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ABSTRACT 

As a widespread problem in programming language and 

algorithm design, many sorting algorithms, such as Fast 

Insertion Sort, have been created to excel at particular use 

cases. While Fast Insertion Sort has been demonstrated to 

have a lower running time than Hoare's Quicksort in many 

practical cases, re-implementation is carried out to verify 

those results again in C++ as well as Python, which 

involves comparing the running times of Fast Insertion 

Sort, Merge Sort, Heapsort, and Quicksort on random and 

partially sorted arrays of different lengths. Furthermore, the 

advantages and disadvantages of Fast Insertion Sort in 

addition to other questions, flaws, insights, and directions 

for future work is elaborated on. Fast Insertion Sort offers 

improved worst-case time complexity over Insertion Sort, 

while maintaining Insertion Sort's advantages of being 

simple, stable, and adaptive. 

1 Introduction 

Although Insertion Sort has many advantages when 

compared to other comparison sorting algorithms, such as 

being in-place, adaptive, stable, and online (that is, 

Insertion Sort can sort an array as it is received) as well as 

having a worst-case space complexity of 𝜃(1)  (not 

including the input array), Insertion Sort has the downside 

of having a high worst-case time complexity of 𝜃(𝑛2) . 

Nonetheless, Insertion Sort has small constants, which 

allows it to be faster than most other sorting algorithms for 

small-sized input arrays. Currently, there are numerous 

sorting algorithms that are either variants of Insertion Sort 

(for example, Shellsort, Tree Sort, and Library Sort) or 

switch to Insertion Sort when the input array is small 

enough (for example, Timsort, Introsort, and Block Sort), 

thus accomplishing better average- and worse-case time 

complexity and preserving some, but not all, advantages of 

Insertion Sort. 

Out of the aforementioned sorting algorithms, only Timsort 

and Block Sort are adaptive, stable, and achieve lower 

worst-case time complexity than Insertion Sort, though the 

former has a somewhat undesirable worst-case space 

complexity of 𝑂(𝑛) and the latter suffers from complicated 

implementation. According to Faro et al. [1], there does not 

seem to exist an iterative, in-place, and online variant of 

Insertion Sort that manages to have a worst-case time 

complexity of 𝑜(𝑛2). Originating from Faro et al. [1], a 

family of Insertion Sort variants, referred to as Fast 

Insertion Sort, is the result of an endeavor to solve these 

problems. 

2 Related Work 

After reviewing research by “Mishra et al. [2], Yang et al. 

[3] and Beniwal et al. [4] [that] analyzed and compared 

different sorting algorithms in order to help users to find 

appropriate algorithm as per their need,” Goel and Kumar 

[5] said that “an experimental study by Yang et al. [3] 

revealed that for smaller sized list, Insertion and Selection 

sort performs well, but for a larger sized list, merge and 

quicksort are good performers.” As another notable use 

case for Insertion Sort, Goel and Kumar note that “dynamic 

sorting of modules in physical memory uses Insertion Sort 

algorithm to sort free spaces according to their size in 

fragmented memory,” which is to “aggregate free spaces at 

one location and make room for new modules.” 

Furthermore, they survey multiple improvements of 

Insertion Sort that have been made by many researchers in 

the past. 

Goel and Kumar [5] explain how “a new sorting algorithm 

for a nearly sorted list of elements was devised from the 

combination of IS and quickersort algorithm,” which uses 

“an auxiliary list . . . to remove the unordered pairs from 

the main list.” After “sorting is done using IS or quickersort 

algorithm,” they said that “results of both the lists are then 

merged to give a final ordered list.” They point out another 

sorting algorithm, called “Fun-Sort,” which uses a 

“repeated binary search approach on an unsorted array for 

IS and acquired 𝜃(𝑛2 log 𝑛)  time complexity to sort an 

array of 𝑛 elements.” Since “gaps are left [in arrays] . . . to 

accelerate insertions,” they mention that “gapped insertion 

sort,” also known as Library Sort or Binary Insertion Sort, 

“is studied to devise an algorithm with 𝑂(𝑛 log 𝑛)  time 

complexity with high probability.” They touch on “an 
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improvement for IS . . . proposed by Min [6] as [a] 2-

element insertion sort where two elements from unsorted 

part of a list are inserted into sorted part” as opposed to 

one-element insertion in Insertion Sort, allowing for 

improved time complexity but increased space complexity. 

They cover how “Dutta et al. [7] designed an approach for 

data which is in opposite order,” demonstrating that the 

“number of comparison operations are much less, i.e., 

nearly equal to 
3(𝑛−2)

2
 in comparison to IS.” In addition to 

an Insertion Sort that is based on 2-way expansion, called 

“an Adaptive Insertion Sort (AIS) . . . to reduce the number 

of comparisons and shift operations,” they also mention a 

“Doubly Inserted Sort, an approach similar to the max-min 

sorting algorithm is used to scan list from both ends.” 

Furthermore, they observe that “Mohammed et al. [8] 

proposed Bidirectional Insertion Sort (BCIS) based on the 

concept of IS, left and right comparators,” reducing the 

number of “comparison and shift operations” to the point 

where the “average case and best case complexity of BCIS 

is 𝑂(𝑛1.5)  and 𝑂(4𝑛)  respectively.” Lastly, they remark 

how “there is hardly any variant of IS which has claimed to 

maintain online sorting feature of IS,” with some even 

deviating “from in-place and stable sort feature of IS to 

give better performance.” 

Lam and Wong [9] said that “Rotated Insertion Sort, or just 

Rotated Sort for short, is based on the idea of the implicit 

data structure called rotated list,” which is “where the 

relative ordering of the elements is stored implicitly in the 

pattern of the data structure, rather than explicitly storing 

the relative ordering using offsets or pointers.” They note 

that “rotated list achieves 𝑂(𝑛1.5 log 𝑛)  operations using 

constant 𝑂(𝑤) bits temporary space, or 𝑂(𝑛1.5) operations 

with extra 𝜃(√𝑛 log 𝑛) bits temporary space, regardless of 

𝑤,” where 𝑤 is the size of a computer word. Additionally, 

they present their original “Rotated Library Sort that 

combines the advantages” of Library Sort and Rotated 

Insertion Sort. Petersson and Moffat [10] elaborate on 

adaptive sorting algorithms, such as “Straight Insertion 

Sort” and “Natural Mergesort.” 

3 System Design 

3.1 Explanation of Fast Insertion Sort 

The high-level idea of Fast Insertion Sort is to extend a 

sorted, left subdivision of the input array by inserting a 

sorted block of a specific size, 𝑘 , for each iteration, all 

while maintaining the order during insertion. There are two 

primary types of Fast Insertion Sort. One is a sequence of 

nested algorithms, called Fast Insertion Sort (h) or Fast 

Insertion Sort Nested, where the ℎ th algorithm can be 

executed when 𝑛 > 2ℎ and 𝑛 is the size of the input array. 

In this case, ℎ  symbolizes the depth of the algorithm 

nesting, because the ℎth algorithm recursively calls the ℎ −
1th algorithm, stopping when ℎ = 0. The other type of Fast 

Insertion Sort is a “purely recursive” derivation of Fast 

Insertion Sort Nested, called simply Fast Insertion Sort or 

Fast Insertion Sort Recursive, which dynamically computes 

ℎ [1]. 

The aforementioned block size, 𝑘, is calculated from the 

following formula where ℎ is the “input size degree” [1]. 

Since 𝑘 is the size of an array, 𝑘 ∈ ℕ. 

 𝑘 = 𝑛
ℎ−1

ℎ  (1) 

Meanwhile, ℎ is defined such that ℎ ∈ ℕ and ℎ ≥ 1, which 

is computed from an additional formula below where 𝑐 is 

the “partitioning degree,” 𝑐 ∈ ℝ, and 𝑐 > 0, or a positive 

floating point in practice [1]. 

 ℎ = log𝑐 𝑛 (2) 

The general intuition is that if 𝑐ℎ−1 < 𝑛 ≤ 𝑐ℎ  (can be 

found with Formula 2), then Fast Insertion Sort partitions 

the input array into at most 𝑐  blocks of size 𝑘 . In other 

words, the block size, 𝑘 , can be either increased by 

decreasing 𝑐 or increasing ℎ, or decreased by increasing 𝑐 

or decreasing ℎ. This property allows the user to fine-tune 

the algorithm according to expected size of the input array. 

The procedure of Fast Insertion Sort is a for loop of index 𝑖 
from 0 to 𝑛 − 1 where each iteration adds 𝑘 to 𝑖. For each 

iteration, the minimum of 𝑘 and 𝑛 − 𝑖 is determined, which 

is used as the new value of 𝑘  for the rest of iteration. 

Otherwise, if the case where 𝑛 − 𝑖 < 𝑘  is not accounted 

for, then the block size, 𝑘, would extend past the end of the 

input array. 

Then Fast Insertion Sort recursively calls itself with a new 

starting index of 𝑖 and a new input array size of 𝑘 from the 

minimum function. In the case of Fast Insertion Sort 

Nested, the ℎ argument is decremented by 1 in order to call 

the subsequent nested version of the algorithm. The final 

operation of each iteration is an “insert block” procedure 

that takes the sorted block from 𝑖  to 𝑘 − 1 and inserts it 

into the partition from the starting index of the input array 

(of the current function call) to 𝑘 − 1 , while also 

maintaining the order of that partition [1]. 

3.2 Properties of Fast Insertion Sort 

In addition to keeping Insertion Sort’s properties of being 

adaptive, stable, and online, Fast Insertion Sort achieves a 

lower worst-case time complexity at the downside of 

having a higher worst-case space complexity. If a 

subdivision of the input array is already sorted, the 

aforementioned insert-block procedure skips an entire loop 

of 𝑖  iterations, thus making Fast Insertion Sort adaptive. 

Because Fast Insertion Sort uses an additional sorted block 
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array to preserve the original ordering of equal elements 

and mimics the insertion procedure of Insertion Sort, Fast 

Insertion Sort is also stable. By sorting from the left to the 

right and extending the sorted partition of the input array, 

Fast Insertion Sort is online as well, assuming that the size 

parameter is updated as needed. 

While Faro et al. [1] said that both Fast Insertion Sort 

Nested and Recursive “achieves an 𝑂(𝑛1+𝜀)  worst-case 

time complexity, where 𝜀 =
1

ℎ
,” a notable flaw with the 

paper is the absence of a proof. However, their statement 

about how Fast Insertion Sort uses “additional external 

memory of size 𝑂(𝑘)” makes intuitive sense, because the 

additional sorted block of size 𝑘  is only needed for one 

insert-block procedure [1]. As such, only one of those 

supplementary arrays has to be allocated in memory at a 

time. 

3.3 In-Place Fast Insertion Sort 

While the usual implementation of Fast Insertion Sort does 

not sort in-place, it can be modified to do so with some 

performance trade-offs. Instead of creating an additional 

array of size 𝑘  and using that as a storage area for the 

insert-block procedure, a section of the input array that is to 

the right of the current working area can be utilized. This 

working area is specifically from 𝑖 (in the aforementioned 

for loop) to 𝑘 − 1 in the input array, while the storage area 

is from 𝑖 + 𝑘  to 2𝑘 − 1. However, swap operations must 

also replace the assignment operations in the insert-block 

procedure, because elements will be overwritten otherwise. 

When Fast Insertion Sort reaches near the end of the input 

array and 𝑖 > 𝑛 − 2𝑘, there is not enough additional space 

for in-place storing, so Faro et al. [1] suggest that the 

remaining elements can be inserted individually, similar to 

regular Insertion Sort. Although in-place sorting is indeed 

possible for Fast Insertion Sort, resorting to swap 

operations over assignment operations results in worse 

experimental performance, since each swap operation is 

made up of three assignment operations. 

3.4 Block Insertion Sort 

In particular, a notable version of Fast Insertion Sort 

Nested, called Block Insertion Sort, is found when ℎ = 2, 

because the small number of nested calls makes it simple to 

convert the algorithm to an iterative implementation that is 

in-place, online, and adaptive. Block Insertion Sort has 

𝑂(𝑛1.5)  worst-case time complexity, based on the 

aforementioned worst-case time complexity of Fast 

Insertion Sort. According to Faro et al. [1], Block Insertion 

Sort is “the first . . . iterative in-place online variant of the 

Insertion-Sort algorithm [that] achieves a 𝑜(𝑛2) complexity 

in the worst case.” 

3.5 Re-Implementation Challenges 

In order to re-implement Fast Insertion Sort, the 

pseudocode provided by Faro et al. [1] was used as the 

foundation. However, when put into practice, some typos in 

the pseudocode became apparent, which is a noteworthy 

flaw of the paper. Specifically, the insert-block function has 

a for loop from 𝑗 = 0 to 𝑘 − 1, where 𝑘 is the sorted block 

size, while Fast Insertion Sort has a for loop from 𝑖 = 0 to 

𝑛, where 𝑛 is the size of the input array. Since 𝑛 − 1 is the 

index of the last element of the input array, the latter for 

loop implies that that should be the last iteration. Despite 

that being the case, the former for loop already subtracts 

one, which unintentionally ignores the very last element. 

Therefore, the pseudocode should use either 𝑘 − 1 and 𝑛 −
1 or 𝑘 and 𝑛 as the endpoints to be consistent. Faro et al.’s 

pseudocode for Insertion Sort contains a similar 

inconsistency with a for loop that ends at 𝑛 − 1 [1]. 

An additional typo is in Faro et al.’s insert-block function 

where the swap operation uses  𝑇, the sorted block, and ℎ 

as the index for retrieving the target element from 𝑇 [1]. 

However, ℎ is an uninitialized variable in the context of the 

insert-block function, causing an error. Since the 

pseudocode already references local variable 𝑙 as the index 

that is intended for 𝑇, it becomes clear that ℎ should be 𝑙. 

Another minor challenge with re-implementing the 

pseudocode arose from the ambiguity around what type of 

number that each of the aforementioned ℎ, 𝑐, and 
ℎ−1

ℎ
 are, 

which is important to know for implementations in 

statically-typed programming languages. Although Faro et 

al. [1] mention that “ℎ ∈ ℕ,” some consider zero to be a 

natural number, which makes it unclear as to whether or 

not ℎ can be zero. While the division operations that come 

up later in the paper make it obvious that ℎ cannot be zero, 

they could be more precise with their initial definition of ℎ 

to eliminate any possible confusion. Furthermore, the 

pseudocode for Fast Insertion Nested is recursive and has 

no base case, which would be easier to understand if they 

added a simple base case that checked if ℎ = 0, then the 

function returns. 

On the other hand, Faro et al. [1] do not clarify anywhere in 

the paper that 𝑐 can be any positive real number, which is 

even more misleading when the experimental tests only 

include incrementing integer values for 𝑐 . Only after 

glancing at their source code where they define 𝑐 as a float, 

does it become evident that 𝑐 is a real number. Since 𝑘 and 

ℎ are natural numbers, it seems reasonable to consider the 

possibility that perhaps 
ℎ−1

ℎ
 should be truncated or rounded 

before calculating Formula 1. Similar to the case with 𝑐, 

this exponential term is defined as a float in Faro et al.’s 

source code, which would have been beneficial to clarify in 

the paper [1]. 



Analysis of Fast Insertion Sort E. Thomas 

 

 

 

While a goal of re-implementation was to follow the 

pseudocode as much as possible without referring to Faro 

et al.’s source code, the initial re-implementation of Fast 

Insertion Sort Recursive was very slow in experimental 

tests [1]. In only the source code, they include some 

significant performance improvements in the form of a base 

case that checks if ℎ ≤ 1 , 𝑛 ≤ 𝑘 , or 𝑘 ≤ 5 , then use 

Insertion Sort instead of continuing with a drawn-out 

insert-block procedure on very small sorted blocks. These 

improvements were added to the re-implementation. 

Since scope is a significant aspect of programming 

languages, the scope of the initialization of the sorted block 

was experimented with. For example, the following 

locations were attempted, listed from outermost scope to 

innermost: before Fast Insertion Sort is called (passed in as 

an initial argument), right before the main for loop (same as 

the pseudocode by Faro et al. [1]), and right before the 

insert-block procedure. In C++, right before the main for 

loop was the most efficient, perhaps because the outermost 

scope lacked the compiler’s local-scope optimizations, and 

the innermost scope was repeating too much work inside 

the for loop. Unfortunately, only the innermost scope 

benefits from 𝑂(𝑘) worst-case space complexity, because 

the other locations are before the recursive call, which 

means that multiple sorted blocks may be allocated at once. 

4 Results 

4.1 Re-Implementation Tests 

The tests of the re-implementation include many of the 

same parameters as the tests performed by Faro et al. [1]. 

Although they test three different versions of Quicksort, 

only one version of Quicksort is included in the re-

implementation, which always picks the last element as the 

pivot. Aside from that difference, Merge Sort, Heapsort, 

Fast Insertion Sort Nested (for 2 ≤ ℎ ≤ 10), Fast Insertion 

Sort Recursive (for 2 ≤ 𝑐 ≤ 10), and Block Insertion Sort 

are included, matching their original tests. Similar to their 

tests, the tests of the re-implementation are performed on 

input arrays with a size 𝑛 = 2𝑖  where 2 ≤ 𝑖 ≤ 20 , while 

the output is the average time of 1000 runs. However, 

Python tests were restricted to 2 ≤ 𝑖 ≤ 16 due to memory 

limitations. 

The re-implementation code is available at 

github.com/awolffromspace/fast-insertion-sort. The re-

implementation tests for C++ and Python were compiled 

and interpreted with the GNU C++ Compiler 9.3.0 and 

Python 3.8.5, respectively. In particular, the C++ tests used 

Faro et al.’s optimization options: -O2 -fno-guess-branch-

probability [1]. Additionally, the re-implementation tests 

were computed on a PC with a 3.9 GHz 8-core AMD 

Ryzen 7 3800X processor, in an Ubuntu 20.04 VirtualBox 

that had 4 cores and 8 GB of memory allocated. The 

gettimeofday function in POSIX and the timeit module are 

used to time each sorting algorithm in C++ and Python, 

respectively. While the clock function in the C++ Standard 

Library could be used to measure with a hardware cycle 

counter like in Faro et al.’s tests, gettimeofday is chosen to 

more closely match Python’s timeit module, which records 

real time rather than CPU cycles [1]. 

Following Faro et al.’s test format, the re-implementation 

tests time the sorting algorithms on both random and 

partially-sorted input arrays [1]. Each random element is 

generated by the rand and randint functions, where the max 

is the RAND_MAX constant and sys.maxsize value, in 

C++ and Python, respectively. Partially-sorted input arrays 

are generated by taking a sorted input array and swapping 

elements at random indices for 
𝑛

4
 iterations. 

4.2 Analysis of Test Results 

The most important takeaway from the re-implementation 

test results in Figures 1, 2, and 3 is that they verify the 

experimental 𝑂(𝑛 log 𝑛) running time that Faro et al. [1] 

observed for Fast Insertion Sort when the most optimal ℎ 

and 𝑐 values are used, which ended up being 5 for both on 

large-sized input arrays. Furthermore, Block Insertion Sort 

seems to have a polynomial running time as expected. 

While Faro et al. [1] said that Fast Insertion Sort 

outperforms Merge Sort and Heapsort, that is not the case 

for the re-implementation tests until sizes of 217  are 

reached, which is probably due to the re-implementation 

being less optimized. The re-implementation’s lack of 

optimization is also noticeable when observing Fast 

Insertion Sort Nested’s poor performance on small-sized 

input arrays, which is about five times worse than 

Quicksort until sizes of 27 are reached. 
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Figure 1: Running times of sorting algorithms on 

random input arrays in C++ 

 

Figure 2: Running times of sorting algorithms on 

partially-sorted input arrays in C++ 

As expected, Fast Insertion Sort performs better on 

partially-sorted input arrays than on random input arrays. 

Oddly enough, all of the sorting algorithms achieve better 

results on partially-sorted input arrays. 

 

Figure 3: Running times of sorting algorithms on 

random input arrays in Python 

As a consequence of the convenient features that Python 

provides to users, such as interpreting code on the fly, 

dynamic typing, and garbage collection, the sorting 

algorithms perform about 100 times slower on Python 

compared to C++, as shown in Figures 1 and 2. Python 

interpreters usually step through the provided code one line 

at a time, converting the code to bytecode as the interpreter 

progresses. Because C++ compilers compile all provided 

code in advance, they are able to make optimizations that 

require analyzing the entire code, which would be difficult 

for interpreted programming languages to do without 

making very accurate guesses as to what the rest of the 

code would entail. In contrast to Python’s dynamic typing, 

C++ enforces static typing, allowing it to make 

optimizations that require knowing the type of a given 

variable. For example, C++ can reduce the amount of 

memory that a particular data structure uses if the compiler 

knows the exact sizes of each element, which can pack that 

data in the cache and memory in a more compact way. 

Since the data in C++ can be closer together, C++ also 

takes advantage of performance enhancements, such as 

locality of reference. Because Python does not require the 

programmer to free up pointers and references, it has to 

routinely run a garbage collector, which inevitably adds 

more operations and thus CPU cycles to program 

execution. 

5 Conclusions 

Fast Insertion Sort is a family of Insertion Sort variants that 

achieve 𝑂(𝑛1+𝜀) worst-case time complexity where 𝜀 =
1

ℎ
, 

while preserving many of the advantages of Insertion Sort, 

such as being adaptive, stable, and online. Furthermore, 

Fast Insertion Sort has an experimental running time of 

𝑂(𝑛 log 𝑛) , outperforming some 𝑂(𝑛 log𝑛)  sorting 

algorithms, such as Merge Sort and Heapsort, on large-

sized input arrays. However, Fast Insertion Sort has the 

downside of requiring 𝑂(𝑘) additional space. At the cost of 

adding more operations to Fast Insertion Sort, it can be 

modified to sort in-place. Block Insertion Sort is a notable 

version of Fast Insertion Sort, because it is purely iterative, 

in-place, online, and has 𝑜(𝑛2) worst-case time complexity. 

By comparing the timing of sorting algorithms in C++ and 

Python, some insight can be found with respect to the 

advantages and disadvantages of different approaches in 

programming language design. 

6 Future Work 

Faro et al.’s claim that Fast Insertion Sort has a worst-case 

time complexity of 𝑂(𝑛1+𝜀) where  𝜀 =
1

ℎ
 should be proven 

[1]. While using the logarithmic function to determine the 

size of each partition of the input array is effective, more 

research could be done to identify partitioning methods that 

potentially lead to better performance. Since Faro et al. [1] 

showed that Block Insertion Sort outperforms a version of 

Quicksort that uses Insertion Sort as a subroutine, Block 
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Insertion Sort could replace or accompany Insertion Sort in 

sorting algorithms, such as Timsort and Introsort. Lastly, an 

iterative version of Fast Insertion Sort for optimal values of 

𝑐 and ℎ may net slight performance gains. 
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