
Automatic Proposal Formatting Tool
Experiential Learning

CS4991 Capstone Report, 2021

Michelle Miller

Computer Science
University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

mhm9mm@virginia.com

ABSTRACT
My team and I created an automatic proposal formatting tool for a
defense company that allowed compliance workers to easily format
proposals correctly. I used Agile methodologies to organize the
project, which we split into parts so individual teams could work
on it simultaneously. The tools used in the project included: Github
for version control, Python for the coding language, Jira for project
management, and Zoom for communication. While putting
knowledge gained from classes taken at the University of Virginia
to use, the team gained many soft skills. We completed a working
prototype, then turned the project over to a legacy team working for
the client. The final application showed great promise in reducing
the time compliance workers spent changing proposal formatting,
which in turn saved money for the client. Since we were only able
to finish a prototype that only included a graphical user interface
and title page formatting, future work is needed to add the
formatting for the body of the compliance documents.

CCS Concepts
• Software and its engineering--Software creation and management

Key Words
Agile methodologies, Python

1 Introduction
Have you ever been stuck doing a repetitive and mundane task that
was simple, but took hours to do? My aim for my project was to
automate a task such as this to make people’s lives easier. During
the summer of 2020, I was a Technical College Intern at a large
defense company based in Northern Virginia. They sought a way
to automatically format compliance documents to save time. Time
saved would allow for an increase in productivity in the compliance
office and thus would save the company money. This was an
interesting problem because it allowed me to use technology to
make people’s jobs easier by automating a part of it.

The approach my team used was simple, we started with the
prospective user’s requirements and iteratively developed a
solution to meet those requirements. To do this, my team used
Agile methodologies which allowed us to facilitate constant
communication with the client and iterative development cycles.
For development, we used Python to make a working prototype.

2 Background
The company I worked for was divided into different sectors that
pertained to different focuses of the business. Each of these sectors
had its proprietary workflows and paperwork that allowed them to
conduct business. However, when one of these large sectors was
splitting into two new sectors, there was a dilemma of reformatting
all the legacy documents to the new sector’s format. This task fell
to compliance workers, where they needed to open each document
and tediously copy and reformat text. Working for a large company,
they wanted to streamline every mode of work, including this
compliance task. My team and I were tasked with creating a
technical solution to solve this issue. Our goal was to make an easy-
to-use application that was intuitive to use so that non-technical
workers could use the system effortlessly.

3 Related Work
As technology has developed it has become increasingly adopted
in the workplace. A study from McKinsey found that this leads to
a shift in skills required for workers, including skills needed to use
these new and growing technologies [4]. This shift means that
compliance workers will have enough technical expertise to use my
team’s automatic reformatting solution to help lighten their
workload.

There are currently a few companies that offer this service, one of
them being DocShifter. They claimed to make word documents
compliant with a specific set of rules by automating and
centralizing the formatting process. Some of the rules they
supported were identifying word issues, fixing styling errors,
hyperlink mismatches, incorrect numbering, and table sizing [2].

Automatic Proposal Formatting Tool Miller

While this did save time and reduced human error, it did not
completely satisfy our needs of taking an already completed
compliance document and reformatting the data to a new
compliance document. Historically, there have been even more
programs that automatically format word documents, but their
capabilities were even more restricted by only being able to change
simple things like margin size, font type and size, and bullet type,
among other things [3]. This idea of reformatting can also be
extended to web document standards, which are required to present
web pages as intended. Because of broad applications of document
formatting, it is hard to do at a high-quality.

Three difficulties of creating high-quality automatic document
formatters have been found by three researchers from Adobe
Systems Inc.: high-quality automatic formatters are hard to
quantify, document layout is difficult, and designing and
implementation is hard [5].

4 Project Design
Since the work I did during my internship is proprietary and some
aspects are confidential, I cannot delve too deeply into the specifics
of my project. I can, however, give a brief overview.

4.1 Requirements and Components
The biggest requirement was to make the automatic reformatting
application intuitive and easy to use, as non-technical compliance
workers were the prospective end users of the product. To ensure
ease of use, my team and I decided to implement a bare bones
graphical user interface, GUI. The second main requirement was
that compliance workers wanted to be able to specify a compliance
document they wanted to reformat and then have the application
spit out another separate document with the correct formatting. This
was so that the original documents could be kept for legacy reasons.
To do that, we had the application digest a word document selected
by the compliance worker and then select a folder to have the new
formatted document to be saved in.

4.2 Tools and Skills Used
The software tools we used included Python and Github. Python
was used because it is an easy programming language to spin up for
easily creating prototypes. This allowed my team and me to easily
change and update our application. Something nice Python feature
is that it comes with a bundled GUI library, tkinter. We used this
library to create a bare bones GUI for the application. Keep in mind
that our goal was to only make a working prototype. Making the
GUI visually appealing was not a top priority; rather, ease of use
and functionality were. For proprietary reasons, I cannot show an
image of the GUI, but Figure 1 shows what a base tkinter
application looks like. Github was also used for version control.
This allowed use to track our project and revert any changes if
necessary.

I had to learn good communication and time management skills.
Since this whole internship experience was online, I had to put in

more effort to communicate with my college through a virtual
setting. I also had to manage my time well and be flexible with
others’ schedules since the nature of working online is very fast-
paced. To facilitate this communication, Zoom was used to meet
and collaborate with others.

Figure 1. an example tkinter application GUI [6]

The application development was guided by Agile methodologies.
This framework helped my team and me facilitate a constant cycle
of requirement gathering, implementation, and user feedback.
Figure 2 shows a model of Agile development with the specific
steps. Jira, a project management software was used to implement
this Agile development framework. The requirement gathered from
talking with the client were first translated into user stories. From
there, each story was ranked by difficulty. Depending on the
difficulty a software engineer would take on the task and implement
its solution. Once implemented, the solution was then tested for
acceptance. If a bug was found, then the software engineer would
have to repeat the cycle.

4.4 Challenges
The biggest challenge was keeping in contact with our client,
compliance workers. It was easy for my team to find time to meet
every day for scrum meetings but compliance workers had a lot on
their plate and had difficulty scheduling check-in meetings. This
meant that we had to conduct each meeting with our client

Automatic Proposal Formatting Tool Miller

effectively and efficiently to gather all of the requirements and
changes they needed.

Figure 2. An overview of Agile methodologies [1]

5 Results
By the end of the summer, we found the feasibility of such an
application developed in-house. It was exciting because the
company I worked for saw potential in it and this project got passed
onto a legacy team that continued the project. What we were able
to accomplish was the original compliance document digesting and
reformatting the title page, headers, and general body of the
document. We were also able to save the newly-formatted
document into a new file in a folder specified by the end-user. Since
the end goal was just to complete a working prototype, our solution
is yet to be used throughout the compliance office.

6 Conclusions
Although our technical solution was only a working prototype, it
had the potential to save compliance workers a significant amount
of time by taking away some of the repetitive and mindless tasks
they had to perform and, increasing their productivity. By
extension, this increase in productivity would have saved the
company I worked for money by not having extraneous billing
hours from compliance workers. This productivity was
acknowledged by the senior management, who allowed a legacy
team to pick up the project after my summer internship ended.

7 Future Work
A lot of work must be done to make a final application that can be
widely distributed to compliance workers. First, the GUI would
need to be updated to be visually appealing and more polished than
the simple tkinter one that was used in the prototype. Second, the
formatting rules must be expanded. We were only able to
implement a subset of the required rules.

8 UVA Program Evaluation
The concepts I used in this internship all came from the coursework
of CS 3240, Advanced Software Development. This class was very
similar to my internship experience where you were thrown onto a
random team and had an extended amount of time to complete a
project. Through the experience gained from that class, I learned
how to work with strangers in a team to accomplish a goal, how to
use Github, and, above all, how to use Agile methodologies.
Although the introduction to Agile methodologies significantly
helped me in my internship, a student would benefit from a more
structured sprint cycle. When I took CS 3240, the sprint cycle was
loose and did not cover all the specific phases used in actual
practice, such as a retrospective. Students would also benefit from
a structured mock client interview. Within CS 3240, although there
is a requirements manager, a lot of the requirements are already
assigned. I believe there was an interview portion of the
requirements, however, those interviews were most likely done
with a student that does not yet know how to express exactly what
they need. Since the class is already split into cohorts with teaching
assistant leads, this one-time mock interview could be easily
implemented into the program. I would also like to see more group
work throughout the computer science curriculum. CS 3240 was
my first experience with this group work structure, which closely
aligns with the way software development is conducted in the real
world. The more exposure that students have to this group structure,
the better they will succeed in real-world development after
college.

REFERENCES
[1] Anna Dziuba. Agile Software Development Lifecycle Phases

explained. Retrieved October 26, 2021 from
https://relevant.software/blog/agile-software-development-
lifecycle-phases-explained/

[2] Anon. 2021. Auto check and FIX word documents for
compliance. (July 2021). Retrieved October 26, 2021 from
https://www.docshifter.com/solutions/word-formatting-fixer/

[3] Anon. Auto Formatting in Word 2010. Retrieved October 26,
2021 from
https://www.tutorialspoint.com/word/word_auto_formatting.h
tm

[4] Jacques Bughin, Eric Hazan, Susan Lund, Peter Dahlstrom,
Anna Wiesinger, and Amresh Subramaniam. 2018. Skill shift:
Automation and the future of the workforce. (January 2018).
Retrieved October 26, 2021 from

Automatic Proposal Formatting Tool Miller

https://www.mckinsey.com/featured-insights/future-of-
work/skill-shift-automation-and-the-future-of-the-workforce

[5] Nathan Hurst, Wilmot Li, and Kim Marriott. 2009. Review of
Automatic Document Formatting. Proceedings of the 9th ACM
symposium on Document engineering - DocEng '09
(September 2009).
DOI:http://dx.doi.org/10.1145/1600193.1600217

[6] Sanchit Gupta. 2019. Executable GUI with python. (June
2019). Retrieved October 26, 2021 from
https://medium.com/lifeandtech/executable-gui-with-python-
fc79562a5558

