

Analysis of Fast Insertion Sort

A Technical Report

presented to the faculty of the

School of Engineering and Applied Science

University of Virginia

by

Eric Thomas

April 24, 2021

On my honor as a University student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Eric Thomas

Technical advisor: Lu Feng, Department of Computer Science

Analysis of Fast Insertion Sort

Efficient Variants of Insertion Sort

Eric Thomas

 University of Virginia

 et6sw@virginia.edu

ABSTRACT

As a widespread problem in programming language and

algorithm design, many sorting algorithms, such as Fast

Insertion Sort, have been created to excel at particular use

cases. While Fast Insertion Sort has been demonstrated to

have a lower running time than Hoare's Quicksort in many

practical cases, re-implementation is carried out to verify

those results again in C++ as well as Python, which

involves comparing the running times of Fast Insertion

Sort, Merge Sort, Heapsort, and Quicksort on random and

partially sorted arrays of different lengths. Furthermore, the

advantages and disadvantages of Fast Insertion Sort in

addition to other questions, flaws, insights, and directions

for future work is elaborated on. Fast Insertion Sort offers

improved worst-case time complexity over Insertion Sort,

while maintaining Insertion Sort's advantages of being

simple, stable, and adaptive.

1 Introduction

Although Insertion Sort has many advantages when

compared to other comparison sorting algorithms, such as

being in-place, adaptive, stable, and online (that is,

Insertion Sort can sort an array as it is received) as well as

having a worst-case space complexity of 𝜃(1) (not

including the input array), Insertion Sort has the downside

of having a high worst-case time complexity of 𝜃(𝑛2) .

Nonetheless, Insertion Sort has small constants, which

allows it to be faster than most other sorting algorithms for

small-sized input arrays. Currently, there are numerous

sorting algorithms that are either variants of Insertion Sort

(for example, Shellsort, Tree Sort, and Library Sort) or

switch to Insertion Sort when the input array is small

enough (for example, Timsort, Introsort, and Block Sort),

thus accomplishing better average- and worse-case time

complexity and preserving some, but not all, advantages of

Insertion Sort.

Out of the aforementioned sorting algorithms, only Timsort

and Block Sort are adaptive, stable, and achieve lower

worst-case time complexity than Insertion Sort, though the

former has a somewhat undesirable worst-case space

complexity of 𝑂(𝑛) and the latter suffers from complicated

implementation. According to Faro et al. [1], there does not

seem to exist an iterative, in-place, and online variant of

Insertion Sort that manages to have a worst-case time

complexity of 𝑜(𝑛2). Originating from Faro et al. [1], a

family of Insertion Sort variants, referred to as Fast

Insertion Sort, is the result of an endeavor to solve these

problems.

2 Related Work

After reviewing research by “Mishra et al. [2], Yang et al.

[3] and Beniwal et al. [4] [that] analyzed and compared

different sorting algorithms in order to help users to find

appropriate algorithm as per their need,” Goel and Kumar

[5] said that “an experimental study by Yang et al. [3]

revealed that for smaller sized list, Insertion and Selection

sort performs well, but for a larger sized list, merge and

quicksort are good performers.” As another notable use

case for Insertion Sort, Goel and Kumar note that “dynamic

sorting of modules in physical memory uses Insertion Sort

algorithm to sort free spaces according to their size in

fragmented memory,” which is to “aggregate free spaces at

one location and make room for new modules.”

Furthermore, they survey multiple improvements of

Insertion Sort that have been made by many researchers in

the past.

Goel and Kumar [5] explain how “a new sorting algorithm

for a nearly sorted list of elements was devised from the

combination of IS and quickersort algorithm,” which uses

“an auxiliary list . . . to remove the unordered pairs from

the main list.” After “sorting is done using IS or quickersort

algorithm,” they said that “results of both the lists are then

merged to give a final ordered list.” They point out another

sorting algorithm, called “Fun-Sort,” which uses a

“repeated binary search approach on an unsorted array for

IS and acquired 𝜃(𝑛2 log 𝑛) time complexity to sort an

array of 𝑛 elements.” Since “gaps are left [in arrays] . . . to

accelerate insertions,” they mention that “gapped insertion

sort,” also known as Library Sort or Binary Insertion Sort,

“is studied to devise an algorithm with 𝑂(𝑛 log 𝑛) time

complexity with high probability.” They touch on “an

Analysis of Fast Insertion Sort E. Thomas

improvement for IS . . . proposed by Min [6] as [a] 2-

element insertion sort where two elements from unsorted

part of a list are inserted into sorted part” as opposed to

one-element insertion in Insertion Sort, allowing for

improved time complexity but increased space complexity.

They cover how “Dutta et al. [7] designed an approach for

data which is in opposite order,” demonstrating that the

“number of comparison operations are much less, i.e.,

nearly equal to
3(𝑛−2)

2
 in comparison to IS.” In addition to

an Insertion Sort that is based on 2-way expansion, called

“an Adaptive Insertion Sort (AIS) . . . to reduce the number

of comparisons and shift operations,” they also mention a

“Doubly Inserted Sort, an approach similar to the max-min

sorting algorithm is used to scan list from both ends.”

Furthermore, they observe that “Mohammed et al. [8]

proposed Bidirectional Insertion Sort (BCIS) based on the

concept of IS, left and right comparators,” reducing the

number of “comparison and shift operations” to the point

where the “average case and best case complexity of BCIS

is 𝑂(𝑛1.5) and 𝑂(4𝑛) respectively.” Lastly, they remark

how “there is hardly any variant of IS which has claimed to

maintain online sorting feature of IS,” with some even

deviating “from in-place and stable sort feature of IS to

give better performance.”

Lam and Wong [9] said that “Rotated Insertion Sort, or just

Rotated Sort for short, is based on the idea of the implicit

data structure called rotated list,” which is “where the

relative ordering of the elements is stored implicitly in the

pattern of the data structure, rather than explicitly storing

the relative ordering using offsets or pointers.” They note

that “rotated list achieves 𝑂(𝑛1.5 log 𝑛) operations using

constant 𝑂(𝑤) bits temporary space, or 𝑂(𝑛1.5) operations

with extra 𝜃(√𝑛 log 𝑛) bits temporary space, regardless of

𝑤,” where 𝑤 is the size of a computer word. Additionally,

they present their original “Rotated Library Sort that

combines the advantages” of Library Sort and Rotated

Insertion Sort. Petersson and Moffat [10] elaborate on

adaptive sorting algorithms, such as “Straight Insertion

Sort” and “Natural Mergesort.”

3 System Design

3.1 Explanation of Fast Insertion Sort

The high-level idea of Fast Insertion Sort is to extend a

sorted, left subdivision of the input array by inserting a

sorted block of a specific size, 𝑘 , for each iteration, all

while maintaining the order during insertion. There are two

primary types of Fast Insertion Sort. One is a sequence of

nested algorithms, called Fast Insertion Sort (h) or Fast

Insertion Sort Nested, where the ℎ th algorithm can be

executed when 𝑛 > 2ℎ and 𝑛 is the size of the input array.

In this case, ℎ symbolizes the depth of the algorithm

nesting, because the ℎth algorithm recursively calls the ℎ −
1th algorithm, stopping when ℎ = 0. The other type of Fast

Insertion Sort is a “purely recursive” derivation of Fast

Insertion Sort Nested, called simply Fast Insertion Sort or

Fast Insertion Sort Recursive, which dynamically computes

ℎ [1].

The aforementioned block size, 𝑘, is calculated from the

following formula where ℎ is the “input size degree” [1].

Since 𝑘 is the size of an array, 𝑘 ∈ ℕ.

 𝑘 = 𝑛
ℎ−1

ℎ (1)

Meanwhile, ℎ is defined such that ℎ ∈ ℕ and ℎ ≥ 1, which

is computed from an additional formula below where 𝑐 is

the “partitioning degree,” 𝑐 ∈ ℝ, and 𝑐 > 0, or a positive

floating point in practice [1].

 ℎ = log𝑐 𝑛 (2)

The general intuition is that if 𝑐ℎ−1 < 𝑛 ≤ 𝑐ℎ (can be

found with Formula 2), then Fast Insertion Sort partitions

the input array into at most 𝑐 blocks of size 𝑘 . In other

words, the block size, 𝑘 , can be either increased by

decreasing 𝑐 or increasing ℎ, or decreased by increasing 𝑐

or decreasing ℎ. This property allows the user to fine-tune

the algorithm according to expected size of the input array.

The procedure of Fast Insertion Sort is a for loop of index 𝑖
from 0 to 𝑛 − 1 where each iteration adds 𝑘 to 𝑖. For each

iteration, the minimum of 𝑘 and 𝑛 − 𝑖 is determined, which

is used as the new value of 𝑘 for the rest of iteration.

Otherwise, if the case where 𝑛 − 𝑖 < 𝑘 is not accounted

for, then the block size, 𝑘, would extend past the end of the

input array.

Then Fast Insertion Sort recursively calls itself with a new

starting index of 𝑖 and a new input array size of 𝑘 from the

minimum function. In the case of Fast Insertion Sort

Nested, the ℎ argument is decremented by 1 in order to call

the subsequent nested version of the algorithm. The final

operation of each iteration is an “insert block” procedure

that takes the sorted block from 𝑖 to 𝑘 − 1 and inserts it

into the partition from the starting index of the input array

(of the current function call) to 𝑘 − 1 , while also

maintaining the order of that partition [1].

3.2 Properties of Fast Insertion Sort

In addition to keeping Insertion Sort’s properties of being

adaptive, stable, and online, Fast Insertion Sort achieves a

lower worst-case time complexity at the downside of

having a higher worst-case space complexity. If a

subdivision of the input array is already sorted, the

aforementioned insert-block procedure skips an entire loop

of 𝑖 iterations, thus making Fast Insertion Sort adaptive.

Because Fast Insertion Sort uses an additional sorted block

Analysis of Fast Insertion Sort E. Thomas

array to preserve the original ordering of equal elements

and mimics the insertion procedure of Insertion Sort, Fast

Insertion Sort is also stable. By sorting from the left to the

right and extending the sorted partition of the input array,

Fast Insertion Sort is online as well, assuming that the size

parameter is updated as needed.

While Faro et al. [1] said that both Fast Insertion Sort

Nested and Recursive “achieves an 𝑂(𝑛1+𝜀) worst-case

time complexity, where 𝜀 =
1

ℎ
,” a notable flaw with the

paper is the absence of a proof. However, their statement

about how Fast Insertion Sort uses “additional external

memory of size 𝑂(𝑘)” makes intuitive sense, because the

additional sorted block of size 𝑘 is only needed for one

insert-block procedure [1]. As such, only one of those

supplementary arrays has to be allocated in memory at a

time.

3.3 In-Place Fast Insertion Sort

While the usual implementation of Fast Insertion Sort does

not sort in-place, it can be modified to do so with some

performance trade-offs. Instead of creating an additional

array of size 𝑘 and using that as a storage area for the

insert-block procedure, a section of the input array that is to

the right of the current working area can be utilized. This

working area is specifically from 𝑖 (in the aforementioned

for loop) to 𝑘 − 1 in the input array, while the storage area

is from 𝑖 + 𝑘 to 2𝑘 − 1. However, swap operations must

also replace the assignment operations in the insert-block

procedure, because elements will be overwritten otherwise.

When Fast Insertion Sort reaches near the end of the input

array and 𝑖 > 𝑛 − 2𝑘, there is not enough additional space

for in-place storing, so Faro et al. [1] suggest that the

remaining elements can be inserted individually, similar to

regular Insertion Sort. Although in-place sorting is indeed

possible for Fast Insertion Sort, resorting to swap

operations over assignment operations results in worse

experimental performance, since each swap operation is

made up of three assignment operations.

3.4 Block Insertion Sort

In particular, a notable version of Fast Insertion Sort

Nested, called Block Insertion Sort, is found when ℎ = 2,

because the small number of nested calls makes it simple to

convert the algorithm to an iterative implementation that is

in-place, online, and adaptive. Block Insertion Sort has

𝑂(𝑛1.5) worst-case time complexity, based on the

aforementioned worst-case time complexity of Fast

Insertion Sort. According to Faro et al. [1], Block Insertion

Sort is “the first . . . iterative in-place online variant of the

Insertion-Sort algorithm [that] achieves a 𝑜(𝑛2) complexity

in the worst case.”

3.5 Re-Implementation Challenges

In order to re-implement Fast Insertion Sort, the

pseudocode provided by Faro et al. [1] was used as the

foundation. However, when put into practice, some typos in

the pseudocode became apparent, which is a noteworthy

flaw of the paper. Specifically, the insert-block function has

a for loop from 𝑗 = 0 to 𝑘 − 1, where 𝑘 is the sorted block

size, while Fast Insertion Sort has a for loop from 𝑖 = 0 to

𝑛, where 𝑛 is the size of the input array. Since 𝑛 − 1 is the

index of the last element of the input array, the latter for

loop implies that that should be the last iteration. Despite

that being the case, the former for loop already subtracts

one, which unintentionally ignores the very last element.

Therefore, the pseudocode should use either 𝑘 − 1 and 𝑛 −
1 or 𝑘 and 𝑛 as the endpoints to be consistent. Faro et al.’s

pseudocode for Insertion Sort contains a similar

inconsistency with a for loop that ends at 𝑛 − 1 [1].

An additional typo is in Faro et al.’s insert-block function

where the swap operation uses 𝑇, the sorted block, and ℎ

as the index for retrieving the target element from 𝑇 [1].

However, ℎ is an uninitialized variable in the context of the

insert-block function, causing an error. Since the

pseudocode already references local variable 𝑙 as the index

that is intended for 𝑇, it becomes clear that ℎ should be 𝑙.

Another minor challenge with re-implementing the

pseudocode arose from the ambiguity around what type of

number that each of the aforementioned ℎ, 𝑐, and
ℎ−1

ℎ
 are,

which is important to know for implementations in

statically-typed programming languages. Although Faro et

al. [1] mention that “ℎ ∈ ℕ,” some consider zero to be a

natural number, which makes it unclear as to whether or

not ℎ can be zero. While the division operations that come

up later in the paper make it obvious that ℎ cannot be zero,

they could be more precise with their initial definition of ℎ

to eliminate any possible confusion. Furthermore, the

pseudocode for Fast Insertion Nested is recursive and has

no base case, which would be easier to understand if they

added a simple base case that checked if ℎ = 0, then the

function returns.

On the other hand, Faro et al. [1] do not clarify anywhere in

the paper that 𝑐 can be any positive real number, which is

even more misleading when the experimental tests only

include incrementing integer values for 𝑐 . Only after

glancing at their source code where they define 𝑐 as a float,

does it become evident that 𝑐 is a real number. Since 𝑘 and

ℎ are natural numbers, it seems reasonable to consider the

possibility that perhaps
ℎ−1

ℎ
 should be truncated or rounded

before calculating Formula 1. Similar to the case with 𝑐,

this exponential term is defined as a float in Faro et al.’s

source code, which would have been beneficial to clarify in

the paper [1].

Analysis of Fast Insertion Sort E. Thomas

While a goal of re-implementation was to follow the

pseudocode as much as possible without referring to Faro

et al.’s source code, the initial re-implementation of Fast

Insertion Sort Recursive was very slow in experimental

tests [1]. In only the source code, they include some

significant performance improvements in the form of a base

case that checks if ℎ ≤ 1 , 𝑛 ≤ 𝑘 , or 𝑘 ≤ 5 , then use

Insertion Sort instead of continuing with a drawn-out

insert-block procedure on very small sorted blocks. These

improvements were added to the re-implementation.

Since scope is a significant aspect of programming

languages, the scope of the initialization of the sorted block

was experimented with. For example, the following

locations were attempted, listed from outermost scope to

innermost: before Fast Insertion Sort is called (passed in as

an initial argument), right before the main for loop (same as

the pseudocode by Faro et al. [1]), and right before the

insert-block procedure. In C++, right before the main for

loop was the most efficient, perhaps because the outermost

scope lacked the compiler’s local-scope optimizations, and

the innermost scope was repeating too much work inside

the for loop. Unfortunately, only the innermost scope

benefits from 𝑂(𝑘) worst-case space complexity, because

the other locations are before the recursive call, which

means that multiple sorted blocks may be allocated at once.

4 Results

4.1 Re-Implementation Tests

The tests of the re-implementation include many of the

same parameters as the tests performed by Faro et al. [1].

Although they test three different versions of Quicksort,

only one version of Quicksort is included in the re-

implementation, which always picks the last element as the

pivot. Aside from that difference, Merge Sort, Heapsort,

Fast Insertion Sort Nested (for 2 ≤ ℎ ≤ 10), Fast Insertion

Sort Recursive (for 2 ≤ 𝑐 ≤ 10), and Block Insertion Sort

are included, matching their original tests. Similar to their

tests, the tests of the re-implementation are performed on

input arrays with a size 𝑛 = 2𝑖 where 2 ≤ 𝑖 ≤ 20 , while

the output is the average time of 1000 runs. However,

Python tests were restricted to 2 ≤ 𝑖 ≤ 16 due to memory

limitations.

The re-implementation code is available at

github.com/awolffromspace/fast-insertion-sort. The re-

implementation tests for C++ and Python were compiled

and interpreted with the GNU C++ Compiler 9.3.0 and

Python 3.8.5, respectively. In particular, the C++ tests used

Faro et al.’s optimization options: -O2 -fno-guess-branch-

probability [1]. Additionally, the re-implementation tests

were computed on a PC with a 3.9 GHz 8-core AMD

Ryzen 7 3800X processor, in an Ubuntu 20.04 VirtualBox

that had 4 cores and 8 GB of memory allocated. The

gettimeofday function in POSIX and the timeit module are

used to time each sorting algorithm in C++ and Python,

respectively. While the clock function in the C++ Standard

Library could be used to measure with a hardware cycle

counter like in Faro et al.’s tests, gettimeofday is chosen to

more closely match Python’s timeit module, which records

real time rather than CPU cycles [1].

Following Faro et al.’s test format, the re-implementation

tests time the sorting algorithms on both random and

partially-sorted input arrays [1]. Each random element is

generated by the rand and randint functions, where the max

is the RAND_MAX constant and sys.maxsize value, in

C++ and Python, respectively. Partially-sorted input arrays

are generated by taking a sorted input array and swapping

elements at random indices for
𝑛

4
 iterations.

4.2 Analysis of Test Results

The most important takeaway from the re-implementation

test results in Figures 1, 2, and 3 is that they verify the

experimental 𝑂(𝑛 log 𝑛) running time that Faro et al. [1]

observed for Fast Insertion Sort when the most optimal ℎ

and 𝑐 values are used, which ended up being 5 for both on

large-sized input arrays. Furthermore, Block Insertion Sort

seems to have a polynomial running time as expected.

While Faro et al. [1] said that Fast Insertion Sort

outperforms Merge Sort and Heapsort, that is not the case

for the re-implementation tests until sizes of 217 are

reached, which is probably due to the re-implementation

being less optimized. The re-implementation’s lack of

optimization is also noticeable when observing Fast

Insertion Sort Nested’s poor performance on small-sized

input arrays, which is about five times worse than

Quicksort until sizes of 27 are reached.

0

1

2

3

4

5

8192 16384 32768 65536

m
ill

is
ec

o
n

d
s

number of elements

Random Arrays in C++

MS HS QS

FIS-N (h=5) FIS-R (c=5) BIS

Analysis of Fast Insertion Sort E. Thomas

Figure 1: Running times of sorting algorithms on

random input arrays in C++

Figure 2: Running times of sorting algorithms on

partially-sorted input arrays in C++

As expected, Fast Insertion Sort performs better on

partially-sorted input arrays than on random input arrays.

Oddly enough, all of the sorting algorithms achieve better

results on partially-sorted input arrays.

Figure 3: Running times of sorting algorithms on

random input arrays in Python

As a consequence of the convenient features that Python

provides to users, such as interpreting code on the fly,

dynamic typing, and garbage collection, the sorting

algorithms perform about 100 times slower on Python

compared to C++, as shown in Figures 1 and 2. Python

interpreters usually step through the provided code one line

at a time, converting the code to bytecode as the interpreter

progresses. Because C++ compilers compile all provided

code in advance, they are able to make optimizations that

require analyzing the entire code, which would be difficult

for interpreted programming languages to do without

making very accurate guesses as to what the rest of the

code would entail. In contrast to Python’s dynamic typing,

C++ enforces static typing, allowing it to make

optimizations that require knowing the type of a given

variable. For example, C++ can reduce the amount of

memory that a particular data structure uses if the compiler

knows the exact sizes of each element, which can pack that

data in the cache and memory in a more compact way.

Since the data in C++ can be closer together, C++ also

takes advantage of performance enhancements, such as

locality of reference. Because Python does not require the

programmer to free up pointers and references, it has to

routinely run a garbage collector, which inevitably adds

more operations and thus CPU cycles to program

execution.

5 Conclusions

Fast Insertion Sort is a family of Insertion Sort variants that

achieve 𝑂(𝑛1+𝜀) worst-case time complexity where 𝜀 =
1

ℎ
,

while preserving many of the advantages of Insertion Sort,

such as being adaptive, stable, and online. Furthermore,

Fast Insertion Sort has an experimental running time of

𝑂(𝑛 log 𝑛) , outperforming some 𝑂(𝑛 log𝑛) sorting

algorithms, such as Merge Sort and Heapsort, on large-

sized input arrays. However, Fast Insertion Sort has the

downside of requiring 𝑂(𝑘) additional space. At the cost of

adding more operations to Fast Insertion Sort, it can be

modified to sort in-place. Block Insertion Sort is a notable

version of Fast Insertion Sort, because it is purely iterative,

in-place, online, and has 𝑜(𝑛2) worst-case time complexity.

By comparing the timing of sorting algorithms in C++ and

Python, some insight can be found with respect to the

advantages and disadvantages of different approaches in

programming language design.

6 Future Work

Faro et al.’s claim that Fast Insertion Sort has a worst-case

time complexity of 𝑂(𝑛1+𝜀) where 𝜀 =
1

ℎ
 should be proven

[1]. While using the logarithmic function to determine the

size of each partition of the input array is effective, more

research could be done to identify partitioning methods that

potentially lead to better performance. Since Faro et al. [1]

showed that Block Insertion Sort outperforms a version of

Quicksort that uses Insertion Sort as a subroutine, Block

0

1

2

3

4

8192 16384 32768 65536

m
ill

is
ec

o
n

d
s

number of elements

Partially Sorted Arrays in C++

MS HS QS

FIS-N (h=5) FIS-R (c=5) BIS

0

50

100

150

200

250

300

350

8192 16384 32768 65536

m
ill

is
ec

o
n

d
s

number of elements

Random Arrays in Python

MS HS QS

FIS-N (h=5) FIS-R (c=5) BIS

Analysis of Fast Insertion Sort E. Thomas

Insertion Sort could replace or accompany Insertion Sort in

sorting algorithms, such as Timsort and Introsort. Lastly, an

iterative version of Fast Insertion Sort for optimal values of

𝑐 and ℎ may net slight performance gains.

REFERENCES
[1] Simone Faro, Francesco Pio Marino and Stefano Scafiti. 2020. Fast-Insertion-

Sort: A New Family of Efficient Variants of the Insertion-Sort Algorithm. In

Proceedings of the SOFSEM 2020 Doctoral Student Research Forum

(SOFSEM 2020), January 20 - 24, 2020, Limassol, Cyprus. University of

Cyprus, Nicosia, Cyprus, 37-48.

https://www.dmi.unict.it/faro/papers/conference/faro55.pdf

[2] Aditya Dev Mishra and Deepak Garg. 2008. Selection of Best Sorting

Algorithm. International Journal of Intelligent Information Processing 2, 2

(July - Dec. 2008), 363-368.

https://www.academia.edu/download/28569137/Selection_of_best_sorting_algo

rithm.pdf

[3] You Yang, Ping Yu and Yan Gan. 2011. Experimental Study on the Five Sort

Algorithms. In Proceedings of Second International Conference on Mechanic

Automation and Control Engineering (MACE 2011), July 15 - 17, 2011, Inner

Mongolia, China. IEEE, New York, NY, 1314-1317.

DOI:10.1109/MACE.2011.5987184

[4] Sonal Beniwal and Deepti Grover. 2013. Comparison of Various Sorting

Algorithms: A Review. International Journal of Emerging Research in

Management and Technology 2, 5 (May 2013), 83-86.

[5] Shubham Goel and Ravinder Kumar. 2018. Brownian Motus and Clustered

Binary Insertion Sort Methods: An Efficient Progress Over Traditional

Methods. Future Generation Computer Systems 86, Apr. 2018, 266-280.

DOI:10.1016/j.future.2018.04.038

[6] Wang Min. 2010. Analysis on 2-Element Insertion Sort Algorithm. In

Proceedings of International Conference on Computer Design and Applications

(ICCDA 2010), June 25 - 27, 2010, Qinhuangdao, China. IEEE, New York,

NY, 143-146. DOI:10.1109/ICCDA.2010.5541165

[7] Partha Sarathi Dutta. 2013. An Approach to Improve the Performance of

Insertion Sort Algorithm. International Journal of Computer Science &

Engineering Technology 4, 5 (May 2013), 503-505.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.404.412&rep=rep1

&type=pdf

[8] Adnan Saher Mohammed, Şahin Emrah Amrahov and Fatih V. Çelebi. 2017.

Bidirectional Conditional Insertion Sort Algorithm: An Efficient Progress on

the Classical Insertion Sort. Future Generation Computer Systems 71, June

2017, 102-112. DOI:10.1016/j.future.2017.01.034

[9] Franky Lam and Raymond K. Wong. 2013. Rotated Library Sort. In

Proceedings of 19th Computing: Australasian Theory Symposium (CATS 2013),

January – February, 2013, Adelaide, South Australia. Australian Computer

Society, Inc., Darlinghurst, Australia, 21-26.

https://www.cse.unsw.edu.au/~wong/papers/cats13.pdf

[10] Ola Petersson and Alistair Moffat. 2005. A Framework for Adaptive Sorting. In

Proceedings of Third Scandinavian Workshop on Algorithm Theory (SWAT

1992), July 8 - 10, 1992, Helsinki, Finland. Springer, Berlin, Germany.

DOI:10.1007/3-540-55706-7_38

