
Solving Pay Stub Compliance Issues Through Asynchronous Generation and Persisting To 
S3 

 
A Technical Report submitted to the Department of Computer Science 

 

 

Presented to the Faculty of the School of Engineering and Applied Science 

University of Virginia • Charlottesville, Virginia 

 

In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 

 

 

Preethi Chidambaram 

Spring, 2022 

Technical Project Team Members 

 

 

 

 

 

On my honor as a University Student, I have neither given nor received unauthorized aid on this 

assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

 

Rosanne Vrugtman, Briana Morrison, Department of Computer Science 

 

  



Abstract 
As a payroll and benefits management 
platform, Gusto currently does not keep track 
of pay stub version history because they are 
generated on demand. To address this 
compliance issue, I created a backend model 
to store pay stubs and persist them to S3, 
Amazon’s storage service. I structured the 
design of this model to be similar to pre-
existing models containing pdf attachments. I 
also modified the on-demand pdf generation 
behavior to be asynchronous to improve 
overall performance. Storing the pay stub 
pdfs in S3 proved to be a simple, cost-
efficient solution to tracking version history. 
Throughout the refactoring process, I found 
that preserving aspects of the existing pay 
stub behavior was important for maintaining 
a satisfactory customer experience. In terms 
of future work, a backfill should be run so 
that all existing pay stubs are regenerated and 
stored in S3 to ensure that the new behavior 
is consistent with the old records. While the 
backend work for this project was completed, 
the frontend system for displaying version 
history to the user is still being developed and 
needs to be adequately tested before being 
shipped to production. 
  
1. Introduction 
In Gusto’s payroll system, pay stubs are 
always generated on demand using the most 
up to date data stored in payrolls from the 
associated pay period. This is acceptable for 
most cases; however, it gets tricky if any data 
is modified after the original payroll was 
processed. For example, when a reversal 
payroll is run, the system generates a pay stub 
which may not be an accurate representation 
of what the employee was actually paid at the 
time of running the payroll. Another possible 
case may occur if an employee logs paid time 
off (PTO) after the payroll is processed and 
the system assumes it should deduct the 
amount of PTO from the employee’s regular 
hours worked. This automatic update is 

generally an acceptable solution but is not 
accurate for all cases. 
Gusto was considered to be non-compliant 
due to its failure to maintain an accurate 
paper trail of employee pay when a payroll 
was originally run. If a customer were to 
specifically request a pay stub from the time 
of running the payroll, Gusto is required to 
provide it. Since the system could not support 
this behavior, Gusto relied on customer 
support lines to retrieve the correct 
information and generate the pay stub file 
manually for the customer. 
  
2. Background 
Some terminology that will be heavily used 
involves the software that was used for the 
project. The project added a feature to 
Gusto’s codebase, which uses the 
programming language Ruby and web 
application framework Ruby on Rails.  
Additionally, several payroll processing 
terms will be used to explain different 
components of the project. Payrolls refer to 
the collection of data representing the pay 
earned by a group of employees during a pay 
period. A pay stub is a summary of all the 
earnings for a given employee during a pay 
period. Payrolls represent the actual money 
movement, while pay stubs act as a receipt 
for the payroll. Payrolls can exist in states 
such as unprocessed, where the data is in a 
draft state, or processed, where the data has 
been submitted and the money movement 
process has started. Ideally, payroll data 
should be immutable once it’s processed, but 
this is not always the case. 
Reversal payrolls are generated when a 
customer wants to undo a payroll after it has 
been processed and the money movement has 
been completed. The reversal payroll is 
essentially a payroll with negative amounts 
that reverses the original payroll. Retroactive 
PTO (paid time off) refers to a specific 
scenario in which an employee submits a 
time off request for a pay period after the 



payroll for that period has been processed. 
Both of these processes change the contents 
of the pay stub and overwrites the older 
version, which essentially causes the system 
to lose this older data. 
  
3. Related Works 
         Previous works of literature on digital 
payroll systems outline the basic components 
for a successful system. Mahajan, et al (2015) 
posit that a typical computerized payroll 
system contains three main layers: 
presentation, business, and data access [1]. 
The presentation layer refers to the front-end 
web page the user interacts with. The 
business layer defines how the backend 
payroll calculations and modifications are 
made, while the data access layer defines how 
the data is stored. As opposed to Gusto’s 
Ruby on Rails-based payroll system, the 
system proposed by Mahajan, et al (2015) 
utilizes C# for the business layer and SQL for 
the database. Pay stub version history is 
specifically addressed in this system since 
Mahajan, et al proposed that individual pay 
slips should be printed for users to make sure 
they are receiving updated information. This 
system was proposed as an alternative to 
manual payrolls, so it is one of the seminal 
works that laid the foundation for other 
automated payroll systems. However, 
Mahajan, et al. fails to address how their 
system handles certain features such as PTO 
and reversal payrolls. 
While the problem of pay stub versioning is 
addressed, the authors’ solution of keeping a 
physical paper trail is not feasible in modern 
day systems.  Another system that helped 
inform my project is the UKG Pro human 
resources platform.  UKG Pro allows 
employers to set up automated payroll 
processing for their company and specifically 
addresses how to configure retroactive pay. 
Helton (2021) explains that retroactive pay is 
an important part of every payroll system 
because it allows employers to make up for 

compensation shortfalls in a previous pay 
period. 
  
4. Process Design 
The design of this project began by first 
compiling the backend and frontend 
requirements so that a project timeline could 
be constructed. The following subsections go 
into more detail about how the project was 
divided. 
  
4.1 System Requirements and Overview 
When a user views pay stubs from previous 
pay periods, they should have the option to 
see pay stub versions if the pay stub data was 
changed from the time the payroll was run. 
As for the backend requirements, we aimed 
to store the pay stubs in Amazon Simple 
Storage Service, or S3, as they were 
generated. The main parts to this project 
involved linking a backend Ruby model to 
S3, creating a background job to generate pay 
stubs asynchronously, and updating the user 
interface to display these changes. 
  
4.2 Persisting Pay Stubs 
         A model in a web framework 
represents the data that is being transferred 
between the user and the server. Creating a 
new model involves two main steps: running 
the necessary migrations, and writing the 
code to configure the model. The migration 
feature allows developers to easily modify an 
application’s database schema without 
having to drop and recreate tables. Active 
Record is the Ruby on Rails interface that 
binds these tables to the Ruby program code 
that manipulates them. Gusto already had a 
Paystub model that kept track of several data 
points for every pay stub in the system, 
however it did not store the actual pay stub 
pdf file. The pdf file was generated upon user 
request by aggregating the Paystub model’s 
data into a clean, readable format. I ran a 
migration that added a new table to store 
these pdfs and then I created the model, 



PaystubFile, which was linked to a specific 
Paystub instance. The PaystubFile model 
also interacted with S3 through a Ruby gem 
called Paperclip. Paperclip adds a 
“has_attachment” field to the model so that it 
can automatically upload and retrieve files 
from S3. Paperclip also generated a url that 
stores the PaystubFile’s location in S3. 
  
4.3. Asynchronous File Generation 
         After configuring the PaystubFile 
model, I started integrating this model into 
the pdf generation process. The original on-
demand generation behavior needed to be 
changed because it was viewed as a process 
that blocked other action items. My mentor 
and I decided that the asynchronous 
PaystubFile generation process would take 
place after an employer runs payroll. I 
utilized events and event consumers to 
structure the asynchronous pdf generation 
process. Events in programming refer to a set 
of actions or occurrences which gets notified 
to the system so that the system can react 
accordingly. Gusto’s system already 
implemented the PayrollFinishedProcessing 
event, which was emitted every time a 
payroll was run and finished processing. I 
created an event consumer, GeneratePaystub, 
that listened for the emission of this event and 
then called a worker class. This worker class 
interacted with Sidekiq, a Ruby job 
scheduler, to enqueue the task of generating 
all the pay stubs for the corresponding 
payroll. It was necessary to create a 
background job because generating 
numerous pdfs at the same time is time 
intensive and can cause a huge backlog in the 
system. 
To address the scenario of reversal payrolls 
being run, I followed a set of steps similar to 
those described above. As for retroactive 
PTO, there was no preexisting event that 
indicated when a PTO was applied. Thus, I 
created an event that was emitted when time 
off requests were processed. I then created an 

event consumer that checked to see if the time 
off request was approved after its 
corresponding payroll was processed. If that 
requirement was satisfied, the event 
consumer would call a worker class to 
enqueue a background job, which generated 
the new version of the pay stub pdf. 
  
4.4. User Interface Changes 
         Once the backend work for 
generating and persisting pay stubs was 
complete, I started integrating these changes 
into the user interface. Gusto’s frontend 
interface was built on React, a Javascript 
library, and GraphQL, a data query and 
manipulation tool. I first created a GraphQL 
object to expose the PaystubFile model to the 
frontend framework. Exposing the backend 
model through GraphQL essentially lets 
developers make queries to fetch data from 
the model and display it to users. I created a 
query to retrieve PaystubFile objects and 
display them to users via a new url route. 
While I ran out of time to adequately test and 
deploy this feature onto production, I was 
able to get a majority of the foundational 
work done. 
  
5. Results 
         The implementation of the newly 
designed feature is anticipated to ease the 
process of retrieving past pay stubs for users. 
Since the feature is not yet deployed on 
production, we have not been able to gauge 
the specific metrics that have come with this 
improvement. Deploying this feature will 
take away the need for users to call customer 
support when attempting to retrieve a 
previous version of their pay stub. 
Additionally, the frontend system will be 
more transparent in that users will understand 
why a specific pay stub was modified and has 
multiple versions. Overall, persisting pay 
stubs to S3 has taken away the pay stub 
related compliance issue Gusto originally had 



and it is anticipated to greatly improve Gusto 
users’ experience. 
  
6. Conclusion 
         Pay stubs are an integral part of any 
automated payroll management system 
because employees rely on pay stubs to view 
their compensation breakdown. Gusto’s 
payroll and human resources management 
platform is a people-oriented service that 
prioritizes reliability and customer 
satisfaction. The persisting pay stubs feature 
was a significant improvement to Gusto’s 
current system as it gave customers access to 
an accurate paper trail of pay stubs. It is 
imperative that Gusto has this feature in their 
system because without it they were non-
compliant with the rules and regulations of 
managing payroll. By integrating this feature 
into Gusto’s system, I was able to give users 
insight into payroll changes, which can help 
employers and employees with future 
business decisions.  
  
7. Future Work 
         In terms of future work, the front-end 
display for viewing historical pay stub 
versions is still in development and should 
focus on having a simple interface for users 

to easily navigate to and from this feature. I 
worked with my team members to design the 
layout of this display page and started some 
initial work on it, but I was not able to 
completely integrate the backend changes to 
the existing frontend web page. Additionally, 
to maintain consistency with the system 
functionality, a backfill should be run on the 
generation of pay stubs so that all past pay 
stubs exist in S3. This will ensure that 
whenever a user requests to view a pay stub, 
the system will always retrieve it from S3. 
These changes should be adequately tested 
and approved before being shipped to 
production. 
  
References 
[1] Kritika Mahajan, Shilpa Shukla, Nitasha 
Soni. 2015. A Review of Computerized 
Payroll System. IJARCCE 4, 1. 67-70. 
https://doi.org/10.17148/ijarcce.2015.4113 
  
[2] Jessica Helton, 2021. 10 Tips and Tricks 
To Successful Payroll Processing (May 
2021). Retrieved October 15, 2022 from 
https://www.neosystemscorp.com/blog/top-
10-tips-and-tricks-to-successful-payroll-
processing-in-ukg-pro

 


