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Abstract 
Since the discovery of spin glasses in dilute magnetic systems, their study has been largely focused 

on understanding randomness and defects as the driving mechanism. The same paradigm has also 

been applied to explain glassy states found in dense frustrated systems. Recently, however, it has 

been theoretically suggested that different mechanisms, such as quantum fluctuations and 

topological features, may induce glassy states in defect-free spin systems, far from the 

conventional dilute limit. Here we report experimental evidence for the existence of a glassy state, 

that we call a spin jam, in the vicinity of the clean limit of a frustrated magnet, which shows 

unconventional spin glass properties, such as the quadratic low-temperature dependence of heat-

capacity, a broad elastic neutron scattering peak centred around a non-zero wavevector (ܳ), and 

insensitivity to low-concentration of defects. We have mainly studied two isostructural frustrated 

magnets, SrCr9pGa12-9pO19 (SCGO(p)) and BaCr9pGa12-9pO19 (BCGO(p)), in which the magnetic 

Cr3+ (s=3/2) ions form a quasi-two-dimensional (Q2D) triangular system of bi-pyramids, in 

comparison to several other magnetic glasses ranging from dilute magnetic alloys to three-

dimensional frustrated magnets.  

We performed both bulk susceptibility and neutron scattering experiments on both SCGO(p) and 

BCGO(p) systems as a function of dilution p in the range of 0.4 ≲ p ≲0.97. Our bulk susceptibility 

data exhibit glassy behavior at much lower temperatures ( ௙ܶ) than the absolute values of the Curie-

Weiss temperature, |ߠ஼ௐ | ≈ -504(2) K for SCGO(p = 0.968(6)) and -695(1) K for BCGO(p = 

0.902(8)). The frustration index ݂ = /|஼ௐߠ| ௙ܶ is as high as 130 for SCGO(p = 0.968(6)) and 190 

for BCGO(p = 0.902(8)) indicating strong frustration. Low-temperature susceptibility 

measurements of SCGO(p)/BCGO(p) reveals glass-like signatures such as zero-field cooled (ZFC) 

– field cooled (FC) hysteresis and frequency dependent AC susceptibility but the low-temperature 

magnetic phases found in the dense limit of magnetic ions show distinct properties from 

conventional spin glasses.  

Our inelastic neutron scattering data on SCGO(p = 0.968(6)) and BCGO(p = 0.902(8)) shows 

dispersionless magnetic excitations centered at ℏω = 18.6(1) meV and 16.5(1) meV respectively, 

due to singlet to triplet excitations of spin s = 3/2 dimers. The spin dimers are formed by Cr3+ ions 

in two 4fvi layers that lie between 12k-2a-12k (kagome–triangle–kagome) trilayers. Moreover, a 
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continuum spectrum centered around ܳ ≈ 1.5 Åିଵ, observed in time-of-flight (TOF) neutron 

scattering experiments for SCGO(p)/BCGO(p) magnets, confirm that the 

kagome−triangular−kagome trilayer is responsible for low-energy spin dynamics. The imaginary 

part of dynamical susceptibility (߯ᇱᇱ(߱)) for SCGO(p = 0.968(6)) or BCGO(p = 0.902(8)) shows 

linear dependence at low-energies which is inconsistent with energy independent behavior of 

dilute spin glasses. Yet, the unconventional dynamics of these magnets can be explained by low 

temperature Halprin and Saslow (HS) like modes. To investigate the low-energy excitations 

further, we performed neutron spin echo experiments on the BCGO(p = 0.902(8)) sample and 

observed slowly varying dynamics in the nanosecond time scale below the glass transition 

temperature which is inconsistent with  conventional stretched exponential nature of spin glasses.  

To confirm the spin jam nature in SCGO(p) magnets, we performed TOF neutron scattering 

experiments as a function of non-magnetic doping. As the nonmagnetic Ga3+ impurity 

concentration is changed, there are two distinct phases of glassiness: the spin jam which is 

insensitive to defects, for high magnetic concentration region (p > 0.8) and a cluster spin glass for 

lower magnetic concentration, (p < 0.8). This observation indicates that a spin jam is a unique 

vantage point from which glassy states in frustrated magnets, where the spins are densely packed, 

can be understood. 

Furthermore, we performed a comparative study of three different magnetic glasses using various 

experimental techniques ranging from bulk susceptibility to inelastic neutron scattering. The 

systems we studied are a Q2D magnet BCGO(p = 0.902(8)), a three-dimensional frustrated magnet 

Y2Mo2O7 and a conventional spin glass CuMn2%. The magnetic elastic order parameter was 

observed as a function of energy resolution for each sample. The energy resolution dependent 

ordering temperature could be modeled by Vogel-Fulcher law, indicating glass-like freezing in all 

the three compounds, yet with different fitting parameters implying distinct glass phases. The 

magnetic field effects on bulk susceptibility have also been studied for all the three samples and a 

systematic method to distinguish different magnetic glasses is presented.  

The notion of complex energy landscapes underpins the intriguing dynamical behaviors in many 

systems ranging from polymers to brain activity, to social networks and glass transitions. The spin 

glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame 

for studying complex dynamics resulting from a hierarchical energy landscape with rugged 
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funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely 

populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin 

glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a 

wide and nearly flat but rough bottom. Our memory effect results on SCGO(p = 0.97) and BCGO(p 

= 0.96) in comparison to CuMn2%, illustrate that the memory effects can be used to probe different 

slow dynamics of glassy materials, hence opening a window to explore their distinct energy 

landscapes. 

Furthermore, we studied memory effects in various magnetic glasses including high-temperature 

superconductor-related materials, spin-orbit Mott insulators, frustrated magnets, and dilute 

magnetic alloys to characterize ubiquitous glassiness found in magnetic materials. Here, we show 

that scaling of magnetic memories with time can be used to classify magnetic glassy materials into 

two distinct classes.  Our bulk magnetization measurements reveal that most densely populated 

magnets exhibit similar memory behavior characterized by a relaxation exponent of 1 - n ≈ 0.6(1). 

This exponent is different from 1 - n ≈ 1/3 of dilute magnetic alloys that were ascribed to their 

hierarchical and fractal energy landscape, and is also different from 1 - n = 1 of the conventional 

Debye relaxation expected for a spin solid, a state with long-range order. Furthermore, our 

systematic study of dilute magnetic alloys with varying magnetic concentration exhibits crossovers 

among the two glassy states and spin solid. 

Finally, we have developed a numerical simulation technique to comprehend neutron scattering 

experiments on magnetic phases with short-range correlations using Landau-Lifshitz dynamics. 

Here, we study the spin-S Kitaev model in the classical (S → ∞) limit and compare against the 

dynamical structure factors of the spin-1/2. More interestingly, the low-temperature and low-

energy spectrum of the classical model exhibits a finite energy peak, which is the precursor of the 

one produced by the Majorana modes of the S = 1/2 model. The classical peak is spectrally 

narrowed compared to the quantum result and can be explained by magnon excitations within 

fluctuating one-dimensional manifolds (loops). Hence the difference from the classical limit to the 

quantum limit can be understood by the fractionalization of magnons propagating in one-

dimensional manifolds. Moreover, we show that the momentum space distribution of the low-

energy spectral weight of the S = 1/2 model follows the momentum space distribution of zero 

modes of the classical model.  
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Chapter 1    
Introduction 

Overview 
Jamming is an intriguing physical process, happening everywhere around us, in which the 

liquidity of a system is suppressed and freezes into a disordered phase, for example from 

soap foams to traffic jams. In the case of solid materials, such a state might look like a solid 

(glass) in which constituents are frozen in time and space, but the real question is: Is it truly 

a solid (glass)? Or does it belong to a new class of properties? 

Cates et al. argue that jammed states of matter belong to a new category of ‘fragile matter’  

[1]. Usually, a jammed state can be easily achieved by a dense particle system by applying 

external stress fields, and the jammed state will be relieved upon slight alteration of the 

stress field [2]. For example, in the case of foam, atmospheric pressure acts as an isotropic 

stress field to the densely packed soap bubbles coming from a spray can and freezes them 

into a single unit with a definite shape, but a small shear force can easily deform the shape 

of foam. From the viewpoint of thermodynamics, the system is trapped in a metastable 

state of a nearly degenerated rugged energy landscape where the kinematics of the system 

is confined in the phase space. However, an additional shear force large enough to 

overcome the nearby potential barriers can move the system into a different metastable 

state. In other words, a jammed system will remain the same as long as the external 

perturbations are not strong enough to overcome the barrier potential. As A. J. Liu and S. 

R. Nagel have pointed out the class of jammed materials may actually be very broad and 

diverse [2].  Similar to jammed states found in granular systems, it might be possible to 
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find jammed states in magnetic systems in which ions with effective magnetic moments 

(spins) arranged in crystallographically ordered lattices. 

 Ever since ferromagnetism was first discovered in Lodestones, magnetism became an 

intriguing subject of research in Science and Technology. In ferromagnets, 

antiferromagnets or ferrimagnets, the spins will freeze upon cooling into long-range 

ordered states below a certain temperature. Subsequently, in the search of magnetism, 

magnetic phases were found in dilute magnetic alloys such as AuCo or CuMn in which 

spins freeze in a disordered fashion at low temperatures, named spin glasses in analogous 

to the atomic glasses. Since then, the search for new magnetic phases and characterization 

of their properties has become a major scientific branch of research in Condensed Matter 

Physics [3]. During the last decades, many novel magnetic phases have been found 

including spin glasses, spin liquids, super-paramagnets, cooperative paramagnets and 

chiral magnets. Moreover, glass-like magnetic phases with intriguing properties have been 

identified in many different materials ranging from geometrically frustrated magnets to 

high-temperature superconductors.  

Frustration and randomness have been identified as the freezing mechanism of spin glasses 

found in dilute magnetic alloys in which magnetic ions are embedded in the sea of 

conduction electrons of a nonmagnetic host. Glassiness found in the non-dilute limit of 

geometrically frustrated magnets has proven to be a difficult problem in Condensed Matter 

Physics. Recently, a mechanism in which glass-like freezing is obtained by quantum 

fluctuation was proposed and applied to the case of a two-dimensional lattice of Kagome-

Triangular-Kagome trilayers. [4,5] Here, the energy landscape of quantum fluctuation 

induced frozen states is discussed as a non-hierarchical rugged energy landscape rather 

than a hierarchical landscape proposed for conventional spin glasses and hence the frozen 

state is identified as a spin jammed state. [5] In this thesis, we explore the scenario of spin 

jam states, their origins, and contradictory properties compared to conventional spin 

glasses.   
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Spin Models and Magnetic Interactions 
When a magnetic system is comprised of magnetic ions with localized unpaired electrons, 

such a magnetic system can be explained by an effective mathematical model in which the 

total energy of the system is explained by localized magnetic moments (spins) rather than 

the full electronic description of the system. In the classical limit (ܵ → ∞), the Hamiltonian 

of a generic system can be modeled as a combination of exchange interactions, crystalline 

anisotropies, the external magnetic field, dipole-dipole interactions and many other. 

A simple prototypical Hamiltonian can be written as, 

ܪ = −෍ܬ௜௝ ௜ܵ . ௝ܵ
{௜.௝}

)෍ܦ− ො݊௜. ௜ܵ)ଶ
௜

− ℎ෍ ො݊௛ . ௜ܵ
௜

− ෍ݓ
3൫ ௜ܵ . ݁௜௝൯൫݁௜௝. ௝ܵ൯ − ௜ܵ . ௝ܵ

௜௝ଷ௜ழ௝ݎ

 1.1 

The first term is the exchange interaction term and ܬ௜௝ is the interaction energy between 

two spins ( ௜ܵ). When ܬ > 0, this term yields ferromagnetic order for any lattice while 

antiferromagnetic order occurs in the case of  ܬ < 0 for an unfrustrated lattice. (Frustration 

will be discussed in the next section) The second term represents the crystalline anisotropy 

in which ܦ is the anisotropic energy and ො݊௜ is the single ion anisotropy direction of the ݅௧௛ 

spin, and the third term is for the Zeeman energy of the system in which ℎ and ො݊௛ are the 

external magnetic field and its direction respectively. The fourth term is the dipole-dipole 

coupling of the magnetic moments and ݎ௜௝ is the normalized distances between moments ݅ 

and ݆, and the ݁௜௝ is unit vectors in the direction of ݎ௜௝ and ݓ is the interaction energy. 

Moreover, a microscopic Hamiltonian might also have more complex interactions like 

asymmetric Dzyaloshinskii-Moriya (DM) interactions, as a consequence of strong spin-

orbit coupling present in a magnetic system, but the following discussion will be limited 

only to Magnetic-exchange interactions.    

Magnetic-exchange interactions come in two flavors in which spins align either parallel 

(Ferromagnetic) or antiparallel (Antiferromagnetic) to minimize coulomb repulsion 

between magnetic ions. Moreover, there are several different exchange mechanisms such 

as Direct exchange, Indirect exchange, Superexchange, etc.      
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Direct exchange interaction is a consequence of direct overlap of the electronic wave 

function of two magnetic ions, and the flavor of the interaction is determined by Pauli 

exclusion principle. To review Pauli exclusion principle, the total wave function of two 

identical fermions (particles with 1/2-integer spin) has to be asymmetric. For example, in 

a simple case of two Hydrogen ions, constructive interference between two wave functions 

are energetically favored, and hence anti-parallel spin arrangement is selected by Pauli 

exclusion principle. Moreover, the interactions by direct exchange mechanism are strong 

but short-ranged.  

Indirect exchange interaction couples two spins via itinerant electrons in the medium 

between two magnetic ions. Usually, such exchange interactions are expected when 

magnetic ions embedded in a conducting host lattice and named as Ruderman – Kittel – 

Kasuya – Yoshida (RKKY) interactions. The RKKY interactions are long-ranged, and the 

sign of the interactions oscillates with the distance between two ions. (see Figure 1.1)   

 
Figure 1.1  RKKY exchange coupling constant  
Variation of the indirect exchange coupling constant, ݆ , of a free electron gas in the neighborhood 
of a point magnetic moment at the origin ݎ = 0. [6]  
 
A magnetic ion induces a spin polarization of the nearby conduction electrons, and spin 

polarization is transferred through many itinerant electrons to another magnetic ion by 

introducing an effective exchange coupling between two ions ( ௜ܵ and ௝ܵ) described 

according to, 

(ݎ)ܬ = (ிܧ)ଶܰܬܼߨ6 ቈ
sin(2݇ிݎ)
(2݇ிݎ)ସ −

cos(2݇ிݎ)
(2݇ிݎ)ଷ ቉ 1.2 
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where ܼ is the number of conduction electrons per atom, ܬ is the s-d exchange constant, 

 is the ݎ is the density of state at the Fermi level, ݇ி is the Fermi momentum and (ிܧ)ܰ

distance between two impurities. 

Superexchange describes the coupling between two magnetic ions too far apart to be 

connected by direct exchange but coupled over a relatively long distance through non-

magnetic atoms. This is the primary exchange mechanism in magnetic insulators and 

occurs covalent mixing of the p and d (or f) wave functions. The polarization of two 

electrons in a p-shell must be opposite in direction, and as shown in Figure 1.2, when two 

magnetic cations are connected through such a ligand, it generally causes antiferromagnetic 

coupling. Superexchange interactions are stronger and long-ranged compared to direct-

exchange.  

 
Figure 1.2  An illustration of Superexchange mechanism  
M1 and M2 are two transition metal ions coupled antiferromagnetically through an oxygen ion 
(O2-). 
 

Magnetic Anisotropy defines the directional dependence (spin degree of freedom) of 

magnetic moments and plays an important role when studying possible phase transitions 

and magnetic properties of different phases, associated with a microscopic Hamiltonian. 

The simplest examples of anisotropy are Ising models in which all the spins are constrained 

to align along a single direction (easy axis) either parallel or anti-parallel, XY model in 

which all the spins are constrained to have any direction on a plane (easy plane) and 

Heisenberg model in which spin directions are fully isotropic.  
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Frustration 
When spins are arranged in a square motif with antiferromagnetic nearest neighbor 

couplings, we can easily find a configuration to satisfy all the magnetic interactions as 

shown in Figure 1.3 (a). But in some cases, it is impossible to find a configuration to satisfy 

all the magnetic interactions. This is named as frustration, and it mainly happens in two 

different ways, either by competing for ferromagnetic and antiferromagnetic couplings or 

when the lattice is geometrically frustrated.  

 
Figure 1.3  Examples of magnetic frustration  
(a) Unfrustrated square lattice with antiferromagnetic(AF) interactions. (b)  Frustrated square 
lattice with mixed interactions of antiferromagnetic (AF) and ferromagnetic (F). (c) Frustration 
from antiferromagnetic triangular motif (d) Frustrated antiferromagnetic tetrahedral arrangement 
of spins. 
 
As shown in Figure 1.3 (b), when we replace one of the AF-coupling by F-coupling, the 

lattice becomes frustrated, and this is an example of frustration by mixed interactions. 

Notice that the ground state degeneracy of the system is two-fold for Ising spins while it is 

infinite for XY or Heisenberg spin systems. Moreover, when spins arranged in an 

antiferromagnetically coupled triangular motif (a triangle for a 2D lattice and a tetrahedron 

for a 3D lattice), all the magnetic interactions cannot be satisfied simultaneously (see 

Figure 1.3 (c) and (d)) and it is called Geometrical Frustration.       
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When frustration appears in a magnetic system, it will either freeze into a single 

configuration below a certain temperature much lower than the average interaction energy 

scale of the system or stay in a liquid-like state down to near absolute zero. However, such 

a system has an extensive ground state degeneracy and can have either liquid-like flat 

energy landscape or a complex, rugged energy landscape, unlike simple energy landscapes 

with a single minimum found in unfrustrated systems. In some special cases, the frustration 

might be lifted by extra perturbations such as crystallographic distortions (Jahn-Teller 

distortion) or quantum fluctuation.  

Spin Glasses 
The term “spin glass” was first coined in 1970 to name the low-temperature disordered 

phase of dilute magnetic alloys such as AuCo or CuMn in which magnetic impurities are 

doped in a non-magnetic conducting material (written in italics). Here, the magnetic 

impurities interact with each other via RKKY interactions induced by the electron sea of 

the conducting material. Numerous experiments and theoretical developments have been 

performed over last four decades, and frustration and disorder of a magnetic system have 

been understood as the key ingredients of spin glass freezing.  [7]  

Unlike in conventional magnets, spin glass materials do not freeze into long-range ordered 

phases down to lowest temperatures, instead, they undergo phase transitions to short-range 

ordered phases. Even though short-range spatial correlations can be directly observed from 

elastic neutron scattering experiments, many other intriguing properties of spin glasses can 

be found via other experimental techniques such as specific heat, bulk susceptibility, 

Mössbauer experiments, muon spin echo experiments, quasi-elastic neutron scattering 

experiments, etc. Among many spin glass signatures, the linear dependence of specific heat 

is one of the first anomalous behaviors observed in diluted magnetic alloys. Furthermore, 

the sharp cusp of susceptibility at low-temperatures, measured under low-field conditions, 

and divergence of non-linear susceptibility, implying a true phase transition at a finite 

temperature are further experimental signatures of a spin glass. Some other signatures from 

bulk susceptibility and neutron scattering experiments will be discussed later in this Thesis, 

and a detailed discussion can be found in ref.  [7].   
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Ergodicity Breaking 
When there are many metastable states in the energy landscape of a magnetic system, it 

will get trapped in one of those states below certain temperature with restricted access to 

other energetically equivalent regions of phase space. This is a property of ruggedness in 

an energy landscape, and this phenomenon is named as Ergodicity-Breaking. [8] The 

magnetic irreversibility observed in direct-current (DC) susceptibility under zero-field 

cooled (ZFC) and field-cooled (FC) conditions, is direct evidence of ergodicity-breaking 

in a magnetic material. (More information can be found in Section 2.1.1  ) Usually, the 

magnetic irreversibility will be observed below a certain temperature which can be seen as 

the highest energy barrier which separates regions in the phase space. Moreover, this 

behavior can be observed in many different magnetic systems such as magnetic glasses [7], 

superparamagnets [9,10] or even in long-range ordered systems with multiple domains 

[11].  

Non-ergodic behavior from DC susceptibility is used as a primary test to identify magnetic 

glasses. Additional characterizations of a glass phase include ascertaining the glasses 

transition temperature defined by the cusp of ZFC susceptibility ( ஽ܶ஼), and the 

irreversibility temperature where ZFC-FC splitting occurs ( ௜ܶ௥௥). In most of the 

conventional spin glasses, irreversibility happens below the glass transition temperature,  

[7]  but in some magnetic glass-like materials, the magnetic irreversibility occurs at 

temperatures higher than ஽ܶ஼   [11].     

Order by Disorder 
When spins are coupled antiferromagnetically and arranged in a geometrically frustrated 

lattice such as a Kagome lattice, the classical ground state of the system will be 

macroscopically degenerate. Here, the ground state manifold is generally flat, and 

configurations are connected continuously via zero-modes. Thus, such a magnetic system 

usually stays in a liquid-like state down to near absolute zero, upon cooling. But in some 

systems, thermal fluctuation or quantum fluctuations tends to favour certain configurations 

over others by breaking the degeneracy of the system and hence the system can have an 

ordering below a certain temperature. This mechanism is called order-by-disorder. [12]   In 
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the case of thermal fluctuations, different configurations have different entropic weights, 

and the configurations with the lowest free energy are favoured.  But, when the quantum 

effects are stronger in a particular magnetic system, the quantum zero-point energy might 

be different from one configuration to the other and hence select an ordered state with 

lowest ground state energy. [5,13] Moreover, in Heisenberg pyrochlore antiferromagnets, 

collinear configurations are usually favoured by thermal/quantum fluctuations  [14] while 

coplanar configurations are favoured in Heisenberg-Kagome antiferromagnets [13,15].     

Spin Jam 
Spin jam is a magnetic glass phase purely induced by quantum fluctuation from a 

geometrically frustrated lattice whose ground state manifold is extensively degenerated and 

flat at mean-field level. In other words, quantum corrections lift the classical degeneracy 

into a set of aperiodic spin configurations forming local minima in a rugged energy 

landscape. This theory was first proposed by a simple model in which Heisenberg spin-3/2 

moments arranged in a quasi-two-dimensional network of Kagome-Triangular-Kagome 

trilayers (KTK) with a simple nearest neighbour-spin Hamiltonian ܪ = ܬ ∑ ௜ܵ . ௝ܵேே . (see 

Figure 1.4 (a))  

As shown in Figure 1.4 (a), the magnetic lattice is comprised of corner-sharing tetrahedra 

(Bipyramids / Pyrochlore) and linking triangles that connect bipyramids in Kagome layers. 

The ground state of the magnetic lattice requires zero net magnetization in each tetrahedron 

and linking triangles. Triangles usually prefer 1200 configurations while a tetrahedron can 

adopt any one of an infinite number of possibilities which includes collinear, coplanar or 

non-coplanar configurations.  [4] Since collinear configurations are usually favoured by 

thermal/quantum fluctuations in Pyrochlore lattices  [14], the collinear configurations are 

an important subset of the KTK lattice. Thus, a special set of ground state configurations 

can be found as collinear bipyramids arranged in √3 × √3 order and named as locally 

collinear (LC) states. To be precise, there are 18 different collinear states of bipyramids 

and nine of them are shown in Figure 1.4 (b) using binary signs which represents parallel 

(+) or anti-parallel (−) direction of each spin with respect to the direction defined by the 

color of the bipyramid. The other nine configurations can be obtained by sign inversion.  

[4] 
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Figure 1.4  The triangular network of bipyramids and its classical ground states 
(a) The kagome-triangular-kagome tri-layer, forming the triangular network of bipyramids. Each 
bipyramid is composed of two corner-sharing tetrahedra. The blue and red spheres represent 
kagome and triangular sites, respectively. (b) The internally collinear states for each bipyramid 
are categorized by assigning for each spin a binary sign (representing a parallel (+) or 
antiparallel (−) direction relative to the color). These states may be viewed as the 18 elements 
of ܼଶ × ܼଷ × ܼଷ by first specifying the sign of the central spin, and specifying one spin in the 
upper and the lower layers of the bipyramid with the same sign. For visualization, we simply 
label the first nine states numerically 1..9, and the counterpart (associated with flipping all the 
signs) as 10..18. (c) A sign state for the triangular lattice of bipyramids that has a long-range 
√3 × √3 structure. (d) Filled arrows represent spins in a collinear bipyramid spin state 
constructed by the color and the 1-6-8 sign state shown in (c). [5]  
 

Any LC state can be easily obtained by mapping sign states on a long-ranged order 

triangular lattice with a rule of three spins on a linking triangle must have the same sign, 

as shown in Figure 1.4 (c). Thus, LC states can be systematically studied using a simple 

problem of two degrees of freedom: tri-colour representing the three directions of √3 × √3 

global order and sign states.  [5] In a counting exercise, one can always find a finite number 

of LC states for a given superlattice with nearest neighbour bipyramids. For example, there 

are only 111 LC states for 6 nearest neighbour bipyramids and 13238 LC states for 12 

bipyramids. A LC-state made out of only three sign states holds a long-range order. Since 
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one can find only six combinations of sign states which can form long-range orders without 

violating the equal sign rule of linking triangles, there exist only 36 long-range ordered LC 

states for any size of the superlattice. [4]   

Moreover, the noncollinear and coplanar bipyramid states can be obtained from LC states 

by collectively rotating each pair of antiparallel spins in each tetrahedron that can be 

parameterized by three angles. [4] In the mean-field level, these collective rotations 

between different ground state configurations can be done without any energy cost and LC 

states are continuously connected by the collective global rotations through their resulting 

coplanar states, and hence the classical ground state is a flat manifold. 

 
Figure 1.5  Rugged energy landscape induced by quantum fluctuations 
The magnetic energy of the quantum fluctuations was calculated for several LC (sign) states near 
one global minimum. The energy barriers between the minima are composed of the coplanar 
bipyramid spin states that connect the sign states. [5]  
 

However, the energy cost of quantum fluctuations associated with different ground state 

configurations are different as estimated within the harmonic (Holstein-Primakoff) 

approximation and all the LC states have minimum energy compared to the surrounding 

coplanar state by creating local minima around a LC state in the ground state manifold as 

shown in Figure 1.5. [5] Moreover, different LC states also have different energy 

corrections by lifting the classical degeneracy among LC states and long-range ordered LC 
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states are the global minimums. Thus, as a result of this quantum fluctuation induced 

ruggedness in the energy landscape, the system gets trapped in one of the local minima of 

LC states with or without long-range order, upon cooling. This is an order-by-disorder 

mechanism for a quasi-2D KTK lattice, and the low-temperature frozen state is termed a 

spin-jam.  [5]  

Moreover, the O(3) invariance of our Heisenberg Hamiltonian is broken explicitly upon 

spin freezing, and the low-temperature thermodynamics will be governed by low energy 

hydrodynamic Halperin–Saslow (HS) modes. [15--17] These HS modes are linearly 

dispersive and lead to a quadratic temperature dependence of heat capacity for quasi-two-

dimensional systems. Furthermore, the frequency dependence of the imaginary part of the 

dynamic susceptibility (߯ᇱᇱ(߱)) shows a linear dependence at low frequencies (߱) as a 

consequence of HS modes in low temperature phase.  [5]  

Outline of the Thesis 
In Chapter 02, We give a brief introduction to the experimental and simulation methods 

used throughout the projects, discussed in this dissertation. Bulk experiments such as 

direct-current (DC) susceptibility and alternating-current (AC) susceptibility experiments, 

as well as neutron scattering techniques such as time-of-flight, backscattering and neutron 

spin echo (NSE) spectroscopy, will be discussed along with the relevant theoretical 

background. Later in this chapter, Monte-Carlo (MC) simulation techniques such as 

Metropolis sampling and Langevin dynamics relevant for spin systems will also be 

discussed. 

In Chapter 03, We will introduce two isostructural frustrated magnetic systems, 

BaCr9pGa12-9pO19 [BCGO(p)] and SrCr9pGa12-9pO19 [SCGO(p)] in which Cr3+ ions arranged 

in a magnetoplumbite lattice and their low-temperature properties using bulk susceptibility 

measurements as well as neutron scattering experiments. The main purpose of this chapter 

is to introduce the low-temperature properties of SCGO(p)/BCGO(p) in the clean limit 

݌) → 1). Thus, starting from a broad discussion of DC and AC susceptibility in 

SCGO(p)/BCGO(p) as a function of p, we will narrow down the discussion to BCGO(p = 

0.902(8)) later in the Chapter. Inelastic neutron scattering experiments as well as Neutron 
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Spin Echo experiments are performed on BCGO(p = 0.902(8)) sample and the results will 

be discussed as a function of temperature and energy resolution. The experimental evidence 

for a quantum fluctuation induced spin jam behavior in the clean limit of BCGO(p) will be 

given.  

In Chapter 04, SCGO(p) will be studied as a function of dilution (p) using both bulk 

susceptibility and neutron scattering experiments, and the ݌-ܶ phase diagram for SCGO(p) 

will be generated in compliance with the experimental results. Both static and dynamical 

scattering functions are studies for six powder samples, SCGO(p = 0.968(6)), SCGO(p = 

0.917(9)), SCGO(p = 0.844(8)), SCGO(p = 0.777(6)), SCGO(p = 0.620(6)) and SCGO(p 

= 0.459(5)) measured at a neutron time-of-flight spectrometer, as a function of wavevector 

(ܳ), transfer energy (ℏ߱) and temperature (ܶ). The hydrodynamical model proposed by 

Halprin and Saslow will be used to explain the unconventional dynamics observed in the 

clean limit of SCGO(p) and experimental evidence to support the spin jam theory will be 

presented along with semi-classical spinwave calculations. 

Chapter 05 will present a comparative study done on three different magnetic glasses using 

bulk and neutron scattering techniques. The systems studied here, are a Quasi-2D frustrated 

magnet, BCGO(p = 0.902(8)), a three-dimensional (3D) pyrochlore magnet, Y2Mo2O7 and 

an archetypical spin glass, Cu -2 at. % Mn (CuMn2%). The magnetic order parameters of 

these materials were studied as a function of instrumental resolution (∆߱଴) spanning over 

ten decades of frequency using AC susceptibility, Neutron Spin Echo spectroscopy, 

Neutron Backscattering spectroscopy and Neutron time-of-flight spectroscopy. The 

temperature evolution of relaxation-time distribution is estimated by means of order-

parameter measurements for each compound. Furthermore, the frequency dependent 

freezing temperature ( ௙ܶ) modeled by Vogal-Fulcher law, will be used to distinguish 

different magnetic glasses systematically. Finally, zero-field cooled (ZFC) and field cooled 

(FC) susceptibility will be studied as a function of applied field and the de Almeida-

Thouless (AT) line will be calculated for each magnet. Thus, the chapter will be concluded 

by proposing a scaling of critical field to identify different magnetic glasses.  

In Chapter 6, we present a systematic method to study different topologies of energy 

landscapes using ageing and memory effect experiments. Magnetic memory measured in 
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DC susceptibility of two spin jam materials, SCGO(p = 0.97) and BCGO(p = 0.96) will be 

presented as a function of waiting time and waiting temperature in comparison to an 

archetypical spin glass CuMn2%. The data will be quantitively analyzed and compared 

against our Monte-Carlo (MC) simulation done on two different barrier-tree models. 

Furthermore, a non-hierarchical energy landscape with a wide nearly flat rough bottom will 

be proposed for SCGO(p = 0.97)/ BCGO(p = 0.96) in contrast to the hierarchical rugged 

funnel type energy landscape proposed to explain low-temperature relaxational properties 

of canonical dilute spin glasses.  

In Chapter 7, we will present similar memory effect studies on five different compounds, 

which can be divided into three categories: (1) the high-temperature superconducting 

materials, cuprates and Fe-chalcogenides, (2) Kitaev-model-related systems Li2RhO3 and 

Na2Ir1−xTixO3, and (3) a semi-conducting pyrochlore Y2Mo2O7. Moreover, similar memory 

effect studies on six Cu1-xMnx (x = 0.02, 0.15, 0.3, 0.45, 0.75 and 0.85) samples will be 

presented in comparison. The magnetic memory as a function of waiting time will be 

systematically studied using a modified stretched exponential function, and a universal 

scaling of magnetic glasses will be discussed.  

In Chapter 8, we will study the spin-ܵ Kitaev model by a combined approach of Metropolis 

sampling and Landau-Lifshitz dynamics. Both dynamical structure factor ܵ(ܳ,߱) and 

spin-spin correlation function ܵ(ݎ,߱) obtained from classical simulation for the pure 

Kitaev models (ferromagnetic and antiferromagnetic) will be directly compared with the 

results from the exact solution of ܵ-1/2 Kitaev quantum models. The quantum-classical 

correspondence of pure Kitaev models will also be discussed in terms of temperature 

evolutions of ܵ(ܳ,߱) and ܵ(ݎ,߱). Finally, classical simulations beyond the Kitaev model 

will be discussed limited only to nearest neighbor Heisenberg interactions and the 

signatures of proximate Kitaev liquids will be revealed.                     
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Chapter 2    
Methods and Formulations  

Bulk Experiments 

2.1.1  DC Susceptibility Experiments 

In DC susceptibility experiments, we measured the equilibrium magnetization (ܯ) of a 

sample, at a given temperature (ܶ) and applied magnetic field (ܪ) and the corresponding 

susceptibility (߯஽஼) was calculated as ߯஽஼ =  In general operation, magnetometer .ܪ/ܯ

oscillates a sample with respect to a set of pickup coils and measures voltage induced by 

the moving magnetized samples and hence the magnetization of the sample can be 

estimated by Faraday’s law.  Notice that a sample needs to be magnetized first before 

measuring its magnetization. Thus, it is not possible to estimate magnetic susceptibility 

exactly at ܪ = 0 from this technique and the lowest possible magnetic field is determined 

by the sensitivity of the magnetometer. 

DC Susceptibility (߯஽஼) measurements are commonly used for preliminary 

characterization of magnetic materials. As shown in Figure 2.1, we can easily characterize 

simple magnetic phases such as ferromagnets, antiferromagnets or paramagnets using ߯஽஼  

measurements. For example, in simple paramagnet in which magnetic moments are 

completely decoupled, ߯஽஼  shows a monotonically increasing behavior with decreasing 

temperature while it shows a discontinuity at a finite temperature whenever there is a 

magnetic transition. (see Figure 2.1 (a)) Moreover, a pure paramagnet follows the Curie’s 

law, ߯ =  is the Curie constant of the magnet. But a simple ferromagnet (FM) ܥ where ,ܶ/ܥ

or antiferromagnet (AFM) follows the Curie-Weiss law, ߯ ∝ 1/(ܶ −  ௖௪ isߠ ௖௪), whereߠ
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the Curie-Weiss temperature, and it undergoes a magnetic phase transition at a finite 

temperature ( ௖ܶ for FM and ேܶ for AFM) similar to the |ߠ௖௪|. (see Figure 2.1) The ߠ௖௪ of 

a magnetic material represents the averaged interaction energy of the system and can be 

estimated by a linear fitting to the inverse susceptibility versus temperature as shown in the 

Figure 2.1(b). Moreover, an antiferromagnet can be identified easily by the low 

temperature cusp in susceptibility in which the maximum occurs at the magnetic transition 

temperature.  

 
Figure 2.1  Schematic of magnetic susceptibility  
Panel (a) shows a schematic of low-temperature susceptibilities in paramagnets, ferromagnets ( ஼ܶ), 
antiferromagnets ( ேܶ) and frustrated magnets ( ௙ܶ). Panel (b) shows a schematic of the inverse 
susceptibility. By fitting the inverse of magnetic susceptibility in the high-temperature regime, a 
magnetic material can be characterized preliminarily and the averaged magnetic interaction energy 
of the system can be estimated.  
 

In frustrated magnets, the phase transition defined by the low-temperature cusp ( ௙ܶ), will 

occur at a temperature much lower than the corresponding Curie-Weiss temperature. Thus, 

a frustrated magnetic system can be easily identified and the degree of frustration of the 

system can be estimated by the ratio (frustration index) ݂ = /|௖௪ߠ| ௙ܶ.  

Another important experiment of DC magnetization would be zero-field-cooled (ZFC) and 

field-cooled (FC) measurement. In such experiments, magnetization of a sample is 

measured as a function temperature followed by continuous cooling to the lowest 

temperature ( ௕ܶ௔௦௘) of the instrument under zero-field or field cooled conditions. When the 
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ergodicity of a magnetic phase is broken, ZFC-FC measurements show a bifurcation as 

function of temperature. This is an intrinsic behavior of magnetic glasses in which energy 

landscapes are complex and rugged with numerous metastable states. Even though, ZFC-

FC measurements can be used to detect non-ergodic behaviors of a particular magnetic 

material, similar experimental features can also be observed in other magnetic systems 

such as superparamagnets or even in ferromagnets with multiple domains, due to the 

limited observation time window of the measurement which is about ~100 s. Technically, 

it is possible to increase the observation time by waiting for a given interval at each 

temperature step, but the overall experiment might not be feasible due to the limited 

instrumentation time. 

 
Figure 2.2  Low-T susceptibility measurements of two Spin Glasses: CuMn2% and AuFe2% 
The low-temperature magnetic susceptibility measurements of two dilute spin glasses: (a) 
  .Fe2%ݑܣ Mn2% and (b)ݑܥ
 

Figure 2.2 shows magnetization measurements of two canonical spin glasses, Cu -2 at. % 

Mn (CuMn2%) and Au -2 at. % Fe (AuFe2%). Both spin glasses show bifurcations below 

the corresponding cusp of ߯௓ி஼  and it is one of the experimental signatures of spin glasses. 

The irreversibility temperature ௜ܶ௥௥ where non-ergodicity begins to expose, is defined as 

the bifurcation of ZFC-FC curves. Usually, ௜ܶ௥௥/ ஽ܶ஼ ≈ 1 in magnetic glasses and the ratio 

decreases with increasing applied field. When the applied field is high enough to modify 

the complex energy landscape into a smooth pointy vase like landscape with single 

minimum, ZFC-FC bifurcation will disappear. But, some unconventional glasses might 
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show a ZFC-FC splitting at higher temperatures than ஽ܶ஼  and it is usually the case for 

superparamagnets.  [9]     

2.1.2  AC Susceptibility Experiments 

In AC susceptibility experiments, the time-dependent magnetization of sample is measured 

by applying a small time-varying magnetic field. In general operation of AC-

magnetometers, the voltage of the pick-up coil is measured without moving the sample 

and, the amplitude (ܣ) and the phase shift (߶) of the time varying magnetization is 

estimated by comparing the output voltage signal with the driver signal. Thus, the time-

varying susceptibility ߯(߱) = ெ(ఠ)
ுಲ಴

= ெಲ಴
ுಲ಴

e௜థ where ܯ஺஼  and  ܪ஺஼  are the amplitudes of 

magnetization signal and the driver field respectively, is calculated and the real and 

imaginary parts of the susceptibilities ( ߯ᇱand ߯ᇱ′ ) are estimated as: 

߯(߱) = ߯ᇱ(߱) + ݅߯′′(߱) ;      ߯஺஼ = ஺஼ܪ/஺஼ܯ  

߯ᇱ(߱) = ߯஺஼ cos(߶) 

߯ᇱᇱ(߱) = ߯஺஼ sin(߶) 
2.1 

The amplitude of susceptibility ߯஺஼  measures the slope of the (ܪ)ܯ curve, ݀ܪ݀/ܯ. ߯ᇱ 

and ߯ᇱᇱ measure the dynamical susceptibility and absorption nature of the magnetic system 

respectively. [18]  

Both ߯ᇱ and ߯ᇱᇱ are sensitive to magnetic phase transitions and show sharp changes at the 

critical temperature. Since different magnetic phases show different characteristic 

signatures on AC susceptibilities as a function of temperature, the current discussion will 

focus on magnetic glasses only. Figure 2.3 shows ߯ᇱ and ߯ᇱᇱ, as a function of temperature, 

for a 3D Pyrochlore magnet, LuYMo1.4Ti0.6O7, whose parent compound Y2Mo2O7 is a 

well-known magnetic glass.  [19,20]  At low temperature,  ߯ᇱ shows a cusp similar to the 

ZFC susceptibility measurements and ߯ᇱᇱ also shows an acute change at around the same 

temperature, implying a magnetic phase transition at ܶ ~ 6 K. Moreover,  ߯ ᇱᇱ shows another 

change at around 100 K where high temperature susceptibility deviates from Curie-Weiss 

law. The deviation from Curie-Weiss law usually happens upon development of spin-spin 

correlation in a magnetic system and ߯ᇱᇱ is sensitive to this. Hence ߯ᇱᇱ can be used to detect 
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magnetic crossovers such as paramagnetic (spin gas) to co-operative paramagnetic (spin 

liquid) crossover just like in the current example.  

  

 
Figure 2.3  High-Temperature AC susceptibility of LuYMo1.4Ti0.6O7  
The high temperature AC magnetization of a 3D pyrochlore magnet, LuYMo1.4Ti0.6O7 which 
shows magnetic glass behavior at low temperature regime, is measured for a wide temperature 
range and the development of dynamical spin correlation with decreasing temperature. The panels 
(a) and (b) summarize the real and imaginary parts of the AC magnetization respectively.  
 

As shown in Figure 2.2, the ߯ᇱ shows a cusp at low temperature and the cusp temperature 

( ௙ܶ) shifts to higher temperatures with increasing frequency. This is a typical signature for 

magnetic systems with multiple relaxational dynamics such as magnetic glasses or 

superparamagnets. Different magnetic systems have different relaxational behaviors and 

the frequency dependence of ௙ܶ can be used to identify them. For example, spin glasses 

usually follow Vogal-Fulcher law, ݂ = ଴݂ expൣ−ܧ௔/݇஻( ௙ܶ − ଴ܶ)൧, while 

superparamagnets shows just a thermally activated behavior (Arrhenius law, ݂ =

଴݂ expൣ−ܧ௔/݇஻ ௙ܶ൧). However, the accessible frequency range of AC magnetometry is 
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limited as 0.01 Hz to 10 kHz. To access faster spin relaxational dynamics, we need to 

consider other techniques as Neutron Spectroscopy or Muon spin spectroscopy.  

Neutron Scattering Experiments 

2.2.1  Background 

Neutron scattering is a powerful experimental technique used in modern scientific research 

of crystallography, physics, physical chemistry, biology and material science. Unlike other 

experimental techniques, scattering experiments can reveal both spatial and temporal 

information of matter simultaneously. The microscopic techniques such as Muon Spin 

Resonance (µSR), Nuclear Magnetic Resonance (NMR) or Mössbauer spectroscopy, probe 

local behaviour at spin-spin correlation length, ܴ = 0 (that is, the averaged behavior over 

all the wavevectors ܳ), while the bulk techniques such as AC-susceptibility or Electron 

Spin Resonance (ESR), measure averaged behavior over the macroscopic volumes of a 

sample (ܳ = 0). Among many scattering methods, neutron scattering is special since 

neutrons can penetrate deeper into the condensed matter systems as a consequence of its 

zero net-charge. Neutrons can be used to probe atomic nuclei as well as microscopic 

magnetic field distributions, usually caused by unpaired electrons of magnetic ions in a 

sample, without interacting with the electron cloud of the material, unlike other scattering 

particles such as electrons or X-rays (photon).  

There are two fundamental mechanisms of neutron production for scattering purposes: 

nuclear fission and spallation of heavy nuclei. In nuclear fission, a neutron is absorbed by 

a fissile nucleus such as 235U or 239Pu, which then splits into smaller nuclei by producing 

free neutrons and gamma radiation. A single fission reaction produces 2.5 neutrons on 

average. In accelerator driven spallation sources, a high-energy proton beam is focused to 

a dense heavy metal target made out of high-mass-number materials such as uranium, 

tungsten, tantalum or mercury, and neutrons are produced from the collisions along with 

other subatomic particles such as pion or kaon. Practically, about 20 neutrons can be 

produced from a single proton at spallation sources. To compare two neutron sources, the 

neutron flux from a reactor source is continuous while it is pulsed from a spallation source. 
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Moreover, the energy distribution of a neutron flux is either Maxwellian for a reactor 

source or a “slowing-down” spectrum for spallation source. 

Neutrons are usually named based on their energy/wavelength. There are many energy 

ranges are defined for Neutrons  [21]: Cold, Thermal, and Hot neutrons are typically found 

in neutron research facilities, and only first two are useful for life-science research. 

Usually, neutron moderators are used to reduce the speed of neutrons to the required range 

of energy. Different mediums can be used as neutron moderators depending on the required 

energy range as summarized in Table 2-1. There are different kinds of neutron scattering 

instruments, which use either cold or thermal neutrons, available in neutron research 

facilities; but only the neutron scattering techniques relevant to this thesis will be discussed 

in the rest of this section.  

 

Table 2-1 Comparison of Cold, Thermal and Hot neutrons. 
 

 Cold Thermal Hot 

Neutron wavelength 3 – 20 Å 1 – 3 Å 0.3 – 1 Å 
Sample length scale 1 Å – 100 nm 0.3 – 5 Å 0.1 – 2 Å 
Sample time scale 1 kHz – 1 THz 0.1 – 10 THz 1 – 100 THz 
Moderator Liquid D2 Liquid D2O graphite 
Moderator 

Temperature 20 K 300 K 2000 K 
 

2.2.2  Theory of Scattering Experiments 
In the typical operations of a neutron scattering experiment, a beam of neutrons is scattered 

by a sample, and the scattered neutrons are counted as a function of solid angle and energy 

using neutron detectors. (see Figure 2.4 (a)) The momentum transfer wavevector ሬܳ⃗  and the 

energy transfer ℏ߱ of the scattering process are formulated as, 
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ሬܳ⃗ = ሬ݇⃗ ௜ − ሬ݇⃗ ௙  

ℏ߱ = ௜ܧ − ௙ܧ  
2.2 

where ሬ݇⃗ ௜ and ሬ݇⃗ ௙ are the incident and the scattered wavevectors, ܧ௜ and ܧ௙  are the incident 

and final energy of neutrons respectively. The relation of the energy and momentum can 

be written as: 

ܧ =
ℏଶ݇ଶ

2݉௡
 2.3 

where, ݉௡ is the mass of neutron.  

The experiments that follow the elastic scattering relation of  ห ሬ݇⃗ ௜ห = ห ሬ݇⃗ ௙ห = ݇ are usually 

called either elastic neutron scattering or neutron diffraction experiments, and the 

wavevector (ܳ = ห ሬܳ⃗ ห) for a given scattering angle (ߠ) can be easily calculated by the 

Bragg’s Law, 

ܳ =
ߨ4
ߣ sin ൬

ߠ
2൰ 2.4 

 

 
Figure 2.4  Schematics of neutron scattering theory 
(a) The schematic of a neutron scattering experiment. (b) The scattering triangle of the experiment 
where ሬ݇⃗ ௜ and ሬ݇⃗௙ are the incident and the scattered wavevectors respectively. (c) The coverage of 
energy-momentum space for a neutron scattering experiment with an incident beam of wavelength 
ߣ = 6Å. 
 

In neutron spectroscopy, the energy transfer (ℏ߱) of a scattered neutron will be measured 

as well as momentum transfer (ܳ), and the accessible energy-momentum space is 
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determined by Equation 2.5. A sketch of energy-momentum space for a neutron scattering 

experiment with an incident beam of wavelength ߣ = 6Å, is shown in the Figure 2.4(c). 

ܳ =  ටหሬ݇⃗ ௜ห
ଶ

+ ห ሬ݇⃗ ௙ห
ଶ
− 2ห ሬ݇⃗ ௜หห ሬ݇⃗ ௙ห cos(2ߠ) 

ܳଶ =
2݉௡

ℏଶ ቀ2ܧ௜ − ℏ߱ − 2ඥܧ௜(ܧ௜ − ℏ߱)ቁ cos(ߠ) 

( ℏ
మ

ଶ௠೙
~2.072 eV-1.rad-2.m-2  ) 

2.5 

 

The neutron scattering spectrometers are utilized with two different scattering geometries, 

direct-geometry, and indirect-geometry. In the case of direct-geometry setting, the incident 

energy of the experiment (ܧ௜) is fixed by means of either neutron monochromators or 

choppers. In the case of indirect-geometry, the energy of scattered neutrons (ܧ௙) are fixed 

by the analyzer crystals and, this technique is usually called Neutron Backscattering 

Spectroscopy. Among many different spectrometers, Neutron time-of-flight (TOF) 

spectrometers are quite common in inelastic neutron scattering spectroscopy and usually 

operates in direct-geometry setting. In a standard TOF spectrometer, the incident beam is 

pulsed such that the initial position and the velocity of each pulse is known, and the 

neutrons will be counted as a function of position and flight-time of scattered neutrons. 

Thus, the scattering cross-section of the experiment as a function of ℏ߱ and ܳ, can be 

constructed from the flight-time (ݐ௙) and scattering angle (ߠ) information using Equation 

2.6.   

 

ℏ߱ = ଵ
ଶ
݉௡൫ݒ௜ଶ −       ௙ଶ൯ݒ

௜ݒ =
ℎ

݉௡ߣ଴
≈

3.956
଴ߣ

; ௙ݒ        =
݀ଶ
௙ݐ

 
2.6 

 

where ߣ଴ is the incident wavelength of the beam and ݀ଶ is the sample to detector distance. 

In TOF spectrometers at reactor facilities, the continuous neutron flux is turned into a 
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monochromatic pulsed beam by a set of choppers (usually six to seven choppers). A 

schematic of a reactor based TOF instrument is shown in Figure 2.5.  [22]     

 
Figure 2.5  Schematics of a Neutron Time-of-Flight spectrometer 
This is a detailed schematic of the Disk Chopper Spectrometer (DCS) at National Institute of 
Standards and Technology (NIST). [22]   
 

In most of the inelastic neutron scattering experiments, we measure the partial differential 

scattering cross-section as defined below:  

݀ଶߪ
݀Ω݀ܧ௙

=
௙ܧ] ݏ݁݅݃ݎ݁݊݁ ℎݐ݅ݓ Ω݀ ݋ݐ݊݅ ݀݊݋ܿ݁ݏ ݎ݁݌ ݏ݊݋ݎݐݑ݁݊ ݀݁ݎ݁ݐݐܽܿݏ ݂݋ ݎܾ݁݉ݑܰ , ௙ܧ  + [௙ܧ݀

Φ ݀Ω ݀ܧ௙
 

     
2.7 

Here, ܧ௙  is the final energy of the neutron and Φ is the flux of the neutron beam, defined 

as the number of incident neutrons per unit-area perpendicular to the neutron beam per 

second.  [23] The differential scattering cross-section for an inelastic scattering process in 

which the initial and final states of the sample are denoted as |ߣ௜⟩ and |ߣ௙ൿ respectively, 

can be written as the following relation by mean of Fermi’s Golden Rule, 
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݀ଶߪ
݀Ω݀߱ =

݇௙
݇௜
ቀ
݉௡

ℏଶቁߨ2
ଶ
หൻ݇పሬሬሬ⃗ ห݅ߣ ෠ܸ ห݇௙ሬሬሬሬ⃗ ൿห݂ߣ

ଶ
൫ℏ߱ߜ + ௜ܧ −  ௙൯ 2.8ܧ

where, ෠ܸ  is the interaction potential of the sample. With the assumption of weak interaction 

between neutrons and the sample, the incoming and outgoing neutrons can be treated as 

plane waves and the matrix element in Equation 2.8 can be written as, 

ൻ݇పሬሬሬ⃗ ห݅ߣ ෠ܸห݇௙ሬሬሬሬ⃗ ൿ݂ߣ = ቆ
ℏଶߨ2

݉௡
ቇ ർ݅ߣቚ ∑ ௟ܾ . ݁௜ொሬ⃗ .௥೗ሬሬሬ⃗௟ ቚ݇௙ሬሬሬሬ⃗  ඀ 2.9݂ߣ

 

where ݎ௟ and ௟ܾ are the coordinates and the nuclear scattering length of the ݈୲୦ scattering 

center. Assuming that there are no correlations between scattering length of different 

nuclei, we can derive the scattering cross-section for a monoatomic system using Equation 

2.8 and 2.9 as shown below.  

 

݀ଶߪ
݀Ω݀߱ =

݇௙
݇௜
ቀ
݉௡

ℏଶቁߨ2
ଶ
቎
௖௢௛ߪ
ߨ4 ෍න ർ݁ି௜ொሬ⃗ .ோ೔(଴) ݁ି௜ொሬ⃗ .ோೕ(௧)඀

ஶ

ିஶ
݁ି௜ఠ௧݀ݐ 

௜௝

+  
௜௡௖ߪ
ߨ4 ෍න ർ݁ି௜ொሬ⃗ .ோ೔(଴) ݁ି௜ொሬ⃗ .ோ೔(௧)඀

ஶ

ିஶ
݁ି௜ఠ௧݀ݐ 

௜

቏ 

௖௢௛ߪ = ൫തܾ൯ߨ4
ଶ
௜௡௖ߪ     = ߨ4 ቀܾଶതതത −  ൫തܾ൯

ଶ
ቁ    ݎ௟ = ܰ + ܴ௜ 

2.10 

 

where തܾ is the average scattering length of the system. The first term of Equation 2.10 is 

the coherent nuclear scattering contribution from the correlation between different atoms, 

while the second term is the incoherent nuclear scattering contribution from self-

correlations of atoms.  

In a magnetic system in which the unpaired electrons in the outer shells of ions introduce 

an effective magnetic moment at each ionic coordinates, the neutrons can be mainly 

scattered by the angular momentum of the nucleus (ܫ), the spin angular momentum (ܵ) and 

orbital angular momentum (ܮ) of unpaired electrons. For ions with even atomic and mass 
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numbers, the nuclear angular momentum ܫ is technically zero since the equal number of 

neutrons and protons cancels the net moment of the nucleus. Moreover, the nuclear 

contribution from bigger uneven atoms could be negligibly small comparing to the 

contributions from ܵ and ܮ components of the system. The inelastic neutron magnetic 

scattering cross-section for unpolarized neutrons can be written as:  [23,24]  

݀ଶߪ
݀Ω݀߱ =

݇௙
݇௜

଴ଶݎ

ℏߨ2  ൜
1
ܨ2݃

(ܳ)ൠ
ଶ

. exp൫−2ܹ(ܳ)൯ ×෍൫ߜఈఉ − ෠ܳఈ ෠ܳఉ൯ܵఈఉ(ܳ,߱)
ఈ ,ఉ

 

ܵఈఉ(ܳ,߱) = න ൻ መܵொఈ(0) መܵିொ
ఉ ඀(ݐ)

ஶ

ିஶ
݁ି௜ఠ௧݀ݐ 

2.11 

where, ݎ଴ = ߛ) is the gyromagnetic ratio ߛ ଶ/݉௘ܿଶ and݁ߛ ≈ 1.913 for neutrons) and ݃ is 

the Landé splitting factor, 

݃ = ݃ௌ + ݃௅ 

݃ௌ = 1 +
ܵ(ܵ + 1)− ܮ)ܮ + 1)

ܬ)ܬ + 1)  

݃௅ =
1
2 +

ܮ)ܮ + 1) − ܵ(ܵ + 1)
ܬ)ܬ2 + 1)  

2.12 

 is the magnetic form factor and it can be written as Equation 2.13 within the dipole (ܳ)ܨ

approximation. [25]  

(ܳ)ܨ = 〈݆଴(ܳ)〉 + ൬1 −
2
݃൰

〈݆ଶ(ܳ)〉 

〈݆଴(ܳ)〉 = ܣ exp(−ܽݏଶ) + ܤ exp(−ܾݏଶ) + ܥ exp(−ܿݏଶ) +  ܦ

〈 ௟݆(ܳ)〉 = sଶܣ exp(−ܽݏଶ) + sଶܤ exp(−ܾݏଶ) + sଶܥ exp(−ܿݏଶ) + ;sଶܦ    ݈ = 2,4,6, .. 

2.13 

where ݏ = sin (ߠ)/ߣ =  and ݀, can be found ,ܿ ,ܾ ,ܽ ,ܦ ,ܥ ,ܤ ,ܣ and the coefficients   ߨ4/ܳ

in the Ref.  [25]. The term, exp൫−2ܹ(ܳ)൯ is the Debye-Waller factor which describes the 

thermal fluctuations of the lattice and it can be approximated as unity for low temperatures 

where most of the magnetic transitions happen. The ܵఈఉ(ܳ,߱) is the magnetic structure 

factor of the thermally equilibrated magnetic phase of the compound and can also be seen 

as the Fourier transformation of the real space and time correlation functions. 
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2.2.3  Neutron Backscattering Spectroscopy 

As mentioned in the previous section, the neutron backscattering spectrometers are inverse-

geometry spectrometers in which the final energy of neutrons ܧ௙  is fixed by analyzer 

crystals.  In these spectrometers, the analyzer crystals are chosen to have the Bragg 

reflection angle at or near 90o (this is the reason why it is called backscattering). Si, CaF2, 

GaAs and Graphite are typically used in backscattering monochromators. Thus, the energy 

resolution of the instrument (∆ܧ) depends mostly on the analyzer crystals and can be 

determined by the following expression:  [26]  

ܧ∆ = ௙ܧ2 ൬
݀ߜ
݀ + cot(ߠ)  ൰ߠߜ

where ݀ߜ/݀ is the spread of the analyzer lattice constant, and ߠ is the Bragg angle. Notice 

that the energy resolution is minimized when θ approaches 90o. Figure 2.6 shows a 

schematic of the High Flux Backscattering Spectrometer (HFBS) at NIST. 

 
Figure 2.6  A schematic of a neutron backscattering spectrometer  
The schematic of the High Flux Backscattering Spectrometer (HFBS) at NIST.  [27]   
 

Typically, the analyzed crystals with ݀ߜ/݀ ≈ 1.86 x 10-5 yields μeV energy resolution. 

Hence the nanosecond scale relaxations can be easily probed with these instruments, unlike 

the direct-geometry TOF spectrometer which can probe only relaxation faster than 

nanosecond time scale in standard operation. Since the ܧ௙  is fixed, a variation of the 

incident neutron energy ܧ௜ is a requirement in these spectrometers. Thus, a kind of 
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monochromator is required in the reactor based spectrometers to get a pulsed beam from 

the continuous flux of the reactor source, similar to the reactor based TOF spectrometers. 

The energy distribution of incident energy is usually achieved either by means of a 

Doppler-moving monochromator [28] or by varying the temperature of a standing 

monochromator with respect to the analyzer crystals. [29]  An example of former is the 

HFBS at NIST as shown in Figure 2.6.  [27]  

The backscattering spectrometers at spallation neutron sources, do not use 

monochromators. Instead, the neutron’s ܧ௜ is determined from the overall time-of-flight 

(TOF) between the neutron source and the detectors and hence those spectrometers are 

called time-of-flight backscattering spectrometers (TOF-BSS). The energy resolution of 

such spectrometer is determined by the following expression: 

ܧ∆ = ௙ඨ൬ܧ2
݀ߜ
݀ + cot(ߠ) ൰ߠߜ

ଶ

+ ൬
TOFߜ
TOF ൰

ଶ

 

where ߜTOF is the uncertainty of the time-of-flight. The BASIS spectrometer at Spallation 

Neutron Source (SNS), ORNL is an example of TOF-BSS. [26]  

 

2.2.4  Neutron Spin Echo Spectroscopy 

Neutron Spin Echo (NSE) spectroscopy is a unique neutron scattering technique, invented 

by Mezei in 1972 [30].  In this method, the spin polarization of neutrons is treated as the 

individual clocks to track the flight of each neutron, yielding higher temporal resolution in 

a neutron scattering experiment. Unlike other neutron scattering techniques, NSE 

spectroscopy measures the intermediate scattering function ܫ(ܳ,  which is the Fourier ,(ݐ

transformation of typical scattering function ܵ(ܳ,߱) of the sample. Generally, NSE 

spectroscopy allows us to access the time window spanning roughly from 10−3 to 102 ns. 

This time-window typically covers from the microscopic timescale of atomic collisions 

and spin exchange to macroscopic times of slow relaxation processes.  
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Figure 2.7  Generic setup of a reactor-based neutron spin echo spectrometer  
In a standard reactor based neutron spin echo spectrometer (NSE), an unpolarized neutron beam 
from a reactor source is first sent through a polarizer followed by a velocity selector to obtain a 
forward longitudinally polarized beam with a wavelength distribution of ∆20% ~ ߣ/ߣ. Then, the 
longitudinally polarized beam is flipped 900 by a 2/ߨ-flipper and send the neutron beam though a 
coil-solenoid (electromagnet). When there is an effective magnetic field inside the solenoid, the 
electrons will undergo Larmor precession and the precession angle is a function of magnetic field 
and the travelling distance. At the end of the solenoid, the beam will hit the sample followed by a 
 flipper which causes an effective “time reversal” to the incoming beam. Then the scattered beam-ߨ
will be sent through another coil-solenoid ideal to the first coil to counter-rotate the spin 
polarizations of neutrons. At the end, the transverse polarization will be changed to longitudinal 
by means of a second 2/ߨ-flipper and analyzed. Thus, the neutron spin echo is measured by 
varying the magnetic field inside the second electromagnet. This is the typical nuclear scattering 
setup, but in magnetic NSE spectroscopy, the ߨ-flipper near sample space is removed and the 
magnetic sample itself is used for time-reversal operation.  
 

Figure 2.7 illustrates the generic operations of a reactor-based NSE spectrometer. The 

scattering process begins with a coarse monochromatization (∆20 – 10 ∽ ߣ/ߣ %) of the 

incoming continuous unpolarized neutron beam from a reactor source, by means of a 

velocity-selector. Then, the unpolarized beam will be longitudinally polarized and 

subsequently it will be turned by 90o to transverse direction using a 2/ߨ-flipper. Thus, the 

transversely polarized beam will enter a neutron guide with uniform magnetic field along 

the beam direction which is usually a coil solenoid. Then, the neutrons will start to precess 

perpendicularly to the beam as they travel due to the exerted torque on neutrons by the 

magnetic field. This is usually called Larmor Precession and the precession angle (߶) is a 

function of magnetic field (ܪ) and the traveled time (ݐ௡): 
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߶ = ௡ݐܪߛ =  2.14  ݒ/݈ܪߛ
where ߛ = 2.916 kHz/Oe is the Larmor constant, ݈  and ݒ are the travelled distance and the 

velocity of a neutron. Then the plane of precession is inverted by the ߨ-flipper at the end 

of the first solenoid and, hence a time-reversal operation is applied to the neutron beam. 

The ߨ-flipper is typically used for nuclear scattering experiments but it is ignored during a 

magnetic scattering experiment, since the effective moments of magnetic ions, themselves 

work as ߨ-flippers. Thus, the neutron beam will be scattered by the sample and the scattered 

beam will be directed to a second solenoid (length ݈ ′). Then, the polarization of the scattered 

neutron will be rotated again by the magnetic field (ܪ′) inside the second solenoid. Thus, 

total rotation (߶௧௢௧) of the process at the end of the second solenoid can be written as:    

߶௧௢௧ = −߶ + ߶ᇱ = −
݈ܪߛ
ݒ +

′݈′ܪߛ
′ݒ  2.15 

where ߶ᇱ is the precession angle inside the second solenoid and the minus sign of the first 

term is due to the time-reversal operation. Thus, the momentum transfer (ℏܳ) and the 

energy transfer (ℏ߱) of a scattering event can be written as: 

ℏܳ = ᇱݒ݉  ݒ݉−

ℏ߱ =
1
ݒ2݉

ଶ −
1
ݒ2݉

ᇱଶ ≅ ݒ)ݒ݉ −  (′ݒ
2.16 

When ݈ܪ =   ,Equation 2.15 can be simplified as ,′݈ܪ

߶௧௢௧ = ݈ܪߛ ൬
1
ᇱݒ −

1
൰ݒ ≈

݈ܪߛ
ଶݒ

ݒ) − (′ݒ ≈
݈ܪߛ
ଷݒ݉ ℏ߱ 2.17 

Subsequently, the polarization will be rotated again by an angle of -90o using another 2/ߨ-

flipper at the end similar to the one at the beginning. Now, the beam is more or less along 

the longitudinal direction, but might be scattered in the traverse directions due to the energy 

loss/gain at the sample. Then, the longitudinal polarization of the beam will be analyzed at 

the end of the process by an analyzer whose transmission coefficient along the beam 

direction is stronger. Finally, an array of detectors is used to count analyzed neutron beam. 

Here, the measured neutron intensity (ܲ) can be formulated as: 
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ܲ =  〈cos (߶௧௢௧)〉 = 〈cos ൬
݈ܪߛ
ଷݒ݉ ℏ߱൰

〉 =  〈cos(߱ݐ)〉 

ܲ =
∫ ܵ(ܳ,߱)cos (߱ݐ)݀߱

∫ܵ(ܳ,߱)݀߱
=

,ܳ)ܫ (ݐ
.ܳ)ܫ ݐ = 0) 

2.18 

Thus, we can directly measure the normalized intermediate function, ܫ(ܳ, ,ܳ)ܫ/(ݐ 0), and 

ݐ =  ଷ  is the corresponding Fourier time. However, this formalism is valid only inݒ݉/݈ܪߛ

the limit of ℏ߱ ≪ ,ܳ)ܫ ଶ/2 and a more systematic way of measuringݒ݉  ,is needed. Thus (ݐ

in practice, we measure ܲ by changing the magnetic field of the second solenoid with 

respect to the first one. When the neutron energy transfer is significant, ܲ shows a damped 

cosine-like dependence (spin echo) as a function of phase factor (ϕ), which is defined as 

the difference between field integrals of the two solenoids: 

ϕ = නܪᇱ ݈݀′ − න2.19 ݈݀ ܪ 

 

 
Figure 2.8  Neutron Spin Echo Order Parameter on CuMn2%  
The NSE measurement of CuMn2% at (Top) 3.5 K and (Middle) 20 K, which are below and 
above the spin glass transition of 15.5 K, respectively. (Bottom) The normalized intermediate 
scattering function, ܫ(ܳ, ,ܳ)ܫ/(ݐ 0) determined by the amplitude of the echo, as a function of 
temperature. Here, NSE measurements are corrected to the instrument resolution measured using 
a magnetic standard sample, Ho2Ti2O7.  
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Figure 2.8 shows NSE measurements of a conventional spin glass material, CuMn2%, as 

a function of temperature at Fourier time 5 ns. Below the spin glass transition ௙ܶ = 15.5 K, 

there are magnetic relaxations slower than 5 ns as the neutron spin echo dependence was 

clearly observed. (see the top panel of Figure 2.8) But, in the high temperature regime 

where all the relaxations are much faster than 5 ns, the NSE measurement was flat as a 

function of ϕ. (see the middle panel of Figure 2.8) The spin echo dependence is usually 

fitted by the following function,  

P = P଴ + ܣ exp ቈ
(ϕ− ϕ଴)ଶ

ଶߪ2
቉ cos ൤

360
ܶ

(ϕ −ϕ଴)൨ 2.20 

where ܣ is the amplitude, ܶ is the period of the cosine function, and ߪ is the width of the 

Gaussian envelop. The amplitude (ܣ) of the spin echo is proportional to the intermediate 

scattering function, ܫ(ܳ,  Unlike the TOF scattering techniques, the spatial (ܳ) and .(ݐ

temporal (ݐ) information obtained from NSE experiments are completely decoupled and 

hence ܫ(ܳ,  :can be written as (ݐ

,ܳ)ܫ (ݐ = ݐܳ)ܫ = 0).  2.21  (ݐ)ݏ
where ܫ(ܳ, ݐ = 0) is the static structure factor and is usually estimated by a simple 

polarization analysis. In the case of non-magnetic experiments, determination of 

,ܳ)ܫ ݐ = 0) could be a simple exercise as measuring non-spin flip counts (ܰேௌி) and spin 

flip counts ( ௌܰி) of neutrons by turning on and off the ߨ-flipper without operating two 

solenoidal electromagnets. But in magnetic scattering experiments, three-directional 

neutron polarization measurements have to be performed using a XYZ-coil set, which is 

three pairs of orthogonal coils installed around the sample space. The experimental 

,ܳ)ܫ ݐ = 0) signal generally comes from nuclear coherent scattering, nuclear spin-

incoherent scattering and inefficiency of the instrument (polarizer, analyzer and flippers), 

as well as magnetic relaxations of the sample. Thus, a polarization analysis can be 

performed using six XYZ measurements (includes non-spin flip and spin flip count on each 

polarization direction) to estimate the magnetic contribution of ܫ(ܳ, ݐ = 0) as explained in 

Appendix E  . Moreover, measured ܫ(ܳ,  can be easily corrected for instrument resolution (ݐ

just by division as a consequence of being the Fourier transform of ܵ(ܳ,߱). For a magnetic 
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experiment, the instrument resolution is measured using a magnetic standard sample 

(usually Ho2Ti2O7) at base temperature.  

 

Spin Dynamics Simulations 
In order to study the dynamics of a given microscopic magnetic model, we consider the 

stochastic Landau-Lifshitz (LL) equation (Langevin equation) which describes the motion 

of a spin at position ݅ ( ௜ܵ): 

ܵ̇௜൫{ܵ}௜௝൯ =
݀ ௜ܵ

ݐ݀ = ]ߛ ௜ܵ × [௜ܨ − ]ߙߛ ௜ܵ × ( ௜ܵ × ௜ܨ         ;[(௜ܨ = ௜൫{ܵ}௜௝൯ܪ +  2.22 (ݐ)௜ߦ

where, ܨ௜ is the effective local field described by the microscopic Hamiltonian  ܪ௜ =
డு
డௌ೔

 and a stochastic field ߦ௜(ݐ) with the following properties, 

〈(ݐ)௜ߦ〉 = 〈(′ݐ)௝ߦ(ݐ)௜ߦ〉           ,0 =
஻ܶ݇ߙ2
௦ߤߛ

ݐ)ߜ −  ௜௝ 2.23ߜ(′ݐ

Here ܶ is the temperature, ߛ is the gyromagnetic ratio, ߤ௦ is the magnetic moment, and ߙ 

is the parameter describing the coupling to the heat bath of the system (phonon or electron 

system). The first term in Equation 2.22 is just the equation of motion of a spin ௜ܵ in a local 

field ܨ௜, while the second term is the damping term which is in accordance with the 

fluctuation-dissipation theorem. Equation 2.22 performs well on the systems in which its 

heat bath acts much faster than the spin systems. The bath degree of freedom can be 

replaced by a stochastic field with a white noise correlation function, and the bath coupling 

coefficient (ߙ) is determined by the fluctuation dissipation theorem [31]. Basically, the 

magnetization energy of the spin system is not conserved and will end up in an equilibrium 

state between coupling energy to heat bath and the ground state energy defined by its spin 

Hamiltonian. Thus, the final energy of the system depends on the temperature of the heat 

bath and the coupling constant. 

When the time scale of the magnetic relaxations becomes comparable to the electron 

relaxations, the assumption is not valid anymore, and it is necessary to redefine the 

stochastic field and the coupling constant. For strongly correlated systems, the phonon 

density is considerably low, and the electron system is pretty much frozen in time, or it has 
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very slow relaxations comparing to its magnetic counterpart in the low-temperature regime. 

Thus, it is reasonable to consider such a spin system as entirely decoupled from the heat 

bath (ߙ → 0). 

To compare with neutron scattering measurements, we need to calculate the dynamical 

structure factor, ܵ (ܳ,߱), for a given microscopic model at a given temperature. As the first 

step, we solve Equation 2.22 using the 4th order Runge-Kutta method: 

 

௜ܵ(ݐ + (ݐߜ = ௜ܵ(ݐ) +
ݐߜ
6

(݇ଵ + 2݇ଶ + 2݇ଷ + ݇ସ) +  (ହݐߜ)ߴ

݇ଵ = ܵ̇௜൫{ܵ}௜௝൯;     ݇ଶ = ܵ̇௜ ൬{ܵ}௜௝ +
݇ଵ
2 ൰ ;    ݇ଷ = ܵ̇௜ ൬{ܵ}௜௝ +

݇ଶ
2 ൰ ;    ݇ସ = ௜ܵ൫{ܵ}௜௝ + ݇ଷ൯ 

2.24 

 

where ݐߜ is the time interval between two consecutive MC steps and a value for ݐߜ has to 

be defined to keep the system energy conserved throughout the entire simulation. A smaller 

value of ݐߜ is usually better as it assures to maintain energy conservation, yet it costs more 

computational time. Thus, it is important to determine a proper value for  ݐߜ in which the 

interaction energies of the Hamiltonian and the spin size (S) are the main factors. The 

length of the simulation (total MC steps) and the sampling rate of spin configurations 

depend on the required ߱-resolution and maximum frequency (߱௠௔௫) respectively. 

Usually, each simulation is comprised of two consecutive processes, thermalization and 

dynamics. In the thermalization process, we used standard metropolis sampling on local 

magnetic energy to find a thermally stable configuration for a given temperature, starting 

from a completely random configuration. Once the system is thermally stable, a few 

percent of randomly selected spins in the final configuration would be flipped to emulate 

the neutron probing effect. Then, the spin dynamic simulation step starts, and the final 

configuration from the thermalization step would be used as the initial condition to solve 

Equation 2.22 numerically. In order to calculate the dynamical structure factor ܵ (ܳ,߱), we 

perform Fourier transform on the real space and time information ൛ ௜ܵ௝(ݐ)ൟ as explained 

below. 
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A simplified version of the dynamic structure factor can be written as: 

ܵ൫ ሬܳ⃗ ,߱൯ = ෍෍෍ expൣ−݅ ሬܳ⃗ . ൫⃗ݎ௝ − ௞൯൧ݎ⃗ exp[−݅߱(ݐ − [(′ݐ 〈 ௝ܵ
ఈ൫⃗ݎ௝, ൯ܵ௞ݐ

ఉ(⃗ݎ௞, 〈(′ݐ
௧,௧ᇱ௝௞ఈఉ

= ෍ܫఈ × ൫ܫఉ൯
ற

ఈఉ

 
2.25 

With neutron polarization factor, 

ܵ(ܳ,߱) = ෍൛ߜఈఉ − ෠݇ఈ ෠݇ఉ ൟ. ఈܫ × ൫ܫఉ൯
ற

ఈఉ

  2.26 

where,  

(߱,ܳ)௣ܫ =  ෍ expൣ−݅ܳ. ௝ܫ௝൧ݎ⃗
௣൫⃗ݎ௝,߱൯

௝

; ௝ܫ  
௣൫⃗ݎ௝,߱൯ = ෍ exp[−݅߱(ݐ)] ௝ܵ

௣൫⃗ݎ௝, ൯ݐ
௧

 2.27 

In Chapter 8  , we have used Equation 2.25 to calculate ܵ(ܳ,߱). In order to compare 

ܵ(ܳ,߱) with neutron scattering experiments, we need to include the magnetic form factors, 

 :of the corresponding magnetic species to our magnetic structure factor calculations ,(ܳ)ܨ

ሚܵ(ܳ,߱) = ൜
1
ܨ2݃

(ܳ)ൠ
ଶ

× ܵ(ܳ,߱) 2.28 

The full scattering cross-section for a spin system can be evaluated as shown below: [23]  

݀ଶߪ
݀Ω݀ܧᇱ = ଴ݎ

݇௙
݇௜
൜
1
ܨ2݃

(ܳ)ൠ
ଶ

exp[−2ܹ(ܳ)] × ܵ(ܳ,߱) × ᇱܧ)ߜ − ܧ − ℏ߱);   ݇௙ = ݇௜ + ܳ 2.29 

And the spin-spin correlation function can be calculated by, 

(߱,ݎ)ܵ = ෍ ෍ ௝ܫ
௣ × ൫ܫ௞

௣൯ற

௥ୀห௥ೕೖห௣

; ௝௞ݎ          = ௝ݎ −  ௞ݎ
2.30 

Thus, the on-site component ܵ଴, and nearest neighbor component ଵܵ are: 

ܵ଴(߱) = ෍෍〈 ௝ܵ
௣(߱)〉 × 〈 ௝ܵ

௣(߱)〉ற
௝௣

;        

ଵܵ(߱) = ෍෍〈 ௟ܵೕ
௣(߱)〉 × 〈ܵ௟ೖ

௣ (߱)〉ற
௟ೕೖ௣

;        
2.31 
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Chapter 3    
A Quasi-Two-Dimensional Magnetic 
System 

Motivation 
Since the low-temperature spin glass phase was first found in AuCo binary alloy, numerous 

experimental and theoretical investigations have been done to characterize this anomalous 

phase.  Subsequently, magnetic glass behavior was observed in many other magnetic 

materials ranging from geometrically frustrated magnets to superconductors. Some glass 

phases found in frustrated magnets shows unconventional spin-glass behaviors displaying 

nonergodic nature in the bulk susceptibility [32]  and short-range spin correlations but with 

a strongly momentum-dependent structure factor in neutron scattering [33]. Among many 

frustrated magnets, SrCr9pGa12-9pO19 (SCGO(p))  [33--41] and Ba2Sn2ZnGa3Cr7O22 

(BSZGCO) [39,42--44] are particularly interesting due to glassiness obtained from a quasi-

two-dimensional lattice in which the magnetic Cr3+ (3d3; ݏ = 3/2) ions form a kagome-

triangular-kagome trilayer. Moreover, both of these systems have higher degree of 

frustration as estimated by the frustration index, ݂ = |௖௪ߠ| ௙ܶ⁄ > 100. At this limit of 

frustration, a spin liquid is usually expected in the mean-field level, and it is inconsistent 

with the observed glass-like properties of these materials at low temperature (ܶ). 

 Since the discovery of SCGO more than two decades ago  [35], numerous experimental 

investigations have been performed to study its anomalous low temperature phase 

including bulk susceptibility  [32,35,45], specific heat  [32,37], muon spin relaxation (μSR)  

[38], nuclear magnetic resonance  [41,46], and neutron scattering [33]. A nonergodic nature 
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from Zero-field-cooled (ZFC) and field-cooled (FC) hysteresis was observed similar to the 

conventional spin glasses along with non-spin-glassy behaviors, such as a quadratic 

dependence of specific heat at low ܶ, ܥ௩ ∝ ܶଶ  [37], a linear dependence of the imaginary 

part of the dynamic susceptibility at low energies, ߯″(߱) ∝ ߱  [34], and a broad but 

prominent momentum dependence of the elastic neutron scattering intensity  [34]. The 

theoretical realization of the freezing mechanism and low-ܶ frozen state of SCGO has been 

a challenging problem in condensed matter physics. To review some of existing theoretical 

developments, a spin liquid with unconfined spinons or resonating valence bond state was 

proposed based on NMR and μSR studies [38,46], and many-body singlet excitations were 

also suggested to be responsible for the ܥ௩ ∝ ܶଶ behavior [37].  

Recently, an alternative scenario involving a spin jam state due to quantum fluctuations 

was proposed [4,5]. The spin jam of disorder free SCGO provided a qualitatively coherent 

understanding of all of the low-temperature behaviors including the complex energy 

landscape responsible for the frozen state  [5], and Halperin−Saslow (HS)-like modes for 

the ܥ௩ ∝ ܶଶ and ߯ᇳ(߱) ∝ ߱ behaviors  [5,15]. The materials that can clearly realize the 

spin jam state are rare, such as SCGO(p) and BSZGCO. More recently, a new quasi-two-

dimensional magnet BaCr9pGa12-9pO19 [BCGO(p)] isostructural to SCGO(p) by replacing 

Sr by Ba, was synthesized.  [47] In this chapter, we discuss the structure and experimental 

signatures of two spin jam materials, SCGO(p) and BCGO(p). Starting from basic 

characterization using bulk susceptibility, we discuss both quasi-elastic and inelastic 

neutron scattering experiments.  

Crystal Structure 
Neutron powder diffraction experiments were performed on SCGO(p) and BCGO(p) 

samples summarized in Table 3-1 at High-Resolution Powder Diffractometer (BT01), 

National Institute of Standards and Technology (NITS). Subsequent Rietveld refinements 

on powder diffraction data confirmed that SCGO and BCGO systems are isostructural and 

consistent with the previously published structure of SCGO(p = 0.925) [34]. Furthermore, 

all the diffraction patterns could be indexed by a single phase such that overall reduced ߯ଶ 

of refinements ranges from 2.1 to 4.9. (see Appendix A.4   for SCGO(p) and Appendix A.5   

for BCGO(p)). 
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As shown in Figure 3.1 (a), the Cr3+ ions in SCGO(p)/BCGO(p) occupy in three 

crystallographically distinct sites, denoted 12݇, 2ܽ and 4 ௩݂௜ , respectively. [34] The 12݇ 

site forms a slightly distorted kagome layer, whereas the 2ܽ site forms a triangular lattice. 

The 12݇ − 2ܽ − 12݇ block forms a triangular network of bipyramids. The 4 ௩݂௜  Cr3+ ions 

sit in between the Quasi 2D layers and 4 ௩݂௜ − 4 ௩݂௜  Cr3+ ions are likely to form spin dimers. 

[34,36]  The full structure of BCGO/SCGO is obtained by the stacking of spin dimers and 

the triangular network of bipyramids. Each Cr3+ ion is surrounded by a distorted octahedron 

of oxygen atoms. Oxygen octahedra of chromium ions in adjacent 4 ௩݂௜  planes share a 

common face, whereas the oxygen octahedra of neighboring 4 ௩݂௜  and 12݇ sites share a 

corner. For clarity, only selected oxygen atoms are shown in Figure 3.1 (b). 

 
Figure 3.1  The Crystal Structure of SCGO/BCGO system.  
 (a) The magnetoplumbite structure of SCGO(p)/BCGO(p) in which Cr3+ ions are arranged in 
three different crystallographic sites, 2ܽ, 12݇ and 4 ௜݂௩. The  12݇ − 2ܽ − 12݇ trilayers forms a 
triangular network of bipyramids and five different nearest neighbor (NN) bonds can be 
considered. (b) A block of Cr3+ ions showing a closer illustration of different NN bonds. Each 
Cr3+ is surrounded by a distorted octahedron of oxygen atoms. Here only selected oxygen atoms 
are shown for clarity. (c) The 4 ௜݂௩ − 4 ௜݂௩ layer in which Cr3+ ions are paired by face sharing 
octahedral ligand environments and forms spin-dimers. The Cr3+ dimers, M(Sr or Ba)  atoms and 
Ga atoms are arranged in triangular networks separately in such that M and Ga resides at the 
centers of neighboring triangle of spin dimers.   
 

The non-magnetic M (Ba or Sr) atoms reside in a triangular lattice between the 4 ௩݂௜  Cr3+ 

layers as shown in Figure 3.1 (c). In the clean limit (݌ → 1), the non-magnetic Ga atoms 
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reside in two distinct crystallographic sites, denoted by 2ܾ and 4݂, only. But the Ga atoms 

are more or less equally occupied in the Cr sublattices (12݇, 2ܽ and 4 ௩݂௜) in all the other 

doping levels (݌ < 1). (see Appendix A.4  and Appendix A.5  ) 

The lattice constants, true magnetic ion concentrations (p) and the Cr3+-Cr3+ bond distances 

for SCGO(p)/BCGO(p) samples are summarized in Table 3-1 in comparison to SCGO(p = 

0.925)  [34] and BSZCGO  [48]. As shown in Figure 3.1 (a), the bonding distance ݀ହ is 

defined as the length of the 4 ௩݂௜ − 4 ௩݂௜  spin dimer, ݀ଵ and ݀ଶ are the bonding distances in 

the 12݇ kagome layer, and ݀ସ is the bonding distance of 12݇ − 2ܽ. 
 

Table 3-1 Comparison of lattice constants and bond distances between Cr3+ ions in SCGO/BCGO 
As shown in Figure 3.1(a), ݀1 is the bonding distance of 4 ௩݂௜ − 4 ௩݂௜  spin dimer, ݀2 and ݀3 are the bonding 
distances in 12݇ kagome layer, and d4 is the bonding distance of 12݇ − 2ܽ, respectively. ܽ and ܿ are the 
lattice parameters. 

Sample ࢊ૞(Å) ࢊ૚(Å) ࢊ૛(Å) ࢊ૜(Å) a (Å) c (Å) 

SCGO(p=0.968(6)) 

SCGO(p=0.844(8)) 

SCGO(p=0.620(8)) 

SCGO(p=0.459(5)) 

SCGO(p=0.214(5)) 

BCGO(p=0.902(8)) 

BCGO(p=0.806(8)) 

BCGO(p=0.712(7)) 

BCGO(p=0.635(7)) 

BCGO(p=0.526(5)) 

BCGO(p=0.417(7)) 

SCGO(p=0.925)a     

BSZCGOb 

2.685(8) 

2.696(8) 

2.706(6) 

2.751(9) 

2.746(5) 

2.727(5) 

2.752(9) 

2.758(4) 

2.761(4) 

2.792(1) 

2.807(1) 

2.67 

— 

2.863(6) 

2.862(5) 

2.871(4) 

2.863(6) 

2.866(3) 

2.878(3) 

2.885(9) 

2.878(9) 

2.886(0) 

2.886(3) 

2.878(1) 

2.87 

2.885(6) 

2.930(6) 

2.933(5) 

2.926(4) 

2.932(6) 

2.927(3) 

2.926(3) 

2.919(7) 

2.927(5) 

2.920(9) 

2.920(8) 

2.928(5) 

2.92 

2.971(1) 

2.982(3) 

2.997(3) 

3.007(2) 

3.015(3) 

3.014(1) 

2.973(2) 

2.978(8) 

2.990(5) 

2.994(4) 

2.999(7) 

3.002(5) 

2.98 

2.963(0) 

5.7948(3) 

5.79447(3) 

5.79676(3) 

5.79566(3) 

5.79342(7) 

5.8037(4) 

5.8057(3) 

5.8064(8) 

5.8069(9) 

5.8071(9) 

5.8066(2) 

5.7954(1) 

5.8568(1) 

22.6625(2) 

22.7120(2) 

22.7541(2) 

22.7778(2) 

22.8033(3) 

22.8483(3) 

22.8726(6) 

22.8897(4) 

22.9074(3) 

22.9190(7) 

22.9317(3) 

22.6446(6) 

14.2537(3) 
 

a From Ref.  [34] . b From Ref.  [48]. 

Comparing BCGO(p = 0.902(8)) with SCGO(p = 0.925), the increase in the ܽ-axis lattice 

constant is (~0.1 %, 0.0083 Å), significantly smaller than that of the c-axis lattice constant 

(~0.9 %, 0.2037 Å), which leads to the reduced dimensionality in BCGO(p = 0.902(8)). 

Furthermore, the bonding distances in the triangular network of bipyramids (݀1, ݀2 and 

݀3) of BCGO(p = 0.902(8)) are almost the same as for SCGO(p = 0.925) (difference 
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smaller than 0.008 Å), but the bonding distance for spin dimers (݀ହ) in BCGO(p = 

0.902(8)) is obviously larger than that in SCGO(p = 0.925) with an increase of 0.057 Å. 

The increase in the ܿ-axis and ݀ଵ can be understood by the bigger atomic radius of Ba. As 

shown in Figure 3.1(c), Ba or Sr reside in between the 4 ௩݂௜  Cr3+ layers, the substitution of 

Sr by the bigger Ba atom will increase ݀ହ and further elongate the c-axis. Since Ba atoms 

do not occupy positions in the triangular network of bipyramids, the distances ݀ଵ, ݀ଶ, and 

݀ଷ, as well as the a-axis length are barely changed. Meanwhile, as we can see from Table 

3-1, ݀ହ and the ܿ-axis significantly increase with increasing Ga doping level (decreasing p 

value), and ݀ସ slightly increases but ݀ଵ, ݀ଶ and the length of the ܽ-axis barely change. 

As we observed from the refinement results of the neutron powder diffraction data, 

substitution of Sr by Ba leads to a significantly elongated ܿ-axis but the ܽ-axis as well as 

bonding distance of Cr3+ in the kagome plane are barely changed. Since the Cr3+−Cr3+ 

magnetic interactions are mainly due to the direct overlap of the ݐଶ௚  orbitals, the coupling 

constant is known to be sensitive to the distance between the neighboring Cr3+ ions. Thus, 

the magnetic interaction in BCGO(p) is expected to be stronger in the kagome plane than 

that of the layered triangular interplane, hence to be more two dimensional than in 

SCGO(p). 

Bulk Susceptibility Experiments 
We have measured DC magnetic susceptibilities, on both SCGO(p) and BCGO(p) samples 

in the temperature range from 20 K to 350 K. (see Figure 4.2 for SCGO(p) and see Figure 

(App.)   A.1 for BCGO(p)). All the 1/߯ − ܶ curves show clear linear dependences above 

150 K with similar values for the slope indicating that the Curie Constants C and effective 

moment per Cr3+ (ߤ௘௙௙) are p-independent. ߤ௘௙௙  is ~4.1 ߤ஻/Cr3+, close to the value 

expected for ݏ = 3/2 which is 3.87 ߤ஻. Moreover, the Curie-Weiss temperatures ߠ௖௪, 

extracted from the intercepts of linear fits to 1/߯ − ܶ data, are comparatively large 

reflecting the strong AFM interactions in these magnets. For example, |ߠ௖௪|~ 504.6 K and 

695 K for SCGO(p=0.968(6)) and BCGO(p=0.902(8)) samples respectively. (see Table 

(App.)  A-9)  
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Figure 3.2  Bulk susceptibility measurements of BCGO(p = 0.902(8))  
 (a) The bulk susceptibility measurements of BCGO(p = 0.902(8)) sample  including ZFC/FC DC 
magnetization measurements and AC magnetization measurements at four different probing 
frequencies (݂). The dash lines mark the cusp temperature ( ௙ܶ) of each magnetization curve. (b) 
஽ܶ௖/ ௙ܶ as a function of log (݂) for BCGO(p = 0.902(8)) along with four other magnetic glass 

systems: SCGO(p = 0.968(6)), CuMn2%, AuFe2% and Y2Mo2O7. The solid lines are the fits of ௙ܶ 
data to the function, log൫ ௙ܶ൯ = ݉ log(݂) + ܾ, where ݉ = ∆ ௙ܶ/ ൫ ௙ܶ  ∆ log(݂)൯. 
 

The low-temperature DC susceptibility measurements in the temperature range from 2 K 

to 20 K were performed while heating a sample followed by a continuous cooling process 

with or without an applied field of 0.01 T.  Most of the zero-field-cooled measurements 

shows a cusp at low temperatures below 5 K and the cusp temperature, ஽ܶ஼  decreases as 

the number of spin vacancies increases and was undetectable at Cr concentrations as low 

as p = 0.526(7) in our available temperature range (≥ 1.8 K). Thus, both  |ߠ௖௪| and ஽ܶ஼  

show nearly linear and decreasing dependences while corresponding frustration indices 

݂ = /|௖௪ߠ| ஽ܶ஼, show opposite behavior with increasing nonmagnetic Ga concentration. 

For example, the frustration index, ݂ increases from 140 to 195 for BCGO(p) while it 

increases from 135 to 155 for SCGO(p) as p decreases. (see Figure (App.)   A.4) The large 

frustration indices indicates that BCGO(p)/SCGO(p) magnets are highly frustrated and the 

behaviors of ஽ܶ஼  ௖௪ and ݂, are consistent with the prediction of recent theoretical workߠ ,

on a spin jam, which is classically a liquid, freezing in the clean limit (p → 1) into a glassy 

state induced by quantum fluctuations.  [4,5,49]  
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Moreover, all the systems except SCGO(p = 0.214(5)), show a bifurcation between zero-field 

cooled (ZFC) and field-cooled(FC) magnetization measurements below a finite temperature 

௜ܶ௥௥, implying a magnetic transition to a non-ergodic phase from a high temperature 

ergodic phase. (see Figure 4.3 and Figure (App.)   A.1 (b))For example, the ZFC-FC 

hysteresis were observed below the freezing temperature ஽ܶ஼ ≈ 5 K in the case of 

BCGO(p=0.902(8)) as shown in Figure 3.2 (a) and it is consistent with both previously 

published SCGO data  [32,35,37,50]  and the typical magnetic glass nature [7].  

The dilution effects of the SCGO(p)/BCGO(p) is not the primary focus of this Chapter 

instead study the magnetic glassy nature of BCGO(p)/ SCGO(p) in the clean limit (p → 1). 

However, we will discuss dilution effects of SCGO(p) extensively in Chapter 4  . Most of 

SCGO(p)/BCGO(p) samples at higher values of p contains a second phase of Cr2O3 which 

is one of the constituents used in the sample synthesis (see Appendix A.1   for more 

information). As verified by Neutron Diffraction measurements, BCGO(p = 0.902(8)) and 

SCGO(p = 0.968(6)) samples turned out to be a fairly clean with an undetectable amount 

of second phase, closer to the clean limit (p → 1). (see Appendix A.3  , A.4  , and A.5  ) 

Thus, we considered the BCGO(p=0.902(8)) and SCGO(p=0.968(6)) samples as potential 

candidates of the spin-jam and used them to study the low-temperature phase extensively 

using bulk susceptibility and neutron scattering spectroscopy. In the rest of the chapter, we 

will mainly focus on the experimental signatures of BCGO(p = 0.902(8)). 

The AC susceptibility, ߯஺஼  has also been measured on BCGO(p = 0.902(7)) sample at 

different frequencies (݂) values of applied AC field and zero static field conditions. As 

shown in the Figure 3.2(a), ߯஺஼  shows a cusp similar to the ZFC magnetization curve but 

the ߯஺஼  cusp temperatures ( ௙ܶ) are shifted to higher temperatures with increasing 

frequency. This behavior is an indication of having multiple relaxation time scales at the 

vicinity of the magnetic transition defined by ஽ܶ஼  and can be usually found in Spin Glasses, 

Cluster-Spin Glasses or Superparamagnets. The parameter, ∆ ௙ܶ/ ൫ ௙ܶ ∆ log(݂)൯ is generally 

used to distinguish different magnetic phases. [7] In Figure 3.2 (b), the ஽ܶ஼/ ௙ܶ is been 

plotted as a function of log(݂) and the parameter, ∆ ௙ܶ/ ൫ ௙ܶ ∆ log(݂)൯, can be directly 

extracted as the slope of the linear fits.  
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As summarized in the Figure 3.2 (b) legend, the BCGO(p = 0.902(8)) shows a slightly 

higher value for ∆ ௙ܶ/ ൫ ௙ܶ ∆ log(݂)൯ in comparison to the archetypical spin glasses 

CuMn2% or AuFe2%. This could be a signature of having a low temperature phase 

different from Spin Glass in the case of BCGO(p = 0.902(8)) and similar behavior is 

observed for the isostructural SCGO(p = 0.968(6)) and Y2Mo2O7, which  is a three 

dimensional frustrated magnetic. The frequency dependence of ௙ܶ will be discussed in 

much broader scale in Chapter 5  .  

Two-dimensionality of BCGO(p = 0.902(8)) and the 
isolated spin pairs 
To study magnetic excitations of BCGO(p = 0.902(8)),  we performed inelastic neutron 

scattering (INS) measurements on using the Disk Chopper Spectrometer (DCS) at NIST 

Center for Neutron Research (NCNR) with an incident wavelength of ߣ = 1.5 Å and  in 

the temperature range from 1.5 K to 300 K. 

Figure 3.3 (a) and Figure 3.3 (b) show contour maps of the neutron scattering intensity, 

 at T = 1.5 K and 192.7 K, respectively.  [51]  As shown in Figure 3.3 (a) and ,(߱,ܳ)ܫ

Figure 3.3 (b), ܫ(ܳ,߱) is dominated by two ridges, one at fixed wave-vector transfer, ܳ ≈

1.5 Åିଵ, and the other ridge at fixed energy transfer ℏ߱ = 16.5(1) meV, which are quite 

similar to what as observed in SCGO(p = 0.925) [34]. The ℏ߱ = 16.5(1) meV ridge is 

narrow in energy and non-dispersive as in SCGO(p = 0.925), and likely to arise from 4 ௩݂௜ −

4 ௩݂௜  spin dimers. Further clues come from finite temperature properties and our fitting 

results. To enhance sensitivity, we plot in Figure 3.3 (c) and Figure 3.3 (d) the 

ܳ −integrated intensity which probes the local spin fluctuation spectrum: ܫ(߱) =

∫ (߱,ܳ)ܫ ቂ ொ
|ி(ொ)|

ቃ
ଶ
݀ܳ/∫ ܳଶ݀ܳ. [52]  Corresponding to the ℏ߱ = 16.5(1) meV ridge 

shown in Figure 3.3 (a), the ܳ -integrated intensity ܫ(߱) at T = 1.5 K clearly exhibits a peak 

at ℏ߱ = 16.5(1) meV in Figure 3.3 (c). As shown in Figure 3.3 (d), at T = 192.7 K, the 

peak at ℏ߱ = 16.5(1) meV is weak but still observable. For comparison, the ܳ-integrated 

intensity of SCGO(p = 0.968(6)) at T = 1.5 K is also plotted in Figure 3.3 (c), which shows 

a similar peak at higher energy: ℏ߱ =18.6(1) meV. 
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Figure 3.3  Inelastic Neutron Scattering of BCGO(p = 0.902(8))  
Color image of neutron scattering intensity, ܫ(ܳ,߱), in BCGO(p = 0.902(8)) at (a) ܶ = 1.5 K 
and (b) T = 192.7 K. ߱ dependence of the Q-integrated neutron scattering intensity, ܫ(߱) =
ଶ݀ܳܳ[ଶ|(ܳ)ܨ|/(߱,ܳ)ܫ]∫ /∫ܳଶ݀ܳ at (c) ܶ = 1.5 K for BCGO(p = 0.902(8)) and SCGO(p = 
0.925), and (d) T = 192.7 K for BCGO (p = 0.902(8)). 
 

 Figure 3.4 (a) and Figure 3.4 (b) summarize the ܶ dependence of the excitation energy ܧ଴ 

and the resolution corrected full width at half maximum (FWHM) ܧ߂ of the 16.5(1) meV 

excitations. The elastic energy resolution is about 2 meV. These results were obtained by 

fitting the data, such as those in Figure 3.3 (c) and Figure 3.3 (d), with Gaussians. As shown 

in Figure 3.4 (a) and Figure 3.4 (b), ܧ଴ is T independent and ܧ/ܧ߂଴ < 0.2 even for ݇஻ܶ >

 ଴, indicating that the excitations originate from well-defined quantum states of isolatedܧ

spin clusters. 
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Figure 3.4  Temperature  dependence of dimer excitation in BCGO(p = 0.902(8))  
(a), (b) T dependence of the excitation energy and resolution corrected FWHM of the lowest 
energy inelastic peak in wave-vector integrated neutron scattering from BCGO(p = 0.902(8)). 
(c) Q- and ߱- integrated intensities of the 16.5 meV excitations versus T. The red solid line was 
calculated from Equation (1). (d) The Q dependence of the energy integrated neutron intensity 
at ܶ =1.5 K. In (c), the position and width of the peaks at each value of Q were fixed to the 
average obtained in individual fits. Blue dashed line in (c) shows the magnetic form factor of 
Cr3+, the red solid line is the calculated Q dependence of the neutron scattering cross-section in 
Equation 3.1. 
 

Similar dispersionless magnetic excitations in SCGO(p = 0.925), can be explained by a 

model of 4 ௩݂௜ − 4 ௩݂௜  spin dimers. To determine whether the model of isolated spin dimers 

works for BCGO(p = 0.902(8)), we perform a quantitative comparison of our data to the 

neutron scattering cross section for exchange-coupled pairs of ݏ = 3/2 Cr3+ ions in powder 

samples,  [53,54]  

݀ଶߪ
݀Ω݀ܧ′ = ଴ଶݎ

݇′
݇ ݖܰ

൜
1
ൠ(ܳ)ܨ2݃

ଶ

 
1
ܼ ቆ1 −

sin(ܴܳ)
ܴܳ ቇ

× ൤5ߜ(ℏ߱ − (ܬ + 8 exp ൬
ܬ−
݇஻ܶ

൰ߜ(ℏ߱ − (ܬ2 + 8 exp ൬
ܬ3−
݇஻ܶ

൰ߜ(ℏ߱ −  ൨(ܬ3
3.1 

where ܴ is the separation between spins in z spin dimers per formula units and ܼ = 1 +

3 exp(−ܬ/݇஻ܶ) + 5 exp(−3ܬ/݇஻ܶ) + 7 exp(−6ܬ/݇஻ܶ) is the partition function. The   
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ߜ −functions are for the corresponding dimmer excitations. Due to the energy limit of 

DCS, only the excitation from ground state to first excited state represented by  ߜ(ℏ߱ −  (ܬ

was observed in our experiments. The solid lines in Figure 3.4 (c) and Figure 3.4 (d) were 

calculated from Equation 3.1 by fitting only the distance between spins, ܴ, and using the 

number of spin dimers per formula unit z = 0.79(1) which was obtained from refinements 

of the neutron powder diffraction data. Both the ܳ dependence and the ܶ dependence of 

the intensity are perfectly accounted for by Equation 3.1. The parameter of ܴ = 2.75(5) Å 

was obtained from the fitting, corresponding to the bonding distance of each spin dimer. 

According to the diffraction data for BCGO((8)0.902 = ݌), the 4 ௩݂௜ − 4 ௩݂௜  spin pairs are 

separated by a distance of ݀5 = 2.72(7) Å (see the Figure 3.1 (a)) which is very close to 

the fitted parameter of ܴ = 2.75(5) Å. This confirms that the 4 ௩݂௜  Cr3+ ions form isolated 

spin dimers with an AFM coupling constant ܬ = 16.5(1) meV. 

Inelastic Neutron Scattering Spectrum 
To further investigate the INS spectrum of BCGO(p = 0.902(8)), we have performed more 

neutron time-of-flight (TOF) experiments similar to the previous section at four different 

initial wavelengths, 1.5 Å, 2.7 Å, 4.5 Å and 6 Å covering almost three decades of neutron 

transfer energy (ℏ߱) ranging 0.1 meV to 23 meV. All the measurement were done at ܶ =

 1.5 K on BCGO(p = 0.902(8)) in comparison to SCGO(p = 0.968(6)) and SCGO(p = 

0.736(6)) samples. Similar to the previous section, the ܳ −integrated intensity ܫ(߱) =

∫ (߱,ܳ)ܫ ቂ ொ
|ி(ொ)|

ቃ
ଶ
݀ܳଵ.଼ Åషభ

଴.ହ Åషభ /∫ ܳଶ݀ܳଵ.଼ Åషభ

଴.ହ Åషభ  was calculated for all the three samples and 

the corresponding imaginary part of dynamic susceptibilities, ߯ᇱᇱ(߱), were calculated by 

߯ᇱᇱ(߱) = ߨ ൜1 − ݁ି
ℏഘ
ೖಳ೅ൠ  where ݇஻ is the Boltzmann factor. (see Figure 3.5) To ,(߱)ܫ

combine multiple datasets with different instrumental energy resolutions (∆߱଴), each 

individual measurement has been normalized to ∆߱଴ and estimated the constant 

background for each dataset in order to match the intensities of the overlapping regions.  
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Figure 3.5  Entire neutron scattering spectrum of BCGO and SCGO systems 
The imaginary part of dynamic susceptibility ߯ᇱᇱ(߱) for BCGO(p = 0.902(8)), SCGO(p = 
0.968(6)) and BCGO(p = 0.736(6)) are calculated by combining Inelastic Neutron Scattering 
intensities measured at four different initial wave lengths, 1.5 Å, 2.7 Å, 4.5 Å and 6 Å. All the 
measurements were done at 1.5 K using a standard ILL Orange Cryostat on Disk Chopper 
Spectrometer (DCS), NCNR, NIST. The solid lines are the fits of each ߯ᇱᇱ(߱) to the Equation 3.1. 
 

The broad low energy signal of ߯ᇱᇱ(߱) implies that a distribution of characteristic spin 

relaxation rates, Γ, is present, which is common in glassy materials  [7]. A distribution of 

Γ would yield, 

߯ᇱᇱ(߱) ∝  න
߱

߱ଶ + Γଶ

୻೘ೌೣ

୻೘೙ 

݀Γ = ൤ି݊ܽݐଵ ൬
߱
௠௜௡߁

൰  − ଵି݊ܽݐ ൬
߱
௠௔௫߁

൰൨ 
 

3.1 
 

The entire inelastic scattering spectrum can be fit by the following function,  

߯′′(߱) = ܣ × ൤ି݊ܽݐଵ ൬
߱
ଵ߁
൰  − ଵି݊ܽݐ ൬

߱
ଶ߁
൰൨+ ܤ × ݁ି

(ఠିఠబ)మ
ଶఙమ +  ,ܥ

 

3.2 
 

The first term is for the relaxation dynamics and the second term fits the singlet to triplet 

excitation of the isolated dimers and third term fits the constant background. The solid lines 

in Figure 3.5 show the corresponding fits and Table 3-2 summarizes the fitting parameters. 

The upper bound of the distribution of spin relaxations, Γ௠௔௫  can be as high as 8.1(2) meV 

for BCGO(p = 0.902(8)) at 1.5 K, which is quite large comparing to the Γ௠௜௡ = 0.35(2) 

meV of the same dataset.  Quantitatively, Γ௠௔௫ and Γ௠௜௡ of BCGO(p=0.902(8)) and 
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SCGO(p = 0.968(6)) samples are comparable. Moreover, the low-energy spectrum of 

߯ᇱᇱ(߱) shows a suppression in both material by concluding both systems have similar the 

spin relaxation distributions at the clean limit ( ݌ → 1 ). But, an energy independent ߯ ᇱᇱ(߱) 

is expected for conventional spin glasses such as CuMn.  [7] Thus, this is a clear evidence 

that both BCGO(p=0.902(8)) and SCGO(p = 0.968(6)) belong to a different category of 

magnetic glass distinct from the conventional spin glass.  
 

Table 3-2 Fitting parameters of the inelastic spectrum of BCGO(p) and SCGO(p) samples. 
The dynamic susceptibility ߯ᇱᇱ(߱) of BCGO(p = 0.902(8)), SCGO(p = 0.968(6)) and SCGO(p = 
0.736(6)) samples has been fitted to the Equation 3.1, and the parameters Γ௠௔௫, Γ௠௜௡ and ߱଴ are 
summarized here.  

Parameter BCGO(p=0.902(8)) SCGO(p=0.968(6)) SCGO(p=0.736(6)) 

 0.027(3) 0.035(2) 2.54e-10 (meV) ࢔࢏࢓ࢣ

 8.1(2) 7.10(26) 4.6(2) (meV) ࢞ࢇ࢓ࢣ

࣓૙ (meV) 16.32(5) 18.82(4) 19.14(2) 
 

 

In contrast, the low-energy spectrum of SCGO(p = 0.736(6)) does not show a suppression, 

making the Γ௠௜௡  ≈ 0 within the  instrumental energy resolution of 25 μeV. The Γ௠௔௫ is 

also lower than in other two samples. Thus the entire spin relaxation rate distribution in 

SCGO(p = 0.736(6)) has moved towards longer times. This fact hints that the glassiness in 

the clean limit has been evolve into a distinct glass phase over dilution, leading to further 

investigations as a function of dilution, as discussed in Chapter 4  .  

Quasi-Elastic Neutron Scattering 

3.6.1  Neutron Time-of-Flight experiments 

To characterize the magnetic glass phase found in the clean limit of the quasi-2D network, 

we have done further analysis on the Neutron scattering data measured on SCGO(p = 

0.968(6)) at wavelength 6 Å and temperature of 1.5 K. The data exhibit a continuum 

spectrum centered in the vicinity of ܳ௠௔௫ ≈ 1.5 Åିଵ that corresponds to (2/3,2/3,1.8), 

confirming that the kagome−triangular−kagome trilayer is responsible for the low-energy 

dynamic spin correlations  [5]. (See Figure 3.6 (a)) This resembles the energy continuum 

expected for spin liquids or cooperative paramagnets; however, in contrast to a spin liquid, 
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in our system, static spin correlations develop below ௙ܶ as well. The ܳ − dependence of 

the elastic magnetic neutron scattering intensity, ܫ௘௟
௠௔௚(ܳ) = ,ܳ)௘௟ܫ 1.4 K) − ,ܳ)௘௟ܫ 20 K), 

was obtained with an energy window of |ℏ߱| ≤ 25 μeV, where the subtraction of the signal 

above the magnetic transition eliminates background from sources not related to the 

transition. As shown in Figure 3.6 (b), ܫ௘௟
௠௔௚(ܳ) exhibits a broad peak at ܳ ௠௔௫ = 1.49 Åିଵ. 

Its broadness indicates the short-range nature of the static spin correlations. Moreover, we 

fit ܫ௘௟
௠௔௚(ܳ) to a simple Lorentzian function, ܫ௘௟

௠௔௚(ܳ) ∝ 1/[HWHMଶ + (ܳ − ܳ௠௔௫)ଶ] 

where HWHM is the half width at half maximum of ܫ௘௟
௠௔௚(ܳ). As a measure of the static 

spin correlation length scale of the frozen state, we can use ߦுௐுெ
௣௢௪ௗ௘௥ = 1/HWHM. Note 

that the powder averaging would introduce extrinsic broadening to ܫ௘௟
௠௔௚(ܳ), and thus 

ୌ୛ୌ୑ߦ
௣௢௪ௗ௘௥ is underestimated, in comparison with the correlation length determined from 

single-crystal data, ߦୌ୛ୌ୑
௖௥௬௦௧௔௟ = 4.6(2) Å for SCGO(p ∼0.67)  [5] .  

 
Figure 3.6  Quasi-Elastic Neutron Scattering spectrum of  SCGO(p = 0.968(6)) 
(a) The contour map of neutron scattering intensity as a function of momentum and energy transfer, 
(b) Q dependence of the elastic magnetic scattering intensity and (c) The imaginary part of the 
dynamic susceptibility at low energies was obtained from the inelastic neutron scattering intensities 
measured at three different temperature for SCGO(p = 0.968(6)) are summarized here. The neutron 
scattering measurements were performed with incident neutron wavelength of 6 Å and ܶ = 1.4 K. 
The intensities were normalized to an absolute unit by comparing them to the (0,0,2) nuclear Bragg 
peak intensity. Nonmagnetic background at the elastic line was determined at 20 K while the 
temperature independent nonmagnetic background as a function of ߱ was estimated by comparing 
inelastic signals at the three different temperatures. The Solid line in (b) fits the ܫ(ܳ) to a simple 
Lorentzian while it is in (c), fits ߯ᇱᇱ(߱) to an arctangent. Dashed line and arrows in (b) represents 
the fitted FWHM and peak position, respectively. 
 

In order to study low-energy excitation more carefully, we present ߯ᇱᇱ(߱) for SCGO(p = 

0.968(6)) as a function temperature. Upon cooling in the cooperative paramagnetic state 
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from 20 K (≪ ∽) ௖௪| ) to 5 Kߠ| ௙ܶ ), ߯ᇱᇱ(ℏ߱) changes from being linear to almost flat (see 

Figure 3.6 (c)). The nearly ߱ −independent low-energy ߯′′ implies that a distribution of 

the characteristic spin relaxation rates, Γ, is present, which is common in glassy transitions  

[7]. For more quantitative analysis, we fit the data to a simplified version of Equation 3.1, 

߯ᇱᇱ(߱) ∝ tanିଵ(߱/Γ௠௜௡) where the rest of terms are ignored, since Γ௠௔௫(≫ 1 meV) is 

much larger than the ߱ −range of interest and the dimer excitation is also not present in 

this energy range.   

Cooling from the cooperative paramagnetic state (T = 20 K) to T = 6 K (~ ௙ܶ), the lower 

bound of the distribution of Γ decreases from Γ௠௜௡ > 1 meV to a very low value of 0.053(4) 

meV.  (See the blue and red solid lines in the Figure 3.6 (c)). Upon further cooling into the 

frozen state, however, ߯ᇳ(ℏ߱) exhibits hardening: The weight gets depleted and becomes 

linear at low energies (see the 1.4 K data), which is consistent with a previous neutron 

scattering study of SCGO( p = 0.92(5))  [33] . The 1.4 K data can still be fitted to ߯ᇳ(߱) ∝

tanିଵ(߱/Γ௠௜௡) with Γ௠௜௡ = 0.25(3) meV, which indicates that a distribution of Γ is still 

present but with the larger minimum cutoff than that of 6 K. Also, for ℏ߱ ≲ 2Γ௠௜௡, ߯ᇳ(߱) 

is linear with ߱ implying a glass phase different from conventional spin glasses in which 

low energy spin dynamics shows ߱ − independent behavior. 
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3.6.2  Neutron Spin Echo experiments 

The lowest energy resolution can be achieved in a standard direct geometry time-flight 

(TOF) spectrometer is about one-tenth of a meV which is corresponding to pico-second 

relaxations. On the other hand, one always has to trade intensity for the energy resolution 

in TOF spectrometer, and it is not easy to achieve μeV energy resolutions from standard 

TOF spectrometers. To overcome this challenge, the Neutron Spin Echo spectroscopy was 

invented by Mezei in 1972 [30] in which we have access to nanosecond regime of 

relaxation time. For magnetic glasses, slow relaxation studies are important, especially in 

nanosecond timescales for proper characterization.  [55--57]  

 In order to investigate nanosecond regime of relaxation time in spin jam state, we have 

performed Neutron Spin Echo measurements on BCGO(p = 0.902(8)) at Neutron Spin 

Echo (NSE) spectrometer, NIST with a neutron beam of wavelength ߣ = 6 Å  and 

bandwidth ∆20% = ߣ/ߣ, covering the dynamic range of 3 ps to 10 ns. For the 

measurements in the range of Fourier time (ݐ), 0.05 ns ≤ ݐ ≤ 10 ns, a single coil setting 

was used for NSE electromagnets while a two-concentric coil setting in which the two 

concentric coils operates in opposite fashion to produce a small but stable effective 

magnetic field at the center, was used to access the faster dynamics in the range of 3 ps ≤

ݐ ≤ 0.01 ns.  

In the NSE spectroscopy, we measure intermediate scattering function, ܫ(ܳ,  in reciprocal (ݐ

space and real time which is the temporal Fourier Transformation of usual scattering 

function ܵ(ܳ,߱). Moreover, we can get rid of instrument resolutions from a measurement 

just by dividing it by the resolution function measured on a magnetic standard sample as 

an advantage of working in Fourier space of ܵ(ܳ,߱). Here we estimated instrument 

resolution by measuring a Ho2Ti2O7 sample at ܶ = 1.5 K. BCGO(p = 0.902(8)) was first 

measured for ܫ(ܳ, ݐ = 5 ns) as a function of the wavevector (ܳ) in the 0.1 Åିଵ ≤ ܳ ≤

1.5 Åିଵ range and observed a broad peak centered around ܳ ≈ 1.5 Åିଵ similar to the 

previous Neutron TOF measurement shown in Figure 3.6 (a) and decided to fix Q at 

1.5 Åିଵ where the maximum signal observed.  
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Figure 3.7  Neutron spin echo spectroscopy of BCGO(p = 0.902(8)) 
(a) The normalized intermediate scattering function, ܫ(ܳ௠ , ௠ܳ)ܫ/(ݐ , 0), where ܳ௠ was fixed at 
1.5 Åିଵ, of BCGO(p = 0.902(8)) was measured  as a function of Fourier time, ݐ, at four different 
temperatures of 1.5 K, 3 K, 5 K and 10 K. The measurements were taken using the NSE 
spectrometer at NIST in the Fourier time range of 3 ps ≤ ݐ ≤  10 ns. All the ܫ(ܳ௠ , ௠ܳ)ܫ/(ݐ , 0) 
were fitted to the function ܫ(ܳ௠ , ௠ܳ)ܫ/(ݐ , 0) = ܣ ∗ exp[−ݐ଴.ଶ/ τ] where τ is the relaxation time. 
(b) summarizes the estimated τ (blue) and ܶ × log(߬) (red) as a function of temperature (ܶ). The 
red dash line is a linear fit to the ܶ × log(߬) data above the magnetic transition temperature ஽ܶ஼  ~ 
4.9 K while the blue dash line just connects data points. 
 

Figure 3.7 (a) shows ܫ(ܳ,  measured on BCGO(p = 0.902(8)), as a function of Fourier (ܶ,ݐ

time, ݐ at a fixed ܳ = 1.5 Åିଵ and four temperature 1.5 K, 3K, 5 K and 10 K. All the 

measurements have been normalized by the total magnetic scattering ܫ(ܳ, ݐ = 0,ܶ) 

calculated from the six polarization measurements done after each neutron echo scans. 

During the polarization measurements the electromagnets of the spectrometer was turned 

off and the neutron polarization along three orthogonal directions (X,Y and Z) were 

selected by the XYZ orthogonal coil set located at the sample space. ܫ(ܳ, ݐ = 0,ܶ) was 

determined by a subsequent polarization analysis as described in Appendix E  . The 

,ܳ)ܫ ,ܳ)ܫ/(ݐ ݐ = 0) can be interpreted as the static/frozen moment of the system below a 

certain relaxation time ݐ. Note that all the relaxation slower than ݐ will be accounted as 

static in elastic Neutron Scattering spectroscopy. Thus, as shown in the Figure 3.7 (a), only 

60% of magnetic moment are frozen at 1.5 K. From inelastic neutron scattering 

measurements, we know that there is singlet to triplet excitations at 16.1 meV which also 

shows maximum at ܳ~1.5 Åିଵ. Therefore, it might be reasonable to normalize 

,ܳ)ܫ ,ܳ)ܫ/(ݐ ݐ = 0) by a factor of 7/9 which is the ratio of Cr3+ ions reside in the trilayer 

to the total Cr3+ ions, yet we can recover only up to 80% of total moment. The missing 
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magnetic moment might be responsible for quantum fluctuation and the thermal 

fluctuations at 1.5 K. Unlike the conventional spin glass CuMn, this magnet does not show 

an exponential decay in the nanosecond regime instead a nearly constant trend implying 

the relaxation time distribution is quite different from spin glasses.  [56,57]  

For a detailed analysis, we have fitted ܫ(ܳ. ,ܳ)ܫ/(ݐ ݐ = 0) at each ܶ using a stretched 

exponential line-shape, (ݐ)ݏ = ௜ݏ exp൫−(ݐ/߬)ఉ൯ which describes well the observed slow 

decay, with a fixed value ߚ = 0.2 .  [39] Here ߬ is the characteristic relaxation time and 

summarized in Figure 3.7 (b) (see blue markers) as a function of ܶ. Apparently, ߬(ܶ) above 

஽ܶ஼  ~ 4.9 K follows Arrhenius law, ߬ = ߬଴ exp ቂ ாೌ
௞ಳ்

ቃ, where ܧ௔  is the thermal activation 

energy and ߬଴ is the characteristic time for Korringa relaxation at high temperature. As 

shown in Figure 3.7 (b), we fit ܶ × log[߬(ܶ)] as a function of ܶ above ஽ܶ஼  ~ 4.9 K to a 

straight line in which the intercept directly measures ܧ௔/݇஻. The estimated ܧ௔/݇஻  ~ 132 

K and it is consistent with energy scale defined by |ߠ௖௪|. Similar thermally activated nature 

in the energy scale of |ߠ௖௪| which represents the averaged interaction energy of the system, 

can be usually expected in magnetic phases with correlated dynamics such as spin liquids. 

Thus, it confirms that the magnetic phase at the proximity to the low temperature magnetic 

transition defined by ஽ܶ஼  in BCGO(p = 0.902(8)) is liquid like or cooperative paramagnetic 

and the deviation from Arrhenius law below ஽ܶ஼  is an indication of magnetic transition to 

a different magnetic phase in which relaxation time distribution is different from 

conventional spin glasses.  
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Discussion and Conclusions 
In summary, we synthesized a new frustrated chromate BCGO(p) over a wide range of the 

Cr concentration 0.4 ≲ p ≲ 0.9. Our neutron powder diffraction data show that BCGO(p) 

is isostructural to SCGO(p) but with a much larger c lattice constant. Our bulk magnetic 

susceptibility data show that BCGO(p) exhibits similar glassy behavior as SCGO(p) at low 

temperatures with a higher freezing temperature ௙ܶ than SCGO(p). The frustration index 

/|௖௪ߠ| ௙ܶ is as high as 135 for BCGO(p = 0.902(8)) indicating strong frustration. Similar 

to SCGO(p = 0.925), inelastic neutron scattering shows that BCGO(p = 0.902(8)) has a 

dispersionless magnetic excitation centered at ℏ߱ = 16.5(1) meV, which is due to the 

singlet to triplet excitation of spin dimers formed by two ݏ = 3/2 spins of two neighboring 

4 ௩݂௜  layers that exist in between 12݇ − 2ܽ − 12݇ trilayers. The formation of the spin 

dimers in the 4 ௩݂௜  layers effectively makes the 12݇ − 2ܽ − 12݇ trilayers excellent quasi-

2D magnetic lattices. This also tells us that the kagome-triangular-kagome (12݇ − 2ܽ −

12݇) trilayers or the triangular network of bipyramids are responsible for the freezing 

behavior at low temperatures observed in bulk magnetic susceptibility (see Figure 3.2 (b)) 

and the low energy continuum behavior in inelastic neutron scattering (see Figure 3.6 (a)). 

Moreover, we have performed neutron time-of-flight experiments with several different 

neutron wavelengths and observed the inelastic neutron scattering spectrum over a broad 

range of excitation energy, and the imaginary part of magnetic susceptibility can be 

modeled with a simple bounded distribution of relaxation time in which upper bound can 

be high as 8 meV at the transition temperature ( ஽ܶ஼) while lower bound can be as low as 

0.053(4) meV. Over further cooling, we observed a suppression of intensity at low energies 

by indicating a magnetic glass phase distinct form spin glasses  [7] as confirmed by Neutron 

Spin Echo experiments. In the Neutron Spin Echo experiments, we observed thermally 

activated behavior above ஽ܶ஼  concluding the low temperature magnetic transition is from 

liquid like phase to an exotic magnetic glass phase (spin jam).  
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Chapter 4    
Crossover from Spin Jam to Spin Glass 
upon dilution in SCGO(p) 

Motivation 
In the previous chapter, we discussed quasi-two-dimensional antiferromagnetic systems 

SCGO(p)/BCGO(p) which shows magnetic glass-like freezing at low temperatures along 

with unconventional spin glass properties. Defects and frustration have been discussed as 

the freezing mechanism of this material similarly in canonical dilute spin glasses.  [58] 

Recently, an alternative freezing mechanism in which a spin jam state is induced by 

quantum fluctuations at low temperature, was proposed for a disorder-free quasi-2D ideal 

SCGO lattice with a simple nearest neighbor (NN) spin interaction Hamiltonian, ܪ =

ܬ ∑ ௜ܵ. ௝ܵேே   [4,5]. The spin jam framework provided a qualitatively coherent understanding 

of all of the low-temperature behaviors such as that a complex energy landscape is 

responsible for the frozen state without long-range order  [5], and Halperin−Saslow (HS)-

like modes for the ܥ௩  ∝ ܶଶ and ߯ᇳ(߱) ∝ ߱ behaviors  [5,15]. In this system, which we 

refer to as the ideal SCGO model (iSCGO), semiclassical magnetic moments (or spins) are 

arranged in a triangular network of bipyramids and interact uniformly with their NN  [4,5]. 

The microscopic mechanism for the spin jam state is purely quantum mechanical. The 

system has a continuous and flat manifold of ground states at the mean field level, including 

locally collinear, coplanar, and noncoplanar spin arrangements. Quantum fluctuations lift 

the classical ground state degeneracy (order by fluctuations), resulting in a complex rugged 

energy landscape that has a plethora of local minima consisting of the locally collinear 

states separated from each other by potential barriers [5]. Although the work of ref. [5] 
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dealt with a similar phase space constriction by quantum fluctuations as the aforementioned 

other theoretical works did, we would like to stress here the difference between the two: 

whereas the other works mainly focused on the selection of the long-range ordered (LRO) 

energetic ground state, the work of ref. [5] showed that the short-range-ordered (SRO) 

states that exist at higher energies are long-lived, dominate entropically over the LRO 

states, and govern the low-T physics.  

The introduction of non-magnetic impurities into a topological spin jam state will break 

some of the constraints in the system, and may possibly allow local transitions between 

minima, with a time scale dependent on the density of impurities. And at a sufficiently high 

vacancy concentration, the system will exit the spin jam state and will become either 

paramagnetic or an ordinary spin glass at lower temperatures. Here we try to identify and 

explore the spin jam regime in an experimentally accessible system. The three most 

important signatures we seek for the existence of a spin jam state different from 

conventional spin glass states and spin ice are (݅) linear dependence of the imaginary part 

of the dynamic susceptibility at low energies, ߯"(߱) ∝ ߱, (݅݅) intrinsic short-range static 

spin correlations, and (݅݅݅) insensitivity of its physics to nonmagnetic doping in the clean 

limit. In this chapter, we provide experimental demonstration of these properties. 

 

Experiments as a function of dilution (p) 
We have performed elastic and inelastic neutron scattering that directly probe spin-spin 

correlations and bulk susceptibility measurements on SCGO(p) with various values of p 

over 0.2 ≲ ≳  ݌  1.0  spanning almost the entire region of p. To first characterize the 

samples and to construct the T-p phase diagram, we have performed dc magnetic 

susceptibility, ߯௕௨௟௞ , and elastic neutron measurements. 

The data obtained from the samples with p = 0.968(6), 0.917(9), 0.844(8), 0.777(6), 

0.620(8), 0.459(5) and 0.228(5) are shown in Figure 4.3. For all the samples except p = 

0.228(5), ߯௕௨௟௞  exhibits similar field-cooled and zero-field-cooled hysteresis below ௙ܶ 

ranging from 3.68 K (p = 0.968(6)) to 1.06 K (p = 0.459(5)) that are much lower than their 

large Curie-Weiss temperatures |Θ஼ௐ| ranging from 504 K (p = 0.968(6)) to 161 K (p = 
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0.459(5)) (see Figure 4.2). The high frustration index ݂ =  |஀಴ೈ|
்೑

 ≳ 130 indicates the 

strong presence of frustration in all the systems. Elastic neutron scattering intensity with 

an instrumental energy resolution of |ℏ߱| ≤ 25 μeV starts developing at temperatures 

higher than their ௙ܶ determined by ߯௕௨௟௞ , as is expected for spin freezing for measurements 

with different energy resolution  [59] . Figure 4.1 summarizes the results obtained from all 

the samples studied. 

 

 

 
Figure 4.1  The p-T phase diagram of SCGO(p)  
The p-T phase diagram of SCGO(p) constructed by bulk susceptibility and elastic neutron 
scattering measurements on powder samples with various p values. The freezing temperatures, 
௙ܶ , marked with blue square and black circle symbols are obtained by bulk susceptibility and 

elastic neutron scattering measurements, respectively. Filled blue squares represent the data 
obtained from samples whose crystal structural parameters including the Cr/Ga concentrations 
were refined by neutron diffraction measurements (see Figure (App.)   A.2 and Table (App.)  A-1 
to Table (App.)  A-4), and open blue squares represent samples with nominal p values. For 
nominal p = 0.2, no freezing was observed down to 50 mK (see Figure 4.3).  
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4.2.1  High-Temperature behavior as a function of p 

 

 
Figure 4.2  Reciprocal bulk magnetic susceptibility of SCGO (p).  
Reciprocal high-Temperatre DC susceptibility of SCGO(p), where p is the range of 0.228(5) ≤ p 
≤ 0.960(9). The straight lines are the linear fitting at T > 150 K. The inset shows the ߆஼ௐ  values 
obtained by Curie-Weiss fitting. 

 
 

Figure 4.2 shows the reciprocal susceptibility as a function of temperature (1/߯ vs ܶ) 

measured in a 0.1 Tesla field over a temperature range of 2 – 300 K. The Curie-Weiss 

temperatures (߆஼ௐ) were extracted by fitting the 1/߯ − ܶ curves at ܶ  > 150 K with Curie-

Weiss law (߯ = ܶ)/ܥ − ஼ௐ߆ ஼ௐ)). The߆  values range from -72 to -504 K, reflecting the 

strong anti-ferromagnetic interactions in the system. As shown in the Figure 4.2 inset, 

 .஼ௐ| decreases gradually with decreasing Cr concentration from p =0.960(9) to 0.228(5)߆|

(see Table (App.)  A-9)  
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4.2.2  Low-temperature magnetic susceptibility and elastic 
neutron intensity. 

 

 
Figure 4.3 Order parameters of SCGO(p). 
Temperature-dependent magnetic susceptibility (blue solid squares) in H = 0.01 T and the wave 
vector averaged magnetic elastic neutron scattering intensity (black open circles) for SCGO 
[0.459(5) ≤ p ≤ 0.968(6)] samples: (a) p = 0.968(6), (b) p = 0.917(9), (c) p = 0.844(8), (d) p = 
0.736(6), (e) p = 0.620(8), (f) p = 0.459(5), and (g) p = 0.228(5). The black dash lines indicate the 
background.  
 

The low-temperature magnetic susceptibilities were measured in a field of 0.01 Tesla in 

the temperature range from 0.5 K to 14 K, as shown in Figure 4.3 (blue squares). The 

susceptibility increases with decreasing temperature, exhibiting a low-temperature upturn. 

With further decreasing temperature, a divergence between the field-cooled (FC) and zero-
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field-cooled (ZFC) susceptibility, which is the typical behavior of spin-glass transition, was 

observed for all the six samples. The freezing temperature ௙ܶ was determined as the 

temperature of the maximum susceptibility for the ZFC curve, where the divergence 

between FC and ZFC susceptibility also occurs. ௙ܶ decreases with decreasing Cr 

concentration. Above ݂ܶ, no difference was observed between FC and ZFC susceptibilities 

for all the samples. 

 

4.2.3  Quasi-Elastic Neutron Scattering 

The wave vector averaged magnetic elastic neutron scattering intensities normalized to the 

maximum intensity as a function of temperature are also shown in Figure 4.3(open circles). 

Neutron scattering data were obtained using the cold-neutron DCS at the NCNR with λ = 

6.0 Å. The temperature of the onset of magnetic neutron intensity is higher than the freezing 

temperature observed in bulk magnetic susceptibility data and decreases with decreasing 

Cr concentrations exhibiting a similar behavior to the one observed in the susceptibility 

data. 

We observe strikingly different behaviors in the low energy spin dynamics of the p = 

0.968(6) and 0.459(5) despite the similar temperature dependences of ߯௕௨௟௞  and of elastic 

neutron scattering intensity. As shown in Figure 4.4 (a), in the frozen state of p = 0.968(6), 

the inelastic neutron scattering intensity ܫ(ܳ,ℏ߱) is weak at very low energies below 0.25 

meV and gets stronger as ℏ߱ increases. In contrast, in the frozen state of p = 0.459(5), 

 is strong at very low energies below 0.25 meV and gets weaker as ℏ߱ increases (ℏ߱,ܳ)ܫ

(see Figure 4.4 (f)). This stark difference hints that the frozen states of p = 0.968(6) and 

0.459(5) are different in nature. The change of ܫ(ܳ,ℏ߱) at very low energies below 0.25 

meV is gradual with decreasing p and manifest when p = 0.777(6), indicating that a 

transition to a different frozen state occurs between p = 0.776(6) and 0.844(8). 
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Figure 4.4  Contour maps of neutron scattering intensity I(Q,ω) 
Contour maps of neutron scattering intensity ܫ(ܳ,߱) as a function of energy transfer ℏ߱ and 
momentum transfer ܳ for (a) p = 0.968(6) at T = 1.4 K, (b) p = 0.917(9) at T = 1.4 K, (c) p = 
0.844(8) at T = 1.4 K, (d) p = 0.777(6) at T = 1.4 K, (e) p = 0.620(8) at T = 1.4 K  and (f) p = 
0.459(5) at T = 0.27 K with λ = 6 Å. Intensities were normalized to an absolute unit by scale factors 
obtained from the (0,0,2) nuclear Bragg peak intensity. 

 
Moreover, the data exhibits a continuum spectrum centered in the vicinity of ܳ௠௔௫ ≈

1.5 Åିଵ that corresponds to (2/3,2/3,1.8), confirming that the kagome-triangular-kagome 

trilayer is responsible for the low energy dynamic spin correlations. This resembles the 

energy continuum expected for spin liquids; however, in contrast to a spin liquid, in our 

system static spin correlations develop below ௙ܶ as well. The Q-dependence of the elastic 

magnetic neutron scattering intensity, ܫ௘௟
௠௔௚(ܳ) = ,ܳ)௘௟ܫ −(ܭ1.4 ,ܳ)௘௟ܫ  was ,(ܭ20

obtained with an energy window of |ℏ߱| ≤ 25 μeV, where the subtraction of the signal 

above the magnetic transition eliminates background from sources not related to the 

transition. As shown in Figure 4.5, for p = 0.968(6), very close to the clean limit, ܫ௘௟
௠௔௚(ܳ) 

exhibits a broad peak at ܳ௠௔௫ = 1.49 Åିଵ. Its broadness indicates the short-range nature 

of the static spin correlations. Surprisingly, upon increasing nonmagnetic impurity 
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concentration up to about 20% (p ~ 0.8), the shape of ܫ௘௟
௠௔௚(ܳ) remains the same. Only 

upon further doping, ܫ௘௟
௠௔௚(ܳ) becomes broader, and the peak position ܳ௠௔௫(݌) starts 

shifting down. 

 
Figure 4.5 Neutron Scattering study on SCGO(p) 
(a) Q-dependence of the elastic magnetic scattering intensity measured for various values of p at 
1.4 K, except for p = 0.459(5) at T = 0.27 K. Nonmagnetic background was determined at 20 K 
and subtracted. Solid lines are fits to a simple Lorentzian. Dashed lines and arrows represent the 
fitted Full-Width-of-Half-Maximum (FWHM) and peak positions, respectively. (b) The peak 
position and the power static spin correlation length, ߦுௐுெ

௣௢௪ௗ௘௥ , that were obtained from the fits, are 
plotted as a function of p. (c) The fraction, ݂, of the contribution from the single Lorentzian to the 
dynamic susceptibility ߯ᇱᇱ(ℏ߱), as shown in Fig. 4, is plotted as a function of p. 

 
To quantitatively investigate the correlation length (݌)ߦ and peak position ܳ௠௔௫(݌)  as a 

function of p, we fit ܫ௘௟
௠௔௚(ܳ) to a simple Lorentzian function for each p, ܫ௘௟

௠௔௚(ܳ) ∝
ଵ

ுௐுெమା(ொିொ೘ೌೣ)మ
 where HWHM is the half-width-half-maximum of ܫ௘௟

௠௔௚(ܳ). As a 

measure of the static spin correlation length scale of the frozen state, we can use ߦுௐுெ
௣௢௪ௗ௘௥ =

ଵ
ுௐுெ

. Note that the powder averaging would introduce extrinsic broadening to ܫ௘௟
௠௔௚(ܳ), 

and thus ߦுௐுெ
௣௢௪ௗ௘௥  is underestimated, in comparison to the correlation length determined 



63 
 

 
 

from single crystal data, ߦுௐுெ
௖௥௬௦௧௔௟ = 4.6(2) Å for SCGO(p ~ 0.67)  [4]. But the p-

dependence of ߦுௐுெ
௣௢௪ௗ௘௥  serves our search for an intrinsic state. 

The resulting ߦுௐுெ
௣௢௪ௗ௘௥  and ܳ௠௔௫ are shown in Figure 4.5 (b).  Remarkably, both ߦுௐுெ

௣௢௪ௗ௘௥  

and ܳ௠௔௫ exhibit a flat behavior near the clean limit up to 20 % doping, which is a direct 

evidence for the existence of a distinct phase over 1 < p < 0.8 where the intrinsic short-

range static correlations are independent of nonmagnetic doping. This can be naturally 

described as a spin jam state at the clean limit. A spin jam state can be intrinsically short 

range, and has an intrinsic static correlation length, ߦ௜௡௧. Thus, when nonmagnetic doping 

is low and the typical distance between the nonmagnetic impurities is larger than ߦ௜௡௧ the 

spin correlations do not get affected. Only upon significant doping, the spin correlations 

would get disturbed to make (݌)ߦ shorter than ߦ௜௡௧ when typical distance between 

impurities is short. 

If the p > 0.8 phase is distinct from the lower p < 0.8 phase, then the low energy spin 

excitations in those two phases should have different characteristics. To see this, we show 

in Figure 4.6 the imaginary part of the dynamic susceptibility ߯ᇱᇱ(ℏ߱). For p = 0.968(6), 

upon cooling in the cooperative paramagnetic state from 20 K (≪ |Θ஼ௐ|) to 5 K (~ Tf ) 

߯ᇱᇱ(ℏ߱) changes from being linear to almost flat [see Figure 4.6 (a)]. The nearly ߱-

independent low energy ߯ᇱᇱ implies that a distribution of the characteristic spin relaxation 

rates, Γ, is present, which is common in glassy transitions. (1) A distribution of Γ would 

yield ߯ᇱᇱ(߱) ∝ ∫ ఠ
ఠమା୻మ

୻೘ೌೣ
୻೘೔೙

݀Γ = tanିଵ ఠ
୻೘೔೙

 where a term, tanିଵ ఠ
୻೘ೌೣ

, is ignored since 

Γ௠௔௫ ≫ 1 meV, much larger than the ߱-range of interest.  Fitting the ܶ = 6 K ∽ ௙ܶ data 

to the model yields a distribution of Γ with Γ௠௜௡ = 0.053(4) meV [see the red solid line in 

Figure 4.6 (a)]. 

Upon further cooling into the frozen state, however, ߯ᇱᇱ(ℏ߱) exhibits hardening: the 

weight gets depleted and becomes linear at low energies (see the 1.4 K data), which is 

consistent with a previous neutron scattering study of SCGO(p = 0.92(5))  [33]. The 1.4 K 

data can still be fitted to ߯ᇱᇱ(߱) ∝ tanିଵ ఠ
୻೘೔೙

 with Γ௠௜௡ = 0.25(3) meV, which indicates 
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that a distribution of Γ, is still present, but with the larger minimum cutoff than that of 6 K. 

And for ℏ߱ ≲ 2Γ௠௜௡, ߯ᇱᇱ(߱) is linear with ߱. 

 
Figure 4.6 χ''(ω) as a function of temperature and p. 
The imaginary part of the dynamic susceptibility ߯ᇱᇱ(ℏ߱) at low energies was obtained from the 
inelastic neutron scattering intensities at several different temperatures for various values of p: (a) 
p = 0.968(6), (b) p = 0.917(9), (c) p = 0.844(8), (d) p = 0.777(6), (e) p = 0.620(8) and (f) p = 
0.459(5). In (a), the red solid line is the result of fitting the 6 K ~ ௙ܶ data to ߯ᇱᇱ(ℏ߱) ∝ tanିଵ ఠ

୻೘೔೙
 

with Γ௠௜௡ = 0.053(4) meV. In (a)-(f), the black solid line is the result of fitting the lowest 
temperature data to ߯ᇱᇱ(߱) ∝ ቀtanିଵ ఠ

୻೘೔೙
+ ݂ ⋅ ఠ

ఠమା୻ಽ
మ ቁ. The dotted and dashed lines are the 

contributions from arctan and Lorentzian, respectively. In (a) and (b), ݂ = 0 and the dotted line is 
under the solid line. For all p, Γ௠௜௡ was determined to be Γ௠௜௡ = 0.25(3) meV. Γ௅ was determined 
from the p = 0.459 data to be Γ௅ = 0.166(3) meV and fixed to the value for all other p. 
Contributions of each of the two terms, tanିଵ ఠ

୻೘೔೙
 and the single Lorentzian, ఠ

ఠమା୻ಽ
మ, are plotted as 

the dotted and the dashed line, respectively. 
 

For p = 0.459(5), on the other hand, we observe a fundamentally different behavior in the 

frozen state: as shown in Figure 4.6 (f), below freezing, rather than hardening, the spectral 

weight at low frequencies ߯ᇱᇱ(ℏ߱) exhibits a prominent increase peaked at ~ 0.2 meV. 

Obviously, the data cannot be reproduced by tanିଵ ఠ
୻೘೔೙

 alone. Instead it behaves more like 

a Lorentzian with one characteristic relaxation rate, ߯ᇱᇱ(߱) ∝ ఠ
ఠమା୻ಽ

మ. 
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The clear difference in the behavior of ߯ᇱᇱ(ℏ߱) in the frozen state between the two regimes 

of ݌ is another evidence that the frozen state in the vicinity of the clean limit is indeed a 

distinct state. In order to see how the evolution of the state occurs as a function of ݌, we 

have fitted ߯ᇱᇱ(߱) measured in the frozen state of each ݌ to the sum of the two 

contributions, ߯ᇱᇱ(߱) ∝ ቀtanିଵ ఠ
୻೘೔೙

+ ݂ ⋅ ఠ
ఠమା୻ಽ

మ ቁ. The black solid lines in Figure 4.6 (a)-

(f) are the fitting results of the sum, while the dotted and dashed lines are the contributions 

of arctan and Lorentzian, respectively. The fraction of the contribution from the single 

Lorentzian to ߯ᇱᇱ(߱), ݂, was determined in the vicinity to the pure limit to be zero; ݂ =

0.00(6) for ݌ = 0.968 and ݂ = 0.00(5) for ݌ = 0.917. As ݌ decreases further, i.e., 

nonmagnetic doping increases, however, ݂ gradually increases. As shown in Figure 4.6 (c) 

and (d), the tanିଵ term (dotted line) dominates for ݌ ≳ 0.777(6), while the Lorentzian 

term (dashed line) dominates for ݌ ≲  is plotted in Figure  ݌ over a wide range of (݌)݂ .0.7

4.5 (c). This confirms, upon doping, a crossover from a frozen state near the clean limit to 

another frozen state at high nonmagnetic concentration limit. 

Halperin-Saslow Dynamics 
What is then the nature of the frozen state in the vicinity of the clean limit? The hardening 

and linear behavior of the low energy spin fluctuations in the frozen state of SCGO(݌ >

 0.8) can be explained as Halperin-Saslow (HS) type modes in a spin jam  [15,16,60]. HS 

modes are long-range collective modes which may be viewed as an analog of the Goldstone 

modes associated with continuous symmetry breaking in systems without long-range order. 

In contrast, for low values of p, as defect concentration is increased, the low-energy spectral 

weight is eventually dominated by contributions from a distribution of local spin clusters. 

This is consistent with the previous specific heat data that reported the ܥ௩ ∝ ܶଶ behavior 

robust against dilution for ݌ ≳  0.8 (14), while for ݌ ≲  0.8 the exponent starts decreasing 

with decreasing p  [61].  

As a further quantitative evidence of a HS mechanism for the specific heat, ܥ௩/ܶଶ may be 

roughly estimated for a spin jam.  HS theory with a dispersion ߱௞ ≅  ට ఘೞߛ
 ఞబ    

 ݇, gives a 

contribution to specific heat ஼௩
(௞ಳ்)మ

≅ ଽ఍(ଷ)௞ಳఞబ
గ ℏమ ఘೞ  ఊమ

 , where ߛ is the gyromagnetic ratio, 
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 is the Riemann Zeta function, and we have accounted for 3 modes for isotropic 1.2~(3)ߞ

spins. Using experimental values of ߯଴ ≅ 0.007 emu/moleCr (see Figure 4.3(a)) and 

using the HS upper bound estimate ߩ௦ ≅ − ௃
ଵ଼ ௏

 ∑ 〉௜௝ଶݎ ௜ܵ ⋅ ௝ܵ〉௡.௡.   adapted to iSCGO, ܬ ∼

9meV and ߩ௦ ≅ − ଶ௃ ௗమ

ଵ଼ ௏ೠ೙೔೟ ೎೐೗೗
|〈ܵ〉|  taking , 〈ଶܵ〉 ݖ  =  from Ref.  [62], we get a ݎܥ/஻ߤ0.95

theoretical estimate of ஼௩
்మ

 ≃ 0.07 ௃௢௨௟௘
௠௢௟௘஼௥  ௄య

 , which is consistent with the experimental 

value of ~ 0.059 ௃௢௨௟௘
௠௢௟௘஼௥  ௄య

  [37]. 

iSCGO model 
The salient features observed in SCGO(݌ >  0.8) are consistent with the recent 

understanding of the iSCGO case with ܬ =  are the intra and ′ܬ and ܬ spin jam  [5], where ′ܬ

inter-layer Heisenberg nearest neighbor couplings, respectively.  For real SCGO samples 

ᇱܬ <  in general, due to lattice distortion. For these situations, classical magnetic ground ,ܬ

states have been described as a function of ܬ′ ⁄ܬ  in  [5]. These can be obtained from the ܬ =

 case by coherent rotations of a subset of the spins. The classical manifold of ground ′ܬ

states remains degenerate for ܬᇱ <  as can be seen from the flat zero energy bands which ,ܬ

are present in the linear spin wave analysis around long range ordered states described in 

Appendix B  . As the ratio ܬ′ ⁄ܬ  changes from 1 to 0, the system moves from the ideal tri-

layer to decoupled kagome layers (accompanied by a layer of non-interacting spins), at 

which point local zero energy modes, such as weathervane modes, associated with kagome 

physics, appear. For the isolated semi-classical kagome, an extensive configurational 

entropy of local minima appears with kinetic barriers associated with the weathervane 

motion. At low enough temperatures tunneling is suppressed and the system freezes. On 

general grounds, local modes such as the weathervane will become delocalized when the 

layers are coupled, suggesting that for ܬ ≠ ′ܬ ≠ 0, as for ܬ =  the barriers between local ,′ܬ

minima remain non-local in nature and thus freezing is more effective than for the 

decoupled kagome. 

The quantum fluctuations-induced spin jam scenario is consistent with the system freezing 

at temperatures much lower than |Θ஼ௐ|. An energy scale for spin fluctuations in the clean 

limit can be determined from the potential barrier between local (ordered) minima and is 
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given by ܧௌ஼ீை ≈ ݌) For SCGO .(4) ܵܬ 0.05 > ௌ஼ீை/݇஻ܧ  ,(0.8 ≈ 7.8 K, which is close to 

the experimentally determined ௙ܶ ≈ 4 K ≪ |Θ஼ௐ| ~ 500 K. 

Upon weak non-magnetic doping, the complex energy landscape is modified, the kinetic 

barriers become finite, however, the overall picture remains the same. Further doping will 

weaken the order by fluctuations mechanism and the selection of coplanar states, and a 

different glassy state emerges. Indeed, our observation of a crossover as a function of 

doping are consistent with Henley [63] who, remarkably, speculated the possibility of a 

defect-induced crossover as a function of doping, close to the clean limit, from a non-

generic phase (dominated by coplanar states) to a generic spin phase in large spin kagome 

and SCGO systems. 

Another dense magnet 
It is worthwhile to discuss in comparison the three-dimensional pyrochlore Y2Mo2O7, that 

was one of the first materials that showed a spin glassy state without non-magnetic 

impurities [19]. Surprisingly, Y2Mo2O7 also exhibits a similar ܥ௩ ∝ ܶଶ behavior at low 

temperatures. [64] The magnetic Mo4+ (4d2) ions form a three-dimensional network of 

corner-sharing tetrahedra. If these magnetic moments are isotropic, and 

antiferromagnetically and uniformly interact with their nearest neighbors only, the system 

is supposed to yield the highest degree of frustration. One may speculate that the freezing 

in Y2Mo2O7 may also be explained in terms of a spin jam, however we would like to point 

out crucial differences between the systems. In particular, its frustration index is two orders 

of magnitude smaller than in SCGO; ݂ =  |஀಴ೈ|
்೑

≈ ସହ ௄
ଶ଴ ௄

≈ 2.3.  This can be understood by 

the facts that, unlike SCGO which is an excellent insulator, Y2Mo2O7 is semi-conducting 

10ିଶ Ω ~ ߩ) ∙cm at 300 K), and the neighboring Mo ions share one corner of oxygen 

octahedra, which tends to result in non-negligible longer range magnetic interactions. More 

importantly, the magnetic Mo4+ (ݐଶ௚ଶ ) ions are orbitally degenerate  [64,65]; it is well known 

that orbital degeneracy has a great tendency to modify the nature of a magnetic network, 

and as a result it reduces dimensionality of the magnetic interactions and frustration as 

well, as found in ZnV2O4  [66]. Therefore, the spin glassy state of Y2Mo2O7 may be due to 

spatially random coupling constants induced by the orbital degrees of freedom rather than 
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strong frustration. This may explain the experimental observation that Y2Mo2O7 resembles 

conventional spin glasses much more than SCGO. [67] The effectively reduced 

dimensionality may be related to the observed ܥ௩ ∝ ܶଶ. Nonetheless, it would be 

interesting to study effects of nonmagnetic doping on Y2Mo2O7 and see if the spin glassy 

state is robust against small doping as found in SCGO. 

Conclusion 
The search for glassiness that arises intrinsically without defects and randomness has been 

revived recently as such glassiness may bear intricate relations with topological order  [68], 

lack of thermalization in many body localization  [69], jamming in structural glasses  [70] 

and glassiness in super-cooled liquids  [71]. Our experiments indicate that quantum 

fluctuations, via an “order by disorder” mechanism, induce a glassy state, a spin jam, in 

the strongly frustrated SCGO(݌ >  0.8), which is robust and extends to the clean limit. The 

findings strongly support the possible existence of purely topological glassy states. 
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Chapter 5    
Spin Jam vs. Spin Glass  

Motivation 
The search for glassiness that arises intrinsically without defects and randomness has been 

revived recently  [4,5] as such glassiness may be intricately related to topological order  

[68], lack of thermalization in many body localization [69], jamming in structural glasses  

[70] and glassiness in super-cooled liquids [71]. Recently, a microscopic topological 

mechanism has been proposed for an unconventional frustrated magnet SrCr9pGa12-9pO19 

(SCGO) in which the magnetic Cr3+ (3d3) ion surrounded by six oxygen octahedrally, form 

a distorted quasi-two-dimensional triangular lattice of bi-pyramids [4,5,72]. The 

mechanism is purely quantum mechanical. The system has a continuous and flat manifold 

of ground states at the mean field level due to frustration, including locally collinear, 

coplanar and non-coplanar spin arrangements  [4]. Quantum fluctuations lift the classical 

ground state degeneracy (“order-by-disorder”), resulting in a complex rugged energy 

landscape that has a plethora of local minima consisting of the locally collinear states 

separated from each other by potential barriers  [5]. As a result, upon cooling below ௙ܶ set 

by the energy barriers, the system gets trapped in one of the local minima of collinear bi-

pyramids without long-range order.  We refer to this glassy state as spin jam  [5,68]. 

Y2Mo2O7 in which the magnetic Mo4+ (4d2) ions form a three-dimensional network of 

corner-sharing tetrahedra, is another frustrated magnet which shows a spin glassy state 

without non-magnetic impurities  [19,20]. Even though isotropic magnetic moments in an 

antiferromagnetically coupled pyrochlore network yields a spin liquid state down to low 

temperatures due to the higher degree of frustration, Y2Mo2O7 shown spin freezing 
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transition below Tf ~ 20 K. Furthermore, its low-temperature properties are unconventional 

spin glassy, with a quadratic temperature dependence of the specific heat, ܥ௩ ∝ ܶଶ  [64], 

as opposed to the conventional linear behavior. Thus, understanding the nature of the spin 

frozen state and the microscopic mechanism of the freezing transition of Y2Mo2O7 has also 

been an intellectual challenge in condensed matter physics.  

One may speculate that the freezing in Y2Mo2O7 may also be explained in terms of a spin 

jam, however there are crucial differences between Y2Mo2O7 and SCGO. In particular, the 

frustration index of Y2Mo2O7, ݂ =  |஀಴ೈ|
்೑

≈ ସହ ௄
ଶ଴ ௄

≈ 2.3, is two orders of magnitude smaller 

than ݂ ≈ 130 of SCGO.  This can be understood in terms of conductivity where SCGO is 

an excellent insulator, while Y2Mo2O7 is semi-conducting (10ି ~ ߩଶ Ω ∙cm at 300 K), and 

the neighboring Mo ions share one corner of oxygen octahedra, which tends to result in 

non-negligible longer range magnetic interactions. More importantly, the magnetic Mo4+ 

ଶ௚ଶݐ) ) ions are orbitally degenerate  [64,65]; it is well known that orbital degeneracy has a 

tendency to modify the nature of a magnetic network, and as a result it reduces the 

dimensionality of the magnetic interactions and frustration.  This is the case of ZnV2O4  

[66]. Therefore, we believe that the spin glassy state of Y2Mo2O7 may be due to spatially 

random coupling constants induced by the orbital degrees of freedom rather than strong 

frustration. The effectively reduced dimensionality may be related to the observed ܥ௩ ∝ ܶଶ 

behavior.  

To investigate the nature of the spin frozen states and the microscopic mechanisms of the 

freezing transitions from frustrated lattices in the defects free limit, we have performed 

bulk susceptibility and neutron scattering experiments on two geometrically frustrated 

magnetic glass systems: Y2Mo2O7 and BCGO(p = 0.907(8))/SCGO(p = 0.968(6)) in 

comparison to an archetypical spin glass CuMn2%.  
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Bulk Susceptibility Experiments 
Here, we study the bulk susceptibility of CuMn2%, BCGO(p = 0.902(8)) and Y2Mo2O7 

samples as summarized in Figure 5.1. All the three samples were measured for direct-

current (DC) susceptibility (߯஽஼) after cooling to the base temperature ( ௕ܶ௔௦௘) of the 

instrument with and without a magnetic field about 100 Oersted (Oe). In all the three 

systems, the zero-field cooled susceptibility (߯௓ி஼) shows a cusp at low temperature 

implying a magnetic transition at the cusp temperature ( ஽ܶ஼) while the field-cooled 

susceptibility (߯ி஼) shows a saturation below ஽ܶ஼  by creating a low temperature hysteresis. 

The ZFC-FC bifurcation shows a direct evidence of ergodicity breaking in these systems 

at least within the measuring time scale of ߯஽஼  (~100 s).  

 
Figure 5.1 Bulk Susceptibility of CuMn2%, BCGO(p = 0.902(8)) and Y2Mo2O7 
DC susceptibility (߯஽஼) under zero-field-cooled (ZFC) and field-cooled (FC) conditions, and AC susceptibility 
(߯஺஼) at different frequencies are measured on (a) CuMn2%, (b) BCGO(p = 0.902(8)) and (c) Y2Mo2O7 
samples. The freezing temperature ௙ܶ is determined measurements of Y2Mo2o7 are summarized here. ߯஽஼ was 
measured with an applied field of 10 oe while the AC measurements were performed under zero static field and 
amplitude of 15 oe. The insert shows the cusp temperature ௙ܶ as a function of frequency and ஽ܶ஼  is estimated 
as 22.34(5) K.  

 

The alternating current (AC) susceptibility (߯஺஼) has also measured at different frequencies 

of the applied alternating magnetic field, oscillating around the remnant static field at the 

sample space. For all the three systems, ߯஺஼  also shows a cusp similar to the ߯௓ி஼  but the 

cusp temperature ( ௙ܶ) is been shifted to the higher temperatures and the shift is increasing 

with increasing frequency of the field. The frequency dependence of ௙ܶ can be expected 

when a magnetic system has multiple relaxations at low temperature which is a typical 
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nature of spin glasses, spin liquids, Superparamagnets or cooperative paramagnets [7]. 

Figure 5.1 (d) summarizes the frequency dependence of the ௙ܶ for many different magnets: 

two archetypical spin glasses, CuMn2% and AuFe2%, two Quasi-2D frustrated magnets, 

SCGO(p = 0.968(6)) and BCGO(p = 0.902(8)), and a 3D pyrochlore system, Y2Mo2O7. 

The solid lines in the Figure 5.1 (d) are the fits of ௙ܶ to a function log൫ ௙ܶ൯ = ݉ log(݂) +

ܾ, where ݉ = ∆ ௙ܶ/ ൫ ௙ܶ ∆ log(݂)൯ and the parameter ݉ is usually been used to categorize 

different magnetic systems primarily [7].  Both CuMn2% and AuFe2% shows very low 

values for ∆ ௙ܶ/ ൫ ௙ܶ ∆ log(݂)൯ as expected for dilute spin glasses and the values are 

consistent with literature  [7]. But SCGO(p = 0.968(6)), BCGO(p = 0.902(8)) and Y2Mo2O7 

shows slightly higher ∆ ௙ܶ/ ൫ ௙ܶ ∆ log(݂)൯ by indicating a deviation from conventional spin 

glass behavior. To get a clear picture, we need to study freezing behavior in a much broader 

time scales. 

Neutron Scattering Experiments 
In this section, we discuss the neutron scattering experiments done on the three samples 

SCGO(p = 0.968(6)),  BCGO(p = 0.902(8)) and Y2Mo2O7, using various scattering 

techniques such as Neutron Spin Echo (NSE), Neutron Backscattering and Neutron Time-

of-Flight. From the neutron scattering experiments, we have access to both spatial and 

temporal information of a particular magnet. In this chapter, we will mainly focus on the 

dynamical properties rather than the static nature of systems above.    

5.3.1  Neutron Spin Echo measurements 

Here, we study the intermediate scattering function ܫ(ܳ, ߬଴) at a fixed wavevector ܳ and a 

fixed Fourier time ߬଴, as a function temperature on the three magnetic glasses; BCGO(p = 

0.902(8)), Y2Mo2O7 and CuMn2%. Both CuMn2% and BCGO(p = 0.902(8)) samples were 

measured at NSE spectrometer, NIST with initial wavelength of ߣ = 6 Å (bandwidth, 

,ܳ)ܫ ,As shown in the Figure 5.2 (a) .(20% ~ ߣ/ߣ∆ ߬଴,ܶ) of CuMn2% was measured at 

ܳ = 0.2 Åିଵ and ߬଴ = 5 ns on a ~30 g sample. For BCGO(p = 0.902(8)), ܫ(ܳ, ߬଴,ܶ) was 

measured at ܳ = 1.5 Åିଵ and at two Fourier times, 5 ns and 0.05 ns (see Figure 5.2 (b)). 

The spin echo measurements on Y2Mo2O7 was performed at NSE spectrometer, Spallation 
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Neutron Source (SNS), at Oak Ridge National Laboratory (ORNL). The ܫ(ܳ, ߬଴,ܶ) for 

Y2Mo2O7 was measured at ܳ = 0.45 Åିଵand Fourier time in the range of 0.1 ns < ߬଴ <

1 ns. Since this spectrometer is at a spallation source, a measurement at a single set of 

instrument setting can capture a broad range of F.T. and we have rebinned the time channel 

to extract ܫ(ܳ, ߬଴,ܶ)  at ߬଴ = 0.33 ns and 0.55 ns. (see Figure 5.2 (c))  

Figure 5.2 Magnetic order-parameters from Neutron Spin Echo 
The normalized intermediate scattering function ܫ(ܳ, ߬଴) on (a) CuMn2% at ܳ଴ = 0.2 Åିଵ and 
߬଴ = 5 ns, (b) BCGO(p = 0.902(8)) at ܳ଴ = 1.5 Åିଵ and ߬଴ = 0.05, 5 ns , and (c) Y2Mo2O7 at 
ܳ଴ = 0.45 Åିଵ and ߬଴ = 0.33, 0.55 ns, has been measured. CuMn2% and BCGO(p = 0.902(8)) 
samples were measured at NSE spectrometer at NCNR, NIST while Y2Mo2O7 was measured at 
NSE spectrometer at SNS, ORNL.  

 
The intermediate scattering function at a fixed wavevector ܳ଴, ܫ(ܳ଴,  ,can be written as (ݐ

,଴ܳ)ܫ (ݐ = න ܵ(ܳ଴,߱)݁ି௜ఠ௧
ஶ

ିஶ

݀߱ 
 

5.1 
 

When ܵ(ܳ଴,  is a slowly varying function, which is typically the case for magnetic (ݐ

glasses, the Equation 5.1 can be simplified as, 

,଴ܳ)ܫ (ݐ = න ܵ(ܳ଴,߱)
∆ఠ

ି∆ఠ

݀߱ 
 

5.2 
 

where ∆߱ is the instrument resolution defined by the Fourier time ݐ = ℎ/∆߱. From another 

perspective, ܫ(ܳ଴, ݐ = ߬଴) at a fixed Fourier time ߬଴, accounts all the relaxations slower 

than ߬଴ (߬ > ߬଴) as static or frozen and ignores all the relaxations faster than ߬଴ (߬ < ߬଴). 

Thus, ܫ(ܳ଴, ߬଴,ܶ) can be used to measure the elastic order-parameter of a magnetic glasses 

for given resolution of ∆ω଴ = ℎ/߬଴.   
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From Equation 3.56 of ref.  [7], the susceptibility, corresponding to a particular relaxation 

time ߬଴ and wave vector ܳ଴, ߯(ܳ଴, ߬଴) can be written as, 

߯(ܳ଴, ߬଴,ܶ) ∝
1
ܶ

[1− ,଴ܳ)ܫ ߬଴,ܶ)] 
 

5.3 
 

To estimate the freezing temperature at a particular F.T., we calculated the corresponding 

susceptibility ߯(ܳ଴, ߬଴,ܶ) using Equation 5.3 and fitted the data to a smoothing spline and 

determined ௙ܶ as the cusp temperature. (see Figure (App.)   A.5 for BCGO(p = 0.902(8), 

Figure (App.)   A.6 for CuMn2% and Figure (App.)   A.7 for Y2Mo2O7). The ௙ܶ for 

CuMn2% at 5 ns is 15.4(5) K which is comparable with the bulk susceptibility 

measurements with in the estimated uncertainty. For BCGO, ܶ ௙s for ߬ ଴ = 5 ns and 0.05 ns 

are 5.53(17) K and 6.92(18) K which are slightly higher than ௙ܶ = 4.94 K, measured from 

DC susceptibility. Notice that there is also a significant shift between ௙ܶs of two F.T.s. The 

shift of ௙ܶ, even within the nanoseconds for BCGO(p = 0.902(8)) give us more clues that 

BCGO is different from CuMn2%. Moreover, the ௙ܶs for Y2Mo2O7 at ߬଴ = 0.55 ns and 

0.33 ns are estimated as 28.1(1.4) K and 28.31(1.4) K respectively. These ௙ܶs are also 

significantly higher values than the cusp temperature of  22.34(4) K, measured in Bulk 

susceptibility (see Figure 5.1 (c)). Apparently, the magnetic glass phases from the dense 

limit of geometrically frustrated magnets has similarities regardless of geometrical 

differences, yet distinct from conventional spin glass behavior of CuMn2%. 
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5.3.2  Backscattering spectroscopy 

To cover the μeV energy resolutions, we have performed backscattering spectroscopy on 

~10 g samples of CuMn2%, BCGO(p = 0.902(8)) and Y2Mo2O7 at BASIS spectrometer at 

SNS, ORNL. During the experiments, the instrument was configured to a neutron beam of 

wavelength ߣ = 6.4 Å and frequency 30 Hz to achieve the instrument resolution of 4 μeV, 

dynamical range of −250 μeV ≤ ܧ ≤ 250 μeV and ܳ range of 0.3 Åିଵ ≤ ܳ ≤  2 Åିଵ.   

Figure 5.3 Neutron Backscattering experiments of BCGO(p=0.9), Y2Mo2O7 and CuMn2% 
(a) ܳ-dependence, ܫ௘௟௔௦(ܳ), and (d) T-dependence, ܫ௘௟௔௦(ܶ), of elastic magnetic neutron 
scattering intensity obtained from CuMn2%. (b) ܳ-dependence, ܫ௘௟௔௦(ܳ), and (e) T-dependence, 
 ௘௟௔௦(ܶ), of elastic magnetic neutron scattering intensity obtained from BCGO(p = 0.902(8)). (c)ܫ
ܳ-dependence, ܫ௘௟௔௦(ܳ), and (f) T-dependence, ܫ௘௟௔௦(ܶ), of elastic magnetic neutron scattering 
intensity obtained from Y2Mo2O7.The measurements were done at the Backscattering 
Spectrometer (BASIS) at SNS. For ܫ௘௟௔௦(ܳ) in (a), (b) and (c), the non-magnetic background 
was determined by the measurements at higher temperatures above the corresponding freezing 
temperature and subtracted from the base temperature data. The black solid lines in (b) and (c) 
are the fits of the magnetic peaks centered at ܳ = 1.50(2) Åିଵ and ܳ = 0.44(2) Åିଵ respectively 
to a simple Lorentzian while it is an eye guide to the data in (a). The ܳ resolution of the 
instrument is also marked by the red horizontal lines in (a), (b) and (c). 

 
Figure 5.3 (a), (b) and (c) show the ܳ dependence of magnetic neutron scattering cross-

section, ܫ௠௔௚(ܳ) = ∫ ௠௔௚(ܳ,߱)∆ఠబܫ
ି∆ఠబ

 ݀߱ within the instrumental resolution of ∆ω଴ =

4 μeV. Here the magnetic component of the signal ቀܫ௠௔௚(ܳ,߱)ቁ was calculated by 
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estimating the non-magnetic scattering background (ܫ஻ீ) at higher temperatures ( ௛ܶ௜௚௛) 

above corresponding freezing temperatures ( ௙ܶ) and subtracting it from the low 

temperature measurements. For CuMn2%, ܫ஻ீ(ܳ) was determined by the data collected at 

temperatures higher than 16.5 K (> ௙ܶ = 15.5 K) while it is at 20 K (> ௙ܶ = 4.94 K) for 

BCGO(p = 0.902(8)) and at 100 K (> ௙ܶ = 22.25 K) for Y2Mo2O7. As shown in Figure 

5.3 (a), ܫ௠௔௚(ܳ) of CuMn2% shows a nearly featureless ܳ dependence with maximum 

intensity as ܳ → 0. In the dilute magnetic alloys such as CuMn2%, magnetic impurities 

interact among themselves through the Ruderman-Kittel-Kasuya-Yosida (RKKY) 

interactions that are mediated by the itinerant electrons. The RKKY interactions are long-

ranged, and oscillate from ferromagnetic to antiferromagnetic as a function of the distance. 

As a result, the random distances among the magnetic moments lead to their random 

interactions that even change the sign, resulting in the featureless magnetic structure factor. 

In contrast, the two frustrated magnets, BCGO(p = 0.902(8)) and Y2Mo2O7, shows 

prominent peaks centered around finite wavevectors ܳ௠௔௫ ≈ 1.5 Åିଵ and 0.4 Åିଵ 

respectively. This experimental observation is consistent previous published neutron data 

of BCGO and Y2Mo2O7 at different energy resolutions. The diffusive peak in ܳ − 

dependence of elastic neutron scattering is corresponding to dominant antiferromagnetic 

interactions between localized spins and short-range spin correlations in these frustrated 

magnets.  Moreover, ܳ௠௔௫ is the characteristic wavevector of crystallographic unit 

responsible for magnetic glass-like freezing. For example, in the case of BCGO(p = 

0.902(8)), ܳ௠௔௫ ≈ 1.5 Åିଵ is corresponds to (2/3,2/3,1.8), confirming that the 

kagome−triangular−kagome trilayer is responsible. However, the ܳ௠௔௫ ≈ 0.4 Åିଵ in the 

case of Y2Mo2O7 is not yet clearly understood.  

As shown in Figure 5.3 (d), (e) and (f), the magnetic order-parameter ܫ(ܳ଴, ߬଴,ܶ) was 

calculated by, 

,଴ܳ)ܫ ߬଴,ܶ) =  න න (ܶ,߱,ܳ)௠௔௚ܫ
ொ೘ೌೣ

ொ೘೔೙

 ݀ܳ ݀߱
∆ఠబ

ି∆ఠబ

 
 

5.4 
 

where ∆߱଴ = ℎ/߬଴ = 4 μeV (߬଴ = 1 ns) and ∆ܳ = [ܳ௠௜௡ ,ܳ௠௔௫] was selected to cover 

the peak magnetic intensity for each sample. The meaning of the ܫ(ܳ଴, ߬଴,ܶ) is as explained 
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in the Chapter 5.3.1   in which the ܫ(ܳ଴, ߬଴,ܶ) is coming from the relaxations slower than 

the cut-off relaxation time ߬଴, set by the instrument resolution ∆߱଴. Actually, ∆߱଴ is the 

minimum energy resolution that we can achieve by the current instrument setup. Indeed, 

we can always calculate order-parameters at higher ߱ integration ranges as large as the 

entire dynamical range of the instrument which is ±250 μeV. (see Figure 5.4).  

To determine the freezing temperature ( ௙ܶ) at a particular energy resolution ∆߱଴, we have 

calculated the corresponding susceptibility using Equation 5.3, similar to the analysis we 

did with NSE measurements. The estimated ௙ܶ(4 μeV)s are 6.14(25) K for BCGO(p = 

0.902(8)) and 33.2(5) K for Y2Mo2O7. Even though, the BASIS measurements of CuMn2% 

shows a clear elastic orderparameter as shown in the Figure 5.3 (d), the statics are not good 

enough to estimate ௙ܶ(4 μeV) by mean of the systematic analysis we did, for other data 

sets. However, we can roughly estimate the ௙ܶ as ~15 K just by looking at the Figure 5.3 

(d) and it is consistent with previously measured Bulk susceptibility and NSE 

measurements. Notice that ௙ܶ(4 μeV)s for BCGO(p = 0.902(8)) and Y2Mo2O7 are 

significantly different from corresponding Bulk susceptibility and NSE measurements, in 

contrast to the CuMn2%.   

To verify this behavior of CuMn2%, another backscattering experiment was done for 

CuMn2% at High Flux Backscattering Spectrometer (HFBS) at NIST Center for Neutron 

Research on a bigger sample of 30 g. In the typical operation of HFBS, the continuous 

incoming beam of a wavelength of 6.271 Å from the NCNR reactor is illuminated on an 

oscillating doppler arm at 20 Hz to achieve a dynamical range of −15 μeV ≤ ߱ ≤ 15 μeV 

by vary the energy of incident neutrons at the sample. The energy resolution of the 

instrument is ∆߱ ~ 0.8 μeV, set by the silicon analyzer crystals. For better statistics, we 

have fixed the doppler arm, hence called fixed window scan and measured neutron 

scattering intensity ܫ(ܳ,ܶ) as a function of wavevector (ܳ) and temperature (ܶ) on 

CuMn2% as shown in the Figure 5.4 (a) (look for maroon color diamonds).  Thus the ௙ܶ at 

0.8 μeV was estimated as 15.57(35) K for CuMn2% (߯(߬ = 0.8 μeV,ܶ) is shown in the 

Figure (App.)   A.6 (a)). Thus, the HFBS experiment confirms that the ௙ܶ at μeV-resolution 

is comparable to the Bulk susceptibility in the case of CuMn2%.   
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Spectral Distribution of Relaxation Time 
In the previous sections, we have studied the freezing temperature ௙ܶ(∆߬଴) as a function of 

cut-off relaxation time ߬଴ = ℎ/∆ω଴ from Bulk Susceptibility (Typically (߬଴)஽஼ ≈ 100 s) 

to Backscattering spectroscopy ((߬଴)௠௜௡ ≈ 1 ns) for CuMn2%, BCGO(p = 0.902(8)) and 

Y2Mo2O7 magnets. To get much broader ߬଴ dependence, we have performed the Neutron 

time-of -flight measurements on ~10 g samples of BCGO(p = 0.902(8)) and Y2Mo2O7 at 

Disk Chopper Spectrometer (DCS), NCNR with neutron wave lengths of ߣ = 6 Å and ߣ =

8 Å respectively. The main features of BCGO(p = 0.902(8)) time-of-flight spectroscopy 

are already discussed in the Chapter 3.6   and order-parameters at different ∆߱଴ ranging 

from the instrument energy resolution at ߣ = 6 Å, ∆߱଴ = 35 μeV to ∆߱଴ = 200 μeV are 

summarized in the Figure 5.4 (b). The estimated ௙ܶ(∆߱଴)s at ∆߱଴ = 35 μeV and ∆߱଴ =

200 μeV for the BCGO(p = 0.902(8)) are 7.6(6) K and 10.5(8) K respectively.  

In the case of Y2Mo2O7, we have observed a continuum spectrum centered in the vicinity 

of ܳ௠௔௫ ≈ 0.45 Åିଵ similar to the continuum at ܳ௠௔௫ ≈ 1.5 Åିଵ in case of SCGO(p = 

0.968(6)) or BCGO(p = 0.902(8)). Even though, the ܳ௠௔௫ in Y2Mo2O7 is not yet 

completely understood unlikely in SCGO/BCGO systems, here we study the elastic order-

parameter, ܫ(ܳ଴, ߬଴,ܶ) as a function ∆߱଴ in the range of 35 μeV ≤ ∆߱଴ ≤ 120 μeV as 

shown in the Figure 5.4 (c). Thus the ௙ܶ  at ߬଴ = 30 μeV and 120 μeV, and ܳ଴ = [0,2] Åିଵ 

were estimated as 31(1) K and 36(2) K respectively. (see Figure (App.)   A.7 (a) for 

corresponding ߯(ܳ଴, ߬଴,ܶ) calculations).  

All the elastic order-parameters ܫ(ܳ଴,∆߱଴,ܶ) measured at different ∆߱଴ are summarized 

in Figure 5.4 (a), (b) and (c) for CuMn2%, BCGO(p = 0.902(8)) and Y2Mo2O7 samples 

respectively. Moreover, Figure 5.4 (d), (e) and (f) shows the contour maps of ܫ(ܳ଴,∆߱଴,ܶ) 

as a function of ∆߱଴ and ܶ. The ܫ(ܳ଴,∆߱଴,ܶ) corresponding to bulk measurements (߯஽஼  

or ߯ ஺஼) has been calculated using the Equation 5.3. In Figure 5.4, all the ܫ(ܳ଴,∆߱଴,ܶ)s are 

normalized to ܫ(ܳ଴,∆߱଴,ܶ = 0) estimated by extrapolating each dataset. The normalized 

 represents the spectral density of relaxations longer than the cut-off (ܶ,଴,∆߱଴ܳ)ܫ

relaxation time ߬଴ = ℎ/∆߱଴ defined by the elastic energy window ±∆߱଴ as percentage to 

the total scattering. Notice that the total magnetic scattering of each compound estimated 
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by the polarization analysis, are also presented in Figure 5.4 (black triangles in each panel) 

and they are nearly flat over the entire measuring range of temperature while the integrated 

scattering intensities, ܫ(ܳ଴,∆߱଴,ܶ) at a particular ∆߱଴ shows less intensity at higher 

temperature. Furthermore, the ܫ(ܳ଴,∆߱଴,ܶ) at larger ∆߱଴, starts building up at higher 

temperatures upon cooling in comparison to larger ∆߱଴, by showing a frequency 

dependence of freezing behaviors.  

 
Figure 5.4 Summery of elastic order parameter   
Elastic order parameter as function of temperature and energy resolution for (a) CuMn2%, (b) BCGO(p = 
0.902(8)) and (c) Y2Mo2O7 systems and the corresponding contour maps are shown in (d), (e) and (f) 
respectively. The Magenta color dashed lines in (d), (e) and (f), are the fittings of ௙ܶ(∆߱଴) shown in the Figure 
5.5 (a). 

 
To Further analyze the dynamics at different energy scales, we have calculated inelastic 

order-parameter defined by the integral of ε୧୬ୣ୪ୟୱ୲୧ୡ(߱ߜ,ܶ) =  ∫ ఠమ(ܶ,߱,଴ܳ)ܫ
ఠభ

 ݀߱ where 

߱ߜ = (߱ଵ + ߱ଶ)/2. Unlike elastic order-parameter,  ε୧୬ୣ୪ୟୱ୲୧ୡ(ܶ) shown a peak at finite 

temperature ( ௖ܶ) and this can be understood as the difference between two elastic order-

parameters, ܫ(ܳ଴,∆߱଴,ܶ) measure at ∆߱଴ = ߱ଵ and ߱ଶ.  
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ε୧୬ୣ୪ୟୱ୲୧ୡ(߱ߜ,ܶ) =  න (ܶ,߱,଴ܳ)ܫ
ఠమ

ఠభ

 ݀߱ 

ε୧୬ୣ୪ୟୱ୲୧ୡ(߱ߜ,ܶ) =  න (ܶ,߱,଴ܳ)ܫ
ఠమ

଴
 ݀߱ −න (ܶ,߱,଴ܳ)ܫ

ఠభ

଴
 ݀߱ 

 

5.5 
 

where ߱ߜ = (߱ଵ + ߱ଶ)/2. The ε୧୬ୣ୪ୟୱ୲୧ୡ(߱ߜ,ܶ) is corresponding to a particular 

oscillation and the peak signal can be viewed as the resonance of the magnetic signal upon 

thermal fluctuations. Thus, On the other hand, we can think an elastic order-parameter as 

an integration of many infinitesimal inelastic order-parameters and the frozen temperature 

௙ܶ determined by elastic order-parameter at a given ∆߱଴ is the resonance temperature of 

fastest oscillation.  Thus, the ௖ܶ(߱ߜ଴) is approximately equal to the ௙ܶ(∆߱଴ =  ଴). The߱ߜ

inelastic order-parameters ε୧୬ୣ୪ୟୱ୲୧ୡ(߱ߜ,ܶ)  were calculated by integrating different energy 

bands of BASIS and DCS measurements and ߱ߜ଴ − dependent ௖ܶ(߱ߜ଴) was observed for 

all the three compounds (see Figure (App.)   A.6 (b) for CuMn2%, Figure (App.)   A.5 (b) 

for BCGO(p = 0.902(8)) and Figure (App.)   A.7 (b) for Y2Mo2O7). 

The difference between two ܫ(ܳ଴,∆߱଴,ܶ) at ∆߱଴ = ߱ߜ − ∆ and ∆߱଴ = ߱ߜ + ∆, or 

ε୧୬ୣ୪ୟୱ୲୧ୡ(߱ߜ,ܶ) directly measures the density of relaxation times within an interval defined 

by [߱ߜ − ߱ߜ,∆ + ∆]. Thus, we could crudely map the distributions of relaxation time, 

ܲ(߬) as a function of temperature for each system as shown in Figure 5.5 (b), (c) and (d). 

At temperatures well above the freezing temperature determined by the DC susceptibility 

( ஽ܶ஼), ܲ(߬) exhibits a distribution at shorter times (߬ < 10ିଷ ns = 10ିଵଵ s). Upon 

cooling, ܲ(߬) shows a sudden shift to longer times (߬ > 10ଵଶ ns = 10ଷ s) and it is 

expected for archetypical spin glasses as a similar  ܲ(߬) behavior has been predicted for 

CuMn by analyzing either bulk susceptibility  [73] and Neutron scattering measurements  

[59]. The ܲ(߬) at much higher temperature (ܶ ≥ 10 ௙ܶ) in the paramagnetic regime (spin 

gas) is characterized by a nearly single Korringa relaxation time in the order of 10ିଵଶ s.  

As ܶ is lowered, the correlations between spins starts to build and hence the collective 

motions among spins appear. This cause the Korringa like single relaxation time 

distribution to evolve into a much broader distribution at intermediate temperatures ( ௙ܶ ≤

ܶ < 2.5 ௙ܶ). Moreover, clustering of spins happens and cooperative relaxations among 
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spins occurs, but the ergodicity of the system is not yet broken. Hence, this phase can be 

named as either co-operative paramagnet or spin liquid. 

 
Figure 5.5 Freezing behaviors and relaxation time distributions of three magnetic glasses   
(a) summarizes the freezing temperature ௙ܶ, defined as the cusp of susceptibility (filled symbols) 
form elastic neutron scattering experiments as shown in Figure (App.)   A.5, Figure (App.)   A.6 
and Figure (App.)   A.7. The cups temperatures of neutron inelastic order parameter ௖ܶ is also 
shown here as open symbols. The dash lines are the fittings of ௙ܶ to the function 

்೑(ఛ)

బ்
=  ஺

௟௢௚(ఛ)ା ஻
+

 derived from Vogal-Fulcher law. Here we have also included the freezing behaviors of three ܥ
other magnetic systems: a ferromagnetic cluster spin-glass PrRhSn3  [74]  and two molecular single 
chain magnet [MnR4TPP][TCNE] and [MN(OC12H25)4TPP][TCNE] which shows 
superparamagnetic behavior upon cooling  [75]. The dashed line for PrRhSn3 is the fitting of ௙ܶ, 
obtained from ref.  [74]  to the aforementioned function while they are expected trends based on 
the AC susceptibility data from ref.  [75] for the two superparamagnets [MnR4TPP][TCNE] and 
[MN(OC12H25)4TPP][TCNE].    
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Near glass transition (ܶ ≈ ௙ܶ), ܲ(߬) become much broader and nearly flat. In further 

cooling (ܶ <  ௙ܶ), spins will be frozen in time and will have much longer relaxations 

intrinsic to the topology of the energy landscapes of the magnetic glass system. From the 

Figure 5.5 (b), (c) and (d), we can only conclude that there are relaxations longer than ߬଴  ≈

100 s which is the longest ߬଴ experimentally possible to measure ܫ(ܳ଴,∆߱଴,ܶ).  The study 

of relaxations below ܶ < ஽ܶ஼  in the magnetic glass state, is beyond the scope of this 

chapter. We will study longer relaxations by mean of aging and memory effects of different 

magnetic glasses in Chapter 6   and Chapter 7  . 

Figure 5.4 (a) summarizes the ஽ܶ஼/ ௙ܶ(∆߱଴) in which ௙ܶ(∆߱଴) is estimated as the cusp of 

the susceptibility calculations. (see Figure (App.)   A.6 (a) for CuMn2%, Figure (App.)   

A.5 (a) for BCGO(p = 0.902(8)) and Figure (App.)   A.7 (a) for Y2Mo2O7). ܶ ௙(∆߱଴) shows 

similar leveling out nature as a function of ∆߱଴, mimicking magnetic transitions in all the 

three systems, even though the overall freezing trends are quite different. For a more 

quantitative analysis, we fit ஽ܶ஼/ ௙ܶ(∆߱଴) to ்೑(ఛ)

బ்
=  ஺

௟௢௚(ఛ)ା ஻
+  and the fitting ܥ

parameter are summarized in Table 5-1.   

The fitting function is nothing other than the Vogel-Fulcher law, ߬ = ߬஽ exp ൤ ாೌ
௞ಳ൫்೑ି బ்൯

 ൨ 

for real glasses or supercooled liquids. Here ଴ܶ can be understood as the phase transition 

from a liquid to a glass phase and ߬஽ is corresponding to the Debye frequency of the system 

and ܧ௔  is the average activation energy of barriers in the energy landscape. In the limit of 

଴ܶ → 0, we can recover the Arrhenius law for thermal activation which is the typical 

behavior for Superparamagnets or cooperative paramagnets.    

By rearranging the fitting function, 

߬ = ݁ି஻݁

஺

൬
்೑
்ವ಴

ି஼൰ 
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Then, the fitting parameters can be realized by following relations, 

߬஽ = ݁ି஻ ,     
௔ܧ
݇஻

= ܣ ஽ܶ஼ ,        ଴ܶ = ܥ ஽ܶ஼ 
 

5.7 
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As summarized in Table 5-1, all the three systems seem to follow the Vogal-Fulcher law 

with reasonable values for ߬஽, ܧ௔  and ଴ܶ, implying glass transitions. 
 

Table 5-1 Fitting parameters of Vogal-Fulcher law for BCGO(p), Y2Mo2O7 and CuMn2% 
The fitting parameters of Vogal-Fulcher law (Equation 5.6) and other relevant quantities (Equation 
5.7) extracted from the frequency dependent ordering temperature of BCGO(p = 0.902(8)), Y2Mo2O7 
and CuMn2%, are summarized here.     

Parameter BCGO(p = 0.902(8)) Y2Mo2O7 CuMn2% 

 ૙ 4.94 22.35 15.04ࢀ
 1.1117 3.2533 1.4884 ࡭
 25.787 28.766 26.4 ࡮
 0.96389 0.93027 0.97465 ࡯

૚/ࡰ࣎ =  2.9199e+11 3.1111e+12 1.5818e+11 ࡮ࢋ

ࡰࢀ =
૝ ቀ૚ࡰ࢚

ቁ૚૙ି૚૛

࡮࢑
 13.58 143.83 7.3 

࡮࢑/ࢇࡱ =  7.35 72.711 16.719 (K) ࡯ࡰࢀ࡭
૙ࢀ =  4.79 20.79 14.44 (K) ࡯ࡰࢀ࡯
    

 

 

In the ܶ → ∞ limit, spin-spin correlations of a magnetic system are limited only to on-site 

correlations and the corresponding relaxations are characterized by Korringa relaxation 

time which is analogous to Debye frequency of atomic crystals. With lowering 

temperature, spins will pair up into clusters by increasing the density of longer relaxation 

times at temperature above glass transitions (ܶ > ଴ܶ). Below transition temperature ܶ ≤

௙ܶ, a spin glass system will freeze into an infinite cluster comprised with randomly oriented 

smaller clusters. Thus, the ߬ − dependence of ௙ܶ tells how the clustering happens in the 

cooperative paramagnetic regime. Moreover, we can find a critical relaxation time (߬௖) 

where ௙ܶ starts to level off, for each magnetic glass and it is corresponding to the biggest 

locally ordered cluster formed upon cooling. Notice that the ߬௖ is a function of parameter 

 for BCGO(p = 0.902(8)) and Y2Mo2O7 is higher comparing ܣ Apparently, the parameter .ܣ

to the archetypical spin glass CuMn2%; so the ߬ ௖. This is a direct evidence of having frozen 

states comprised with much bigger locally ordered clusters in the case of BCGO(p = 
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0.902(8)) and Y2Mo2O7. This behavior also agrees with the finite correlation lengths at a 

non-zero wave-vector observed in neutron scattering experiments for BCGO(p = 0.902(8)) 

and Y2Mo2O7 magnets.  

Figure 5.5 (a) summarizes three other magnetic systems from literature for a broader view 

of clustering in the magnetic material. Those are a ferromagnetic cluster spin-glass 

PrRhSn3 [74] and two molecular single-chain magnet [MnR4TPP][TCNE] and 

[MN(OC12H25)4TPP][TCNE] which shows superparamagnetic behavior upon cooling  

[75].  The ௙ܶ obtain from the ref.  [74] was fitted to the Vogal-Fulcher law and the 

parameter ܣ turns out to be ~5 for the cluster-glass, PrRhSn3. This value is much larger 

than the previously observed values from magnetic glasses, and it is understandable that 

the frozen state of a cluster glass is formed by bigger clusters than usual magnetic glasses. 

For [MnR4TPP][TCNE] and [MN(OC12H25)4TPP][TCNE] magnets, we are plotting 

possible trends based on the AC susceptibility measurement from ref.  [75]. Even in a 

Superparamagnets, the clustering happens upon cooling, but it will never freeze into an 

∞−cluster like in magnetic glasses instead remain as a pool of clusters in different sizes 

down to near absolute zero.  
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Glassy relaxation under field 
We performed bulk susceptibility experiments as a function of magnetic field on the three 

magnetic glasses, CuMn2%, SCGO(p = 0.968(6)) and Y2Mo2O7. First, we cooled down a 

sample to the base temperature ( ௕ܶ௔௦௘) of the instrument (ܶ~ 2 K) under zero-filed 

condition and applied a magnetic field (ܪ) and measure the DC susceptibility (߯஽஼) while 

heating. Once the sample reached a temperature well above the magnetic transition 

(ܶ~2 ௙ܶ), it was cooled down again to ௕ܶ௔௦௘ and measuring ߯஽஼  while cooling. Thus, we 

repeated this sequence for several field values. Whenever non-ergodic magnetic phase 

appears in a magnetic system, we can typically detect that by a bifurcation of zero-field 

cooled (ZFC) and field-cooled (FC) susceptibilities. During this experiment, we monitor 

the irreversible temperature ௜ܶ௥௥ defined as the temperature where the bifurcation starts, as 

a function of ܪ. 

In a magnetic glass, the ergodicity is broken below the glass transition temperature due to 

the ruggedness of the corresponding complex energy landscapes. Hence the system will 

trap in a local-minima in which the net magnetization is zero under zero-field conditions, 

by restricting the entire phase space other than the entropically available states around that 

minima. Under an external magnetic field, the energy landscape will be modified by the 

Zeeman term (−ܪ.∑ ௜ܵ) such a way that the configuration favors the magnetic field 

(∑ ො݊ . ௜ܵ > 0; ො݊ - the direction of the magnetic field) are lower in energy and higher in 

magnetization.  In the zero-field cooling case, we apply the magnetic field while the system 

is in thermal equilibrium at ௕ܶ௔௦௘. The occupation probability of unfavored configurations 

versus favored configurations are equal under zero-field cooling. Thus, the unfavored 

configurations are entropically trapped at low temperature for an applied field low enough 

to overcome nearby barriers by causing lower magnetization below ௙ܶ. But, in the case of 

field-cooling, the system populates mostly the configurations favored by the magnetic field 

by causing a higher magnetization comparing to zero-field cooling. Thus, the thermal 

hysteresis of ZFC-FC in DC-susceptibility is a direct evidence of ergodicity breaking in 

the time scale of ~100 s.  
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Figure 5.6 ZFC-FC as a function of field   
The ZFC-FC magnetization measurements as a function of magnetic field for (a) SCGO(p = 0.96), (b) Y2Mo2O7 
and (c) CuMn2%.      

 
As shown in Figure 5.6 (a), (b) and (c), All the magnetic glasses show the ZFC-FC 

bifurcation below ஽ܶ஼  and the ௜ܶ௥௥ decreases with increasing field. Above a critical field 

 the bifurcation will be completely closed, and the ground state will be a smooth ,(଴ܪ)

energy landscape with a single minimum. Depending on the distribution of potential 

barriers in the ground state, different magnetic systems show different behaviors over 

magnetic field. For a magnetic glass, a linear behavior of ௜ܶ௥௥ with ܪଶ/ଷ is expected and 

can be named as de Almeida-Thouless (AT) line. As shown in Figure 5.6 (d), CuMn2%, 

SCGO(p = 0.968(6)) and Y2Mo2O7 show the expected linear dependence of ௜ܶ௥௥ as a 

function of ܪଶ/ଷ by confirming the low temperature phases of  BCGO(p = 0.902(9)) and 

Y2Mo2O7 are glass-like. 
 

Table 5-2 Comparison of critical field extracted from ZFC-FC magnetization experiments 
The critical fields (ܪ଴) of SCGO(p = 0.97), Y2Mo2O7 and CuMn2% compounds are estimated by the 
extrapolating ௜ܶ௥௥  versus ܪ data as shown in the Figure 5.6 (d) and the corresponding magnetic 
energies (ܧ஻) are also calculated as summarized here.    
 

Parameter SCGO(p=0.97) Y2Mo2O7 CuMn2% 

 3/2 1 3/2 ࡿ
 ૙ (T) 2 20.6 15.1ࡴ

࡮࢑/࡮ࡱ = ૙ࡴࡿࢍ࡮ࣆ
࡮࢑

 (K) 4 27.6 4.8 

 3.8 22.5 15.5 (K) ࢌࢀ
 500 -45 -46- (K) ࢝ࢉࣂ
 0.31 1.23 1.05 ࢌࢀ࡮࢑/࡮ࡱ

 

 



87 
 

 
 

The critical field, ܪ଴ of a particular magnetic glass can be estimated by the intercept of the 

linear fit and the corresponding ܪ଴ of the three magnetic glasses are summarized in the 

Table 5-2. The magnetic energy (ܧ஻) corresponding to ܪ଴ represents the required energy 

to completely remove the ruggedness of the energy landscape.  Notice that in the case of 

SCGO(p = 0.968(6)) and Y2Mo2O7, the ܧ஻/݇஻ is comparable with ௙ܶ, while ܧ஻/݇஻ is about 

three times lower comparing to ௙ܶ. (see the ܧ஻/݇஻ ௙ܶ ratio in Table 5-2) This might be an 

indication of SCGO(p = 0.968(6)) and Y2Mo2O7 magnets belong to a different category of 

magnetic glasses, distinct from dilute spin glasses. 

 

Conclusions 
Three different magnetic glasses systems: a dilute magnetic alloy CuMn2%, a quasi-2D 

frustrated magnet SCGO(p = 0.968(6))/BCGO(p = 0.902(8)) and a 3D pyrochlore magnet 

Y2Mo2O7 has been revived and compared using different experimental techniques. All the 

three systems show glass transitions below a finite temperature much lower than the 

corresponding Curie-Weiss temperature. But the magnetic glass states from the dense limit 

of geomerically frustrated magnets mentioned above deviate from the conventional spin 

glass behavior observed in CuMn2% implying that the magnetic glasses needs more 

refined categorization.       
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Chapter 6    
Aging, Memory, and Nonhierarchical 
energy landscape of SCGO 

Motivation 
If the energy landscape of a system resembles a smooth vase with a pointy bottom end, 

upon cooling the system goes quickly into the lowest energy state, i.e., the global ground 

state that is usually associated with the crystalline order. If the energy landscape is more 

complex with many metastable states, i.e., local minima, then cooling may lead the system 

into local minima resulting in a glassy order. The concept of such energy landscapes has 

been instrumental in explaining the glassiness that is ubiquitous in a wide range of systems, 

including atomic clusters  [76], structural glasses  [77,78], polymers  [79], brain activity  

[80], and social networks  [81]. Several different topological types of energy landscapes 

were proposed to characterize different glassiness and the associated slow dynamics  

[82,83]. For instance, a rugged funnel-shaped landscape shown in Figure 6.1(a) was 

proposed to understand the physics of biopolymers  [84,85]  and dilute magnetic alloys 

called spin glass  [7]. 

Magnetic glass systems  [86--90] present a unique opportunity to microscopically study 

the relation between the energy landscape and low-temperature properties. The most 

studied magnetic glass state is the conventional spin glass realized in dilute magnetic alloys 

such as CuMn and AuFe. Here, dilute magnetic ions (Mn and Fe) in a nonmagnetic metal 

interact via the long-range Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction whose 

magnitude and sign change with distance between the randomly placed magnetic ions  [7].  
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Figure 6.1  Schematic energy landscapes of spin glass and spin jam. 
(a) (Upper) Schematic energy landscape of a conventional spin glass that consists of many 
hierarchical rugged funnels and (Lower) the corresponding hierarchical tree representation. (b) 
(Upper) Schematic diagram of nonhierarchical energy landscape of the spin jam that has wide 
nearly flat rough bottom and (Lower) the corresponding nonhierarchical barrier tree 
representation. 

 
The randomness drives the system into the spin glass state below a critical temperature, ௙ܶ 

, that is comparable to the mean-field magnetic energy scale, i.e., the absolute value of the 

Curie–Weiss temperature, |߆஼ௐ|. For instance, for Cu − 2 at. % Mn (CuMn2% hereafter), 

Θ஼ௐ =  −45 K and ௙ܶ = 15.5 K. Another distinct glassy state called a spin jam has been 

recently suggested to appear in densely populated frustrated magnets  [4,5,34,35,72]. At 

the mean-field level, these systems are expected to remain in a classical spin liquid down 

to absolute zero temperature, due to macroscopic classical ground state degeneracy. 

Quantum fluctuations, however, lift the degeneracy and lead the system to the spin jam 

state below ௙ܶ that is much lower than |߆஼ௐ|. For instance, for SrCr9pGa12-9pO19 (SCGO)(p 

= 0.97), Θ஼ௐ =  −500 K and ௙ܶ = 3.8 K. The stark different ratios of |Θ஼ௐ|/ ௙ܶ for the 
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spin jam and spin glass suggest that the two states might have qualitatively distinct energy 

landscapes. 

Aging and Memory Effect Experiments 
Aging and memory effects have been key features of glassy systems due to the intrinsic 

slow-dynamics. The thermo-remanent magnetization (TRM) method is the most effective 

way so far to investigate these effects [88,89,91]; for the measurements, the sample is first 

cooled down from well above ௙ܶ to base temperature with a single stop for a waiting time, 

 ௪, at an intermediate temperature ௪ܶ, under zero field. While waiting at ௪ܶ, if the systemݐ

has as many nearly degenerate metastable states at low energies as spin jam and 

conventional spin glasses have, the system will relax to the accessible lower energy states 

than when no waiting is imposed. The longer ݐ௪ is, the lower energy states the system will 

relax to, which is called “aging”. Once cooled down to base temperature, the TRM is 

measured by applying a small field of a few gauss upon heating at a constant rate. During 

the measurements, when the temperature approaches the temperature of aging, ௪ܶ, the 

system revisits the lower energy states reached during the wait time that are associated with 

the energy scale of ݇஻ ௙ܶ, where ݇஻ is the Boltzmann constant. Upon further heating, the 

system goes to higher energy states allowed within ݇஻ܶ. This is referred to as the aging 

and memory effect. 

Magnetic Memory of Spin Jam vs Spin Glass 
We have performed the TRM measurements on two spin jam prototypes, SCGO(p = 0.97) 

and BaCr9pGa12-9pO19 (BCGO)(p = 0.96) in which the magnetic Cr3+ (3d3) ions form a 

highly frustrating quasi-2D triangular network of bipyramids  [4,5,34,35,72] and a spin 

glass prototype CuMn2% in which the 2% low concentration of the magnetic Mn atoms is 

embedded in the nonmagnetic Cu metal. Strong aging and memory effects have been 

observed in CuMn2%, whereas the effects are much weaker in SCGO and BCGO. Figure 

6.2 (a)–(c) shows the TRM data obtained from SCGO(p = 0.97), BCGO(p = 0.96), and 

CuMn2%, respectively, with several different values of ݐ௪ ranging from 6 min to 100 h, at 

௪ܶ =  ௙ܶ ~ 0.7. All samples exhibit similar aging and memory effects that increase with 

increasing ݐ௪. These indicate the existence of numerous metastable states and slow 
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dynamics in all systems. Despite the similarity, there is a clear difference: For the CuMn2% 

magnetic alloy, considerable aging occurs at ௪ܶ even for a short ݐ௪ of 6 min (data in violet 

in Figure 6.2(c)), whereas for the spin jam SCGO(p = 0.97) and BCGO(p = 0.96), there is 

very small aging for ݐ௪ = 6 min (data in violet in Fig. 2 A and B). Furthermore, in the case 

of CuMn2%, as ݐ௪ increases, the memory effect increases to develop a dip at ௪ܶ for ݐ௪ ≥

3 ℎ. On the other hand, for SCGO(p = 0.97) such a dip never appears even for ݐ௪ = 100 h; 

instead only a weak memory shoulder appears.  

 
Figure 6.2 Magnetic memory as a function of tw for SCGO, BCGO and CuMn2%. 
(a)–(b) Bulk susceptibility, ߯ ஽஼ =  are magnetization and applied magnetic ܪ and ܯ where ,ܪ/ܯ
field, respectively, obtained from (a) SCGO(p = 0.97), (b) BCGO(p = 0.96), and (c) a spin glass 
CuMn2%, with 3 = ܪ G. Symbols and lines with different colors indicate the data taken with 
different waiting times, ݐ௪, ranging from 0 h to 100 h, at ௪ܶ/ ௙ܶ  ∼ 0.7, where ௪ܶ and ௙ܶ are the 
waiting and the freezing temperature, respectively. (d) From the data shown in (a)–(c), the aging 
effect was quantified for the three systems by (ܯ௥௘௙  –  ௥௘௙ is theܯ ௥௘௙, whereܯ/(ܯ 
magnetization without waiting, and it was plotted as a function of ݐ௪ in a log scale. The “+” 
symbols mark the results of our MC simulations. Details of the simulations can be found in 
Appendix C  . 

 
The memory effect can be quantified by the aging-induced relative change in the 

magnetization, ൫ܯ௔௚௜௡௚ ௔௚௜௡௚ܯ ௥௘௙, whereܯ/௥௘௙൯ܯ−  and ܯ௥௘௙ are the magnetization 

with and without aging, respectively. Figure 6.2(d) shows ൫ܯ௔௚௜௡௚  ,௥௘௙ܯ/௥௘௙൯ܯ−

measured at ௪ܶ/ ௙ܶ ∼ 0.7 for SCGO(p = 0.97) (solid symbols), BCGO(p = 0.96) (symbols 

with a line), and CuMn2% (open symbols), as a function of ݐ௪. These data are consistent 

with a previous study on SCGO(p = 0.956) with ݐ௪ up to 5.83 h (13). In the case of 

CuMn2%, as ݐ௪ increases from 6 min to 100 h, ൫ܯ௔௚௜௡௚  ௥௘௙ continues toܯ/௥௘௙൯ܯ−
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gradually increase from 3.4% to 8.2%. On the other hand, for SCGO(p = 0.97), 

൫ܯ௔௚௜௡௚  ,௥௘௙ increases gradually from 0.6% to 2.4%, and for BCGO(p = 0.96)ܯ/௥௘௙൯ܯ−

from 0.7% to 3.1%, as ݐ௪ increases from 6 min to 10 h. The increase rate of 

൫ܯ௔௚௜௡௚  ௪ =100 h forݐ ௪ >10 h, reaching 2.7% atݐ ௥௘௙ seems to decrease forܯ/௥௘௙൯ܯ−

SCGO(p = 0.97). We emphasize that over this wide range of ݐ௪ up to 100 h the 

susceptibility curve is always monotonically dependent on temperature up to the freezing 

point (Figure 6.2 (a) and (b)), in sharp contrast to CuMn2%. 

 
Figure 6.3  Magnetic memory as a function of Tw for SCGO, BCGO and CuMn2%.  
(a)–(c) ߯஽஼ and (d)–(f) (ܯ௥௘௙  –  ௥௘௙ measured for [(a) and (d)] SCGO(p = 0.97), [(b) andܯ/(ܯ 
(e)] BCGO(p = 0.96), and [(c) and (f)] CuMn2%, with ݐ௪ = 10 h, at various waiting temperatures. 

 
Figure 6.3 shows the memory effect for various values of 0.4 ≲  ௪ܶ/ ௙ܶ ≲ 1 measured with 

/௪ =10 h. All systems exhibit maximal memory effect for ௪ܶݐ ௙ܶ ∼ 0.7. When ௪ܶ/ ௙ܶ 

increases or decreases from the maximal value, then the memory effect becomes weaker. 

The weakening, however, is more rapid in CuMn2% than in SCGO and BCGO; for 

CuMn2%, ൫ܯ௔௚௜௡௚ ܶ ௥௘௙ decreases from 7.2% forܯ/௥௘௙൯ܯ− ௪/ ௙ܶ ∼ 0.7 to 2.7% for ܶ ௪/ ௙ܶ 

∼ 0.9, whereas for SCGO(p = 0.97) [BCGO(p = 0.96)], ൫ܯ௔௚௜௡௚  ௥௘௙ decreasesܯ/௥௘௙൯ܯ−

from 2.4% (3.1%) for ௪ܶ/ ௙ܶ ∼0.7 to 1.7% (2.5%) for ௪ܶ/ ௙ܶ ∼0.9. The pronounced 

memory effects found in CuMn2% may hint at an energy landscape with a more 

hierarchical structure. On the other hand, the weak memory effect, observed in SCGO and 
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BCGO, which is uniform over a wide range of 0.4 ≲  ௪ܶ/ ௙ܶ ≲ 1, suggests an energy 

landscape with a less hierarchical structure. 

Dynamical Tree Model Simulations 
Rejuvenation and memory effects have proved difficult to reproduce in standard 

simulations of supercooled liquids or spin glasses, due to the large phase space to be 

covered and a large spread of time scales involved [92,93]. Several successful attempts 

were made, such as a multilayer random energy model  [94] and a model of thermally 

activated number sorting  [93]. None of the studies, however, investigated how different 

topologies of the energy landscape will impact the memory effects. Here we have done so 

by taking a phenomenological approach based on a multilayer energy model. As shown 

later, this approach reproduces qualitatively the differences between memory effects 

associated with different landscapes. 

We performed Monte Carlo simulations on two types of energy landscapes suggested for 

the spin glass and spin jam. Although the energy surface in both cases is characterized by 

numerous local minima, the distribution and connectivity of these minima are very 

different. Here we adopt the so-called barrier tree representation  [83,95,96] in which the 

local minima correspond to leaves of the tree, whereas the branching points denote the 

barriers separating disconnected valleys and/or minima. Details can be found in Figure 

(App.)   C.1 and discussion in Appendix C  . 

Figure 6.1(a) shows a funnel-type barrier tree that is characteristic of the conventional spin 

glass. A rugged funnel here corresponds to a single long branch (the global minimum) with 

many dead branches splitting from it  [83,95]. The experimentally observed memory effect 

is intimately related to a multitude of energy and time scales in the low-energy 

configurational space. For the funnel-type landscape, a hierarchical structure of energy 

scales is encoded in the different levels of the barrier tree. The energy barriers ߝ௟ at level ݈ 

are characterized by a temperature ௟ܶ such that ଵܶ > ଶܶ > ⋯ > ௅ܶ, where L is the number 

of levels of the tree  [94]. The freezing temperature is ௙ܶ ≈ ଵܶ. The relaxation of the system 

in this hierarchical structure exhibits complex temperature- dependent dynamics. 

Typically, because the relaxation time at level ݈ scales as ߬௟~߬଴݁ఌ೗/், where ߬଴ is a 
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microscopic time scale, the relaxation dynamics start to show exponential slowing down 

at level ݈ when ܶ < ௟ܶ. Depending on the population of dead-end local minima at each 

level, the system fluctuates over a small window of levels determined by ௪ܶ in the 

experiments. A longer ݐ௪ at this temperature allows the system to relax to a deeper and 

larger (entropically) valley of the energy surface. The memory effect observed during the 

reheating process results from the fact that the system is trapped in this special landscape 

basin. The susceptibility, ߯஽஼ , as a function of temperature is shown in Figure 6.4 (a)–(c) 

for three different ௪ܶ. The DC susceptibility computed using a random magnetization 

model  [94] shows a clear dip that depends on ௪ܶ as well as ݐ௪. In particular, a longer ݐ௪ 

gives rise to a larger susceptibility reduction. It should be noted that other contributions to 

߯஽஼  such as continuous spin fluctuations are not included in the landscape tree dynamics 

simulations. 

 
Figure 6.4 The simulated DC susceptibility.  
(a)–(c) and (d)–(f) show the simulated DC susceptibility during the reheating process for the 
hierarchical and nonhierarchical trees, respectively, at three different waiting temperatures ௪ܶ =
 0.2 ௙ܶ  ((a) and (d)), 0.4 ௙ܶ  ((b) and (e)), and 0.6 ௙ܶ [(c) and (f)]. Different curves in each panel 
correspond to varying ݐ௪ measured in units of the total cooling time. 

 

In contrast to ordinary spin glass, the energy structure in a spin jam results from quantum 

and classical fluctuations breaking an exactly flat landscape [5]. Importantly, the energy 
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scale for glass transition ܶ ௙ is determined by the fluctuations and is two orders of magnitude 

smaller than the Curie–Weiss temperature [5]. We expect the resulting landscape to feature 

broad basins and within each basin numerous microstates, as shown in Figure 6.1(b). As 

the local minima in spin jam result from the original zero energy mode of the classical spin 

Hamiltonian, it is plausible that the energy minima here are clustered into different 

branches (labeled by ݉) each characterized by a different energy scale ௠ܶ. For a particular 

cluster or branch of minima, the temperature ௠ܶ underscores the energy barrier due to 

quantum fluctuations. ௠ܶ is a random variable and is uniformly distributed in the interval 

of [0, ௙ܶ]. ௪ܶ sets a threshold such that clusters with ௠ܶ > ௪ܶ exhibit slow relaxation 

dynamics, whereas a longer ݐ௪ helps the system find the cluster with a lower overall energy 

and larger entropy. This property underscores the weak memory effect observed in spin 

jam. Again, the fact that the system is trapped in this special cluster manifests itself as the 

memory effect during rewarming. The simulated susceptibility of the nonhierarchical tree, 

shown in Figure 6.4 (d)–(f), shows a memory effect that depends on both ܶ ௪ and ݐ௪, similar 

to the spin glass. However, the salient feature is rather different: Contrary to the narrow 

dip in the hierarchical tree that appears even for short waiting time ݐ௪ > 1 (Figure 6.4 (a)–

(c)), the susceptibility here exhibits a wide shoulder-like feature over a much wider range 

of ݐ௪ for each ௪ܶ. As shown in more detail in Figure (App.)   C.2 (a), for ௪ܶ = 0.6 ௙ܶ the 

nonhierarchical landscape fails to yield a narrow dip over six orders of magnitude of the 

Monte Carlo (MC) steps. Remarkably, this finding is consistent with the experimental data 

revealing a shoulder-like feature for spin jam (Figure 6.2 (a) and (b)) vs. the substantial dip 

for the ordinary spin glass (Figure 6.2 (c)). Furthermore, the functional dependence of the 

memory effect on waiting time is nicely reproduced for both systems in Figure 6.2 (d) over 

three orders of magnitude. 

Discussion 
The picture that emerges from the bulk susceptibility and Monte Carlo simulations is that 

the energy landscape of a spin jam is qualitatively different from the rugged funnel-type 

landscape of a spin glass. The hierarchical structure allows a natural realization of multiple 

energy scales (e.g., ref.  [97]) that is crucial to the memory effect. On the other hand, the 

aging dynamics in the spin jam are well described by an essentially nonhierarchical barrier 
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tree with more uniform branching. This result is consistent with the fact that the rough 

energy landscape in spin jam results from quantum fluctuations that lift the otherwise 

degenerate classical ground states. In particular, the weak memory effect at short times 

found in a spin jam may be interpreted as a result of the large time it takes the system to 

wander among the numerous roughly equivalent minima at a given energy scale. 

The transition from a spin liquid to a spin jam in densely populated frustrated magnets 

upon cooling may be viewed as an effective reduction of degrees of freedom. In SCGO  

[4,5] and kagome antiferromagnet  [15] the origin of the reduction can be induced by 

quantum fluctuations. We remark that the transition bears some analogy to the transition 

from a structural (mechanical) liquid state to a mechanical jam by increasing the 

concentration of the atoms, i.e., pressure  [2]. Both frustrated magnets and the mechanical 

jam have a large number of metastable states, other than their ground states, in the vicinity 

of their liquid states. The configurational entropy of these states ranges from extensive, as 

in mechanical jams and coplanar states of the kagome antiferromagnet  [15,63], to 

subextensive as in the locally collinear states of an ideal SCGO  [5]. Both types of systems 

are expected to feature a relatively shallow energy landscape of accessible states due to 

their proximity to a uniform liquid state. It is interesting to note a possibly related 

observation that the ensemble of metastable states in self-generated Coulomb glasses is 

shallow compared with more ordinary electron glasses relying on quench disorder  [98]. 

The two fundamentally different trees studied here can be cast in the framework of complex 

networks  [99,100]. The spin glass’s hierarchical energy landscape (even with a fractal 

structure) resembles the so-called scale-free network  [100], proposed to explain internet 

connections and ecological and neural networks  [101]. In this network, there are highly 

connected dominating nodes, each of which corresponds to the global minimum of a 

rugged funnel. On the other hand, the spin jam’s nonhierarchical landscape corresponds to 

a network consisting of weakly connected clusters that are homogenous on a larger scale. 
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Chapter 7    
Universal Scaling of memories 

Motivation 
Magnetic glassy systems present a unique opportunity for searching possible universal 

phenomena associated with glassy behaviors. This is because glass phase exists in a wide 

range of magnetic materials that are described by seemingly very different spin 

interactions. The most well-known common features of the magnetic glassy behaviors are 

the lack of long-range magnetic order and the field-cooled (FC) and zero-field-cooled 

(ZFC) hysteresis found in the bulk susceptibility  [102,103]. The term spin glass was coined 

in 1970s to describe the low-temperature behaviors of dilute magnetic alloys that are made 

of nonmagnetic metals with low concentrations of magnetic impurities  [102,104]. The 

canonical glassy behaviors are manifested in intriguing phenomena called aging, 

rejuvenation, and memory effects [90]. While aging simply refers to the time-span 

dependence of relaxation phenomena in the glassy state, rejuvenation describes the re-

thermalization whenever the system is further cooled after waiting at some temperature. 

The states accessed while aging can be retrieved upon re-heating, which is called memory 

effect. Several theories have been proposed to understand the physics of the spin glass. 

Various systems other than the dilute magnetic alloys also exhibit the aforementioned 

characteristic glassy behaviors at low temperatures, even when the magnetic moments are 

densely populated. For example, glassy behaviors have been observed in the phase 

diagrams of high-temperature superconducting materials, cuprates [105,106] and iron-

based superconductors [107]. Another example is the so-called spin-orbit Mott insulators, 

Li2RhO3 [108,109]  and Na2Ir1-xTixO3 [110], which exhibit anisotropic Kitaev-type 
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exchange interactions. Yet another is a set of geometrically frustrated magnets, pyrochlores 

such as Y2Mo2O7 [19] , spinels such as ZnFe2O4 [87]  , and the quasi-two-dimensional bi-

pyramid compounds SrCr9pGa12-9pO19 (SCGO) [4,5,32,72] and BaCr9pGa12-9pO19 (BCGO) 

[47] . We emphasize that the magnetic interactions of these systems seem to be quite 

different in nature. For instance, the parent compound of high-Tc superconductors La2-

xSrxCuO4 (LSCO(x)) is a Mott insulator with a conventional Neel spin order [111]. The 

entire magnetic excitation spectrum of La2CuO4 can be understood by an effective spin 

Hamiltonian with dominant nearest-neighbor antiferromagnetic coupling constant ܬ = 104 

meV [112] . The iron chalcogenide Fe1+yTe displays a bi-collinear antiferromagnetic stripe 

order [113,114] . Magnetic interactions in the two spin-orbit Mott insulators, Li2RhO3 and 

Na2Ir1-xTixO3 are dominated by highly anisotropic Kitaev exchange couplings [115,116]. 

Remarkably, despite their different nature of magnetic interactions, all the systems show 

the same FC-ZFC hysteresis at low temperatures. A natural question to ask is whether or 

not there is a unifying concept that can unite and also classify these various glassy magnets.  

Methodology 
Here, we address this issue by investigating memory effects of several of the 

aforementioned exemplary systems using the bulk magnetization measurements. We 

performed thermo-remanent magnetization (TRM) [88,89,91] measurements on five 

different compounds, which can be divided into three categories: (1) the high-temperature 

superconducting materials, cuprates and Fe-chalcogenides, (2) Kitaev-model-related 

systems Li2RhO3 and Na2Ir1-xTixO3, and (3) a semi-conducting pyrochlore Y2Mo2O7. 

Intriguingly, despite their distinct microscopic Hamiltonians, all of them exhibit 

unconventional glassy behaviors in the TRM measurements, that are weak and broad 

shoulder-like memory effects as in the prototype spin jam compounds SCGO/BCGO, 

starkly contrasting the strong and dip-like memory effects observed in the canonical spin 

glass such as CuMn2%. Interestingly, all the data can be well reproduced by a modified 

stretched exponential function of ൜1 − exp ൬− ቀ௧ೢ
ఛ
ቁ
ଵି௡

൰ൠ. More importantly, all the 

densely populated magnets except Y2Mo2O7 yield an exponent of 1 − ݊ ≈ 0.6(1). This 

value is different from 1 − ݊ ≈ 1/3 of dilute magnetic alloys [117--119]  that was ascribed 
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to their hierarchical and fractal energy landscape [120--123], and is also different from 1 −

݊ = 1 of the conventional Debye relaxation expected for a crystal. Based on these results, 

we argue that the glass magnets can be categorized into two distinct classes with different 

relaxation behaviors characterized by the exponent: 1 − ݊ ≈ 1/3 for glassy magnets with 

hierarchical energy landscape and 1 − ݊ ≈ 0.6(1) for the ones with non-hierarchical 

energy landscape.  

Universal Memory Behavior 
The TRM measurement is the most effective way to probe the memory effects in detail as 

explained in Appendix A.8   and as shown in the comparative study of SCGO/BCGO and 

the canonical spin glass CuMn2% in Chapter 6    [124]. While a dip-like memory effect 

with clear rejuvenation was observed, as expected, in CuMn2%, a shoulder-like memory 

effect seen in SCGO/BCGO implies lack of rejuvenation. Figure 7.1 shows the TRM data 

obtained from five different compounds: (a) Fe1.02Se0.15Te0.85, (b) La2-xSrxCuO4 

(LSCO(x=0.04)), (c) Li2RhO3, (d) Na2Ir0.89Ti0.11O3, and (e) Y2Mo2O7. These TRM data 

were taken after waiting at the waiting temperature ܶ ௪~ 0.7 ௙ܶ for several different waiting 

times ranging from 1.5(5) min to maximally 100 hours. For all systems aging and memory 

effect appears, i.e., the magnetization decreases near ௪ܶ when the measurements were 

performed after waiting. The memory effect gets enhanced as the waiting time, ݐ௪, 

increases. Surprisingly, Fe1.02Se0.15Te0.85 and LSCO(x=0.04) whose parent compounds, 

FeTe and La2CuO4, respectively, are long-range ordered state, i.e., spin solid, exhibit very 

weak memory effects. The memory effects in both systems are negligible for short waiting 

time ݐ௪ ≤ 6 min. For ݐ௪ ≳ 1 hr, both systems show a very weak and broad shoulder 

appearing around ௪ܶ (see Figure 7.1 (a) and (b)), regardless of how large ݐ௪ is. For 

Fe1.02Se0.15Te0.85, the memory effect even seems to saturate for ݐ௪ ≳  30 hrs (Figure 7.1 

(a)). Similar weak shoulder-like memory effects were also observed in the spin-orbit Mott 

insulators, Li2RhO3 and Na2Ir0.89Ti0.11O3 (see Figure 7.1 (c) and (d), respectively). Note 

that, similarly to the two superconductivity-related systems, the two Kitaev-model-related 

systems also exhibit negligible memory effects for short waiting time ݐ௪ ≤ 6 min.  

The weak shoulder-like memory effects have been observed in frustrated magnets, SCGO 

and BCGO (see Chapter 6  ), that are in the vicinity of spin liquid, and here we show that 
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another frustrated magnet, Y2Mo2O7, also exhibits similar features (Figure 7.1(e)). These 

data clearly show that the weak shoulder-like memory effect is universal in these densely 

populated magnets, regardless of their magnetic interactions. It is in stark contrast to the 

canonical spin glass such as CuMn2%, where the memory effects in the magnetization 

curve were readily seen even for such short waiting times as ݐ௪ = 1.5(5) min (see Figure 

7.3 (a)), and the effects become sharp and strong, appearing as a large dip at ௪ܶ for ݐ௪ ≥ 3 

hrs  [124] .  

 
Figure 7.1  Memory Effect as a function of waiting time. 
Bulk susceptibility, ߯ܥܦ =  are magnetization and applied magnetic field ܪ and ܯ where ,ܪ/ܯ 
strength, respectively, obtained from (a) Fe1.02Se0.15Te0.85 (b) La1.96Sr0.04CuO4, (c) Li2RhO3 (d) 
Na2Ir0.89Ti0.11O3 and (e) Y2Mo2O7, with ܪ =  3 ܱ݁. Symbols and lines with different colors 
indicate the data taken with different waiting times, ݓݐ, ranging from zero to 100hrs, at 
 and ݂ܶ are the waiting and the freezing temperature, respectively. For ݓܶ where 0.7 ~ ݂ܶ/ݓܶ
Fe1.02Se0.15Te0.85, the Curie-Weiss Temperature ݓܿߠ was estimated by fitting its high-T 
susceptibility data as shown in Fig. S1A in the Supplementary Information. For La1.96Sr0.04CuO4, 
the high-T susceptibility does not follow the simple Curie-Weiss law (see Fig. S1b in 
Supplementary Information). In order to show how strong the magnetic interactions are in LSCO, 
we quote the coupling constants of the parent compound La2CuO4 that were experimentally 
determined by inelastic neutron scattering (ref. [112] ); the antiferromagnetic nearest-neighbor ܬ ≈
104 ܸ݉݁ and the ferromagnetic next-nearest-neighbor ܬ′ ≈  ,for Li2RhO3 ݓܿߠ .ܸ݁݉ 18−
Na2Ir0.89Ti0.11O3 and Y2Mo2O7 were taken from ref. 9 [109] ,  [116]  and  [64] , respectively. 

 
Figure 7.2 (a) summarizes the ݐ௪ dependence of the memory effect for the densely 

populated magnets along with the canonical spin glass CuMn2%. The relative change of 

the magnetization ∆ܯ௥௘௟ = ൫ܯ௥௘௙ ൯ܯ− ௥௘௙ൗܯ  induced by the aging, in which ܯ and ܯ௥௘௙ 

are the magnetizations with and without waiting, respectively, is plotted. Overall, it is clear 

that the memory effect is much weaker in densely populated magnets than in the canonical 
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spin glass. Firstly, ∆ܯ௥௘௟ of ݐ௪ ≥ 30 hrs for all the densely populated magnets except 

Y2Mo2O7 is smaller than ∆ܯ௥௘௟ of ݐ௪ = 6 min for CuMn2%. Secondly, for ݐ௪ ≤ 6 min, 

most of them show negligible memory effects as shown in Figure 7.2 (a) and Figure 7.1. 

Thirdly, the memory effect of the spin jams except Y2Mo2O7 seems to saturate for ݐ௪ ≥

30 hrs, while for CuMn2% it seems to keep increasing with increasing ݐ௪ over the time 

period. 

 
Figure 7.2 Summarizing the memory effect.  
From the data shown in (a) Figure 7.1 and (b) Figure 7.3, the aging effect was quantified for the 
eleven systems by plotting the relative change of the magnetization ∆ܯ௥௘௟ = ൫ܯ௥௘௙ ൯ܯ− ௥௘௙ൗܯ  
where ܯ௥௘௙  is the magnetization without waiting, and it was plotted as a function of ݓݐ in a log 
scale. The aging effects of a spin jam prototype, SrCr9pGa12-9pO19 (SCGO(p=0.97)), and a spin 
glass prototype CuMn2% were taken from Ref. [124] , except the ݓݐ = 1.5(5) ݉݅݊ data are new 
and are also plotted here for comparison. Each set of ∆ܯ௥௘௟(ݐ௪) for each sample shown in panels 
(a) and (b) was fitted to the modified stretched exponential function, Equation 7.1. After the 
fitting, in (c) −log(1 − ௥௘௟ܯ∆ ⁄ܣ ) was plotted as a function of (ݓݐ ߬⁄ )1−݊ in a log-log scale. (d) 
The degree of aging, ܣ, and the inverse exponent, 1/(1− ݊), obtained for all the samples are 
plotted against each other. 

 
It is interesting that the densely populated Y2Mo2O7 exhibits both spin glass and spin jam 

behaviors. This is probably due to the fact that Y2Mo2O7 is a semi-conductor evidenced by 

its resistivity of 10ି~ߩଶ Ω ∙ cm at 300 K, and has an unquenched orbital degree of freedom 
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[64,125]. As a result, Y2Mo2O7 is not a typical frustrated antiferromagnet, which is 

manifested in the relatively small frustration index ݂ = Θ஼ௐ/ ௙ܶ ≅ 2.3 that is two orders 

of magnitude smaller than that of SCGO. 

In search of possible underlying scaling behavior, we have fitted the ݐ௪ dependence of 

   ௥௘௟ to the following phenomenological functionܯ∆

(௪ݐ)௥௘௟ܯ∆ = ܣ ቊ1 − exp ቆ−൬
௪ݐ
߬ ൰

ଵି௡
ቇቋ 
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which is modified from the stretched exponential function that was proposed to describe 

relaxation phenomena in glassy systems [117--123] . The modification made here is to take 

into account the experimental observation that ∆ܯ௥௘௟ seems to saturate for long waiting 

times. Here ܣ = ௪ݐ)௥௘௟ܯ∆ → ∞) is a measure of degree of aging, ߬ is a microscopic time 

scale for relaxation dynamics. A positive non-zero exponent ݊ would tell us how much the 

relaxation deviates from the conventional Debye behavior (݊ = 0). The exponent 1 − ݊ 

can be related to critical exponents for the spin glass transition within the framework of a 

random cluster model [121,122]. For example, assuming that the growth of clusters 

involves no conserved mode, the droplet model predicts an exponent 1 − ݊ = 1/2 [126] . 

The dashed lines in Figure 7.2 (a) are the fits of the experimental data to Equation 7.1 for 

all the materials. It is remarkable that the same phenomenological function, albeit with 

different parameters, reproduces all the data of both spin jams and spin glass over the wide 

range of the waiting time. This indicates that a universal scaling may be in play in the aging 

or relaxation phenomena of all glassy magnets, as shown in Figure 7.2 (c).  

The difference between the spin glass and spin jam is clearly manifested in different 

parameters in Figure 7.2 (d). For spin glass CuMn2%, the exponent 1− ݊ ≈ 1/3 that 

deviates significantly from the conventional Debye behavior of 1 − ݊ = 1. This is 

consistent with the previous studies on several other dilute magnetic alloys such as 

CuMn1% and AgMn2.6% [117] , NiMn23.5% [118], Au90Fe10  [119]. This deviation 

observed in the spin glasses was ascribed to the underlying hierarchically constrained 

dynamics [120--123]. On the other hand, the densely populated glassy magnets, SCGO, 

Fe1.02Se0.15Te0.85, LSCO, and the two spin-orbit Mott insulators, yield the exponent of 1 −
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݊ ≈ 0.6(1), indicating a smaller deviation from the conventional Debye relaxation. This 

implies that their energy landscapes are not hierarchical as in the canonical spin glass. 

These are summarized in Figure 7.2 (d) in which the exponent 1 − ݊ is plotted as a function 

of the degree of aging, ܣ. We note that there is a positive correlation between the deviation 

from the Debye limit and the degree of aging.  

 
Figure 7.3 Temperature Dependence of memory effect.  
߯஽஼ and ൫ܯ௥௘௙ ൯ܯ− ௥௘௙ൗܯ  measured for (a) Fe1.02Se0.15Te0.85 (b) La1.96Sr0.04CuO4, (c) Li2RhO3 (d) 
Na2Ir0.89Ti0.11O3 and (e) Y2Mo2O7, with ݐ௪ = 10 ℎݏݎ, at various waiting temperatures. 

 
Moreover,  Figure 7.3 shows that for the spin jam systems the memory effect with ݐ௪  =

 10 hrs is maximal when the waiting temperature ௪ܶ  ~ 0.7 ௙ܶ and it becomes weaker for 

other values of ௪ܶ over a wide range of ௪ܶ.   

Cu1-xMnx system as a function of x 
To further support the aforementioned scenario, we have performed the TRM 

measurements on Cu1-xMnx as a function of the Mn concentration, x. This series of 

compounds provides an excellent platform also to investigate how the spin glass is 

connected with the spin jam, and eventually magnetic ordered states. On one hand, Cu1-

xMnx is a canonical spin glass for small x. On the other hand, pure Mn exhibits a long-range 

spin-density-wave (SDW) order at low temperatures. The magnetic ground state of samples 

with large x thus can be viewed as large domains of SDW order disrupted by non-magnetic 

Cu atoms, similar to that observed in the densely populated magnets such as 

Fe1.02Se0.15Te0.85 and La1.96Sr0.04CuO4.  
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Figure 7.4 Memory Effect of Cu -x at. % Mn samples as a function of tw.  
Bulk susceptibility, ߯ܥܦ =  are magnetization and applied magnetic field ܪ and ܯ where ,ܪ/ܯ 
strength, respectively, obtained from Cu1-xMnx with (a) x=0.02, (b) x=0.15, (c) x=0.30, (d) x=0.45, 
(e) x=0.75 and (f) x=0.85, with H = 3 Oe. Symbols and lines with different colors indicate the data 
taken with different waiting times, ݓݐ, ranging from zero to 100 hrs, at ܶ0.7 ~ ݂ܶ/ݓ where ܶݓ and 
݂ܶ are the waiting and the freezing temperature, respectively. 

 
As shown in Figure 7.3 (a), (b), (c) and (d), for dilute alloys with small values of ݔ ≲ 0.45, 

the data exhibits prominent dip behaviors, i.e., the presence of rejuvenation. As x increases 

further, the dip behavior is gradually replaced with the shoulder behaviors, i.e., lack of 

rejuvenation, similar to spin jam (see Figure 7.3 (e) and (f)). The crossover seems to occur 

at x ~ 0.45 that is close to the percolation threshold for a three-dimensional system [63]. 

Note the non-monotonic behavior of the degree of aging ܣ = ௪ݐ)௥௘௟ܯ∆ → ∞) that 

maximizes at ݔ ∼ 0.15. The initial growth of A for small x is related to the increasing 

number of magnetic impurities, giving rise to a stronger magnetic signal. For very large x 

where the system is in the spin jam regime, the degree of aging is expected to decrease as 

observed for x = 0.75 and 0.85 shown in Figure 7.3 (e) and (f) respectively. Thus, even 

though the exact value of x for the maximal A is determined by the balancing between the 

exact nature of the magnetic interactions and the magnetic concentration, the maximum of 

A should occur most likely somewhere close to the middle of x = 0 and the percolation 

threshold, which is qualitatively consistent with the observed value of ݔ ∼ 0.15.  

Surprisingly, regardless of x, ∆ܯ௥௘௟ of Cu1-xMnx follows the same stretched exponential 

relaxation function, as shown in Figure 7.2 (b), but with varying values of the exponent, 

1 − ݊, from 0.34(1) for x=0.02 to 0.66(9) for x=0.85 (see Figure 7.2 (d)). And thus, all their 

 ௥௘௟ can be collapsed into a same function, once the waiting time is properly scaled, andܯ∆
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it is so even with those of the densely populated glassy systems, as shown in Figure 7.2 (c). 

The change in the exponent, 1− ݊, as a function of x clearly shows that the glassy state of 

the dilute magnetic alloy (for small x) is replaced by a glassy state for large x similar to the 

one observed in the densely populated magnets (see Figure 7.2 (d)) Interesting, the 

crossover occurs as the magnetic concentration go beyond the percolation threshold [63]. 

This clear crossover phenomenon strongly indicates that there are two distinct glassy states: 

spin glass and spin jam. 

Clues from Neutron Scattering 
Why do the densely populated systems exhibit the large exponent 1− ݊ ≈ 0.6(1) similar 

to the quantum-fluctuation-induced spin jam SCGO, compared to the canonical spin glass 

state of dilute magnetic alloys? A clue comes from neutron scattering studies; the magnetic 

structure factor, ܫ(ܳ), of all the densely populated magnets studied here exhibit prominent 

peaks that are centered at a non-zero momentum (ܳ) corresponding to short-range spin 

correlations, as those of the frustrated magnets SCGO [34,72] and BCGO [47]. This 

indicates that those systems have dominant antiferromagnetic interactions between 

localized spins and short-range spin correlations. For example, the cuprate [127,128] and 

iron chalcogenide [129,130] exhibit strong incommensurate peaks near the 

antiferromagnetic ordering wave vector of their parent compounds. As shown in Figure 7.4 

(b), the spin-orbit Mott insulator Na2Ir0.89Ti0.11O3 exhibit a prominent peak centered at ܳ =

0.87(2) Åିଵ. The common characteristics of the antiferromagnetic and short-range 

magnetic structure factor starkly contrast with the nearly featureless magnetic structure 

factor of the spin glass CuMn2%, as shown in Figure 7.4 (d). In the dilute magnetic alloys 

such as CuMn2%, magnetic impurities interact among themselves through the Ruderman-

Kittel-Kasuya-Yosida (RKKY) interactions that are mediated by the itinerant electrons. 

The RKKY interactions are long-ranged and oscillate from ferromagnetic to 

antiferromagnetic as a function of the distance. As a result, the random distances among 

the magnetic moments lead to their random interactions that even change the sign, resulting 

in the featureless magnetic structure factor.  
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Figure 7.5 Neutron scattering measurements of NITO and CuMn2%.  
(a) T-dependence, ݏ݈ܽ݁ܫ (ܶ), and (b) ܳ-dependence, ݏ݈ܽ݁ܫ (ܳ), of elastic magnetic neutron scattering 
intensity obtained from Na2Ir0.89Ti0.11O3. The measurements were done at the Cold Neutron 
Chopper Spectrometer (CNCS) at the Spallation Neutron Source (SNS). (c) T-dependence, 
ݏ݈ܽ݁ܫ ,and (d)  ܳ-dependence ,(ܶ) ݏ݈ܽ݁ܫ  (ܳ), of elastic magnetic neutron scattering intensity obtained 
from the magnetic alloy CuMn2%. The measurements were done at the Backscattering 
Spectrometer (BASIS) at SNS. For both ݏ݈ܽ݁ܫ  (ܳ) in (b) and (d), the non-magnetic background was 
determined from the data above the freezing temperature and subtracted from the base temperature 
data. The black solid line in (b) is the fit of the magnetic peak centered at ܳ =  0.87 Åିଵ to a 
simple Gaussian, while the line in (d) is a guide to eyes. The red horizontal bar at the center of the 
peak in (b) represents the instrument Q-resolution, ݀ܳ ≈ 0.06 Åିଵ, that was determined by fitting 
a nearby Bragg peak centered at 1.2 Åିଵ. 

 
The featureless ܫ(ܳ) of CuMn2% is consistent with the real-space droplet model for spin 

glass [126,131] in which low-energy excitations are dominated by connected spin clusters 

of arbitrary length scales. The real-space clusters or droplets correspond to the meta-stable 

ground states or local minima in the energy landscape. Their arbitrary length scales and 

random RKKY interactions yield a multitude of energy scales, resulting in the complex 

hierarchical fractal energy landscape [124,132--134]. As a consequence, the spin glass 

exhibits the observed strong dip-like memory effect. In contrast to the droplet model for 

spin glass, the clusters in spin jams are more uniform in size, as evidenced by the prominent 

peak of ܫ(ܳ). This feature, combined with the short-range exchange spin Hamiltonian, 

leads to a narrowly distributed energy scale, and the weak memory effect as observed in 

our susceptibility measurements.  
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The distinct nature of the two magnetic glass phases, spin glass and spin jam, also manifests 

in their characteristically different low energy excitations. The thermodynamic behavior of 

canonical spin glass at low temperatures is dominated by thermally active clusters or 

droplets, particularly those with a free energy less than or of the same order of ݇஻ܶ where 

݇஻ is the Boltzmann constant. The fact that there is a finite density of clusters with limiting 

zero free energy naturally leads to the linear-T specific heat [17,126], which is a signature 

of canonical spin glass. On the other hand, the low-energy excitations in spin jam are the 

Halperin-Saslow (HS) spin waves with finite spin stiffness over large length scales (often 

larger than the typical cluster sizes) [15,16,60]. These gapless HS modes exhibit a linear 

dispersion relation and are the source of a ܶଶ dependence of the specific heat for a two-

dimensional system. Indeed, such ܶଶ behavior has been observed in the glass phase of 

SCGO [32], Li2RhO3 [108,109], and doped Na2IrO3 [110].  

Summary and Conclusions 
The memory effect measurements provide crucial information about the nature of 

relaxation dynamics in different magnetic states, which allows us to classify the semi-

classical magnetic glassy materials as shown in Figure 7.5. At the lower left corner of the 

triangle lies the spin solid that is realized in densely populated semi-classical magnetic 

materials with small disorder and weak frustration that order long-range at low 

temperatures with Debye relaxation. The typical energy landscape associated with a spin 

solid is a smooth vase with a global minimum. At the lower right corner of the triangle lies 

the spin glass that is realized in dilute magnetic alloys with random magnetic interactions. 

Its typical energy landscape is dominated by hierarchical meta-stable states that correspond 

to spin clusters of arbitrary length scales in real space, exhibiting hierarchical rugged 

funnels and fractal geometry, and the observed strong deviation from the conventional 

Debye relaxation. Finally, at the top corner is the new magnetic state dubbed spin jam that 

encompasses many densely populated compounds with short-range exchange magnetic 

interactions, disorder and frustration. Disorder can be either extrinsic as in LSCO, FeTeSe 

and Na2Ir1-xTixO3, or intrinsic due to quantum fluctuations as in SCGO and BCGO  [4,5]. 

One salient feature of the spin jam, represented by a nonhierarchical energy landscape with 

a wide and nearly flat but rough bottom, is the lack of widely distributed energy and time 
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scales. This in turn leads to a significantly weaker memory effect and the relaxation 

exponent that is closer to the Debye exponent than that of the spin glass, as observed in our 

experiments. Remarkably, the canonical spin glass Cu1-xMnx with small x crosses over to 

the spin jam state when the magnetic concentration x increases beyond the percolation 

threshold.  

 
Figure 7.6 Schematic phase diagram.  
Classification of semi-classical magnetic states into three distinct phases, spin solid, spin jam, and 
spin glass, was made based on the memory effect. 

 
 Our classification of a wide range of semi-classical glassy magnets based on 

nonequilibrium relaxation dynamics to two distinct states has implication to other non-

magnetic structural glasses. Indeed, recent studies have found two distinct low-frequency 

modes in structural glass: one related to a hierarchical energy landscape and the other 

related to jamming [135--137]. The rather distinct aging and memory behaviors observed 

in the spin glass and jam might also shed light on the relationship between nonequilibrium 

dynamics and connectivity among elementary interacting agents in networks and socio-

economic systems [101]. 

  



109 
 

 
 

 

 

Chapter 8    
Comprehensive study of the dynamics 
of a classical Kitaev spin liquid 

Introduction 
Quantum spin liquids (QSLs) have attracted great interest in both theoretical and 

experimental condensed matter physics due to their remarkable topological properties. 

Among many different proposals, the Kitaev model [138]  defined on the honeycomb 

lattice, is a proto-typical two-dimensional (2D) QSL, which can be experimentally studied 

in iridium or ruthenium based materials  [139]. However, the lack of a symmetry-breaking 

order parameter poses a challenge for the experimental characterization of QSLs. In the 

absence of a smoking-gun experiment, it is important to characterize the dynamical 

response of QSLs in order to identify signatures, which can guide the experimental search 

of these exotic states of matter [140]. The computation of dynamical correlators of 

interacting quantum spin systems in dimension higher than one is very challenging for state 

of the art techniques. For instance, the study of dynamics in the Kitaev-Heisenberg model, 

which is not integrable due to the additional Heisenberg interaction, was recently initiated 

by using a matrix-product state based ܶ = 0 method  [141] and exact diagonalization [142]. 

These ܶ =  0 techniques can only be applied to relatively small clusters or quasi-one-

dimensional lattice geometry. Fortunately, the integrability of the pure Kitaev model allows 

for an exact calculation of the magnetic structure factor, ܵ(ܳ,߱), at ܶ = 0  [143,144] and 

for a controlled numerical calculation at any finite temperature ܶ  [145--147]. This 

remarkable property is being used to identify proximates to Kitaev liquids  [140,148,149]. 
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However, the actual model Hamiltonians of these materials are not integrable, so it is more 

challenging to assess the effect of the additional Hamiltonian terms on ܵ(ܳ,߱,ܶ). 

Given the above considerations, it is relevant to ask if a semi-classical treatment can shed 

light on the dynamics of the Kitaev QSLs. Semi-classical treatments are very useful for 

describing the low-temperature properties of unfrustrated magnets, whose low energy 

modes are quantized spin-waves or magnons. For instance, semiclassical dynamics 

simulations using an appropriate quantum-classical correspondence were found to produce 

a good description of the intermediate and high-temperature regimes of the 2D ܵ = 5/2 

antiferromagnet Rb2MnF4, over all wavevector and energy scales, with a crossover 

temperature ~ߠ஼ௐ/ܵ (ߠ஼ௐ is the Curie-Weiss temperature)  [150] . It is clear, however, 

that the semi-classical treatment cannot capture the intrinsically quantum mechanical 

nature of the low-energy excitations of quantum liquids. At first sight, this observation 

seems to render semi-classical approaches completely inadequate. Nevertheless, we will 

demonstrate that a semi-classical treatment of the Kitaev model can capture several 

properties of the dynamical structure factor of the ܵ = 1/2 model, including a quite 

remarkable agreement above the quantum to classical crossover temperature ொܶ஼  [151,152] 

. 

The spin-S Kitaev model with ܵ > 1/2 was introduced by Baskaran et al.  [153,154]  and 

it was subsequently studied by different groups  [155--158]. This model is not exactly 

solvable, but it preserves the ܼଶ gauge structure of the ܵ = 1/2 model. The set of 

commuting operators 

௣ܹ = ଵߪ− 
௬ߪଶ௭ߪଷ௫ߪସ

௬ߪହ௭ߪ଺௫ , 
 

8.1 
 

defined on each hexagonal plaquette of the honeycomb lattice (see Figure 8.1), is 

generalized to 

௣ܹ =  ݁௜గ൫ௌభ
೤ାௌమ೥ାௌయೣାௌర

೤ାௌఱ೥ାௌలೣ൯ 
 

8.2 
 

for arbitrary spin ܵ. An immediate consequence of this local ܼଶ symmetry is that the two-

spin correlator ⟨ ௜ܵ
ఔ
௝ܵ
ఔൿ is nonzero only for ݅ = ݆ and for the nearest-neighbor (NN) sites 
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connected by a ߥߥ bond (ߥ = ,ݕ,ݔ  Consequently, both the quantum and the .[153,154]  (ݖ

classical pure Kitaev models share the property of having a very short correlation length 

ߦ ≤ ܽ (ܽ is the lattice space) for arbitrary temperature ܶ. 

 
Figure 8.1 The Kitaev-Heisenberg model. 
(a) Schematic illustration of the Kitaev-Heisenberg model consisting of the Heisenberg 
interaction ܬ and the compass-like nearest-neighbor Ising interactions, with the associated spin 
component for each bond depending on the bond orientations (ݕݕ ,ݔݔ, or ݖݖ).  The site indices 
around the plaquette ݌ correspond to the denition of the ܼଶ flux operator ௣ܹ in Equation 8.2. (b) 
The first BZ (solid line) and the second BZ (dashed line) of the honeycomb lattice. Here, Q෩ =
Qܽ/2ߨ. The green arrows indicate a path connecting high-symmetry points in the reciprocal 
space (i.e., K-Γ-M-Y-X-K-M), along which we evaluate ܵ(Q,߱). (c) Example of a CN-ground 
state formed by antiferromagnetic dimer coverings. 

 
As expected, the main differences between the quantum and the classical limits of the 

model appear in the low energy sector. While the ܵ = 1/2 version of the model has a 

unique QSL ground state, the ground state is massively degenerate in the classical limit. 

The structure of the classical ground-state manifold corresponds to an exponentially large 

number of isolated points in the phase space, known as the Cartesian(CN)-ground states  

[154], as well as continuous families of intermediate states connecting one CN-ground state 

to another  [154,159]. The CN-ground states have each spin pointing along one of the three 

axes (ݕ ,ݔ or ݖ), in such a way that one of the three bonds that arrive to a common site has 

the minimum possible energy, while the other two have zero energy [see Figure 8.2(c)]. 

The zero modes associated with the continuous ground-sate degeneracy lead to a singular 

߱ = 0 contribution to ܵ(ܳ,߱), which is naturally absent in the ܵ = 1/2 version of the 

model. Instead, the ܵ = 1/2 model leads to a structure factor ܵ(ܳ,߱,ܶ =  0), which 
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vanishes for ߱ ≤ ∆ఔ, as a consequence of the finite activation gap ∆ఔ of the pair of bound 

ܼଶ fluxes (or “visons") created by the application of a spin operator to the ground state. 

Despite these qualitative differences between the low-energy magnetic response function 

of the quantum and the classical Kitaev liquids at ܶ = 0, we will show in this manuscript 

that the magnetic structure factors, ܵ(ܳ,߱,ܶ), of both models become very similar for ߱ 

and ܶ bigger than a quantum to classical crossover energy scale ொܶ஼ . Our results then 

suggest the possibility of describing the thermally induced random-flux state at ܶ ≳  ∆ఔ in 

the ܵ = 1/2 Kitaev model  [151,152,160] with the classical liquid of the model obtained 

in the ܵ → ∞ limit. This observation can be exploited to identify proximate quantum Kitaev 

liquid materials because ܵ(ܳ,߱,ܶ) can be computed under control for any arbitrary 

deformation of the pure Kitaev Hamiltonian in the classical limit. 

Zero-Temperature Liquids 
The dynamics of the classical version of Kitaev model is studied by combining Metropolis 

sampling and Landau-Lifshitz (LL) dynamics: 

݀ ௜ܵ

ݐ݀ = ௜ܵ ×  ௜ܤ
 

8.3 
 

where ܤ௜ is the effective local field (molecular field) acting on the spin ௜ܵ. The temperature 

of the simulation is fixed during the Metropolis sampling and, the Landau-Lifshitz 

dynamics starts from a randomly selected well thermalized configuration. To study the 

effect of relevant perturbations, which replace the Kitaev liquid by an ordered state at low-

enough temperatures, we will consider the simple case of the classical Kitaev-Heisenberg 

(KH) Hamiltonian  [157,158] with only nearest-neighbor (NN) interactions: 

ܪ = ܭ ෍ ෍ ௜ܵ
ఔ
௝ܵ
ఔ

{௜,௝}ഌఔୀ௫,௬,௭

+ ෍ܬ ௜ܵ . ௝ܵ
{௜,௝}

 
 

8.4 
 

The index ߥ for the variable ݅, ݆ indicates that the two n.n. sites ݅ and ݆ are connected by a 

 bond [see Figure 8.2(a)]. To compare the results of this classical model against the spin ߥߥ

ܵ quantum version of the model, we normalize the classical spins as | ௜ܵ| = ඥܵ(ܵ + 1). 

The quantum version of this Hamiltonian has been proposed as a model for iridium or 
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ruthenium-based materials  [139,161--163] . The magnetic structure factor ܵ(ܳ,߱,ܶ) is 

obtained by Fourier transforming the real-space correlator ⟨ܵ(ݎ௜, ,଴ݎ)ܵ.(ݐ 0)⟩ evaluated 

from the LL dynamics over a finite period with periodic boundary conditions. 

 
Figure 8.2 Comparison of the dynamical structure factor, S(Q,ω)  
 ܵ (ܳ,߱) in the classical limit (ܵ → ∞) and quantum limit (ܵ = 1/2) of the pure Kitaev model 
ܬ) = 0) at ܶ = 0. Panels (a) and (b) show ܵ(Q,߱) obtained from LL simulations of the classical 
AFM and FM Kitaev models, respectively. Panels (c) and (d) show ܵ(ܳ,߱) at ܶ = 0 for the ܵ =
1/2 Kitaev model obtained in Ref. [144] . Constant energy cuts of (e) AFM and (f) FM classical 
Kitaev liquids obtained by integrating over the energy range ߱/|ܭ| = [0.17, 0.35], 
corresponding to the low-frequency mode. Similar plots for the high-frequency mode are also 
shown for (g) AFM and (h) FM classical Kitaev liquids with the integration energy range 
|ܭ|/߱ = [1.4, 1.6]. 

 
We first focus on the pure Kitaev limit (ܬ = 0). Figure 8.2 shows the magnetic structure 

factor ܵ (ܳ,߱) of the classical and the quantum models at ܶ = 0 for both antiferromagnetic 

(AFM) and ferromagnetic (FM) cases. ܵ (ܳ,߱) is plotted along the BZ path (KΓMYXK) 

shown in Figure 8.1(b). The calculations in the classical limit (CL), shown in Figure 8.2 

(a) and (b), are averages over 120 LL simulations on a supercell of 20 × 20 unit cells (800 

spins). The quantum limit (QL) calculations, shown in Figure 8.2 (c) and (d), correspond 

to the exact result in the thermodynamic limit [6]. Remarkably, both the classical and the 

quantum Kitaev liquids are found to have two different almost dispersionless modes 

centered at high and low frequencies (߱) with striking similarities. 

The high-energy mode is centered around the Γ(Y) point for ܭ > ܭ) 0 < 0) and it is 

accompanied by a suppression of the low-energy spectral weight centered around the same 

wave vector. This behavior is better illustrated by the contour plots shown in Figure 8.2 
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(e)-(h). These panels are constant frequency cuts of ܵ(ܳ,߱), which show the distribution 

of spectral weight over momentum space. Figure 8.2 (e) and (f) correspond to the 

distribution of low-frequency modes (integral of ܵ(ܳ,߱) over the interval ߱/|ܭ| = [0.17, 

0.35]), while Figure 8.2 (g) and 2(h) show the distribution of high-frequency modes 

(integral of ܵ(ܳ,߱) over the interval ߱/|[1.6 ,1.4] = |ܭ). As it is clear from these panels, 

the low-energy spectral weight is suppressed in the same region in momentum space where 

the distribution of high-energy spectral weight has a peak. This is the center of the first BZ 

for ܭ > 0 and the center of the second BZ for ܭ < 0 [see Figure 8.1 (b)]. 

 
Figure 8.3  Temperature dependences of spin-spin correlations.  
Temperature dependences of the dynamical spin structure factor decomposed into the on-site 
contribution, ܵ଴(߱), and the NN contribution, − ଵܵ(߱), for the classical Kitaev model and also 
for the ܵ = 1/2 Kitaev model: ܵ଴(߱) for (a) ܵ = ∞ and (b) ܵ = 1/2 and − ଵܵ(߱) for (c) ܵ = ∞ 
and (d) ܵ = 1/2. Frequency-dependence of ܵ଴(߱) and − ଵܵ(߱) in the classical model at selected 
temperatures (e) ܶ/ܭ = 0, (f) 0.014, (g) 0.25, (h) 0.6 and (i) 2.7 [indicated by the dashed lines 
in panels (a) and (c)]. Similar plots for the ܵ = 1/2 model are shown for comparison for (j) 
ܭ/ܶ = 0, (k) 0.015, (m) 0.24, (l) 0.6 and (n) 2.4 [indicated by the dashed lines in panels (c) and 
(d)]. Note that the n.n. dynamical correlation function is ± ଵܵ(߱) for ܭ = -while the on ,|ܭ|±
site correlator is the same for both signs of K. 

 
To understand the differences and similarities between the classical and the quantum limits 

of the Kitaev model, it is instructive to go back to the real-space. Figure 8.3 shows the real 
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space spin-spin correlators for the classical and the quantum limits of the AFM model. 

Figure 8.3 (a) and (b) include the on-site correlator for the CL and the QL, respectively. 

Similarly, Figure 8.3 (c) and (d) contain the NN correlator for the CL and the QL, 

respectively. As we mentioned before, the local gauge structure shared by the quantum and 

the classical models leads to a real space spin-spin correlator that vanishes beyond NN 

sites. This implies that the spin structure factor in the pure Kitaev model for arbitrary S can 

be decomposed as 

ܵఔఔ(ܳ,߱) =  ܵ଴(߱) + .ܳ)ݏ݋ܿ uఔ) ଵܵ(߱) 
 

8.5 
 

where ߥ = ,ݕ,ݔ  ߥߥ and uఔ is the relative vector between two NN sites connected by a ݖ

bond; ܵ଴(߱) and ଵܵ(߱) are the Fourier transformations into the frequency domain for the 

on-site and the NN dynamical spin correlators, respectively. This peculiarity leads to the 

sinusoidal Q-modulation in the high- and low-energy peak intensities as illustrated in 

Figure 8.2 (e)-(h). In other words, the similar wave vector dependence of the different 

modes in the classical and the quantum limits are a direct consequence of the similar real 

space correlations shown in Figure 8.3. 

The real space correlators also exhibit a low and a high-frequency peak in both models. 

The low-frequency peak of the ܵ = 1/2 model appears right above the small activation 

gap ∆ఔ for the pair of excited Zଶ gauge fluxes (visons) created by the action of a spin 

operator on the ground state. The extended linewidths of the low and the high-energy peaks 

arise from the continuum of Majorana fermion excitations, which leads to a rather narrow 

low-energy peak and a broad high-energy peak. In contrast, the low energy peak of the 

classical model extends down to zero frequency because the fluxes become gapless in this 

limit. The CN-ground states are not eigenstates of the ௣ܹ  operators, implying that the 

classical limit (ܵ → ∞) corresponds to a flux condensation (the flux number is no longer a 

good quantum number). It is interesting to note that quadratic quantum fluctuations 

partially restore this quantum number by selecting the CN-ground states, which maximize 

the number of hexagonal plaquettes with well-defined flux equal to zero (eigenvalue of ௣ܹ  

equal to one). These are the 3 × 2ே/ଷ states with every single loop being an elementary 

hexagon  [154] . The extensive degeneracy of the classical limit leads to sharp  ߜ-function 
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singularity in the spectral weight at ߱ = 0. The simple analysis that we present below 

explains the origin of this singularity and of the high-energy peak centered around the Γ 

point of the AFM model [see Figure 8.2 (a)]. 

The main qualitative aspects of the dynamical structure factor of the classical model at ܶ =

0 can be captured by the CN-ground states. As explained in Ref.  [154], the CN-ground 

states can be mapped into the close-packed dimer coverings of the honeycomb lattice by 

assigning one dimer to each “satisfied" bond (i.e., with its local energy taking the minimum 

value) [see Figure 8.1 (c)]. Within linear spin-wave theory  [154], magnons for CN-ground 

states can only propagate along the one-dimensional paths of empty bonds because of the 

Ising nature of the interactions. These 1D paths become self-avoiding loops if we adopt 

closed boundary conditions, which fully cover the whole lattice (every spin site is visited 

by one and only one loop). The spin-wave Hamiltonian for each loop is invariant under 

translations by two sites along the loop  [154]. In other words, the unit cell of the loops has 

two sites, implying that each loop has two branches of magnetic modes: a flat branch of 

zero modes, ܧ଴(݇) = 0, and second branch with a dispersion relation 

(݇)ܧ =  (2/݇)ݏ݋ܿ ܵ|ܭ|2
 

8.6 
 

with ݇ being the momentum associated with the two-unit translation within a loop. 

The top of the single-magnon band is at ݇ = 0, implying that the density of single-magnon 

states has a Van Hove singularity at ݇ = 0 for infinitely long loops. For the AFM model 

ܭ) > 0), the ݇ = 0 magnon wave function has the same phase for both sites in the unit 

cell. Consequently, the singular density of states leads to a high-energy peak centered at 

the Γ point [Figure 8.2 (a)]. On the other hand, the flat band of zero modes leads to a delta-

like contribution at ߱ = 0. While the real space dynamical structure factors are obtained 

by averaging over all the CN-ground states, this average is dominated by loops of very 

long length because of the critical nature of the close-packed dimer coverings of the 

honeycomb lattice. (The fully-packed self-avoiding loops on the honeycomb lattice is a 

critical system that can host loops of in finite length  [164,165].) Consequently, we can 
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approximate the average over loops by the result that is obtained for an infinitely long loop 

(see Appendix F  ): 

ܵ଴(߱) ≃ ߨܵ
ቀ ቁܵܭ߱
߱ +

ܵߨ
2 න(߱)ߜ

݀݇

ݏ݋ܿ ቀ݇2ቁ

గ

ିగ
 

 

8.7 
 

for the average on-site spin-spin correlator, and 

ߠ ଵܵ(߱) ≃ ൤
ܵ߱ߨ

ଶ(ܵܭ)2 −
ܵߨ
߱ ൨ ߩ̅ ቀ

߱
ቁܵܭ −

ܵߨ
2 න(߱)ߜ

݀݇

ݏ݋ܿ ቀ݇2ቁ

గ

ିగ
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for the NN spin-spin correlator, where ߠ = (ݔ)ߩ̅ The function .ܭ is the sign of |ܭ|/ܭ  =

 ,is the dimensionless density of single magnon states (ݔ)ߩܵܭ 

(ݔ)ߩ̅ =  
2

ට1 − ቀ2ݔቁ
ଶ
  

8.9 
 

The 1/߱ singularity that appears in the first term of Equations 8.7 and 8.8 arises from the 

1D nature of the problem at the linear spin-wave level. This singularity must then be 

regularized by higher order corrections in the 1/ܵ expansion, which restore the 2D nature 

of the problem by connecting different loops. Nevertheless, we will see that the linear spin-

wave contributions Equation 8.7 and Equation 8.8 are already enough to understand the 

main features of the numerical results. In particular, the 1/߱ tail explains the broad low-

energy spectral weight of the numerical results shown in Figure 8.2 (a) and (b). 

The second term of Equations 8.7 and 8.8 correspond to the singular contribution from the 

flat band of zero modes in each loop. We note that these singular contributions to the on-

site and the NN correlation functions differ only by a minus sign. Equation 8.5 then implies 

that the singular contribution from the zero modes vanishes exactly at the Γ point for the 

AFM classical Kitaev model: ܵఔఔ(Γ,߱)  =  ܵ0(߱)  +  ܵ1(߱). This fact remains true for 

any loop length. In other words, the distribution of zero modes over the Brillouin zone (BZ) 

has a node at the Γ point for ܭ >  0. Moreover, the singular contributions from the first 

terms of Equations 8.7 and 8.8 (infrared singularity associated with the 1D nature of the 

loops) also cancel exactly at the Γ point. The numerical result for this distribution is shown 

in Figure 8.2 (e) for ܭ > 0 and in 2(f) for ܭ < 0. As expected from our analysis, ܵ(ܳ,߱ →
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0) is suppressed around the Γ point for ܭ > 0. This “hole” in the density of zero modes is 

a signature of the AFM classical Kitaev liquid. Similarly, the FM Kitaev liquid is 

characterized by a suppression of the density of zero modes around the Y point (center of 

the second BZ). In this case, the zero-mode contribution cancels exactly at the Y point only 

for the component ܵఔఔ(ܻ,߱) =  ܵ଴(߱) − ଵܵ(߱) with the ߥߥ bond is parallel to Y. 

Consequently, the singular weight contribution at ߱ → 0 is suppressed at the Y point, but 

it does not vanish. In both cases, the missing low-energy spectral weight is shifted to the 

high-energy peak at ߱ →  .as it is shown in Figure 8.2 (g) and 2(h) ,|ܭ|

 
Figure 8.4 Spin-spin correlations of CN-ground states. 
(a) Frequency dependence of ܵ଴(߱) and − ଵܵ(߱) associated with the CN-ground states in the 
classical Kitaev model at T = 0. (b) Refined evaluations of ܵ଴(߱) and − ଵܵ(߱) with the inclusion 
of an artificial broadening ߳ =  which mimics the effect of the continuum of the ,ܭ0.1
intermediate ground states connecting different CN-ground states through the slide 
transformations (see the text). 

 
As we anticipated, the zero modes are removed in the quantum limit because the massive 

ground state degeneracy is lifted by quantum fluctuations. The net result is that the 

divergent spectral weight at ߱ = 0 is transferred to a small, but finite frequency region 

߱ ≳ ∆ఔ. The lack of zero modes at the Γ point suggests that the “hole” in the low-energy 

spectral weight should still be present in the spectral weight distribution right above the 

two-vison gap ∆ఔ. This expectation is confirmed by the numerical results shown in Figure 

8.2 (a) for ܭ >  0 and Figure 8.2 (b) for ܭ <  0. Consequently, this suppression of the 

low energy spectral weight and the associated shift to high energy is also a characteristic 

of the quantum Kitaev liquid. We note that low-energy spectral weight around the Γ point 

can in principle be induced by perturbations that break the two-flux selection rule (spin 

operators connecting subspaces that differ by two-gauge fluxes). However, as it was shown 
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in Ref.  [166], the rule is broken to fourth order in the typical perturbations of the Kitaev 

Hamiltonian, implying that the low-frequency spectral should remain very small. 

Figure 8.4 (a) shows the on-site, ܵ଴(߱), and the NN, ଵܵ(߱), dynamical structure factors 

given by Equations 8.7 and 8.8, respectively. These quantities are only an approximation 

of the exact ܵ(ܳ,߱,ܶ = 0) because the average is taken over the CN-ground states. The 

missing ground states correspond to the continuous deformations that connect different 

CN-ground states  [154]. 

Let us consider an intermediate ground state, which is obtained by continuous “slide” 

transformations  [154]  of a given CN-ground state. A slide transformation only involves 

spins along either a closed loop or an infinitely long string corresponding to alternating 

dimer and empty bonds. For small transformations, magnons will still propagate mainly 

along the loops of the “parent” CN-state. However, the corresponding 1D spin-wave 

Hamiltonian is no longer translationally invariant. Moreover, magnons can tunnel between 

different loops because the spins on the “satisfied bonds” are no longer parallel to the Ising 

anisotropy axis of the bond. In other words, the spin-wave Hamiltonian of the intermediate 

state can be regarded as a disordered version of the spin-wave Hamiltonian of the parent 

CN-state. To zeroth order, the effect of disorder is to broaden the quasi-particle peaks of 

the parent CN-state. Figure 8.4 (b) shows ܵ଴(߱) and ଵܵ(߱) after introducing an effective 

broadening ߳ =  These curves reproduce quite well the numerical results shown in .ܭ0.1 

Figure 8.3 (e). In particular, the effective disorder introduced by the “intermediate” ground 

states broaden the high-frequency peak originated by the Van Hove singularity in the 

density of states. The success of such a minimal perturbative treatment of intermediate 

states relies on the fact that CN-ground states maximize the number of zero modes, i.e., 

most of the classical ground states are small deformations of CN-ground states  [154]. 

Although this property does not lead to an order-by-disorder phenomenon at any 

temperature, it may renormalize the effective stiffness leading to a nontrivial ܶ- dependent 

power law in the short-range decay of the energy density correlator  [167]. 

Finally, 1D magnons must decay into pairs of spinons upon inclusion of quantum 

fluctuations beyond linear spin-wave theory. The resulting two-spinon continuum can be 

regarded as a precursor of the Majorana modes, which appear in the ܵ = 1/2 limit. The 
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main effect of the two-spinon continuum is to broaden the high-frequency peak, in 

agreement with the result obtained for the quantum limit of the model [see Figure 8.3(b), 

(d) and (j)].  

Thus, to summarize our discussion on the low-ܶ classical liquid state, the high-energy peak 

of ܵ(ܳ,߱) is common to the quantum (ܵ = 1/2) and the classical (ܵ → ∞) ܶ = 0 liquids. 

The classical limit of the model provides a new insight for understanding the origin of this 

peak, which has been used as a fingerprint of the proximity to a Kitaev liquid state  

[140,148,149]. The classical model also provides a new insight for understanding the 

momentum dependence of the low-energy spectral weight distribution of the ܵ = 1/2 

model. This distribution is very similar to the distribution of the ߱ = 0 spectral weight 

induced by the zero modes of the classical model. These facts establish a clear connection 

between the ܶ = 0 spectra of the classical and quantum liquids. 

Finite Temperature Liquids 
The ܵ = 1/2 Kitaev model can be mapped into a gas of free Majorana fermions interacting 

with static ܼଶ gauge fields  [138]. Because of the quadratic nature of the action, the 

fermionic degrees of freedom can be integrated out to obtain an effective classical action 

for the ܼଶ variables, which can be simulated by using Monte Carlo simulations  [151,152] 

, similar to other problems of noninteracting fermions coupled to classical degrees of 

freedom  [168] . To evaluate the dynamical spin structure factor at finite temperatures, one 

needs to combine such Monte Carlo samplings with a quantum Monte Carlo solver  [147] 

. To compare against the results for ܵ(ܳ,߱,ܶ) of the ܵ = 1/2 Kitaev model [see Figure 

8.3], extracted from Refs.  [145]  and  [146], we present the corresponding results for the 

classical Kitaev model in Figure 8.3 and Figure 8.5. 

As shown in Figure 8.5 (d) and (h), the high-temperature paramagnetic (PM) state of both 

the AFM and FM classical Kitaev models exhibits a characteristic broad diffusive peak 

with a small ܳ-dependence. Figure 8.5 (c), (g), (b), and (f), show that the low-frequency 

diffusive mode becomes more structured upon decreasing temperature and an additional 

mode emerges at the BZ center for ܭ > 0 and at the center of the second BZ (Y point) for 
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ܭ < 0. Finally, at very low temperatures [see Figure 8.5 (a) and (e)] the upper mode goes 

up in energy and it separates from the low-frequency spectral weight. 

 
Figure 8.5 Temperature evolution of S(Q,ω) of AFM and FM Kitaev models. 
Temperature evolution of ܵ(Q,߱) in the classical Kitaev model calculated along a BZ path 
shown in Fig. 1 (b) for the AFM coupling [(a)-(d)] and the FM coupling [(e)-(h)] at (a),(e) ܶ/ܭ =
0.04, (b),(f) ܶ/ܭ = 1.1, (c),(g) ܶ/ܭ = 2.9 and (d),(h) ܶ/ܭ = 7.5. Panels (i) and (j) show the 
temperature dependence of the intensity at the Γ-point for the AFM and the FM models, 
respectively. The dashed line in (i) traces the peak position of the high energy mode. 

 
Figure 8.5 (i) and (j) show the temperature dependence of ܵ(Γ,߱) for the AFM and the FM 

cases, respectively. The dashed line in Figure 8.5 (i) indicates the temperature evolution of 

the high-frequency peak. This peak merge with the low-energy peak at a temperature scale 

ுܶ ~ 0.3−  which roughly coincides with the high-temperature peak of the specific ,ܭ0.4

heat curve of the quantum (ܵ = 1/2) version of the model  [169] . ுܶ is also the 

temperature at which the high-energy mode of the ܵ = 1/2 Kitaev model merges with the 

low-energy mode  [145,146] . 

The quantum to classical crossover occurs at the temperature scale ொܶ஼ ≃ ∆ఔ , which is 

significantly lower than TH. Degenerate Hamiltonian eigenstates whose number of fluxes 
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differ by two only exist for energies bigger than ∆ఔ, as it is indicated by the finite value of 

ܵ଴(߱ → 0) for the ܵ = 1/2 Kitaev model [see Figure 8.3 (l)]. Linear combinations of these 

degenerate states produce eigenstates with non-zero 〈 ௝ܵ〉 (the total flux is no longer a good 

quantum number), which can be regarded as “classical states”. 

A large concentration of ܼଶ fluxes is induced at ܶ > ொܶ஼ ≃ ∆ఔ . These fluxes act as 

scattering centers for the Majorana fermions, which lose their coherence when the distance 

between scattering centers becomes comparable to their wave-length. This condition is 

fulfilled at ܶ > ொܶ஼  because the average distance between thermally activated fluxes 

becomes of order one lattice space. Figure 8.3 (g) and (l) show that the dynamical structure 

factors of the quantum and classical AFM models are very similar for ܶ/ܭ = 0.25 and 

߱ > ∆ఔ. The quantum character of the liquid is manifested at low temperatures in the low-

frequency dip at ߱ < ∆ఔ visible even up to ܶ/ܭ =  0.6 K (Figure 8.3(m)). The resulting 

low-frequency peak is then a remnant of the 2-vison gap. 

Kitaev-Heisenberg Model 
A big advantage of the classical limit of the model is that we can study the evolution of 

ܵ(ܳ,߱) away from the Kitaev point. In contrast to the quantum case, an arbitrarily small 

perturbation is enough to replace the ܶ = 0 liquid with a magnetically ordered phase that 

is also stable at finite temperatures. This ordered phase has three different regimes: a low 

temperature regime, ܶ ≪ ேܶ, in which the magnetic structure factor is dominated by the 

single-particle excitations of the ordered state (spinwave dispersion), an intermediate 

temperature regime, ேܶ <  ܶ ≲  with liquid-like correlations, and a high-temperature ,ܭ

paramagnetic state, ܶ ≫  that can be regarded as a “spin-gas” because the on-site ,ܭ

correlations are negligibly small in comparison to the on-site correlations. Price and 

Perkins  [157,158] argued that the ordering occurs via two consecutive Berezinskii-

Kosterlitz-Thouless transitions, as in the ܥ଺ clock model, with a small critical phase in 

between. 

The KH model (Equation 8.4) is one of the simplest Hamiltonians that can be used to study 

the three regimes (in what follows, our discussion excludes details related to critical 

phenomena at ܶ ≈ ேܶ). Given that the intermediate spin-liquid regime only exists in the 
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proximity of a ܶ = 0 liquid phase (see Figure 8.6), this regime can be used to detect 

proximate quantum spin liquid behavior. If ேܶ > ொܶ஼ , the liquid-like regime is described 

by the classical limit of the model, implying that finite-T classical spin dynamics can be 

exploited to identify magnets near a ܶ = 0 quantum melting point. 

 
Figure 8.6  Schematic phase diagram of the classical K-H model for (K > 0)  
The color gradient denotes the quantum-classical crossover region. The solid lines represent 
phase transitions. We note that the quantum spin liquid phase is stable over a finite interval of 
= ܬ values around ܭ/ܬ  0 in the quantum limit (ܵ = 1/2). 

 
As shown in Figure 8.6, the ground state of the classical KH model has zig-zag ordering 

for ܭ/ܬ < 0 and a two-sub-lattice AFM ordering for ܭ/ܬ > ܭ)0 > 0). At ܶ = 0, the spin-

wave dispersion deviates from the linear spin-wave spectrum (green lines in Figure 8.7) 

upon approaching |ܭ/|ܬ = 0. These deviations arise from the non-linear effects associated 

with spin fluctuations towards the large manifold of classical states that become ground 

states for ܬ = 0. We note that this nonlinearity may have a different manifestation in the 

quantum ܵ = 1/2 model. In particular, the magnon modes of the ܵ = 1/2 model should 

become weakly bounded pairs of Majorana fermions upon approaching the transition into 

the spin liquid phase (here we are assuming that the transition is continuous or quasi-

continuous). It is clear that this intrinsically quantum phenomenon cannot be captured by 

the classical limit of the model. However, as we discuss below, the classical model is still 
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capable of capturing the evolution of the high-energy features of the magnon spectrum. 

Moreover, based on the results discussed in the previous sections, the classical model can 

describe the second way of approaching the spin liquid regime, which is by increasing 

temperature at a fixed value of ܭ/ܬ. 

 
Figure 8.7 S(Q, ω) as a function of  FM Heisenberg exchange (J < 0)  
ܬ) for the KH model with FM Heisenberg exchange (߱,ۿ)ܵ < 0) and AFM Kitaev interaction 
ܭ) > 0) as a function of −ܭ/ܬ. The green lines correspond to the ܵ(ۿ,߱) obtained from linear 
spin-wave theory (the line thickness indicates the intensity). Panel (a) corresponds to the pure 
Kitaev model (ܬ = 0), while panels (b) and (c) correspond to ܭ/ܬ = −0.1 and ܭ/ܬ = −0.3, 
respectively. Panels (c) shows that the magnon modes are more sharply defined away from the 
Kitaev point. Panel (b) clearly shows that the magnon modes become less defined upon 
approaching the Kitaev point because of the increasing importance of non-linear effects captured 
by the LL simulation. 

 
 

Figure 8.7 shows the evolution of the low-temperature ܵ(ܳ,߱) as a function of ܭ/ܬ, from 

the pure AFM classical Kitaev model [Fig. 7(a)] to −ܭ/ܬ = 0.3 [Figure 8.7(c)]. As 

expected, ܵ(ܳ,߱) exhibits a sharply defined spin wave dispersion with a pseudo-

Goldstone mode at the M-point (ordering wave vector) well inside the ZZ phase. We note 

that there are three inequivalent M-points corresponding to the possible directions of the 

FM ZZ chains. Upon reducing |ܭ/|ܬ, the magnon modes become less defined due to the 
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increasing relevance of non-linear effects triggered by the proximity to the (ܬ = 0) spin 

liquid point. In particular, the spectrum obtained for ܭ/ܬ = −0.1 [Figure 8.7(b)] shows an 

overall softening of the acoustic magnon modes, except for the region around the Γ point 

where the spectral weight remains around the original optical mode. The evolution of this 

“high-energy" feature should be common to both the classical and quantum limits of the 

model. In other words, this unusual behavior can be used to detect the proximity to a Kitaev 

quantum spin liquid, as long as the transition between the ZZ phase and the liquid state 

remains continuous (or quasi-continuous) in the ܵ = 1/2 limit. 

As shown in Figure 8.6, the spin liquid state can also be accessed by increasing ܶ at a fixed 

value of ܭ/ܬ. Figure 8.8 shows the temperature evolution of ܵ(ܳ,߱) for ܭ/ܬ = −0.1. The 

corresponding Néel temperature is ேܶ ≈  implying that there is a temperature ,ܭ0.06

window, |ܬ| < ܶ <  above ேܶ, where ܵ(ܳ,߱,ܶ) should be very similar to the dynamical ,ܭ

structure factor of the pure Kitaev model (ܶ is high-enough to suppress the magnetic 

correlations induced by the Heisenberg interaction). This is true for any other small 

perturbation that can be added to the pure Kitaev model. Figure 8.8 (c) confirms this 

expectation: ܵ (ܳ,߱)  is very similar to the result shown in Figure 8.5 (c) for the pure Kitaev 

model (ܬ = 0). As shown in Figure 8.8 (g), the low frequency region shows the signature 

of a Kitaev liquid, with a rather uniform distribution of low energy modes over the BZ, 

which is suppressed around the Γ point. Correspondingly, Figure 8.8 (k) shows the opposite 

behavior for the distribution of high-energy modes over the BZ (1.2 < ܭ/߱ < 1.6). The 

rest of the panels on the right-hand side of Figure 8.8 show the continuous redistribution 

of spectral weight upon moving towards the low and high temperature regimes. Given that 

quantum corrections are small above ொܶ஼ ≃ ∆ఔ≃ ߱ the result obtained at ,ܭ0.06 > ∆ఔ 

with the classical spin model represents the ܵ(ܳ,߱,ܶ) of the QL (see Figure 8.3). 

We remark that the Kitaev liquid state that appears in the intermediate temperature regime 

is independent of the particular model Hamiltonian, as long as the additional terms can be 

treated as small perturbations relative to the Kitaev contribution (separation of energy 

scales). This observation is relevant for candidate materials based on 4݀ and 5݀ elements 

because their microscopic Hamiltonian models include multiple interaction terms, whose 

values are still uncertain  [159,170--182]. 
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Figure 8.8  S(Q, ω) obtained for the KH model with J/K = -0.1 
The different panels show  ܵ(ۿ,߱) along the BZ path KΓMYXKM for (a) ܶ/ܭ = 0.02 (ܶ ≪
ேܶ), (b) ܶ/ܭ = 0.09 (ܶ ≃ ேܶ), (c) ܶ/ܭ = 0.17 (ܶ > ேܶ) and ܶ/ܭ = 1.7 (ܶ ≫ ேܶ). The 

panels on the right-hand side show the distribution of spectral weight over the BZ: the first 
column shows the low-energy spectral weight (0.03 < ߱ < 0.13), while the second column 
shows the spectral weight in the frequency interval of the high-energy peak (1.2 < ߱ < 1.6). 
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Conclusions 
We have shown that the dynamical spin structure factors of the classical and the quantum 

(ܵ = 1/2) limits of the Kitaev model become very similar above a crossover temperature 

ொܶ஼ ≃ ∆௩ . Moreover, both structure factors exhibit similar qualitative behavior in their 

high-frequency response (߱ ≳ ܶ even at (ܭ = 0. This “high-energy” response is 

characterized by a broad peak above ߱ ≃  which is centered around the Γ point for AFM ,ܭ

Kitaev model (ܭ > 0) and around the Y point for the FM Kitaev model (ܭ < 0). 

Correspondingly, the singular spectral weight at ߱ = 0, produced by the zero modes of the 

classical model, is suppressed around the Γ point for AFM Kitaev model and around the Y 

point for the FM Kitaev model. This dip in the momentum space dependence of the low-

energy spectral weight is still present in the ܵ = 1/2 model. The main difference is that 

the low-energy modes of the quantum S=1/2 Kitaev model appear right above the two-

vison activation gap ∆ఔ. 

In the classical limit, the low-energy modes of the CN-ground states correspond to single-

magnons states that propagate in 1D loops  [154]. The high-energy peak of the classical 

Kitaev model arises from the singular density of single-magnon states at the top of the 

dispersive branch of excitations. This Van Hove singularity is smoothed out by the 

deformations of the CN-ground states into the non-Cartesian ground states (valleys) that 

lead to the at branch of zero modes and also by thermal fluctuations. As discussed in Ref. 

16, the 1D magnons of the CN-ground states must decay into fractionalized excitations 

upon inclusion of quantum fluctuations. These excitations can be regarded as precursors of 

the Majorana modes obtained in the quantum ܵ = 1/2 limit. In particular, this 

fractionalization leads to an additional broadening of the high-energy peak of ܵ(ܳ,߱), 

which explains why the peak of the classical model is narrower than the peak of the ܵ =

1/2 model. 

Our results provide a systematic procedure for identifying the proximate quantum spin 

liquid behavior of real materials. A dip in the density of low-energy modes at the Γ (Y) 

point must be accompanied by a high-energy peak around the same wave-vector for ܭ >

ܭ) 0 < 0). For materials that exhibit low-temperature magnetic ordering, the signatures of 
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the Kitaev liquid should appear over an intermediate temperature window above the 

ordering temperature. As long as ܶ ≳ ொܶ஼ , the classical approach can be used in this 

temperature window to obtain a good approximation of ܵ(ܳ,߱) for the ܵ = 1/2 model. 

The analysis presented here can have more general implications for other quantum liquids 

with extensive ground state degeneracy in the classical limit. Given the lack of magnetic 

ordering, one needs to find an alternative low-energy characterization of the liquid state. 

Our results suggest that the distribution of zero modes over the BZ provides clear signature 

of the classical liquid, which is inherited by the distribution of low-energy modes of the 

quantum spin liquid. Given that such a distribution can be measured with inelastic neutron 

scattering,  [148,149,183] this experimental technique can play a crucial role in the 

characterization of quantum spin liquids. Moreover, the quantum to classical crossover can 

be exploited for computing other dynamical correlation functions and transport properties 

of quite general quantum spin models at ܶ > ொܶ஼ .  
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Methods and Techniques 
 

A.1  Synthesizing polycrystalline samples of SCGO(p) and BCGO(p) 

Polycrystalline samples of SCGO(p) with twelve different values of p = 0.968(6), 0.960(9), 

0.925(nominal), 0.917(9), 0.87(nominal), 0.844(8), 0.777(6), 0.736(6), 0.620(8), 

0.5(nominal), 0.459(5) and 0.228(5) were made using standard solid-state synthesis 

techniques at the University of Virginia. Stoichiometric quantities of SrCO3, Ga2O3 and 

Cr2O3 were mixed, ground and pelletized. Then, the pellets were heated in air in dense 

Al2O3 crucibles at 1400 ℃ for 96 h, with three intermediate grindings. The samples were 

then annealed at 1000 ℃ for 7 days to promote cation ordering. 

Polycrystalline samples of BCGO(p) with p = 0:902(8), 0.806(6), 0.712(6), 0.635(7), 

0.526(7) and 0.417(7) were made using standard solid-state synthesis techniques.10, 16) 

Stoichiometric quantities of BaCO3, Ga2O3, and Cr2O3 were mixed, ground and 

pelletized. The pellets were then heated in air in dense Al2O3 crucibles at 1400 ◦C for 96 

h, with three intermediate grindings. The samples were then annealed at 1000 ◦C for 7 days 

to promote cation ordering. 
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A.2  Bulk Susceptibility Measurements 

The DC magnetic susceptibility measurements on SCGO(p): p = 0.620(8), 0.459(5) and 

0.228 in the range of 0.5 K to 14 K for SCGO(p) is measured using the Quantum design 

MPMS-XL7 with a Helium-3 insert in the temperature range from 0.5 K to 14 K at ETH 

Zurich, while similar measurements were done on several other SCGO(p) samples with 

higher p shown in Figure 4.2 in the temperature range of 2 K to 300 K at Kyoto University. 

The similar susceptibility measurements for BCGO(p): p = 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4  

samples has been measured using a Quantum Design Physical Property Measuring System 

(PPMS, Model 6000) with AC Measurement System (ACMS) option.  

 
Figure (App.)   A.1.  Magnetic susceptibility measurements of BCGO(p)  
(a) Reciprocal bulk magnetic susceptibility of BCGO(p) with p = 0.902(8), 0.806(6), 0.712(6), 0.635(7), 
0.526(7) and 0.417(7) in the temperature range from 20 K to 350 K, H = 0.1 T. The straight lines are linear fits 
at T > 150 K. The inset shows the ߠ௖௪ values obtained by Curie-Weiss fitting. (b) Bulk magnetic susceptibility 
of BCGO(p) with p = 0.902(8), 0.806(6), 0.712(6) and 0.635(7) in the temperature range from 2 K to 20 K: H = 
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0.01 T. Solid dots are field-cooled (FC) data and open dots are zero-field cooled (ZFC) data. The inset shows 
the freezing temperature ( ௙ܶ) and frustration index |ߠ௖௪|

௙ܶ
൘  as a function of p value. 

A.3  Crystal Structure determination by Neutron diffraction 

Crystal structure and the actual Cr concentrations were determined by neutron diffraction. 

Neutron powder diffraction measurements were performed using BT1 diffractometer at the 

NIST Center for Neutron Research (NCNR) located in Gaithersburg, Maryland, with the 

neutron wavelength of ߣ = 1.54 Å at room temperature for SCGO(p) samples with p = 

0.968(6), 0.960(9), 0.917(9), 0.844(8), 0.777(6), 0.736(6), 0.620(8), 0.459(5) and 0.228(5) 

and BCGO(p) with p = 0.971(17), 0.943(18), 0.935(9), 0.902(8), 0.806(6), 0.712(6), 

0.635(7), 0.526(7) and 0.417(7). The crystal structure and stoichiometry, including the 

actual Cr concentrations, were determined by performing a Rietveld refinement using 

General Structure Analysis System (GSAS)  [184].  

 

 

A.4  Rietveld Refinements of SCGO(p) 

Figure (App.)   A.2 shows the neutron powder diffraction data of SCGO (p = 0.968(6), 

0.844(8), 0.620(8) and 0.495(5)). The lines are the Rietveld refinement results of nuclear 

structure performed using General Structure Analysis System (GSAS) [184]. The optimal 

parameters for their crystal structures are listed in Tables S1 to S4, which are consistent 

with the previously published structure [35]. 
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Figure (App.)   A.2.  Rietveld refinements of SCGO(p)  
Neutron powder diffraction data (open circles) and Rietveld refinement patterns (solid curves) for SCGO(p) 
samples: (a) p = 0.968(6), (b) p = 0.844(8), (c) p = 0.620(8) and (d) p = 0.459(5). The green vertical marks 
represent the position of Bragg peaks, and the blue solid line at the bottom corresponds to the difference between 
the observed and calculated intensities. The p values shown in each panel were obtained from the Rietveld 
refinement. 
 

The Following tables show the Crystal Structure Information of the Rietveld refinements 

shown in the Figure (App.)   A.2.  
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Table (App.)  A-1 Rietveld analysis of SCGO p = 0.968(6).  
Positions within space group P63/mmc and occupancies per formula unit (f.u.) of atoms in SCGO(p) 
at T = 298 K as determined by Rietveld analysis of the data shown in Fig. S2 using the GSAS. The 
lattice parameters are a = 5.7948(3) Å and c = 22.6625(2) Å. Isotropic Debye-Waller factors, 
 is the mean squared displacement. The resulting overall 〈૛࢛〉 ૛൯, were used whereࡽ〈૛࢛〉−൫ܘܠ܍
reduced ࣑૛ = ૛.૞ૠૡ  
 

Site ࢔ ࢠ ࢟ ࢞/f.u. ඥ〈࢛૛〉/Å 
Sr 2d 2/3 1/3 1/4 1 0.0086(8) 

Ga 2a 0 0 0 0.036(18) 0.0041(4) 

Cr 2a 0 0 0 0.964(18) 0.0041(4) 

Ga 2b 0 0 1/4 1 0.0128(7) 

Ga 4fiv 1/3 2/3 0.0275(1) 2 0.0062(4) 

Ga 4fvi 1/3 2/3 0.1911(2) 0.056(30) 0.0041(4) 

Cr 4fvi 1/3 2/3 0.1911(2) 1.944(30) 0.0041(4) 

Ga 12k 0.1685 (3) 0.3370(6) −0.1081(1) 0.192(60) 0.0041(4) 

Cr 12k 0.1685(3) 0.3370(6) −0.1081(1) 5.808(60) 0.0041(4) 

O 4e 0 0 0.1520(2) 2 0.0080(7) 

O 4f 1/3 2/3 −0.0546(2) 2 0.0019(5) 

O 6h 0.1813(3) 0.3635(6) 1/4 3 0.0086(4) 

O 12k 0.1556(2) 0.3112(4) 0.0529(1) 6 0.0037(3) 

O 12k 0.5055(2) 0.0111(4) 0.1507(1) 6 0.0059(3) 
 

       

 
Table (App.)  A-2  Rietveld analysis of SCGO p = 0.844(8).  
The lattice parameters at 298 K are a = 5.79447(3) Å and c = 22.7120(2) Å. The resulting overall 
reduced ࣑૛ = ૛.૛ૢ૙. 
 

Site ࢔ ࢠ ࢟ ࢞/f.u. ඥ〈࢛૛〉/Å 

Sr 2d 2/3 1/3 1/4 1 0.0098(7) 

Ga 2a 0 0 0 0.131(17) 0.0045(3) 

Cr 2a 0 0 0 0.869(17) 0.0045(3) 

Ga 2b 0 0 1/4 1 0.0141(7) 

Ga 4fiv 1/3 2/3 0.0272(1) 2 0.0054(4) 

Ga 4fvi 1/3 2/3 0.1906(2) 0.321(28) 0.0044(4) 

Cr 4fvi 1/3 2/3 0.1906(2) 1.679(28) 0.0044(4) 

Ga 12k 0.1686(3) 0.3374(5) −0.1089(1) 0.948(54) 0.0045(4) 

Cr 12k 0.1686(3) 0.3374(7) −0.1089(1) 5.052(54) 0.0045(4) 
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O 4e 0 0 0.1514(1) 2 0.0096(6) 

O 4f 1/3 2/3 −0.0551(1) 2 0.0019(5) 

O 6h 0.1809(2) 0.3618(5) 1/4 3 0.0094(5) 

O 12k 0.1555(2) 0.3109(3) 0.0525(1) 6 0.0043(3) 

O 12k 0.5054(2) 0.0108(4) 0.1504(1) 6 0.0049(3) 
 

            

 

Table (App.)  A-3  Rietveld analysis of SCGO p = 0.620(8).  
The lattice parameters at 298 K are a = 5.79676(3) Å and c = 22.7541(2) Å. The resulting overall 
reduced ࣑૛ = ૛.૚ૢ૞. 
 

Site ࢔ ࢠ ࢟ ࢞/f.u. ඥ〈࢛૛〉/Å 

Sr 2d 2/3 1/3 1/4 1 0.0107(7) 

Ga 2a 0 0 0 0.298(17) 0.0047(3) 

Cr 2a 0 0 0 0.702(17) 0.0047(3) 

Ga 2b 0 0 1/4 1 0.0159(7) 

Ga 4fiv 1/3 2/3 0.0276(1) 2 0.0044(4) 

Ga 4fvi 1/3 2/3 0.1905(1) 0.790(28) 0.0047(3) 

Cr 4fvi 1/3 2/3 0.1905(1) 1.210(28) 0.0047(3) 

Ga 12k 0.1682(2) 0.3366(4) −0.1093(1) 2.328(66) 0.0047(3) 

Cr 12k 0.1682(2) 0.3366(4) −0.1093(1) 3.672(66) 0.0047(3) 

O 4e 0 0 0.1504(1) 2 0.0102(6) 

O 4f 1/3 2/3 −0.0547(1) 2 0.0019(5) 

O 6h 0.1811(3) 0.3622(5) 1/4 3 0.0089(5) 

O 12k 0.1556(2) 0.3112(3) 0.0526(1) 6 0.0046(3) 

O 12k 0.5047(2) 0.0094(4) 0.1502(1) 6 0.0051(3) 
 

      

 
Table (App.)  A-4 Rietveld analysis of SCGO p = 0.459(5). 
The lattice parameters at 298 K are a = 5.79566(3) Å and c = 22.7778(2) Å. The resulting overall 
reduced ࣑૛ = ૛.૝૝ૡ. 
 

Site ࢔ ࢠ ࢟ ࢞/f.u. ඥ〈࢛૛〉/Å 

Sr 2d 2/3 1/3 1/4 1 0.0108(8) 

Ga 2a 0 0 0 0.431(16) 0.0036(3) 

Cr 2a 0 0 0 0.569(16) 0.0036(3) 

Ga 2b 0 0 1/4 1 0.0159(7) 
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Ga 4fiv 1/3 2/3 0.0276(1) 2 0.0050(4) 

Ga 4fvi 1/3 2/3 0.1897(1) 1.134 (13) 0.0037(3) 

Cr 4fvi 1/3 2/3 0.1897(1) 0.866 (13) 0.0037(3) 

Ga 12k 0.1683(2) 0.3366(4) −0.1094(1) 3.306(30) 0.0037(3) 

Cr 12k 0.1683(2) 0.3366(4) −0.1094(1) 2.694(30) 0.0037(3) 

O 4e 0 0 0.1501(1) 2 0.0097(6) 

O 4f 1/3 2/3 −0.0545(1) 2 0.0024(5) 

O 6h 0.1812(3) 0.3623(5) 1/4 3 0.0093(5) 

O 12k 0.1554(2) 0.3106(3) 0.0526(7) 6 0.0054(3) 

O 12k 0.5047(2) 0.0094(4) 0.1500(1) 6 0.0061(3) 
 

 

 

 

 

 

A.5  Rietveld Refinements of BCGO(p) 

Figure (App.)   A.3 shows the neutron powder diffraction patterns obtained from the 

BCGO(p = 0.902(8)), BCGO(p = 0.804(8)), BCGO(p = 0.635(7)) and BCGO(p = 0.417(7)) 

samples at room temperature. Rietveld refinements were performed to obtain the crystal 

structural parameters summarized in Table (App.)  A-5, Table (App.)  A-6, Table (App.)  

A-7 and Table (App.)  A-8. All of the diffraction peaks could be indexed using the space 

group ܲ63/݉݉ܿ, as for SCGO(p). The overall occupancies of Cr3+ ions for these two 

samples were determined to be 0.902(8), 0.804(8), 0.635(7) and 0.417(7), respectively. 
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Figure (App.)   A.3.  Rietveld refinements of BCGO(p)  
Neutron powder diffraction data (open circles) and Rietveld refinement patterns (solid curves) for BCGO(p) 
samples: (a) p = 0.902(8), (b) p = 0.806(6), (c) p = 0.621(9) and (d) p = 0.417(7). The green vertical marks 
represent the position of Bragg peaks, and the blue solid line at the bottom corresponds to the difference between 
the observed and calculated intensities. The p values shown in each panel were obtained from the Rietveld 
refinement. 

 

The Following tables show the Crystal Structure Information of the Rietveld refinements 
shown in the Figure (App.)   A.3. 
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Table (App.)  A-5 Rietveld analysis of BCGO p = 0.902(8).  
Positions within space group P63/mmc and occupancies per formula unit (f.u.) of atoms in BCGO(p) 
at T = 298 K as determined by Rietveld analysis of the data shown in Fig. S2 using the GSAS. The 
lattice parameters are a = 5.80374(11) Å and c = 22.8484(5) Å. Isotropic Debye-Waller factors, 
 is the mean squared displacement. The resulting overall 〈૛࢛〉 ૛൯, were used whereࡽ〈૛࢛〉−൫ܘܠ܍
reduced ࣑૛ = ૛.૟૛૙  
 

Site ࢔ ࢠ ࢟ ࢞/f.u. ඥ〈࢛૛〉/Å 
Ba 2d 2/3 1/3 1/4 1 0.0012(9) 

Ga 2a 0 0 0 0.075(18) 0.0023(4) 

Cr 2a 0 0 0 0.925(18) 0.0023(4) 

Ga 2b 0 0 1/4 1 0.0183(8) 

Ga 4fiv 1/3 2/3 0.02758(11) 2 0.0054(4) 

Ga 4fvi 1/3 2/3 0.19032(17) 0.218(30) 0.0023(4) 

Cr 4fvi 1/3 2/3 0.19032(17) 1.782(30) 0.0023(4) 

Ga 12k 0.16805(28) 0.3361(6) −0.10707(9) 0.588(60) 0.0023(4) 

Cr 12k 0.16805(28) 0.3361(6) −0.10707(9) 5.412(60) 0.0023(4) 

O 4e 0 0 0.15020(13) 2 0.0077(7) 

O 4f 1/3 2/3 −0.05479(15) 2 0.0021(5) 

O 6h 0.18218(28) 0.3643(6) 1/4 3 0.0063(5) 

O 12k 0.15617(19) 0.3122(4) 0.05225(7) 6 0.00598(32) 

O 12k 0.50246(22) 0.0049(4) 0.14871(6) 6 0.00470(27) 
 

       

 

 

 
Table (App.)  A-6  Rietveld analysis of BCGO p = 0.804(8).  
The lattice parameters at 298 K are a = 5.80573(8) Å and c = 22.8727(4) Å. The resulting overall 
reduced ࣑૛ = ૛.૚૙૞. 
 

Site ࢔ ࢠ ࢟ ࢞/f.u. ඥ〈࢛૛〉/Å 

Ba 2d 2/3 1/3 1/4 1 0.0014(8) 

Ga 2a 0 0 0 0.222(12) 0.00247(31) 

Cr 2a 0 0 0 0.778(12) 0.00247(31) 

Ga 2b 0 0 1/4 1 0.0193(7) 

Ga 4fiv 1/3 2/3 0.02775(9) 2 0.0049(4) 
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Ga 4fvi 1/3 2/3 0.18982(13) 0.444(24) 0.00247(31) 

Cr 4fvi 1/3 2/3 0.18982(13) 1.556(24) 0.00247(31) 

Ga 12k 0.16764(20) 0.3353(4) −0.10738(6) 1.176(48) 0.00247(31) 

Cr 12k 0.16764(20) 0.3353(4) −0.10738(6) 4.824(48) 0.00247(31) 

O 4e 0 0 0.14981(11) 2 0.0067(6) 

O 4f 1/3 2/3 −0.05457(12) 2 0.0014(4) 

O 6h 0.18206(22) 0.3640(4) 1/4 3 0.0061(4) 

O 12k 0.15570(15) 0.31130(31) 0.05218(6) 6 0.00607(26) 

O 12k 0.50275(18) 0.0055(4) 0.14860(5) 6 0.00534(23) 
 

 

Table (App.)  A-7 Rietveld analysis of BCGO p = 0.635(7).  
The lattice parameters at 298 K are a = 5.80698(8) Å and c = 22.9074(4) Å. The resulting overall 
reduced ࣑૛ = ૛.૜૚૚. 
 

Site ࢔ ࢠ ࢟ ࢞/f.u. ඥ〈࢛૛〉/Å 

Ba 2d 2/3 1/3 1/4 1 0.0019(8) 

Ga 2a 0 0 0 0.236(16) 0.0026(3) 

Cr 2a 0 0 0 0.764(16) 0.0026(3) 

Ga 2b 0 0 1/4 1 0.0218(7) 

Ga 4fiv 1/3 2/3 0.02776(9) 2 0.0040(4) 

Ga 4fvi 1/3 2/3 0.18972(11) 0.776(26) 0.0026(3) 

Cr 4fvi 1/3 2/3 0.18972(11) 1.224(28) 0.0026(3) 

Ga 12k 0.16767(17) 0.33534(34) −0.10802(6) 2.274(54) 0.0026(3) 

Cr 12k 0.16767(17) 0.33534(34) −0.10802(6) 3.726(54) 0.0026(3) 

O 4e 0 0 0.14936(11) 2 0.0073(6) 

O 4f 1/3 2/3 −0.05416(12) 2 0.0019(4) 

O 6h 0.18248(23) 0.3649(5) 1/4 3 0.0069(4) 

O 12k 0.15567(16) 0.31124(31) 0.05219(6) 6 0.0063(3) 

O 12k 0.50321(19) 0.0064(4) 0.14842(5) 6 0.0054(3) 
 

 
Table (App.)  A-8 Rietveld analysis of BCGO p = 0.417(7). 
The lattice parameters at 298 K are a = 5.8066(1) Å and c = 22.9319(5) Å. The resulting overall 
reduced ࣑૛ = ૝.ૢ૜૞. 
 

Site ࢔ ࢠ ࢟ ࢞/f.u. ඥ〈࢛૛〉/Å 

Ba 2d 2/3 1/3 1/4 1 0.00046(8) 

Ga 2a 0 0 0 0.482(22) 0.00422(3) 

Cr 2a 0 0 0 0.518(22) 0.00422(3) 

Ga 2b 0 0 1/4 1 0.02403(7) 
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Ga 4fiv 1/3 2/3 0.02781(13) 2 0.00419(4) 

Ga 4fvi 1/3 2/3 0.18885(15) 1.114 (34) 0.00422(3) 

Cr 4fvi 1/3 2/3 0.18885(15) 0.886 (34) 0.00422(3) 

Ga 12k 0.16803(24) 0.3361(5) −0.10830(7) 3.648(48) 0.00422(3) 

Cr 12k 0.16803(24) 0.3361(5) −0.10830(7) 2.352(48) 0.00422(3) 

O 4e 0 0 0.14884(16) 2 0.00695(6) 

O 4f 1/3 2/3 −0.05398(18) 2 0.00035(5) 

O 6h 0.18303(31) 0.3660(6) 1/4 3 0.0083(5) 

O 12k 0.15552(21) 0.3109(4) 0.05211(9) 6 0.0065(3) 

O 12k 0.50308(30) 0.0061(6) 0.14836(7) 6 0.00539(3) 
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A.6  Comparison of SCGO(p), BCGO(p) and BSZGCO 

 
Table (App.)  A-9  Summery of TDC and θcw for BCGO(p), SCGO(p) and BSZGCO. 
The transition temperature ஽ܶ஼  is estimated as the cusp temperature of the ZFC susceptibility as shown in the  
Figure 4.3 and Figure (App.)   A.1 (b). The Curie-Weiss temperature ߠ௖௪ is determined by the fittings to the 
reciprocal high temperature susceptibility as shown in the Figure 4.2 and Figure (App.)   A.1 (a). The 
frustration index f of each sample is defined as  ݂ = |௖௪ߠ|  ஽ܶ஼⁄ . 
 

Sample ࡯ࡰࢀ (K) |࢝ࢉࣂ| (K) ࢌ = |࢝ࢉࣂ|
ൗ࡯ࡰࢀ  

SCGO(p=0.968(6)) 

SCGO(p=0.844(8)) 

SCGO(p=0.620(8)) 

SCGO(p=0.459(5)) 

SCGO(p=0.214(5)) 

BCGO(p=0.902(8)) 

BCGO(p=0.806(8)) 

BCGO(p=0.712(7)) 

BCGO(p=0.635(7)) 

BCGO(p=0.526(5)) 

BCGO(p=0.417(7)) 

BSZCGOb 

3.68(5) 

2.95(5) 

1.76(5) 

1.01(5) 

- 

4.91(5) 

3.90(5) 

3.12(5) 

2.31(5) 

- 

- 

1.5 

504.6 

402.5 

271.3 

161.1 

72.1 

695.0 

591.2 

521.1 

445.4 

410.0 

353.3 

700 

137.1 

136.4 

154.1 

159.5 

- 

141.5 

151.6 

167.0 

192.8 

- 

- 

466.7 
 

 
Figure (App.)   A.4. Comparison of SCGO(p) versus BCGO(p) 
(a) The Curie-Weiss Temperature ߠ௖௪, (b) the freezing temperature ஽ܶ஼  and (c) frustration index ݂of SCGO(p) 
and BCGO(p) samples are shown here as a function of dilution p. The dash lines are guides to the eye for each 
dataset.  



141 
 

 
 

A.7  Time-of-flight Neutron Scattering Measurements 

Time-of-flight neutron scattering measurements were performed using the Disk-Chopper-

Spectrometer (DCS) at NCNR with ߣ = 6 Å.  SCGO(p) samples with p = 0.968(6), 

0.960(9), 0.917(9), 0.844(8), 0.777(6), 0.736(6) and 0.620(8) were measured in a standard 

DCS ILL orange cryostat and p = 0.459(5) was measured with a Helium-3 insert. The low 

energy inelastic magnetic neutron scattering spectrum was measured at various 

temperatures, T, around Tf for the samples. For each SCGO(p) sample, an energy dependent 

background was determined by imposing the detailed balance constraint ܵ(−ℏ߱,ܶ) =

݁ି
ℏഘ
ೖಳ೅ ܵ(ℏ߱,ܶ) where ݇஻is the Boltzmann constant, and it was subtracted from the data to 

obtain the magnetic contribution. Then, the imaginary part of the dynamic susceptibility 

was derived from the fluctuation dissipation theorem, ߯ᇱᇱ(ℏ߱) = ߨ ൜1 − ݁ି
ℏഘ
ೖಳ೅ൠ ܵ(ℏ߱). 

A.8  Ultra-Low Field Measurements and Thermoremanent Magnetization 

The Thermoremanent Magnetization (TRM) data, shown in Figure 6.2, Figure 6.3, Figure 

7.1, Figure 7.3 and Figure 7.4, were collected using the following procedure. First, each 

sample was cooled down from well above the freezing temperature, ܶ ௙, to base temperature 

with a single stop for a period of time, ݐ௪, at an intermediate temperature ௪ܶ  below ௙ܶ  

under zero field. Once cooled down to base temperature, the thermoremanent 

magnetization is measured by applying a small field of a few gauss upon heating at a 

constant rate. For all the measurements reported in this paper, we used a Superconducting 

Quantum Inference Device (SQUID) magnetometer, Quantum Design MPMS-XL5 

equipped with the ultra-low-field option together with the environmental magnetic shield. 

Since it is necessary to have zero-field conditions at the sample during the cooling process 

including the waiting at an intermediate temperature, the remnant magnetic field at the 

sample position was measured by the instrument’s fluxgate, and has been eliminated by 

introducing a compensating field using non-superconducting DC coil to get the remaining 

uncompensated magnetic field less than 0.005 G at the sample position. After that, a small 

DC magnetic field of 3 G was generated by the DC non-superconducting coil and applied 

to the sample during the TRM measurements.  
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A.9  χ and inelastic order parameter as a function of relaxation time 

The Following figure summarizes, 

 
Figure (App.)   A.5.  Susceptibility and inelastic order parameter for BCGO(p = 0.902(8)) 
(a) shows the DC susceptibility (߯஽஼) and AC susceptibility (߯஺஼) and susceptibility calculated using elastic 
order-parameters (ܫ(ܳ଴,∆߱଴ ,ܶ)) measured from neutron scattering experiments at different energy resolutions 
(∆߱଴) for BCGO(p = 0.902(8)). The Equation 5.3 was used to calculate the susceptibility from ܫ(ܳ଴,∆߱଴ ,ܶ) 
data. (b) shows the inelastic order-parameter (ߝ௜௡௘௟௔௦௧௜௖) as a function of energy resolution (∆߱଴). The Neutron 
Spin echo (NSE) spectrometer at NCNR, NIST, Neutron Backscattering spectrometer (BASIS) at SNS, ORNL 
and Disk Chopper Spectrometer (DCS) at NCNR, NIST were used to measure ܫ(ܳ଴,∆߱଴ ,ܶ) as a function of 
∆߱଴ and ܶ. 
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Figure (App.)   A.6. Susceptibility and inelastic order parameter for CuMn2% 
(a) shows the DC susceptibility (߯஽஼) and AC susceptibility (߯஺஼) and susceptibility calculated using elastic 
order-parameters (ܫ(ܳ଴,∆߱଴ ,ܶ)) measured from neutron scattering experiments at different energy resolutions 
(∆߱଴) for CuMn2%. The Equation 5.3 was used to calculate the susceptibility from ܫ(ܳ଴,∆߱଴ ,ܶ) data. (b) 
shows the inelastic order-parameter (ߝ௜௡௘௟௔௦௧௜௖) as a function of energy resolution (∆߱଴). The Neutron Spin echo 
(NSE) spectrometer at NCNR, NIST, Neutron Backscattering spectrometer (BASIS) at SNS, ORNL and High 
Flux Backscattering Spectrometer (HFBS) at NCNR, NIST were used to measure ܫ(ܳ଴,∆߱଴,ܶ) as a function of 
∆߱଴ and ܶ. 
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Figure (App.)   A.7. Susceptibility and inelastic order parameter for Y2Mo2O7 
(a) shows the DC susceptibility (߯஽஼) and AC susceptibility (߯஺஼) and susceptibility calculated using elastic 
order-parameters (ܫ(ܳ଴,∆߱଴ ,ܶ)) measured from neutron scattering experiments at different energy resolutions 
(∆߱଴) for Y2Mo2O7. The Equation 5.3 was used to calculate the susceptibility from ܫ(ܳ଴,∆߱଴,ܶ) data. (b) shows 
the inelastic order-parameter (ߝ௜௡௘௟௔௦௧௜௖) as a function of energy resolution (∆߱଴). The Neutron Spin echo (NSE) 
spectrometer at SNS, ORNL, Neutron Backscattering spectrometer (BASIS) at SNS, ORNL and Disk Chopper 
Spectrometer (DCS) at NCNR, NIST were used to measure ܫ(ܳ଴,∆߱଴ ,ܶ) as a function of ∆߱଴ and ܶ. 
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Spinwave Dispersion for Kagome-Triangular-
Kagome Trilayer 
Author: Kazuki Iida  [72]  

The spin wave calculations were done for the SCGO at the clean limit, p=1. This was done by 

expanding around classically ordered ground state configuration to harmonic order, using the 

standard Holstein-Primakoff method  [185].  

The chosen states are coplanar spin configurations that are described in the inset in Fig. S6. The 

spin wave dispersion is plotted along the (ܪ,ܪ, 1.8) momentum direction for various values of 

ߙ =  cosିଵ ቀ௃ᇱ/௃ାଵ
ଶ

ቁ (S5), going from ߙ = 0 for the ideal SCGO to ߙ =  .for isolated kagome 3/ߨ

The spin wave analysis shows a flat band of 9 zero modes, indicating a large classical degeneracy. 

 
Figure (App.)   B.1.  Spin wave dispersion.  
The ideal SCGO lattice and the kagome may be viewed as limits as ܬ/′ܬ goes from 1 to 0. Ordered classical 
coplanar ground state configurations may be obtained from the ideal case by collectively rotating a subset of the 
spins as is shown in the inset and Ref. [15]. 
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Barrier Tree Models and Monte Carlo 
Simulations 
Authors: Tianran Chen, Gia-Wei Chern and Seung-Hun Lee  [186]  

Understanding the dynamics of a glassy system via the energy landscape approach has led 

to promising insights into puzzling phenomena, such as temperature-dependent aging and 

memory effect. In this framework, the energy landscape is seen as a set of basins of 

attraction, and the system evolves through a succession of jumps between their local 

minima  [187,188]. This approach focuses on the interbasin transitions without treating 

explicitly the fast (high-frequency) intrabasin dynamics. Over the past decades, much effort 

has been devoted to characterizing the structure and topology of the energy landscape for 

various glass-forming systems  [83,95,189]. In particular, the so-called disconnectivity 

graph  [95] has become a widely used approach for visualizing and representing the 

multidimensional potential energy surface. The disconnectivity graph summarizes the local 

minima and saddle points of an energy landscape into a tree. Each leaf in this tree 

representation corresponds to a local minimum, whereas the branching point is a transition 

state (saddle point) connecting different local minima. Another approach to describe the 

energy landscape is to use the language of complex networks  [100,188]. 

The disconnectivity graph (also referred to as a barrier tree representation) can be 

constructed numerically from the database of local minima and the kinetic pathways for 

small molecules or lattices  [189]. Monte Carlo sampling is often required to construct the 

representative barrier tree for a larger system. These approaches require microscopic 

details of the system at hand, which are hard to process for complicated physical systems. 

An alternative, phenomenological, approach for complex systems uses a statistically based 

characterization of the barrier tree, which is the method adopted in our work. For a given 

energy landscape representation, either through a barrier tree or through a complex 
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network, the dynamics of the system can be simulated as a random walk on the tree or the 

network. Amaster equation is often used to study the resultant dynamics  [95,187,188]. 

Here we use the Markov chain Monte Carlo simulations coupled with a dynamical tree 

method to study thememory effect of spin glass and spin jam states.Our Monte Carlo 

approach offers the advantage of being applicable to barrier trees with complex structures 

without the need of introducing further approximations as in the master equation method. 

In our simulations, the relaxation dynamics of the system are modeled as a random walk 

on the barrier tree. Each node of the tree, corresponding to either a local minimum or a 

saddle point, represents a specific microscopic spin configuration. Transition between two 

nodes corresponds to modifying a small number of spins. In our simulations, the structure 

and properties of the barrier trees are characterized statistically. Specifically, the tree is 

described by a set of random numbers satisfying certain probability distributions. 

We first discuss the statistical description of the barrier tree for a conventional spin glass. 

Here, the tree has a hierarchical structure with many levels. A node at a lower level (larger 

݈) corresponds to a lower energy state (Figure 6.1 (a)). The barrier energy ߝ at level ݈ is an 

independent random variable with an exponential distribution (ߝ)݌ =  ݁ିఌ ்೗⁄
௟ܶ⁄  

characterized by the temperature ௟ܶ. This construction is similar to the so-called random 

energy or random trap models  [190,191]  that are shown to exhibit the characteristic aging 

behavior in spin glasses. 

The characteristic temperature ௟ܶ decreases with increasing levels; i.e., ଵܶ > ଶܶ > ⋯ >

௟ܶ೘ೌೣ , corresponding to smaller energy barriers at the bottom of the hierarchical tree. In 

our simulations, we assume that the characteristic temperature ௟ܶ  ∼ ଵܶ݁ିఈ௟ decreases 

exponentially with the level index. The relaxation of the system in this hierarchical 

structure exhibits complex temperature- dependent dynamics. Typically, because the 

relaxation time at level ݈ scales as ߬௟ ∼ ߬଴݁ఌ೗/், where ߬଴ is a microscopic time scale, the 

relaxation dynamics start to show exponential slowing down at level ݈ when ܶ < ௟ܶ. 

Interestingly, the progressive slowing down of the relaxation dynamics can be viewed as 

the fact that the system undergoes a series of glass transitions with decreasing temperature. 

The largest energy scale ଵܶ then determines the nominal freezing transition temperature ܶ ௙. 

This hierarchical construction is consistent with the picture of temperature-dependent 
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energy barriers  [132], which is shown to be crucial for the occurrence of memory effect in 

conventional spin glass. 

At each level, whether the node is a local minimum (and thus a dead end) or a saddle point 

is specified by a constant 0 < ௟ߣ < 1; i.e., ߣ௟ is the probability that a given node at level ݈ 

is a local minimum. Another random number ݊௕ is used to specify the branching or the 

number of descendants of a saddle point. Finally, for the calculation of magnetic 

susceptibility, we use the simple random magnetization model discussed in ref.  [94] for 

the barrier tree. Specifically, the magnetization of a particular state at level L is given by 

= ܯ  ݉଴ + ݉ଵ + ⋯+ ݉௅. The magnetization contribution ݉௟ from level ݈ is a random 

number uniformly distributed in the interval [-Ml,Ml], where the bound Ml is assumed to 

decrease exponentially with increasing levels. Consequently, a Zeeman coupling   Hz =

· ܪ−  .is included in the Monte Carlo simulations of the reheating process ܯ

We use the standard Metropolis dynamics in our Monte Carlo simulations. Because the 

barrier tree is specified only statistically, there is no need to create a tree at the beginning 

of the dynamical simulations. Instead, we generate the barrier tree dynamically according 

to the desired statistical properties as discussed above. However, additional bookkeeping 

is required to describe a system currently at level ܮ. Specifically, we need to keep track 

only of all of the barrier energies and magnetizations from levels ݈ ≤  ,.i.e ,ܮ

,ଵߝ} ⋯,ଶߝ , ௟ߝ ,⋯ , ⋯,௅} and {݉ଵ,݉ଶߝ ,݉௟ ,⋯ ,݉௅}. A Monte Carlo step then consists of the 

following procedures: (i) Determine whether this node is a local minimum (a dead end) or 

a saddle point. This can be done by generating a random number r uniformly distributed 

between 0 and 1. If ݎ <  ௅, then the current state is a local minimum, and the system canߣ

move only upward to escape this local trap. (ii) If the current node is a saddle point, then 

we generate another uniformly distributed random number ݎᇱ ∈ [0,1]. If ݎ′ > 1/(݊௕ + 1), 

then we attempt to move the system upward. Otherwise we move the system downward to 

a lower level (closer to the global minimum). (iii) For a downhill update, we first increase 

the level by one. Next, we generate new random numbers ߝ௅ାଵ and ݉௅ାଵ according to the 

respective probability distribution and add them to the lists of barrier energies and 

magnetizations, respectively. (iv) Finally, for an uphill update we first compute the energy 

cost ߝ߂ = ௅ߝ  +  ௅. Then a standard Metropolis criterion is used to determine whether݉ܪ
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this upward movement is accepted or not. If the uphill move is accepted, we then erase ߝ௅ 

and ݉௅ from the respective lists. The above procedures are illustrated in Figure (App.)   

C.1. 

We note that the dynamical tree simulation is valid as long as the number of branching 

݊௕ ≫ 1 (in the simulations we took ݊௕ ∼500). Under this condition, we can neglect the 

possibility that the system will visit exactly the same lower-energy states more than once 

in our finite-time simulation. We also find that a rather large ߣ௟ is required to observe a 

noticeable memory effect. This condition simply means that there are many dead-end local 

traps along the way toward the global ground state, which is consistent with the rugged 

funnel-type energy landscape. In our simulations, we assumed a maximum number of level 

݈௠௔௫ = 50 and took ߣ௟ to increase linearly from 0.9 to 1 at ݈௠௔௫. We also note that barrier 

trees characterized by these statistical properties are similar to the “palm tree” pattern in 

the classification of disconnectivity graphs  [83,189]. 

The spin jam glassy state, on the other hand, is characterized by a very different energy 

landscape. This is because the numerous minima in the spin jam originate from quantum 

fluctuations that lift the otherwise flat energy surface at the classical level; we expect a 

uniform, nonhierarchical barrier tree structure, shown in Figure 6.1(b) in the main text, for 

spin jam. The lack of hierarchical structure in this type of tree indicates that the weaker 

memory effect of spin jam results from a different mechanism. As the local minima in a 

spin jam result from the original zero energy mode of the classical spin Hamiltonian, it is 

plausible that the energy minima in the spin jam are grouped into clusters with different 

average barrier heights. This nonhierarchical tree resembles the so-called “banyan tree” 

pattern  [83,188]. In this tree structure, different clusters are separated by a large barrier 

energy ௕ܶ, whereas the barrier energies within a cluster (labeled by ݉) are random numbers 

generated from an exponential distribution (ߝ)݌ =  ݁ିఌ/ ೘்/ ௠ܶ. Here ܶ ௠ is an energy scale 

characterizing the local glassy transition for a cluster. This means that a system trapped in 

a cluster with energy ௠ܶ will exhibit slow glassy dynamics when ܶ ≲ ௠ܶ. This energy 

scale ௠ܶ varies from cluster to cluster and is assumed to be a random number uniformly 

distributed in the interval ௠ܶ ∈ [0, ௙ܶ] , where ௙ܶ is the freezing temperature of the spin 

jam. Importantly, the energy scale for glass transition ௙ܶ in a spin jam is determined by 
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quantum fluctuations and is an order of magnitude smaller than the Curie–Weiss 

temperature. A similar random magnetization model is used here to describe the magnetic 

properties of a spin jam. Local minima within a cluster have a random magnetization ݉ 

uniformly distributed in the interval [-Mm,+Mm], where the bound Mm itself is another 

random variable. Similar to the hierarchical tree counterpart, we assume a larger energy 

scale ௠ܶ  gives rise to a larger magnetization-bound Mm. 

We performed our Monte Carlo simulations following the same protocol as the 

experiments. The temperature decreases linearly during the cooling process, except the 

waiting-time period. Numerically, we start at an initial temperature of 1.5 ௙ܶ , where ௙ܶ ∼

௟ܶୀଵ is the freezing temperature, and simulate cooling by decreasing the simulation 

temperature in small steps (ܶ߂ ∼  ௙ܶ/3,300). When we reach base temperature, we heat 

the system up (rate of ܶ߂ ∼  ௙ܶ/5000). At each step, we perform 50 Monte Carlo updates. 

When there was waiting at an intermediate temperature, there were additional MC updates 

at the temperature while cooling, detailed in Figure (App.)   C.2 (a) and (b), Insets. During 

the reheating part of the simulations, a small magnetic field ܪ is included to generate a 

finite magnetization. The dc susceptibility is simply ߯஽஼ =  The numerical results .ܪ/ܯ

shown in Fig. 4 of the main text were obtained for different waiting temperatures after 

averaging over 10ହ ∼ 10଻ independent runs. Figure (App.)   C.2 (a) and (b) shows the 

results obtained with different waiting times at ௪ܶ =  0.6 ௙ܶ for the spin jam and the spin 

glass model, respectively. Different curves in each panel correspond to varying numbers 

of MC steps that waited at ௪ܶ, which are proportional to the real waiting time ݐ௪. Figure 

(App.)   C.2 (c) (spin jam model) and (d) (spin glass model) shows (ܯ௥௘௙  ௥௘௙ as aܯ/(ܯ−

function of (# of MC steps)/10 that best reproduces the ݐ௪ (in seconds) in the experiments, 

as shown in Figure 6.2 (d) in the main text. In Figure (App.)   C.2 (c) and (d), (ܯ௥௘௙ −

 ௥௘௙ is rescaled so that their maximum values are 1. As shown in Figure (App.)   C.2ܯ/(ܯ

(c) and (d), Insets at (# of MC steps)/10 = 102, (ܯ௥௘௙  ௥௘௙ of the spin glass modelܯ/(ܯ−

is almost twice that of the spin jam model. This difference for a short waiting time is 

consistent with our experimental observation (Figure 6.2 (a)–(c) in the main text). 

Furthermore, the overall dependence of (ܯ௥௘௙  ௪ reproducesݐ ௥௘௙ as a function ofܯ/(ܯ−

our experimental data when scaled to the maximum value of (ܯ௥௘௙  ௥௘௙ dataܯ/(ܯ−
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(Figure 6.2 (d)). We note that our MC calculations based on the multilayer random energy 

model do not take into account other possible sources of magnetization. As a result, 

different scaling factors for (ܯ௥௘௙  ௥௘௙  are required to reproduce the experimentalܯ/(ܯ−

data of different systems. 

The memory effect in the hierarchical tree arises from the temperature-dependent 

relaxation dynamics. For a given waiting temperature ௪ܶ, the system will fluctuate over a 

small window of levels depending on ௟ܶ and the population ߣ௟ of dead-end local minima at 

each level. A longer waiting time ݐ௪ at this temperature thus allows the system to relax to 

a deeper and larger (entropically) valley of the energy surface. The memory effect observed 

during the reheating process results from the fact that the system is trapped in this special 

landscape basin. Similarly, the weaker memory effect in spin jam originates from the 

distribution of the cluster energy scales ௠ܶ. With decreasing temperature ܶ, thermal 

equilibrium cannot be reached within clusters with ܶ ௠ >  ܶ as the corresponding relaxation 

dynamics become exponentially slow. The waiting temperature sets a threshold such that 

clusters with ௠ܶ >  ௪ܶ exhibit slow relaxation dynamics, whereas a longer waiting time ݐ௪ 

helps the system find the cluster with lower overall energy and larger entropy. Again, the 

fact that the system is trapped in this special cluster manifests itself as the memory effect 

during rewarming. 
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Figure (App.)   C.1. Schematic diagram showing a Monte Carlo step in our dynamic barrier tree 
simulations. 
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Figure (App.)   C.2. Simulated Magnetization as a function of temperature.  
[(a) and (b)] The magnetization ܯ as a function of temperature ܶ during heating for the spin jam and 
the spin glass model, respectively. Different curves in each panel correspond to varying numbers of MC 
steps that waited at ௪ܶ, which are proportional to ݐ௪. (c) (spin jam model) and (d) (spin glass model) 
show (ܯ௥௘௙  ௥௘௙ as a function of (# of MC steps)/10, which corresponds to tw (in seconds) inܯ/(ܯ−
the experiments. The time scale has been chosen to best fit the experimental results. (ܯ௥௘௙ ௥௘௙ܯ/(ܯ−  
of both models are rescaled so that their maximum values are 1. As shown in (c) and (d), Insets, at 
(# of MC steps)/10 = 10ଶ, (ܯ௥௘௙ ௥௘௙ܯ/(ܯ−   of the spin glass model is almost twice that of the spin 
jam model. 
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High Temperature susceptibility of Fe1.02Se0.15Te0.85 
and La1.96Sr0.04CuO4 
The Figure S1 shows the DC susceptibility data obtained from Fe1.02Se0.15Te0.85 and 

La1.96Sr0.04CuO4 that exhibit their glassy transitions at low temperatures. 

 

 
Figure (App.)   D.1.  High-Temperature bulk susceptibility of LSCO and FST samples. 
High-Temperature bulk susceptibility (black) and inverse susceptibility (red) respectively, obtained from (a) 
Fe1.02Se0.15Te0.85 and (b) La1.96Sr0.04CuO4. The data above 120 K of Fe1.02Se0.15Te0.85 has been fitted to the Curie-
Weiss law (red dash line) and the estimated Curie-Weiss temperature is -265.5(8) K. The measurements have 
done under magnetic fields of 0.01 T and 0.1 T respectively. 
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Polarization Analysis 
One can write down expression for the differential non-spin-flip and spin-flip cross-

sections in the various directions, in the presence of magnetic, nuclear and spin-incoherent 

scattering. As 

൬
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where M, N, I are the magnetic (M), nuclear coherent (N) and nuclear spin-incoherent (I) 

intensities, respectively, p is the scaler beam polarization (assumed to be the same for all 

polarization settings), and f is the flipping efficiency. Here the flipper is on for the ‘up’ 

counts. The angle αis the angle between the x-axis and the mean direction.  

Note that this is the power average and won’t hold, in general, for single crystal data. 
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Linear Spin Waves for CN-ground States 
Author: S.-S. Zhang and C. D. Batista [192]  

The ground state of the classical Kitaev model has an extensive degeneracy. The subset of 

CN-ground states can be mapped to the close-packed dimer coverings of the honeycomb 

lattice.  [154] The empty bonds of each dimer covering form self-avoiding (SW) paths, 

which are loops for closed boundary conditions. Within linear spinwave theory, magnons 

can only propagate along these 1D paths to lowest order in a 1/ܵ expansion. To compute 

the spin-wave Hamiltonian in each loop for a given CN-ground state, it is convenient to 

use a twisted reference frame for the original Hamiltonian defined on a given loop, where 

the local z-axis on a given site is chosen to be parallel to the spin direction: 

ଵ஽ܪ = ෍൫ܭ ሚܵ௜ଵ௫ ሚܵ௜ଶ௫ + ሚܵ
௜ଶ
௬ ሚܵ

௜ାଵ,ଵ
௬ ൯

௠

௜ୀଵ

෍෍ܵܭ− ሚܵ௜ఈ௭
ଶ

ఈୀଵ

௠

௜ୀଵ

  

F.1 

 

where ݉ = ݊/2 with ݊ being the number of sites on the loop. The local reference frame is 

chosen in such a way that two adjacent sites have the same local (ݕ) ݔ axis if they are 

connected by a (ݕݕ) ݔݔ bond. With this construction, the closed boundary condition can 

be periodic or anti-periodic depending on the direction of the last spin  [154]. In this 

reference frame, the Hamiltonian is invariant under translations by two lattice sites. 

Correspondingly, the index ߙ = 1,2 denotes the two sites on the effective unit cell. The 

second term of Equation (F.1) represents an effective perpendicular magnetic field 

generated by the adjacent 1D path through the antiferromagnetic interaction on the dimer. 

After a Holstein-Primakoff transformation, 
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ሚܵ௜ఈ௭ = ܵ −  ܽ௜ఈ
ற ܽ௜ఈ 

F.2 
ሚܵ௜ఈ௫ =

1
√2

൫ܽ௜ఈ
ற + ܽ௜ఈ൯, ሚܵ

௜ఈ
௬ =

1
√2݅

൫ܽ௜ఈ
ற − ܽ௜ఈ൯ 

F.3 
 

the spin wave Hamiltonian (F.1) can be rewritten as 

௦௪ܪ =
ܵܭ
2 ෍෍൫ܽ௜,ఈ

ற ܽ௜,ఈ + ܽ௜,ఈܽ௜,ఈ
ற ൯
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ఈୀଵ

௠

௜ୀଵ

 

        +
ܵܭ
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ற ܽ௜,ଶ
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௠

௜ୀଵ

 

        −  
ܵܭ
2 ෍൫ܽ௜,ଶ
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ற + ܽ௜,ଶ

ற ܽ௜ାଵ,ଵ + ℎ. ܿ. ൯
௠

௜ୀଵ

  

F.4 
 

Given the translational symmetry of ܪ௦௪ , we can diagonalize it by Fourier transforming 

the creation and annihilation operators: 

ܽ௜,ఈ =
1
√݉

෍ܽ௞,ఈ݁௜௞(௜ାఋഀ)

௞

  

F.5 
where ߜఈ refers to the displacement within each unit cell. After Fourier transforming and 

applying a Bogoliubov transformation to ܪ௦௪ , we obtain the diagonal form 

௦௪ܪ = ෍ߚ(݇)ܧ௞
றߚ௞

௞

+ ௞ߛ଴෍ܧ
றߛ௞

௞

+ ݏ݋෍ฬܿܵܭ ൬
݇
2൰ฬ

௞

 
 

where ܧ଴ = 0. The branch of zero modes arises from the continuum of (non-CN) ground 

states connecting different CN-ground states. The dispersion relation of the dispersive 

branch is [??] 

(݇)ܧ =   (2/݇)ݏ݋ܿܵ|ܭ|2

F.6 
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F.1  Dynamical Structure Factor 

To the lowest non-trivial order in the 1/ܵ expansion, the dynamical structure factor in 

momentum-frequency space for a given ground state, |0⟩, has only contributions from the 

transverse spin components in the local reference frame 

ሚܵ
ఈఉ
ఓఔ(݇,߱) = ଶߨ4 ෍ ൻ0| ሚܵ௞,ఈ

ఓ ห݇, ݊ൿ
௡ୀଵ,ଶ

ൻ݇,݊| ሚܵି௞,ఉ
ఔ ห0ൿߜ൫߱ −   ௤,௡൯ܧ

F.7 
 

As we explained in Chapter 8.1  , the local gauge structure of the Kitaev Hamiltonian, 

௄ܪ]   , ௣ܹ]  =  0, implies that the real space spin-spin correlators must vanish for distances 

bigger than one lattice parameter. Based on that observation, we will only compute the on-

site and the NN spin-spin correlators that arise from taking the average over all the CN 

ground states. Note that a more rigorous calculation of the ܶ =  0 spin-spin correlator 

should also include the non-CN ground states. However, a calculation based on the just the 

CN-ground states is enough to capture the main qualitative features of the dynamical 

structure factor obtained from our numerical simulations of the classical AFM Kitaev 

model. 

Finally, given the critical nature of the dimer coverings of the honeycomb lattice, the loop 

length has a power law distribution, implying that most of the loops containing a given site 

(for the on-site correlator) and a pair of sites (for the two-site correlator) have a very long 

length. Consequently, we will assume that the average over CN states is dominated by the 

result for infinitely long loop length. 

F.2  On-site Dynamical Structure Factor 

The on-site dynamical structure factor is obtained by averaging over both sites of the unit 

cell of the loop: 

ሚܵ଴௫௫(߱) =
1

2݉෍[ ෤߯ଵଵ௫௫(݇,߱) + ෤߯ଶଶ௫௫(݇,߱)]
௞

  

F.8 
Replacing the creation and annihilation operators of Holstein-Primakoff 

 bosons with Bogoliubov bosons through 
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F.9 
with 

௞ݑ =
݊݅ݏ ݅ ቀ݇4ቁ + ݏ݋ܿ ቀ݇4ቁ

ට2ܿݏ݋ ቀ݇2ቁ
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݊݅ݏ ݅ ቀ݇4ቁ − ݏ݋ܿ ቀ݇4ቁ

ට2ܿݏ݋ ቀ݇2ቁ
 

 

F.10 
where the conjugation (∗) of the transformation matrix is taken for the “−” sign. After this 

substitution and taking the limit of ݉ → ∞, the on-site correlator is given by: 

ሚܵ଴௫௫(߱) = ܵߨ
ߩ̅ ቀ ቁܵܭ߱
߱ +

ܵߨ
2 න(߱)ߜ

݀݇

ݏ݋ܿ ቀ݇2ቁ

గ

ିగ
,  

F.11 
where the dimensionless density of states, ̅ߩ(߱ ⁄(ܵܭ) ) =  :is defined as follows ,(߱)ߩܵܭ

(ݔ)ߩ̅ =
2

ට1 − ቀ2ݔቁ
ଶ

 . 
 

F.12 
The divergence at ߱ = -arises from the Van Hove singularity in the density of single ܵܭ2

magnon states at the top of the spin-wave band. Going back to the original reference frame, 

we have 

ܵ଴(߱) = 〈 ሚܵ଴௫௫(߱)〉,  

F.13 
where we do need not to specify the superscript because ܵ଴௫௫(߱) = ܵ଴

௬௬(߱) = ܵ଴௭௭(߱). 

 

F.3  Nearest-neighbor Dynamical Structure Factor 

There are two different contributions to the dynamical spin correlator between nearest-

neighbor sites because of the two-site unit cell. Let us first consider the ݔݔ bond (݅, 1) −

(݅, 2). The conservation of the flux operators ௣ܹ  implies that only the correlator between 

the twisted ݔ spin components, ൻ ሚܵ௜,ଵ௫ ሚܵ௜,ଶ௫ ൿ, is non-zero on this bond. From the spin wave 

theory, we have 
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1
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F.14 
With 
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F.15 
In the ݉ → ∞ limit, there is 

ሚܵଵ௫௫(߱) = ൤
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F.16 
Similarly, only the y-components of the twisted spins, ሚܵଵ

௬௬(߱) =  ൻ ሚܵ௜,ଶ
௬ ሚܵ

௜ାଵ,ଵ
௬ ൿ, contribute 

to the NN spin correlator on the other ݕݕ bond (݅, 2) − (݅ + 1;  1). By symmetry, this 

correlator is the same as the ݔݔ correlator on the bond (݅, 1)−  (݅, 2) calculated above. 

Consequently, we can ignore the superscripts ݕݕ/ݔݔ when referring to the NN spin 

correlator. Back to the original spin reference frame, we NN dynamic structure factor 

becomes 

ଵܵ(߱) = ሚܵଵ௫௫(߱)   

F.17 
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Spin Dynamic Simulations 
G.1  Sum Rules and Normalizations 

There are numerous sum rules exist, and they can be problem specific. For example, Let’s 

consider an isotropic Kitaev model,  

ଵܵ(߱) = ෍ ෍ ෍〈 ௟ܵೕ
௣(߱)〉 × 〈 ௟ܵೖ

௣ (߱)〉ற
ேഀ

௟ೕೖ

± ௫௫±௬௬±௭௭

ఈ௣

= 6෍෍〈 ௟ܵೕ
௣(߱)〉 × 〈 ௟ܵೖ

௣ (߱)〉ற
௫௫

௟ೕೖ௣

 G.1 

 

From the sum rules for Matter Fermions, 

(1) ∫݀߱  ܵఈ(Γ,߱) = 〈 ௝ܵ
ఈܵ௞ఈ〉 + 1/4, where 〈 ௝ܵ

ఈܵ௞ఈ〉 − Nearest Neighbor equal time 

correlation function. 

 

(2) ∫݀߱  ߱ܵ௭௭(Γ,߱) = ൫ܭ௫௫〈 ௝ܵ
௫௫ܵ௞௫௫〉 + 〉௬௬ܭ ௝ܵ

௬௬ܵ௞
௬௬〉൯/2 and two other relations with 

ߙ = ,ݔݔ 〉 where ݕݕ ௝ܵ
ఈܵ௞ఈ〉 is the nearest neighbor equal time correlation function, 

 

〈 ௝ܵ
ఈܵ௞ఈ〉 = ෍෍ ෍ ෍〈 ௟ܵೕ

௣(ݐ)〉 × 〈ܵ௟ೖ
௣ ற〈(ݐ)

ேഀ

௟ೕೖ

± ௫௫,±௬௬,±௭௭

ఈ௣௧
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For the isotropic Kitaev model, the Equation 2.25 can be rewritten as, 

ܵ(ܳ,߱) = ෍෍ expൣ−݅ܳ൫ݎ௝ − ௞൯൧ݎ 〈 ௝ܵ
௣(߱)〉 × 〈ܵ௞

௣(߱)〉ற
௝௞௣

 

ܵ(ܳ,߱) = ܵ଴(߱) + ෍ ෍ ෍ exp[−ܴ݅ܳேேఈ ] 〈 ௟ܵೕ
௣(߱)〉 × 〈 ௟ܵೖ

௣ (߱)〉ற
ேഀ

௟ೕೖ

± ௫௫,±௬௬,±௭௭

ఈ௣

 

ܵ(ܳ,߱) = ܵ଴(߱) + ෍ 2 cos[ܴܳேேఈ ]෍෍〈 ௟ܵೕ
௣(߱)〉 × 〈 ௟ܵೖ

௣ (߱)〉ற
ேഀ

௟ೕೖ௣

 ௫௫,௬௬,௭௭

ఈ

 

ܵ(ܳ,߱) = ܵ଴(߱) + ଵܵ(߱)
1
3 ෍ cos[ܴܳேேఈ ]

 ௫௫,௬௬,௭௭

ఈ

 

G.2 

 

However, for a particular bond type (ߙ), 

ܵఈ(ܳ,߱) =
1
3

(ܵ଴(߱) + ଵܵ(߱) cos[ܴܳேேఈ ]) 

At the Γ − point, 

ܵ(Γ,߱) = ܵ଴(߱) + ଵܵ(߱) G.3 
From the rule (1), 

න݀߱  ൫ܵ଴(߱) + ଵܵ(߱)൯ −෍〈 ௝ܵ
ఈܵ௞ఈ〉

ఈ

=
3
4 

Therefore, a normalization factor for ܵ(ܳ,߱) can be calculated as, 

ܰ =
3/4

∫ ݀߱  ൫ܵ଴(߱) + ଵܵ(߱)൯ − ∑ 〈 ௝ܵ
ఈܵ௞ఈ〉ఈ

 

Another way of normalizing the calculations can be using the neutron scattering sum rule, 

න݀߱න ݀ܳ
 

஻௓
 ܵ(ܳ,߱) = ܵ(ܵ + 1) 

By integrating over BZ, 
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න ݀ܳ
 

஻௓
 ܵ(ܳ,߱) = ܸܵ଴(߱) + ܹ ଵܵ(߱) 

ܸ =  න ݀ܳ
 

஻௓
          ܹ =  න ݀ܳ

 

஻௓

1
3 ෍ cos[ܴܳேேఈ ]

 ௫௫,௬௬,௭௭

ఈ

 

where ܸ and ܹ are constant. Thus, 

න݀߱න ݀ܳ
 

஻௓
 ܵ(ܳ,߱) = ܸන݀߱ܵ଴(߱) + ܹ 

Therefore, a normalization factor for ܵ(ܳ,߱) can be calculated as, 

ܰ =
ܵ(ܵ + 1)

ܸ ∫݀߱ ܵ଴(߱) + ܹ
 

The ܸ  and ܹ  for the Kitaev model can be found as ܸ = 102.5/ܴேே and ܹ =  −13.8/ܴேே 

respectively as estimated by Monte-Carlo sampling on a hexagon. In Chapter 8  , we have 

used the former normalization method in order to compare with the quantum solution.  

Since we ignore the Planck constant (ℏ) and Boltzmann constant (݇஻) throughout the spin-

dynamic simulations and subsequent calculations, we have to normalize MC-time and the 

corresponding energy transfer (ℏ߱) as ݐ = ℏ
௞ಳ
ெ஼ݐ  and ℏ߱ = ஻߱ெ஼݇ߨ2  where ߱ெ஼ =

 .is in nanoseconds (ns) and ℏ߱ in millielectron volts (meV) ݐ ெ஼. Hereݐ/1
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G.2  Simple Heisenberg models in Square Lattice 

ܵ(ܳ,߱) for simple nearest neighbor Heisenberg models on a simple square lattice, has been 

calculated as a sanity check and compared with Linear Spinwave Theory (LST) as shown 

in the Figure (App.)   G.1. For LST calculation, we have used SpinW program from Paul 

Scherrer Institute (PSI). 

 
Figure (App.)   G.1. Dispersion relations of simple Heisenberg square lattices    
Sanity checks on ܵ(ܳ,߱) of simple AFM and FM Heisenberg models on a simple square lattice. 
The calculation from (a), (c) dynamic simulations (LD) and (b),(d) Linear Spinwave Theory 
(LPT) are compared. The corresponding spinwave dispersions are overpotted as white dash lines. 
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Important Relations 
 

 ܧ =  81.804
ଶൗߣ = 2.072 K௜

ଶ  ;    ܧ in meV,    ߣ in Å, K௜ in Åିଵ 

 ܧ௧௛௘௥௠௔௟ = 0.086 × ௧௛௘௥௠௔௟ܧ    ;  ܶ  in meV, ܶ  in K   

 ܧ =  4 × 10ିଷ ൗݐ =  4
ᇱൗݐ  ᇱ in psݐ ,in ns ݐ    ;  

 ܧ =  (݃௦ .ܵ) × 0.058 ×  in Tesla (T) ܤ ,in meV ܧ   ; ܤ

 Curie-Weiss Law, ߯ = ܥ  (ܶ − ஼ௐ)ൗߠ   

Curie constant, ܥ = ܰ݃ଶܬ)ܬ + ஻ଶߤ଴ߤ(1
3݇஻
൘  

Curie-Weiss Temperature, ߠ஼ௐ =  ܰ݃
ଶܬ)ܬ + ஻ଶߤߣ(1

3݇஻
൘  

Molecular Field, ߣ =  డு
డௌ೔

 microscopic hamiltonian – ܪ ;

 From Bragg’s Law, ܳ =  Wave Length of incident beam, in – ߣ   ; ߣ/((ߠ) sin ߨ4)

Å.         ߠ = ߙ  2ൗ  where ߙ is the scattering angle. 
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