
Designing and Implementing a Scalable Data Loss Prevention

System: A Full-Stack Approach

CS4991 Capstone Report, 2024

Natalie Yee

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

nvn5yn@viginia.edu

ABSTRACT

Capital One needed to address the challenge

of safeguarding sensitive data across a large

enterprise, specifically focusing on Data Loss

Prevention (DLP). To protect sensitive

company data, my team and I developed a

scalable, serverless frontend and backend

using Amazon Web Services (AWS) Lambda,

S3, and DynamoDB. The solution involved

the design and implementation of RESTful

APIs for violation management, improving

data retrieval and security through backend

integration with DynamoDB and Single Sign-

On (SSO) for secure access. The deployed

system successfully improved user access and

security for over 50,000 employees. Future

work includes expanding the platform’s

capabilities to allow users to remediate

violations and submit suppressions for

sensitive data.

1. INTRODUCTION

Data Loss Prevention (DLP) is a critical

concern for organizations like financial

institutions that handle large amounts of

sensitive information, such as financial

institutions. With the growing threats of data

breaches, corporations need to implement

measures to safeguard sensitive data from

unauthorized access, leakage, or loss. DLP

solutions help companies ensure compliance

with regulations as well as protect sensitive

business and customer information.

Capital One, a major financial insitution,

faced the challenge of securing large amounts

of data distributed across its global enterprise.

The company needed a scalable solution that

was capable of monitoring, identifying, and

preventing potential data loss. Existing

solutions for protecting sensitive data needed

to adapt to the growing digital environment.

To address these challenges, my team and I

developed a scalable, serverless solution

using Amazon Web Services (AWS). By

leveraging AWS Lambda, S3, and

DynamoDB, we created an end-to-end system

to improve Data Loss Prevention (DLP). This

system integrates with Single Sign-On (SSO)

for secure access and enables efficient

management of violation data.

2. RELATED WORKS

Data leakage is a critical threat for large

enterprises. According to IBM’s 2016 Cost of

Data Breach Study, the average cost of a data

breach was $4 million, with incidents such as

the 2013 Target Corporation breach and the

2014 Yahoo breach resulting in millions of

dollars in losses (Cheng et al., 2017). The

need for Data Loss Prevention systems is

evident with the rise in internal and external

data leak incidents.

Traditional DLP systems use techniques like

traffic inspection and the enforcement of data

use policies to protect sensitive information

from being leaked. However, as the amount

of data being collected continues to grow,

these systems face challenges in effectively

monitoring, identifying, and preventing data

loss across an enterprise. For instance,

communication channels such as cloud file

sharing and instant messaging have increased

the area for data leaks (Cheng et al., 2017).

Serverless computing allows organizations to

reduce operational overhead by deploying

functions without needing to manage servers.

As detailed by Rajan (2018), serverless

architectures like Function as a Service

(FaaS) enable the efficient scaling of

resources. In particular, AWS Lambda

supports cost-effective scaling which is

crucial for handling large amounts of data.

Our system at Capital One utilizes AWS

Lambda to minimize infrastructure

management and optimize resource use,

addressing some of the challenges DLP

systems face as identified in previous

research.

3. PROJECT DESIGN [or PROPOSAL

DESIGN or appropriate section title]

The design and implementation process of the

Data Loss Prevention system known as the

Everglade Portal, was guided by the need to

create a cost-effective, scalable, and

maintainable system. Below are the key

decisions my team made, and the solutions

implemented to meet these goals.

3.1 Front End Design

Initially, we considered AWS Fargate for the

front-end due to its ability to handle dynamic

content. However, after further research, we

switched to AWS S3 because it offers a

simpler and more cost-effective solution for

front-end hosting. The main difference

between AWS Fargate and AWS S3 is that

AWS Fargate is constantly running while

AWS S3 only runs when it needs to. Since

AWS Fargate is always running it costs a lot

more to maintain than AWS S3. My team

found that the Everglade Portal did not need

to run constantly, it only needed to be running

while a user was on the site.

3.2 Back-End Transition: From Faragte to

Lambda

The back-end, initially hosted on AWS

Fargate, was reconsidered for its cost and

complexity. My team decided to transition the

back-end services to AWS Lambda due to

reduced costs and simplified management.

Fargate is ideal for applications that need

continuous availability. Since the API traffic

was sporadic, with users primarily accessing

the portal after receiving notifications,

hosting the back-end on Fargate resulted in

unnecessary resource usage and higher costs.

My team wanted to use Lambda because it is

serverless and event-driven, making it ideal

for our API, which does not experience

consistent traffic. This can lower operational

costs by eliminating excess resource usage,

while maintaining scalability and flexibility.

Transitioning the back-end from Fargate to

Lambda involved reconfiguring API

endpoints and integrating AWS API Gateway

to route incoming requests to the appropriate

Lambda functions.

Fig. 1 Architecture Design

3.3 API Design and Endpoints

Our API manages data related to violations,

remediations, and suppressions. To ensure

flexibility and maintainability, we created

separate Lambda functions for each category

of data, allowing easier updates and future

scalability.

Endpoint Overview

 Violations: GET/, GET/:id,

POST/:id/action/remediate

 Remediations: GET/:id,

GET/user/:user, POST/

 Suppressions: GET/, GET/user/:eid,

POST/:id

This structure ensures that each function

remains easy to modify and since they are

separated, multiple teams can be working on

different Lambdas at the same time.

3.4 Technology Stack

Our team chose to write the codebase in

Typescript for consistency and collaboration.

The existing application that the Everglade

Portal was based on was written in

Typescript, making it easier to collaborate

with team members who had worked on the

original system.

4. ANTICIPATED RESULTS

My team’s design choices have several

anticipated benefits. One of the main benefits

is cost efficiency. Transitioning the front-end

hosting to AWS S3 and the back-end services

to AWS Lambda significantly reduces

operational costs. S3 is highly cost-effective

for serving static content, and the costs

associated with Lambdas only scale with

usage.

The architecture is simplified as a result of

the design choices made by my team. The

decision to use serverless technologies, such

as AWS S3 and Lambda simplifies the

system’s architecture. These serverless

technologies simplify the system’s

architecture by eliminating the need to

manage underlying infrastructure, such as

servers and load balancers. Additionally,

using serverless technologies helped make the

architecture more flexible by allowing for

easier updates, faster deployment cycles, and

the ability to scale components

independently.

5. CONCLUSION

The serverless, scalable Data Loss Prevention

(DLP) system, my team and I developed at

Capital One, effectively addressed the need

for robust data protection across a large

enterprise. By leveraging AWS components

such as Lambda, S3, and DynamoDB, we

ensured that violation management was

efficient, data retrieval was streamlined, and

security was enhanced. Our integration of

Single Sign-On (SSO) provided secure user

access and ensured compliance with security

standards. This system enabled employees to

easily access and view their data violations on

mobile devices, significantly improving user

experience and operational efficiency. The

knowledge gained from this project included

insights into optimizing serverless

architectures, cost management, and

balancing security with usability. This

project’s meaningful impact included

simplifying data protection efforts and

reducing potential data exposure.

6. FUTURE WORK

There are still opportunities for future work to

expand the platform’s functionality and

address additional business needs. One area

for future work involves extending the

system’s capabilities to include remediation

workflows. Allowing users to take corrective

actions within the platform, such as

remediating violations and submitting data

suppression requests, would improve

efficiency of violation management.

Additionally, future efforts could focus on

integrating the DLP platform with other

enterprise data management tools to provide a

more comprehensive security ecosystem. This

would allow for a seamless flow of

information across different business units

and promote better collaboration while

maintaining data protection.

7. ACKNOWLEDGMENTS

I would like to thank my team members:

Rebecca Peng, Sophia Hubscher, and Lei

Hanna. As well as my manager Logan Miles.

REFERENCES

Cheng, L., Liu, F., & Yao, D. (Daphne).

(2017). Enterprise data breach: Causes,

challenges, prevention, and future directions.

WIREs Data Mining and Knowledge

Discovery, 7(5), e1211.

https://doi.org/10.1002/widm.1211

Rajan, R. A. P. (2018). Serverless

architecture—A revolution in cloud

computing. 2018 Tenth International

Conference on Advanced Computing

(ICoAC), 88–93.

https://doi.org/10.1109/ICoAC44903.2018.89

39081

