeline is written

to disk since this task is performed only once and it is compute intensive.

The synthetic population and augmentation outputs are input to the Energy Modeling

Block. This block is responsible for generating energy demand profiles at household-

level and hourly resolution for different end-uses. Thus, we see multiple MSPs in this

block. For example, MSP46 is the modeling pipeline for simulating the duration and

time of appliance use such as dishwasher, laundry appliances, and cooking appliances.

DPP within this pipeline will harmonize appliance surveys with household information

from the synthetic population, and occupancy information from respective ATUS

mapping, and appliance ownership information from the respective RECS mapping.

Further details of the pipeline framework for energy demand modeling can be found

in Figure 3.2.

Our pipeline framework can separate domain invariant h-functions from context-aware
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h-functions that incorporate domain knowledge. Considering the big data aspect in

our framework, we harness the power of DPPs to address the volume, variety, and

veracity of datasets in a staggered multi-layered approach.

3.5 Case Studies

This section outlines three case studies to demonstrate the value of the proposed

pipeline architecture. The first case study shows how a new data source can be

substituted for an existing data source in the system. This study highlights that

having an extensible software infrastructure in place, speeds up effort needed by

researchers to add new functionality to the system. Case studies 2 and 3 analyze

energy related questions at different spatial resolutions in Virginia (VA) state, U.S. for

3.3 million households. Case study 2 analyzes effects of social, economic, and dwelling

characteristics on energy consumption. The case study shows how VAP pipelines

are used to formulate these studies to reduce researcher’s time for conducting this

experiment. Case study 3 shows examples of modeling and simulating future energy

related scenarios such as effects of global warming (specifically, temperature rise) in

different regions in VA. This experiment adds a new dataset in the system, executes

the energy demand modeling framework, and then uses VAP pipelines to analyze

the relevant datasets and report findings through data cubes and visualizations. The

modularity of pipelines demonstrates how easy it is to extend the current architecture

to study future climate change scenarios.
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(a) DPP11

(b) DPP11’

Figure 3.3: Data substitution. This figure shows an example of data substitution.
Let dataset d is processed by DPP11 and dataset d′ be processed by DPP11’. In the
process of substituting the synthetic population dataset from d to d

′ we replace the
pipelines from DPP11 by DPP11’. The individual components within the pipelines
are the microservices/h−functions that process small pieces of information.

3.5.1 Study 1: Data Substitution

One of the major benefits of using microservices-oriented architecture for big data

applications is the ease of extensibility it provides. Extensions can be through the

addition of new data/functions or through modification of existing data/functions.

The goal of this case study is to show how pipelines (specifically DPP) can be used

to replace an existing data source with a new data source in the framework (e.g.,

substituting a synthetic population data d with another synthetic population data d
′ .

This study highlights the modularity and extensibility characteristics of the pipeline
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framework. It is an excellent example to demonstrate the multi-layer approach to

data processing.

We replace the existing synthetic population dataset d with a new dataset d′ . Overall,

we want to make a minimum number of changes to the system while replacing a data

source. Figure 3.3(b) shows the new data pipeline DPP11’ that will be substituted

in place of pipeline in Figure 3.3(a) DPP11. Note that, DPP11 will be substituted by

DPP11’ in Figure 3.2. A new data pipeline is developed for d′ since the format and

method of accessing this dataset is different than that of dataset d. d
′ population

is accessible via a database whereas the current access mechanism for d is flat files.

Thus, DSI is updated and we add a new ‘access’ microservice for d
′ . When the

pipeline is replaced in Figure 3.2, the overall operating mechanism of the system

does not change. We only substitute DPP to switch the dataset. Thus, the pipeline

architecture is able to accommodate these changes with ease.

Next, the DSI is updated with a tuple for d
′ . We want the final schema for both

datasets to be the same (unless we want to add new data features). Keeping the

schema structure the same allows us to reuse the existing structure of the modeling

pipelines. Next, we replace the existing ‘access’ microservice for employing d
′ in the

architecture by adding database-related functionalities. Examples of such microser-

vices are – accessing the database and querying the database. We also add/replace

data formatting and processing functionalities in DPP11’. When the pipeline is re-

placed in Figure 3.2, the overall operating mechanism of the system does not change.

We only replace the DPP such that the existing design of the system is not disturbed

unless required. Thus, the pipeline architecture is able to accommodate these changes

very easily.
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3.5.2 Study 2: Socio-economic Analyses of Synthetic Energy

Demand Data

The goal of this case study is to examine the effects of social, economic, and dwelling

features on energy use in different census tracts of Virginia. Two analyses are per-

formed – (i) the effects of income and race on energy use, (ii) the influence of floor

area on energy use in urban, rural, and cluster areas. This study is outlined to high-

light the composability and extensibility characteristics of the pipeline framework. It

also shows that with a software architecture in place for designing pipelines, it is very

easy to perform such analyses, thus increasing human productivity.

Income, race, and energy use. A VAP is designed to analyze demographic data

from the census and energy output from the modeling system. Aggregation operations

are performed on the data to roll up from the household level to the census tract level

generating data cubes on spatial resolution, income brackets, and race. Figure 3.4

shows that energy use tends to increase with income and decrease with an increase in

minority groups. The pipelines aid in querying different datasets, combining them,

and generating data cubes across multiple dimensions. This process is extremely time

efficient to generate results from the VAP.

Floor area and energy use in urban and rural areas. A VAP is designed to

analyze energy use vs. floor area at the census tract level in Virginia. Floor area and

energy demand are both outputs of the energy modeling framework. Aggregation

operations are performed on the data to roll-up from household level to census tract

level generating a data cube. The data cube is then augmented with urban and rural

annotations at census tract level by processing census shapefiles. Figure 3.5 displays

a scatter plot of energy usage vs. median floor area at census tract level for Virginia
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(a) Income vs. racial minority (b) Energy use vs. racial minority

(c) Energy use vs. income

Figure 3.4: Energy use is simulated for a summer day in Virginia. A dot in the
scatter plot represents a census tract. (a) A higher income bracket population seems
to reside in census tracts with a lower percentage of racial minorities (correlation=-
0.08). (b) Slightly negative correlation between energy use and % of racial minority
groups (correlation=-0.13). (c) Higher-income groups consume more energy (correla-
tion=0.46).

state and the VAP designed for this case study. At a glance, we can see which census

tracts can potentially be targeted for decarbonization (e.g. quadrants labeled ‘Large

floor area, High energy’ and ‘Small floor area, High Energy’).
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Figure 3.5: Energy use vs. floor area: The VAP is shown on the left and the scatter
plot on the right displays energy usage vs. median floor area at the census tract
level. Each point is colored to display its area type. Quadrants are drawn by plotting
averages for the axes (correlation = 0.546).

3.5.3 Study 3: Examining Effects of Climate Change

This goal of this experiment is to examine the effects of climate change in different

regions of Virginia. This study is outlined to highlight reproducibility, reusability,

composability, scalability, and extensibility characteristics of the pipeline framework.

Three different climate change scenarios are simulated for a summer day in VA. Rep-

resentative Concentration Pathway (RCP) scenarios that limits global warming are
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simulated for average temperature rise corresponding to 3.6F (RCP 2.6), 5.4F (RCP

4.5), and 9F (RCP 8.5). A new DPP is composed for generating future temperature

data under each of the scenarios at county level. A schema is added in the DSI and an-

notated by the user/researcher. This is dataset is then plugged in the energy demand

modeling framework. This shows that the framework is extensible and reusable. The

same energy demand modeling framework is used to reproduce results for all the RCP

scenarios. The researcher can execute each of these scenarios in parallel and speed up

the process of obtaining results. A VAP is developed for analyzing the output data.

The output of this pipeline are datacubes aggregated from household level to county

level for different scenarios. This pipeline collates the data very easily to formulate a

researcher defined question and analyze the results via visual aids. Figure 3.6 shows

the effect of climate change on air conditioner energy use for a summer day under dif-

ferent scenarios. The simulation results are shown for 8 July 2014, RCP 2.6, RCP 4.5,

and RCP 8.5 scenarios. The southeast counties of Virginia are the most vulnerable

to climate change. The temperature change is shown in histogram (Figure 3.6(c)).

(a) 8 Jul, 2014 (b) RCP2.6 (c) RCP 4.5 (d) RCP 8.5

Figure 3.6: Effect of climate change in Virginia. Heatmaps are used to show
average increase in energy usage by air conditioners on a summer day in Virginia.
The results are shown at county level. It is observed that southeast counties are the
most vulnerable to climate change.

Under RCP 8.5, the world’s average temperature would rise by 4.9 degrees Cel-

sius, or nearly 9 degrees Fahrenheit. That’s an inconceivable increase for global

temperatures—especially when we think about them being global average tempera-

tures. Temperatures will be even higher in the northern latitudes, and higher over
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land than over the ocean.

3.6 Scaling the energy demand framework to larger

regions and consequently all of U.S.

Figure 3.7: Maximum CPU utilization (%) as job size (population bins) and number
of processors increase. Each colored bar depicts a job from the population bins.
Strong scaling - CPU utilization for each type of job is shown for increasing number
of processors. Weak scaling - Examine the CPU utilization by increasing number of
processors as well as problem size.

For the proposed framework of demand generation, we perform a set of experiments

to test the performance in terms of runtime, CPU utilization, and memory utilization.

Two performance testing setups are considered - strong scaling and weak scaling. In

the case of strong scaling, the job size is constant while the number of processors

varies. It explores the extent to which execution time can be reduced by introducing

parallelism in the method. With this experiment, one can also study the processor

workload. In weak scaling, the number of processors as well as the job size vary.

Weak scaling can produce insights on how much longer it takes for the job without

parallelization.
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Figure 3.8: Runtime in seconds as job size (population bins) and number of processors
increase. Each colored bar depicts a job from the population bins. Strong scaling
- execution time for each type of job is shown for increasing number of processors.
Weak scaling - examine the runtimes by increasing number of processors as well as
problem size.

Figure 3.9: Histogram of number of households in counties in the U.S.

For our experimental setup, a job on the cluster will be a county, and the job size

is defined as the number of households present in a county. There are 3109 counties

in the U.S. according to the SPEW population. The national model should execute

3109 jobs to generate daily demands for all of the U.S. Figure 3.9 shows the pop-

ulation distribution of the counties in the U.S. One county each is chosen from the

most representative population bins (102 to 106) for the scaling experiment. All the

experiments are conducted on a node with CentOS 7.6.1810 x86_64 having 40 cores

- each core running Intel Xeon Gold 6148 CPU @ 2.40 GHz. The total available
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memory on every node is 375 GB, shared by the 40 cores on the node.

Initially, the model calls for I/O operations for assembling various datasets and at-

tributes, to calculate energy consumption. This increases memory usage. The energy

consumption calculation function is invoked for every household in the county (job).

Finally, output for every job is generated and stored in flat files. Memory consump-

tion increases linearly with job size Results for both types of scaling are described

below.

Strong scaling. In Figures 3.7 and 3.8, we refer to CPU utilization and runtime of

a job (single colored bar), respectively, as the number of processors increase. For

example, a job from the bin size 104 (orange bar), is allocated 8 cores and then 16

cores. The maximum CPU utilization in each of the scenarios is approximately 95%

and 85%. However, the runtimes for each of these configurations is almost same.

Since the execution times of the job does not change significantly from 8 cores to 16

cores, it is beneficial that each of the jobs belonging to the bin size 104 are allocated

8 cores.

Weak scaling. Results for weak scaling are shown in Figures 3.7 and 3.8. CPU

utilization is satisfactory (85%-95%) when the number of cores are allocated correctly

w.r.t. the problem (job) size, otherwise, the CPU is either underutilized or over-

burdened (increasing runtimes). In Figure 3.8, it is clearly evident that execution

time increases linearly as the job size increases. For jobs belonging to different bins,

as the number of cores increase from 2 to 16, the runtimes reduce drastically. However,

there is no significant execution time difference between the processor allocation 16

and 32 (blue and red bars). Also, the runtimes start plateauing for every job type as

the number of processors increase indicating a limit on the parallelism threshold, i.e.

there comes a point where execution times do not change even if more processors are
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Figure 3.10: Maximum memory requirements of every job type.

added.

The results of the scaling study form the basis for the allocation of resources such

as memory and the number of cores for every job. Figure 3.11 shows the execution

workflow where jobs are assigned memory and CPUs and then launched on available

nodes of that configuration. It is observed that, for a given day, the national model

runs in 28 minutes with 800 cores and 59 minutes with 400 cores. The model generates

approximately 175GB of output data per run.

3.7 Discussion

The proposed pipeline templates implement important tasks performed by modern-

day complex software systems. Note that, each pipeline is composed of loosely coupled

microservices. Thus, the templates can be extended/tweaked for architecting software

systems in other domains too. One such example is designing analytical and data pro-

cessing microservices for smart city transportation [13]. Koehler et al. demonstrate

an example of incorporating domain knowledge in big data systems [134]. In another
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Figure 3.11: Execution workflow: Each job is created by exploiting the geographical
hierarchy (state, county, and census tract). Several jobs are executed in parallel
on several compute nodes. The memory and CPU requirements are determined for
each job, depending upon the number of households in a job. The dynamic models
compute the different parts of the total consumption. The job outputs the synthetic
load profiles for activities, thermal comfort, and hot water usage at hourly intervals
for every household in the synthetic population.

Figure 3.12: Runtimes of individual jobs are plotted for every state in the U.S. The
outliers on the box and whisker plot show the larger size jobs. The whiskers are set
to [0,98] percentiles.
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example, microservices-oriented architecture is adopted for designing controlled net-

worked social science experiments. A set of five highly composable and extensible

pipelines for modeling residential energy demand have been presented along with

modular and specialized building blocks called h-functions in data, modeling, vali-

dation, and analytics pipelines. A fifth custom pipeline is proposed based on the

dataflow paradigm for composing pipelines to speed up the execution time of long-

running tasks. This conceptual approach of our pipelines satisfies reproducibility,

reusability, separation of concern, high maintainability, and extensibility properties

of efficient software design. Domain knowledge and data context is incorporated in

the pipelines via specialized microservices and a DSI. Our case studies illustrate that

pipelines offer great potential to study intervention scenarios in social good applica-

tions with minimum effort. We also conducted a scaling study to improve the runtime

and memory use of the framework on a HPC system.
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Chapter 4

Validation of digital twin of

household level energy demand

Synthetic data is gaining importance in multiple disciplines as a substitute for real

data for simulating counterfactual scenarios, and for supporting AI model develop-

ment and testing in domains where there is a lack of sufficient data or maintaining

privacy is paramount. Applications of synthetic data are becoming widespread in

the areas of self-driving vehicles [11, 33, 240], robotics [54, 163], simulating ’what-if’

scenarios [67, 138] for policy suggestions and so on.

However, synthetic data should be of good quality and appropriately represent the

real-world scenarios. In domains where privacy and sensitive data is involved, it is

crucial that the generated digital twin is validated appropriately at multiple stages of

production and application to ensure that the data does not present false information.

Synthetic data has witnessed a wide variety of applications in the smart grid. Many

times data is unavailable, has a time-consuming data collection process, or is pro-

prietary. This leaves the research community to look for alternative data sources to

conduct their experiments to provide solutions for policy formulation and be informed

on shortcomings of existing problems in smart grid. Some examples of synthetic data

in smart grid is synthetic power networks [115, 165], synthetic energy demand [132,

231, 266], synthetic building stock datasets [188].
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4.1 Introduction

Validating the quality of the large-scale synthetic timeseries data for a sizeable region

such as the U.S. is challenging, owing to the vast extent, diversity, and contrasting

climates in the country. One of the challenges of validating an energy consumption

timeseries at household level is the large variety and variability of the load patterns

within and between households. In addition to external elements such as weather

and building characteristics, consumer lifestyles and affordances play a vital role in

shaping the demand such as a curve with morning peak, or a curve with a small

afternoon peak and sharp evening peak. This leads to a big spectrum of variations

and patterns in energy use. Thus, in-depth comparative analyses of synthetic data to

actual data is required. However, it is conditioned on the availability of a reasonable

amount of representative real data. Here, we employ real/recorded data such as load

research data, end-use metering data, and smart meter data from ten locations in the

country that are representative of the U.S. climate zones (Table 4.1). The availability

of public smart meter data in the U.S. is limited, which may cause a potential skew

towards the selected sample of households and may not be spatially representative.

Thus, framing our understanding of validation in this context is important.

We address the quality of the synthetic energy consumption data on two intrinsic qual-

ities of energy use data : magnitude (usage over 24 hours) and load shape (pattern

of consumption). Magnitude and load shape can be examined across the temporal

(hour/day/month/year) and spatial (household/census tract/city/county/state/cli-

mate zones) axes. Thus, the verification and validation (V&V) process covers:

• Spatial representativeness and resolutions. Due to limited availability of real

data, we define spatial representativeness by choosing atleast one location in
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each climate zone in the U.S. to carry out validation experiments. The major cli-

mate zones [166] in the contiguous United States are as follows: (i) marine, (ii)

hot-dry/mixed-dry, (iii) hot-humid, (iv) mixed-humid, and (v) cold/very-cold.

Comparisons are then performed at household and city/county resolutions.

• Temporal representativeness and resolutions. Temporal representativeness is

studied by observing similarities between real and synthetic hourly demand

profiles. Furthermore, daily and seasonal energy usage is studied for different

locations.

• Dis-aggregate energy use. Note that we publish dis-aggregated energy use data

at household level. Thus, a finer level of evaluation such as an energy use sub-

type (e.g. HVAC, cooking, etc,.) is possible at various temporal and spatial

levels.

All the real datasets used in the V&V process are listed in Table 4.1. Recorded

datasets are obtained from Pecan Street Dataport [187], Northwest Energy Efficiency

Alliance (NEEA) [227], National Rural Electric Cooperative Association (NRECA).

The Los Alamos dataset is obtained from a public data sharing repository Dryad [251].

Unfortunately, we do not have any metadata about households (e.g. household size,

dwelling type, etc) in these datasets. The datasets only have energy use timeseries.

In this paper we focus our attention on synthetic energy demand profiles in the res-

idential sector of the U.S. Grid modernization and climate change is forcing utilities

and research communities to explore personalized and fine-resolution solutions to re-

duce energy footprint. Due to the shortage of availability of large-scale high-resolution

real energy use data, it is challenging to conduct detailed experiments at the level

of census-tract, vulnerable population groups in a small region, or at building stock/
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household-level. Most of the energy data that is (freely) available is collected via

long term monitoring of individual devices or main circuits in the house [23, 127,

136, 187, 221]. In such situations, dissemination of large-scale realistic data takes a

long time and a good quality synthetic data can support policy making decisions for

decarbonization and demand response related problems.

There have been efforts for validating residential energy use data at different temporal

and spatial levels. In a recent work, Klemenjak et al. [132] compare dis-aggregated

daily energy use for major appliances at household-level with smart meter data [127].

Thorve et al. [266] validate their energy use profiles at household-level using dynamic

time warping. Subbiah et al. [257] compare the total daily energy-use across all

households served by a utility for a typical day. Muratori et al. [179] compare modeled

energy-use with real smart meter data from across different climate regions using

statistical tests.

In complex datasets, such as hierarchical data, additional constraints may be required

to evaluate the goodness of the generated synthetic data. Examples of such datasets

can be found in sciences such as synthetic population [68, 77, 91, 260], synthetic energy

profiles [231, 266], synthetic water demands, and so on. For example, in the synthetic

population, the synthetic persons are expected to match the characteristics of real

people. At the same time, an additional constraint that the household dependence

structure w.r.t. individual assignments should be maintained while validating the

realism of generated households. In this paper, we focus on the task of validating

the realism and variability of detailed synthetic energy use data at detailed spatio-

temporal levels.

Chapter organization. Next we summarize the results of a preliminary V&V study

for a small region. This is followed by further a study that shows an effective way of
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comparing/validating distributions of dis-aggregated energy use in different regions

using probability distances. Finally, we propose a set of three-dimensional V&V

metrics for evaluating the quality of the energy use time series based on a hierarchical

data-tree model.
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Table 4.1: Datasets used for validation
C

lim
at

e
Lo

ca
ti

on
So

ur
ce

Y
ea

r
Sa

m
pl

e
si

ze
A

re
a

ty
pe

R
es

ol
ut

io
n

Is
op

en
-

so
ur

ce

Is
da

ta
co

m
p

le
te

?

Is
da

ta
di

s-
ag

gr
e

ga
te

d?
H
ot
-

H
um

id
A
us
tin

,T
X

Pe
ca
n

St
re
et

20
18

25
U
rb
an

15
-m

in
Ye

s
Ye

s
Ye

s

H
ot
-

H
um

id
H
or
ry
,S
C

N
R
EC

A
20

17
56

00
0

Ru
ra
l

Se
m
i-

ur
ba

n
H
ou

rly
N
o

Ye
s

N
o

M
ix
ed
-

H
um

id

R
ap

pa
ha

-
nn

oc
k

in
VA

N
R
EC

A
20

16
10

0
Ru

ra
l

H
ou

rly
N
o

Ye
s

N
o

C
ol
d

To
m
pk

in
s

C
ay

ug
a

in
N
Y

Pe
ca
n

St
re
et

20
19

25
U
rb
an

15
-m

in
Ye

s
N
o

Ye
s

C
ol
d

Lo
s
A
la
m
os

in
N
M

O
pe

n
da

ta
D
ry
ad

re
po

sit
or
y

20
14

16
00

Se
m
i-

ur
ba

n
H
ou

rly
N
o

Ye
s

N
o

C
ol
d

M
T

N
EE

A
20

19
9

-
H
ou

rly
Ye

s
N
o

Ye
s

C
ol
d

ID
N
EE

A
20

19
19

-
H
ou

rly
Ye

s
N
o

Ye
s

C
ol
d

M
ar
in
e

O
R

N
EE

A
20

19
10

2
-

H
ou

rly
Ye

s
N
o

Ye
s

C
ol
d

M
ar
in
e

W
A

N
EE

A
20

19
78

-
15

-m
in

Ye
s

N
o

Ye
s

H
ot
-D

ry
/

M
ix
ed
-

D
ry

Sa
n
D
ie
go

in
C
A

Pe
ca
n

St
re
et

20
14

20
15

20
16

25
U
rb
an

15
-m

in
Ye

s
N
o

Ye
s



91

4.2 Preliminary V&V with Dynamic Time Warp-

ing (DTW)

This V&V task is completed using the hourly energy use profiles of a sample of 100

households from Rappahannock county, VA, for all days of the year 2016. The number

of synthetic households in Rappahannock is 3272 households. For each synthetic

household hourly energy use profile s, we find the closest matching real energy use

profile r, using dynamic time warping (DTW) [30].

Dynamic time warping is a distance measure specifically designed for comparing time

series data. Intuitively, it allows stretching and squeezing of the time series to find

the best corresponding points between them. The DTW algorithm finds an optimal

match between two given time series, subject to some constraints, using dynamic

programming. The constraints are that every point in each series must be matched

to a point in the other series. Further, if a point at time t on one series is matched to

a point at time t + k on the other, then any point t′ > t on the first series can only

be matched to a point at time t+ k +m, for m ≥ 0 on the other time series.

The appropriateness of DTW for our problem can be explained by a simple example.

Consider a real household that has a cooking activity at 4 pm and a TV-watching

activity at 7 pm, causing two peaks in the active demand profile. Correspondingly, we

might have a synthetic household that has the same two activities, but at 4:30 pm and

6.40 pm, respectively. Intuitively, these two load profiles are a good match since they

will have similarly sized peaks in a small time window (radius). However, standard

methods of comparison, such as taking the Euclidean distance between the two time

series or calculating Pearson’s correlation will not give a good match between the two

series. DTW, however, can line up the peaks because it is allowed to compress a part
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of the time series between the two peaks.

For each synthetic load profile, s, we find the closest Rappahannock load profile, r

using DTW with a radius of 3 hours (other radii give similar results, refer to Figure

4.3). Our results show that 88.5% of the synthetic households had daily energy usage

within 10% of the closest matching household from Rappahannock for summer as

well as winter profiles generated by the model. We show the error rate for summer

profiles in Figure 4.4. Figures 4.1 and 4.2 show two matching households’ demand

curves for a 2016 winter and summer day.

Limitations. This experiment was performed for a very small region. Individual

curve matching is a simple way to find matches in real data. However, as the number

of households grow, this method will become extremely time-consuming and resource

intensive. A household energy pattern can be similar to more than one household;

this experiment is not able to capture which groups are not represented in synthetic

data. Thus, we move on to the next two sections, which describe the evaluation of

two intrinsic properties of energy use – the magnitude of energy consumed, and the

pattern of energy use over an hourly temporal resolution.

Figure 4.1: Best real curve match for a
sample synthetic curve for winter using
DTW and radius 3.

Figure 4.2: Best real curve match for a
sample synthetic curve for summer using
DTW and radius 3.
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Figure 4.3: An elbow plot representing
the number of synthetic households in
Rappahannock county that fall within
10% error rate for different window sizes
(radius or w) of DTW matching process.
We choose w=3.

Figure 4.4: 88.5% of the synthetic house-
holds’ energy usage in Rappahannock
county falls within 10% of the closest
matching household from the Rappahan-
nock sample for summer profiles gener-
ated by the model.
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4.3 Comparing distributions for dis-aggregated en-

ergy use

In this experiment, distributions of synthetic and real daily end-use data are compared

using statistical metrics. One way of comparing these distributions is by measuring

the distance between the real and synthetic end-use distributions. Many metrics can

be used to perform this task (e.g., Kullback–Leibler divergence (KL), the Hellinger

distance, total variation distance (TVD), the Wasserstein metric, the Jensen-Shannon

divergence (JS), and the Kolmogorov–Smirnov statistic (KS)). Klemenjak et al. [132]

use JS distance and Hellinger distance as examples to compare distributions of appli-

ance energy use between different datasets. A similar method is implemented in this

section using the JS distance and the Hellinger distance metric. In our case, comput-

ing the distances between daily end-use distributions allows us to perform regional

comparisons as well as comparisons between real and synthetic datasets.

The Jensen-Shannon distance is the square root of the Jensen-Shannon divergence [149].

The range of this metric ranges between [0, 1] where 0 implies the distributions are

similar. We prefer JS divergence over KL divergence since it is a symmetric measure.

If P and Q are two probability vectors, then the JS distance JS(P,Q) is given by

JS(P,Q) =

√
KL(P ||M) + KL(Q||M)

2
, (4.1)

where M is the pointwise mean of P and Q and KL is the Kullback-Leibler divergence.

To supplement our study, we use Hellinger distance as a second metric to quantify

the similarity between two probability distributions. Hellinger distance is also a

symmetric measure. Its range of values is [0, 1] with 0 encoding that the distributions
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(a) HVAC (Jensen-Shannon) (b) HVAC (Hellinger)

Figure 4.5: Left column: Jensen-Shannon distance matrices, Right column:
Hellinger distance matrices. Each of the columns shows Jensen-Shannon distance
and Hellinger distance matrices between total daily end-use probability distributions
for HVAC. The row and column headers of the matrix represent different data sources
and different regions and each cell represents the probability distribution similari-
ty/distance value in the form of a heatmap, where the bar shows the range of the
values on a continuous scale.

are similar. The Hellinger distance of two probability vectors P and Q is denoted

by H(P,Q) and defined as

H(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)2 , (4.2)

where k is the length of the vectors, and pi, qi are the ith elements of the vectors P

and Q, respectively.

Daily end-use energy usage (e.g. Ehvac
i ) at the household level are compared in the

real and synthetic data for every location specified in Table 4.1. Vectors P and Q

denote values in a single end-use for two datasets. Tables 4.5(a), and 4.6(a)(c) list JS

distances and Tables 4.5(b) and 4.6(b)(d) list Hellinger distances for selected end-uses

(HVAC, refrigerator, cooking appliances). Each matrix represents distances between
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two energy usage distributions for an end-use. The row and column headers represent

different data sources and different regions and each cell represents the probability

distribution similarity/distance value in the form of a heatmap where the bar shows

the range of the values on a continuous scale.

Since the sample size of the real data is much smaller than its synthetic counterpart,

a bootstrap sampling method is adopted for the synthetic data. 5000 observations are

sampled followed by computation of JS distance and/or Hellinger distance for 1000

replicates. The average over 1000 replicates is selected as the final distance measure

displayed in the cell values of the heatmaps. The standard deviation of the replicates

is small ranging from 0.0005 to 0.006.

The JS and Hellinger distance tables for end-uses show strong similarities (the dis-

tance is close to zero). Furthermore, within each matrix, three types of comparisons

are performed. We compute the similarity between end-use distributions for different

regions within synthetic data, different regions within real data, and different regions

in different data sources (namely real and synthetic data). For appliance usage (e.g.

cooking), the distributions are quite similar across regions and data sources. This

supports findings from Figure 2.8 that there exist significant similarities between dif-

ferent regions for synthetic daily energy consumption of different appliances. For

HVAC end-use, it is observed that the distributions grow apart between regions for

both – synthetic and real data sources. This is particularly true due to the strong

association of HVAC with outdoor/environment temperature conditions and the time

span for which these temperature conditions prevail (e.g., warmer temperatures are

observed for a longer time in Texas (TX)).
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(a) Refrigerator (Jensen-Shannon) (b) Refrigerator (Hellinger)

(c) Cooking appliances (Jensen-Shannon) (d) Cooking appliances (Hellinger)

Figure 4.6: Left column: Jensen-Shannon distance matrices, Right column:
Hellinger distance matrices. Each of the columns shows Jensen-Shannon distance
and Hellinger distance matrices between end-use probability distributions. Each ma-
trix represents distances between two energy usage distributions for a particular end-
use (e.g. refrigerator and cooking appliances). The row and column headers of the
matrix represent different data sources and different regions and each cell represents
the probability distribution similarity/distance value in the form of a heatmap, where
the bar shows the range of the values on a continuous scale.
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4.4 Fidelity and diversity metrics for validating hi-

erarchical synthetic data

4.4.1 Background

Synthetic datasets have started gaining importance in various applications. Hence,

it is crucial that the synthetic data is of good quality. The task of evaluating syn-

thetic data is an active research area. Recent advances in the task of evaluation

of generative models (e.g., GANs for generating synthetic images) have shown that

one-dimensional scores/metrics (e.g., Fréchet Inception Distance [109]) are not able

to capture the different failure cases. This is a crucial weakness for an evaluation

metric. To overcome this shortcoming, multi-dimensional V&V metrics are proposed

based on two qualities that synthetic data must possess – fidelity and diversity.

Fidelity measures the degree to which synthetic data points are close to real data

points. It measures the quality of the synthetic data points. Diversity measures

whether synthetic data covers the full variability in real data. Diversity captures how

well certain behaviors and patterns in real data are captured by synthetic data.

Many of these metrics have been developed in the context of evaluating generative

models in the application domain of assessing quality of synthetic images generated

by GANs. Sajjadi et al. [236] were the first to introduce novel definitions of precision

and recall for distributions to satisfy the requirements of fidelity and diversity. Pre-

cision measures the quality of samples from synthetic data while recall measures the

proportion of real data samples that is covered by synthetic data samples. Simon et

al. [249] improvise precision and recall by defining classifiers for estimating precision

and recall.
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Kynkäänniemi et al. [140] compute precision and recall using nearest neighbors con-

cept. They estimate the manifold in a feature space (image vectors) by sampling a set

of points from the dataset and generating a hypersphere (or neighborhood spheres)

around each point that reaches the kth nearest neighbor. Then, precision is computed

by querying a binary function if a synthetic image feature vector is within the esti-

mated manifold of the real sampled image feature vectors (i.e., any real neighborhood

spheres). Recall is estimated by querying a binary function if a real image feature

vector lies in the estimated manifold of the sampled synthetic image feature vectors

(i.e., any synthetic neighborhood spheres).

Naeem et al. [186] propose an improved definition of fidelity and diversity by introduc-

ing density and coverage (as alternatives to precision and recall). They also compute

the estimated manifold using the concept of nearest neighbors. Density calculates

how many real sampled data point neighborhood spheres contain a single synthetic

data point. This metric is robust to outliers and gives higher importance to points

in dense regions. Assuming that real dataset has less outliers, coverage improves on

the definition of recall by computing nearest neighbor spheres around real sampled

data points. Then, coverage measures the fraction of real neighborhood spheres that

contain at least one synthetic sampled data point.

The most recent work by Alaa et al. [4] introduced the notion of domain-agnostic

individual sample-level 3-dimensional evaluation metrics ( precision, recall, authen-

ticity). Sample-level precision and recall are calculated by defining supports for real

and synthetic data distributions at incremental thresholds. The authenticity metric

checks if a synthetic data point is a replica of training data. This metric is used to

audit models to improve the quality of generated synthetic data. This work shows

the application of the proposed 3-dimensional metric in domains other than synthetic
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image validation (e.g., evaluating synthetic covid-19 data). Other works have intro-

duced entropy-based approaches to calculating precision and recall as conformance

measurements. These measures capture the behaviors between observed process exe-

cutions and designed process models [120].

Although these metrics seem to capture the fidelity and diversity aspects of synthetic

data satisfactorily, it is important to note that in high-dimensional data nearest

neighborhood can get complicated and provide misleading estimates due to the large

volume of the hypersphere. This approach may also be computationally expensive

and time-consuming for extremely large datasets.

In our work, we improve the definitions of precision, recall, and coverage so that

they can be easily extended to large datasets. We present a clustering approach to

measuring precision, recall, and coverage. We also show how these metrics can extend

in a hierarchical data setting for effective V&V analyses.

4.4.2 Proposed definitions of precision, recall, and coverage

using clustering

Let R be the set of real data points and S the set of synthetic data points. Let Xi ∈ R

be a point in the real dataset and Yj ∈ S be a data point in the synthetic dataset.

Let |R| and |S| denote the number of real and synthetic data points in sets R and S

respectively. We assume that R and S exist in the same space, which has a distance

metric defined on it that allows clustering.

Let CR be the set of clusters generated from R using the distance metric and an

appropriate clustering algorithm. Similarly, CS is generated from S. We define an

indicator function, f , which is 1 if a given point d falls inside any of a set of given
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clusters, C, and 0 otherwise:

f(d,C) =


1 if ∃k s.t. d ∈ Ck,

0 otherwise
(4.3)

where Ck ∈ C is a cluster within the set of clusters C. We will use this indicator

function to define our precision and recall measures by checking how many synthetic

points fall inside the real data clusters, and vice versa. Then, f(Yj,CR) provides a

way to determine whether a given data point is realistic, and f(Xi,CS) provides a

way to decide whether a real data point is produced by the synthetic data model.

Now we define the metric for evaluating synthetic data in terms of precision α, recall

β, and coverage γ as:

α(R, S) =
1

|S|
∑
j

f(Yj,CR) (4.4)

β(S,R) =
1

|R|
∑
i

f(Xi,CS) (4.5)

γ(R) =
1

|CR|

|CR|∑
k=1

1∃js.t.Yj∈CR,k
(4.6)

γ(S) =
1

|CS|

|CS|∑
k=1

1∃is.t.Xi∈CS,k
(4.7)

Note that α, β, and γ are bounded between 0 and 1, with higher values being better.

Precision computes the fraction of the synthetic data points that fall within the



102

real data clusters, while recall computes the fraction of real data points that fall

within the synthetic clusters. Coverage γ(R) computes the fraction of real data

clusters that have at least one synthetic point mapped to them while γ(S) computes

the fraction of synthetic data clusters that have at least one real point mapped to

them. These definitions are very close to the definitions given by Kynkäänniemi et

al. [140] and Naeem et al. [186], where we have replaced their manifold computation

with clustering. This doesn’t change the intuition behind the definitions but makes

implementation easier for large data sets. In the next section, we describe hierarchical

data and the shortcomings of these metrics for such datasets.

Figure 4.7: Illustration of how α, γ fail to capture desired patterns in a hierarchical
data setting using a simple toy example. The real star household cluster CR,1 does
not have any synthetic data points. This implies that this particular real household
pattern is not generated by synthetic data. Another case is for cluster CR,3 which
has real and synthetic data points. However, the unique pattern of the synthetic
household (purple x) goes unnoticed. The data table on the right shows the feature
vectors for households computed at level z = 2 by normalizing the frequency counts
of the member curves of the household. This table easily illustrates the uniqueness
of the green-colored star household and the purple-colored x household. This table
shows a distribution of energy-use behavior patterns of a household over a significant
timeline (e.g., one year).
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4.4.3 Precision, recall, and coverage for hierarchical synthetic

data

In many cases, data have a natural hierarchical structure. In the case of residential

energy use data, e.g., we have households, each of which has daily 24-hour energy

use profiles for an entire year. We would like to judge the fidelity and diversity of

synthetic residential energy use data at the level of the individual energy use profiles

as well as that of the households. Note that, in this setting, the households do not

correspond to the clusters defined in the previous section. A household might have

different energy use profiles in summer and winter, e.g., which would fall into different

clusters when the clustering is done at the level of the energy use profiles.

There are many other examples of hierarchically organized data. For instance, the

US Census Bureau organizes data into a geographically nested hierarchy of blocks,

block groups, tracts, counties, and states [58]. Images of animals/plants could be

organized according to the Linnaean taxonomy, and so on. Abstractly, we assume

that hierarchical data are organized into a tree structure, as illustrated in Figure 4.8.

The definitions of precision, recall, and coverage in equations 4.4,4.5,4.6,4.7 do not

capture the patterns one would want to capture in a hierarchical setting. A simple

example is illustrated in Figure 4.7 through α and γ(R). Although precision is 1,

we see that a real household with all its data points in a single cluster CR,1 has no

synthetic data points. Similarly, all curves of another synthetic household belong to a

cluster CR,3. Both these household patterns are not validated at this level. There is a

need of an additional constraint to incorporate validation at this level of data. Thus,

we define the notion of a hierarchical data-tree structure and extend the definitions

of precision, recall, and coverage to a hierarchical setting.
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Figure 4.8: A hierarchical data tree. Let z = 1, z = 2, z = 3 be levels in the
hierarchical data. Level z = 1 denotes the individual data points in the dataset. The
colored outline on the point denotes which cluster it belongs to. Level z = 2 denotes
a set of vectors created from labels (denoted by outline color) of individual points
(by some method) at level 1 and a data attribute. E.g., the data attribute groups
together two blue, one black, and one red points from z = 1 to form a vector X2,3 at
z = 2. The generated vectors are shown in Figure 4.9.

Figure 4.9: Example of a method for vector generation at level z=2. Level
z = 2 feature vectors are generated for Figure 4.8. Feature vectors at z = 2 are
constructed using the information of labels (clustering information) generated for
individual points at level z = 1 and a data attribute v not used in generating feature
vectors at level z = 1.

A hierarchical data-tree is computed by building feature vectors of data attributes

selected for that level. E.g., at level z = 1, we want to compute precision, recall, and

coverage for individual 24-dimensional energy data curves (independent of climate

zones, households, etc.). At level z = 2, we want to group the data by household and

its energy curves labeled in level z = 1.

Let z be the level in the data-tree. Let Xz,i and Yz,j be the ith and jth feature vectors
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computed at level z for the real and synthetic datasets. Then, let Nz and Mz be the

number of feature vectors computed at level z for real and synthetic dataset. Let CR,z

and CS,z denote the number of clusters for real and synthetic feature vectors at level

z.

As shown in Figure 4.8, we observe a parent-child relation between levels z = 1 and

z = 2. Let data attribute v capture this relation. Our method to compute the

feature vectors at z = 2, involves using a data attribute v that satisfies the parent-

child relation and labels generated for feature vectors at z = 1. Note that v is not

used in the construction feature vectors at z = 1. Note that, we currently use only one

data attribute v in the construction of the feature vectors. A toy example of feature

vectors computed at level z = 2 is shown in Figure 4.9. A example for energy data

feature vector computation at level z = 2 is shown in the data table in Figure 4.7.

We can use more than one data attribute to compute feature vectors at a level in the

data-tree.

The updated definitions of precision, recall, and coverage at level z are as follows:

αz(R, S) =
1

Mz

∑
j

f(Yz,j,CR,z) (4.8)

βz(S,R) =
1

Nz

∑
i

f(Xz,i,CS,z) (4.9)

γz(R) =
1

|CR,z|

|CR,z |∑
k=1

1∃js.t.Yz,j∈CR,z,k
(4.10)

A similar definition will apply for γz(S).
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The proposed hierarchical definitions of precision, recall, and coverage have the fol-

lowing properties:

1. If the data points in R and S are exactly the same, then, precision αz, recall βz,

and coverage γz at all levels is 1.

2. The precision and recall in the hierarchical data tree is bounded by the following

relation:

αz+1 ≤ αz and βz+1 ≤ βz (4.11)

where z is the level in the hierarchical data tree and z ≥ 1.

In such a hierarchical setting, we evaluate data points in the synthetic dataset at two

levels:

• an independent individual point in the dataset ,

• a sequence of patterns of individual points grouped as vectors such that they

belong to a group/community within the dataset.

Note that the results are independent of the number of dimensions in the data. αz,

recall βz, and coverage γz are bounded between 0 and 1 ∀z.

4.4.4 Methodology

In this section we instantiate the metrics defined in Section 4.4.3 to validate energy

demand profiles at hourly interval at household level. Details of energy demand data

are described in Chapter 2. Our goal is to validate energy demand profiles in a

hierarchical setting. The general idea is – to measure how realistic are the synthetic
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Figure 4.10: Validation methodology for computation of hierarchical precision, recall,
and coverage.

energy demand profiles and how well they cover the variability in real energy profiles.

We also want to find some useful information about household-level patterns in energy

consumption and how well synthetic households capture these patterns. We propose

a hierarchical data-tree model to conduct this tiered validation of energy datasets.

Some examples of hierarchical energy data-tree are discussed below.

We can have more than one energy demand profile that belongs to a household.
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Similarly, there can be multiple energy demand profiles that belong to a climate-

zone (e.g., energy curves that belong to a hot-humid climate zone such as Texas as

opposed to curves that belong to a cold climate zone such as Montana). One can also

group energy demand profiles in two levels – at household level and then at seasonal

level (e.g. energy demand profiles in summer season while capturing household level

energy-use behavior patterns). Any of these combinations are a valid way of grouping

the energy data.

Figure 4.10 illustrates the methodology for synthetic data validation in a hierarchical

setting. In this setup we build a two-level hierarchical tree where individual energy

demand profiles are used to generate feature vectors at level z = 1. At z = 2, feature

vectors are created by using v = HID (household identifier) and membership labels

(i.e., cluster labels) of data points at z = 1. We generate the vectors by calculating the

frequency of membership of individual energy curves grouped by HID. An example

is shown in the table in Figure 4.7. For generating feature vectors at a level z s.t.

z ̸= 1, we use a data attribute v to establish a parent-child relation between level z

and z−1 in the data tree. As an example, this type of grouping provides a measure of

how well household-level energy-use behavior patterns are captured by the synthetic

energy data. It is rare to find two households whose consumption is exactly the same

throughout the day or year, but they can have similar behavior patterns. Clustering

feature vectors at z = 2 should be able to capture that.

Generating feature vectors at z=1. Feature vectors at z = 1 are generated by

normalizing energy demand curves (i.e., load shape). Dimension of the feature vector

p1 = 24. Let ⟨e0, . . . , e23⟩ be the 24-hour energy demand. Then, the load shape is

calculated as –
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et =
et∑23
t=0 et

, t ∈ [0, 23] (4.12)

This load shape is the feature vector for z = 1 and input to the clustering method.

Clustering. K-means clustering method is applied to the feature vectors. To com-

pute precision at level z, first, real feature vectors are clustered into CR clusters. Then,

synthetic feature vectors are assigned to either of the CR clusters. In order to identify

synthetic feature vectors that do not fall into any of the clusters, a simple outlier

detection algorithm (Algorithm 1) is implemented. A similar procedure is followed

for computing recall via clustering. The input to Algorithm 1 is a test data point d

and a set of |C| centroids denoted by µk.

Generating feature vectors at z=2. v = HID at z = 2 for grouping feature

vectors at level z = 1. A frequency count vector is generated for each household by

using cluster labels from z = 1 s.t. the sum of the vector is the total number of

energy demand vectors in that household. A toy example is shown in Figures 4.8,

4.9 and another example is shown in Figure 4.7. Thus, the feature vector at z = 2

will the the normalized frequency count vector of a household. This is the input to

clustering at level 2. Additional details about the methodology are available in the

document [263].

In the next section, we describe the experimental setup and discuss the results.

4.4.5 Experiments & Results

We run our experiments on Rappahannock county in Virginia. We obtain smart

meter data for the year 2016 for 100 households in Rappahannock. Synthetic energy
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Algorithm 1 Determine whether a point belongs to a cluster
1: procedure ISINCLUSTER(d, {µ1, µk, . . . , µ|C|})
2: dist, µselected = min{||d− µ1||, . . . , ||d− µ|C|||}
3: δ = max{||d′

1 − µselected||, . . . , ||d
′

|Cselected| − µselected||}
4: if dist ≤ δ then
5: return True
6: else
7: return False
8: end if
9: end procedure

Figure 4.11: Real data cluster centroids at level z=1. Ranking of clusters by
popularity. Each subplot is a cluster centroid. At level z = 1, the cluster centroid
indicates average normalized load shape of the individual cluster. The title of each
subplot indicates cluster number followed by % of real feature vectors, and % of
assigned synthetic feature vectors.

demands are available for 3770 households in Rappahannock for the year 2014. We

sample the synthetic data for representative days (temperature wise) of the year. At

level z = 1, |CR,1| and |CS,2| is 20. At level z = 2, |CR,2| and |CS,2| is 5.

Precision findings. Figure 4.11 shows the real data centroids at level z = 1. The

centroids represent average load shape of the real cluster members. Figure 4.13 shows

the precision at level z = 1. The bar chart shows that every real cluster has atleast

one synthetic feature vector. Thus, γ1(R) = 1. Each synthetic feature vector at level



111

Figure 4.12: Synthetic data cluster centroids at level z=1. Ranking of synthetic
clusters by popularity. Each subplot is a cluster centroid. At level z = 1, the cluster
centroid indicates average normalized load shape of the individual cluster. The title
of each subplot indicates the synthetic cluster number followed by % of assigned real
feature vectors, and % of synthetic feature vectors.

Figure 4.13: Precision α1. The barplot shows the percentage of real feature vectors
and assigned synthetic feature vectors in individual real clusters at level z = 1. Each
Y1,j is assigned a cluster CR,1,k in the set CR,1, unless it is categorized as an outlier.
M1 =59402 out of which there were 3640 outliers. Thus, α1 = 0.938. Each CR,1,k

contains atleast one Y1,j, thus γ1(R) = 1.

z = 1 is assigned a cluster. Thus, α1 = 1. Figure 4.18 shows the real data centroids at

level z = 2. Figure 4.14 shows the bar chart of memberships at z = 2 for computing

precision. At level z = 2, precision α < 1, since 50% of the synthetic household

feature vectors do not belong to any real clusters at level 2. Similarly, we observe

that coverage γ2(R) = 0.9 since one cluster does not have any synthetic household

records assigned to it.

Recall findings. Figure 4.12 shows the synthetic data centroids at level z = 1. The
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Figure 4.14: Precision α2. The barplot shows the percentage of real feature vectors
and assigned synthetic feature vectors in individual real clusters at level z = 2. A
Y2,j is assigned a cluster CR,2,k in the set CR,2 unless the feature vector is recognized
as an outlier. M2 = 3770 and 3165 vectors are classified as outliers, i.e., there exists
Y2,js that do not get assigned to any clusters. Thus, α2 = 0.17. Clusters CR,2,0 and
CR,2,3 do not contain any Y2,js, thus γ2(R) = 3

5
= 0.6.

Figure 4.15: Recall β1. The barplot shows the percentage of synthetic feature vectors
and assigned real feature vectors in individual synthetic clusters at level z = 1. Each
X1,i ∈ CS,1. Thus, β1 = 1. Each CS,1,k contains atleast one X1,i, thus γ1(S) = 1.

Figure 4.16: Recall β2. The barplot shows the percentage of synthetic feature vectors
and assigned real feature vectors in individual synthetic clusters at level z = 2. Each
X2,i ∈ CS,2. Thus, β2 = 2. Each CS,2,k contains atleast one X2,i, thus γ2(S) = 1.

centroids represent average load shape of the synthetic cluster members. The subplots

are arranged by popularity of the clusters. The title of each subplot indicates the

cluster number followed by % of real points in the cluster, followed by % of synthetic

points in the cluster. Figure 4.15 shows the recall at level z = 1. The bar chart shows

that every synthetic cluster has atleast one real feature vector in it. Thus, γ1(S) = 1.

Each real feature vector at level z = 1 is assigned a cluster. Thus, β1 = 1. Figure 4.17

shows the synthetic data centroids at level z = 2. Figure 4.16 shows the bar chart of



113

memberships at z = 2 for computing recall. At level z = 2, recall β2 < 1, since 4% of

the real household feature vectors do not belong to any synthetic clusters at level 2.

However, it is observed that coverage γ2(S) = 1 since every synthetic cluster at level

2 has atleast real household feature vector assigned to it..

Figure 4.17: Synthetic data cluster centroids at level z=2. Ranking of synthetic
clusters by popularity. Each subplot is a cluster centroid. At level z = 2, the cluster
centroid indicates the average proportion of types of load shapes in the individual
cluster. The x-axis denotes the cluster number at level 1 (e.g., L1_K2 indicates the
load shape (feature vector of level z = 1) of level 1 cluster 2 which can be found in
Figure 4.12). The title of each subplot indicates the synthetic cluster number followed
by % of assigned real feature vectors, and % of synthetic feature vectors. Note that,
the centroid interpretation explanation is specific to the feature vector generation at
each level.

Our metrics are defined independent of the dimensions. It can work well for high-

dimensional as well as large-scale datasets by employing appropriate techniques in

clustering. Membership assignment to feature vectors after clustering can be done

effectively using an outlier detection method.
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Figure 4.18: Real data cluster centroids at level z=2. Ranking of real clusters
by popularity. Each subplot is a cluster centroid. At level z = 2, the cluster centroid
indicates average proportion of types of load shapes in the individual cluster. The
x-axis denotes the cluster number at level 1 (e.g., L1_K2 indicates the load shape
(feature vector of level z = 1) of level 1 cluster 2 which can be found in Figure 4.11).
The title of each subplot indicates the real cluster number followed by % of assigned
real feature vectors, and % of synthetic feature vectors. Note that, the centroid
interpretation explanation is specific to the feature vector generation at each level.
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4.5 Discussion

As demonstrated in recent literature, fidelity and diversity are important qualities

for a synthetic dataset to be realistic. In this work, we have validated different facets

of energy demand including spatial and temporal dimensions. One of the important

contributions of this work is to validate the energy use behavior patterns occurring

in households. Several qualitative similarities in load shapes have been illustrated in

the Chapter 2 case study.

In this chapter, we specifically focused on statistical methods to quantify fidelity

and diversity. I propose improved definitions of precision, recall, and coverage by

using unsupervised machine learning techniques such as clustering (as opposed to the

nearest neighbor in state-of-art). Further, it is shown that these definitions support

the extension of complex datasets that possess an inherent hierarchy. We introduce

the notion of a hierarchical data-tree model and how to compute feature vectors at

different levels in the data tree.

The proposed validation metrics framework is applied to a dataset in the energy do-

main. First, we discuss the challenges and limitations of current validation approaches

to synthetic energy datasets. Two-level hierarchy precision, recall, and coverage are

computed on an example region in Virginia. We observe promising results for preci-

sion, recall, and coverage at both levels.

In future work, these metrics can be used to calibrate the underlying models to gen-

erate better-quality synthetic data. Another direction of research can be the develop-

ment of a stochastic framework for accounting underlying household, demographics,

and environmental variables at the household level to formalize the relationship be-

tween the hierarchies of the data tree.
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Part II

Applications



117

In the second part of the dissertation, we develop an active learning-based frame-

work for agent-based model (ABM) analytics. The framework and two applications

are described in the subsequent chapters. Chapter 5 describes the formulation of

the general methodological framework. Chapters 6 and 7 describe the models and

solutions to the two social impact problems in residential energy.
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Chapter 5

Active learning framework for

analytics in agent-based

simulations

Complex large-scale agent-based models (ABM) are becoming increasingly common,

in several application areas, such as public health, infrastructure systems for trans-

portation and power, disaster evacuation, and technology adoption. They are in-

tended to simulate behaviors or the decision-making processes of agents over a se-

quence of steps. One notable example of ABM is for observing the spread of epidemics.

ABMs are usually designed to answer specific questions within an application, and

their design is data-driven. As a result, there can be multiple ABMs with a similar

overall structure, but different in terms of specific model components, their inter-

actions, and parameters. Many of these simulations have no specific single output

but can have a range of outcomes. Thus, verifying these models becomes challeng-

ing. This also raises the general question of how to characterize the behavior of such

models.
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5.1 Introduction

Comparing simulation output to real-world data, surrogate model analysis, kriging,

and other approaches have been used in the literature for ABM comparison and vali-

dation. Docking is one of the well-known methods for the validation of computational

models. However, it gets tricky to implement docking as the size of ABMs becomes

larger and more complex. All the above-mentioned methods allow only restricted

forms of comparison between ABMs and do not provide efficient computational tools

for comparison based on specific characteristics of the models (e.g., phase space in

contagion models). Because such models are based on simulation, the lack of an an-

alytical solution (in general) means that verification & comparison are harder, since

there is no single result the model must match [200]. Moreover, the sheer number

of parameters input to the simulation, and intricate agent behaviors make this task

daunting.

In this chapter, I describe a general and scalable framework to make these types

of comparisons between ABMs, based on approximate representations of the phase

spaces of the ABMs; specifically, we consider the structure of the parameter region

which corresponds to “phase shift”, i.e., where the system shows different behavior

due to a small change in parameters. While this does not correspond to exact phase

space equivalence, this notion can give useful insights in many applications where the

ABMs work on different domains. As specific examples, I consider two social impact

problems in the residential energy sector – dynamic residential grid tariffs & solar

adoption.

In the first problem, I compare ABMs for adopting rooftop solar panels at the house-

hold level in three different regions of the United States. A question of interest for
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power utilities is to understand the characteristics of households that lead to an in-

crease in solar adoption and how to increase the penetration of solar. We compare two

different ABMs, one developed for California by Zhang et al. [292], and the other for

Virginia that we present here, based on a model presented earlier by Hu et al. [113].

The probability of adoption by a household depends on a number of factors, including

demographics and characteristics of the house, as well as peer effects, captured by the

number of households who have adopted within a 1-4 mile range.

In the second problem, I compare ABMs for examining fairness in income-based pop-

ulation groups when adopting residential dynamic tariffs (e.g., Time Of Use - TOU)

in Virginia. I also study the peak demand reduction scenarios for the population un-

der different thresholds. There is a two-fold interest in studying the dynamic pricing

problem. A question of interest for power utilities is understanding the effects of dy-

namic pricing on population groups categorized by sensitive attributes (e.g., income,

race) and analyzing any disparities that may result from adopting such a pricing

scheme. The utilities can also realize the range of maximum peak demand reduction

that may be possible for a population in a geographical region. A fair residential

dynamic energy pricing problem is important to both – households and utilities for

energy conservation & efficiency.

The contributions of the proposed framework are summarized below.

1. We design a methodological framework for ABM analytics based on the response

surface method and active learning. Active learning helps reduce the number of

times the simulation has to be run. Thus, this is a much more efficient approach

for complex ABMs.

2. The designed active learning method scales well to higher dimensions. This is
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achieved by selecting appropriate decision planes in the search space for query-

ing points using the smallest margin uncertainty sampling.

3. We introduce a notion of characteristic distribution of an ABM in terms of the

probability distribution over the ABM outcomes (suitably binned). We quantify

the disagreement between two ABMs as the region in their shared parameter

space where they predict different outcomes.

5.2 Related Work

5.2.1 ABM verification, validation, and comparison

ABMs have been used on a large scale for simulating real-world scenarios. Such

scenarios are often complex, hence, it is important to perform some form of verification

and validation (V&V). ABMs are designed to answer specific questions within an

application domain, and their design is highly data-driven. As a result, there can be

multiple ABMs with a similar overall structure and goal, but different in the specific

model components, their interactions, and parameters. This complicates the V&V

and also raises the general question of how to compare and replicate such models [17,

45].

Axtell et al. [17] were the first to address this question, and developed the “docking”

technique. Docking is essentially the process of “alignment of computational models”

- which involves verifying whether or not the dynamical properties of one ABM can

be regenerated by another. Researchers have considered docking for comparison and

validation of models and simulations to increase confidence in results and in the

interpretation of the models, e.g. [17, 197, 288]. North et al. [197] used Mathematica,
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Swarm, and RePast to simulate a beer distribution game that was originally developed

as a systems dynamics model. Xu et al. [288] compare ABM platforms—RePast [65]

and Swarm [167]—to simulate four different social network models and use properties

such as degree distribution, diameter, and clustering coefficient to dock the RePast

and Swarm simulations of the networks. The results showed that docking could help

compare different simulations as well as validate a simulation and help migrate a

simulation from one software package to another. Louie et al. [153] explain three

types of docking: comparison, integration/interoperability, and meta-model. Using

integration docking, the authors show how model comparison and model alignment

can help compare and contrast models, clarify assumptions, and understand semantic

differences in data usage.

Although docking seems to establish greater validity of models being compared, it

is difficult to perform. It involves exercising judgments, establishing concise defini-

tions of equivalency, and designing comparison experiments [45]. Also, docking is

computationally intractable and may become a restrictive notion as ABMs become

complex. Thus, docking is rarely used. Other notions of comparison, validation, and

equivalence of ABMs have also been explored [34, 276]. Some other works build sur-

rogate models to validate ABMs [21, 294]. All these methods only allow restricted

forms of comparison between ABMs and do not provide efficient computational tools

for comparison based on specific characteristics in the phase space. At an abstract

level, these notions can be compared to phase space equivalence of dynamical systems

[1, 175]. The approach of Axtell et al. [17] attempts to compare precise structural

properties in the phase space, which is NP-hard in general [1]. One of the tasks in

such an approach is efficient navigation of the large parameter space that will lead

us to the phase change region. One such example is of Brueckner et al. [44], who
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presented a method of finding phase change regions in multi-agent ABMs [44] with a

graph coloring example. Their approach to finding phase changes is related to ours,

though their overall goals and methods are different. System-level behavior changes

are shown as the parameter space takes on different values via the parameter sweep

architecture.

Another approach to characterizing the behavior of a complex model such as an

ABM is to develop a functional representation of its outputs over the parameter

space of the model. This is known as Response Surface Methodology (RSM) or the

metamodel-based method [25, 43, 53], which has been a popular methodology for

optimization [194] and calibration [82, 141] of stochastic simulation models. When

carefully designed, RSM can be extremely useful to validate ABMs [53]. Therefore,

a possible alternative to docking for comparing ABMs is to compare their response

surfaces. However, RSM can also be computationally demanding and challenging to

do in practice. RSM typically progresses by exploring small subregions of the decision

space with low-order polynomials and then with higher-order polynomials.

The classic scheme of the Response Surface Method [25, 43, 53] is to approximate the

stochastic objective function (the simulation “response”) by a function, generally a

low-order polynomial, of the independent variables over a part of the domain. RSM

typically runs in phases. The process starts with a screening experiment, which

identifies a subset of candidate variables in the region of interest. Next, a first-order

model is used to approximate the response, and usually, a line search is used to find

an improving direction for the objective. In the second phase, a second-order model

is used to approximate the objective, since usually, a response surface has curvature

near the optimum. Usually, RSM requires a human-in-loop and a full factorial or

central composite design. Sometimes, it can be difficult to verify for convergence
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due to its heuristic nature [60]. Methods have been proposed to address issues of

automation and time, to speed-up calibration/validation of models [53, 60, 194] by

incorporating techniques such as simulated annealing, self-correction mechanisms,

and methods from deterministic optimization. Despite these improvements, it can be

expensive to compute response surfaces for large-scale models/simulations.

In practice, however, we are often interested in conditions (parameter settings) that

lead to large differences in the outputs of an ABM. For example, in the ABMs consid-

ered in Chapter 6, we are interested in cases where either a lot of households adopt

rooftop solar panels, or only a few do. We can, therefore, treat the ABM output

characterization problem as a classification problem, where the goal is to learn the

region of parameter settings corresponding to the kind of output (large adoptions/s-

mall adoptions). Complex large-scale simulations can be expensive to run, therefore,

we propose to use an active learning approach in order to minimize the number of

times we have to run the simulations.

5.2.2 Active learning

In active learning (AL), the goal is to learn a classifier by actively and optimally

choosing input points to be labeled by an oracle (which is the simulation in our

case). In situations where querying for the label of a point is an expensive operation,

active learning can be used to intelligently select training points so as to minimize the

number of points for which labels need to be queried. Active learning has been widely

used in engineering design [88], materials science [152], and drug discovery [180]. AL

adaptively chooses the next input based on the set of previously seen inputs and the

current accuracy of the learned classifier.
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In the present work, we present a framework for the comparison of ABMs in this

more practical sense, where we compare the probability of seeing qualitatively differ-

ent outputs. The approach is easy to implement, much quicker to compute (usage

of active learning), can be applied to ABMs with data and/or structural differences,

and still capture meaningful differences between them. This framework is a combi-

nation of active learning methodology and intentions similar to RSM methodology

for comparing parameter spaces of ABMs. This fusion gives us the advantages of

automation, and reduction in runtime, and eliminates the need for a two-step fitting

procedure.

5.3 ABM analytics framework

In this section, we present our general framework for ABM comparison. We denote

the agent-based simulation model as a stochastic function, F (ξ1, ξ2, ..., ξk), of its pa-

rameters, assuming a fixed initial condition. In response surface methodology, we

generally fit the expected value of this function,

f(ξ1, ξ2, ..., ξk) = E(F (ξ1, ξ2, ..., ξk)), (5.1)

where F is the stochastic output, given parameters ξ1, ξ2, ..., ξk, and E denotes expec-

tation. This is appropriate when the goal is optimization or calibration. However,

when we are using the ABM to model a specific observed phenomenon (e.g., the prob-

ability of rooftop solar panel adoption described in Chapter 6), the real-world data

represent only one stochastic realization of the model (e.g., a household either adopts

solar panels or not). Therefore, instead of taking the expectation, we characterize the

behavior of the ABM in terms of the probability of seeing a particular output given
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a particular parameter setting.

For ease of exposition, we assume that the simulation outputs one continuous variable,

y, though the formalism generalizes straightforwardly to multiple outputs. We relate

y to the parameters as follows.

P (ylow < y < yhigh) =

∫
P (ylow < F < yhigh|Ξ)P (Ξ), (5.2)

where Ξ = [ξ1, ξ2, ..., ξk], and P (Ξ) is a prior probability over the parameter space.

Thus, the ABM can be characterized as a discretized probability distribution, using

a set of bins denoted by their bin boundaries, {[y0, y1], [y1, y2], ..., [yn−1, yn]}. The

choice of bins depends on the domain of the model. For example, models of contagion

processes exhibit sharp transitions, which are a natural choice for bin boundaries in

that case, as we will see in the experiments section. We refer to this distribution

as the characteristic distribution for the ABM. We define the characteristic distance

between two ABMs as the distance between their characteristic distributions.

d(F1, F2) := D(P1(Y ), P2(Y )), (5.3)

where Y is a discrete random variable corresponding to the bin into which y falls, and

P1(Y ) and P2(Y ) are the characteristic distributions of two different ABMs. Choices

for D can be (symmetric) KL-divergence, mean-squared distance, total variation dis-

tance, earth-mover’s distance, etc. For a given observed value, yobs, we can also

directly compare the probabilities assigned by the two models to the corresponding

bin.

dobs(F1, F2) := P1(Bobs)− P2(Bobs), (5.4)

where Bobs is the bin within which yobs lies. This directly tells us how much more
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likely it is to see yobs in one model versus the other.

In the case where the two ABMs have an overlap in their parameter space (i.e., they

have some parameters in common), we can have a more detailed comparison. Let

Ξc be the parameters that the two ABMs have in common. We can partition this

subspace of the parameter space into regions based on the most likely bin for y for

each parameter setting.

B(Ξc) = argmax
B

∫
Ξ\Ξc

P (B|Ξ)P (Ξ \ Ξc), (5.5)

where B denotes a bin, corresponding to the bin boundaries defined earlier, and

Ξ \ Ξc denotes the parameters other than the common parameters. The equation

above assigns to each point in the common parameter subspace, a bin corresponding

to the most likely output at that point.

Now we define the disagreement, ∆, between the two ABMs as the probability of

choosing a parameter setting, according to the prior distribution, that results in a

difference in the outputs of the two models.

∆(F1, F2) =

∫
Ξc

(1− 1(B1(Ξc), B2(Ξc)))P1(Ξc), (5.6)

where 1(B1(Ξc), B2(Ξc)) is an indicator function that is 1 if B1(Ξc) = B2(Ξc) and 0

otherwise. ∆ gives the total probability, over the subspace Ξc, that the outputs of

the two ABMs will fall into different bins. Note that ∆ is a directed measure, since

∆(F1, F2) ̸= ∆(F2, F1).

There are various ways to compute the integral in equation 5.5. The typical approach

in simulation science is to use adaptive experiment designs [214]. Here, we propose
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Figure 5.1: General active learning framework

a machine learning approach based on active learning. The general idea is to train

a multi-class classifier, where a class corresponds to a bin, for each model. Since

the simulations can often be expensive to run, an active learning approach can help

minimize the number of times the simulation has to be run. The classifiers are used

to estimate B(Ξc) for each ABM. Once the classifiers have been trained, we can use

them to estimate ∆.

The general structure of an active learning framework is illustrated in Figure 5.1. The

Oracle is a mechanism that evaluates and labels the selected query. This process is

usually expensive since it can be a human annotator or in our case computationally

expensive since the agent-based simulation executes & evaluates the query point. The

active learning approach to training the classifier involves running the simulation in

a loop with the classifier. In each round, the simulation is run to generate addi-

tional labeled points for the classifier. Then, the classifier is trained on the updated

training data set. This is followed by performing the smallest margin uncertainty

sampling [144, 241] in the parameter space to generate new parameter settings where
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the simulation is to be evaluated in the next round. The process stops when the

labels generated by the simulation agree with the labels generated by the classifier.

The next two chapters will describe how this ABM analytics framework can be applied

to study two social impact questions in residential energy.
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Chapter 6

Comparison of agent-based solar

adoption models

In this chapter, I describe the application of the active learning framework from Chap-

ter 5 for comparing agent-based models (ABMs) in different geographical regions to

examine the effects of different model parameters on solar adoption in the respective

location. The framework provides effective metrics to compare these results. As a

specific example, we consider two ABMs for adopting rooftop solar panels by house-

holds in three different regions of the United States. A question of interest for power

utilities is to understand the characteristics of households that lead to an increase in

solar adoption and how to increase the penetration of solar. We compare two different

ABMs, one developed for California by Zhang et al. [292], and the other for Virginia

that we present here, based on a model presented earlier by Hu et al. [113]. The

probability of adoption by a household depends on a number of factors, including

demographics and characteristics of the house, as well as peer effects, captured by the

number of households who have adopted within a 1-4 mile range. The two models

have a few common factors, but some are distinct, e.g., pool ownership, is a factor in

the ABM of Zhang et al. [292], but not in that of Hu et al. [113]. The datasets used

in the calibration of these two ABMs have different characteristics, e.g. California

has a much larger adoption rate compared to Virginia.
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We illustrate our approach on the two ABMs for comparing solar adoption. We

present comparison results in 2D and 3D parameter spaces for ease of visualization

and interpretation. The notion of characteristic distribution of an ABM is illustrated

in terms of the probability distribution over the ABM outcomes (suitably binned). A

specific example we consider is the probability of seeing a small number of adoptions

vs. the probability of seeing a large number of adoptions as the outcome of the ABM.

Chapter organization. The rest of this chapter is organized as follows. First,

I describe the Virginia model used for the Rappahannock and Shenandoah Valley

Region (SVR) regions of Virginia. After that, an instantiation of the framework for

this specific application using active learning is shown in Section 6.2, followed by

results from computational experiments. We end with a discussion of future work.

6.1 Agent based models

We compare two ABMs for rooftop solar adoption, one built by Zhang et al. for San

Diego, California [292] and the other for the Shenandoah Valley region in Virginia.

Both of these models use a set of demographic, social, economic, and geographical

variables to assess the probability of adoption for each household in respective study

areas. A logistic regression model is built in each case to identify important factors

that influence solar adoption for households. This model is deployed in the ABM

to simulate the diffusion of solar adoption over a period of time. These factors are

then used by their respective ABMs to study the diffusion of adoption. Since the

solar penetration rate in Virginia is much smaller compared to California, a decision-

adjusted logistic regression model was used to handle the issue of class imbalance in

Virginia. We use the terms simulation and ABM interchangeably. The term model
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refers to the logistic regression model in the simulation/ABM that predicts whether

a household adopts solar or not.

6.1.1 Virginia ABM

This section describes the agent-based model designed for rooftop adoption in rural

areas of Virginia. ODD protocol [97] is used to describe the ABM.

Purpose. The purpose of this ABM is to predict the number of rooftop solar panel

adopters in rural regions of Virginia such as Rappahannock and SVR.

Entities, states, variables, scales. Two types of entities are present in the ABM. The

rural region under consideration is the environment. A household in Virginia is an

agent. The network of households in the region is a collective type of entity. The

environment is a static entity. It has only one variable – number of adopters at each

timestep (timestep adopters). Three types of network entities exists, each describing

the network of households within 1 mile, 3 miles, and 4 miles. Each household has a

set of variables. These are described in Table 6.1 in the paper. Mile 1, Mile 2, Mile 3,

Mile 4 are not household variables. Additional variable ‘isAdopter’ is added to every

household. The variable changes state when the household becomes a rooftop solar

panel adopter. One timestep in the ABM is a season of the year.

Process overview and scheduling. The ABM predicts the number of rooftop solar panel

households in a given region at every timestep. Process occurring at each timestep is

as follows –

(a) The peer networks (1 mile, 3 mile, 4 mile) are updated for each household that

became an adopter in the previous timestep. The influence for each non-adopter

neighbor is updated through the peer networks.
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Figure 6.1: Coefficients of the logistic regression model for Virginia
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Figure 6.2: Virginia ABM. Representation of the agent-based model for rooftop
adoption in rural areas of Virginia. A logistic model is separately trained on survey
data to predict if a household is an adopter or not. The learned model is used in
the ABM to predict if a household is an adopter or not. This information is used to
propagate the influence of adopters on non-adopters. The diffusion process continues
for the specified number of timesteps in the ABM.

(b) Once all the adopters are processed and the peer network is updated, logistic

regression model decides the probability of a non-adopter becoming an adopter in

the current timestep. The variable ‘isAdopter’ is updated for every household that

becomes an adopter.

(c) When non-adopters are being processed, the environment variable – timestep

adopters is updated at each timestep.

Design Concept. The ABM primarily uses peer networks to design influence on

solar adoption. The probability that a household will become an adopter in any
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given timestep is decided by a logistic regression model. The ABM is stochastic in

nature, since the probability of the agent becoming an adopter is decided based on

the calculated probability. This is also followed by updating the peer networks of

the adopter agent, which changes the influence of adoption among the neighbors of

the adopter household. The aggregate effect of network influence plays a role in

the decision making of a household becoming an adopter. The ABM simulations

become extremely time-consuming and memory-consuming as the size of the region

increases in a linear fashion, especially when multiple replicates need to be executed.

Performance speedup is achieved by making changes to the ABM such that replicates

can be executed in parallel, and networks for larger regions are converted into binary

format adjacency list and stored in SQLite3 database.

Initialization. At the start of the simulation, the number of adopters are zero. The

influence in the peer networks is zero. All household agents’ ‘isAdopter’ variable is

set to non-adopter state.

Input Data. Synthetically generated households in the specific region are used in the

ABM simulation. The peer networks are generated for the synthetic population of

the region by finding houses under the required mile radius for each household in the

region. The logistic regression model is trained on survey data (Refer Hu. et. al’s

previous work [113] for the survey data details).

Submodel: Decision-adjusted Logistic Regression Model. The submodel in

this ABM is the logistic regression model that predicts the probability of a household

becoming an adopter. This model is trained outside of the ABM setup using using

survey data [100, 113]. Then, the learned model is plugged in the ABM to predict if

a household is an adopter at each timestep. The predictions at each timestep support

the diffusion process to the non-adopters in the peer networks. The following text
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provides description of the process of model building.

We have to build a model that predicts the probability of a household becoming an

adopter. This is modeled as a binary classification problem – is a household an adopter

(1) or not (0). In a binary classification setting (e.g. predict whether a household is

a solar adopter or not), statistical modeling methods such as logistic regression are a

popular choice. Instead of fitting a line to the data (as in linear regression), logistic

regression fits a logistic function to the data. This ‘S’ shaped curve goes from 0 to

1. The model outputs a probability of solar adoption in a household. By defining

the probability threshold, we determine whether the household is an adopter or not

(1=adopter, 0=non-adopter).

The elastic-net penalized logistic regression [104, 295] model identifies features that

contribute to a household’s decision to adopt rooftop solar panels. However, due to

the low penetration of solar adopters in rural regions, the data on solar adopters are

sparse, which makes it difficult to build a good prediction model. Given highly imbal-

anced training data, traditional statistical methods tend to predict most households

to be non-adopters in order to minimize the misclassification error and provide high

overall prediction accuracy.

In our study, we are more interested in identifying potential adopters so we apply

a decision-adjusted modeling approach from Mao et al. [159], and Hu et al. [113].

The decision-adjusted approach optimizes the prediction model with respect to a

user-stated evaluation criterion. We set this criterion to maximize the sum of True

Positive Rate and True Negative Rate. The decision-adjusted approach can be applied

to different statistical models, here we choose the logistic regression model as our

baseline model.
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The indicator features are introduced when the coefficients of the linear combination

are not able to capture all information in the model. For example, if the coefficient of

a feature is positive, then a larger value of the feature will increase the likelihood of

adoption. However, this positive relationship may not be constant; it may be strong

when the value of the feature is small, and weak when the value of the feature is

large. The indicator features handle this issue. For example, in our work, we build

an indicator feature based on one of the original features in the data – ‘totalVal’ the

estimated value of a house (See Table 6.1). Table 6.1 summarizes the model coeffi-

cients. The climateRegion, education, fuelheat, type of housing unit are categorical

features, the coefficient for each level are shown in the table.

6.1.2 San Diego ABM

This ABM was developed by Zhang et al. [292]. We utilize this ABM in our exper-

iments. This is a data-driven ABM (DDABM) framework developed to study the

diffusion process of solar adoption. A household and peer networks are the entities of

the ABM. Each household has several demographic and socio-economic properties. A

network of households is also used that describes number of neighboring households

in a particular distance radius. This network supports recognition of peer influence

on individual households for solar adoption. Individual agent behavior is learned from

the data alone, with no additional parameters to govern agent interactions and be-

haviors. This is made possible by developing a machine learning model on collected

data, and then employing this model in the ABM to simulate household adoption

probability and diffusion process in the San Diego area. We will now describe this

model briefly for the sake of completion.
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Table 6.1: List of features in the San Diego model

Feature Description
ownerocc Owner occupied (binary)
Ls Lease option available (binary)
wt Winter (binary)
st Spring (binary)
sm Summer (binary)
fracInstall Installation density in zipcode
NPV NPV (Purchase)
Mile1 Installations within 1 mile radius.
Mile1/4 Installations within one fourth

mile radius.

The model was calibrated on extensive data collected by the California Solar Ini-

tiative1. In addition, property assessment data for San Diego county and electricity

utilization data for participants in the rebate program was collected (energy utiliza-

tion data as limited to the 12 months before adoption). The data set spanned 6 years

and 8500 adopters and included detailed information about the solar panel purchas-

ing decision, including the system size, reported cost, incentive, whether the system

was purchased or leased, and the date of solar adoption.

The model developed from this data used machine learning techniques to train an

individual model of adoption behavior. Individual agents changed their behaviors

based on household characteristics, seasons and peer effects. Table 6.1 summarizes

the variables of the model. For this work, we used the version of the San Diego model

available through GitHub2, which focused on modeling a single zip code within San

Diego county. This model is then plugged into the ABM to simulate household

adoption behavior. For further details of the ABM, please refer to the publication by

Zhang et al. [292].

1https://www.gosolarcalifornia.ca.gov/about/csi.php
2https://github.com/haifeng-zhang/ddabm-solar

https://www.gosolarcalifornia.ca.gov/about/csi.php
https://github.com/haifeng-zhang/ddabm-solar
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Figure 6.3: Overview of the presented methodology - A common set of parameters is
chosen from both ABMs and an active learning framework is implemented to learn
the decision boundary that separates the bins. Note that, the oracle is our solar ABM
simulation that computes the output for the point selected by active learning. The
solar ABM labels the output and adds it to the training pool.

6.2 ABM Comparison Method

In this section, we instantiate the framework described in Section 5.3 to compare the

ABMs described in Section 6.1. Both the Virginia ABM and the San Diego ABM

are network contagion models, where a contagion (in this case a technology such as

rooftop solar panels) spreads through a network. Both models belong to the general

class of SI contagion models, drawn from mathematical epidemiology, where S stands

for Susceptible and I stands for Infectious (we refer to [160] for an overview of such

models). In our context, Infectious corresponds to an adopter. Once a household

has adopted solar panels, its peer influence on their neighbors is assumed to persist
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Figure 6.4: A schematic illustration of the binary search process. Blue points are in
B0, red are in B1, and the green point is a boundary point.

indefinitely. This means that, in the limit, all households in both models will be

adopters, as long as the parameters are set in such a way that the probability of

adoption, if at least one neighbor has adopted, is non-zero. However, depending on

the parameter settings, it can be the case that the probabilities of adoption are so

low that we see very few adoptions in the duration for which the simulations are run.

Network structure can also play a role in speeding up or slowing down the spread of

the contagion through the network.

As the probability of adoption increases, the SI model undergoes a phase shift, where

the simulation shows a sharp qualitative change in its behavior. As the probability of

adoption crosses a threshold, the simulation quickly changes from only a few nodes

being adopters to a lot (or most) of the nodes becoming adopters in a short amount

of time. Due to this qualitative behavior, we choose just two bins to describe each

simulation in Section 6.1, which we refer to as B0 and B1, corresponding to small

and large number of adopters, respectively. The actual values chosen are listed in the
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Experiments Section.

Figure 6.5: Mean and standard deviation of the number of adopters generated by the
Virginia model for Rappahannock county along the diagonal of the chosen region of
interest (2D parameter space - [mile1,npv]), where mile1 is the number of adopters
within a mile and npv is the net present value of the panels.

The contagion models also have another property - the variance (or standard devi-

ation) in the output of the ABM simulation shows a sharp peak at the phase shift

boundary, and tends to be low away from the boundary. This is illustrated in Fig-

ure 6.5. Thus, by performing multiple simulation runs for any chosen point in param-

eter space, we get a clear signal if the point is close to the phase shift boundary. This

scenario is unique in the sense that we can actually know where the decision boundary

is for the classification algorithm, which is not the case in typical machine learning

scenarios. We make use of this fact in designing our active learning algorithm.

We start by considering a small sub-region of the domain with d parameters. This

region of interest is given by the d-dimensional hypercube. We say that Ξ ∈ B0 if, for
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the point Ξ in the parameter space, B(Ξ) = B0. The basic idea of the algorithm is that

if we have two points, Ξ0 ∈ B0,Ξ1 ∈ B1, we can do a binary search in the parameter

space along the line between Ξ0 and Ξ1 to find a point on the phase shift boundary (a

“boundary point”) by observing where the standard deviation peaks. This requires

doing multiple simulation runs for each evaluated point in the parameter space. These

replicates are equipped to run in parallel to save time. To initiate the binary search

process, we begin with points across the main diagonal of the search space. The

binary search process is given in Algorithm 2.

Once a boundary point is found using Algorithm 2, k points are randomly generated

around it in the d-dimensional space, at a small distance ϵ. All these k points are

then labeled (B0 or B1) using the simulation. These points are called evaluated points.

These evaluated points form the training data for the classifier to learn the decision

boundary. The evaluated points will strongly constrain the decision boundary for

the classifier since they are generated close to each other. Thus, given two initially

labeled points Ξ0 and Ξ1, we can generate k useful labeled (evaluated) points for the

classifier. Figure 6.4 schematically illustrates this process.

The classifier is trained on evaluated (labeled) points obtained so far. At the end of

r rounds, we have rk labeled points in the training set in addition to the seed labeled

points. In order to start round r + 1, we need to find the next set of candidates

to be labeled in the parameter space. This task is accomplished by uncertainty

sampling. In active learning, uncertainty sampling is used to find points that are most

uncertain about their labels. One such uncertainty sampling strategy is “smallest-

margin” uncertainty sampling [241]. In this scheme, points are chosen such that the

difference between the probability of labels/bins assigned to the point is minimum. To

start round r+1, we perform smallest margin uncertainty sampling with the trained
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classifier at the end of round r, by generating a point on (or near) the classifier

decision boundary that is far from the training set. This point represents a point in

the parameter space that has a high degree of uncertainty. We obtain the label of this

point by running the simulation. If it falls within B0, we choose an already labeled

point in B1 (typically the farthest one), or vice versa, to initialize the binary search

in round r + 1.

Two different stopping criteria can be designed. First, if K is the budget on the total

number of runs of the simulation, then we stop after round r if (r + 1)k > K > rk.

Second option, as the active learning proceeds, if we choose points on the decision

boundary of the classifier using uncertainty sampling such that they actually turn out

to fall on the phase shift boundary according to the simulation. This means that the

classifier is approximating the phase shift boundary well, and we can stop training.

The overall algorithm for the active learning procedure is given in Algorithm 3.

Once the stopping criteria is reached, the characteristic distance and the disagreement

between the ABMs is computed by sampling the parameter space. A large number

of equidistant points are generated in the d-dimensional parameter space and labeled

using the classifier. If N is the total number of points generated, and N0 is the number

that are labeled as being in B0, the characteristic distribution is (N0/N, (N−N0)/N).

To calculate the disagreement, we have to count the number of points, N ′ that are

labeled differently by two ABMs. Then, the disagreement is, ∆ = N ′/N .

It is easy to note that finding the region of the decision boundary (phase change

region) is expedited by running simulations for the correct points in the parameter

space. This implies that efficient navigation of large parameter space is important for

faster convergence and saving computing resources such as time & memory. Litera-

ture shows various types of experiment designs that may aid in effective parameter
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space search (E.g. [44, 87, 141]). Brueckner et. al [44] develop a parameter sweep

architecture for parallel execution of simulations. Simulations are executed for points

chosen by the fitness function/metric such that different phase change regions of the

parameter space are realized in an efficient and timely manner. Option Set Entropy

(OSE) is the metric used to guide the agents in the right direction. In our case,

we exploit active learning (uncertainty sampling in the current space) and contagion

model properties (e.g. using metrics such as threshold mean and standard deviation

– refer Figure 6.5) to accomplish this result.

6.3 Experiments

Experiments are performed with the two agent based models in three regions: Rappa-

hannock county in Virginia has 2495 agents, San Diego has 12925 agents, Shenandoah

Valley Region (SVR) has 138043 agents. Both agent-based diffusion models estimate

the number of households that are likely to adopt rooftop solar. The ABM presented

in Section 6.1.1 is used for Rappahannock county and Shenandoah Valley Region in

Virginia. The ABM presented in Section 6.1.2 is used for San Diego.

In order to facilitate comparison between the two ABMs, we choose to explore the

common parameters in both these simulations. Experiments are performed in a two-

dimensional common parameter space for both the models using input variables mile1

and npv, as these are the only common inputs between the Virginia model and San

Diego model. Mile1 stands for the number of households who have already adopted

within one mile of the household and npv is the net present value of the solar panels.

The model parameters are the weights assigned to these inputs in the calculation

of the probability of adoption by a household in the current time step. We also
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Algorithm 2 Binary search to find a boundary point
Input: pt1,pt2 : Endpoints for binary search with different labels.
Output: Boundary point m alongwith its mean and standard deviation
Note: Function RunDiffusionModel(pt1) executes the diffusion model simulation and
returns the mean (pt1Mean) and standard deviation (pt1Stdev) for given input point.

1: procedure BINARYSEARCH(pt1, pt2)
2: [pt1Mean, pt1Stdev] = RUNDIFFUSIONMODEL(pt1)
3: if pt1Stdev ≥ θsd then
4: Add pt1 to boundaryPoints
5: return [pt1, pt1Mean, pt1Stdev]
6: else
7: Add [pt1, pt1Mean, pt1Label] to evaluatedPoints
8: end if
9: [pt2Mean, pt2Stdev] = RUNDIFFUSIONMODEL(pt2)

10: if pt2Stdev >= θsd then
11: Add pt2 to boundaryPoints
12: return [pt2, pt2Mean, pt2Stdev]
13: else
14: Add [pt2, pt2Mean, pt2Label] to evaluatedPoints
15: end if
16: m = (pt1 + pt2)/2.0
17: while m /∈ boundaryPoints and pt1Label ̸= pt2Label do
18: [mMean,mStdev] = RUNDIFFUSIONMODEL(m)
19: if mStdev >= θsd then
20: Add m to boundaryPoints
21: return [m,mMean,mStdev]
22: else
23: Add [m,mMean,mLabel] to evaluatedPoints
24: end if
25: Assign m to pt1 or pt2, s.t. pt1 and pt2 have different labels
26: m = (pt1 + pt2)/2.0
27: end while
28: end procedure
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Algorithm 3 Active learning for predicting decision boundary.
Input: DiffusionModel, two d-dimensional points p1, p2
Output: evaluatedPoints, boundaryPoints

1: procedure LEARNDECISIONBOUNDARY
2: Pick the minimum and maximum from the range of p1 and p2
3: start = [p1Min, p2Min]
4: end = [p1Max, p2Max]
5: [bP t, bMean, bStdev] = BINARYSEARCH(start, end)
6: EVALUATENEARBYPOINTS(bP t) Add these points to evaluatedPoints
7: r = 1
8: while r <= K do ▷ K is the budget on total number of active learning runs
9: nPt = GETNEXTPOINTVIAUNCERTAINTYSAMPLING

10: [nPt, nMean, nStdev] =RUNDIFFUSIONMODEL(nPt)
11: if nStdev >= θsd then ▷ θsd is the standard deviation threshold
12: Add nPt to boundaryPoints
13: else
14: Add [nPt, nMean, nLabel] to evaluatedPoints
15: end if
16: oppPt = A point with label opposite to nLabel and farthest (L2 norm)

from nPt
17: [bP t, bMean, bStdev] = BINARYSEARCH(nPt, oppP t)
18: EVALUATENEARBYPOINTS(bP t) Add these points to evaluatedPoints
19: r ++
20: end while
21: return evaluatedPoints , boundaryPoints
22: end procedure
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(a) Round 1 (b) Round 2 (c) Round 3

(d) Round 4 (e) Round 5 (f) Round 6

Figure 6.6: Progress of the active learning algorithm for learning the decision bound-
ary for SVR region by Virginia model. As a new round starts, new boundary points
are discovered in the parameter space. This is followed by running simulations to
label points in the ϵ neighborhood of the boundary point. At the end of the round,
the classifier is trained with the updated training set.

perform experiments in a three-dimensional parameter space only for the Virginia

model to compare the Rappahannock and SVR regions. See Tables 6.1 and 6.1 for

model parameters. The proposed active learning method can be extended to higher

dimensions as well, though it is hard to visualize results in higher dimensions.

We assume fixed values for the other parameters in each model, as given by the

regression coefficients in Section 6.1. We define a point in the parameter space to

be a boundary point if the standard deviation of the number of adopters generated

by the simulation for that parameter point is higher than a threshold, θsd. If the

point is not a boundary point, then it is labeled as being in B1 if the mean number

of adopters is greater than a threshold, θm. Otherwise it is assumed to be in B0. In

order to choose the thresholds, θsd and θm, we do a preliminary set of runs along the

main diagonal of the chosen region of interest of parameter space.
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Figure 6.5 shows the output of the Virginia ABM on Rappahannock region in terms

of mean and standard deviation. Based on this, we set θsd to 250 and θm to 1000 for

Rappahannock. Similar experiments are performed for SVR and San Diego regions

to set the thresholds. In all the experiment settings and results shown, the ABM

results are averaged over 20 replicates to calculate mean and standard deviation.

Table 6.2: Thresholds for evaluating unlabeled instances.

Regions mean-threshold, θm std-threshold, θsd

Rappahannock, VA 1000 250

SVR, VA 12000 3500

San Diego, CA 120 12

Following are the details of the current experiments. Random forest classifiers to

learn the phase shift boundaries. In 2D experiments, we compare two models with

three regions - SVR and Rappahannock with Virginia model, and a sample zipcode

in San Diego with San Diego model. Mile1 and npv are the only common input

features in these two models, therefore, we utilize only these two parameters in the

2D experiments. For 3D experiments, we compare two regions with one model -

SVR and Rappahannock with Virginia model. We present only one set of results

comprising of parameters (weights) corresponding to mile1, npv, and totValI, where

the last feature is an indicator variable for the total value of the house (see Table

6.1). Table 6.2 shows the chosen thresholds for the three regions. These thresholds

are used in 2D and 3D experiments. Results are presented next.
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6.4 Results

Figure 6.6 shows the progress of the active learning algorithm in learning the decision

boundary for r rounds. For a large region such as SVR, the algorithm produces fairly

good results in six rounds. The approximately same number of rounds are required

for the other regions as well. This suggests that our algorithm chooses the uncertain

points well enough to learn the boundary quickly.

The final learned decision boundaries in 2D parameter space is shown in Figure 6.7.

All the evaluated points are plotted in blue and red color. The blue points show small

numbers of adopters, the red ones show large numbers of adopters, and the green

points are boundary points. We see that there are significant differences between

the three regions. The blue area is the largest in Rappahannock and smallest in San

Diego for 2D experiments. The blue area for Rappahannock is larger than that of

SVR region. The 3d decision surfaces are shown in Figure 6.10. Thus, we can say that

different adoption strategies will need to be adopted for different regions. One such

result is of SVR region and Rappahannock region. Both these models are run on the

same Virginia ABM. Yet, we see significant differences in large and small adoption

regions.

Figure 6.8 shows the characteristic distributions of the models for the different regions

which precisely captures the regional differences between the two bins. Since we chose

a uniform prior distribution, the heights of the bars correspond to the blue and red

areas in Figure 6.7 and 6.10. B0 (blue) represents small number of adopters and B1

(red) represents large number of adopters. For the 2D experiments, we see that small

numbers of adopters are much more likely in Rappahannock and least likely in San

Diego, while SVR lies in between.
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(a) Rappahannock (b) SVR (c) San Diego

Figure 6.7: Decision boundary discovered by the active learning algorithm in the
2D parameter search space for Rappahannock, SVR and San Diego regions. The
blue region (labeled as 0) represents a small number of adoptions and the red region
(labeled as 1) represents a large number of adoptions. The x-axis is the range of mile1
feature coefficient and y-axis represents range of the NPV feature coefficient.

(a) 2D (b) 3D

Figure 6.8: Left figure: 2D characteristic distributions of ABMs for Rappahannock,
SVR and San Diego regions. Right figure: 3D characteristic distributions of Virginia
model for Rappahannock and SVR.

For 3D experiments, SVR has a higher likelihood of larger adoptions. In order to

calculate the distance between characteristic distributions of the models, we will use

Equation 5.3, where D is the total variation distance. Table 6.3 shows the pairwise

distances between the models.

Next we compute the pairwise disagreement values for the models. As described

earlier, this is done by generating a large grid of points (since we chose a uniform

prior) and counting the number of points for which the two models disagree on the
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(a) Rapp. - SVR (b) Rapp. - San Diego (c) SVR - San Diego

Figure 6.9: Disagreements in the 2D parameter search space for Rapp. (short for
Rappahannock), SVR and San Diego regions. The pink region represents area of
disagreement and the green region represents area of agreement in labeling points.
The x-axis is the range of mile1 feature coefficient and y-axis represents range of the
NPV feature coefficient.

Table 6.3: Characteristic distance: Pairwise distances between the characteristic dis-
tributions, using total variation distance.

Dimensions u v TVD
mile1, npv Rappahannock San Diego 0.425
mile1, npv Rappahannock SVR 0.285
mile1, npv San Diego SVR 0.141
mile1, npv, totValI Rappahannock SVR 0.151

Table 6.4: Disagreement: Rappahannock and SVR have the least disagreement
whereas Rappahannock and San Diego have the largest disagreement.

Dimensions Pair Disagreement
mile1, npv Rappahannock and San Diego 42.4%
mile1, npv Rappahannock and SVR 28.4%
mile1, npv San Diego and SVR 17.7%
mile1, npv, totValI Rappahannock and SVR 16.5%

label. The results are shown in Table 6.4. We see that Rappahannock and San Diego

have the largest disagreement, and SVR has a smaller disagreement with each of

them. This matches results for characteristic distance, although it is possible for the

two measures not to agree. The disagreement plots are shown in Figures 6.9 and 6.11.

They show the region in the parameter space where the models produce different

results, which gives a much more precise picture of the differences between the models.
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Note that, although we refer to the disagreement between the models, these differences

are due to the data for Rappahannock and SVR, since the model is the same for those

two regions. Whereas when we compare either of those with the San Diego model,

the differences are due to a combination of data and model.

(a) Rappahannock (b) SVR

Figure 6.10: Decision boundary discovered by the active learning algorithm in the
3D parameter search space for Rappahannock and SVR regions. Figures (a) and (b)
shows the boundary predicted by random forest for Rappahannock and SVR regions
respectively. The x-axis is the range of mile1 feature coefficient and y-axis represents
range of the NPV feature coefficient and z-axis has values for coefficient of total value
indicator function.

(a) (b) (c)

Figure 6.11: In this figure, the points represent the disagreement area between the
classifiers in Figures 6.10a and 6.10b. Pink color represents disagreement area and
green represents agreement area. The darker green represents the area adjacent to
the disagreement area (darker green represents the boundary of disagreement and
agreement areas). The disagreement volume is viewed from three different angles to
get a better understanding of disagreement volume.

If two models have exactly the same parameters and model structure, then this

method can be used to isolate the differences in outputs due to the differences in
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the data, which may be due to differences in the distributions of various features

or due to differences in network structure. However, even if two models don’t have

exactly the same parameters and structure, we can still do a meaningful comparison,

as we do for San Diego in comparison with either Rappahannock or SVR, though we

cannot isolate the effects of the data alone.
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6.5 Discussion & future work

We have presented a new methodology for comparing agent-based models. In fact,

our approach applies to simulations in general, since we are not making explicit use

of the fact that these are agent-based. We treat the simulation as a black box with a

given parameter space, a given output, and a fixed input. We created a framework for

comparison based on two new quantities we have defined: the characteristic distance

and the disagreement.

We also presented a new agent-based model of rooftop solar panel adoption in rural

Virginia, USA, and compared this model with an earlier model of rooftop solar panel

adoption in San Diego, California, USA. We instantiated our framework to compare

these models using an active learning method to learn the phase transition boundary

in these models. We used random forest classifiers, but any other classifier can be

used. We have also tried using support vector machines with linear kernels, and the

results are similar.

There are multiple uses for this kind of analysis. Modeling the response surface puts

the focus on the parameters instead of the features themselves. For example, a re-

gression analysis might show that the Mile1 feature is highly significant for prediction

solar panel adoption. However, analyzing the response surface might show that in-

creasing the coefficient for Net Present Value would also be a way to cross the phase

transition boundary and increase the number of adopters. The first insight (about

Mile1) suggests that one way to increase adoption is to give away solar panels to some

households in such a way that other households also start adopting. This is a version

of the influence maximization problem [128] and has been studied in this domain [99].

However, this might be quite expensive. The second insight suggests that another
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way to increase adoption might be to make people more aware of the Net Present

Value to them, thereby increasing the weight they attach to it. This informational

campaign would be much cheaper.

Comparing two regions, even if models are made by different researchers with different

data sources and assumptions about model structure can be very instructive. It can

help to answer the question of how likely is the observed difference between the two

regions. This can offer fundamental insight into whether different policy approaches

are needed for different regions.

There are multiple avenues for further research. The robustness of the method needs

further study. In the case of contagion models, since we are able to exploit the

property that model variance increases sharply at the phase transition boundary, we

can find actual boundary points. This allows us to start the active learning with

very few points but avoid the problems associated with limited data. If the boundary

is not so well-defined, we might need to do more simulation runs, even with active

learning, to characterize the regions properly. In general, we don’t have a way of

determining how many points are needed to learn the boundaries between regions.

An important direction of research is to determine that or at least come up with an

explainable heuristic.

Another important direction of research is to ask, what are the changes necessary

to minimize the characteristic distance or disagreement between two models? We

might wish to come up with succinct explanations for the reasons the two models

disagree. As agent-based simulations are getting larger and more complex, this kind

of explainability is becoming increasingly important. Hopefully, the present work will

motivate further work along these lines.
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Contribution note. We did not develop the San Diego model. The San Diego

model was obtained from Sandia labs from one of our collaborators. The Virginia

diffusion model was developed by another Ph.D. student in the Statistics department

at Virginia Tech, Zhihao Hu. My contribution is the active learning framework for

the comparison of these two models. I also worked on improving the performance of

the Virginia model to reduce runtime per simulation for larger regions such as the

Shenandoah valley Region (SVR).
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Chapter 7

Assessing fairness of dynamic

pricing for electricity using

agent-based behavior models

Active demand-side management in the smart grid has become important since re-

newable penetration, EV adoption, and extreme weather conditions have accelerated.

An effective way to maintain grid reliability as well as fulfill the variable consumer

demands is by introducing economic incentives. One way is by replacing the flat

rate tariffs with dynamic grid tariffs. However, dynamic pricing schemes need to be

designed carefully so as to consider fairness and benefits for consumers as well as

utilities. A methodology is described for exploring the fairness of dynamic pricing for

residential electricity using agent-based models based on social theory, and machine

learning. As an example, I simulate cost savings through monthly bills and peak

demand reduction in synthetic household agents in a Time Of Use (TOU) pricing

scheme in Virginia.
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7.1 Introduction

The electric grid is undergoing rapid transformations on different fronts such as smart

meter installation and supporting green energy such as EV and PV penetration. In

addition, meeting climate change goals through the energy sector requires us to lower

and alter energy use behaviors at the household level. EIA and U.S. Agency for In-

ternational Development (USAID) 1 describe four popular demand-side management

strategies shown in Figure 7.1 for lowering or altering energy use behaviors. In this

chapter, I will focus on Load Shifting strategy in response to change in price.

Figure 7.1: EIA and U.S. Agency for International Development (USAID) summarize
four popular strategies for reducing or altering energy use behaviors.

1https://www.usaid.gov/energy/efficiency/basics

https://www.usaid.gov/energy/efficiency/basics
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Dynamic grid tariffs [19, 20, 42, 78, 224] is one of the ways to facilitate demand

response in order to change energy use behaviors in households. This strategy is

gaining importance due to economic incentives that can persuade consumers to gain

benefits. Peak-time energy demands put a huge stress on the power grid due to the

high consumer demand. One way of incentivizing the reduction of electric appliance

use from peak energy demand times (e.g., evening hours) to non-peak hours during

the day is by varying the price of electricity at short intervals. This type of pric-

ing scheme can be beneficial to the utilities as well as the consumers. Examples

of a few dynamic pricing schemes that have been experimented with are real-time

pricing (RTP)(e.g., [61]), time of use (TOU)(e.g., [224, 252]), critical peak pricing

(CPP)(e.g., [108]). An example of a TOU pricing scheme is shown in Figure 7.2. The

illustration is obtained from Southern California Edison 2.

Electricity providers (e.g., utilities) and economists have been studying the impor-

tance and effects of rate/tariff design through economic & social theory [19, 195,

219] as well as by conducting longitudinal experiments by recruiting a small group

of households [7, 52, 83, 131]. Such a pricing scheme not only benefits the utilities

but also has the potential of benefiting consumers by reducing their monthly bills.

Findings from dynamic pricing trials have reported that numerous residential con-

sumers can achieve a reduction in peak-time energy use, the total cost in terms of

monthly electricity bills, or a reduction in energy burden. These studies reveal that

the potential for these savings varies by geography, household practices, occupancy

patterns, weather variables, affordability, household demographic composition, and

finally household demand elasticity.

Given the increased proliferation of grid technologies such as smart meters, smart

2https://www.sce.com/residential/rates/Time-Of-Use-Residential-Rate-Plans

https://www.sce.com/residential/rates/Time-Of-Use-Residential-Rate-Plans
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thermostats, smart appliances, and green technologies such as EV & PV, and the

considerable number of variables involved in household behaviors, some types of con-

sumers may benefit more than others (e.g., affluent families with green technologies).

A few examples of unfairness reported in the literature are described here [146, 281,

282, 291]. Adoption of an untried dynamic tariff may render vulnerable consumers

unable to afford adequate cooling or heating of their homes, thereby having adverse

health consequences. Other instances have shown disproportionately increased bills

for households with elderly and disabled occupants. Apart from income-related in-

equities, embracing dynamic tariffs have also predicted worse health outcomes for

households with disabled and ethnic minority occupants.

We argue that it is important to pursue this line of research and uncover the effects

of dynamic pricing on different populations or spatial groups in order to design a

fair tariff. Energy is considered one of the basic necessities in this era. Thus, it is

imperative that every population group can afford and access this resource. With

increased occurrences of extreme weather events, it has become critical to reducing

the energy burden in vulnerable population groups so that their quality of life can be

improved. Apart from economic and social theory work in the fairness of dynamic

tariffs [19, 110, 116, 195, 219], there is limited AI literature on the design of fair

dynamic tariffs for the residential sector in the U.S. [146]. In this chapter, I propose a

methodology for designing fair dynamic pricing schemes based on machine learning,

and principles from social theory and using the digital twin of the household-level

energy demands described in Chapter 2.
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Figure 7.2: Example of Time of Use pricing scheme. Source: Southern California
Edison

7.2 Background

This section will provide background on the principles of designing energy pricing and

literature on modeling techniques for scheduling appliances with dynamic pricing.

7.2.1 Designing residential energy pricing

There exist many competing policy objectives in designing residential pricing w.r.t.

two entities: utilities and consumers. Some of the primary objectives include revenue

stability for the utility, reduction of peak time load for the utility service area, and

affordability for all customers irrespective of sensitive attributes such as income, race,

and so on. The most frequently cited work for rate design goals is proposed by James

Bonbright in his book called “Principles of Public Utility Rates” [40]. Out of the

eight principles, three principles are highlighted to be the most important – “revenue

requirement objective (fair return for the utility), a fair cost apportionment objective

(rate recovery is evenly distributed among classes and customers), and optimum use

or customer rationing objective (rates are designed to discourage wasteful use of public

utility services)”. The American Council for an Energy-Efficient Economy (ACEEE)
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has summarized similar three ‘rate design principles’ in Baatz et al. [19] as follows –

1. Rate simplicity. “Rates should be easy for customers to understand and respond

to.”

2. Utility revenue stability. “Rates should allow utilities the ability to earn commission-

authorized revenues to maintain financial health.”

3. Promotion of conservation and energy efficiency. “Rates should send price

signals to customers to discourage wasteful use of electricity.”

Public Utility Regulatory Policies Act of 1978 (PURPA) expanded on Bonbright’s

principles by introducing a focus on equitable customer rates, efficient use of facilities

and resources by utilities, and conservation of energy by end users. Recently, fairness

has gained importance in discussions about energy pricing as a rate design principle.

ACEEE’s extensive analyses of dynamic pricing trials have found that adopting time-

varying rates, specifically, TOU rate design with Critical Peak Pricing (CPP) or

Peak Time Rebate (PTR) shows the greatest promise of mostly satisfy the three

principles of rate design. However, the fairness of these schemes still remains an open

question mainly due to consumer occupancy schedules, affordability, demographics,

the existence of smart technologies, DERs such as PV, characteristics of the building

structure, and so on.

Dynamic time pricing is gaining attention with utilities due to :

(i) increasing penetration of solar in households – such households use much less

energy from the grid and pay no tariff for using solar as an energy source;

(ii) installation of smart meters – they provide the utilities a unique opportunity to

shape the load in the desired way using dynamic pricing as an economic incentive.
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This can help recover costs as well as conserve energy and reduce peak time demand.

Neuteleers et al. [195] and Li et al. [146] have provided insights about fairness in dy-

namic residential tariffs through social theory and data-driven analyses. The fairness

dimensions are summarized below:

• Trust & predictability – The changes and/or fluctuations in tariff should be

transparent and easy to understand (no hidden charges to consumers). Ade-

quate notice time needs to be given to consumers to adjust to the new tariff.

• Reference dependency (fair transition) – The majority of the consumers should

be better off after the transition to a new tariff. This can be described in terms

of monthly energy bills. The bills should either be the same or less. This also

implies that consumers should possess the ability to pay their monthly energy

bills.

• Exploitation after transition – There should be appropriate laws in place to

govern controls on utility profits to avoid the perception of ‘consumer exploita-

tion’.

• Fairness of distribution – There should be equality and/or equity in terms of the

outcome of the new tariff design chosen to be implemented. Specific populations

(e.g. below federal poverty-level households, disadvantaged communities)

One can observe some similarities between these fairness ideologies and the rate design

principles described in this section. We use this background knowledge in identifying

fairness constructs in this work.
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7.2.2 Appliance scheduling with dynamic pricing

In this section, popular methods for modeling household schedules and utility objec-

tives for dynamic electricity pricing schemes are discussed. Broadly three categories

of techniques are summarized below [146].

• Multi-objective optimization – optimizing competing objectives e.g., max-

imizing utilities’ profits versus minimizing users’ costs under dynamic pricing

schemes (e.g., [7, 12, 61, 69, 119, 176, 210, 279, 289]).

• Game theory – modeling the interactions between two entities; utilities and

users (e.g., [57, 66, 98, 164, 290]).

• Bill neutrality – designing tariffs while keeping the total cost for users un-

changed [16, 199, 274].

A comprehensive review of techniques is provided in Hussain et al. [114]. Many of

the strategies presented in the above literature do not guarantee fair cost distribution

among users. Most of the other work are findings reported from studies [224] or

analyses of household factors supporting the adoption of dynamic tariffs that were

described in the Introduction section of this chapter.

7.3 Framework

7.3.1 Problem description

Preliminaries. Let the ABM simulation be described as a stochastic function F (Ξ)

where Ξ is the set of k parameters. Let p1, p2 ∈ Ξ. Given the parameter space for
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parameters p1 and p2 indicating peak and non-peak price, and y be the output of the

ABM for a particular parameter setting. Our goal is to find a feasible region in the

2D parameter space of p1 and p2 parameters in terms of the output ys of the ABM

such that it satisfies a set of constraint(s). In this case, the set constraints are defined

in terms of fairness criteria. If the output y corresponding to a particular setting of p1

and p2 satisfy the fairness constraint, then the point falls in the feasible region. In this

work, we are particularly interested in finding the condition (i.e., parameter settings)

that leads to different outputs (i.e., a phase transition from feasible to infeasible).

Thus, we characterize the behavior of the ABM in terms of the probability of seeing

a particular output given a particular parameter setting. We specifically characterize

the ABM behavior as a discretized probability distribution, using a set of bins denoted

by their bin boundaries, {[y0, y1],…,[yn−1, yn]} as [B0, B1, . . .]. In our application, we

define two bins B0 indicating the ABM output lies in the infeasible region, and B1

indicating the ABM output lies in the feasible region. In order to compute this feasible

region, we propose a machine learning approach based on active learning. The general

idea is to train a multi-class classifier where a class corresponds to a bin. Since the

ABM simulation is expensive to run, the active learning approach helps minimize the

number of times the simulation has to run. The classifiers are used to estimate the

area under each bin, thus giving us the functional representation of the ABM outputs

over the parameter space.

We will use the Time of Use (TOU) pricing strategy in this work. Let H be the

set of households serviced by a utility and hi ∈ H. Let [p
′
1, p

′
2] be the TOU pricing

vector where p
′
1 is the peak price and p

′
2 is the non-peak price in $/kWh. Let bi

be the monthly bill (in $) of household hi under the flat rate tariff [p1, p2] where

p1 = p2 = 0.11. Note that bi is the bill when no behavior change is induced in the
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agents at the flat rate tariff. In our work, we refer to this as business as usual (BAU)

scenario or the baseline scenario. For a new TOU price vector [p
′
1, p

′
2], let b

′
i be the

new monthly bill for household hi when behavior change is induced in response to a

new price. Let e′
i be the monthly energy (in kWh) of household hi in response to the

TOU price vector [p′
1, p

′
2] that can be written as

e
′
i = e

′

peak,i + e
′

nonpeak,i

b
′
i = e

′

peak,i × p
′
1 + e

′

nonpeak,i × p
′
2

(7.1)

Problem. Let us define the fairness in the dynamic pricing problem as follows. Let

the ABM simulating household behaviors to price changes be described as a stochastic

function F (Ξ) where Ξ is the set of k parameters. Let p′
1, p

′
2 ∈ Ξ. The problem is to

find the feasible region in this 2D parameter space that represents fair pricing, given

household demographics, behaviors & schedules, and appliance shifting probabilities

at the BAU scenario. In order to compute the region of fair pricing in the parameter

space, we use an active learning method. A binary classifier is trained where a class

corresponds to a bin. The outcome of the ABM y is characterized by two bins/classes:

B0 indicates that the bin containing outputs that lie in the unfair pricing region and

B1 indicates that the bin containing outputs that lie in the fair pricing region of the

2D parameter space of peak and non-peak pricing parameters p′
1, p

′
2. Three scenarios

are simulated to learn the fairness region under two fairness criteria. The fairness

criteria for characterizing the ABM output in discrete bins is computed by estimating

– monthly bill b and peak demand epeak at the household level.

Figure 7.3 describes the framework designed for discerning fairness boundary in the

TOU pricing parameter space. (Note: the peak demand reduction graphic in Fig-
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ure 7.3 is taken from Omnes Energy blog 3). The agent-based simulation models the

behavior change in households in response to a TOU price vector selected by active

learning. First, a compliance factor is calculated that quantifies each household’s

ability to shift peak activities outside peak hours. Next, based on an appliance/ac-

tivity shift priority (as defined in Stelmach et al. [252]) and the new price vector, the

order and probability of shifting the appliance/activity from peak to non-peak hours

are calculated. Depending upon the occupancy schedule (at 15-minute intervals), the

presence of smart technologies, household preferences/constraints, and the probabil-

ity of shifting activity/appliances, the new activity/appliance schedule is calculated

by the appliance scheduling model. Finally, the energy demand models compute the

hourly energy profiles for each household. The last step of the simulation is to label

the output of the simulation. This point is then added to the pool of trained points

and the ML model is updated. Active learning then uses the updated ML model to

select the most informative price point that can explain the boundary between fair

(feasible) and unfair (non-feasible) regions in the parameter space.

The subsequent sections will describe the fairness constructs (and classes for the

machine learning models), agent behaviors, and appliance scheduling components of

the framework.

7.3.2 Fairness

Fairness criteria 1. This criterion is defined based on the behavior theory construct

of ‘Reference Dependency’ (described in Section 7.2.1). A TOU price vector is fair

only if the new monthly bill is the same or less than the monthly bill generated

by the BAU scenario (i.e. baseline monthly bill). As described before, the baseline
3http://www.omnesenergy.com/blog/2016/8/18/peak-demand-reduction-with-energy-storage-1

http://www.omnesenergy.com/blog/2016/8/18/peak-demand-reduction-with-energy-storage-1
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Figure 7.3: Framework for learning fairness in dynamic pricing (specifically TOU)
using household-level behavior-induced agent-based modeling and active learning.
Two objectives are considered for exploring the fairness of Time Of Use pricing in
LMI and non-LMI communities: savings through the monthly bill and peak demand
reduction.

monthly bill is a household’s energy bill under the flat rate tariff with no behavior

change (BAU scenario). In this case, we define two bins B0, B1 that the oracle should

annotate/label. In the proposed active learning framework, the oracle is our agent-

based simulation. The last step of the simulation is to analyze and annotate the

output. The output lies in bin B0 when the price vector (selected by active learning)

induces an unfair outcome and in B1 when the price vector induces a fair outcome.

Let the simulation run for n households for a TOU price vector [p
′
1, p

′
2]. Then, the

label (or bin) of the simulation output is decided by the following equation –

b
′
=

∑n
i=1 b

′
i

n
, b =

∑n
i=1 bi
n

bin =


B1, if b− b

′ ≥ 0

B0, otherwise

(7.2)
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Fairness criteria 2. This criterion is defined in reference to the third point of ACEEE’s

rate design principles i.e. ‘promotion of energy conservation and energy efficiency’.

In our case, we quantify this as a minimum amount of peak demand reduction in

households on average for a TOU price vector to be fair. Let the average minimum

amount of peak demand reduction (in kWh) be ∆peak across n households. In this

case, too, we define two bins B0, B1 that the oracle should annotate/label. In the

proposed active learning framework, the oracle is the agent-based behavior modeling

simulation. The last step of the simulation is to analyze and annotate the output.

The ABM output is categorized as unfair when the average minimum peak demand

reduction is not achieved (thus, unfair from the utility’s perspective), thus labeled as

B0. If the minimum peak demand reduction is achieved, then the oracle labels this

point as fair and is assigned to B1. Let the simulation run for n households for a

TOU price vector [p′
1, p

′
2]. The label for the simulation output is computed using the

following condition –

e
′

peak =
∑n

i=1 e
′
peak,i

n
, epeak =

∑n
i=1 epeak,i

n

bin =


B1, if epeak − e

′

peak ≥ ∆peak

B0, otherwise

(7.3)

7.3.3 Ability to shift peak activities

Agents interact with the electric grid in a complex manner. Many external variables

(e.g., temperature, irradiance), household behaviors (e.g., cooking every day at 5

pm), building characteristics, demographics, and socioeconomic indicators determine

how energy is used in a household. Nudging agents to modify when and how to use

electricity in response to price fluctuations is challenging because all households may
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not respond to the change to the same degree. In addition, it may require negotiating

with the agent and/or frequently compromising household practices. Thus, we can

say that an agent’s flexibility to adapt to a price change is contingent upon the rate

of change from flat rate tariff, and the variables mentioned above.

In order to quantify the flexibility/elasticity of an agent in response to a price change,

we initially employed a regression model defined in Stelmach et al. [252]. The model

was developed using survey data from 337 households in California (Alameda county)

that were slated for a Time of Use (TOU) tariff rate. The model predicts a factor

called willingness to shift peak activities. However, the model fails to adapt to changes

in TOU pricing for the region under study (Rappahannock, Virginia).

Thus, we define a simple model based on income and monthly bill (with no behavior

change) to quantify the flexibility of a household to a price vector to move peak

activities to non-peak hours in terms of an ability to shift factor si, given as –

si =
1

1 + ezi
where zi =

vi + bi
100

− 1 (7.4)

vi is the income percentile of household hi and bi is the monthly bill of hi for the

TOU price vector [p′
1, p

′
2] with no behavior change.

Let A be the set of activities/appliances observed during the peak period. The peak

activities of interest are cooking, showering/bath, dishwasher, laundry, heating/cool-

ing, vacuuming, lights, and device use such as TV and computer. Of these peak

activities, agents place the highest preference for shifting dishwasher and laundry ac-

tivities [195, 252]. The preference order and probability of shifting an appliance out

of peak hours are adapted from Stelmach et al. [252]. These probabilities are recorded

for a 30% increase in peak price. We adjust the probabilities to reflect changes in peak
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price for a new TOU price point. This information is used in scheduling appliances.

Let the probability of shifting an appliance/activity aj ∈ A outside peak hours for

the TOU price vector [p′
1, p

′
2] be P(aj).

P(aj) =
p
′
1 × P(aj)

p1
(7.5)

P(aj) is the probability of shifting appliance aj at flat rate price p1. (Remember:

p1 = p2 since the baseline price is the same all day.)

7.3.4 Appliance scheduling

In this chapter, we focus on a load-shifting strategy while responding to dynamic

pricing. Thus, appliances/activities in peak time are scheduled to be moved out of

peak hours for the same day based on the probability of shifting an appliance/activity

for the TOU price vector. A data-driven behavior change algorithm is designed for

scheduling appliances in a household for a TOU price vector chosen by the active

learning procedure.

First, a 15-minute interval household occupancy sequence is constructed. The oc-

cupancy sequence records 3 states for each individual in the synthetic household for

each 15-minute interval of the day. The recorded occupant states are away, awake

and at home, and asleep and at home.

Based on the ATUS and RECS augmentation models described in Chapter 2, we have

the existing schedule of appliances/activities in the households (BAU scenario). Next,

the probability of shifting each of the peak activities of interest is re-calibrated for a

new price point based on the data found in Stelmach et al. [252] and Equation 7.5. The
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new ability to shift factor is calculated for a new price point and for every household

based on the Equations in Section 7.3.3.

Based on literature referred to in Sections 7.1 and 7.2.1 some dynamic pricing tri-

als have reported that households equipped with smart technology such as smart

thermostats/appliances may be more responsive to dynamic pricing signals. Thus,

we take into account the presence of smart technology in synthetic households by

mapping attributes from RECS households to synthetic households using the RECS

model described in Chapter 2.

For every appliance, behavior change rules are defined based on the existing dynamic

pricing trial literature. The agent adopts behavior change only if the probability

condition is satisfied. Dishwasher and laundry activities are scheduled outside peak

hours only when the occupants are in the house and awake. However, if the house has

smart technology, the house can schedule dishwasher and laundry activities anytime

outside peak hours. If HVAC is indicated as a peak activity, then, the occupants

change the indoor thermostat setting by 2◦F depending upon the season (e.g., the

thermostat setting will increase by 2◦F in summer) to reduce HVAC energy demand

in peak hours. Similarly, if the lighting is indicated in peak activities, then, the

household turns off any 2 bulbs during the peak period to reduce the peak time

consumption. If a cooking activity needs to be shifted outside peak hours, then, it

is shifted to either 1 hour before peak time or 2 hours after peak time as long as the

occupants are at home and awake. If any electronic devices need to be shifted outside

peak hours, then, these activities are randomly shifted to other timeslots when the

occupant is at home.
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7.3.5 Energy use models

The energy use models are the same as described in Chapter 2 of this thesis. Refer

to Section 2.4 for details. The input to these models is the new appliance schedule

generated from the previous section.

7.3.6 Active learning

Once the appliances are re-scheduled for every house for a given price point, we run

the energy demand modeling simulation to get the hourly residential energy demand

profiles. Then, the simulation point is labeled based on the fairness criteria enforced

to evaluate the simulation output. The evaluated points will constrain the decision

boundary for the classifier. The classifier is trained on the evaluated (labeled) points

obtained so far. I have used a random forest classifier in this work. Let c be the TOU

price vector returned by the active learning algorithm using uncertainty sampling. At

the end of r rounds, we need to find the next best TOU price candidate to be labeled

in the parameter space. This task is accomplished by uncertainty sampling. In active

learning, uncertainty sampling is used to find points that are most uncertain about

their labels. To start round r + 1, we perform the margin uncertainty sampling with

the trained classifier at the end of round r, by generating a point on (or near) the

classifier decision boundary that is far from the training set. This point represents a

point in the parameter space that has a high degree of uncertainty. We obtain the

label of this point by running the simulation. This process is run a fixed number of

times or until there is no change in the learned boundary between two rounds. The

detailed methodology is defined in Chapter 5.
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(a) Baseline peak demand (kWh) (b) Baseline non-peak demand (kWh)

Figure 7.4: Histogram of peak and non-peak demand (in kWh) in households in
Rappahannock under flat rate pricing with no behavior change. Peak hours are
considered from 5 pm to 8 pm.

7.4 Experiments & Results

We conduct experiments on the Rappahannock region in the state of Virginia in the

U.S. It has approximately 3700 households. Demographic statistics for Rappahannock

are shown in Figure 7.6.

The goal of the experiments is to learn three distinct decision boundaries (corre-

sponding to 3 scenarios) in the peak and non-peak pricing 2-D parameter space that

represents a TOU pricing scheme. The population is divided into two groups based

on the area median income (AMI) of Virginia. Two groups are created: LMI and

non-LMI. LMI stands for Low-to-moderate income and is 80% of AMI. For Virginia,

the LMI limit is ≈ $60k. The first two scenarios simulate the first fairness crite-

ria of Reference Dependency for LMI and non-LMI populations. The third scenario

simulates the second fairness criteria which correspond to the average peak demand

reduction for households in the region.

Scenarios. The first experiment learns the decision boundary to discern where the

monthly bill increases for the LMI community beyond the flat-rate pricing monthly

bill without any behavior change. The second experiment discerns a decision bound-
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(a) Dishwasher (b) Laundry

(c) Cleaning (Vacuum) (d) Shower/bath

(e) Misc. entertainment (f) Computer

(g) TV (h) Cooking

Figure 7.5: Occurrences of different type of activities in Rappahannock households
throughout the day under ‘Business As Usual’ with flat rate pricing ($0.11) scenario.
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(a) Householder age (b) Income (c) Square footage (d) Household size

Figure 7.6: Distribution of demographic factors of Rappahannock population: House-
holder age, income, square footage of the dwelling, and the number of members in
the household.

ary similar to the first scenario, but for the non-LMI community. There are ≈600

LMI households in Rappahannock. The third scenario attempts to learn a decision

boundary to separate the parameter space into 2 parts: average peak demand reduc-

tion (in kWh) per household less than 1kWh and greater than 1kWh. The Business

As Usual (BAU) scenario indicates no behavior is induced in the agents and the pric-

ing is set to a flat-rate pricing scheme. In this case, the flat rate is $0.11. Peak time

is enforced between 5 pm to 8 pm. The first two scenarios are designed to study

inequality in terms of monthly bills across the TOU pricing parameter space for dif-

ferent population groups based on income. The third scenario is designed to examine

the benefit for the utility in terms of peak demand reduction in the TOU pricing

parameter space.

Figure 7.5 shows the frequency of activities that start during different times of the day

under a BAU scenario in Rappahannock county. We observe that there are different

types of activities that occur during peak periods, among which cooking, tv, and

dishwasher are the top 3. Figure 7.10 shows appliance scheduling under an example

TOU pricing scheme for a peak price $1.18 and non-peak price $0.025. Since the peak

price is high, we observe that many of the houses shift most of their activities outside
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the peak period.

Fairness boundaries for scenarios 1 and 2 along with the disagreement in the param-

eter space are illustrated in Figure 7.7. It is observed that non-LMI households have

a higher threshold for observing benefits in their monthly bills as compared to their

LMI counterparts. If both communities were to receive fair benefits from implement-

ing TOU, then the pricing should lie in the agreement region (colored green). An

important objective for the utility to implement the TOU pricing scheme (or any

dynamic pricing scheme) is to reduce the peak time demand in the region. Figure 7.8

shows an example of peak demand reduction in the region under study. It shows

the decision boundary in the pricing parameter space where an average of 1kWh/-

household peak demand reduction is achieved. It is observed that as the peak price

increases, households become more flexible to shift activities outside peak hours. The

region of the intersection of all three scenarios is illustrated in Figure 7.9. The region

colored green denotes the fair pricing region since on average households notice the

same monthly bill (as flat-price/BAU) or a reduction in their monthly bills and the

utility observes a reduction in peak demand. The other partially fair regions are

highlighted in different colors.
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Figure 7.7: LMI & non-LMI fairness boundary along with disagreement
in the parameter space. Random forest algorithm learns a decision boundary for
which LMI monthly bill reduces (or remains the same as the flat rate) in the 2D
pricing parameter space (peak and non-peak pricing). The blue region indicates that
the average monthly bill of LMI (in (a)) and non-LMI (in (b)) is less than equal to
the average monthly bill under the BAU scenario. Thus, the blue-colored area refers
to the fair pricing region and the red-colored region indicates unfair pricing.

Figure 7.8: Random forest algorithm learns a peak demand reduction decision bound-
ary in the 2D pricing parameter space (peak and non-peak pricing). The blue region
indicates an average peak demand reduction of 1kWh per household in Rappahan-
nock.
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Figure 7.9: Disagreement between the three simulated scenarios. The top row
represents the three decision boundaries learned by active learning based on the two
fairness criteria. The disagreement figure in the second row represents disagreement
in the parameter space across the three scenarios. The region that satisfies both the
fairness criteria is denoted by green. The other (unfair) regions in the parameter
space are denoted by different colors and a small caption beside them. Thus, if the
utility were to design a fair TOU pricing for Rappahannock such that it achieves
the utility’s goal of peak demand reduction and reduction in monthly bills for the
consumers, then, it would have to be a pricing point in the green region.
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(a) Dishwasher (b) Laundry

(c) Cleaning (Vacuum) (d) Shower/bath

(e) Misc. entertainment (f) Computer

(g) TV (h) Cooking

Figure 7.10: Example of occurrences of different types of shiftable activities in Rap-
pahannock households throughout the day under TOU pricing for peak price $1.18
and non-peak price $0.025 scenario.
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7.5 Discussion & Future work

Designing agent-based simulations for reasonable population size (e.g., city, state)

without consumer trials is difficult. However, recruiting a representative number

of participants, conducting the dynamic pricing trial while ensuring protection to

participating consumers, and finally, collecting & sharing data from these trials is a

long and arduous process. Sharing household-level preferences and demographics is

complicated due to privacy protection-related issues.

The onerous task of conducting multiple experimental trials can be reduced substan-

tially by introducing AI. I use the high-resolution large-scale household energy use

dataset from Chapter 2 to study the effect of dynamic pricing schemes, specifically

TOU, to uncover inequalities (in terms of income and monthly bills) between LMI

and non-LMI households under equal opportunity scenarios. An equal opportunity

scenario indicates that all households are enrolled (i.e., given a chance to partici-

pate) in the TOU pricing scheme plan. All households are given an equal chance to

shift their peak-time activities. Detailed synthetic energy data, active learning, and

behavior-induced agent-based modeling can support utilities and/or policymakers to

design mechanisms for protecting energy-poor communities. Our results for a rural

region with 3̃700 households located in Virginia show a different TOU pricing thresh-

old for LMI and non-LMI communities to gain benefits in terms of monthly bills and

peak demand reduction.

Note that we use the reference of the baseline energy consumption to compare the

savings with behavior changes in response to TOU pricing since it is constant. Other

notions can also be used to describe savings in terms of whether behavior change is

adopted or not for a particular price. These types of metrics are used in incentive
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design trials where behavior change is induced by nudging consumers through com-

municating channels such as emails or text just before the peak time pricing starts.

These nudges may include information such as the price paid by the consumer de-

pending upon whether they do or do not adopt behavior change during the peak

pricing period. In the second criterion, we try to achieve grid stability by reducing

peak demand in households. In future work, we can devise new ways to quantify

the fairness metric for a reduction in peak demand by including pricing and demand

details from the utility (e.g., ERCOT, PJM).

Our current results are for a small rural county in Virginia. These results may be

different for a larger densely populated city. It will be interesting to examine the

responsiveness of households in different climate regions to TOU pricing schemes.

The future direction for this work will be to study the effects of the presence of

PV panels, EV charging, and energy storage in households. This can help uncover

potential problems in disadvantaged communities and support policymakers as well

as utilities to design incentives for the adoption of dynamic pricing such as TOU or

CPP (Critical Peak Pricing) and EV pricing schemes. Another interesting direction

would be to study the disparities between different types of consumer groups apart

from income-based (LMI vs non-LMI). One can examine different family types (e.g.,

single-person households, senior citizen households, fully work-from-home households,

families with two or more children households), or consumer segregation based on

household ownership, or grouping based on ethnicity, or study area types (e.g., urban,

rural, metropolitan).

It will also be intriguing to study how these pricing strategies evolve when EV and

PV penetrations increase disproportionately and as EV charging station infrastruc-

ture undergoes changes. One can target retrofitting in households that have higher
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monthly bills so as to reduce their overall bill and improve household energy effi-

ciency. This may benefit households while participating in dynamic pricing schemes.

As summers become more extreme every year, one can study the effects of imple-

menting dynamic pricing under such extreme weather scenarios to examine the vul-

nerability of households in terms of comfort violation. It may be possible to study

if dynamic pricing in conjunction with EV and PV can help us be on track for the

RCP 2.6 global warming scenario (in the residential energy sector).
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Part III

Conclusions
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Chapter 8

Conclusion and Future Work

This chapter provides closing comments and some notes on ongoing work and future

directions for using the results in this thesis in other relevant tasks in residential

energy.

8.1 Ongoing & future work

I am currently working on additional social impact problems in the residential smart

grid that employs AI, optimization, and digital twins of the distribution power net-

work and household-level energy demands. The first problem is about electric vehi-

cles. We want to identify EV adopters in the population, learn EV adopter demand

patterns, and find optimal placement for EV chargers. The current EV adopter de-

mographic profile is extremely narrow – high-income males largely in the white pop-

ulation. In the other part, we are trying to understand the demand for EV charging

infrastructure.

In the second problem, we study the effects of retrofitting building stock for the

promotion of energy conservation. Our initial results are promising – we observe that

upgrading appliances to energy star have a huge impact on monthly energy bills.

The work in this thesis can be taken further in a number of ways. First, it will
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be beneficial to add PV and EV adopters and simulate their demands to add a

layer of information to the digital twin. It will now be possible to study detailed

effects of climate change and/or extreme weather events in critical areas (e.g., coastal

areas and/or hot-humid regions) with relevant climate models. Non Intrusive Load

Monitoring (NILM) models can greatly benefit from this digital twin for training

neural network models. One can study the effects of increasing solar adoption in

vulnerable population groups. With detailed population data available, it will be

easy to model EV adopters in the population and design scenarios for EV diffusion,

and examine charging needs and equity issues arising w.r.t. pricing and accessibility

to charger infrastructure. It is also possible to simulate work-from-home scenarios for

households and design experiments to study the effects of dynamic tariffs in the grid.

8.2 Closing remarks

Recent literature has shown that machine learning, intelligent software, and repre-

sentative synthetic data will play an important role in the upcoming future in the

residential smart grid [29, 76, 191]. This thesis endeavors to address some important

problems in the residential smart grid using AI techniques. In the first part of the

thesis, I specifically address problems related to the lack of (i) representative and open

data, (ii) scalable modeling infrastructure, and (iii) robust validation of large-scale

high-resolution energy data. I develop a large-scale high-resolution digital twin of

household-level residential energy demand profiles for the U.S. population. We have

made this data open to the broader research community. In order to generate such a

big dataset, I propose an AI+software approach by designing a microservices-oriented

pipeline architecture that is scalable, robust, extensible, and supports human produc-
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tivity. To illustrate that the generated synthetic data represents the real energy data

(e.g., smart meter data), I propose novel validation strategies using machine learning

and hierarchical data properties to evaluate the fidelity and diversity of the digital

twin. In the later part of the dissertation, I have described the applicability of ML

and the digital twin with two social impact problems – (i) fairness in dynamic pricing;

(ii) comparing solar adoption agent-based models. Further, throughout the chapters,

I have exemplified the usability of the digital twin of the household-level residential

energy use data and the scalable energy modeling infrastructure through assorted

case studies.
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