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Thesis Abstract: 

Plants have a complex innate immune system that conveys strong resistance to 

most microbial organisms. To maintain vitality, plants can respond to a wide range 

of potential threats with increases in phytohormones, secondary metabolites, and 

anti-microbials that successfully inhibit growth of non-pathogenic bacteria and 

fungus. Dysregulation of any number of mechanisms within a plant’s defensive 

capabilities can lead to otherwise harmless bacteria becoming serious threats to 

plant health. Arabidopsis thaliana has been used for decades as a model plant due 

to its genetic tractability and simple lifestyle. It is related to many important 

agricultural species and thus serves as a model to understand defense 

mechanisms plant-kingdom-wide.  

Pathogenic species of microbes evade or suppress defense responses of plants 

and produce infections, often leading to a loss of yield in important agricultural 

species. Pathogenic species like Pseudomonas syringae (Pst) utilize host-made 

metabolites to produce growth and infect other tissues. The exact metabolites Pst 

uses during infections remain relatively uncharacterized. Due to the complexity of 

studying a two-organism system, we have generated a metabolic model, iPst19, 

to predict how the pathogen Pst produces infections in A. thaliana and what plant-

made metabolites Pst uses while invading the leaf. iPst19 highlighted the 

importance of branched-chain amino acid (BCAAs) catabolism as a part of Pst 

combatting A. thaliana defenses. The availability of BCAAs reduces the infective 

capabilities of Pst and prevents infections from proceeding normally. In media 
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designed to induce virulence factor synthesis, BCAAs are still able to suppress 

genes related to virulence.  

iPst19 helped identify BCAA metabolism bacterial genes that could play a role in 

helping Pst express virulence during infection. Modulating these genes in Pst 

caused reduced infectivity in A. thaliana and reduced normal growth capabilities, 

suggesting these genes could be potential targets for anti-microbial development. 

Taken together, iPst19’s predictive capabilities can be an effective tool for 

developing strategies to prevent yield-loss in important agricultural species.  
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Chapter 1: Introduction 
 
Plants have evolved as sessile, resilient organisms, in part due to a complex array 

of defense mechanisms. At the cellular level, plants respond dynamically to the 

presence of microbes and differentiate between non-pathogenic species and 

pathogenic species. The majority of microbes that find themselves in contact with 

a plant cell are recognized therein by molecular patterns such as flagellin or 

lipopolysaccharides that they express. Recognition of these highly conserved 

microbial features leads to a signal cascade and the induction of plant defense 

hormones, heightening the plant defenses and restricting further proliferation of 

the microbes. Pathogenic microbes engage in more sophisticated maneuvers to 

avoid plant recognition or dampen the signal cascade at the early stages of the 

infection.  

1.1 Plant Immunity 

Unlike humans, plants lack a circulating, active immune system. Yet, plants are 

not defenseless against invading pathogens. The innate immune system in plants 

is far more complex than the innate immune system in humans and other animals, 

which likely evolved as a result of lacking an adaptive immune system that 

produces antibodies. The complexity of innate immunity in plants lies in a two-

tiered system of pattern-triggered immunity (PTI) and effector-triggered immunity 

(ETI). PTI and ETI were once thought to be sequential components of the innate 

immune system, where PTI was first triggered by an invading microbe while further 

on in the infection process ETI was initiated in response to bacterial virulence 

factors. This timeline of infection was unofficially dubbed the “zig-zag model” of 
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plant innate immunity (Tsuda & Katagiri, 2010). However, in recent years, the lines 

between PTI and ETI have become increasingly blurred, as evidence supporting 

the concerted and simultaneous effects of both immune functions continues to 

create support for parallel activation of both arms of immunity.  

Foliar infections are characterized by pathogen entry into leaves, followed by 

subsequent recognition by plant cells. Under homeostatic conditions within the 

leaf, photosynthetically active mesophyll cells produce sugars and amino acids, 

which are exported into the extracellular space called the leaf apoplasm (LA). 

Within the leaf, the LA makes up only a small portion of the volume; the majority 

of volume (50%-90%) is air (Lohaus et al., 2001). The remaining volume of LA is 

comprised of water and macromolecules that can facilitate proliferation of a 

pathogen such as Pst (Rico & Preston, 2008). 

1.1.A Pattern Triggered Immunity 

The induction of PTI occurs at the plasma membrane (PM) level of a plant cell 

(Chinchilla et al., 2007). Surface receptors such as FLS2 span the PM with an 

extracellular recognition domain and an intracellular signaling domain. Molecular 

patterns are the primary microbial factors recognized that induce PTI (Tsuda et al., 

2008); they are highly-conserved features common to most microbes and 

pathogens. These include the flagellum, chitin, lipopolysaccharides, and other 

virtually immutable microbial features that are shared across taxa, collectively 

called microbe associate molecular patterns (MAMPs) (Choi & Klessig, 2016).  
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Upon recognition, the plant surface recognition receptors (PRR) initiate a signaling 

cascade that leads to transcriptional reprogramming of the plant cell. This 

reprogramming results in lower photosynthetic activity, production of reactive 

oxygen species (ROS), accumulation of defense-related hormones, and 

modulation of metabolite transporters (Chinchilla et al., 2007; Daudi et al., 2012; 

Lu et al., 2010; Zeier, 2013). Collectively, these responses define PTI and are 

effective at preventing the progression of infections from most microbes. In A. 

thaliana researchers can induce PTI responses with a simple injection of a 

synthetic peptide flg22, the minimal epitope of the protein flagellin. Thus, flagellin 

is a useful tool for studying the effects of PTI on invading pathogens and 

nonpathogens alike in a model plant species. Upon elicitation with flg22, A. 

thaliana is able to suppress the progression of infections by more than two logs of 

bacterial growth (Zipfel et al., 2004).  

The elicitation of PTI using microbial patterns including flg22 provides useful 

insights into the progression of infection and the efficacy of plant inducible 

defenses. By using MAMPs to elicit the plant defense response, we can interrogate 

important mechanisms without interference by the pathogen, as a host-pathogen 

system is never static. For the purposes of these studies in planta, we have used 

only flg22. There are other MAMPs, such as elf26 and flg18, which cause similar 

responses in the plant but are considered MAMPs from different bacteria 

(Chinchilla et al., 2007; Daudi et al., 2012).  

Many of the previously described individual facets of PTI are necessary for 

preventing infection progression. Plants that lack the ability to increase the level of 
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the phytohormone salicylic acid (SA) are particularly susceptible to infection with 

both pathogenic and nonpathogenic strains of Pseudomonas. The isochorismate 

synthase (ICS) gene is critical for converting chorismate into SA, known because 

the corresponding A. thaliana knockout mutant moniker, sid2, has a severely 

susceptible infection phenotype to Pst infections (Wildermuth et al., 2002). 

Transcriptional changes of metabolite transporters are similarly critical for the 

defense of the plant, though these changes are less well-characterized, and the 

implications of modulation are still being elucidated. Sugar transporters in the STP 

family are induced upon flg22 perception. The upregulation of these transporters 

leads to a clear depletion of hexoses in the LA; when these transporters are 

knocked out, plants accumulate more hexoses in the LA and are more susceptible 

to infection akin to a plant that cannot perceive the presence of any bacteria (fls2) 

(Yamada 2016).  

Amino acid transporters are similarly modulated in response to flg22 elicitation 

(Khadka, in prep, Zhang et al., 2023). While this may seem like a clear relationship 

between nutrient access and infection progression, where access to more nutrients 

allows the pathogen to produce a more robust infection, the story is complicated 

by the pathogen response to excess nutrients. Critically, access to growth-

stimulating amino acids, such as glutamine and serine, decrease the induction of 

virulence markers by Pst during infection in A. thaliana (Zhang et al., 2022, 2023b). 

These amino acids are some of the most abundant in flg22 treated plants, 

suggesting flg22-induced amino acid modulation evolved as a broad-spectrum 

resistance mechanism against pathogens.  
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1.1.B Effector Triggered Immunity 

Effector triggered immunity (ETI) is substantively different but intimately connected 

to PTI, and is equally important for pathogen defense in the plant. ETI is more 

specific than PTI. A necessary feature of ETI is the recognition of bacterial effector 

proteins by plant R-proteins (Tang et al., 2006). ETI can enhance PTI transcription 

and elicit a hypersensitive response (HR), leading to localized cell death. HR is 

effective at preventing the spread of an infection within the LA, as it essentially 

creates a desert in which the pathogen cannot survive (Guo et al., 2012; Morel & 

Dangl, 1997). Further, there is evidence to suggest that HR primes cells both 

locally and distally for further pathogen invasion, leading to systemic acquired 

resistance (SAR)(Backer et al., 2019).  

Resistance genes (R genes) express resistance proteins (R proteins) which are a 

diverse set of intracellular receptors that recognize bacterial made proteins. The 

most common family of R proteins is the nucleotide-binding /leucine-rich-repeat 

effector recognition (NLR) family (Cui et al., 2015). NLR proteins are typified by 

three main domains: a nucleotide binding domain (NB), which binds ADP/ATP; a 

leucine rich repeat domain(LRR), which provides effector recognition specificity 

and is the most variable of the three domains; and either a toll-interleukin 1 

receptor (TIR) or coiled coil (CC) domain (Cui et al., 2015). In terms of plant 

defense, HR is incredibly effective but costly. HR is characterized by the rapid 

onset of cell death upon pathogen recognition. Symptoms typically include lesions 

on the leaf that are devoid of chlorophyll and moisture, often appearing as brown 

puncta (Morel & Dangl, 1997). Localized cell death is costly due to the loss of 
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photosynthetically active tissue within the leaf, leading to decreased carbon 

fixation and nutrient production. 

HR can be induced by all manner of pathogens, including fungal, viral and bacterial 

pathogens. Within a plant-pathogen interaction, HR is induced on a gene-for-gene 

system (I. C. Yu et al., 1998). A plant R protein must bind with a pathogen-specific 

avirulent (Avr) protein; upon binding, the R protein will initiate HR through gene 

expression and shifts in protein recycling (Ebel J. & Mithöfer A., 1998).  

Due to the high cost of HR, it is tightly regulated to prevent spontaneous cell death. 

Several mutants without proper regulation of HR exhibit spontaneous lesion 

formation without pathogen induction, resulting in the costs of HR but without the 

need for the defense. Regulation of NLRs includes decoy binding, where plants 

bind their own R proteins with decoy proteins similar to the Avr proteins of the 

pathogen. This appropriately prevents constitutive HR and spontaneous lesion 

formation. RIN4, present in many terrestrial plants, serves this function for many 

different NLRs. When RIN4 activity is abrogated, plants exhibit spontaneous lesion 

formation due to the hyperactivity of paired NLRs (Toruño et al., 2019).  

1.2 Pathogenesis of Pseudomonas syringae 

1.2.A Type-Three Secretion System 

Several pathogens utilize protein secretion as a means of mitigating host defenses 

and obtaining nutrients to proliferate. These secretion systems allow pathogens to 

establish and maintain infections within the host and are required for survival; 

lacking components of a secretion system often leads to failed infections where 
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the pathogen is easily overcome by host defenses(Büttner & Bonas, 2010; 

Cornelis & Van Gijsegem, 2000; Diard et al., 2013).  

Many plant pathogens utilize a type three secretion system (T3SS) wherein they 

inject effector proteins into plant hosts to modulate the plant’s defense responses.  

The core structures of the T3SS form a syringe-like protein bridge through which 

effector proteins are shuttled into the plant cell (Tang et al., 2006). The formation 

of this pilus is metabolically taxing, as the structure requires several large protein 

components. Therefore, bacteria experience a metabolic tradeoff between 

synthesis of the T3SS and optimal growth exists within environments conducive to 

T3SS expression. In Salmonella species, strains unable to express the T3SS 

outgrow T3SS+ strains during competitive in vitro growth assessment, illustrating 

the growth penalty conveyed by T3SS expression where it is not necessary for 

survival (Sturm et al., 2011). Conversely, when Pst is exposed to a host plant, the 

T3SS is absolutely necessary for a successful infection (Deng et al., 1998; Gough 

et al., 1992). 

The tight regulation of T3SS expression is absolutely critical for colonization of a 

host as well as survival in permissive conditions. For P. syringae, early onset of 

T3SS is critical for preventing the induction of defense responses in the plant. In 

strains that lack the ability to synthesize the hrp pilus (called ∆hrcC), the pathogen 

fails to initiate an infection from inoculation (Deng et al., 1998).  

The predominant virulence component of most P. syringae strains is the T3SS and 

suite of effector molecules that interface with the plant cellular immunity. Pst 

contains HR and pathogenicity (Hrp) genes, which regulate and encode the pilus 
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of the T3SS, avirulence (Avr) genes and Hrp-dependent outer protein (Hop), which 

encode effector proteins that determine the specificity of host pathogen recognition 

(Collmer et al., 2000). The regulator of the Hrp operon is hrpL, an alternate sigma 

factor. Conversely, the expression of the Hrp operon is repressed through 

constitutive activation of hrpV, though this phenotype is overcome by constitutive 

expression of hrpL, suggesting hrpV to be the upstream of hrpL regulation (Collmer 

et al., 2000; Preston et al., 1998). Interestingly, hrpL expression is σ-54 dependent, 

suggesting an intersection with metabolism (Hendrickson et al., 2000).  

In P. syringae, as well as Salmonella and Yersinia, all of which rely heavily on the 

T3SS for infectivity, the main virulence related genes are often arranged compactly 

in pathogenicity islands (Collmer et al., 2000; Song et al., 2004). The pathogenicity 

islands (PI) are reported to be transferred horizontally among species, leading to 

rapid evolution of pathogenicity among conjugants. In P. syringae, the PI that 

contains genes coding for the hrp pilus are considered the minimum pathogenicity 

requirement in planta (Collmer et al., 2000).  

The recently created PSRnet (a model of transcriptional regulators of virulence in 

Pst) illustrated further the complex regulatory networks surround virulence in P. 

syringae. Shao and colleagues have described 16 different regulators of the T3SS 

which contribute to expression of 391 virulence-related genes in rich (KB) and hrp-

inducing media (HMM)(Shao et al., 2021).  

The T3SS does not interfere with the defenses of the plant itself; rather, it is used 

to transport effector proteins into the plant cell. Effector proteins interact with 

various signaling components within plant defense pathways, either adjusting the 
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responses or disrupting them completely. Again, many of these genes are located 

within pathogenicity islands, allowing for the rapid evolution of pathogenesis in 

strains previously found to be avirulent (Dillon et al., 2019). One such PI is the 

conserved effector locus (CEL) within Pst. The CEL contains six orfs that, when 

deleted, severely compromise the ability of Pst to infect either tomato or A. thaliana 

(Badel et al., 2003). Importantly, the induction of Pst loci containing virulence factor 

related genes is only beginning to be understood. Recent studies have 

characterized induction by organic acids and suppression by amino acids; further, 

plant exudates greatly induce virulence compared to phosphate buffered saline, 

suggesting plant made metabolites have strong inducing capabilities(Anderson et 

al., 2014a; Zhang et al., 2022, 2023b).   

1.2.B Coronatine 

The phytotoxin coronatine (COR) plays an important role in the progression of 

disease when plants are assaulted by P. syringae strains such as Pst and Psm (P. 

syringae pv maculicola). Coronatine is composed of two subunits, each 

synthesized independently from unique metabolite pools. Coronamic acid (CMA) 

is directly synthesized from L-isoleucine, which could be contributing function of 

coronatine in mimicking jasmonic acid – isoleucine (JA-Ile) conjugants or methyl 

jasmonate(Bender et al., 1999; Mitchell et al., 1994). The three-step process 

converts L-ile to allo-L-ile, followed directly by coronamic acid (Bender et al., 1999). 

Mitchell and colleagues demonstrate both exogenous and synthesized isoleucine 

act as precursor to CMA. Further, they show that accumulation of Cma does not 
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disrupt the activities of enzymes within the CMA pathway in Cor producing strains 

of P. syringae (Mitchell et al., 1994).  

The other moiety in coronatine, coronfacic acid (CFA), is a polyketide formed 

through a several step process. Previous studies suggest CFA integrates one 

pyruvate, one butyrate and three acetate units to form the polyketide chain, which 

upon modification, is formed into CFA (Parry et al., 1994). Following formation, 

CFA and CMA are joined via an amide bond to form COR, catalyzed by the enzyme 

coronafacic acid ligase (cfl). Each of the Cor synthesis operons is regulated 

transcriptionally by corR and corS, each of which has also been shown to have 

regulatory impacts on hrpL (Tang et al., 2006). 

Production of both subunits of coronatine are controlled by two operons: cma and 

cfl/cfa (Panchal et al., 2016). These operons also respond to temperature, as both 

promoters for CMA and CFA respond optimally at 18C, with decreasing expression 

as temperature rises. Maximal biosynthetic production of COR was also shown at 

18C (Bender et al., 1999).  Other factors that impact coronatine production in vitro 

include salts, carbon source, and availability of amino acids, suggesting a potential 

tie of phytotoxin production to metabolic state (Palmer & Bender, 1993).  

Coronatine serves a wide variety of functions during the course of infection. As a 

structural mimic of JA-Ile, it promotes the association of JAZ and COI1, which 

initiates a signaling cascade of JA. Coronatine is vastly more efficient at promoting 

this association, leading to a robust JA response from susceptible plants (Khadka, 

in prep). Further, Cor has been demonstrated to lead to a global shift in the 

transcriptional profile of tomato plants, causing downregulation of photosynthesis 
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and likely the production of another immune-responsive phytohormone salicylic 

acid (SA) (Zhang et al., 2023b). Typical symptoms of COR toxicity in A. thaliana 

plants include chlorotic tissue, water-soaking, and necrosis.  

A key function of Cor in planta is induction of stomatal opening; forcing stomata to 

remain open is thought to promote further exacerbation of infection. COR- strains 

of Pst show decreased colonization in A. thaliana plants when infiltrated directly 

into the leaves; however, when a leaf dip method of infection is used, Cor- strains 

show dramatically reduced colonization of the leaf, owed predominantly to the 

stomal-opening function of COR and failed transition from leaf surface to leaf 

apoplast (Mittal & Davis, 1995).  

 

1.3 Metabolism-Virulence Crosstalk 

1.3.A Environmental Queues impacting Virulence 

It is well documented in many pathogenic prokaryotic species that virulence is 

partially impacted through sensing of the environment, including P. syringae. A 

study by Yu and colleagues highlighted the role of transcriptional regulators in the 

transition from epiphytic to endophytic environments. These two differ strongly; 

where the outside of the leaf is carbon restrictive with low humidity, the inside of 

the leaf is carbon rich and saturated. Yet, P. syringae is able to recognize both 

environments and initiate a transition from outside to inside the leaf using 

alternative sigma factors (X. Yu et al., 2013).  

It has become clear that metabolic apoplastic markers are an important player in 

inducing virulence for Pseudomonas. Anderson and colleagues discovered an 
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array of virulence-inducing plant metabolites that contribute to the resistance 

phenotype of A. thaliana mutant mkp1. When a metabolic profile of mkp1 plants 

was assembled in an attempt to explain this resistance phenotype to Pst, several 

organic and amino acids had decreased concentrations in mutant, resistant plants. 

In part, susceptibility seems to be correlated with accumulation of cAMP 

intracellularly, which mkp1 cannot achieve. When Pst is co-infiltrated with citrate, 

aspartate, and 4-hydroxy-buteric acid (4hba), not only does cAMP levels rise to 

WT levels in mkp1 plants, but CFU/cm2 also returns to WT levels, suggesting a 

correlation between organic acids, intracellular cAMP, and T3SS induction 

(Anderson et al., 2014a).  

Pst virulence is differentially induced in a carbon source specific manner. The 

bacteria seem to have preferred carbon sources for producing growth, such as 

amino acids and organic acids (Rico & Preston, 2008). Hexoses, like fructose and 

glucose, seem to readily induce virulence and do not sustain high growth rates 

(Anderson et al., 2014a; Stauber et al., 2012).  

Amino acids have emerged as important regulators of virulence through various 

mechanisms. Amino acid supplementation into the LA during infection with Pst 

decreased long-term leaf colonization in an AA-specific manner. Pst shows 

decreased colonization of the leaf after 72 hours when co-infiltrated with either 

glutamine, serine, or valine (Zhang et al., 2022, 2023b). Branched-chain amino 

acids (BCAAs), including valine, have been shown to regulate virulence in gram-

negative bacteria by modulating the activity of the global transcriptional regulator 
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Lrp (Kaiser & Heinrichs, 2018). Lrp activity responds to the bacterial nutritional 

state and regulates both virulence and the transition into the stationary phase.  

 

1.3.B Leucine-responsive regulatory protein 

Leucine-responsive regulatory protein (Lrp) acts as a global regulator of 

metabolism in gram-negative bacteria (Landgraf et al., 1996). Lrp has been 

extensively studied in E. coli, where it has been attributed with shifting expression 

of over 700 genes in a condition-specific manner (Kroner et al., 2019). Lrp and lrp-

like proteins are conserved in prokaryotes, though the highest degree of 

conservation in form and function seems to be within the γ-proteobacteria group 

(Brinkman et al., 2003).  Lrp and related transcriptional regulators often respond 

to specific substrates, notably amino acids such as leucine. Leucine seems to be 

an especially potent and important substrate, it is the most represented residue in 

proteins on average (at 9.1% of residues), suggesting a role as a nutrient and 

protein stability sensor (Brinkman et al., 2003). 

In the case of E. coli Lrp, cytoplasmic Lrp forms hexadecamers, which have 

regulatory functions and can dissociate upon interaction with free L-leucine (Chen 

et al., 2001). As the concentration of leucine increases, either through uptake, 

biosynthesis, or proteolysis, the hexadecamers dissociate into leucine-bound 

octamers, which modulate the expression of genes (Chen et al., 2001). Lrp has 

been shown to repress and induce expression in the presence and absence of L-

leucine (as well as other amino acids). Previous studies have suggested Lrp 

participates in the modulation of expression of the ilv branched-chain amino acid 
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biosynthetic operon, gvc glycine cleavage system, and glt glutamine biosynthetic 

operon. These three operons are important for maintaining proper levels of amino 

acids within the cell while efficiently providing building blocks for secondary 

metabolites and nitrogen moieties (Cho et al., 2008). The association of leucine-

responsive regulatory protein with biosynthetic and catabolic operons utilizing 

other amino acids may not be apparent outright, however the interconnectedness 

of the metabolic network surrounding amino acid metabolism renders control at 

one locus a potential checkpoint for another amino acid. 

The complexity of expression modulation by Lrp is not trivial. According to Cho and 

colleagues, six modes of Lrp expression modulation exist: independent induction 

or repression, concerted induction or repression, and reciprocal induction or 

repression (Cho et al., 2008) (Table 1.1). Independent modes require Lrp, but 

expression is modulated regardless of concentration of leucine. Concerted modes 

require leucine to induce modulation, while reciprocal modes require leucine to 

repress modulation (Cho et al., 2008). Because in many instances Lrp directly 

responds to the concentration of BCAAs intracellularly, it can be thought of as a 

BCAA sensor that alters transcription in response to changing levels of BCAAs 

(Figure 1.1A). Within the scope of the following studies, we leverage this facet of 

regulation to understand how BCAA levels or genetic alteration of Lrp levels, both 

of which disrupt the homeostatic equilibrium of [Lrp]/[BCAA] intracellularly and 

could impact transcriptional targets (Figure 1.1AB).  

Lrp not only modulates expression of metabolic genes, but also virulence genes. 

In Salmonella enterica, when Lrp is constitutively active, virulence was severely 
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attenuated in a mouse infection model. Conversely, an Lrp deletion resulted in 

hypervirulence, suggesting Lrp functions as a switch regarding nutritional status 

and virulence induction (Baek et al., 2009). In Xenorhabdous nematophila, an 

insect pathogen and nematode mutualist, Lrp controls the different symbioses with 

these organisms. Lrp-null strains of X. nematophila were unable to exhibit the 

same extent of nodulation and did not produce a robust immune response in the 

larvae of Manduca sexta, both hallmarks of attenuated virulence. Interestingly, 

when the nematode Stienernema carpocapsae is grown on plates containing Lrp-

null X. nematophila, the number of offspring produced falls dramatically. Both 

phenotypes of X. nematophila Lrp- mutants are attributed to loss of modulation of 

virulence factors and mutualism factors (Cowles et al., 2007). In Vibreo cholerae, 

Lrp-null organisms could not initiate expression of aphA, a transcription factor 

responsible for increasing expression of the cholera pathogenicity island (Lin et 

al., 2007). The contrasting roles of Lrp in S. enterica and X. nematophila/V. 

cholerae regarding virulence could suggest Lrp also plays a role in the virulence 

of Pseudomonas syringae while infecting A. thaliana. 
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Table 1.1 

  

Mode Gene/Operon Functional Notes
Independent Inducing gcvT Glycine cleavage; releases ammonium moiety
Independent Repressing ftsQ Cell division protein
Concerted Inducing fadJ Involved in anaerobic fatty acid degradation
Concerted Repressing livKJ High- affinity leucine transport
Reciprocal Inducing gltB Glutamine synthase
Reciprocal Repressing thrL Biosynthesis of threonine
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Table 1.1. Modes of regulatory action and transcriptional targets of Lrp in E. 

coli. Adapted from Cho et al, 2008. Functional notes obtained from Uniprot.  
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Figure 1.1 
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Figure 1.1. Schematic representations of Lrp and its response to 

concentrations of BCAAs. A. The concentrations for both Lrp (bars) and BCAAs 

(dotted line) in a non – genetically perturbed bacteria growing from log phase (gray 

bar) to stationary phase (blue bar), where over the growth period, the 

concentrations of BCAAs (red line) decrease. When the bar has a larger value than 

the line, the BCAA concentration is not high enough to keep Lrp in hexadecameric 

form and causes a transcriptional shift. B. Representation of genetically perturbing 

Lrp levels through overexpression. Regardless of the timepoint, the 

overexpression of Lrp forces Lrp concentrations higher than the BCAA threshold, 

thus causing dissociation into the octameric form and causing transcriptional shifts. 

C. Schematic representation of the transcriptional program of Lrp as it relates to A 

and B. Binding of Lrp to a promoter region can either support transcription or 

suppress transcription, as detailed by Cho et al, 2008. For the simplicity of this 

schematic, Lrp bound to the promoter is inducing transcription. 
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Chapter 2: Creating, validating and constraining of iPst19 predicts BCAA 

importance during foliar infection1 

 

2.1 Summary 

A. thaliana and Pst engage in a complex exchange of virulence and defense 

strategies that involve plant-made changes in metabolite composition in the LA 

during infection. Due to the technical challenges of isolating apoplastic washing 

fluid and the dynamic changes in composition imparted by both the pathogen and 

its host, the identity of important LA metabolites that Pst uses to propagate an 

infection has only begun to be characterized recently. Here, we have created a 

new tool for addressing these complexities. iPst19 is a metabolic model that we 

use to query metabolic changes Pst undergoes during the course of an infection. 

iPst19 predicts metabolites important for sustaining growth, such as hexoses and 

amino acids, but also highlights the most likely metabolic pathways used to convert 

available nutrients into biomass.  Further, constraining iPst19 metabolic flow using 

global gene expression profiles from Pst actively infecting A. thaliana, we have 

predicted disproportionate flux through the BCAA catabolic pathway in Pst 

infecting defense-elicited plants, while auxiliary pathways to BCAA catabolism are 

predicted to carry less flux.  

  

                                                
1 This chapter was completed in collaboration with Gregory Medlock, PhD. PT and GM contributed to the 
design of the experiments. PT contributed to the writing of initial and final published code for creating the 
model and final experimental analyses and visualizations. GM contributed to the debugging of final code 
and initial integration of transcriptomic data.  
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2.2 Introduction 

The LA complex composition and the dynamic concentration changes in 

metabolites that take place during the course of an infection makes it difficult to 

define which plant metabolites, and at which concentrations, would have a positive 

or a negative impact on Pst growth in planta. In an attempt to capture this 

complexity, recently published studies have used bacterial gene expression 

profiling as a means to understand how PTI affects Pst growth and virulence 

(Lovelace et al., 2018; Nobori et al., 2018a). These two studies hypothesized that 

PTI could suppress the expression of bacterial virulence genes through metabolite 

deprivation, as previously reported by Anderson and colleagues (Anderson et al., 

2014a). In addition, Nobori and colleagues found that PTI also suppresses the 

expression of genes encoding ribosomal proteins, suggesting that PTI may affect 

Pst protein synthesis as well. Besides reaching similar conclusions with regard to 

Pst virulence suppression, these two studies reached dissimilar conclusions with 

regards to the plant metabolites that restrict Pst growth in planta. While Lovelace 

et al. proposed that sulfur may become limiting under PTI conditions, Nobori et al 

discovered that Pst iron uptake and iron metabolism pathways were indicative of 

iron starvation. This apparent discrepancy in addressing which plant metabolites 

are limiting under PTI conditions may stem from experimental differences across 

these studies. However, it is also possible that Pst transcriptomics analyses alone 

would be insufficient to capture the complexity of the metabolic changes that define 

Pst growth in planta. To address these potential limitations, we have generated an 
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ensemble genome-scale network reconstructions (GENREs) to assess multi-

omics data with an “aerial” vantage point.  

GENREs, and their corresponding modeling counterparts genome-based models 

(GEMs), have emerged as a powerful tool for predicting metabolic phenotypes and 

gene essentiality (Blazier & Papin, 2012). They have facilitated drug development 

and have contributed to better understanding the mechanisms driving evolution of 

antibiotic resistance in bacteria. GEMs consist of biochemical reaction pathways 

with associated genes (if known) that reflect the metabolism of an organism. They 

are originally built from genome annotations and are curated with various forms of 

evidence, including in vitro metabolic demands, organismal homology and 

literature research (Thiele & Palsson, 2010). Within a GEM, transport reactions 

facilitate movement of metabolites from one compartment (i.e. the outside 

environment) to another compartment (i.e. inside the cell). Gene expression data 

can be overlaid on top of a GEM framework to make integrative predictions of 

metabolic outcomes. Multiple algorithms for integrating gene expression data with 

GEMs have been developed, each of which make assumptions about the 

relationship between gene expression and reaction activity (Richelle et al., 2019).  

GENREs may be best thought of as a network of pipes. The pipes all have an input 

and output, and these pipes may initially start with a common diameter. The 

arrangement of the pipes may also determine how fast water can move from input 

to output. As water flows through the pipes, the rate of gallons of water is 

determined by the diameter of the pipe. In the context of an objective function like 

biomass production, the GENRE pipe network only has one output but many 
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nutritional inputs. Integration of transcriptomic data serves to change the diameter 

of the pipe, and thus the rate which water can flow through particular subnetworks 

(or metabolic pathways) of the whole pipe network. In this way, we can use 

transcriptomic data as a snapshot of how expression of upstream genes affects 

flow downstream in the pathway, giving us a better view of organismal response 

to different conditions.  

 

2.3 Materials and Methods 

Initial Reconstruction: 

The Pst genome assembly used was originally contributed by Buell and colleagues (Buell 

et al., 2003). The draft GENRE was generated using ModelSEED (v2.1) (Seaver et al., 

2021) and the RAST database (Aziz et al., 2008) and further optimized using the cobrapy 

toolbox. The Pst GENRE was refined using cross-species homologous comparisons with 

two Pseudomonas aeruginosa models, iPau1129 and iPae1146. Due to the high amount 

of protein comparisons being made between two species, we used the DIAMOND 

alignment software (Buchfink et al., 2014). DIAMOND is similar in sensitivity to BLASTn, 

yet runs considerable faster with less computational demand, thus it is suitable for large 

dataset queries. DIAMOND alignments were made between Pst annotated protein 

features and P. aeruginosa annotated protein features included in the respective 

GENREs. Comparisons that yielded a significant (e-value < 0.0001) were queried for 

associated reactions in the P. aeruginosa GENREs and subsequently added to the Pst 

GENRE with the significantly matching homolog if there was sufficient literature with 

supporting evidence for protein function. While the e-value threshold is relaxed compared 

to many studies regarding the evolution of homologs and protein sequence similarity, the 

purpose of this step was to generate a list of potential targets for inclusion in the model, 
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based on previously curated models. This targeted list was further manually curated by 

looking for functional evidence in the literature.  

Bacterial Growth Conditions:  

Pst was grown in liquid King’s B culture at shaking at 230 RPM and 28C. Bacteria for 

growth rate assessment was taken from fresh LB agar plates and grown overnight in the 

liquid media, followed by sub-culturing 10% until mid-exponential phase. 

Initial Reconstruction and Gap Filling 

The draft was further curated through ensemble gap filling. A full schematic of the 

process is depicted in Figure 2.1. To gap fill and further curate the GENRE, we 

used an approach called Automated Metabolic Model Ensemble-Driven 

Elimination of Uncertainty with Statistical learning (AMMEDEUS) (Medlock & 

Papin, 2020). The inconsistencies in gap filled solutions between ensemble 

members that influence simulation uncertainty are identified using the resulting 

output of AMMEDEUS, generating a targeted curation list. Gap filled reactions that 

presented the most uncertainty were assessed for literature support in Pst and 

other Pseudomonas, specifically looking for evidence that supported the existence 

of a molecular function. This iterative process was completed 3 times to form the 

current 100-member iPst19 ensemble (Figure 2.1). Importantly, this is not only the 

first metabolic model create for Pst, but also, this model uses AMMEDEUS and 

the ensemble modelling approach to increase the predictive capabilities of the 

metabolic model. We have also leveraged the curation of two previous 

Pseudomonas models to aid in the rapid but accurate curation of iPst19. 

In total, AMMEDEUS gap filling consistently added reactions until biomass 

production was satisfied; 16 of the added reactions fell within an “uncertain” 
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category. They included reactions related to arginine transport and synthesis, nitric 

oxide metabolism, and nitric oxide oxidoreduction reactions. In these cases, the 

gap filling process across the 100 ensemble members use two distinct reactions 

to complete a pathway; however, there was no obvious consensus among the 

members as to which reaction would be the most parsimonious addition. In these 

cases, we queried the contesting reactions for any supporting evidence in the 

literature. In the case where there was clear evidence for one pathway architecture 

over another, we added these reactions to the base model and performed 

AMMEDEUS again. In cases where the uncertainty could not be alleviated with 

literature support, neither pathway architecture was added to the base model.  

 

Biomass quantification: 

Pst was grown as previously described in bacterial growth conditions. Liquid cultures were 

centrifuged at 3500 RPM for 10 minutes. Growth media was removed, the pellet was 

washed twice using sterile water. The pellet was resuspended in 10 mL sterile water and 

immediately frozen. Samples were lyophilized. Samples were split for each quantification 

assay, ensuring the samples would be matched for the different quantification protocols. 

Dry weights of each fraction were recorded. Total protein was quantified using a standard 

Bradford’s assay on lysed cells. DNA was extracted from lyophilized cells using the Cold 

Spring Harbor Laboratory DNA extraction from Gram negative bacteria protocol. RNA was 

extracted from lyophilized cells using the aforementioned RNA extraction protocol. Both 

RNA and DNA were quantified using spectrophotometry. All quantifications were 

normalized to the total dry weight of bacterial cells. 

Ensemble Generation: 
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A full description of the ensemble process and justification was recently published by 

Medlock and Papin (Medlock & Papin, 2020). iPst19 was generated from the cross-

species compared draft reconstruction with integration from single carbon source 

utilization data (see Biolog growth assays). Each substrate that produced positive growth 

as defined by significantly different maximum measured OD600nm from the negative 

control was compiled into a randomly-ordered list for use in gap-filling the draft 

reconstruction. The specific order of metabolites is important during the gap-filling 

process, as only the most parsimonious use of the metabolite will result in addition of 

reactions. If a metabolite can be utilized with the metabolic infrastructure already in place, 

no new reactions will be added; otherwise, the reactions that add the minimum amount of 

flux will be added to make use of the metabolite. Only when the draft reconstruction is gap 

filled and can satisfy the fixed-growth constraint of the biomass function and minimize the 

fluxes through all other reactions on all in vitro growth-producing metabolites (as 

empirically assessed with Biolog plates), it is then considered a member of the ensemble. 

The process repeats, starting with the draft reconstruction and a shuffled order of the 

growth-producing metabolites. All of the members have slightly different architectures and 

may produce different biomass fluxes on simulated medias. With each round of ensemble 

gap filling, the 20 most uncertain reactions (where members did not agree on the 

necessary inclusion of a reaction) introduced by AMMEDEUS we manually curated via 

literature research. This resulted in the addition of 16 reactions of previously high 

uncertainty with curated literature support for a particular architecture within the members. 

The full repository is available at https://github.com/gregmedlock/psy_recon.  

Inclusion of Coronatine synthesis pathway 

Considering the importance of coronatine for P. syringae, we also included the 

biosynthetic pathway for COR synthesis in iPst19. For simulating virulence 
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conditions, COR synthesis could be included as part of the objective function for 

iPst19. For the simulations in this work, included the active pathway, but did not 

require its activity to satisfy the objective function because the majority of our 

simulations would be in permissive, non-virulence inducing conditions. The 

architecture of the pathway is abbreviated due to the uncertainty specifically 

surrounding the synthesis of the CFA arm of COR production. The CMA arm of 

synthesis is fully included, starting with the production of allo-Ile from Ile, followed 

by the conversion of allo-Ile into CMA as annotated by Bender and colleagues 

(Bender et al., 1999). Conversely, the CFA arm of synthesis remains largely and 

mechanistically unknown. It is assumed that 3 acetate molecules, 1 butyrate and 

1 pyruvate are used in conjunction with acyl-carrier proteins to synthesize CFA, 

therefore, these are the moieties that comprise the reaction used to simulate CFA 

synthesis in iPst19. Finally, CFA and CMA are joined with the release of 1 water 

molecule to form COR. The schematic representation of these pathways is 

depicted in Figure 2.3. 

Biolog growth assays: 

Biolog PM1 and PM2 plates were inoculated with 100uL of inoculating fluid 0 (IF0) (Biolog, 

Inc.) per well, in which Pst was suspended at 0.07 OD600 from fresh agar plates. Biolog 

plates were shaken at 7000 rpm and 28C for 60 hours. OD600 measurements were taken 

every 12 hours. Gas permeable film was secured to the plate to ensure gas exchange but 

prevent evaporation, but were removed prior to spectrophotometric reading. Baseline was 

subtracted before use in figures and in analysis. Metabolites that had been previously 

described as producing growth in the literature had more than 0.1 OD, while the baseline 

sat around 0.08. Metabolites that we knew from previous literature did not produce growth 
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never crossed the 0.1 threshold; therefore, this seemed like an appropriate threshold to 

set threshold that could easily distinguish between obvious growth and no growth.  

Gene ontology assessment: 

Genes included within iPst19 were ontologically assessed with PANTHER. The same was 

done for the whole genome of Pst. Results were normalized to the whole and compered.  

Single carbon source simulations: 

SCS growth simulations were performed by constraining the transport reactions for only 

one specific carbon source at a time. Other metabolites, such as water and salts present 

in Biolog IF-0, were not restricted to ensure simulated growth similar to in vitro growth in 

the Biolog plates.  

Ensemble Transcriptomic Integration: 

RNAseq global gene expression profiles of Pst exposed to mock and flg-22 elicited plants 

generated by Nobori and colleagues were integrated into iPst19 members using the 

GIMME algorithm modified from the Driven package 

(https://github.com/opencobra/driven). Genes are first stripped from the ensemble, after 

which they are iteratively added back into the ensemble as a function of expression and 

significance. The minimum framework needed to satisfy the objective function was 

assessed for fluxes across all reactions.  

Ensemble Single Gene Deletions: 

For each member in iPst19, every gene within the member was simulated as a loss of 

function. For reactions with only one gene association, flux of the reaction became zero. 

Reactions in which the gene deletion was part of an “and” association, the reaction flux 

also became zero. For reactions where the deleted gene was in an “or” association, the 

reaction flux was unaltered. Final readouts of objective function flux were assessed: if the 

reaction flux was zero or near zero (flux<10e-5), the gene was predicted to be an essential 

gene. The media compositions tested were similarly derived as the SCS media, excluding 
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“complete” media and “in planta” media. “Complete” media does not have any 

supplemental constraints; if there is a transporter present within the ensemble, iPst19 will 

have access to it. The “in planta” media was comprised of a rough estimation of carbon 

and nitrogen sources profiled from A. thaliana leaf apoplast by Anderson and colleagues 

(Anderson et al., 2014b).  

Ensemble Multi-Carbon Growth Media Gene Essentiality: 

Multi-carbon media simulations were made from L-leucine and D-glucose combinations 

as a percent of the total carbon atoms present in the media. Combinations included 100% 

glucose, 99% glucose:1% leucine, 90% glucose:10% leucine, 50% glucose:50% leucine, 

10% glucose:90% leucine, 1% glucose:99% leucine, and 100% leucine. 

 

2.4 Results 

Biomass Equation  

An essential part of GEMs is the objective function, often a simulation of growth or 

maximization of ATP production. For iPst19, we have generated a semi-species-

specific biomass function, building off of the previously established biomass 

function for E. coli and Pseudomonas aeruginosa. We have experimentally 

determined total protein content, RNA content, and DNA content in exponential 

phase Pst in liquid culture. Amino acid and nucleotide fractions were determined 

from published genome content and CDS content (Buell et al., 2003). We further 

tailored the lipid, lipopolysaccharide, and polyamine pools quantified in other 

Pseudomonas species. The full set of coefficients for the biomass function can be 

found in Figure 2.2.  
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Comparison to other metabolic models  

Basic metrics of a metabolic model include reactions, metabolites, and gene-

product-rules (GPRs) which associate a gene with an enzymatic reaction. While 

there is no accepted threshold for a well-curated model, it is understandable that 

a more complete model will more closely reflect similar metrics (GPR numbers 

closer to the total number of genes, i.e. more genes are included in the model 

because more functions are known about these genes) for the organism itself. E. 

coli W and its corresponding model are considered to be one of the most well-

studied organisms and well-curated models. The model contains 1372 GPRs and 

2782 reactions, both of which are considerably higher than the most complete 

Pseudomonas model for strain PAO1. iPst19 is much more similar in size and 

coverage compared to PAO1, suggesting more curation is necessary, yet iPst19 

is sufficient to make predictions (Table 1.1).  

 

Carbon Utilization and Simulation  

We performed single carbon source growth phenotyping using Biolog (Hayward, 

California) phenotype microarrays PM1 and PM2a. We grew Pst in each of 190 

single carbon sources in quadruplicate and recorded the optical density at 600nm 

(OD600) at 0, 12, 24, 36, 48, and 60 hours (Figure 2.5). In order to only include 

high-confidence positive growth conditions for gap filling, we only considered 

conditions that resulted in a max OD600 greater than 0.1 as positive growth 

conditions (after subtraction of 0-hour baseline). 
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Many amino acids and sugars produced sufficient positive growth over 60 hours 

of incubation in Biolog plates. Figure 2.5A presents growth curves for all 190 

carbon substrates, with metabolites previously shown to have an impact on 

infection dynamics between Pst and A. thaliana highlighted in color (Anderson et 

al., 2014a; Rico & Preston, 2008). GABA, a highly abundant amino acid in the 

apoplast of tomato plants, produced robust growth, as did L-glutamine, sucrose, 

and D-glucose (Figure 2.5A). We then assessed the in silico biomass production 

on single carbon sources to preliminarily validate the ensemble. Of the highlighted 

substrates in Figure 2.5A, all in silico simulations were able to predict the in vitro 

growth outcome (Figure 2.5B).  

 

Predictive Gene Essentiality – Core 

Within an ensemble, gene essentiality varies depending on the media composition 

and on the associated potential constraints of the ensemble. A list of essential 

genes needed for Pst to grow using various metabolites present in the LA as 

carbon sources was generated through iterative exclusion of genes and associated 

reactions from the models. A range of media conditions were tested including 

complete medium, simulated LA medium, as well as minimal medium 

supplemented with either L-aspartate, citrate, D-fructose, D-glucose, L-glutamine, 

L-leucine, sucrose, or γ -aminobutyric acid (GABA), all of which have been 

previously described in the LA as metabolites that support Pst growth. Due to the 

alternative configuration of pathways within each of the 100 ensemble members, 

some genes will be predicted as essential in one configuration but not in another, 
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resulting in “essentiality probability”. In order for a gene to be predicted as truly 

essential it has to meet the criteria of being called essential in all 100 ensemble 

members used in the simulation. From a total of 889 genes, our analysis identified 

136 predicted essential genes necessary for biomass production on all tested 

media (Figure 2.6A). These can be considered the core essential genes; 

regardless of media type, these genes are necessary to fulfill the biomass objective 

function in the simulations. Genes included in this category fall within well-known 

metabolic pathways, such as glycolysis and the TCA. 

In addition, the analysis identified 31 media-specific predicted essential genes 

(Figure 2.6B). The 31 conditionally essential genes consist of 21 genes that are 

common to all single C source media and 10 genes that are essential in some but 

not all single C source media. Interestingly, gene essentiality profiles are almost 

completely shared among different minimal media where L-amino acids are the 

only carbon source. However, the L-leucine minimal medium rendered three 

additional catalytic genes predicted to be essential: PSPTO_2736 (liuD), 

PSPTO_2738 (liuB) and PSPTO_2739 (liuA), each of which is involved in the 

branched-chain amino acid (BCAA) catabolic pathway. These genes are 

orthologous to those in the PA14 liu/gny operon (Dunphy et al., 2019).  

 

Comparison between glucose and leucine alone 

We highlighted the gene essentiality screen in three distinct media: complete 

media, glucose minimal media, and leucine minimal media, because of the clear 

essentiality patterns in Figure 2.6B and because sugar metabolism has been 
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previously implicated as an important factor during Pst infections in Arabidopsis. 

Similarly, BCAA metabolism has been previously identified as important for a 

range of pathogens, include Pseudomonas aeruginosa and Xanthamonas citri 

(Nelson et al., 2019a; Tomassetti et al., 2018). When queried only for glucose and 

leucine-containing media, the SCS gene essentiality looks almost identical to the 

previous visualization presented in Figure 2.6B. However, from a total of 889 

genes, the analysis identified 136 predicted essential genes necessary for biomass 

production in complete media (Figure 2.7A). In addition, we identified 28 substrate-

specific predicted essential genes (Figure 2.7B). Twenty-three genes were 

common to both glucose and leucine SCS media, and 5 were differentially 

essential to one or the other substrate. 

 

Predictive Gene Essentiality – Semi-complex Defined Media 

Single carbon substrate media provide valuable information regarding metabolite 

utilization but do not mimic the organism growth in its natural, more complex 

environment. We simulated biomass accumulation and generated a gene 

essentiality profile on media formulations with mixed carbon sources that introduce 

more complexity to metabolites available for biomass production. The simulated 

mixed media we used contained D-glucose and L-leucine in varying concentrations 

for each metabolite. These metabolites serve two functions: glucose alone is 

metabolite that produces robust growth experimentally yet lacks a nitrogen moiety, 

while L-leucine produces modest growth experimentally, but provides a nitrogen 

moiety as a part of the single carbon source, thus potentially relieving nitrogen 
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limitation. L-leucine minimal media also produced a distinct gene essentiality 

profile in silico when compared to other amino acids, allowing us to assess the 

impact of metabolite supplementation on predicted gene essentiality. Total 

availability of mixed substrates in the media was maintained at 10mM/gDW. In a 

mixed substrate with 99% glucose and 1% L-leucine, gene essentiality matches 

predicted gene essentiality in D-glucose alone. Similarly, in a mixed substrate with 

1% D-glucose and 99% L-leucine, the essentiality profile resembles that of L-

leucine alone. The essentiality profile of 50% D-glucose and 50% L-leucine, as 

well as those with 10% of the second substrate, included fewer genes than either 

single substrate (Figure 2.8A). The essentiality of genes was not a binary output 

immediately alleviated by introducing the secondary metabolite. Instead, there was 

a predicted threshold at which leucine alleviated glucose-only derived gene 

essentiality and vice versa (Figure 2.8AB).  

 

Transcriptomics integration to assess differential metabolic states in mock or flg22 

elicited plants 

To understand the metabolic states the bacteria could develop over the course of 

infection, we conditionally restricted iPst19 by integrating gene expression data 

obtained from Pst 5h after inoculation of mock or flg22-treated wild-type 

Arabidopsis plants. Using the RIPTIDE integration method, we created 

differentially constrained ensembles that reflect the metabolic states of the bacteria 

in these conditions. Compression of flux variability of all shared reactions across 

the differentially constrained members using non-metric multidimensional scaling 
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(NMDS) revealed a broad swath of shared metabolism between the two conditions, 

with distinct patterning between conditions as well (Figure 2.9A). When the same 

flux variability samples were subjected to random forest machine learning, the 

most determinant reactions causing differences in the NMDS plot included many 

amino acid related reactions, of which BCAA related reactions were present.  

 

Transcriptomics integration to assess BCAA catabolic differences 

Because the genes within the liu cluster are uniquely essential in leucine minimal 

medium (Figure 2.6), have a relatively small threshold of essentiality (Figure 

2.8AB), and several bacterial pathogens tightly regulate internal levels of BCAA 

during host invasion (Kaiser & Heinrichs, 2018; Subashchandrabose et al., 2009; 

Tomassetti et al., 2018), we hypothesized that these genes could provide useful 

insights into how BCAAs could be related to Pst pathogenesis. To understand if 

these genes contributed to the Pst pathogenesis during Arabidopsis infection, we 

conditionally restricted iPst19 by integrating gene expression data obtained from 

Pst 5h after inoculation of mock or flg22-treated wild-type Arabidopsis plants. By 

contextualizing the iPst19 with gene expression profiles, we were able to integrate 

not only information about how much a transcript is expressed, but also created a 

framework for understanding the potential additive effects of several genes in a 

metabolic pathway being only moderately induced.  

We constrained the ensemble using a previously published in planta Pst gene 

expression data set (Nobori et al., 2018a) using the GIMME integration algorithm. 

For our interests, we focus only on gene expression profiles within this data set 
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from Pst exposed to mock or flg22 elicited plants for five hours, representing an 

early infection stage. To capture early events of the interaction between Pst and 

Arabidopsis that to prevent differences in bacterial population size in Pst-

inoculated mock- versus flg22-pretreated plants, Nobori and colleagues used a 

high initial bacterial titer (OD600nm 0.2) and a 6h inoculation time point to take 

samples for gene expression analysis. We integrated the gene expression data 

set into iPst19 using GIMME (Gene Inactivity Moderated by Metabolism and 

Expression). GIMME prunes reactions from iPst19 that do not meet an expression 

threshold for the associated annotated genes. This reduces the network 

reconstruction to an experimentally-based minimal model; typically, these models 

do not produce biomass, rendering growth simulation unattainable. Therefore, 

GIMME will systematically lower the threshold and add reactions back into iPst19 

until the biomass function can be satisfied. Because there is relevant literature 

showing the importance of BCAA levels and pathogenesis, we directly assessed 

the fluxes of the BCAA catabolic pathway between mock and flg22 conditions 

(Figure 2.10). Overall, in the mock condition, there was more transport of leucine 

into ensemble members, yet the actual catabolism of leucine into 4-methyl-2-

oxopenanoate (4MOP), isovaleryl-CoA, and methylcrotonyl-CoA was enriched in 

the flg22 condition. In mock-pretreated plants, the off-shoot metabolism (not 

directly related to BCAA catabolism) of Pst was enriched disproportionately. This 

included the conversion of 4MOP into 2-isopropyl-2-oxosucciante, which is 

ultimately converted into other amino acids. iPst19 did not predict any differential 

flux between mock and flg22 conditions for either leucyl-tRNA production or the 
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conversion of isovaleryl-CoA into isovaleryl-ACP. The contribution of leucine to the 

biomass objective is held constant, so no differential flux would have been 

expected.  

 

GO Enrichment of Multiple Transcriptomic Datasets 

The gene expression analysis of Pst colonization of mock or flg22-pretreated 

plants has shown major differences in the expression pattern of metabolism and 

virulence. When comparing Pst gene expression in mock- and flg22-pretreated 

plants to naïve plants, there were also substantial differences in the overall gene 

expression profile. Figure 2.11 illustrates the major changes using GO terms, 

where the differential expression of genes from mock or flg22 compared to naïve 

plants within a GO term are averaged. Within the top twenty most differentially 

expressed GO terms, some are shared between mock and flg22, such as 

calmodulin binding and activity.  

 

2.5 Discussion 

Our analysis of single carbon source utilization by Pst is one of the most extensive 

published to date. While we have only highlighted carbon sources of interest in this 

study, a total of 64 carbon sources produced significant Pst growth in liquid culture. 

This wide range of growth-producing metabolites is consistent with Pst lifestyle 

(Massey et al., 1976). Pseudomonas syringae is predominantly a hemi-biotrophic 

plant pathogen found in over 50 plant species and in a diverse range of 

environments (Xin et al., 2018). When comparing the carbon sources used by Pst 
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against the human pathogen Pseudomonas aeruginosa, both organisms can grow 

on a wide variety of substrates. However, the properties of the carbon sources are 

categorically different. Pst produces biomass on 14 amino acids and 20 organic 

acids compared to PA14, which produces biomass on 7 amino acids and 14 

organic acids.  

Studies assessing the infectivity of P. aeruginosa have revealed some overlap in 

hosts with Pst (i.e. A. thaliana) presumably due to the expression of highly 

conserved virulence factors. P. aeruginosa is an opportunistic human pathogen 

that infects the respiratory tract of immunocompromised patients, skin lesions of 

healthy patients and the lungs of cystic fibrosis patients (Bodey et al., 1983). A 

more recent study revealed the importance of P. aeruginosa trehalose 

biosynthesis for maintaining infections in planta, while simultaneously revealing 

the requirement of plant-made xyloglucan working in concert with trehalose to 

satisfy nitrogen needs of P. aeruginosa (Djonović et al., 2013). To our knowledge, 

a similar requirement for virulence does not exist in Pst, yet other metabolites have 

been previously shown to induce virulence and metabolic shifts. L-aspartic acid, in 

concert with fructose, has been shown to induce the T3SS, an essential step 

required to produce infections in A. thaliana (Anderson et al., 2014a; Turner et al., 

2020). Conversely, both L-serine and L-glutamine suppress virulence in planta, 

likely through a completely unrelated regulatory mechanism (Zhang et al., 2022).  

The predicted gene essentiality of Pst presented in Figure 2.6 reveals a large, core 

set of 130 essential genes that is common across all media types. Many of these 

genes are related to amino acid, nucleotide, and cofactor production, all of which 
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are part of the biomass objective function in iPst19.These findings are again 

supported by the study from Helmann and colleagues, who found the functional 

categories of “cofactor metabolism”, “amino acid transport and metabolism”, and 

nucleotide metabolism and transport” to be in the top six most essential functional 

categories, along with “translation”, “energy generation”, and ”no functional 

category” (Helmann et al., 2019).   Further, genes that facilitate the transport of C 

sources in each media type become necessary, if not already predicted as 

essential in all media types. In media containing only carbohydrate carbon sources 

such as sucrose, the gene that codes for an ammonium transporter 

(PSPTO_0218) is predicted as essential due to the lack of nitrogen-containing 

metabolites in the medium. Without a nitrogen-containing carbon source, 

ammonium is essential for producing amino acids and polyamines among other N-

containing metabolites. While ammonia freely diffuses across the cell membrane, 

the necessary amounts of nitrogen cannot be met by diffusion alone. Therefore, 

microbes will express ammonium transporters in nitrogen-depleted conditions to 

compensate, such as a sugar minimal media (Kim et al., 2012). Even small 

amounts of amino acids within the simulated medium do not alleviate the need for 

NH4 transport. In Figure 2.10, we have shown how the addition of 1% L-leucine is 

not sufficient for alleviating the predicted essentiality of the ammonium transporter. 

However, this small addition of L-leucine to a glucose media is sufficient to reduce 

the predicted essentiality of 3-isopropylmalate dehydrogenase (PSPTO_2175), a 

critical enzyme in the biosynthesis pathway of BCAAs (Wallon et al., 1997). This 



 40 

reveals a potentially dynamic system that can respond to small changes in the 

concentrations of critical metabolites. 

Transcriptomic integration into iPst19 has highlighted the potential importance of 

the BCAA catabolism during the course of infection in defense elicited plants, 

which has not been previously described in the literature for Pst, despite gene 

expression profiling showing induction of BCAA catabolic genes in two 

independent data sets. While flux through the biomass function remained constant 

between Pst in mock-treated plants and flg22-treated plants, the reactions 

associated with liuA and BCAA catabolism broadly carried disproportionate flux in 

defense elicited plants (Figure 2.10).  Considering the connection of intracellular 

BCAA levels to virulence in other species of pathogens,  

While the expression of these genes is driving the flux within the BCAA catabolic 

pathway, it is important to highlight the inclusion of significantly differentially 

expressed genes (DEG) within iPst19. In total, 251 genes are significant DEGs 

that are also included in iPst19. Both Nobori and colleagues, as well as Lovelace 

and colleagues, report clear patterns revolving around iron and sulfur metabolism 

as the highlights of early, in planta infections by Pst. Indeed, iPst19 is able to 

capture these changes based on transcriptomic integration with GIMME. Of the 

251 DEGs in iPst19, 11 of them are related to sulfur metabolism and 9 to iron 

metabolism. Further, a large proportion of metabolic flux went through glycolysis 

and the TCA cycle when iPst19 was constrained with Pst gene expression data 

from mock-treated plants, which reflects what has previously been described by 

Yamada and colleagues. These findings reflect patterns already explored in the 
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literature, suggesting that iPst19 can highlight already known elements of host-

pathogen interactions, as well as highlight new facets of the interaction such as 

the predicted importance of maintaining intracellular BCAA concentrations 

presented here. 

These findings add support to the use of a metabolic model like iPst19 to 

contextualize gene expression data. While both the Nobori and Lovelace studies 

highlighted the importance of iron and sulfur metabolism during the onset of 

infection, respectively, they overlook other expression signatures present within 

their datasets that iPst19 was able to contextualize, such as BCAA metabolism, a 

finding that will be explored in further detail in this thesis. Herein lies the advantage 

of metabolic modeling: while there could be large changes in expression for a small 

subset of genes related to a type of metabolism (often highlights through GO 

enrichment) each of these genes could be the only gene within a given pathway 

that is highly upregulated. Similarly, there could be several genes, each of which 

contributes to the same pathway, that have only moderate changes in expression, 

yet the overall effect on the metabolism is additive and significant. Likely, moderate 

changes in expression with every gene in a pathway can contribute to a greater 

metabolic change that oen gene that is highly changed.  Therefore, even if there 

are other signatures that are apparent in a transcriptional dataset, like sulfur and 

iron metabolism, iPst19 can be used to highlight patterns within transcriptional data 

that are not apparent without contextualization by a metabolic model.  
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2.6 Figures  
 
Figure 2.1 
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Figure 2.1.  A schematic representation of the full reconstruction process for 

iPst19. Genome annotations were obtained from K.E.G.G., originally curated by 

Buell and collogues in 2003. 1. The initial reconstruction was generated from the 

genome annotations using ModelSEED. 2. This reconstruction was compared to 

two other GENREs for Pseudomonas aeruginosa strains PAO1 and PA14 (Bartell 

et al., 2017; Oberhardt, Puchałka, Fryer, Martins Dos Santos, et al., 2008). 

Homologs with significant similarity computed by DIAMOND between these strains 

and Pst that also have a curated reaction and functional evidence in the literature 

were added to iPst19 if missing. 3. Single carbon source utilization was assessed 

(data presented in Figure 2.5) for Pst. For carbon sources that produce biomass, 

exchange reactions were added to the draft GENRE. 4. Carbon sources that 

produce growth in vitro were assembled into a list of metabolites for gap-filling the 

GENRE. After a GENRE was gap filled, becoming a member of the ensemble, the 

order of the metabolites used was shuffled, and the draft GENRE was gap-filled 

again. Ensembles of 100-500 members were created, curated, and re-gap-filled 

with curated reactions.  
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Figure 2.2 
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Figure 2.2. Composition of the biomass function of iPst19. Coefficients for the 

biomass function were either experimentally determined from four independent 

cultures in KB media or informed by literature and coefficients from other 

Pseudomonas species. Each macromolecular category is further subdivided to 

show the overall composition of each category, where possible.   
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Figure 2.3 
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Figure 2.3. Schematic representation of the coronatine biosynthetic pathway 

included in iPst19. This pathway requires the starting metabolites of isoleucine, 

acetate, butyrate, and pyruvate to form CMA, CFA and finally COR. The genes 

predicted to be responsible for each arm of the pathway are depicted in bold above 

each segment. Adapted from Bender and colleagues (Bender et al., 1999). 
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Figure 2.5 
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Figure 2.5. Single carbon source utilization of amino acids, sugars and 

organic acids in vitro and in silico. A. Optical density at 600 nm was assessed 

in 190 distinct carbon sources over 60 hours. Highlighted in color are metabolites 

shown to produce growth and virulence in previous works. In grey are the growth 

curves for the other 181 carbon sources. B. The highlighted metabolites in A were 

assessed for in silico utilization in iPst19. Presented is a binary of biomass 

production when uptake of the carbon source is limited to 10mM/g dry weight. 
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Figure 2.6 

  



 51 

Figure 2.6. Predicted gene essentiality across various media simulations.  

Each gene is removed from an ensemble one at a time and final biomass 

production was assessed. Each medium formulation was used for its suggested 

importance in the literature. A. Predicted essentiality in each media condition is 

given out of 100 ensemble members. An essentiality score of 100 indicates 

essentiality in all 100 ensemble members, while a score of 0 indicates non-

essentiality in all members. Across all media conditions, there are 136 shared 

predicted essential genes. B. Predicted essential genes disparate from complete 

media. Twenty-one genes are shared across the different media, while eleven 

genes have varying degrees of essentiality corresponding to media type. 
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Figure 2.7 
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Figure 2.7. Predicted gene essentiality across complete, glucose, or leucine 

media simulations.  A. Predicted essentiality in each media condition is given out 

of 100 ensemble members. Across all media conditions, there are 136 shared 

predicted essential genes. B. Twenty-three predicted glucose- and leucine-specific 

essential genes are shown, five of which have varying degrees of essentiality 

depending on the carbon source used. Three genes of the liu operon 

(PSPTO_2736, PSPTO_2738, and  PSPTO_2739) are essential to use leucine as 

the sole carbon source. 

  

  



 54 

Figure 2.8 
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Figure 2.8. Predicted gene essentiality changes with mixed carbon sources. 

iPst19 growth was simulated in conditions where carbon sources were restricted 

to an uptake rate of 10 mM/g dry weight. The carbon composition of the Glc and 

Leu simulated media is indicated to the right. (A) All genes present in iPst19 were 

simulated for essentiality. (B) The most dissimilar essential genes in D-glucose 

and L-leucine simulated medium.  
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Figure 2.9 
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Figure 2.9. Contextualization of global gene expression reveals broad 

similarities and differences in metabolic state. RNAseq datasets (Nobori et al., 

2018a) were integrated into iPst19 to constrain fluxes of reactions using the 

RIPTIDE integration algorithm. A. NMDS analysis of individual flux subsamples 

from within each ensemble member is presented, with blue circles representative 

of fluxes from mock constrained members and red from flg22 constrained 

members. Centroids for each condition are highlighted as a larger point within the 

plot. B. Random forest assessment of influential condition-determining reactions. 

Each point is representative of the decrease in accuracy (as a percent) of 

assigning the proper condition by which the members were constrained if the given 

reaction is removed from the forest. The colored bar indicates which condition 

carried more constrained flux (red) or less constrained flux (green) within each 

condition, as an average across all members.      
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Figure 2.10 
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Figure 2.10. Pst gene expression-constrained iPst19 metabolic flux through 

the BCAA catabolic pathway and surrounding metabolism. RNAseq datasets 

(Nobori et al., 2018a) were integrated into iPst19 to constrain fluxes of reactions 

using the GIMME integration algorithm. The presented values next to each 

conversion step are a ratio of arbitrary units (a.u.) for flg22 constrained flux from 

100 ensembles to mock constrained flux from 100 ensembles. Anything above a 

value of 1 shows more flux through flg22 constrained reactions (red), while less 

than 1 shows more flux between mock constrained reactions (green).   
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Figure 2.11 
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Figure 2.11. Twenty GO terms with the most differentially expressed genes 

on average in Pst in planta. (A.) Mock and (B.) flg22 elicited plants were 

pretreated for 24 hours and infected with Pst for 5 hours before harvesting. Full 

RNAseq dataset can be found from Nobori and colleagues (Nobori et al., 2018a). 
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2.7 Tables 
 
Table 1.1 
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Table 1.1. Comparison of the size of well-curated models and the 

corresponding genomes. Genome information for Escherichia coli (a) 

Pseudomonas aeruginosa (c) and Pseudomonas syringae (e) were acquired from 

publicly available genome assemblies (a (Archer et al., 2011); c NCBI Tax ID 187; 

e (Buell et al., 2003)). (b) The E. coli W model was obtained from BiGG ((King et 

al., 2016); (Monk et al., 2013)). (d) The P. aeruginosa model was originally created 

by (Oberhardt, Puchałka, Fryer, Martins dos Santos, et al., 2008). 
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Chapter 3: BCAAs function as signaling molecules to suppress Pst virulence 

in vitro and in planta 

 

3.1 Summary 

Pathogens and non-pathogens use environmental queues to regulate growth and 

metabolisms. Pathogens specifically use similar queues to regulate virulence and 

pathogenesis. Pst has been shown to use culture density to regulate the timing of 

virulence onset, where the highest rate of production of virulence factors occurs at 

low culture densities. Different metabolites cause Pst to suppress or induce 

virulence factor synthesis, including organic acids and amino acids. Here, we 

demonstrate how BCAAs suppress virulence through downregulation of key genes 

both in vitro and in planta. The suppression is not due to compromised growth but 

does lead to compromised infectivity during long-term foliar infections.  
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3.2 Introduction 

Bacteria are exceedingly proficient at recognizing metabolite abundance in their 

environment. The abundance of carbon for energy production and nitrogen for 

protein synthesis are key environmental components that act as signals to many 

bacteria. In liquid culture, the canonical growth curve of bacteria perfectly 

illustrates the sense and response habit of a population of cells: at the start, when 

both carbon and nitrogen are abundant, cells rapidly divide; as time elapses and 

the culture becomes saturated, nutrients become scarce, and cells division slows 

down.  

Perception of nutrient abundance not only impacts the growth rate of cells but in 

the case of many pathogens, certain nutrients and molecules act as queues that 

the pathogen uses while invading a host. Enterohemorrhagic E. coli uses different 

sugars present in the gut as signals for transcription of the Locus of Enterocyte 

Effacement (LEE) pathogenicity island. Glucose scarcity increases the induction 

of LEE due to internal signaling mechanisms relating to glycolysis (Miranda et al., 

2004). External levels of fucose regulate LEE expression through a two-

component system, which directly associates with metabolites outside the cell and 

creates a signal cascade inside the cell for transcriptional reprogramming. In the 

absence of the two component system, E. coli is not able to respond to external 

levels of fucose and becomes hyper-virulent, suggesting direct control of virulence 

expression through metabolite sensing two component systems (Pacheco et al., 

2012).  
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Several different carbon and nitrogen sources have been described as contributing 

to virulence regulation in Pst. Fructose has been shown to act as an inducer of the 

effector protein AvrPto, while GABA metabolism and transport has been reported 

to be necessary for full virulence by Pst in tomatoes(Anderson et al., 2014a; Park 

et al., 2010).  

Many pathogens utilize quorum sensing to control the expression of virulence 

factors. Quorum sensing allows cell-to-cell communication and regulation through 

the production of diffusible factors: more cells produce more factors, which in turn 

increases local concentration and perception by surrounding cells(Miller & Bassler, 

2001). Gram-positive bacteria produce small diffusible peptides while Gram-

negative bacteria produce small molecules as signal factors. Both mechanisms 

cause signaling cascades in receptive cells and alter the transcriptional machinery 

to respond to density accordingly(Miller & Bassler, 2001). Interestingly, P. syringae 

virulence seems to follow a different regulation pattern than other pathogens. While 

many pathogenic bacteria only initiate virulence at higher densities, like 

Pseudomonas aeruginosa in biofilms, Pst initiates virulence early during the 

exponential growth phases (McCraw et al., 2016). The induction of the cma 

promoter peaks during exponential growth in vitro and then decreases with the 

transition to the stationary phase. Similarly, transcript abundances are highest for 

cmaABT during the earliest points of the growth stage (Weingart et al., 2004). In 

planta, the expression dynamics for virulence genes mimic those found in vitro. P. 

syringae pv. actinidiae, a pathogen of kiwifruits, shows large induction of T3SS-

related genes from 3 hours to 24 HPI, when active colonization of the leaf is 
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occurring (McAtee et al., 2018). P. syringae mutants lacking the ability to produce 

the quorum sensing molecule alginate show a hypervirulent phenotype and can 

quickly colonize host leaves (Quiñones et al., 2005). Taken together, these studies 

suggest that the induction of virulence is critical during early growth phases and 

could be an evolutionary adaptation by P. syringae to ensure effective colonization 

in plants.  

Here, we only focus on a subset of amino acids that impact the survival of Pst 

during foliar infections. Previous work in our lab has described the roles of 

glutamine, serine, and sugars impacting pathogen infectivity and virulence; 

however, due to the critical observations of BCAA metabolism carrying 

disproportionate flux in flg22 elicited plants, we sought to elucidate the impacts of 

BCAAs acting as nutritional queues for Pst in vitro and in planta.  

An important consideration for this section is the use of high concentrations of 

amino acids when supplementing bacteria both in planta and in vitro. Previous 

studies have characterized the concentration of all amino acids combined within 

the apoplast at 10mM. The majority of these are glutamine and arginine, both of 

which appear in the highest concentrations in our studies as well. The combined 

BCAA concentration is roughly 100uM to 150uM (Lohaus et al., 1995). In these 

studies, we have used 10mM BCAAs. Importantly, the 90% of the apoplasmic 

space is air, with a limited amount of liquid in which amino acids can be in solution 

which must be accounted for per Lohaus and colleagues (Lohaus et al., 2001). 

Dilution factors for recovery of apoplasmic washing fluid (AWF) have been 
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predicted at 3-9 times for A. thaliana and other plants, based on modeling of the 

air space within the leaf (Lohaus et al., 2001).  

Beyond dilution factors, there are several other aspects of the traditional vacuum 

infiltration and recovery method to obtain AWF that complicate the interpretation 

of the concentrations of metabolites obtained in the leaf AWF. For instance, 

osmolarity, pH of the recovery liquid, time of infiltration, and the pressure used to 

infiltrate leave, may affect the recovery of different metabolites. Importantly, there 

is more-limited solubility of BCAAs in highly polar recovery fluids when compared 

to polar amino acids. As such, there has been no established standard protocol to 

use for the enriched recovery of AA from AWF. These point to potential limitations 

in the recovery of AA, but  other factors were considered for our use of 10 mM 

BCAA, including active transport by plant amino acid transports and phloem 

loading of supplemented AA. 

For in planta studies, the whole pathosphere must be considered in designing 

experiments. A. thaliana is not agnostic of high amino acid concentrations and will 

import AAs down a concentration gradient from the apoplast to cytosol ultimately 

to the tonoplast. Previous studies exploring the inducing effects of fructose have 

used 50mM fructose supplementation while apoplastic concentrations of fructose 

in leaves have been described at 200 μΜ  to 500 μΜ (Anderson et al., 2014a; Kang 

et al., 2007). A higher amount of supplementation for the metabolite of interest 

must be used during in planta infection assays due to the movement and 

sequestration of metabolites upon infiltration. Considering these factors, as well as 

the established supplementation protocols from Anderson and colleagues and 
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Kang and colleagues, where 100x concentration of metabolite was used to study 

inducing and repressing gene expression effects in planta, we similarly used 100x 

BCAA concentration (from 100-150uM to 10mM) to account for the rapid 

sequestration of metabolites across membranes. 

 

3.3 Materials and methods 

Bacterial Growth Conditions:  

Pst grown in liquid King’s B culture at shaking at 230 RPM and 28C. Bacteria for growth 

rate assessment and plant infection experiments were taken from fresh LB agar plates 

and grown overnight in the liquid media, followed by sub-culturing 10% until mid-

exponential phase. 

Plant growth conditions: 

A. thaliana Columbia-0 (col0) plants were grown in peat pellets with a 12-hour photoperiod 

at 23C and 70% humidity. Plants were watered three times a week with Hoagland’s 

solution or water, depending on age. At six weeks old, plants were used for infections and 

gene expression quantification.  

RNA and cDNA preparation: 

RNA was extracted with Trizol reagent (Ambien). For samples containing with plant alone 

or plant and bacterial tissue, flash-frozen samples were ground in 1 mL of Trizol with metal 

beads for at 25Hz until liquified. Samples with bacteria were then homogenized using 

0.1mm silica beads at 8000rpm. Samples with only bacteria began at this step. Liquid 

phase separation with chloroform isolated RNA from protein, DNA and phenolics at 11,200 

x g for 15 minutes at 4C. Supernatant was combined with equal parts isopropyl alcohol to 

precipitate RNA, at 13,300 x g for 15 minutes. Contaminating DNA was digested using 

DNase 1 from Promega for 30 minutes to an hour, followed by cDNA synthesis using m-
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MLV and normalized inputs of DNA-free RNA, also from Promega using the supplied 

protocol and reaction conditions.  

Transcript quantification: 

Transcripts of genes were quantified via quantitative RT-PCR using an ABI7500 Fast 

thermocycler and CW Biosciences qRT-PCR ready mix. Primer sequences can be found 

in the primer addendum within the supplemental information. Reactions were prepared to 

the specifications of the ready mix. Transcripts were relatively quantified using the ∆∆Ct 

normalization method, whereby the Ct values of the gene of interest are subtracted from 

the housekeeping gene within each sample (internal normalization) followed by subtracted 

these results between the experimental condition and the reference condition (external 

normalization). All bacteria transcripts were internally normalized to recA unless otherwise 

noted. All plant transcripts were internally normalized to act2 unless otherwise noted. 

Primer names and sequences can be found in Chapter 4, Table 4.6. All statistical tests for 

gene expression were Student’s T test against the externally normalizing condition, unless 

otherwise noted. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.  

Pre-elicitation: 

Prior to infiltration, plants were covered with plastic domes to increase localized humidity 

to near 100%, ensuring stomata are fully open. 4 leaves per plant (leaf pairs 5 and 6, 

according to order of emergence from the meristem) were elicited via blunt end syringe 

with either water (mock) or 1μM flg22 in water. Any remaining liquid on the exterior of the 

leaf was wiped off. Plants were elicited for 24 hours. Elicitation with BCAAs was done 

using 10mM BCAA in water or water alone for 24 hours, after which leaves were harvested 

for gene expression. 

Long term infection quantification and gene expression: 

4 leaves per plant (pairs 5 and 6) were infiltrated with 0.0002 OD Pst (or derivative strain). 

For naïve plants, infection duration was 72 hours. For elicited plants, infection duration 
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was 48 hours to prevent total leaf collapse. Leaves were harvested; normalized amounts 

of leaf tissue were taken using a 4mm cork borer. 8 leaf discs from one plant contributed 

to one CFU sample. Discs were pulverized with a metal bead for 5 minutes at 25Hz in 

400μL sterile water. Samples were serially diluted 1:10, 5μL from each dilution was plated 

on solid LB agar with appropriate selection markers. 16-20 hours post plating, CFUs were 

quantified. For gene expression, remaining leaf tissue was flash frozen. RNA was 

extracted and transcripts quantified as previously described. 

Short term infection and gene expression: 

4 leaves per plant (pairs 5 and 6) were infiltrated with 0.02 OD Pst (or derivative strain). 

For all plants, infection duration was 3 hours. Leaves were harvested; normalized amounts 

of leaf tissue were taken using a 4mm cork borer. 8 leaf discs from one plant contributed 

to one CFU sample. Discs were pulverized with a metal bead for 5 minutes at 25Hz in 

400μL sterile water. Samples were serially diluted 1:10, 5μL from each dilution was plated 

on solid LB agar with appropriate selection markers. 16-20 hours post plating, CFUs were 

quantified. Due to the limited bacteria present after 3 HPI, samples used for gene 

expression were infiltrated with 0.2 OD bacteria. Leaves were harvested and flash frozen 

and RNA was extracted as previously described. 

Co-infiltration treatments: 

Bacteria that were co-infiltrated with either water or amino acids were first resuspended in 

water at 10x OD concentration. Immediately before infiltration into a leaf, the bacteria were 

mixed with the appropriate dilution of either water or amino acids suspended in water. The 

amount of time bacteria were exposed to the co-infiltration treatment was minimized. 

Plate preparation: 

Bacterial growth curves were generated using a Spectramax i3x 96-well plate reader using 

the kinetic read feature with continuous agitation at 28C. Overnight bacterial cultures were 
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grown as previously described. Cultures were pelleted and washed three times with water 

before inoculation into assay media at the appropriate concentration.  

Media formulations: 

For growth curves in a rich media, bacteria were inoculated in King’s B liquid media with 

the appropriate selection marker. For growth curves in virulence inducing media, HMM 

was used. For growth curves in minimal media, modified M9 media was used. In addition 

to salts from typical M9 media, sterile 100μM sucrose and 5mM MgSO4, final 

concentrations, were added to facilitate Pst growth. Without these additions, growth is not 

observable within this system. 

Doubling time calculations: 

To calculate doubling time from a growth curve, each well within a 96 well plate was 

treated as an individual technical replicate. Averaging across technical replicates and 

proceeding with calculations is not advisable, as subtle differences in the results may be 

lost. 10 to 15 measurements within the exponential growth phase were used to produce 

an interpolating line; the line was optimized within the curve to have the best R2 value and 

the highest exponent manually. Doubling time was calculated from taking the natural log 

of 2 divided by the exponent within the equation for the interpolated curve. 

Grouped gene expression sets: 

Heatmaps were generated from the expression values calculated from publicly available 

data from Brunner and Nürnberger on TAIR (ExpressionSet:1008080727). Genes were 

previously grouped by association with specific amino acids. These were then grouped by 

similar characteristics. Similarly, these gene-sets were grouped by GO term association. 

The average expression across all of the genes within a go term was presented.  

 

3.4 Results 
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In planta virulence dynamics during PTI – A Timecourse 

Appropriate expression of virulence markers is a key aspect of a successful 

infection by Pto. As previously shown, in a naïve plant, expression of the T3SS 

and coronatine synthesis genes increases during the initial phase of infection, after 

which expression falls off. Conversely, in defense-elicited plants, expression of 

these virulence markers is delayed, contributing in part to the resistance phenotype 

in the plant (Figure 3.1). It is clear that the delayed onset of virulence protocol leads 

to a less successful pathogen, yet inappropriate overexpression of virulence 

markers can also be detrimental to the pathogen during infection. 

Previous studies have illustrated the importance of strict regulation between 

virulence and growth. However, current assessments of in planta virulence of Pts 

are limited towards immediate and short time course assays, often within the first 

six hours of infiltration with bacteria. We have extended the profiling of virulence 

over 48 hours post-inoculation (HPI) in naïve and PTI-elicited plants. At the six-

hour timepoint, expression of hrpA and cfl remain consistent with what has 

previously been described: PTI suppresses the expression of virulence genes 

(Figure 3.2) (Lovelace et al., 2018; Nobori et al., 2018b). However, Pts exposed to 

PTI-elicited plants significantly increase the expression of both genes for the 

remainder of the time course, with the highest expression at 48 HPI (Figure 3.2A). 

While the expression of virulence-related genes increases, this does not lead to 

the successful long-term colonization of the leaf (Figure 3.1). These data suggest 

the importance of early induction of virulence during an infection is necessary to 

gain a foothold in the leaf. Failing to do so will lead to an unsuccessful infection. 
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In vitro gene expression 

We have provided evidence that 10 mM BCAA, while a high concentration, is not 

toxic at these levels to Pst. The doubling time drastically decreases with 

supplementation of 10 mM BCAA in modified M9 media compared to non-

supplemented M9 (Figure 3.3A), suggesting Pst can use this concentration of 

BCAA for growth. Further, there is no significant difference with using less BCAA, 

as presented in Figure 3.3A.  While adding BCAAs does not support robust growth, 

it is evident that any supplementation produces faster growth and more growth 

than non-supplemented media (Figure 3.3B). 

When the BCAAs are supplemented individually into MM, leucine supports growth, 

while both valine and isoleucine slow the doubling time significantly (Figure 3.4). 

Due to the growth support shown in the combination of BCAAs (Figure 3.3A), these 

data suggest leucine is able to compensate for any growth-suppressing effects in 

vitro of valine and isoleucine alone. 

We were able to replicate in vitro the liuA (PSPTO_2739) and liuD (PSPTO_2736) 

similar to induction seen in Pst when infecting flg22-elicited plants in Nobori and 

colleagues’ transcriptional profiling by supplementing minimal media with BCAAs, 

either individually or combined. We tested two minimal media formulations: HMM 

and modified M9 media, the first to replicate a virulence inducing environment and 

the second as a carbon-restricted growth producing environment. Individual 

supplementation of BCAAs into HMM significantly induced expression of both liuD 

and liuA when compared to the non-supplemented bacteria (Figure 3.5A). 
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Individual BCAA supplementation, as well as a combination of all three, has the 

same effect (Figure 3.5B). The induction does not appear to be concentration 

dependent in vitro, as supplementation between 100µM and 10mM all produce 

induction of these catabolic genes (Figure 3.5C). Interestingly, the expression of 

lrp (PSPTO_0100) does not change in response to the concentration of BCAAs, 

suggesting that the BCAA-sensing activity of Lrp occurs post transcriptionally and 

probably post-translationally (Figure 3.5C).  

The expression patterns of liuD and liuA seems to be BCAA specific. 

Supplementation of 10mM Gln or 10mM Ser significantly suppress the expression 

of both genes in minimal media (Figure 3.6).  

Supplementation of BCAAs in vitro also impacts the expression patterns of 

virulence markers hrpL and cfl. While there are several mechanisms by which Pst 

regulates virulence factor synthesis, regulation by BCAAs has not been previously 

described. In HMM, we expect the synthesis of virulence factors to be high. 

However, after supplementation with 10mM BCAA, the expression patterns of both 

hrpL and cfl were significantly suppressed. This effect was not present at 

concentrations lower than 10 mM BCAA (Figure 3.7). 

 

Supplementation of AA suppresses virulence and reduces colonization 

The accumulation of AA after elicitation of leaves with flg22 has been described in 

our previous studies (Zhang et al., 2023b).  In adult leaves, the highest 

concentration of AA observed occurred 24 hours post-elicitation. Profiling of these 

amino acids revealed stark increases in glutamine, serine and valine (a BCAA) 
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when compared to mock-treated leaves. Both glutamine and serine, when co-

infiltrated with Pto, suppressed virulence and led to less leaf colonization after 72 

hours (Zhang et al., 2023b).  This is not the result of amino acid toxicity, which is 

supported by the enhanced growth in minimal media supplemented with glutamine, 

serine, and a combination of both AA in a concentration-dependent manner (Figure 

3.8). Further, within the first three hours of infiltration with both glutamine and 

serine, there is no significant bottleneck effect to suggest a die-off upon infiltration 

into the leaf (Figure 3.9). 

Again, we sought to replicate the expression pattern seen in the flg-22 treated 

bacteria regarding liuD and liuA, though in planta. Similar to our results in vitro, the 

expression of liuD and liuA is significantly induced in planta when co-infiltrated with 

10mM BCAAs for 3 hours (Figure 3.10). It was important to confirm the induction 

of liuD and liuA in planta due to the predicted gene essentialities presented in 

Chapter 2 (Figures 1.8 and 1.9) showing the alleviation of essentiality in a complex 

mixture of carbon sources.  

Similar to Gln and Ser co-infiltration, 10 mM BCAAs did not immediately reduce 

the infecting titer of bacteria (Figure 3.11A). Because there is no apparent 

bottleneck effect with the pathogen, it is clear that the compromised leaf 

colonization we see at 72 HPI (Figure 3.11B) is due to a more complex effect that 

BCAAs are having on Pst or A. thaliana.   

We were able to rule out plant-immune induction by BCAAs as a primary cause of 

reduced Pst infection. A. thaliana plants do not show any induction of either SA-

mediated immunity (through expression of Pathogenesis-related 1 (PR1)) or JA-
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mediated immunity (through expression of Vegetative Storage Protein 2 (VSP2)) 

(Figure 3.12). Importantly, these two pathways comprise the primary induced 

defense responses by biotrophic and necrotrophic pathogens. PR1 induction is 

exacerbated by SA, and has been shown to respond transcriptionally to pathogens 

and flg22 in as little as 12 hours rendering it a robust readout for SA-mediated 

immunity (Backer et al., 2019). Similarly, VSP2 responds transcriptionally to the 

presence of JA (Verhage et al., 2011). Because neither of these genes are induced 

at 24 HPE with BCAAs (Figure 3.12), it is reasonable to conclude that neither of 

these defense pathways is induced by high levels of BCAAs in the apoplast.  

Similar to Gln and Ser supplementation in planta and BCAA supplementation in 

vitro, supplementation with 10 mM BCAAs significantly reduces hrpL and cfl 

induction in planta (Figure 3.13).  

 

3.5 Discussion 

Data presented here and in previous works in our lab (Zhang et al., 2022, 2023) 

suggest a critical part of flg22 elicitation is the modulation of AA transporters that 

lead to the increase of AA outside mesophyll cells, which in turn suppresses the 

virulence mechanisms of Pst at the early stages of leaf colonization. A similar, yet 

distinct, mechanism was previously described by Yamada and colleagues in 2016. 

They described how flg22 immunity was impacted by the increased abundance of 

the sugar transporters STP13 and STP1 on the PM of mesophyll cells, thus 

causing the withdrawal of hexoses from the leaf apoplast of elicited plants. When 

stp1 and stp13 A. thaliana mutants were challenged with Pst, the plants were 
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significantly more susceptible to infection, suggesting that the abundance of 

sugars plays a role in the colonization of the leaf, likely through increased growth 

and energy production by Pst.  

While the expression data regarding AA transporters provides a potential avenue 

for how A. thaliana shuttles the AA into the apoplast, the outstanding question of 

where the free AA originate remains unanswered. To aid in understanding this 

point, we used publicly available expression profile of A. thaliana gene expression 

in flg22 elicited plants at 1 and 4 HPE and compared the expression of genes 

within several known AA generating or consuming pathways, including 

glucosinolate biosynthesis, AA biosynthesis, proteolysis, autophagy, senescence, 

phenylpropanoid biosynthesis, and aminoacyl tRNA biosynthesis. Each gene was 

assigned to an AA group and presented as log2 (fold change) according to the 

available data from The Arabidopsis Information Resource (TAIR) (Figure 3.14). 

While there is no clear pattern to the expression of genes broken when grouped 

by biochemical characteristics, there does seem to be patterns of the same data 

when broken up by GO terms grouping. On average, genes related to amino acid 

sources show increased expression at 4 HPE, while genes related to the amino 

acid sinks show decreased expression at 4 HPE (Figure 3.15). 

While there is a direct link between Gln and Ser abundance after flg22 treatment 

and suppression of virulence, the link between abundance of BCAA and virulence 

after flg22 treatment is less clear. First, of the BCAA, only valine is significantly 

more present in the apoplast after flg22 treatment. We have shown that valine is 

sufficient to induce liuD (p-val 0.057) and liuA in vitro (Figure 3.5A), but it is not 
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known if this induction is sufficient to induce in planta. However, given that all 

BCAAs together produces the same expression profile as each individual BCAA, 

it is likely that the expression profile would be similar in planta.  

As previously discussed, induction of virulence factor early in infection is critical for 

Pst to set a foothold in foliar infections. Suppression of virulence gene expression 

by both Gln/Ser and BCAAs seems to critically alter the progression of infection at 

later time points, highlighting the importance of modulation of AA concentration as 

a primary defense mechanism of A. thaliana, similar to what was described by 

Yamada and colleagues regarding hexoses (Yamada et al., 2016). The impact of 

AAs on bacterial infection dynamics is specific to which AAs are present in the 

apoplast. As previously described by Anderson and colleagues, Asp is able to 

induce virulence in Pst in planta (Anderson et al., 2014b). Similarly, our lab has 

explored the role of a combination of Glu and Asp in planta; individually, as well as 

the combination of Glu and Asp, seem to equally induce virulence and promote 

long-term infection in A. thaliana (Khadka, manuscript in prep.).  

Importantly, our data suggests Pst is not using these amino acids outright for 

energy production to sustain a robust infection. Rather, the increased abundance 

of AA in the apoplast inhibits infection by delaying the onset of virulence (Figure 

3.2 and 2.12) (Zhang et al., 2023b). When considering the impacts of decreased 

hexose abundance and increase AA abundance, it is reasonable to appreciate how 

flg22 induction in leaves not only restricts access to fast-growth promoting 

nutrients while simultaneously suppressing critical mechanisms of bacterial 

infection during the early stages of colonization but could lead to considerable 
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inhibition of infection. It is important to note that these phenomena are not the only 

defense mechanisms induced in the leaf by flg22; there are substantial increases 

in SA and ROS that also impact the success of Pst infecting leaves. These features 

illustrate how plants inhibit the colonization of leaves from a broad range of 

microbial pathogens without the need for specific pathogen recognition during ETI 

and HR.  
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3.6: Figures 
 
Figure 3.1 
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Figure 3.1. Infection of A. thaliana leaves by Pst. 24-hour elicitation of either 

water or flg22 followed by infection with Pst at 0.0002 IOD yielded CFUs per sq. 

cm of leaf tissue. Student’s T test, * < 0.05. N = 6. 
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Figure 3.2 
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Figure 3.2. Expression of hrpA and cfl by Pto in planta over time. Transcript 

abundances of virulence genes from Pto were quantified in reference to 16s 

transcript abundances in mock (blue) and flg22-elicited (red) plants. A. Transcript 

abundance of hrpL. B. Transcript abundances of cfl. ANOVA, n=6-12. Letters 

above each bar indicate whether the bars are significantly different from each 

other. 
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Figure 3.3 
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Figure 3.3. Supplementation of BCAAs in a minimal media supports growth. 

The addition of 100µM, 1mM, and 10mM each BCAA in combination was 

supplemented into mM9 media (grey). Pst was inoculated in the media at IOD 

(initial optical density) 0.01. A. Doubling time was calculated from individual growth 

curves per well presented in B and averaged, N = 16. B. Average growth curves 

presented as OD600 across all 16 wells within a given treatment over 15 hours. 

Grey shadows represent the SD for each curve, N = 16.  
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Figure 3.4 
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Figure 3.4. Individual BCAAs have different effects on Pst doubling times. 

10mM each BCAA individually was supplemented into mM9 media (grey). Pst was 

inoculated in the media at IOD 0.01. Doubling time was calculated from individual 

growth curves per well and averaged. Doubling times are informed normalized to 

the non-supplemented media, N = 9-16.  
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Figure 3.5 
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Figure 3.5. The addition of BCAAs induces expression of BCAA catabolic 

genes, but not a regulatory gene. All transcript levels are internally normalized 

to recA. A. Transcript levels of liuD and liuA in Pst exposed to mM9 in 10mM 

individual BCAA supplemented media normalized to Pst exposed to mM9 alone. 

B. Transcript abundances of liuD and liuA in Pst exposed to mM9 containing each 

BCAA at 10mM, normalized to Pst exposed to mM9 alone. C. Transcript 

abundances of lrp, liuD, and liuA in Pst exposed to 100µM, 1mM, and 10mM each 

BCAA in HMM, normalized to transcript abundances in Pst exposed to HMM alone. 

Student’s T test, * < 0.05, ** < 0.01, *** < 0.001. 
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Figure 3.6  
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Figure 3.6. BCAA catabolic gene expression in response to high levels of 

glutamine and serine. Transcript abundance of liuD and liuA, internally 

normalized to recA, in Pst exposed to 10 mM Gln and Ser in minimal media 

normalized to non-supplemented minimal media (N = 6). Student’s T test, * < 0.05, 

*** < 0.001. 
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Figure 3.7 
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Figure 3.7. Virulence factor gene expression responds to concentration 

changes in BCAAs. Transcript abundance of hrpL and cfl, internally normalized 

to recA, in Pst exposed to 100µM, 1mM, and 10mM combined BCAAs in HMM 

normalized to non-supplemented HMM. Student’s T test, ** < 0.01, *** < 0.001. 
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Figure 3.8 
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Figure 3.8. Supplementation of increasing concentrations of Gln or Ser in 

minimal media changes the growth capacity of a culture. A-C. Average growth 

curves of Pto growing in mM9 media supplemented with either 100µM, 1mM, 

10mM glutamine, serine, or both. Each solid line is an average of n=7 cultures, 

with the translucent flanking lines representing SEM. D. Average doubling times of 

Pto from the curves in A-C, SEM. ANOVA, multiple comparisons.  
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Figure 3.9 
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Figure 3.9. Gln and Ser do not create an immediate bottleneck in planta. 

CFUs/ sq cm infected leaf tissue, 3HPI with Pst, IOD 0.02, co-infiltrated with both 

10mM Gln and Ser or MES alone. Student’s T test. 
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Figure 3.10 
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Figure 3.10. BCAAs induce BCAA catabolic genes in the apoplast. Pst co-

infiltrated at IOD 0.2 with 10mM BCAAs show increased transcript abundances 3 

HPI in A. thaliana leaves when compared to MES alone. Student’s T test. *** < 

0.001. 
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Figure 3.11 
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Figure 3.11. BCAAs do not create an immediate bottleneck in planta but 

reduce long term colonization. A. CFUs/ sq cm infected leaf tissue, 3HPI with 

Pst, IOD 0.02, co-infiltrated with both 10mM BCAAs or MES alone. B. CFUs/ sq 

cm infected leaf tissue, 72HPI with Pst, IOD 0.0002, co-infiltrated with both 10mM 

BCAAs or MES alone. Student’s T test. ** < 0.01.  
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Figure 3.12 
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Figure 3.12. Plant defense pathways are not induced by BCAAs. Gene 

expression of plant defense markers genes PR1 and VSP2 24 internally 

normalized to act2 HPE of leaves with 10mM each BCAA and normalized to MES 

infiltrated leaves (N=3, SD). Student’s T test. 
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Figure 3.13 
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Figure 3.13. BCAAs reduce virulence factor transcript abundances in planta. 

hrpL and cfl expression, internally normalized to recA, from Pst co-infiltrated for 3 

hours with 10mM each BCAA and normalized to Pst infiltrated with 5mM MES 

alone. N = 6. * < 0.05, *** < 0.001. Student’s T test. 
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Figure 3.14 
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Figure 3.14. Expression of AA-consuming/generating-related genes in A. 

thaliana flg22 elicited plants. Amino acids are grouped by similar properties. A. 

Nitrogenous AA glutamine and asparagine. B. Sulfur containing AA cysteine and 

methionine. C. Aromatic amino acids phenylalanine, tyrosine, and tryptophan. D. 

BCAAs leucine, valine, and isoleucine. E. Hydroxyl containing AA threonine and 

serine. F. Acidic residues glutamic acid and aspartic acid. G. Large, charged AA 

proline, histidine, and lysine. For all scales, green is representative of less 

expression, white is no change between mock and flg22 elicitation, and red is 

increased expression.  
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Figure 3.15 
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Figure 3.15. Average log2(fold change) of genes related to AA metabolic 

functions in flg22 elicited A. thaliana plants. The genes are grouped by GO 

terms Protein degradation (proteolysis), autophagy, AA anabolism (biosynthesis) 

which comprise sources of AA, as well as protein biosynthesis, phenylpropanoid 

biosynthesis, glucosynolate biosynthesis, and AA catabolism which comprise 

sinks of AA. Green is representative of less expression on average in flg22 elicited 

plants, white is no change between mock and flg22 elicitation, and red is increased 

average expression. 
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Chapter 4: Modulation of BCAA metabolic and regulatory genes in Pst alters 

infectivity in A. thaliana 

 

4.1 Summary 

Pathogens are in a constant contest with their hosts to sequester growth-promoting 

nutrients and prevent the onset of defense mechanisms. In previous chapters, 

connections between BCAAs and pathogenesis have been described; here, we 

assess the impacts of genetic modulation of BCAA catabolic genes and a BCAA-

responsive regulatory gene in vitro and in planta. Overexpression of catabolic 

genes leads to growth dysregulation under normally permissive conditions as well 

as compromises the infectivity of the pathogen. Modulation of the BCAA-

responsive regulatory gene lrp lead to dysregulation of growth and virulence, 

resulting in decreased leaf colonization during foliar infections. These findings 

implicate direct ties between metabolism of Pst and virulence induction, 

necessitating further study on potential avenues of pathogen control leveraging 

these mechanisms.  
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4.2 Introduction 

Amino acids are critical to bacteria not only for peptide synthesis but also because 

they can be used as primary metabolites for biomass production. Thus, AA 

metabolism is tightly regulated. Pst is able to use many amino acids as single 

carbon sources (Figure 2.5). However, Pst lacks the bkd (branched chain keto-

acid dehydrogenase) operon, which is responsible for the first step in BCAA 

catabolism (Figure 4.1). This limits the utility of BCAAs as a single carbon source. 

In these experiments, as well as previous studies, Pst has been shown to produce 

growth on leucine, though not to the extent of other organisms. Further, isoleucine 

and valine are reported to produce little to no growth, all as a function of lacking 

the bkd operon.  

 

The bkd operon 

Due to the growth produced by leucine, there must be alternative pathways or 

enzymes to catalyze the first steps of BCAA metabolism in Pst. We have predicted 

based on homology what these enzymes could be that convey the ability to use 

BCAAs by Pst (Figure 4.1). The most closely homologous Pst genes to members 

of the bkd operon in Pae are illustrated in Table 3.1. The multienzyme complex of 

bkd falls into the oxo-acid dehydrogenase complexes (OADHC) protein family, of 

which the homologous pyruvate dehydrogenase and succinate dehydrogenase 

complexes are a part. In Thermoplasma acidophilum, the constituents of the 

OADHC most closely related to pyruvate dehydrogenase also show 4-methyl-2-

oxopentanoate-producing capabilities. This suggests OADHCs could be fairly 
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permissive in their substrate usage (Heath et al, 2004). Because Pst contains two 

paralogous OADHCs, there is likely substrate utilization that allows for modest 

growth on leucine as the single carbon source. 

In P. putida, the bkd operon contributes a set of reactions that produce substrates 

for the liu operon (Figure 4.1). Notwithstanding that this operon is missing in Pst, 

leucine still produces modest growth when supplied as a sole carbon source 

(Figure 2.5). In addition, and as suggested previously (Rico & Preston, 2008) the 

DNA re-arrangements present at the liu operon would suggest that Pst could not 

catabolize leucine. Again, contrasting this assumption, in vitro growth data 

presented in our study (Figure 2.5, Figure 3.4A) shows that leucine, or a 

combination of the three BCAAs, supports Pst growth, suggesting that other 

enzymes compensate for the loss of 2-oxoacid dehydrogenases encoded by the 

bdk operon. In P. aeruginosa and P. putida, the pyruvate dehydrogenase complex 

(PDC) and the succinate dehydrogenase complex (SDHC), share significant 

homology with the 2-oxoacid dehydrogenases (Burns et al., 1988; Hester et al., 

1995). In Pst, PSPTO_3860, PSPTO_5005, PSPTO_5006, and PSPTO_2201 

encode the PDC enzymes, while PSPTO_2199, PSPTO_2200, and 

PSPTO_2201, encode the SDHC enzymes. Importantly, enzymes in these two 

complexes show a degree of promiscuity in substrate utilization, suggesting that 

they could also initiate BCAAs catabolism in the absence of the bkd operon (Heath 

et al., 2004). Indeed, SDH enzymes encoded by PstDC300 showed the highest 

identity to those encoded by the bkd operon in P. putida (Figure 4.1, Table 3.2). It 

is likely through these related enzymes that Pst is still able to use leucine as a 
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single carbon source. Importantly, Pst synthesizes BCAAs likely via enzymes 

encoded by the ilv and leu operons, both present in its genome (Buell et al., 2003). 

 

Two types of expression modulation 

For the purposes of these experiments involving direct modulation of metabolic 

and regulatory genes, we have constructed several plasmids that use the 

neomycin phosphotransferase II (NPTII) promoter to drive gene expression. We 

have constructed two types of expression plasmids: sense overexpression and 

antisense overexpression. Due to the properties of Gateway cloning, it is relatively 

easy to create interchangeable gene cassettes for one plasmid backbone. A full 

illustration of the cloning scheme is presented in Figure 4.3. 

For sense expression constructs, we cloned the sense strand of the GOI to 

overexpress the gene. These constructs were straightforward and allowed us to 

test excess expression of our GOIs. Conversely, the antisense expression 

constructs overexpress the antisense strand of the GOI to create what is 

functionally a knock-down of the gene. We used this approach as opposed to 

deletion knockouts to control for the metabolic draw overexpression itself creates, 

and because metabolic genes are more likely to be essential for the survival of an 

organism. Antisense-mediated gene down-regulation has been previously used on 

essential genes in E. coli with success, as it creates viable strains to test the 

function of essential genes (Chan et al, 2010). Further, several instances of 

antisense regulation has been described across several species of bacteria, 
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suggesting it could be a broad spectrum tool for knockdown generation (Chan et 

al., 2010; Georg & Hess, 2011; Gillaspie et al., 2009).  

 

Targets of Modulation 

The two studies (Lovelace et al., 2018; Nobori et al., 2018) looking at Pst global 

gene expression during infection in flg22-treated plants show increasing 

expression of liuA and liuD over time, while lrp expression is decreased in flg22-

treated plants. Both predictions from iPst19 and transcript abundance from 

unconstrained global gene expression (non-contextualized data) point to the 

catabolism of BCAAs as a feature of infection in defense-elicited plants. 

Catabolism of amino acids is part of a feedback loop in many bacterial species; 

regulation of expression and function of anabolic and catabolic operons is linked 

to the concentration of starting, intermediary and terminal products. Leucine 

catabolism has been shown in E. coli to be under partial control of the leucine-

responsive regulatory protein (Lrp). Lrp has been shown in E. coli to alter the 

expression of >30% of the genome; the full spectrum of regulation reinforced by 

Lrp are not fully understood, yet it is clear that amino acids, particularly BCAAs, 

influence which genetic targets are regulated by Lrp (Cho et al., 2008; Kroner et 

al., 2019). The homolog for Lrp in Pst (PSPTO_0100) shares significant similarity 

to Lrp in E. coli, with roughly 61% identity at the amino acid level using BLAST 

(Table 3.3). It is not known which genes Lrp in Pst regulates; however, in 

Salmonella and E. coli, Lrp regulates virulence, transition into stationary phase, 

and amino acid metabolism, among many other processes (Baek et al., 2009; Cho 
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et al., 2008). Considering this, we included the leucine-responsive regulatory 

protein (Lrp; PSPTO_0100) in our studies for the purpose of understanding BCAA 

involvement at the regulatory level. By including Lrp in the scope of our studies, 

we sought to understand if the catabolism of BCAAs, present in the transcriptional 

profiles of previous studies and highlighted by iPst19, directly influenced the 

outcome of infection by this upregulation alone, or if catabolism of BCAAs existed 

as a compensatory mechanism to influence regulation by the Lrp-BCAA 

relationship. As previously illustrated in Chapter 1, the regulatory mechanisms by 

Lrp in relation to concentrations of BCAA levels can be thought of as a ratio; when 

one aspect of the ratio is modulated, be it BCAA levels or Lrp levels, this can create 

an excess of non-BCAA bound Lrp, thus altering its transcriptional targets. 

Importantly, Pseudomonads have been shown to tightly regulate intracellular 

levels of BCAAs that could impact this ratio of Lrp to BCAA. In iron replete 

conditions, Pae has been shown to  greatly increase transcript levels of BCAA 

catabolic genes and suppress BCAA synthetic genes; regardless of the external 

levels of BCAA (Nelson et al., 2019b). This suggests tight regulation of internal 

levels of BCAA is necessary, likely because of their regulatory impact on Lrp or 

other BCAA sensors. Further, these previous studies could explain why, despite 

significantly increased transcription of liuD and liuA in Pst exposed to flg22 plants, 

there is no appreciable increase in BCAAs aside from valine in flg22 plants. The 

decoupling of external BCAA levels and internal levels could be an important 

homeostatic regulatory mechanism.  
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In this chapter, we sought to understand how changing the levels of Lrp and 

liuD/liuA could impact this ratio between Lrp and BCAAs, and thus the 

transcriptional targets. We have already illustrated how high levels of BCAAs 

suppress the virulence markers hrpL and cfl both in vitro and in planta.  Within our 

working model of Lrp in Figure 1.1, increasing the levels of Lrp causes more Lrp 

to act outside the presence of BCAAs. Conversely, decreasing the levels of Lrp 

should have the opposite effect, where the is less Lrp, so there is a lower functional 

concentration of BCAA necessary to bind with the available Lrp. The creates a 

situation where most of the Lrp molecules are bound with BCAA and share a 

transcriptional profile similar to a high BCAA concentration.  

Lrp shares significant homology with 8 other loci in Pst. All ORFs belong to a family 

of transcriptional regulators called feast-famine regulatory proteins (FFRPs). Lrp 

belongs to a subclass of global regulators, while asnC type proteins belong in a 

subclass that regulates specific targets. Pst has 9 FFRPs annotated within its 

genome, whereas E. coli has 3, Bacillus subtilis has 7 and Pseudomonas putida 

has 13 (Table 3.4). The expansion of FFRPs in gammaproteobacteria does not 

seem to be related to lifestyle, as both pathogens and non-pathogens within 

Pseudomonads contain several FFRPs.  

 

4.3 Materials and methods 

Plasmid construction: 

All bacterial strains and plasmid specifications can be found in Chapter 4, Table 4.5.  

pBBR5pemIKpKan was purchased from Addgene and prepared via Qiagen miniprep spin 

kit according to kit specifications. The complete lrp, liuD and liuA sense and anti-sense 
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transcripts sequences from Pto were PCR amplified with Gateway attB sites integrated at 

each end, oriented in the sense direction. PCR products were gel purified and first 

integrated into pDONR221 (Invitrogen) via BP recombination, followed by LR 

recombination into pBBR5pemIKpKan to yield overexpressing or antisense expressing 

plasmids. pENTR-uidA(Gateway cloning kit) was recombined with pBBR5pemIKpKan to 

yield puidAOX. E coli DH5a were transformed with the final plasmid constructs selected 

on gentamicin 25μg/mL supplemented media. Plasmids were transformed into Pto via 

triparental mating with helper strain E. coli : pRK2013.  

Triparental Mating: 

To transfer the plasmid of interesting into Pst, triparental mating was needed. The donor 

strain, the recipient strain (Pst), and the helper strain (E. coli containing pERK2013) were 

grown overnight in rich culture with appropriate selection marker, separately. Cultures 

were pelleted and washed five times to eliminate any contaminating antibiotics. Pellets 

were resuspended in water at an OD >1.0. The tree strains were combined in a ratio of 10 

(Recipient) : 1 (Helper) : 1 (Donor) by OD and plated in compact puddles on non-selective 

LB agar plates. Puddles were allowed to sit overnight at 28C, face up. Puddles were 

scraped off the surface the following day and resuspended in water. Cells were then plated 

on selective media containing markers for both Pst and the plasmid of interest. Colonies 

typically formed within 48 hours of selection. Colonies were screened for resistances and 

the genes of interest via qRT-PCR. 

RNA and cDNA preparation: 

RNA was extracted with Trizol reagent (Ambien). For samples containing with plant alone 

or plant and bacterial tissue, flash-frozen samples were ground in 1 mL of Trizol with metal 

beads for at 25Hz until liquified. Samples with bacteria were then homogenized using 

0.1mm silica beads at 8000rpm. Samples with only bacteria began at this step. Liquid 

phase separation with chloroform isolated RNA from protein, DNA and phenolics at 11,200 
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x g for 15 minutes at 4C. Supernatant was combined with equal parts isopropyl alcohol to 

precipitate RNA, at 13,300 x g for 15 minutes. Contaminating DNA was digested using 

DNase 1 from Promega for 30 minutes to an hour, followed by cDNA synthesis using m-

MLV and normalized inputs of DNA-free RNA, also from Promega using the supplied 

protocol and reaction conditions.  

Transcript quantification: 

Transcripts of genes were quantified via quantitative RT-PCR using an ABI7500 Fast 

thermocycler and CW Biosciences qRT-PCR ready mix. Primer sequences can be found 

in the primer addendum within the supplemental information. Reactions were prepared to 

the specifications of the ready mix. Transcripts were relatively quantified using the ∆∆Ct 

normalization method. All bacteria transcripts were internally normalized to recA unless 

otherwise noted. All plant transcripts were internally normalized to act2 unless otherwise 

noted. Primer names and sequences can be found in Chapter 4, Table 4.6. All statistical 

tests for gene expression were Student’s T test against the externally normalizing 

condition, unless otherwise noted. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p 

Short term bacterial culturing for gene expression: 

For short term transcript quantification, bacteria were grown overnight as previously 

described. Cultures were washed and resuspended to a final OD of 0.2 to 0.3 in the assay 

media. 3 HPI, samples were taken for gene expression and RNA was isolated as 

previously described.  

Pre-elicitation: 

Prior to infiltration, plants were covered with plastic domes to increase localized humidity 

to near 100%, ensuring stomata are fully open. 4 leaves per plant (pairs 5 and 6) were 

elicited via blunt end syringe with either water (mock) or 1μM flg22 in water. Any remaining 

liquid on the exterior of the leaf was wiped off. Plants were elicited for 24 hours. Elicitation 
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with BCAAs was done using 10mM BCAA in water or water alone for 24 hours, after which 

leaves were harvested for gene expression. 

Long term infection quantification and gene expression: 

4 leaves per plant (pairs 5 and 6) were infiltrated with 0.0002 OD Pst (or derivative strain). 

For naïve plants, infection duration was 72 hours. For elicited plants, infection duration 

was 48 hours to prevent total leaf collapse. Leaves were harvested; normalized amounts 

of leaf tissue were taken using a 4mm cork borer. 8 leaf discs from one plant contributed 

to one CFU sample. Discs were pulverized with a metal bead for 5 minutes at 25Hz in 

400μL sterile water. Samples were serially diluted 1:10, 5μL from each dilution was plated 

on solid LB agar with appropriate selection markers. 16-20 hours post plating, CFUs were 

quantified. For gene expression, remaining leaf tissue was flash frozen. RNA was 

extracted and transcripts quantified as previously described. 

Short term infection and gene expression: 

4 leaves per plant (pairs 5 and 6) were infiltrated with 0.02 OD Pst (or derivative strain). 

For all plants, infection duration was 3 hours. Leaves were harvested; normalized amounts 

of leaf tissue were taken using a 4mm cork borer. 8 leaf discs from one plant contributed 

to one CFU sample. Discs were pulverized with a metal bead for 5 minutes at 25Hz in 

400μL sterile water. Samples were serially diluted 1:10, 5μL from each dilution was plated 

on solid LB agar with appropriate selection markers. 16-20 hours post plating, CFUs were 

quantified. Due to the limited bacteria present after 3 HPI, samples used for gene 

expression were infiltrated with 0.2 OD bacteria. Leaves were harvested and flash frozen 

and RNA was extracted as previously described. 

Media formulations: 

For growth curves in a rich media, bacteria were inoculated in King’s B liquid media with 

the appropriate selection marker. For growth curves in virulence inducing media, HMM 

was used. For growth curves in minimal media, modified M9 media was used. In addition 
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to salts from typical M9 media, sterile 100μM sucrose and 5mM MgSO4, final 

concentrations, were added to facilitate Pst growth. Without these additions, growth is not 

observable within this system. 

Doubling time calculations: 

To calculate doubling time from a growth curve, each well within a 96 well plate was 

treated as an individual technical replicate. Averaging across technical replicates and 

proceeding with calculations is not advisable, as subtle differences in the results may be 

lost. 10 to 15 measurements within the exponential growth phase were used to produce 

an interpolating line; the line was optimized within the curve to have the best R2 value and 

the highest exponent. Doubling time was calculate from taking the natural log of 2 divided 

by the exponent within the equation for the interpolated curve. 

Western blot analysis: 

To quantify the extent of Lrp overexpression and knockdown influenced by transcript 

modulation, we used traditional western blotting and fluoro-immunochemistry. Soluble 

proteins were extracted from Pst or E. coli grown overnight via sonication in PBS-SDS 

buffer. Samples were sonicated at 25% power for 3 seconds on 10 seconds off a total of 

8 times. Samples were centrifuged for 5 minutes at 13,000g. Soluble proteins were 

quantified from the supernatant using Bradford’s reagent quantification. Samples were 

added to 3x Laemmli’s buffer and heated for 5 minutes at 85C, after which they were 

centrifuged again at 13,000g for 5 minutes. 15μg total protein was loaded and separated 

into a 8-16% gradient denaturing PAGE Tris-Glycine gel, transferred to a nitrocellulose 

membrane; total protein was visualized using Ponceau’s stain. Anti-Lrp (E. coli origin) was 

added for overnight incubation at 4C post-blocking, followed by anti-Mouse secondary 

antibody conjugated to LiCor fluorophore for 1 hour.  
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4.4 Results 

Construction of Plasmids and Validation of Overexpression 

We cloned the ORFs for PSPTO_0100(lrp), PSPTO_2736(liuD), and 

PSPTO_2739(liuA) into the broad host range vector pBBR5pemIKpKan, placed 

under the control of the NPTII promoter to increase transcript abundance and 

transformed them into Pst (Figure 4.3). For functional knockdowns, we cloned the 

ORFs in antisense orientation into the same plasmid backbone. Transcript 

abundance was confirmed via q-RTPCR (Figure 4.5). lrp was significantly 

overexpressed in both the sense and the antisense orientation, while both liuA and 

liuD were each moderately overexpressed by comparison. The liuA antisense 

construct did not show significantly overexpression of the AS-transcript. AS 

construction was confirmed using RT-PCR specifically using internal primers as a 

control and the attB1 primer, which sits specifically upstream of “start” codon within 

the AS transcript (Figure 4.5C). The overexpression of lrp did not change 

expression levels of liuD or liuA, nor did the overexpression of the catabolic genes 

impact the expression of lrp, all relative to expression in the uidA overexpressor 

(uidA-OX) (Figure 4.5). This is also true for the antisense contracts: there is no 

significant suppression or induction of the tested GOIs other than the specific GOI 

in the construct.  

To test if there was a specific transcript disruption caused by AS expression, we 

designed primers to amplify only endogenous mRNAs for Lrp. Neither lrp-OX or 

lrp-AS showed any significant modulation of the endogenous lrp transcript when 
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compared to uidA-OX (Figure 4.6A). This suggests the AS modulation likely does 

not happen at the level of the mRNA transcript. 

Because we could not confirm AS knockdown via qRT-PCR, we used western 

blotting of total soluble protein lysates. To visualize Lrp in the total protein gradient, 

we used an antibody developed by Kroner and colleagues (Kroner et al., 2019) 

that was developed against a highly-conserved epitope of Lrp (personal 

correspondence, actual epitope was not described). Using WT E. coli and E. 

coli∆lrp, we were able to confirm the specificity of the antibody. However, in E. 

coli∆lrp complimented with Pst Lrp, there was no apparent cross-hybridization of 

the anti-Lrp antibody (Figure 4.6B). Further, there was no cross-hybridization in 

any of the Pst samples, suggesting this method would not allow us to draw 

conclusions about the extent of knockdown from AS expression. 

 

Impacts of Plasmids on in vitro Growth  

The overexpression of lrp and liuD showed dramatic growth inhibition in rich media. 

Both construct carriers showed longer lag phases than the uidA-OX control (Figure 

4.7AB). At the fastest growth rate, the doubling time for both liuD-OX and lrp-OX 

was significantly higher than both WT Pst and uidA-OX. The overexpression of liuA 

showed moderate growth inhibition compared to WT Pst and no significant 

difference to uidA-OX in rich media.  

We included the uidA-OX as a control for the potential metabolic draw produced 

by constitutively expressing a gene from a plasmid. Interestingly, there is no 
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significant difference between WT Pst and uidA-OX, suggesting that the metabolic 

sink is not as dramatic as we originally thought (Figure 4.7D).  

The overexpression of all antisense GOIs did not show growth inhibition in rich 

media when compared to uidA-OX (Figure 4.7). However, the same construct 

carriers show significantly different doubling times from WT Pst (Figure 4.7D).  

 

Impacts of Plasmids on Infection Dynamics 

The overexpression of sense catabolic genes and lrp resulted in lower colonization 

of the leaf than uidA-OX in naïve plants over 72 hours (Figure 4.8A). The growth 

of uidA-OX was similar to WT levels in previous experiments under the same 

conditions, suggesting the differences we see are not the result of hyper infectivity 

of uidA-OX. 

 Interestingly, infectivity of lrp-OX, liuD-OX and liuA-OX did not deviate from uidA-

OX in pre-treated plants; neither mock nor flg22 elicitation highlights the 

differences in infectivity seen in naive plants. Likely, this is a result of the different 

experimental designs, where treated plants begin to develop leaf collapse past 48 

HPI, thus rendering 72 HPI similar to the naive infection leaf harvest difficult. Flg22 

pretreatment still resulted in dramatically less colonization in all genotypes, where 

on average, there is a difference of two logs of growth between mock and flg22 

pretreatment (Figure 4.8B).  There did not seem to be any qualitative differences 

in the symptom development on the leaves between carriers in both naive and 

pretreated conditions. For the remainder of the studies, we only used the 

modulation constructs for Lrp. While it is clear that liuD and liuA warrant further 
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study, our choice to continue only with lrp is a direct result of the potential impacts 

it has as a global transcriptional regulator. Further characterization of liuD/A 

modulated expressors is necessary.  

 

Impacts of Lrp modulation on virulence targets 

Overexpression of the sense transcript of Lrp showed increased transcript 

abundance of both hrpL (A) and cfl (C) compared to uidA-OX when incubated in a 

KB medium (Figure 4.9). Interestingly, the overexpression of virulence targets is 

medium dependent, as expression of hrpL and cfl appears as expected in the 

virulence-inducing HMM (Figure 4.9BD). This suggests that the overexpression of 

virulence in lrp sense expresser strain does not constitutively add to the 

physiological expression levels of virulence markers; rather, there is a maximum 

transcriptional output that is achieved in HMM that cannot be surpassed by lrp 

modulation (Figure 4.9AB).    

Overexpression of the antisense lrp transcript shows a contrasting pattern. For 

both hrpL (A) and cfl (B) in KB medium, the transcript abundance is significantly 

reduced, both compared to the uidA-OX control and to the lrp-OX strain. The 

pattern is extended to a reduction of hrpL (C) transcripts in HMM, but not cfl (D) 

transcripts in HMM, suggesting virulence is partially modulated in virulence-

inducing media (Figure 4.9).  

The modulation of lrp lead to a decreased colonization during naïve foliar infections 

in both overexpression and antisense expression of lrp (Figure 4.10). For Lrp-OX, 

this is unsurprising, as it has a metabolic growth phenotype even in KB medium. 
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Further, lrp-OX constitutively activates virulence gene transcription (Figure 4.9), 

which has been shown in other species to decrease growth and colonization due 

to the large metabolic cost of dysregulation of virulence (Sturm et al., 2011). 

Conversely, the decreased colonization of lrp-AS is likely not due to metabolic 

restriction of growth, as there was no growth phenotype present in liquid culture 

(Figure 4.7D). Again, we propose a contributing factor to this decreased 

colonization is dysregulation of virulence in the opposite direction of lrp-OX. Due 

to the apparent constitutive downregulation we see in both inducing and 

suppressing media, it appears lrp-AS cannot induce virulence, which will have 

drastic impacts on its ability to proliferate in a host during infection (Deng et al., 

1998).  

 

Impacts of Lrp modulation on other potential targets 

Modulation of lrp transcripts also causes differential expression of the high-affinity 

BCAA transporter braD. In KB media (high in BCAA), the overexpression of the 

both the sense and antisense lrp lead to an increase in the expression of braD 

(Figure 4.11). While the regulation of braD by lrp has not been previously 

described, if the regulatory relationship exists, it is likely that lrp regulates the 

expression of braD indirectly due to the shared overexpression in both strains.  

Due to the dissimilarity of lrp homologous sequences with other FFRPs at the 

nucleotide level, it is unlikely that expression of an antisense Lrp would have any 

impact on transcriptional levels of these FFRPs.  
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4.5 Discussion 

Branched-chain amino acids serve a central role in integrating extracellular and 

intracellular cues to maximize bacterial growth and survival (Kaiser & Heinrichs, 

2018; Tani et al., 2002). BCAAs exert their regulatory role through the modulation 

of transcriptional regulators that control the expression of metabolic and virulence 

genes in pathogenic bacteria (Kaiser & Heinrichs, 2018). Recent studies have 

provided evidence that BCAAs and the sensor proteins that integrate gene 

expression also play an important role in the pathogenesis of plant bacterial 

pathogens. In Xanthomonas citri pv. citri, leucine degradation takes place via the 

acyl-CoA carboxylase complex (ACC) encoded by the acc locus. Open reading 

frames in the acc locus show an organization similar to that of the liu operon in P. 

aeruginosa. In addition, AccC and AccD show 53% and 70% identity with liuD 

(PSPTO_2736) and liuB (PSPTO_2738), respectively, strongly suggesting that 

both the X. citri acc operon and the Pst liu operon are functionally equivalent and 

both contribute to leucine catabolism. Mutant strains in accC and accD showed 

attenuated growth on citrus plants, suggesting that leucine catabolism in X. citri is 

important for virulence expression in planta (Tomassetti et al., 2018).  

The BCAA responsive transcriptional regulator Lrp belongs to a large and 

conserved family of proteins that bind DNA and regulate gene expression in 

response to changing levels of intracellular BCAAs (Thaw et al., 2006). The 

modulation of virulence gene expression exerted by BCAAs on Lrp is both ways, 

positive on certain genes and negative on others (Calvo & Matthews, 1994). In 

Erwinia amylovora, Lrp is necessary to express virulence genes that control 
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motility and synthesis of exopolysaccharides when BCAA levels are low 

(Schachterle & Sundin, 2019). The evidence contributed by Tomassetti et al. 

(Tomassetti et al., 2018), Schachterle and Sundin (Schachterle & Sundin, 2019), 

and the data presented in this study, strongly suggest that leucine degradation, 

and more broadly, BCAAs degradation, plays a positive role in virulence 

modulation. The molecular mechanisms by which BCAAs degradation translates 

into Lrp-mediated expression of virulence in these plant pathogens are still unclear. 

However, our data suggest that a complex balance between Lrp protein levels and 

intracellular levels of BCAAs drives Lrp transcriptional activity towards virulence 

genes expression when Lrp is not associated with BCAAs. For instance, the 

overexpression of Lrp induces virulence gene expression in a rich medium where 

virulence genes are usually suppressed (Figure 4.8AC). On the other hand, the 

lrp down-regulation strain (lrpAS) shows hrpL expression levels below control 

levels in a minimal medium where Pst expresses high levels of hrpL (Figure 

4.8BD). These data suggest that Lrp plays either a direct or indirect role in 

modulating Pst virulence. Since high BCAAs levels suppress Pst virulence gene 

expression (Figure 3.5) and induce liuA and liuD, the increased flux in leucine 

degradation detected in Pst that have been inoculated in MAMP-treated plants 

(Figure 2.10) suggests that lowering BCAAs levels could contribute to re-direct 

Lrp activity towards the expression of virulence genes to counter the overall 

virulence suppression exerted by MAMP-elicited plants.   
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4.6: Figures 
 
Figure 4.1  
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Figure 4.1. Pst tentative leucine catabolic pathway. Genes of the liu operon are 

shown in bold. In red is shown the metabolic step tentatively contributed by the Pst 

ODHC enzymes. (*) Pst genes encoding enzymes with significant identity to the 

BCKDC enzymes encoded by P. putida bkd operon: 2-oxoglutarate 

dehydrogenase-E1 component encoded by PSPTO_2199; 2-oxoglutarate 

dehydrogenase-E2 component encoded by PSPTO_2200 or PSPTO_5006; 2-

oxoglutarate dehydrogenase-E3 component encoded by PSPTO_2201. Modified 

from MetaCyc (https://metacyc.org/). 
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Figure 4.2 
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Figure 4.2. BCAA anabolic pathway in Pst. The anabolic pathway is present and 

fully intact in Pst, suggesting synthesis of BCAAs responds to regulatory 

components and Pst is not auxotrophic to BCAAs. Modified from MetaCyc 

(https://metacyc.org/). 
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Figure 4.3 
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Figure 4.3. Schematic of the cloning strategy used for modulating metabolic 

and regulatory gene expression. A. Two-step gateway cloning was used to first 

amplify the gene of interest (GOI), followed by the addition of Gateway attB sites. 

The PCR amplicon was conjugated via BP reaction with a pDONR221 vector, and 

transformed into DH5a cells as the pEntry vector. pEntry was harvested and 

included in a LR reaction with the destination vector pBBR5pemIKpKan resulting 

in pGOI:OX. The final plasmid was again transformed into DH5a cells. B. The 

resultant DH5a cells were used with E. coli carrying the pERK2013 helper plasmid, 

allowing the pGOI:OX to be transformed into Pst, where the GOI was 

transcriptionally under the control of the strong NPTII promoter. *For functional 

knockdowns, the AS GOI was cloned using this same scheme. 
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Figure 4.5 

 

  

C
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Figure 4.5. Confirmation of overexpressing plasmids in Pst. lrp, liuD, and liuA 

expression in Pst strains harboring either lrpOX, liuDOX, and liuAOX internally 

normalized to recA transcript abundance when compared to uidAOX. B. Antisense 

transcripts of lrp, liuD, and liuA expression in Pst strains harboring either lrpAS, 

liuDAS, and liuAAS internally normalized to recA transcript abundance when 

compared to uidAOX. Student’s T test, * p < 0.05, *** p < 0.001. C. Confirmation 

of antisense construction of lrp-AS. 1: KB+ ladder, 2: uidA-OX (attB1-LrpF), 3: 

uidA-OX (LrpR-LrpF), 4: lrp-OX (attB1-LrpF), 5: lrp-OX (LrpR-LrpF), 6: lrp-AS 

(attB1-LrpF), 7: lrp-AS (LrpR-LrpF) 
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Figure 4.6 
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Figure 4.6. Determination of modulation of Lrp by lrp-AS. A. Transcript 

abundance measured using primers that only anneal to the endogenous mRNA 

internally normalized to recA transcript abundance when compared to uidAOX. N 

= 4 independent cultures.  B. Western blot analysis of total protein lysates. 15ug 

(10ug for lane 3) total protein was loaded in each lane of a gradient 8-16% SDS-

PAGE. Anti-Lrp, designed to bind E. coli Lrp, does not cross hybridize with Pst 

Lrp. 1. BioRad Precision Plus Ladder, 2. E. coli uidAOX, 3. E. coli ∆lrp uidAOX, 

4. E. coli ∆lrp (Pst)lrpOX, 5. Pst uidAOX, 6. Pst lrpOX, 7. Pst lrpAS 
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Figure 4.7 
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Figure 4.7. Overexpression of sense and antisense GOIs impact normal 

growth dynamics in rich media. A. Average growth curves for Pst 

overexpressing uidA (gray), lrp (dark orange), and AS lrp (lighter orange). B. 

Average growth curves for Pst overexpressing uidA (gray), liuD (dark yellow), and 

AS liuD (lighter yellow). C. Average growth curves for Pst overexpressing uidA 

(gray), liuA (dark blue), and AS liuA (lighter blue). For A-C center lines represent 

the average of n = 8 individual replicates, with SE represented as the surrounding 

shaded region of each line. D. The relative doubling times for each constructed 

carrier normalized to Pst growth in rich media N = 14-21 individual cultures. Error 

bars represent SE. One-way ANOVA. 
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Figure 4.8 
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Figure 4.8. BCAA catabolic and regulatory gene overexpression leads to 

decreased leaf colonization in naïve plants, but not pre-elicited plants. A. 

CFUs from 72 HPI of naive A. thaliana leaves after infection with plasmid carriers 

for OX of GOIs, IOD 0.0002. N = 25-30 plants per treatment. B. CFUs from 48 HPI, 

72 HPE of pre-elicited A. thaliana leaves after infection with plasmid carriers for 

OX of GOIs, IOD 0.0002. N = 23 plants per treatment. C. The calculated 

differences of CFUs between mock and flg-22 elicited and infected leaves in B. 

One-way ANOVA, multiple T-tests. * p < 0.05, *** p < 0.001, **** p < 0.0001. 
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Figure 4.9. 
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Figure 4.9. Constitutive Lrp overexpression or down-regulation leads to 

virulence dysregulation. hrpL expression in lrpOX and lrpAS in KB medium (A) 

or HMM (B) at the mid-exponential growth phase normalized to hrpL expression in 

uidOX grown in identical conditions. cfl expression in lrpOX and lrpAS in KB 

medium (C) or HMM (D) at the mid-exponential growth phase normalized to cfl 

expression in uidOX grown in identical conditions. Mean � SEM (N = 7-13 

independent cultures). A, B, C, D One-way ANOVA with multiple comparisons, * = 

< 0.05, ** p < 0.01, **** p < 0.0001. 
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 Figure 4.10 
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Figure 4.10. Modulation of Lrp transcript levels leads to decrease 

colonization of the leaf. A. CFUs from 72 HPI of naive A. thaliana leaves after 

infection with uidAOX, lrpOX, or lrpAS. IOD 0.0002. N=22-33 plants. One way 

ANOVA.  
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Figure 4.11 
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Figure 4.11. Constitutive Lrp down-regulation leads to high affinity 

transporter modulation. The high affinity BCAA transporter braD expression 

normalized internally to recA and externally to expression in uidA-OX. On way 

ANOVA with multiple comparisons. 

  



 149 

Figure 4.12 
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Figure 4.12. Sequence alignments of all asnC-family homologs in Pst. A. 

Nucleotide sequence alignment. B. Amino acid sequence alignment, where color 

indicates amino acids with similar characteristics. 
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Table 4.1 
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Table 4.1. Putative Pst homologs of the bkd operon in P. aeruginosa. (*) P. 

aeruginosa protein sequences were used as query against the P. syringae pv. 

tomato DC3000 strain using the DELTA-BLASTp algorithm at NCBI 

(https://blast.ncbi.nlm.nih.gov/). 
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Table 4.2 
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 Table 4.2. Putative Pst homologs of the bkd operon in P. putida. (*) P. putida 

protein sequences were used as query against the P. syringae pv. tomato DC3000 

strain using the DELTA-BLASTp algorithm at NCBI 

(https://blast.ncbi.nlm.nih.gov/). 
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Table 4.3 

  

PstDC3000 Locus Preotein ID Protein Name Query Cover E value % ident
PSPTO_0100 AAO53654.1 leucine-responsive regulatory protein 96% 3.00E-69 60.76
PSPTO_3674 AAO57143.1 AsnC family transcriptional regulator 95% 2.00E-47 45
PSPTO_0261 AAO53807.1 AsnC family transcriptional regulator 85% 4.00E-41 42.86
PSPTO_4793 AAO58223.1 AsnC family transcriptional regulator 90% 1.00E-40 44.97
PSPTO_0273 AAO53819.1 AsnC family transcriptional regulator 90% 3.00E-35 36.49
PSPTO_0321 AAO53866.1 AsnC family transcriptional regulator 90% 4.00E-34 34.23
PSPTO_3156 AAO56642.1 AsnC family transcriptional regulator 90% 5.00E-33 35.81
PSPTO_4523 AAO57971.1 AsnC family transcriptional regulator 83% 3.00E-24 27.74
PSPTO_0519 AAO54062.1 AsnC family transcriptional regulator 85% 2.00E-15 27.46
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Table 4.3. Homologs of E. coli lrp in Pst. E. coli protein sequence for lrp 

(eco:b0889) was used as query against the P. syringae pv. tomato DC3000 strain 

using the DELTA-BLASTp algorithm at NCBI (https://blast.ncbi.nlm.nih.gov/). 
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Table 4.4  
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Table 4.4. Number of Lrp-like and AsnC like proteins in various bacterial 

species. Numbers were counted either from direct annotations or homology 

sequence alignments in KEGG. 
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Table 4.5.  

 

  

Identity %E-valueQuery Cover
Pst DC3000 

locus tag
-NS-PSPTO_3156
-NS-PSPTO_0273
-NS-PSPTO_3674

79.55%4e-078%PSPTO_0261
-NS-PSPTO_4793
-NS-PSPTO_0321
-NS-PSPTO_4523

100%0.0262%PSPTO_0519
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Table 4.5 Sequence similarities of lrp homologs within Pst. PSPTO_0100 

nucleotide sequence for was used as query against the P. syringae pv. tomato 

DC3000 strain using the BLASTn algorithm at NCBI 

(https://blast.ncbi.nlm.nih.gov/). 
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Table 4.6. Bacterial Strains and plasmids 
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Table 4.7. Primers: 
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Chapter 5: Conclusions and Future Directions 

While plant innate immunity relies on a complex combination of mechanisms, it 

has become increasingly clear that one aspect of defense against pathogens is 

modulation of nutrient availability. Previous studies have explored the impacts of 

hexoses and sucrose, showing that these are restricted from the site of infection, 

thus restricting the growth capabilities of the pathogen (Yamada et al., 2016).  

Other studies have explored the impact of organic acids and fructose as virulence 

inducers; when they are not available to the pathogen, infections are less 

severe(Anderson et al., 2014). Finally, previous work in our lab has highlighted the 

importance of plant-exuded glutamine and serine in suppressing bacterial 

virulence in the early stages of infection (Zhang et al., 2022, 2023).  

In this thesis, we present another important facet of the interaction between A. 

thaliana and Pst. We have shown that BCAAs suppress the synthesis of virulence 

related genes, and that this could be associated with transcriptional control through 

global nutrient signaling factors such as Lrp. We have also demonstrated the 

usefulness of genome scale metabolic reconstructions at predicting novel 

pathways that contribute to a pathogen’s fitness during infection.  

 

Understanding disease state and pathogenicity 

While we have characterized pathogenesis of Pst in A. thaliana, several other 

strains of Pseudomonas syringae impact important crop species. Using iPst19 as 

a framework, several more models can be adapted to specific strains of P. syringae 

to increase the speed of curation and simulation. Importantly, these could lead to 
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the understanding of pathogenesis beyond specific host-pathogen pairs. As we 

have previously discussed in this thesis, PTI is the predominant mechanism by 

which plants defend themselves. By using iPst19, we have uncovered another 

facet of PTI defenses that includes modulation of specific AA and sugars within the 

pathosphere. Creating strains specific metabolic reconstructions and constraining 

models with appropriate in planta omics data could reveal even more facets of PTI 

or plant defense generally that have remained obscured thus far. Critically, this 

has the potential to connect crop development and intraspecies pathogenesis; 

using these data could allow development of broad resistance to previously 

devastating pathogens. 

Another development that would greatly benefit predictive power of iPst19 is 

assembling a suite of datasets of regulatory protein modifications. In this thesis, 

we have presented an Lrp overexpressor and functional Lrp antisense expressor. 

Assessing global gene expression for both of these stains could begin to provide 

insights into the regulatory targets of Lrp in Pst, which remain unexplored. Further, 

by understating these regulatory targets, we could refine iPst19 to make more 

conditional predictions over the course of a growth curve.  

 

Interactions between coronatine biosynthesis and BCAAs 

As previously stated, one aspect of the metabolic reconstruction we ensured was 

present was coronatine biosynthesis. We have described how BCAAs decrease 

the abundance of cfl transcripts in several situations (Figure 3.7, Figure 3.13, 

Figure 4.8BD). Because isoleucine is reported to be a precursor to coronatine, the 
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relationship between coronatine biosynthesis and regulation by BCAAs should be 

further explored.  

There are several coronatine biosynthesis knockouts, each of which cannot 

synthesize a specific moiety within the pathway. Interestingly, we have generated 

some preliminary data to suggesting that COR- strains are insensitive to growth 

rate inhibition seen in wild type Pst in either valine or isoleucine supplemented 

minimal medium. This could suggest an alternative regulatory function of the COR 

biosynthesis pathway, such as acting as a metabolic sink to reduce free BCAAs 

intracellularly, thus preventing them from interacting with Lrp or another 

transcriptional regulator.  

 

Confirmation of a potential bkd operon in Pst 

It is clear that Pst can convert leucine into other metabolites used to produce 

biomass. We have proposed a set of OADHC similar to the bkd operon in P. putida 

could be responsible for leucine utilization. To address this hypothesis, functional 

analysis of these genes (PSPTO_2199, PSPTO_2200, and PSPTO_2201) should 

be conducted. If these gene products carry bkd-like functions, a knockout mutant 

should not be able to produce biomass on leucine as the single carbon source. 

These strains should be made with a note of caution, however, because these 

genes are considered to be the succinate dehydrogenase complex of Pst; they 

may be essential for growth to begin with, rendering a knockout impossible but a 

knockdown possible. 
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Further Curation of iPst19 

Any metabolic model cannot be assumed to be perfect from the first iteration of 

curation and drafting. Models typically undergo continuous curation, reaction 

additions, pruning, and GPR updates as new evidence and literature arises. For 

the further curation of iPst19, one of the first steps should be increasing the 

stringency of the protein alignments in the homologous semi-autonomous curation 

step of model building. First, both of the P. aeruginosa models have undergone 

further curation since the initial homologous comparison, and thus may have new 

GPR-reaction associations that could be including in the next iteration of iPst. 

Second, the e-value threshold used in this study, while purposely relaxed for the 

initial reconstruction, could be tightened to ensure any spurious reaction included 

in the first iteration is pruned for the following curation steps. If the confirmation of 

the potential bkd operon is completed, these GPRs could also be updated within 

iPst and could be consequential in further metabolic modeling on single carbon 

sources.  

 

Metabolic modeling of beneficial Pseudomonas bacteria 

An aspect of plant microbe interactions not discussed at length in this thesis are 

the relationships with beneficial, growth promoting bacteria. Typically, these 

mutualisms occur in the roots of plants, where bacteria fix nutrients such as 

nitrogen in exchange for sugars and other plant made metabolites. A close relative 

of Pst, Pseudomonas simiae (Pss), engages in plant growth promoting bacteria 

(PGPB) like behavior with A. thaliana.  
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Previous findings in our lab suggest exogenous application of some plant made 

metabolites, such as glutamine, causes this relationship to deteriorate. Plants that 

are exposed to glutamine sated bacteria appear symptomatic and stunted, while 

plants grown in the presence of non-supplemented bacteria do not appear sickly. 

Interestingly, symptomatic observations only occur in the presence of both 

glutamine and Pss. This suggests Pss is converting glutamine into another 

metabolite that is causing distress in the plant.  

To better understand the complexities of this exchange, which closely mimics a 

relationship of pathogen to host, a similar type of metabolic modeling as 

demonstrated in this thesis can be employed. Due to the high species relatedness, 

many of the GPRs and pathway architectures will likely be homologous, easing the 

initial burden of reconstruction and curation. An added advantage of using 

metabolic modeling in a root-PGPB system is the ease of sample preparation. 

Compared to bacteria infiltrated in a leaf, there is relatively less work involved in 

stripping roots of biofilm-ed bacteria for gene expression profiling or any other 

omics assay. 

While it is mostly likely that we will be working on the interactions between PGPB 

and A. thaliana specifically, this system translates nicely into agriculturally relevant 

crops, as Pss has been shown to act as PGPB for tomatoes and other species. 

Importantly, this work could reveal why certain bacteria act as PGPB and others 

as pathogens, despite the close relatedness and similar mechanisms used to 

interact with the host species. Understanding these facets could lead to the 

development of better PGPB strains and novel crop enhancements.  
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Broadly, the integration of computational modeling and plant development has the 

potential to make impactful discoveries and developments leading to a more 

resistant food system. Already, this type of metabolic modeling has proposed novel 

antibacterial targets for multi-drug resistant bacterial strains and drug targets for 

genetic diseases. In this thesis, we have presented the first computational 

metabolic model for a foliar pathogen that has highlighted the importance of 

BCAAs during the course of disease; by leveraging these techniques within the 

agricultural sphere, these small discoveries can lead to major innovation in crop 

yield and resistance.  
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