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ABSTRACT 
 

Dysfunction and the resulting behavioral aberrations are highly associated with the 

development of over 200 types of mental disorders. Thus, increased understanding of the 

cognitive causes of psychopathologies is important for directing pharmacologic 

interventions. To further explore how disparate systems affect behavior, we conducted 

studies exploring cortical control of behavior and transcriptomic studies of a subset of 

neurons in the hindbrain that are highly implicated in the control of feeding and response 

to metabolic adaptation. 

While dysfunction of the PFC is highly correlated with mental disorders and the 

development of addiction, little is known about how alterations in neuron activity can drive 

changes in behavior. To query how the cortical microcircuit functions during specific 

behavioral tasks, I harnessed a method of specific caspase-3-mediated ablation to explore 

how it modulated behavior. Using this animal model, I revealed a novel circuit-level 

mechanism in which a subtype of cortical interneuron functions as a gate to modulate 

behavior during periods of high expectation. 

Glucagon-like peptide-1 (GLP-1) is believed to be the most potent effector of gut-hindbrain 

communication and is implicated in appetite suppression and feeding behavior. GLP-1 

agonists have been pharmacologically relevant in the treatment of type 2 diabetes and 

induce weight loss in obese individuals. Previous research found that activation of GLP-1 

neurons in the hindbrain reduced food intake in both lean and obese, but selectively 

mediated weight loss only in obese animals. To query how obesity may influence neuronal 

action, we conducted transcriptomic profiling in GLP-1 neurons from the hindbrain in lean 

and obese animals. 
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1 CHAPTER 1: INTRODUCTION TO THE PREFRONTAL 

CORTEX 

The prefrontal cortex (PFC) regulates executive functions (i.e., working memory, planning, 

decision making) in a goal-dependent manner through the control of diverse brain regions. 

Because aberrant PFC signaling is linked to mental illness and addiction, it is vital to 

explore possible mechanisms driving atypical cortical function.   

1.1 GENERAL ORGANIZATION OF THE MPFC 

The human PFC is divided into five distinct regions – dorsolateral (dlPFC), dorsomedial 

(dmPFC), medial (mPFC), ventromedial (vmPFC), and ventrolateral (vlPFC). Three of 

these brain regions share homology with the rodent PFC, based on Brodmann Areas (BA). 

The human vmPFC contains BA 25, which is homologous to the rodent infralimbic (IL) 

region. Both BA 32 and BA 24 span multiple subdivisions in the human brain and are 

homologous to the rodent prelimbic (PL) region and anterior cingulate cortex (ACC), 

respectively1. Together, these three regions of the rodent PFC are referred to as the medial 

PFC (mPFC) to differentiate it from other cortical structures. 

Various studies have described the differential and specialized role the mPFC subregions 

have in the control of behavior2–6. These roles result from distinct innervations that each 

mPFC subarea receives from various other brain areas as well as their specific projections 

to brain areas to exert cortical control7–9. Apart from common projections to the 

orbitomedial prefrontal cortex, olfactory forebrain, and midline thalamus, the PL and IL 

innervate discrete brain areas8,9. IL neurons preferentially innervate brain areas regulating 

autonomic function such as the forebrain and the brainstem, while PL neurons 

preferentially innervate limbic brain areas, consistent with its role in cognitive function9. 

While these brain areas are functionally distinct, mPFC activation of both allows for 

integration of both autonomic and limbic systems to drive goal-directed behavior. 

1.1.1 Neuronal  subtypes and circuit organization 

The rodent mPFC consists of large amounts of pyramidal neurons (PY) that span multiple 

layers and target extracortical brain regions to exert mPFC control. The output of these 

pyramidal neurons is strongly regulated by inhibitory γ-Aminobutyric acid (GABA)-

expressing interneurons (IN). These interneurons can be divided into three distinct 

populations defined by the expression of parvalbumin (PV), somatostatin (SST), or 

serotonin receptor 3a (5-HT3AR)10. 5-HT3AR-expressing neurons can be further stratified 

by expression of cholecystokinin (CCK), vasoactive intestinal peptide (VIP), reelin, or 

neuron-derived neurotrophic factor (NDNF)10.  

Interneuron connectivity is mediated by subtype-specific wiring rules that mediate the 

location of inhibitory input (i.e., synapsing onto dendrites or soma) and the preferential 

targeting of a specific subtype of neuron (i.e., inhibition of either PY or IN)11. These wiring 



8 

 

rules result in a local mPFC circuit (Figure 1-1) that establishes multiple mechanisms of 

feedback and feedforward inhibition, which stabilizes the activity of pyramidal 

neurons12,13. The cortex is comprised of approximately 70-80% pyramidal neurons, with 

the remaining 20-30% representing the entire population of GABAergic interneurons. This 

20-30% of GABAergic neurons can be subdivided into the following three non-

overlapping subclasses14: 

(1) PV-expressing neurons, which represent 30-50% of the GABAergic neurons (6-

15% of total cortical neurons) and preferentially target the peri-somatic region of 

PY neurons to quickly control spike output. 

(2) SST-expressing neurons, which represent approximately 30% of cortical 

GABAergic neurons (~6-9% of total cortical neurons) and preferentially target PY 

dendrites to control distal inputs. 

(3) VIP-expressing neurons, which represent ~12% of cortical GABAergic neurons 

(~3-4% of total cortical neurons) and synapse onto PY neurons, PV neurons, and 

preferentially target SST neurons. 

VIP neurons are of particular interest in the study of cortical control and dysregulation in 

cases of disease, particularly as extra-cortical inputs preferentially converge onto VIP 

interneurons, as indicated by greater density of innervation onto VIP interneurons than in 

any other interneuron subclass 15–18.  
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Figure 1-1: mPFC wiring diagram. The mPFC cortical circuit is comprised of three 

distinct subtypes of inhibitory interneurons that direct pyramidal neuron output through 

direct inhibition, as well as feedforward and feedback inhibition that increases stability of 

pyramidal neuron output. Created with BioRender.com. VIP = vasoactive intestinal 

peptide; SST= somatostatin; PV = parvalbumin; PYR = pyramidal neuron 

 

  



10 

 

1.1.2 Adaptive disinhibitory gating and gain modulation 

VIP interneurons mediate pyramidal output via disinhibition, or relief of inhibition from 

SST and PV neurons onto PY neurons (Figure 1-1). This disinhibition has been implicated 

in an adaptive gating mechanism that can affect behavioral adaptation. VIP neurons have 

been associated with behavioral modification and increased cortical response to stimuli, 

indicating that VIP interneurons may affect cortical response to novel or unexpected 

stimuli19–21. A model of adaptive disinhibitory gating has been proposed to explain how 

unexpected stimuli trigger VIP-mediated dynamically modulated cortical circuit 

functioning and plasticity to enforce behavioral adaptations21. Disinhibition induces rapid 

modulation of cortical output in response to stimuli, resulting in a transient break in the 

excitation/inhibition (E/I) balance22. The resulting break in inhibition on PYs briefly allows 

for synaptic integration, selective amplification of PY response and coincidence 

detection21, resulting in reinforcement of  associative learning. 

1.2 EXECUTIVE FUNCTION  

The mPFC receives diverse input from many different brain areas, which convey 

information such as emotional state and sensory information, which the cortex uses to 

modify behavior and make decisions23.  The mPFC can control behavior through distinct 

mechanisms, including: 

(1) Cognitive inhibition, or focus, in which the mPFC is responsible for filtering out 

unimportant or non-relevant stimuli from the environment to maintain goal-

directed behavior24–26.  

(2) Inhibitory control, or self-control, in which the mPFC is responsible for inhibiting 

impulses triggered by either external or internal cues25,27,28.  

(3) Working memory, in which the mPFC has been implicated in the ability to hold 

information temporarily to be retrieved in the near future29–31. 

(4) Cognitive flexibility, in which the mPFC allows for appropriate adaptation of action 

according to new information from the environment31–33. 

(5) Risk assessment, in which the mPFC balances the reward outcome of a behavior 

with the effort, in order to allow for avoidance of high risk, low reward situations 

while prioritizing low risk, high reward behavior34–36. 

Through its control of attention and decision-making, the mPFC maintains goal-directed 

behavior by relaying information to various brain areas.  

1.2.1 Impulsivity and novelty-Seeking 

Impulsivity, or a lack of inhibitory control, is defined broadly as an inability to withhold 

from or stop a response despite a known negative consequence. Impulsive behavior can 

include an inability to delay gratification, acting without forethought, or preferring a small 

reward immediately rather than waiting for a larger reward later37.  During decision making 

processes, neurotypical individuals will face impulsive thoughts or triggering stimuli but 
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normally functioning cognitive control will inhibit neuronal responses to maintain goal-

directed behavior (Figure 1-2). Individuals with increased impulsivity, however, either 

lack or have decreased inhibition of the resulting impulse from triggering stimuli and thus 

will engage in an impulsive action, even when aware of a negative outcome (Figure 1-2)37. 

Impulsivity is comorbid with novelty-seeking, a trait that drives an increase in investigatory 

behavior in response to a novel stimulus. While increased novelty- or sensation-seeking 

increases risk taking or thrill-seeking in the search for novel and stimulating sensations 

(colloquially described as recklessness or spontaneousness), impulsivity involves a failure 

to inhibit spontaneous or unplanned behavior (colloquially described as carelessness or 

capriciousness)38,39.  

Impulsivity is a hallmark of a group of psychological disorders classified as impulse-

control disorders (ICD), such as attention-deficit/hyperactivity disorder (ADHD), 

obsessive-compulsive disorder (OCD),  and behavioral addictions (e.g., kleptomania, 

pathological gambling, binge eating disorder, compulsive sexual behavior) 40–46. According 

to the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-

IV), about 10.5% of the U.S. population suffers from an impulse-control disorder such as 

ADHD, OCD, and behavioral addictions46. 

Both increased impulsivity and novelty-seeking are key indicators in addiction and are 

prominent behavioral markers across all phases of SUD47–49, placing individuals with an 

ICD at an increased risk to develop a SUD (Figure 1-3) 50–55. Both impulsivity and novelty-

seeking are strongly associated with both the development and maintenance of a substance 

use disorder (SUD)56,57 and even moderate the efficacy of SUD treatment58,59. Current 

research indicates that increased novelty-seeking is a predictor of an individual’s 

vulnerability to first use drugs, with high novelty seekers experimenting with drugs at an 

earlier age and using more types of drugs60,61. Increased impulsivity, however, is a 

predictor of the development of a SUD and of increased vulnerability to relapse during 

periods of sobriety39,62,63. SUDs have been found to increase impulsivity, facilitating 

further and more varied drug use64,65. Thus, continued study of the cognitive underpinnings 

of aberrant impulsivity and novelty-seeking is vital in improving pharmacological 

treatment for both ICDs and SUD.  
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Figure 1-2: Model of impulsivity as a lack of cortical inhibition. Impulsivity is triggered 

by a stimulus, which can be either internal or external. Internal stimuli can include 

impulsive thoughts or a specific emotional state. External stimuli can include triggering 

physical events or situational variables. In a situation where the inhibitory process is fully 

functional, the urge to perform an impulsive action would be inhibited, while in individuals 

with increased baseline impulsivity, the individual will perform the impulsive act even if 

aware of the negative implications. Thus, inability to inhibit impulsive action due to stimuli 

is at the crux of both addiction and impulse-control psychopathologies. Adapted from Bari 

and Robbins 37. Figure created with BioRender.com. 
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Figure 1-3: Trait impulsivity and novelty-seeking and their associated psychological 

effects. Increased trait impulsivity in individuals leads to limited response inhibition and 

reduced action cancellation specifically when tasked with decision-making that is 

spontaneous66,67. These behavioral phenotypes can often result in uncontrolled self-

administration of a drug or harmful behavior68. Current research has determined that this 

is due to hypofunction in the cortex48,69, in part due to excessive noradrenaline release that 

occurs during a stimulus that triggers impulsive action5,70–74. Increased novelty- or 

sensation-seeking results in increased sensitivity to both risk and reward, and increased 

sensitivity to the reinforcing properties of that reward. Together, these traits make 

individuals with heightened novelty-seeking experience greater reward from a drug or 

harmful behavior, thus reinforcing addiction75,76. Current data implicates increased ventral 

striatal activity, possibly due to increased dopamine release during rewarding activities77,78. 

Adapted from Vassileva and Conrod55 and Castellanos-Ryan and Conrod68. Created with 

BioRender.com. 
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1.3 MOLECULAR CONTROL OF BEHAVIOR 

While impulsive action and novelty-seeking are implicated in almost all addictive disorders 

and other impulse-control psychopathologies, the biological causes of these behavioral 

aberrations have still not been fully elucidated. Impulsivity has been largely attributed to 

hypofunction in the prefrontal cortex (PFC) 48,69, leading to reduced inhibition of impulsive 

responding, but very little is known about the molecular mechanisms or neural 

communication systems that contribute to this phenotype. Two major brain pathways that 

converge onto the PFC – dorsal and median raphe serotonergic innervation and locus 

coeruleus adrenergic innervation- have been implicated in the control of impulsivity and 

novelty-seeking. Cholinergic innervation from the basal forebrain and local cortical 

production of acetylcholine have been shown to have some control over impulsive action 

but have been more greatly implicated in the control of attention. Dopamine (DA) 

synergistically interacts with these pathways, resulting in distinct but parallel aberrations 

in behavior that are also implicated in ICDs and SUD. Additionally, while the following 

discussions of the pathways that mediate PFC function will be described as if they operate 

in isolation for the sake of clarity, it bears mentioning that these pathways are highly 

interconnected and have behavioral implications beyond the scope of impulse control and 

novelty-seeking though not described here. 

1.3.1 Dopaminergic control of cognitive function 

While the mesocortical pathway is often implicated in disorders of cognitive control, there 

is not a strong body of evidence indicating that direct dopaminergic activation from the 

ventral tegmental area (VTA) onto the mPFC is responsible for the maladaptive neuronal 

changes modifying the motivational drive or “craving” to consume a drug of choice. 

Rather, increasing evidence indicates that PFC dysfunction is due to DA effecting 

behavioral control via the mesolimbic pathway, where the nucleus accumbens (NAc) 

processes rewarding (inherent or conditioned pleasure) and reinforcing (facilitates survival, 

i.e. food and water) stimuli79–81.  

Cools, et al. posit that the NAc modulates motivational drive according to a cost-benefit 

analysis that is biased towards decreased cognitive load82. Because cognitive control is 

inherently “costly” (reviewed in 83), healthy individuals will tend to choose a less 

cognitively-demanding task, due to a behavioral phenomenon called cognitive effort 

discounting (COD)83–86. Thus, if a goal-mediated behavior is deemed too cognitively taxing 

or has an accompanying reward that is not deemed to be sufficiently rewarding, the NAc 

assigns low motivational value to the behavior and employs a dopamine-dependent 

decision to not exert control over the PFC87. In this model of cortical control, dopamine 

does not directly modulate PFC function, but rather enhances or impairs the motivational 

value attached to a behavior and therefore affects the willingness to exert cognitive 

control82. Therefore, aberrations in sensation- or novelty-seeking may be primarily 

activated by dopaminergic pathways.  

To determine how dopamine affects COD, adults were tested using a cognitive effort 

discounting paradigm (COG-ED), in which participants were tasked with choosing 

between a low-effort task for a small reward or a high-effort task for a larger reward86,88. 

After a practice phase, participants are then asked to choose between repeating a high-
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effort task for more money or a low-effort task for less money86,88.  While the higher reward 

remained fixed, the reward for the lower-effort task increased after choosing a high-reward 

task and decreased after choosing a low-reward task88. Adult participants showed clear 

discounting of the reward in a difficulty-dependent manner, where participants were 

willing to be paid less money to avoid a more cognitively engaging task86,88. To further 

query the neuronal control mechanisms of COD, healthy older adults were administered 

tyrosine to determine the effects of increased dopamine in COG-ED. Consumption of 

tyrosine, the precursor of DA and noradrenaline, has been linked with enhanced cognitive 

performance, possibly through increased synthesis and release of catecholamines89,90. To 

determine how baseline cognitive differences may affect COG-ED choices, subjective 

values (SV) were measured against trait impulsivity scores (Barratt Impulsiveness Scale). 

SV of rewards indicate the level of value depreciation related to the amount of effort 

required to complete the task, with SV decreasing linearly with increased effort86. It was 

determined that tyrosine administration resulted in SV depreciation across all effort levels 

as a function of increased trait impulsivity88. These results indicated that in individuals 

with higher trait impulsivity, increased dopamine reduces the motivational value of 

cognitive control.  

This model of decreased motivational value of cognitive control during increased DA in 

impulsive individuals could underpin ADHD pathologies. It is possible that maladaptation 

of dopaminergic pathways in ICDs such as ADHD causes high motivational value to be 

attached to highly stimulating behaviors (i.e., high-thrill activities, high-novelty 

experiences, illegal activities, rebelliousness) and low motivational value to be attached to 

uninteresting or unstimulating behaviors, especially ones that require high cognitive 

demand (i.e., schoolwork, sustained attention during school/work/church, cleaning)91. This 

atypical assignment of motivation results in the distinct pathologies of impulse control 

disorders such as ADHD.  

NAc control of reinforcement learning also plays a significant role in addiction. Repeated 

drug use results in the sensitization of the mesolimbic pathway and can be permanent79. 

The incentive-sensitization theory of addiction posits that individuals will continually 

increase drug use, even while pleasure obtained decreases, due to mesolimbic 

sensitization79,80. Because dopaminergic action attaches motivational significance to a 

reward, increased sensitization results in hyper-reactivity to drug cues, triggering intense 

cravings79. In individuals with SUD, these cravings increase vulnerability to relapse and 

therefore will continue to further sensitize the mesolimbic system through a maladaptive 

feed-forward mechanism. While aberrations in impulse control also predict increased 

vulnerability to relapse 39,62,63, the lack of evidence linking dopaminergic action to cortical 

control of impulsive behavior implicates a negative synergistic effect between (1) SUD- or 

ICD-mediated neuroadaptations of serotonergic, cholinergic or noradrenergic innervation 

onto the PFC leading to increased impulsivity, and (2) increased mesolimbic sensitization 

due to a SUD-mediated maladaptive feed-forward mechanism, leading to intense cravings 

when faced with drug cues. Thus, when an individual experiences intense drug cravings, 

the concomitant lack of impulse inhibition results in an even higher likelihood to capitulate 

and engage in drug use. 
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1.3.2 Cholinergic control of cognitive function 

Acetylcholine (ACh) release in the mPFC primarily originates in the basal forebrain (BF) 

and is also present in small populations of cortical interneurons92–96. There are two forms 

of ACh receptors – nicotinic (nAChR) and muscarinic (mAChR), which are functionally 

distinct. The nAChRs are ligand-gated cation-selective channels while mAChRs are G-

protein coupled receptors97 . nAChRs are made up of five subunits arranged symmetrically 

around a central pore. There are twelve neuronal subunits (α2 – α10 and β2- β4), resulting 

in a large variety of receptor subtypes98. In the cortex, only two main types of receptors are 

present – homopentameric receptors comprised of five α7 subunits and heteromeric 

receptors comprised of two α4 subunits, two β2 subunits and either an α4, β4 or α5 subunit 

(Figure 1-4)99,100. There are five different subtypes of mAChRs, all of which are G-coupled 

protein receptors (GPCRs)101. In the cortex, M1, M2 and M4 receptors are present, with 

M1 interacting with Gq/11 proteins, while M2 and M4 receptors interact with Gi/o proteins 

(Figure 1-4)102,103. Through intracellular signaling cascades, ACh binding to mAChRs 

affects primarily potassium and calcium channels to affect membrane polarization104.  

Choline acetyltransferase (ChAT), an acetylcholine synthesizing enzyme, has been shown 

to be primarily expressed in VIP-expressing interneurons94. Approximately 30% of VIP 

interneurons are ChAT positive (VIP+/ChAT+), making VIP+/ChAT+ interneurons only 

approximately 0.5% of the cortical neuron population105–108. These neurons have been 

found to release both ACh and GABA, indicating their ability to modulate cortical activity 

via different transmitter mechanisms109. In contrast to other VIP-expressing interneurons, 

VIP+/ChAT+ interneurons do not disinhibit pyramidal neurons109. It is believed that 

cholinergic activity from the BF is responsible for early phases of attentional control while 

activity of local VIP+/ChAT+ interneurons is responsible for later attentional control109–113. 

While it has been well-established that cholinergic signaling in the cortex primarily 

controls attention (reviewed in 97), a small body of literature has indicated that ACh 

signaling in the cortex may additionally affect impulsivity. Both human and animal studies 

have shown that nicotine administration is sufficient to produce increased impulsive action, 

primarily through the heteromeric subtypes of nAChRs114–119. Additionally, one group had 

found that administration of a heteromeric nAChR antagonist was sufficient to suppress 

impulsive behavior even in the absence of nicotine120. Of particular interest is that this 

control of impulsive action via heteromeric nAChRs in the cortex has been shown to occur 

primarily in the IL116, further implicating the distinct roles of the cortical subareas in the 

control of behavior. Beyond this data, however, the role of cholinergic signaling in the 

control of impulsivity remains vastly understudied, making it difficult to hypothesize how 

cholinergic signaling may differentially modulate the cortical microcircuit. 
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Figure 1-4: Types of acetylcholine receptors. There are two forms of acetylcholine 

receptors – nicotinic and muscarinic. Nicotinic receptors are ligand-gates cation-selective 

channels that are made up of five subunits arranged symmetrically around a central pore. 

In the cortex, only two main types of receptors are present – homopentameric receptors 

comprised of five α7 subunits and heteromeric receptors comprised of two α4 subunits, 

two β2 subunits and either an α4, β4 or α5 subunit99,100.  Muscarinic receptors are G-protein 

coupled receptors. In the cortex, M1, M2 and M4 receptors are present, with M1 interacting 

with Gq/11 proteins, while M2 and M4 receptors interact with Gi/o proteins102,103. Created 

with BioRender.com. 
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1.3.3 Serotonergic control of cognitive function 

Serotonergic input to the cortex is primarily provided by ventrally-located serotonergic 

neurons in the dorsal raphe (DR)91. The PFC also sends reciprocal projections to the DR, 

which mediate PFC top-down control of motivated behavior such as impulsivity121–123. 

Serotonin receptors (5-HTRs) consist of seven subfamilies, 5-HT1 to 5-HT7,  all of which 

are G-coupled protein receptors, apart from 5-HT3, which is a ligand-gated cation channel. 

Serotonergic neurotransmission has been implicated in diseases caused by altered cognitive 

function, such as major depressive disorder (MDD), schizophrenia, and OCD124. In the 

mPFC, pyramidal neurons and PV and SST inhibitory interneurons primarily express 5-

HT1AR and 5-HT2AR, but VIP inhibitory interneurons additionally express 5-HT3AR10,125. 

Further characterization via in situ hybridization revealed that two separate populations of 

PV interneurons express either 5-HT1AR or 5-HT2AR, but not in the same neuron126. 

1.3.3.1 5-HT1 Receptors 

The 5-HT1 family of receptors are Gi/Go-coupled and when activated, hyperpolarize 

neuronal membranes via the downstream activation of G-coupled inwardly rectifying K+ 

channels (GIRKs)127. Across models and measurements of altered impulsivity, 5-HT1AR 

agonists have been shown to exhibit a biphasic response, in which low doses and high 

doses of an agonist have opposing effects on behavior. For example, biphasic HT1AR has 

been represented in a variable consecutive number (VCN) model in which animals are 

trained to respond on one lever until cued to respond on a second lever128. Correct cue-

directed responding is reinforced via reward delivery, while premature/impulsive 

responding results in a 5 s timeout and task reset. Animals that were given 8-OH-DPAT, a 

selective 5-HT1AR agonist, exhibited increased impulsivity as measured by reduced 

accuracy during VCN at low doses of 8-OH-DPAT. At high doses, animals demonstrated 

significantly decreased impulsivity and even achieved perfect accuracy at the highest dose 

of 8-OH-DPAT128.  

Biphasic response of 5-HT1AR agonism is due to both presynaptic (autoreceptor) and 

postsynaptic functions129. 5-HT1AR autoreceptors located on the soma and dendrites of DR-

localized serotonergic neurons maintain serotonergic tone via an autoregulatory feedback 

response during heightened local concentration of serotonin. The autoreceptors thus 

function to suppress serotonin synthesis, turnover, and release at terminal projections 

through direct, autonomous inhibition129–132. At low agonist concentrations, 5-HT1AR 

autoreceptors are activated and  decreases serotonin release into the PFC, thus increasing 

impulsivity. At high agonist concentrations, PFC 5-HT1AR is directly activated regardless 

of DR-mediated changes in activation and successfully decreases impulsivity.  

Translationally, impaired 5-HT1AR function is implicated in individuals with impulse 

aggression, characterized by explosive reactions to situations that exceed the “normal” 

level of emotion133. Participants were administered oral ipsapirone, a selective partial  5-

HT1A receptor agonist, and 5-HT1AR function was determined via analysis of plasma 

cortisol and plasma prolactin. Under a normally functioning 5-HT1AR, agonism should 

result in increased serum cortisol and prolactin. Analysis of cortisol and prolactin levels 

post-ipsapirone indicated that impulsivity was the sole significant predictor of both 

decreased cortisol and prolactin release134. Measurement of 5-HT1AR-mediated hormone 

release indirectly implicates decreased 5-HT1AR function in the control of increased 
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impulsivity. One genome-wide association study (GWAS) has enabled broader 

investigation into possible genetic variants of the 5-HT1AR gene (HTR1A) and found that 

common variants in the IPO11-HTR1A region were significantly associated with alcohol 

and nicotine co-dependence at genome wide-significance level, while rare variants were 

only associated with ADHD135. Variants were closely located in the same region, lending 

genetic evidence to observed co-morbidity of ADHD and substance abuse 135. Further 

functional analysis into variations of 5-HT1AR is necessary to enable further understanding 

of the genetic and molecular underpinnings initiating altered 5-HT1AR function.  

1.3.3.2 5-HT2 Receptors 

Receptors in the 5-HT2 family are Gq/G11-coupled and when activated, increase cellular 

levels of IP3 and DAG, leading to an excitatory action potential. Knockdown of 5-HT2CR 

in the mPFC is sufficient to increase motor impulsivity as measured by a 1-choice serial 

reaction time task (1-CSRTT) 136. In brief (serial reaction time tasks are discussed more in 

depth in Chapter 2), this behavioral assay trains rodents to correctly identify and respond 

to a visual cue within a set time (5 seconds). Premature responses, in which the animal 

responds before the visual cue appears, are considered an indicator of motor impulsivity. 

In rodents trained on a 5-choice serial reaction time task (5-CSRTT), the 5-HT2AR 

antagonists ketanserin and M100907 decreased premature responding and increased the 

number of omissions, while the 5-HT2CR antagonist SB242084 increased premature 

responding and slightly reduced response accuracy137,138. These data demonstrate that both 

mPFC 5-HT2CR and 5-HT2AR specific activation are sufficient to modulate impulsivity 

behavior through serotonergic action. 

5-HT2AR and 5-HT2CR regulate the excitatory/inhibitory balance in the mPFC and are 

thought to interact under compensatory mechanisms. Selective 5-HT2CR knockdown 

results in a compensatory upregulation of 5-HT2AR protein expression and selective 5-

HT2AR antagonism via M100907 in 5-HT2CR knockdown animals decreased motor 

impulsivity as measured by a 1-choice serial reaction time task (1-CSRTT)136. The 

compensatory action of the 5-HT2A and 5-HT2C receptors seems to be vital in maintaining 

optimal serotonergic tone across various profiles of PY neuron engagement.  

Because hallucinogens mimic features of early-stage schizophrenia like cortical 

hypofrontality, researchers argue that the molecular mechanisms driving a hallucinogenic 

state mirror neurobiological abnormalities in early-stage schizophrenia139. This hypothesis 

has been supported by data showing higher proportion of active conformation 5-HT2AR in 

the PFC of schizophrenic individuals, resulting in increased activation of 5-HT2AR due to 

preferential binding to the receptor in its active conformation 140. This phenotype is 

mirrored by psilocybin-mediated 5-HT2A receptor activation leading to serotonergic 

hyperactivity141. Thus, hallucinogens serve as a useful tool to better understand the 

causality behind the pathophysiology of schizophrenia and the possible mechanisms 

regulating the accompanying dysregulated impulse control. Hallucinogens such as DOI 

(2,5-dimethoxy-4-iodoamphetamine) increase impulsive decision making as measured by 

a delay discounting task (DDT), in which animals are required to choose a delayed, large 

reward or an immediate, small reward142. Animals given DOI demonstrated a choice 

preference for the immediate, small reward in a dose-dependent manner142. When 

schizophrenic individuals were tasked with a DDT, they chose the immediate, smaller 

reward more often than healthy patients143 Together, this evidence strongly indicates that 
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5-HT2AR hyperfunction is responsible for driving impulsivity in both schizophrenia and 

hallucinogenic drug use. 

5-HT2CR signaling is fundamentally altered in individuals with the 5-HT2CR cys23ser 

polymorphism, which is prevalent in 12-30% of individuals, depending on ancestral 

background144. The serine variant of the 5-HT2CR is associated with depression, bipolar 

disorder, and high sensitivity to drug-related cues145–147 and has been loosely tied to 

increased impulsivity in males148. The cys23ser polymorphism reduces 5-HT binding 

affinity, attenuates agonist-induced intracellular signaling, and has lower plasma 

membrane expression than the wild-type variant144,149,150. Since 5-HT2CR antagonism 

increases impulsive responding in rodents, it can be extrapolated that the polymorphism-

mediated decrease in intracellular signaling results in similar behavioral phenotypes137. 

While this is a compelling hypothesis, further experimentation should be done to examine 

motor impulsivity with a 5-CSRTT in both 5-HT2cR knockout animals and animals with a 

knock-in point mutation to mimic the naturally occurring 5-HT2CR cys23ser 

polymorphism. This will also enable further query into the whether the 5-HT2CR cys23ser 

polymorphism is sufficient to drive compensatory expression of 5-HT2AR to further 

elucidate how these receptors may contribute to impulse-control aberrations.  

1.3.4 Noradrenergic control of cognitive function 

It has been hypothesized that locus coeruleus (LC) innervation into the PFC is at least 

partially responsible for the control of impulsive action. While the PFC receives 

information from a myriad of brain locations, it receives the densest noradrenergic 

innervation from the LC, which is involved in the stress and panic response151. Researchers 

have proposed that through noradrenaline (NA) release in the mPFC, phasic burst firing in 

LC-PFC projections is able to activate attention, maintain focus, and optimize task 

performance, likely due to an evolutionary-conserved mechanism to improve cognitive 

function when faced with a threatening stimulus152–156.  

Varied levels of neuronal excitability in response to NA release are achieved through the 

variety of adrenergic receptors (AR) present in the cortex. Adrenergic receptors are a class 

of G protein-coupled receptors, which signal through different subtypes of G-proteins. To 

be engaged, β-adrenergic receptors (β -AR) require high NA concentrations ([NA]) due to 

their low affinity to NA (Ki = 3570-26,400 nM)157. When bound to NA, β-AR initiates the 

adenylyl cyclase/cyclic AMP (cAMP) signaling pathway through  the Gs protein, which 

impairs PFC function158,159. Alpha-1-adrenergic receptors (α1-AR) require moderate [NA] 

(moderate NA affinity, Ki = 56-990 nM)160 and activate the phospholipase C/IP3/DAG 

signaling pathway through the Gq subunit. Alpha-2A adrenergic receptors (α2A-AR) 

require the lowest [NA] (high NA affinity, Ki = 5.56-5.87 nM)161 and inhibit the adenylyl 

cyclase/cAMP signaling pathway162.  The varying affinities of the ARs allow for gain 

amplification, thus affecting cortical functioning under different [NA] (Figure 1-5).  

Auto-receptors for NA serve as gain modifiers to regulate [NA] at both high and low local 

levels of NA. Pre-synaptic α2A-AR will inhibit NA release under low to moderate [NA]163–

166, while pre-synaptic β-ARs amplify NA release when activated by high levels of NA167. 

Alpha2-ARs are also voltage-dependent, and during neuron depolarization will  lose their 

affinity for NA, thus removing their inhibitory effect as local [NA] increases during times 
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of high stress, further biasing neuronal response towards increased NA release168. At 

saturating levels of NA, α2-ARs regain their affinity for NA, allowing for a return to 

homeostasis after a response to a stimulus has occurred168. Through these feedback loops, 

moderate [NA] is maintained to facilitate optimal cognitive functioning, while also 

working as gain modulators to further increase or decrease incoming adrenergic 

signals169,170. 

It has been established that NA transmission is altered in individuals with ADHD171–173 and 

several pharmacological interventions have been successful in decreasing impulsive 

response. Atomoxetine, a selective NA reuptake inhibitor, improves response inhibition in 

both humans and rats when administered systemically (orally or i.p, respectively) 174–177. 

No studies have been done to determine if atomoxetine administered intracerebrally into 

the PFC would be sufficient to drive this phenotype. Guanfacine, an FDA-approved ADHD 

medication, is a selective α2-adrenoreceptor agonist and has been found to strengthen 

working memory, increase behavioral inhibition, and improve attention, both when 

administered systemically and infused directly into the PFC178–182. Guanfacine-mediated 

increased cognitive function via α2-AR agonism implicates increased adenylyl 

cyclase/cAMP in decreased cognitive function. Blockade of β1-ARs via betaxolol, a 

specific β1-AR antagonist, was found to increase cognitive function as measured by 

improved working memory performance183. Conversely, activation of β2-ARs via 

clenbuterol, a β2-AR agonist, improved working memory, but only in animals already 

experiencing cognitive deficits due to aging184. Because adrenergic receptors have both 

unique binding affinities and varied responses to NA binding, the LC can exert control over 

PFC functioning by affecting local [NA]. 

Both excitatory and inhibitory neurons in each layer of the PFC express at least one 

adrenergic receptor185–196  and similar proportions of both cortical PY and inhibitory 

interneurons (VIP, SST, PV) are contacted by LC-NA afferents197. Toussay et al. found 

that LC-NA innervation primarily activated PV and SST interneurons (~36% of each 

population) and activated significantly fewer VIP interneurons (~16%) and PY neurons 

(22%)197. This response was ameliorated via cortical NA denervation with DSP-4, a 

neurotoxin that is selective for noradrenergic neurons197. The lack of data directly 

characterizing the adrenergic receptor profile of specific sub-classes of PFC neurons along 

with the broad LC-NA innervation of the PFC across all subtypes of neurons makes it 

difficult to hypothesize the differential effects that NA signaling has on interactions within 

the microcircuitry of the mPFC. Further research examining the role of NA in disrupting 

“typical” communication in the mPFC is necessary to be able to fully understand how 

mPFC AR signaling can improve cognitive function and reduce impulsive action. 
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Figure 1-5: Model of adrenergic receptor engagement relies on different binding 

affinities to affect behavior. The various adrenergic receptors (AR) located on cortical 

neurons allow for NA-mediated gain modulation to further decrease the activity of neurons 

receiving inhibitory input, and further increase the activity of neurons receiving excitatory 

input. This modulation is achieved through the differential affinities of each AR, which are 

engaged differentially according to the local levels of NA. Thus, NA from the LC can 

regulate cortical brain function to prioritize action that is most beneficial to the host 

according to outside stimuli. Created with BioRender.com. 

 



23 

 

2 CHAPTER 2: VIP INTERNEURONS AND THEIR 

CONTROL OF BEHAVIOR 

2.1 ABSTRACT 

It has been well-established that novelty-seeking and impulsivity are significant risk 

factors for the development of psychological disorders, including substance use disorder 

and behavioral addictions. While dysfunction in the prefrontal cortex is at the crux of 

these disorders, little is known at the cellular level about how alterations in neuron 

activity can drive changes in impulsivity and novelty seeking. We harnessed a cre-

dependent caspase-3 ablation in both male and female mice to selectively ablate 

vasoactive intestinal peptide (VIP)-expressing interneurons in the prefrontal cortex to   

better explore how this microcircuit functions during specific behavioral tasks. Caspase-

ablated animals had no changes in anxiety-like behaviors or hedonic food intake but had 

a specific increase in impulsive responding during longer trials in the three-choice serial 

reaction time test. Together, these data suggest a circuit-level mechanism in which VIP 

interneurons function as a gate to selectively respond during periods of high expectation. 

2.2 INTRODUCTION 

In both humans and mice, the medial prefrontal cortex (mPFC) bidirectionally regulates 

goal-seeking behavior, such as novelty-seeking and impulsivity 198. Various studies have 

demonstrated abnormal activity of the mPFC in patients with substance use disorder (SUD) 

or behavioral addictions (e.g., pathological gambling, kleptomania, binge eating, 

compulsive sexual behavior)25,42,53,199–206. Additionally, impulsivity and novelty-seeking 

are strongly associated with both the development and maintenance of SUD 56,57, and even 

moderate the efficacy of SUD treatment59,207,208 While dysfunction in the mPFC may 

underpin conditions that are often characterized by alterations in reward pursuit in both 

males and females 209–211, very little is known about how specific neuronal populations in 

the mPFC regulate these behaviors. 

Extra-cortical glutamatergic, serotonergic, and cholinergic inputs converge onto vasoactive 

intestinal peptide (VIP)-expressing interneurons in the mPFC 15–18, placing them at an ideal 

position to serve as a mediator between long-range inputs and local cortical processing. 

VIP interneurons are associated with behavioral modification, especially following reward 

presentation 19,20, implicating their role in novelty-seeking and impulsivity phenotypes. By 

providing inhibitory input onto somatostatin (SST) interneurons that innervate pyramidal 

(PY) neurons, VIP interneurons provide indirect, disinhibitory input onto PY neurons. 

Because of their unique position to regulate novelty-seeking and impulsivity, through both 

their myriad of inputs as well as their local circuit control, it is of particular interest to 

better understand how VIP interneurons function in the control of behavior. 

The rodent mPFC is composed of three primary subareas – the anterior cingulate cortex 

(ACC), the prelimbic cortex (PL), and the infralimbic cortex (IL). Studies have suggested 

these mPFC subregions have differential and specialized roles in behavior, including the 

control of social interaction, palatable food intake, and novel object investigatory behavior 



24 

 

2–6. These roles result from the distinct projections that each mPFC subarea receives from 

various other brain areas, which primarily converge onto VIP interneurons 7–9,212. As such, 

we hypothesized that selective ablation of VIP interneurons in the IL would be sufficient 

to modulate both impulsive responding as measured by a three-choice serial reaction time 

task and novelty-seeking as measured by novel animal investigation. Using an adeno-

associated virus (AAV) construct encoding a cre-dependent caspase-3, we were able to 

investigate whether VIP interneuron control is necessary in the modulation of behavior. 

VIP ablation in the mPFC led to a specific increase in impulsive responding during long-

delay trials, with no non-specific effects on anxiety-like behaviors or food-related 

motivation, revealing a novel role of VIP neurons in the control of impulsive behavior. 

2.3 RESULTS 

2.3.1 VIP-driven caspase-3 AAV injection into rodent mPFC selectively ablates 

VIP-expressing neurons 

Various studies have described the differential and specialized roles the mPFC subregions 

have in the control of social behavior. For example, Huang, et al. found that activation of 

projections from the PL to the basolateral amygdala (BLA) impaired social interaction, 

while inhibition of IL-BLA projections also impaired social interaction2. This is most likely 

due to the distinct projections that each subarea receives, as well as the differences in the 

areas that each subarea innervates7–9. Additional studies have directly implicated the PL 

and IL in behavioral inhibition, indicating that inhibition of PL neurons increased 

premature responses, while inhibition of IL neurons decreased premature responses in a 

response preparation task4. Because VIP neurons are the primary convergence point of 

projections into the mPFC, we hypothesized that VIP neurons would be an important 

gateway point for behavioral modification. Therefore, we aimed to resolve the contribution 

of IL VIP neurons to the control of impulsive behavior, as measured by a three-choice 

serial reaction time task (3CSRTT). To evaluate this contribution, we measured 3CSRTT 

reaction times in mice wherein IL VIP neurons were ablated. In order to visualize VIP 

neurons, we created a VIP::ZsGreen mouse line in which a VIP-cre drives a floxed ZsGreen 

reporter to specifically label VIP neurons. Ablation of the VIP interneurons was achieved 

via a bilateral injection of a cre-dependent Caspase 3 into the border of the IL and dorsal 

peduncular cortex (DP) of VIP::ZsGreen mice, thus causing apoptosis of cre-expressing 

VIP neurons (Figure 2-1A). Sham animals were given an identical injection of sterile 

saline. We confirmed VIP-specific ablation through the specific loss of ZsGreen-

expressing neurons (unpaired t-test, p = 0.0164, Figure 2-1B). Cre-dependent ablation was 

also confirmed to be primarily contained to the IL region versus the PL region of the mPFC 

(Figure 2-2). 
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Figure 2-1: Caspase ablation localized to the IL and DP. (A) AAV-drive cre-dependent 

caspase ablation of VIP interneurons was successful in selectively ablating VIP 

interneurons, as indicated by loss of ZsGreen fluorescence. Scale bar: 1 mm. (B) Successful 

ablation of VIP interneurons was observed in all study animals (unpaired t-test, p = 0.0164), 

between +1.10 mm and +1.98 mm rostral of the bregma, corresponding to panels 14 to 22 

in Paxinos and Franklin 213. ROI was decided using pilot animals to determine spread of 

AAV and then centered around injection coordinates. Open circles = male, closed circles 

= female. 
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Figure 2-2: Caspase ablation of VIP interneurons is primarily localized to the IL. (A) 

Representative images of the spread of caspase-3 AAV. PL = prelimbic, IL = infralimbic, 

DP = dorsal peduncular cortex. (B) Quantitative analysis of ablation of VIP interneurons 

in the PL vs IL. Caspase ablation was localized to the IL, as indicated by a significant 

decrease of VIP interneurons (represented by ZsGreen expression) in the IL (pIL = 0.0254) 

but not in the PL (pPL = 0.1092). Additionally, there are significantly fewer VIP 

interneurons in the IL of caspase animals (pcaspase = 0.0499) but not in the sham animals 

(psham = 0.8284), indicating specific ablation of VIP interneurons in the IL. 
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2.3.2 Ablation of VIP interneurons increases impulsive responding in long-delay 

trials 

The 3CSRTT is designed to measure motor impulsivity as a characteristic of prefrontal 

cortex activity214. In this task, the mouse is trained to recognize an illuminated nose poke 

hole and must poke within a 5 second window of time to receive a reward. Four distinct 

behaviors are measured during this task: (1) omission, in which the mouse does not respond 

to the cue within 5 seconds, (2) incorrect, in which the mouse pokes in the incorrect hole, 

(3), correct, in which the mouse pokes in the correct hole, and (4) premature, in which the 

mouse pokes during the intertrial interval (ITI) that occurs between the response time and 

the following cue. The number of premature responses serves as an indicator of impulsive 

action. We trained both VIP-ablated and sham mice in the 3CSRTT (Figure 2-3A). While 

there was not a statistically significant difference in premature, correct, or incorrect 

responding between sham and caspase-treated animals when all ITIs were sampled 

together, there was a trend towards ablated mice having an increased proportion of 

premature responses (unpaired t-test, p = 0.093, Figure 2-3B). Based on data indicating 

that the infralimbic area is responsible specifically for behavioral control of long-delay 

trials4, we then separated trials by the ITI and found that ablated animals had a significant 

increase in premature responses exclusively when the ITI was set to 12.5 s (p = 0.004, 

Figure 2-3C). This observation was similar across both male and female populations, with 

no significant differences between the sexes (Figure 2-4, Tables 2-1 and 2-2).  

  



28 

 

 

 

Figure 2-3: Caspase ablation of IL VIP interneurons results in an increase in long-

delay premature responses as measured by 3CSRTT. (A) Task schematic of three-

choice serial reaction time task. Created with Biorender.com. (B) VIP ablation in the IL 

results in a slight increase in premature responses across all inter-trial intervals. A two-way 

ANOVA revealed there was a statistically significant interaction between treatment and 

response type (F(2,29) = 4.011, p = 0.0225; unpaired t-tests, pcorrect = 0.344, pincorrect = 0.108, 

ppremature = 0.093). (C) When separated into discrete ITI categories, a two-way ANOVA 

demonstrates that there is a statistically significant interaction between treatment and ITI-

dependent response type (F (8,206) = 7.056, p < 0.0001; unpaired t- tests, pcorrect ITI5 = 

0.662, pincorrect ITI5 = 0.112, ppremature ITI5 = 0.084, pcorrect ITI7.5 = 0.503, pincorrect ITI7.5 = 0.303, 

ppremature ITI7.5 = 0.074, pcorrect ITI12.5 = 0.133, pincorrect ITI12.5 = 0.303, ppremature ITI12.5 = 0.004). C 

= correct, I = Incorrect, P = premature. Open circles = male, closed circles = female. 

  



29 

 

 

Figure 2-4: Caspase ablation of IL VIP interneurons does not cause discriminate 

impulsive behavior in males vs females. (A) Caspase ablation results in a trend of 

increased premature responding in both male and female mice, with a stronger increase in 

female animals, while not significant. No significant differences between male and 

female animals. (B) ITI length corresponds to an increase in premature responses in both 

males and females but is not significant. No significant differences between male and 

female animals. Statistics summarized in Tables 2-1 and 2-2. 
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Table 2-1:  Statistics summary for Figure 2-5A.  

  



31 

 

 

 

Table 2-2: Statistics summary for Figure 2-5B.  
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2.3.3 Ablation of VIP interneurons does not affect interest in novel animals 

Previous studies demonstrate that activation of IL VIP neurons reduces novel animal 

investigation6, implicating a role of IL VIP neurons in the control of novelty seeking 

behavior. To evaluate this role, we tested mice on a novel social interaction assay, as 

previously described215. In this assay, mice were given 150 s to explore an open field with 

two restrainers, and then 150 s to explore the open field with a novel mouse in one of the 

restrainers (Figure 2-5A). Mice that underwent VIP ablation did not spend significantly 

more time exploring the novel mouse (unpaired t test, p = 0.5532, 95% C.I. = [-24.79, 

13.59]) and did not make first contact with the novel animal at significantly different times 

from the sham animals (unpaired t test, p = 0.5929, 95% C.I. = [-43.73, 25.52], Figure 2-

5B). These findings were consistent in both male and female populations, with no 

significant changes between sexes (Table 2-3, Figure 2-6A). However, caspase-ablated 

males showed a trend towards approaching a novel animal much faster than their sham 

counterparts (Table 2-3, Figure 2-6A). 

2.3.4 VIP Interneuron ablation does not increase spatial anxiety-like behavior 

Because our behavioral tests revealed that VIP neuron ablation selectively increases 

impulsivity behavior (i.e., an increase in the number of impulsive responses as measured 

by the 3CSRTT), we tested the hypothesis that the observed increase in impulsivity may 

be a non-specific effect of an overall change in behavior. To assess this possibility, animals 

were subjected to an open field assay to determine any changes in spatial anxiety-like 

behavior. Spatial anxiety-like behavior was quantified by measuring the amount of time 

that an animal spent in the center of the open field, with the expectation that animals with 

higher levels of spatial anxiety will spend less time in the center of the open field. VIP 

neuron ablation did not affect time spent in the center of the open field, suggesting that 

ablation does not increase anxiety-like behavior (unpaired t test, p = 0.2851, 95% C.I. = [-

26.19, 8.036], Figure 2-5C). These findings were consistent across both male and female 

populations, with no differences between sexes (Figure 2-6B, Table 3). Ablation of VIP 

neurons in the IL did not significantly affect overall locomotion when compared to sham 

animals (unpaired t test, p = 0.7447, 95% C.I.  = [-5751, 4166], Figure 2-5C).  A two-way 

ANOVA revealed that caspase ablation did not have a statistically significant effect on 

overall distance travelled, but sex was a statistically significant factor in the overall 

distance traveled (Figure 2-6C, Table 2-3).  

2.3.5 Ablation of VIP interneurons does not increase palatable food intake 

Because of the effect of VIP ablation on impulsive responding, it is possible that VIP 

ablation creates a general effect on novelty seeking, causing an increased motivation for 

non-chow food and a resulting increase in impulsive responses. Studies have demonstrated 

that optogenetic manipulation of the mPFC can alter free feeding216–218, and that activation 

of the IL VIP interneurons is sufficient to increase palatable food intake 6. We therefore 

evaluated the effect of VIP neuron ablation of hedonic food intake. In this assay, mice are 

given a pre-weighed nugget of high-fat diet (Teklad TD.88137, 15.2% kcal from protein, 

42.7% kcal from carbohydrate, and 42% kcal from fat) and allowed to eat freely for 30 

minutes. We consider food intake during this time period, conducted just prior to the start 
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of the light cycle, to be driven primarily by hedonic mechanisms, as our prior work has 

shown animals consume minimal amounts of food in this assay when tested with home 

cage dietary chow (Teklad 2013, 4% fat, 17% protein, 48% carbohydrate, no sucrose, 2.9 

kcal/g) 6. Ablation of VIP interneurons in the IL was not sufficient to produce a significant 

change in palatable food intake over a 30 min period (unpaired t test, p = 0.8128, 95% C.I. 

= [-0.2789, 0.3523, Figure 2-5D). These findings were consistent in both male and female 

animals, with no significant differences between sexes (Figure 2-6C, Table 2-3). 
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Figure 2-5: Caspase ablation of IL VIP interneurons does not influence novelty-

seeking or anxiety behaviors. (A) Task schematic of novel social interaction assay. 

Created with Biorender.com. (B) VIP ablation in the IL does not affect time spent exploring 

a novel animal (unpaired t-test, p = 0.5532) or latency to approach a novel animal (unpaired 

t-test, p = 0.5929), (C) spatial anxiety-like behavior as measured by time spend in the center 

of an open field (unpaired t-test, p = 0.2851) and overall locomotion in an open field 

(unpaired t-test, p = 0.7447) or (D) amount of high-fat diet consumed (unpaired t-test, p = 

0.8128). Open circles = male, closed circles = female. 
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Figure 2-6: Caspase ablation of IL VIP interneurons does not cause discriminate 

novelty-seeking or anxiety-related behaviors in males vs. females. (A) Caspase ablation 

does not affect novelty-seeking behavior as measured by novel social assay in either males 

or females. No significant differences between male and female animals. (B) Caspase 

ablation does not affect anxiety-related behavior as measured by time spent in center of 

open field and overall locomotion in either males or females. No significant differences 

between male and female animals. (C) Caspase ablation does not affect binge-like food 

intake in either males or females. No significant differences between male and female 

animals. Statistics summarized in Table 2-3. 



36 

 

Table 2-3: Statistics summary for Figure 2-6. 

 

 

 

 

 

 

 

 

 

 

 



37 

 

2.4 DISCUSSION 

The data presented here indicate that ablation of VIP interneurons in the IL is sufficient to 

drive impulsivity without increasing novelty-seeking or anxiety-like behaviors. We 

demonstrate here that VIP interneurons are necessary for control over impulsive 

responding specifically during long-delay trials. These behavioral changes occur without 

increasing anxiety-like behavior or palatable food intake, implicating VIP IL interneurons 

in the specific control of impulsive responding. To our knowledge, this marks the first 

behavioral exploration of IL-VIP interneuron ablation and further elucidates their role in 

the control of behavior.  

Previous studies demonstrate that excitation of mPFC PY neurons with a Gq-coupled 

DREADD does not alter binge-like feeding or anxiety-like behavior but reduces 

impulsivity on the 3CRSTT task, but only after a high dose of CNO215, consistent with our 

findings. In contrast, Hardung et al. found that optogenetic IL inhibition in rats suppresses 

early responses4, which we did not find in our model of VIP ablation in mice. The 

differences in our findings likely result from differences in inhibition – while they chose 

to inhibit entire areas of the mPFC without distinction for neuron type, which would 

primarily target PY neurons, we have directly manipulated only VIP neurons. However, 

our findings indicate that VIP ablation in the IL only increased impulsive responding 

during long-delay trials, consistent with the findings of Hardung et al. insofar that the IL 

is implicated specifically in long-delay trials. 

Though we found VIP ablation in the IL was sufficient to drive increased premature 

responding during long-delay trials, there is not sufficient power to determine if this 

phenomenon is sex-specific. We observed in S2 Fig. that there was a strong trend in both 

sexes towards increased premature responding in long-delay trials, but these remain non-

significant based on our set statistical significance threshold (pfemale = 0.112, pmale = 0.173). 

Additionally, while none of the behavioral assays indicate sex-specific differences, it is 

possible that these would become more apparent if our study had greater statistical power 

to detect these potential sex dependent effects.  

While we have previously demonstrated that VIP stimulation via a cre-dependent stabilized 

step-function opsin (SSFO) expressed in VIP-cre animals was sufficient to suppress high 

calorie food intake and decrease overall locomotion, we found no effect on food intake 

during this experiment6. It is possible that this selective effect on animal behavior results 

is driven by  the population of VIP interneurons that synapse directly onto PY neurons 15,16. 

Thus, direct activation of VIP interneurons would directly suppress novelty-seeking while 

ablation of the VIP interneurons could be compensated for by additional inhibitory output 

from parvalbumin (PV) and SST neurons. Additionally, recent research has shown that 

VIP neurons act as a type of gate, allowing us to also hypothesize that direct stimulation of 

the VIP neurons is sufficient to “open” the gate, while ablation results in the gate continuing 

to remain “closed” and have no effect on novelty-seeking behavior21.  

A mechanism of adaptive disinhibitory gating would additionally explain why VIP-specific 

ablation had an effect only in long ITI trials. Krabbe, et al. found that VIP interneuron 

activation was strongly modulated by outcome expectations, revealing a novel form of 

disinhibitory gating in the control of learning and behavior21. We can therefore hypothesize 

that VIP interneurons are similarly affected by changing ITIs in our model of impulsivity 
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and are activated specifically during longer periods of waiting. When VIP interneurons are 

ablated, this adaptive gate is absent, thus resulting in increased impulsive responding 

during longer ITIs.  One study examining the role of serotonin receptor (5-HTR) 

antagonism in the control of impulsivity found that while antagonism of 5-HT2AR and 5-

HT2BR had no effect on premature responding during a 5-CSRTT, antagonism of 5-HT2CR 

increased premature responding in an ITI-dependent manner137. As 5-HT2CR are almost 

exclusively expressed on VIP interneurons219, we can extrapolate that serotonergic 

innervation of VIP interneurons is responsible for this phenotype of motor impulsivity.   

Finally, our findings are also consistent with the role that the mPFC plays in the control of 

appropriately timed reactions27,220,221, as well as the role that the IL specifically plays in 

response inhibition222–224, and sheds new light on the role of VIP interneurons in the control 

of the timing of this inhibition. 
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2.5 EXPERIMENTAL METHODS 

2.5.1 Experimental animals.  

All studies were approved by the University of Virginia’s Animal Care and Use 

Committee. Twelve-week-old adult male and female VIP-IRES-Cre (VIP-Cre, Strain # 

010908) and B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J (Ai6, Strain # 007906) were 

purchased from The Jackson Laboratory. Ai6 contains a floxed STOP-cassette resulting in 

ZsGreen expression only in cre-expressing cells. Mice were housed in the Pinn Hall 

vivarium at the University of Virginia on a 12h light: 12h dark cycle (lights off at 21:00) 

with ab libitum access to food (Teklad 2013, 4% fat, 17% protein, 48% carbohydrate, no 

sucrose, 2.9 kcal/g) and water, unless otherwise stated. Both lines have been backcrossed 

to C57Bl6/j animals for at least 7 generations. We generated heterozygous VIP::ZsGreen 

animals through two subsequent crosses: (1) crossing VIP-cre homozygous females with 

Ai6 homozygous males and (2) crossing the resulting heterozygous VIPcre/+/Ai6fl/+ 

offspring (referred to as VIP::ZsGreen throughout). This strategy results in ZsGreen 

expression localized to VIP-expressing neurons. Animals (N = 27, NF,sham =  7, NF,caspase = 

9, NM,sham = 5, NM,caspase = 6) were transferred to a flipped light cycle room (12h light: 12h 

dark, lights off at 10:00, on at 22:00) 1 week before surgery and throughout the remainder 

of behavioral experimentation to allow for all behavioral experiments to occur during  

Zeitgeber Time (ZT) 12-14hr, during a time of heightened animal activity and alertness. 

Animals were genotyped using the following primer sets: (1) for VIP-Cre: Mutant (Mut) 

Forward 5’-CCC CCT GAA CCT GAA ACA TA – 3’, Common 5’-GCA CAC AGT AAG 

GGC ACA CA – 3’, Wild Type (WT) Forward 5’-TCC TTG GAA CAT TCC TCA GC – 

3’ and (2) for Ai6: WT Forward 5’ -AAG GGA GCT GCA GTG GAG TA – 3’, WT 

Reverse 5’ – CCG AAA ATC TGT GGG AAG TC – 3’, Mut Reverse 5’ – GGC ATT 

AAA GCA GCG TAT CC – 3’, Mut Forward 5’ – AAC CAG AAG TGG CAC CTG AC 

– 3’.  

2.5.2 Adeno-associated viral vector and stereotaxic viral injections.  

Mice were anesthetized with Ketaset (60 mg/kg, i.p., Zoetis, Parsippany, NJ, US) and 

Dexdomitor (0.45 mg/kg, i.p., Zoetis) and given Normasol (500 uL, s.c., Mӧlnlycke, 

Gӧteborg, Sweden), which we found to decrease surgical deaths. All injections were 

performed using Neurostar StereoDrive (Tübingen, Germany). VIP neurons were targeted 

using a Cre-dependent Caspase 3 virus, pAAV-flex-taCasp3-TEVp from Addgene225. We 

injected 400 nL of virus bilaterally into the boundary of the infralimbic cortex (IL) and the 

dorsal peduncular cortex (DP) of 8-10-week-old male and female VIP::ZsGreen mice using 

coordinates based on Franklin and Paxinos213 (+1.54 mm from bregma, ±0.3 mm lateral of 

midline, and 3.3 mm ventral of the dura). A Hamilton syringe fitted with a 26G needle was 

inserted to a depth of -3.3 mm and 400 nL of virus was delivered via pressure injection 

over a period of 12 minutes. To prevent delivery of the virus to more dorsal areas, the 

needle was left in situ for 10 minutes and then slowly removed. Control mice received 

sham surgery, wherein 400 nL of sterile saline was delivered bilaterally in the same manner 

as the AAV. Mice were given ketoprofen (5 mg/kg, i.p.), antisedan (1mg/kg, i.p., Zoetis) 

and Normasol (500 uL, s.c.) to accelerate post-surgical awakening. After surgery, mice 

were singly housed throughout the duration of the experiments. After 14 days to allow for 
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sufficient levels of viral vector expression and to allow the animals to fully recover from 

surgery, mice underwent behavioral assays.  

2.5.3 Brain tissue preparation.  

Mice were euthanized using 100 uL of Euthasol euthanasia solution (Virbac AH, Inc., 

Carros, France). Once mice no longer responded to a toe pinch, mice were first flushed 

with chilled phosphate-buffered saline, followed by perfusion with chilled 4% 

paraformaldehyde in 0.1-M phosphate buffer (4% PFA). Brains were kept in 4% PFA 

overnight and then transferred into 1X PBS until sectioning took place. Brains were 

dissected and sectioned at 40-µm thickness on a compresstome (Precisionary Instruments, 

Natick, MA, USA). Sections were mounted in sequential order, air-dried, and coverslipped 

in Vectashield hard-set mounting medium with DAPI (Vector Laboratories, Newark, CA, 

USA).  

2.5.4 Quantitative analysis of VIP ablation by caspase.  

Six 40 µm sections from +1.10 and +1.98 rostral of bregma were taken, corresponding to 

panels 14 to 22 in Paxinos and Franklin213. All slices were imaged at 4X magnification 

using an Olympus BX61 using manual tiling function. Neurons were counted within a pre-

determined ROI from previous pilot experiments using ImageJ. All quantitative analysis 

of VIP ablation was performed in animals used in behavioral animals. Two animals (one 

sham female and one caspase-injected female) were removed from analysis because of 

non-specific expression of ZsGreen that was evident during analysis. 

2.5.5 Three-choice serial reaction time task.  

Behavioral assays were performed in the following order: (1) 3CSRTT, (2) open field test, 

(3) social interaction test, and (4) binge eating test. Behavioral training and testing occurred 

during the animal’s dark cycle (ZT12-24) in a red-light lit behavioral room. Behavioral 

acquisition training is split into 13 stages and is performed in operant chambers (Med 

Associates, Inc, St. Albans, VT, USA). Briefly, in stage 1, all nose poke holes are 

illuminated and a nose poke in any hole results in reward delivery (Banana Flavor Pellets, 

#F06727, Bio-Serv, Flemington, NJ, USA). Subsequently, in stage 2, only the center hole 

is illuminated, and only pokes in this hole result in reward delivery. As training progresses, 

the duration of nose poke hole illumination is progressively reduced, ultimately reaching 

0.5 seconds (s), and nose poke holes are illuminated in a pseudo-random order. During all 

stages of training and testing, mice must refrain from poking until the hole is illuminated 

and must wait 5 s to identify the correctly lit nose poke hole prior to poking. A premature 

poke or lack of response will result in a 5 s timeout and no reward. After completion of 

stage 13 of training, the intertrial interval (ITI, the time between the illumination of the 

nose poke holes) is lengthened to 7 s to produce a slight elevation in impulsive responding 

to allow improved data collection. During testing, the animals undergo 250 trials, in which 

the ITI is randomized between 5 s, 7.5 s, and 12.5 s in order to increase impulsive 

responding during longer ITI trials. Both training and testing are self-paced and conducted 

over a 12-hour period each day, in ad libitum fed animals. A typical animal will finish 

training within 7-10 days (84 to 120 hours) and testing between 14-20 hours. 
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2.5.6 Open Field Test.  

All behavioral testing occurred in a dedicated behavior room, separate from the home 

room, as conducted previously6,215. The behavioral room is lit only by red light, allowing 

for minimal interruptions of the animals’ circadian cycle during behavioral testing226. Two 

days after 3SCSRTT testing, mice were brought to the behavioral room and allowed to 

acclimate for 1 hour before testing began. Mice were placed into the PhenoTyper (Noldus, 

Wageningen, the Netherlands) and allowed to explore for 15 minutes while movement was 

recorded using EthoVision XT tracking software (Noldus). The PhenoTyper was cleaned 

between each mouse with Minncare disinfectant to remove residual odors. We waited 5 

minutes between each animal to allow for any residual odor from the cleaning agent to 

dissipate. During testing, a yellow light was turned on in the PhenoTyper, to provide 

consistent illumination of the arena. To ensure that arena novelty was not a confounding 

variable during the social interaction assay, all mice underwent this experiment before all 

other experiments conducted in the PhenoTyper. 

2.5.7 Social interaction.  

The social interaction task was performed in the PhenoTyper, as previously described6,227. 

Before the social interaction test, all mice were brought to the behavior room and allowed 

to acclimate for at least 1 hour. To allow for habituation, the chamber was first prepared 

with two empty restrainers on opposite sides of the PhenoTyper. The test mouse was placed 

in the center of the PhenoTyper and allowed to explore for 150 seconds. The test mouse 

was then returned to its home cage for 30 s while the restrainers were cleaned with 

Minncare and replaced. A novel mouse of the same sex was then placed in one restrainer 

and the test mouse was returned to the center of the chamber and allowed to explore for 

150 s. The side of the chamber the novel mouse was placed on was randomized to minimize 

confounding variables due to lingering smells. The chamber was cleaned between each 

mouse with Minncare and allowed to air out for 5 minutes to remove residual odors. Mouse 

movement was recorded using Ethovision.  

2.5.8 Binge-like eating assay. 

Measurement of palatable food intake was performed as previously described6,228. On the 

night before testing, mice received a small (<0.2 g) sample of the high calorie diet (Teklad 

TD.88137, 15.2% kcal from protein, 42.7% kcal from carbohydrate, and 42% kcal from 

fat, Envigo, Dublin, VA, USA), delivered into their home cage. At ZT 20:00, all food was 

removed, and mice were challenged with approximately 3g of pre-weighed high fat diet 

and allowed to consume freely. After 30 minutes, the food was removed and weighed, and 

mice were returned to ab libitum chow feeding conditions.  

2.5.9 Statistical analysis.  

All statistical analyses were performed in Prism 9 (GraphPad, Boston, MA, USA). Multiple 

comparisons were corrected for false positives using a false discovery rate correction 

(FDR) with a desired FDR set at 1.00%.  
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3 CHAPTER 4: INTRODUCTION TO GLUCAGON NEURONS 

AND THE HINDBRAIN 

Bi-directional communication between the central nervous system (CNS) and enteric 

nervous system (ENS) via the vagal nerve serves as a powerful regulator of energy 

homeostasis, glucose metabolism, and hunger229. Gut-brain communication is achieved 

through various hormones and peptides that are transmitted to the brain in response to 

peripheral cues. These neurotransmitters have become subjects of increased interest as 

pharmacological interventions targeting these pathways have been successful in the 

treatment of various metabolic pathologies. 

3.1 OBESITY 

3.1.1 Obesity and Co-Morbid Pathologies 

Using the body mass index formula (BMI = weight (kg)/height (m)^2), obesity is defined 

as a BMI of 30 or higher230. Obesity is significantly associated with mortality rates, and as 

BMI increases, so does overall mortality and co-morbid diabetes-related mortality rates231. 

In 2013, the National Health and Nutrition Survey estimated that in the United States, 1 in 

3 adults were considered obese (body mass index/BMI ≥ 30) and obesity accounted for 

18% of deaths among Americans between the ages of 40 and 85232,233. Obesity risk has 

been determined to be significantly affected by thirteen specific factors that are co-morbid 

in individuals with obesity234. The thirteen specific factors are as follows: type-2 diabetes 

(T2D), cardiovascular disease, breathing/airway abnormalities, kidney abnormalities, 

nonalcoholic fatty liver disease (NAFLD) and cirrhosis, altered hormonal profiles, 

gastroesophageal reflux disease (GERD), cancer, increased intake of medication, 

impairment of physical functioning, depression, body image, and financial impacts234. 

Cancer and cardiovascular disease are the factors that primarily influence obesity-related 

mortality. 

3.1.2 Economic Impacts 

In the United States, it has been estimated that annual medical spending attributable to an 

obese individual was $1901 in 2014, resulting in a $149.4 billion economic burden at a 

national level235. The two significant drivers in increased incremental costs of obesity were 

age (obese adults have higher incremental costs of obesity than the nonobese population, 

but this is not seen in obese versus nonobese children) and obesity-related conditions, 

indicating that most of the costs are caused by co-morbid conditions of obesity235. 

3.1.3 Metabolic adaptation during obesity 

While rising obesity is often attributed to an increase in access to calorie-dense food and a 

decrease in physical activity 236–238, obesity is not simply an imbalance between energy 

intake and energy expenditure239. While public health surrounding obesity tends to advise 
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reduced calorie intake to lose weight239, many studies have indicated that reductions in 

calorie intake are not sufficient to  control or reverse weight gain239–243. In fact, reduction 

in calorie intake is much more likely to result in metabolic adaptations such as increased 

fat deposition, increased appetite, and reduced energy expenditure240,243,244. Metabolic 

adaptations have been found to persist for years after initial weight-loss and will even 

continually depress energy expenditure, making continued weight loss increasingly 

difficult despite reduced caloric intake and increased physical activity243,244. This has led 

to a theory of a metabolic “set point”  or a homeostat, in which metabolic adaptations are 

primed to defend an individual’s current weight against perturbations, but this theory is 

controversial and experimental evidence is contradictory245–249. 

3.1.3.1 Discrete metabolic profiles of metabolic adaptation through the lens of bariatric 

surgery 

Bariatric surgeries such as Roux-en-Y gastric bypass (RYGB), vertical sleeve gastrectomy 

(VSG), and laproscopic adjustable band (LAGB) remain the most effective interventions 

against obesity250. RYGB is performed by creating and attaching a small gastric pouch  to 

a loop of the mid-jejunum, thus causing ingested food to completely bypass most of the 

stomach and small intestine. While it was initially believed that RYGB-mediated weight 

loss was purely due to the purely mechanical restriction of food intake and decreased 

nutrient absorption (restrictive-malabsorptive), more recent research indicates that RYGB 

alters appetite-regulating pathways251,252. Similarly, VSG, which removes approximately 

80% of the stomach, has been shown to have effects on whole-body metabolism beyond 

the effects of calorie restriction 253. 

By comparing RYGB- and VSG-mediated changes in physiology with those that occur 

during calorie restriction, possible mechanisms of metabolic action can be determined254. 

Analysis of metabolic profiles after RYGB-, VSG- and low-calorie diet (LCD)- mediated 

weight loss showed decreased resting metabolic rate (RMR) in all three groups that was 

sustained up to a year254.  At 8 weeks post-surgical and dietary interventions, RYGB- and 

LCD had induced the least amount of metabolic adaptation, while VSG had significantly 

decreased RMR compared to RYGB and LCD. At one year post-intervention, continued 

LCD had further depressed RMR when compared to 8 weeks, RYGB had no significant 

different between time points, and VSG patients had increased RMR when compared to 

the  early time point254.  These results indicate that metabolic adaptation occurs in both 

surgical and dietary interventions, despite bariatric surgeries maintaining weight loss with 

greater efficacy than dietary intervention255.  

Analysis of circulating metabolic markers between groups revealed differences in 

metabolic signaling profiles (summarized in Table 3-1) that could explain this difference 

in response to suppressed RMR254.  Comparison of general metabolic markers such as 

circulating glucose and HOMA-IR (a measure of insulin resistance256)  indicate that despite 

sustained decreases in RMR across all groups, RYGB and VSG either maintained or further 

decreased initial decreases in circulating glucose, insulin levels, insulin resistance as 
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measured by HOMA-IR, and circulating triglycerides, while LCD intervention was not 

able to maintain these decreases long-term254.  

Previous research has implicated decreased circulating leptin in metabolic adaptation 

during weight loss257–259 and has shown that reversal of circulating leptin levels to pre-

weight-loss levels reverses metabolic adaptation260. Leptin levels in surgical-intervention 

groups were decreased at both time points, while caloric intervention initially decreased 

leptin, but was returned to baseline levels at one year post-intervention (Table 3-1)254. 

Thyroid function, which is known to regulate metabolism261,  can be determined indirectly 

via measurement of thyroid hormones triiodothyronine (T3) and thyroxine (T4). While 

differential regulation of thyroid hormone was observed between surgical-intervention and 

caloric-intervention groups (summarized in Table 3-1), thyroid regulation of metabolism 

operates though many distinct mechanisms261, making it difficult to attribute specific 

causation between decreased RMR and decreased T3 and T4 levels254. Additionally, while 

T3 and T4 levels are decreased, they remain within normal range, making it difficult to 

determine if these changes are functionally relevant to this model of metabolic 

adaptation262.  

3.1.3.2 Summary 

Together, these results indicate that metabolic adaptation in response to weight loss can be 

essentially “over-ruled” by specific gut-hindbrain signaling that is increased after RYGB. 

Based on these findings, weight loss can theoretically be mediated under two distinct 

mechanisms:  

(1) Compensatory metabolic activation results in weight plateau and weight cycling. 

Resting metabolic rate is decreased in response to decreased energy intake (either 

caloric restriction/LCD or mechanical restriction of food intake/RYGB), resulting 

in compensatory action to restore balance between energy intake and energy 

expenditure239–241,244. This is hypothesized due to too-low energy intake or too-low 

protein intake263–265, in response to too-rapid weight loss266, or when adiposity is 

too low267. In addition to decreasing energy expenditure, metabolic adaptation 

increases appetite240,243,244, making adherence to an LCD more difficult. The 

subsequent weight-loss plateau and increased appetite result in weight cycling240. 

 

(2) Gut-hindbrain communication selectively modulates feeding-related circuits to 

maintain sustained weight loss despite metabolic adaptation. Vagal-mediated gut-

hindbrain communication has been shown to mediate success of RYGB268. Animals 

that received a celiac branch vagotomy and a RYGB lost significantly less body 

weight in the first 40 days post-RYGB, compared to RYBG animals with intact 

vagal signaling268. Additionally, postprandial circulating peptide YY (PYY) and 

glucagon-like peptide 1 (GLP-1)   measured in patients post-RYGB begin to rise as 

early as 2 days post-surgery and effect measurable changes in appetite269. These 

findings, along with many others (reviewed in Hankir, et al.252), have revealed that 

RYGB weight-loss is controlled through diverse systems activated by gut-
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hindbrain communication, including those implicated in homeostatic control of 

feeding, such as melanocortinergic and serotonergic systems, and those implicated 

in hedonic control of feeding, such as dopaminergic and opioidergic systems. 

Activation of these systems is achieved through gut-mediated release of gut 

hormones, microbiota products, and leptin252. 

Gut-hindbrain communication has been well-established in the control of hedonic eating 

behavior and energy balance252,270,271, with GLP-1 acting as one of the most robust effectors 

of this communication, as discussed in the following section. However, a large body of 

research has indicated that the gut-hindbrain communication has effects on motivation and 

higher cognitive functions272–279. Additional research has emerged that implicates gut 

dysbiosis in the control of behavior in response to drugs of abuse, as well as in affecting 

emotional state280–282. This is explored further in the discussion, as a vital link between 

mPFC neurobiology and the gut. 
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Table 3-1: A summary of changes in circulating metabolic markers in both surgical 

and dietary interventions. Table is adapted from data in Tam, et al. for clarity254. Data 

labeled ∆ 8 weeks describe changes in metabolic marker between pre-intervention 

baseline and 8 weeks post-intervention. Data labeled ∆ 1 year describe changes in 

metabolic marker between 8 weeks post-intervention and one year post-intervention. 

These changes enable discrimination of weight-loss mechanisms purely due to calorie 

deficit (LCD) and weight-loss mechanisms dependent on changes in molecular 

physiology (RYGB, VSG).  
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3.2 GLP-1 IN THE CONTROL OF APPETITE 

3.2.1 Gene expression and posttranslational processing 

GLP-1 is encoded by GCG within the larger precursor protein, preproglucagon (PPG). 

Preproglucagon is cleaved by prohormone convertases to produce a diverse group of 

signaling molecules (Figure 3-1)283. While prohormone convertase (PC2) is expressed in 

the hindbrain, only trace amounts of glucagon have been detected in this part of the brain, 

which has led researchers to believe that prohormone convertase (PC1/3) is primarily 

responsible for CNS processing of PPG284,285. The half-life of GLP-1 is approximately 1-2 

minutes due to cleavage by dipeptidyl-peptidade-4 (DPP-4)286. 

 

  



49 

 

 

 

Figure 3-1: GLP-1 is produced as a product of posttranslational processing of 

preproglucagon. Differential cleaving of proglucagon is mediated by organ-specific 

expression of prohormone convertases. Processing occurring in the intestines and brain 

produces GLP-1, GLP-2, glicentin, and oxyntomodulin, which have been implicated in the 

regulation of food intake. Processing in the pancreas produces glicentin-related pancreatic 

polypeptide (GRPP), glucagon, and the Major Proglucagon Fragment (MPGF). 
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3.2.2 GLP-1-mediated activation of appetite-regulatory networks 

Gcg-expressing (GCG) neurons that release GLP-1 are primarily located in the nucleus of 

the solitary tract (NTS)287. When GCG neurons were ablated bilaterally via a cre-dependent 

diphtheria toxin injection into the NTS of glucagon-cre animals, there was significant loss 

of GLP-1 in the brainstem, hypothalamus, and spinal cord287. Therefore, it was determined 

that GCG neurons in the NTS are a major contributor to the release of GLP-1 in those areas. 

In addition to GLP-1, GCG neurons have been established to contain GLP-2, 

oxyntomodulin, and glicentin285. 

In response to gut-mediated vagal excitation, NTS-GCG neurons release GLP-1 in multiple 

brain regions, including the paraventricular nucleus (PVN), arcuate nucleus (ARC) and 

ventromedial nucleus (VMH)288–290. It has been established that NTS-GCG projections 

onto the PVN enhance glutamatergic synaptic transmission, which suppresses food intake, 

while specific ablation of GLP-1R in the PVN causes overeating and obesity289. NTS-GCG 

projections onto ARC neurons directly activates POMC neurons and indirectly inhibits 

NPY neurons through GABAergic interneurons (Figure 3-2)291. Additionally, the ARC 

has direct access to circulating metabolic hormones such as GLP-1 due to fenestrated 

vessels that pass through the brain area292,293, indicating that vagal-mediated GLP-1 

signaling is not necessary for its control of appetite.  
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Figure 3-2: Proglucagon-expressing (GCG) neurons modulate arcuate nucleus 

function via GLP-1 transmission. Signals elicited via gut-generated GLP-1 binding to 

GLP-1 receptors (GLP-1R) on vagal afferents converge onto the nucleus of the solitary 

tract (NTS). Vagal activation of NTS Gcg-expressing neurons results in release of GLP-1 

onto neurons in the arcuate nucleus (ARC). GLP-1 binding with GLP-1R directly activates 

POMC/CART neuronal transmission, while GLP-1 binding on GABAergic interneurons 

results in indirect inhibition of NPY/AgRP output. Thus, GLP-1 binding collectively 

results in decreased food intake and as a result, decreased body weight. Adapted from 

Baggio and Drucker291. Created with BioRender.com. 
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3.2.3 GLP-1R agonists and emerging combinatorial therapies in the control of 

obesity and type 2 diabetes   

Mice on HFD have been shown to have decreased basal circulating GLP-1 levels, 

indicating that decreased GLP-1 may be a driver of metabolic adaptation seen in obesity294. 

Thus, GLP-1 receptor agonists (GLP-1RAs) have  been explored as possible 

pharmaceutical targets for the treatment of obesity. GLP-1RAs are an emerging class of 

drugs that are used in the treatment of type 2 diabetes (T2D)295. The primary 

pharmacological function of  GLP-1RAs is to promote insulin secretion via GLP-1’s 

functions in the pancreas295. However, because of the wide distribution of GLP-1Rs, the 

agonists have positive off-target effects in other tissues. For example, liraglutide, an FDA-

approved treatment for T2D, has been found to increase survival in patients with co-morbid 

T2D and high cardiovascular risk as indicated by decreased all-cause deaths in patients 

given liraglutide when compared to placebo 296. In general, the class of GLP-1RAs have 

been indicated to have therapeutic effects beyond their role in T2D treatment, including 

but not limited to NAFLD, polycystic ovary syndrome (PCOS), Alzheimer’s disease (AD), 

Parkinson’s disease (PD), stroke, and certain tumors295.  

Liraglutide has also been established to promote weight loss in T2D subjects 297. It is 

evident that GLP-1R agonists are highly effective drivers of GLP-1R action and can be 

powerful tools in the treatment of obesity and diabetes. However, GLP-1R monotherapies 

often result in a weight loss plateau, in which both rodents and humans cease to lose weight 

after a variable amount of time298,299, thought to occur due to increased tolerance to the 

drug due to changes in receptor number or function, or some unknown homeostatic 

adaptation through compensatory metabolic-control pathways. This has necessitated the 

search for additional agonists that can be used in combination with GLP-1R agonists to 

improve initial weight loss and prevent homeostatic adaptation by targeting additional 

metabolic pathways. Some possible targets for combination therapies are explored below.  

3.2.3.1 Growth differentiation factor 15 

Growth differential factor 15 (GDF15) has been shown to bind specifically to the GDNF 

family receptor α-like (GFRAL) and has been shown to decrease appetite and body weight 

in obese animals300,301. GFRAL-expressing neurons in the area postrema (AP) have been 

shown to primarily innervate the NTS and parabrachial nucleus (PBN) and are sufficient 

to drive decreased HFD intake and body weight via DREADD excitation302. Recent studies 

have indicated that GLP-1R/GFRAL dual agonists induce reductions in body weight, food 

intake, insulin, and fasting glucose with higher efficacy than GLP-1R agonist liraglutide 

alone303. This synergistic improvement in metabolic indicators is thought to occur through 

separate pathways, as indicated by continued GLP-1R reduction in food intake even in the 

absence of GFRAL expression304.  

3.2.3.2 Amylin 

Amylin is a peptide hormone that is co-secreted with insulin from the pancreas305 and has 

also been shown to control energy expenditure and body weight through the excitation of 
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AP neurons306–312. However, amylin function has been difficult to parse out, as the amylin 

receptor consists of a heterodimer of the calcitonin receptor (CTR) core protein paired with 

one or more receptor activity modifying proteins (RAMPs), which create several different 

types of amylin receptors313–316. Additionally, individual neurons within the hindbrain have 

been shown to express more than one type of RAMP, which further increases the 

differential action of amylin in each neuron317. While amylin action has been highly 

implicated in the control of metabolism309,313,318,319, its mechanistic action is still largely 

unknown due to the lack of selective agonists/antagonists to target specific RAMP/CRT 

receptor complexes that mediate amylin signaling313.  

Despite the lack of information surrounding the mechanistic effects of amylin, amylin 

agonist pramlintide has been successful in the treatment of T2D and  has also been shown 

to mediate weight loss in T2D patients320,321, similarly to liraglutide. Several reports have 

shown that combination therapies of synthetic amylin analogs and GLP-1R agonists 

produce additive reductions of body weight and food intake in animals322–324. Additional 

research showed that the weight loss plateau associated with typical pharmacotherapies 

could be overcome through a stepwise combinatorial therapy wherein animals received 

amylin treatment for one week, liraglutide the next, and then combined amylin and 

liraglutide for two more weeks322.  Through the examination of cFos-immuno-positive 

neurons in the AP and NTS, Liberini, et al. were additionally able to determine that amylin 

seemed to activate neurons equally in both the NTS and AP, while liraglutide primarily 

activated neurons located in the NTS322. Combination therapy increased cFos expression 

in both brain areas, suggesting that amylin and GLP-1 may activate a set of overlapping 

circuits to create synergistic reductions in food intake and body weight when activated 

together.  

3.2.3.3 Adipokines: leptin, adiponectin, and interleukin-6 

Bioactive molecules released from adipose tissue, known as adipokines, have been 

implicated in homeostatic control of metabolism325. During obesity, adipose tissue 

undergoes extensive remodeling and subsequently increases its release of pro-

inflammatory adipokines and decreases its release of anti-inflammatory adipokines325. 

Additionally, GLP-1 has been found to limit inflammation in adipocytes, thus possibly 

mediating adipokine contribution to obesity326. Here, I’ll discuss three adipokines that have 

been implicated in GLP-1 control of obesity – leptin, adiponectin, and interleukin-6. 

3.2.3.3.1 Leptin 

Leptin has long been established to decrease appetite and increase energy expenditure 

through its actions in the ARC, acting through a similar mechanism as described in Figure 

3-2327. As circulating leptin levels increase with increased adipose tissue mass, it is 

expected that leptin signaling would aid in increased fat loss328. However, leptin resistance, 

or impaired leptin functioning, is one of the hallmarks of obesity, although its cause is a 

subject of controversy329,330. Although leptin monotherapies have not been successful in 

causing weight loss331–333, some have hypothesized that leptin may modulate GLP-1 action 

or secretion, due to their overlapping actions in the ARC. Leptin has also been shown to 
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stimulate GLP-1 secretion from rodent and human intestinal L cells294. It has been 

established in both humans and rodents that low doses of GLP-1R agonists and leptin 

additively reduce food intake and body weight, while increasing doses of leptin had no 

additive effects on GLP-1R agonism334,335. Additionally, GLP-1R agonism reduced 

expression levels of protein tyrosine phosphatase 1B (PTP1B), a negative regulator of 

leptin receptor signaling, indicating a GLP-1-mediated effect on leptin signaling pathways 

that increase leptin sensitivity335. 

In addition to its direct effects on the ARC, leptin receptors have been shown to be present 

on GCG neurons336, and functional studies have shown that leptin activates GCG neurons 

in the hindbrain337. Centrally administered leptin is also sufficient to mediate proglucagon 

expression and GLP-1 release in the hindbrain, as indicated by Gcg mRNA levels in the 

NTS and hypothalamic GLP-1 levels338.  

3.2.3.3.2 Adiponectin 

Adiponectin, though primarily produced in adipocytes, can be released by various other 

tissues and organs339. In both humans and rodents, adiponectin has been shown to increase 

insulin sensitivity, reduce inflammation, and decrease body weight340. Patients with obesity 

and T2D have been reported to have low adiponectin levels341, and GLP-1R agonists have 

been shown to increase adiponectin expression in both rodents and humans342,343.  

However, very little research has been done exploring how GLP-1R signaling mediates 

adiponectin release.  

3.2.3.3.3 Interleukin-6 (IL-6) 

Interleukin-6 (IL-6) is released by adipocytes, especially during adipose tissue expansion, 

causing its levels to be much higher in obese individuals344,345. One group found that GLP-

1R agonism increases IL-6 circulating levels in both humans and mice, and that increased 

IL-6 signaling induced adipose tissue browning and thermogenesis346. In adipose-specific 

IL-6 receptor knockout mice, GLP-1R agonism still induced weight loss, but did not induce 

browning or metabolic alterations346. This indicates a synergistic effect between GLP-1 

and IL-6, in which GLP-1 is primarily responsible for inducing weight loss, while IL-6 

induces adipose tissue browning to improve glucose homeostasis and increase metabolism. 

3.2.3.4 Endocrine-released hormones 

3.2.3.4.1 Ghrelin 

Ghrelin is secreted primarily in the gut and stimulates food intake in a dose-dependent 

manner347. When functioning typically, ghrelin rises before a meal and decreases after a 

meal, with levels decreasing proportionally to the number of calories consumed348. 

However, in obese individuals, ghrelin levels were not proportional to caloric load, and 

were also reduced less post-prandially when compared to control subjects349. Ghrelin 

action occurs in the ARC, where its receptor is expressed on the orexigenic NPY/AgRP 

neurons350. It has been hypothesized that ghrelin, leptin and GLP-1 action in the ARC act 
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to balance the appetite modulating effects of each other and serve to enable more selective 

control of appetite351,352.  

3.2.3.4.2 Glucose-dependent insulinotropic polypeptide  

Glucose-dependent insulinotropic polypeptide (GIP) is synthesized and released in the gut, 

and like GLP-1, belongs to the class of hormones known as incretins353. GIP receptor 

(GIPR)/GLP-1 receptor (GLP-1R) co-agonists have shown potential results in improving 

glucose tolerance and increasing weight loss beyond the effects of GLP-1R alone354–356. 

GIP mechanisms in the control of obesity, however, are still under debate, as agonism of  

GIPR has been shown to increase glucagon secretion and even inhibit the appetite-

suppressing effects of GLP-1357,358. One possible mechanism explaining the improved 

effects of GIPR/GLP-1R co-agonism in the face of this is that GIPR is removed from the 

membrane after an initial GIPR stimulation, thus desensitizing further GIP metabolic 

action359.  

3.2.3.4.3 Other PPG-derived hormones: GLP-2, glicentin, and oxyntomodulin 

GLP-2, like GLP-1, is released post-prandially from endocrine L cells and is also released 

by GCG neurons, though there is a paucity of research surrounding CNS GLP-2. It has 

been shown to induce anorexia not caused by taste aversion when injected intracranially360. 

However, its interactions with GLP-1 remain contentious, with one group finding that 

antagonism of GLP-1R abolished GLP-2 induced anorexia360, and another  finding 

increased anorectic effects of GLP-2 in GLP-1R knockout mice361. 

Both glicentin and oxyntomodulin are also released post-prandially from L cells and are 

thought to be released from GCG neurons in the hindbrain. Oxyntomodulin (OXM) is a 

dual agonist for the glucagon receptor (GCGR) and GLP-1R and is thought to mediate 

decreased food intake and increased energy expenditure via binding to GCGR and 

improved glucose homeostasis via binding to GLP-1R362–365. Three clinical trials (one 

ongoing) have formed to study the efficacy of a synthetic OXM analog LY3305677 in 

obesity and T2D, with one indicating weight loss measured up to 12 weeks in obese patients 
366–368. To my knowledge, there are no known effects of NTS-derived glicentin, and its 

receptor remains unknown.  

3.2.3.4.4 Post-prandially released hormones: peptide YY and cholecystokinin 

Peptide YY (PYY), cholecystokinin (CCK) and GLP-1 are all released post-prandially and 

function as satiety signals. After entering the gastrointestinal lumen, nutrients trigger the 

secretion of these peptides from endocrine L cells, which then activate vagal afferents to 

the NTS369. PYY has been shown to be released post-prandially in amounts dependent on 

caloric load and reduces food intake and prolongs inter-meal intervals370–373. In obese 

individuals, fasting levels of PYY are lower and postprandial levels are lowered, despite 

not exhibiting resistance to the appetite-mediating effects of PYY374,375. CCK also dose-

dependently reduces food intake in both rodents and humans, and reduced sensitivity to 
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CCK is a hallmark of diet-induced obesity376. Two different dual GLP-1/CCK hybrid 

peptides decreased body weight in DIO mice over GLP-1R agonism alone, indicating there 

may be synergistic effects that they play in the control of food intake and satiety377,378. 
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4 CHAPTER 4:  TRANSCRIPTIONAL PROFILING OF 

HINDBRAIN NEURONS OF ANIMALS ON CHRONIC 

HIGH-FAT DIET 

 

4.1 ABSTRACT 

It has been well-established that GLP-1 is a central mediator in the control of food intake 

and body weight, making it a primary target in the pharmacological treatment of obesity. 

While GLP-1 receptor agonists have shown promising weight loss in obese patients, these 

pharmacotherapies often result in a weight loss plateau. This loss in efficacy has 

necessitated the search for additional targets that can be used in combination with GLP-1 

receptor agonists to further improve weight loss and reduce tolerance to the therapy. This 

chapter explores our efforts to establish a single-nuclei isolation technique for the hindbrain 

and a pilot experiment to investigate differential GLP-1 signaling in obese mice. Finally, I 

will explore emerging data in the field and how it has changed the dogma around GLP-1 

signaling.  

4.2 INTRODUCTION 

GLP-1 is directly linked to appetite suppression and been implicated in mediating weight 

loss, which has made it a target of interest in the control of obesity295. Obesity is 

significantly associated with increased mortality rates, and as body mass index (BMI) 

increases, so does overall mortality and co-morbid diabetes-related mortality rates231. In 

2013, the National Health and Nutrition Survey estimated that in the United States, 1 in 3 

adults were considered obese (body mass index/BMI ≥ 30) and obesity accounted for 18% 

of deaths among Americans between the ages of 40 and 85232,233.  While bariatric surgery 

remains the most effective intervention in the treatment of obesity379, it is still only 

efficacious in approximately 80% of patients380, underlining a vital need for the creation of 

safe and effective pharmacotherapies in the treatment of obesity.   

GLP-1 receptor (GLP-1R) agonists are an emerging class of drugs that have been FDA-

approved in the treatment of obesity295. While initially GLP-1R agonists were explored for 

their promotion of insulin secretion in the treatment of type 2 diabetes (T2D), the agonists 

have also shown promising results in promoting weight loss in obese patients297,381,382. It 

has become increasingly evident that GLP-1R agonists are highly effective drivers of 

appetite suppression and weight loss. However, GLP-1R monotherapies often result in a 

weight loss plateau, in which both rodents and humans reach a point of weight loss where 

continued or increased drug administration ceases to decrease weight298,299. This has 

necessitated the search for additional therapies that can be combined with GLP-1R agonists 

to both improve weight loss and prevent compensatory action in other brain areas that may 

affect the continued effects of GLP-1R agonism.  
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A study by Gaykema, et al. compared the selective activation of GCG neurons in both lean 

and obese animals by injecting a cre-dependent Gq-coupled DREADD (designer receptor 

exclusively activated by designer drugs) into the NTS of a Gcg-cre expressing mouse. 

Excitation of Gcg-expressing (GCG) neurons via CNO injections was sufficient to reduce 

food intake in both lean and obese animals but stimulated rapid, significant weight loss 

exclusively in obese animals383. The rapid weight loss potentiated by GCG activation by 

DREADDs makes it unlikely that the DREADD-mediated GCG activation is causing 

transcriptional changes, necessitating that obesity and/or a chronic high-fat diet has driven 

changes that regulate how GCG stimulation affects body weight.  

This selective regulation of weight loss suggests that there may be transcriptional changes 

that are differentially regulated between lean and obese animals. Identification of these 

transcriptional changes could lead to more efficacious treatment of obesity by establishing 

likely candidates for co-agonism with other established GLP-1R agonists such as 

liraglutide. 

Based on current literature about GLP-1 action and obesity, I developed three distinct 

hypotheses that describe possible ways that obesity may regulate GLP action in the 

hindbrain to help direct analysis of transcriptional data: 

(1) GCG bias toward local or distant control depending on nutritional state. GCG 

neurons under different nutritional states could possibly be biased towards either 

glutamatergic or GLP-1 mediated action and affect different brain areas. Local NTS 

GCG innervation relies on glutamatergic signaling to facilitate recruitment of GLP-

1 neuronal populations 384 while NTS GCG projections outside the NTS function 

through the release of GLP-1 to suppress appetite. These two modalities of NTS 

GCG action could explain why DREADD activation of GCG neurons in obese 

animals triggers such rapid weight loss, as it may activate the local circuit through 

glutamatergic action and function as a gain amplifier. Differential regulation of 

GCG and glutamate transcripts could address this hypothesis. 

 

(2) Co-transmission. As discussed in “Section 3.2.3: GLP-1R agonists and emerging 

combinatorial therapies in the control of obesity and type 2 diabetes”, there are 

several molecules that are released alongside of GLP-1 or are implicated in the 

regulation of GLP-1 action. Of particular interest is GFRAL activation, as GFRAL 

activation by DREADDs initiates rapid body weight loss in the most similar fashion 

to what was seen with DREADD activation of GCG neurons but was also paired 

with aversion to water and food302, indicating that the rapid weight loss caused by 

GFRAL activation was caused by a precipitous drop in water intake, rather than 

loss of fat mass. This is contrasted however, with the selective activation of GCG 

neurons, which caused rapid weight loss (~2 grams in 48 hours) which was 

accompanied by decreased adipose mass383.  
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(3) Vagal remodeling and microbiome dysbiosis.  Increasing evidence has implicated 

diet-induced microbiome dysbiosis in vagal remodeling and neuroinflammation. 

One study found that four weeks of HFD is sufficient to induce microbiome 

dysbiosis and  chronically increased plasma lipopolysaccharide (LPS), which is a 

potent activator of the immune system 385,386. Chronic low-dose administration of 

LPS inhibited CCK-mediated signaling and accompanying satiation response, 

indicating a loss or decrease of vagal afferent function, which leads to alterations 

in the frequency and amplitude of glutamate release in the NTS387. A decrease of 

vagal innervation onto the NTS is also seen in animals given a HFD, indicating that 

diet-mediated dysbiosis initiates vagal withdrawal from the hindbrain386. Together, 

these findings implicate microbiome dysbiosis in the control and maintenance of 

obesity. Reduced vagal innervation of GCG neurons could be explored through 

analysis of transcripts related to vagal signaling. GCG-negative populations could 

also reveal possible differences in astrocytic function, which has also been 

implicated in the control of neuroinflammation. 

To query the role of differential regulation of GCG-mediated firing across nutritional 

states, we established a workflow (Figure 4-1) wherein animals expressing Gcg-driven 

ZSGreen are kept on either normal chow (NC) or high fat diet (HFD) for 5 months to 

induce obesity. After hindbrain isolation and dissociation, single-cell suspensions are 

sorted with Fluoresence-Activated Cell Sorting (FACs) according to ZSGreen status as an 

indicator of Gcg expression. Single-cell RNA-seq of Gcg-expressing and non-expressing 

neurons in both NC and HFD animals allows for comparison of transcriptomes to highlight 

possible functional differences in GCG-regulated signaling across nutritional states. 
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Figure 4-1: Proposed experimental workflow to assess differential regulation in GCG 

neurons across nutritional states. By driving selective expression of ZSGreen through  

GCG-cre, we can use FACs sorting to isolate GCG populations of neurons in both NC and 

HFD animals. Single-cell analysis can then reveal possible transcriptomic differences in 

the HFD sample of animals that could regulate differences in GLP-1 mediated signaling.  
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4.3 RESULTS 

4.3.1 Established single-cell isolation techniques do not yield sufficient numbers of 

neurons 

Because GCG neurons are present at very low levels in the hindbrain, we required a single-

cell isolation protocol that produced high yields of cells. Typical methods of isolation, such 

as sucrose gradients, can result in up to 70% loss of the total cells. Based on published 

protocols, we first attempted a protease-mediated method of dissociation in live cells 388–

391. These methods resulted primarily in insufficient digestion of hindbrain slices, which 

we believed to be due to the high amounts of myelin present in the hindbrain that are not 

present in other brain areas.  

Based on research indicating that fixation of cells does not substantially reduce RNA 

quality at the gene level392,393, we decided to fix cells with 3,3'-dithiobis(sulfosuccinimidyl 

propionate)) (DTSSP), a water-soluble amine-reactive crosslinker, to prevent RNA 

degradation during isolation.  Additionally, we pivoted to collecting single-nuclei rather 

than single-cells based on data indicating that transcript levels are similar for nuclei and 

cells across approximately three orders of magnitude, and conserved marker gene 

expression confirmed that the same 11 cell types were identified with nuclei and cells394,395. 

The combination of these two changes allowed us to use physical methods of dissociation, 

which improved the cell clumping that we experienced with the protease digestion.  

4.3.2 Significant levels of cellular debris during nuclear isolation prevents selective 

isolation 

Our adapted protocol resulted in successful isolation of single nuclei from the mouse 

hindbrain, but also resulted in significant cellular debris which made selective isolation of 

nuclei difficult and increased contamination (Figure 4-2). To address this issue, we tested 

several methods of enrichment, which we hoped would allow us to both concentrate nuclei 

and decrease contaminants that were created during dissociation. Trials included 

myelination removal, selective pulldown with an anti-nuclear pore complex (NPC) 

antibody, a gum Arabic + octanol wash396,397, size-mediated filtration, and two successive 

FACs sorts (trials and results summarized in Table 4-1). All attempted methods, however, 

resulted in significant loss of nuclei, rendering them incompatible with our downstream 

applications as well as reducing an already small population of the neurons of  interest. 
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Figure 4-2: Excessive amounts of debris during nuclear isolation prevents selective 

isolation of nuclei. Representative image showing that hindbrain samples contained high 

amounts of debris as indicated by the large percentage of non-DAPI+ events. Brain tissue 

obtained from the hindbrain was isolated using manual dissociation with a plastic pestle, 

fixed using DTSSP, and stained with DAPI. Samples shown here did not undergo any 

further manipulation after nuclei isolation protocol and were run on an Attune NxT Flow 

Cytometer (ThermoFisher).  DTSSP = 3,3'-dithiobis(sulfosuccinimidyl propionate)) 
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Table 4-1: Summary of protocols used to clear debris from nuclei slurry. Trials include 

myelin removal with myelin removal beads, selective pulldown with various adjustments 

to different steps of the basic protocol, a gum arabic + octanol wash step396,397, size-

restricted filtration, and successive FACs sorts to enrich for DAPI+ nuclei. Number of 

nuclei were determined by counting DAPI+ nuclei with a hemacytometer in ImageJ398. 
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4.3.3 Pilot experiment using microfluidics-based cellular sorting and Smart-seq  

Due to our continued struggles with obtaining concentrated samples of hindbrain nuclei, 

we attempted a pilot experiment using the 10X Genomics (Pleasanton, CA, USA) protocol 

for the isolation of nuclei from tissue399, along with sorting nuclei with the Nanocellect 

WOLF (San Diego, CA, USA), which claims to be gentler than traditional cell sorters and 

to improve specificity of sorting. We found that we were able to increase the GFP+ nuclei 

fraction and remove debris without an enrichment sort (Figure 4-3), which we had not 

previously been able to accomplish.  

For this pilot experiment, one GLP:ZSGreen animal from each experimental group (HFD 

and NC) was harvested and had nuclei isolated, then sorted into 384-well plates containing 

Smart-seq capture buffer. Both ZSGreen+ and ZSGreen- nuclei were collected from each 

animal into separate plates to examine both Gcg-expressing and non-expressing nuclei and 

non-nuclei in the hindbrain, as differential effects in obesity may be occurring outside of 

GCG nuclei. Ninety-six nuclei from each group (HFD DAPI+ZSGreen+, HFD 

DAPI+ZSGreen-, NC DAPI+ZSGreen+, and NC DAPI+ZSGreen+) were prepared by Dr. 

John Campbell using the Smart-Seq2 protocol and sequenced at the Functional Genomics 

core at Beth Israel Deaconess Medical Center.   
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Figure 4-3: WOLF sorter successfully enriched DAPI+ nuclei and decreased levels of 

debris. When observing nuclei in the pre-sorted sample, there was a significant amount of 

debris, which resulted in a low percentage of DAPI+ nuclei in the sample. After the sort 

selecting for DAPI+ZSGreen+ nuclei, we saw a significant increase in  DAPI+ZSGreen+ 

nuclei (post-sort), indicating successful enrichment of the target population.  
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4.3.4 Transcriptomic analysis of single-nuclei RNA-seq 

Transcriptomic analysis of single-nuclei dataset was performed using the R package 

Seurat400.  Clustering analysis made it apparent that there were no clusters specific to 

treatment group (Figure 4-4), and that Gcg gene expression was present in very few of the 

sampled nuclei (Figure 4-5) and therefore was not sufficient to drive clustering of nuclei. 

Right away, this indicated that it was highly unlikely that this pilot experiment had revealed 

genes that could possibly drive differential regulation of obesity. Despite this, I examined 

the genes that were differentially expressed across cluster types to determine if there were 

other genetic markers that defined clustering that may be of interest.  

Despite filtering out mitochondrial genes, Cluster 0 seemed to be driven by high expression 

of mitochondrial genes (Figure 4-6) and was also the cluster that represented the highest 

number of nuclei (206). Cluster 1 was defined by expression of Rbfox1, Lingo2, Fam155a, 

Nrg3, Tenm2, Snhg11, Fgf14, Meg 3, Lrrtm4, and Kcnip4 (Figure 4-7). This cluster also 

contained the very few Gcg-expressing neurons that were identified (Figure 4-5). An 

examination of the functions of the genes is found in Table 4-1. Cluster 2 was defined by 

St18, Plcl1, Arhgap23, Neat1, St6galnac3, Nkain2, and Plekhh1 (Figure 4-8). An 

examination of the functions of these genes is found in Table 4-1. While no trends were 

discovered, the expression of Lingo2, Tenm2, and Nrg3, which are all implicated in 

neuronal processes, further indicates that Cluster 1 represents a population of neurons.  
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Figure 4-4: Clustering of single-nuclei RNA-seq. (A) When color-coded by the 

experimental sub-groups, it is apparent that no sub-group was transcriptionally unique, as 

would be expected if Gcg neurons experienced differential transcriptional regulation in 

HFD versus NC animals. (B) Clustering analysis sub-divided the nuclei into 3 distinct 

clusters.  neg_HFD = HFD animals, DAPI+ZSGreen- nculei; pos_NCD = NC animals, 

DAPI+ZSGreen+ nuclei,   pos_HFD = HFD animals, DAPI+ZSGreen+ nuclei; neg_NCD  =  

NC animals,  DAPI+ZSGreen+ nuclei 

  



68 

 

 

Figure 4-5: Gcg gene expression was identified in very few nuclei.  Gcg expression was 

localized to Cluster 1, but was expressed in very low numbers of nuclei, indicating that 

either Gcg levels are under the level of detection, or Gcg neurons were not actually enriched 

during the sorting process.  
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Figure 4-6: Despite filtering, mitochondrial genes are present in all clusters. 

Mitochondrial gene expression was present in every cluster at high expression levels, 

indicating there was a high level of mitochondrial contaminants in our sample. Cluster 1 is 

primarily driven by the expression of these mitochondrial genes. 
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Figure 4-7: Genes driving cluster 1. The genes driving cluster 1 include Rbfox1, the gene 

that produces the antigen neuronal nuclei (NeuN), suggesting that this cluster represents 

the neuronal population.  
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Figure 4-8: Genes driving cluster 2. There are no apparent identifying genes in this 

cluster, aside from Plcl1 possibly indicating that this cluster represents GABAergic 

neurons.  
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Gene Function 

Rbfox1 Produces the neuronal nuclei (NeuN) antigen 

Lingo2 Acts upstream of positive regulation of synapse assembly 

Fam155a Predicted to contribute to stretch-activated calcium-channel activity 

Lrrtm4 Involved in regulation of synapse assembly, part of AMPA glutamate 

receptor complex 

Kcnip4 Enables calcium ion binding activity and potassium channel regulator 

activity; part of voltage-gated potassium channel complex 

Nrg3 Involved in intracellular signal transduction and regulation of cell 

migration; predicted to be active in the glutamatergic synapse 

Tenm2 Predicted to be involved in retrograde trans-synaptic signaling by trans-

synaptic protein complex; predicted to be active in neuron projection 

Snhg11 Unknown 

Fgf14 Predicted to enable growth factor activity and sodium channel regulatory 

activity 

Meg3 Negative regulator of cell growth  

St18 Predicted to enable DNA-binding transcription factor activity 

Plcl1 Predicted to enable GABA receptor binding activity, regulation of 

GABAergic transmission, and GABA signaling pathway 

Arhgap23 Part of RHO family of small GTPases involved in signal transduction 

through transmembrane receptors 

Plekh1 Unknown  

Neat1 Forms core structural component of the paraspeckle sub-organelles 

St6galnac3 Predicted to be involved in oligosaccharide metabolic process and protein 

glycosylation 

Nkain2 Predicted to be involved in regulation of sodium ion transport 

 

Table 4-1: Exploration of differentially regulated genes that drove UMAP clusters.  

Functional analysis of top differentially regulated genes across clusters did not reveal any 

strong trends. Cluster 1 was defined by several genes involved with the glutamatergic 

synapse or synapse assembly in general (Lingo2, Nrg3, Tenm2), further indicating that it 

represents neurons, and possibly specifically glutamatergic neurons. Enrichment of Plcl1 

may indicate that cluster 2 contains GABAergic neurons. 

4.4 DISCUSSION 

This study of GCG neurons in the hindbrain represents a push towards a better 

understanding of the mechanisms of appetite control and how they might be differentially 

regulated during obesity. While we attempted to establish an improved system for isolating 

nuclei from the hindbrain, we faced multiple obstacles due to the vast amounts of debris 

that are produced during tissue dissociation. This remains a primary obstacle in establishing 

a transcriptomic pipeline for GCG neurons and their targets specifically, as they represent 

a very small proportion of hindbrain neurons.  
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In a recent study surveying the transcriptome of mouse hindbrain neurons, 16,034 nuclei 

were collected from the AP and NTS of 4 animals, and only 173 expressed Glp1r (~1% of 

collected nuclei)401.  Within that small population, there appeared to be even further 

stratification, with clustering of Glp1r neurons indicating that there are groups of both 

inhibitory and excitatory neurons that receive inputs from GCG neurons401. In terms of co-

expression of receptors, 6 of the 173 Glp1r-expressing nuclei co-expressed Gipr (GIP 

receptor), 5 co-expressed Calcr (a component of amylin receptors), and 4 co-expressed 

Gfral (GDF15 receptor), indicating that there may be subsets of neurons that receive further 

modulation from these metabolic agonists401. As discussed in “Section 3.2.3: GLP-1R 

agonists and emerging combinatorial therapies in the control of obesity and type 2 

diabetes”, GIP, amylin, and GFD15 are all established to work synergistically in 

combinatorial therapies with GLP-1R agonists304,322,354,355,358. Based on the data discussed 

here, it seems likely that subsets of GLP-1R neurons are co-mediated by GCG and other 

metabolic inputs, with little overlap401. However, it remains unclear how these synergistic 

effects are modulated through the lens of obesity.  

A variety of research in the past decade has implicated that GLP-1 signaling operates 

through two distinct pathways. Two studies found that brainstem and hypothalamus 

knockdown of Glp1r did not affect glucose tolerance or food intake but did block the 

effects of GLP-1R agonism on both food intake and body weight402,403. In contrast, nodose 

ganglion-specific deletion of GLP-1R was sufficient to alter glucose tolerance and decrease 

food intake but did not affect GLP-1R agonism’s effects on food intake and body 

weight402,403. This is consistent with data showing that synthetic GLP-1R agonists are 

primarily found in the AP and other circumventricular organs, indicating that these agonists 

bypass gut-mediated signaling and instead directly activate GLP-1R neurons in the AP299. 

Endogenous GLP-1, in contrast, is unlikely to reach the brain due to its short half-life286. 

Transcriptional and functional data in obese animals treated with GLP-1R agonists also 

indicated that AP Glp1r-expressing neurons express the highest transcriptional changes 

after GLP-1R agonism while NTS GCG neurons were found to have no transcriptional 

changes after GLP-1R agonism404. In contrast, Glp1r-expressing neurons in the NTS were 

also shown to have significant levels of transcriptional changes after GLP-1R agonism, and 

activation of these neurons was sufficient to reduce body weight and food intake404. 

Together, these data indicate that GCG neurons are not necessary to mediate GLP-1R 

agonism through central signaling pathways, but rather through gut-vagal signaling.  

A recent study implicates that central GLP-1 mediated signaling through vagal afferent 

neurons (VAN) does not in fact affect satiety through GCG neurons. Initially, they found 

that VAN-specific Glp1r activation was sufficient to drive a slight decrease food intake 

body weight without a change in energy expenditure but was also accompanied by flavor 

avoidance290. This contrasts with the Gaykema, et al. study that showed that specific 

activation of NTS-GCG neurons does not cause flavor avoidance or insensitivity383. Based 

on their findings that Oxtr-expressing rather than Glp1r-expressing VANs were the 

primary vagal input onto GCG neurons in the NTS, they tested food intake in the response 

to oxytocin and found that GCG-NTS neurons were necessary for oxytocin-mediated 
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reduction of food intake290. They also demonstrated that GLP-1R agonism suppresses 

eating and reduces body weight independently of GCG-NTS neurons, as was indicated by 

selective ablation of NTS-GCG neurons having no effect on the efficacy of GLP-1R 

agonists. However, they found that GLP-1R agonism paired with GCG-NTS activation 

further reduced food intake and body weight when compared with GLP-1R agonism or 

GCG-NTS activation alone290. Based on these findings, they hypothesized that peripheral 

and central GLP-1 act to affect different pathways in the NTS, with Glp1r-expressing vagal 

afferents synapsing preferentially onto non-GCG neurons and Oxtr-expressing vagal 

afferents primarily controlling GCG neuronal activation290. Importantly, they also found 

that GCG-NTS activation was sufficient to drive rapid weight loss in lean animals, in 

contrast to the findings in Gaykema, et al290,383.  

However, these differences may allow for further insight into how these central and 

peripheral pathways are differentially mediated during different stages of obesity. To that 

end, an important distinction to make is that the “lean” population in the Gaykema, et al 

study had been on HFD for 2 weeks prior to GCG-NTS activation, while the obese 

population had been on HFD for 5 months383. This may indicate, therefore, that during 

acute HFD administration, only peripheral GLP-1 signaling is affected, possibly through 

differential vagal signaling in response to changes in nutrient densities or diet-induced 

microbial dysbiosis386,405. Because AP-mediated GLP-1R neurons may still be functioning 

as normal, due to their access to circulating hormones, there is still sufficient activation of 

GCG neurons that increasing their firing rate through DREADD activation only  slightly 

affects satiety383. Once obesity is established, however, central and peripheral GLP-1 

signaling pathways have been altered, simultaneously impairing gut-vagal signaling that 

would convey GLP-1-mediated signaling as well as impairing GCG-mediated signaling, 

possibly through synaptic changes, modulation of Gcg expression, alteration of vagal-AP 

signaling, or increased levels of oxytocin during obesity affecting vagal-GCG signaling406–

410. Thus, when DREADD activation occurs, the increased excitability of the GCG neurons 

allows for reduced AP or vagal inputs to be able to drive an action potential, and thus 

restores central GLP-1 signaling pathways, which have been shown to be sufficient to 

decrease food intake and body weight290. However, many of these systems of GCG-

mediated signaling are still poorly understood and require further investigation to fully 

grasp how obesity may affect both central and peripheral GLP-1 signaling. 

This hypothesis of both central and peripheral mechanisms of GLP-1 being dysregulated 

because of obesity rather than HFD may also shed some light on some studies indicating 

that Glp1r knockouts are protected from obesity and that GLP-1R antagonism reduces 

weight gain on HFD411–413. In contrast to GLP-1R agonism being sufficient to drive weight 

loss, several studies have found that Glp1r knockout mice gain significantly less weight on 

HFD and exhibited increases in energy expenditure regardless of diet411,413. Additionally, 

daily injections of a GLP-1R antagonist were found to have significant metabolic effects 

in animals fed HFD which were not seen in NC animals. In HFD animals, GLP-1R 

antagonism reduced weight gain, did not affect food intake, increased energy expenditure, 

and did not further impair glucose tolerance, while in NC animals, GLP-1R antagonism 
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had no effect on weight gain, food intake, or energy expenditure but induced glucose 

intolerance412. The main contrast of these studies with those that studied GLP-1R agonists 

is the time of pharmacological or genetic intervention – agonism studies have looked at 

reversal of obesity (i.e., weight loss and food intake after obesity has been established) 

while antagonism and knockout studies have examined protection against obesity (i.e., 

reduced weight gain and increased energy expenditure when consuming a high calorie 

diet). Again, this could indicate that central and peripheral signaling pathways of GLP-1 

are affected differently by high-fat diet and obesity and requires further investigation using 

vagal- and brain-specific interventions to fully understand the intricacies of GLP-1 

signaling.  

4.5  EXPERIMENTAL METHODS 

4.5.1 Experimental animals  

All studies were approved by the University of Virginia’s Animal Care and Use 

Committee. GCG-cre animals were generated as previously described in Gaykema, et 

al.383. Twelve-week-old adult male and female B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J 

(Ai6, Strain # 007906) mice were purchased from The Jackson Laboratory. Ai6 contains a 

floxed STOP-cassette resulting in ZsGreen expression only in cre-expressing cells. Mice 

were housed in the Pinn Hall vivarium at the University of Virginia on a 12h light: 12h 

dark cycle with ab libitum access to normal chow  (NC, Teklad 2013, 4% fat, 17% protein, 

48% carbohydrate, no sucrose, 2.9 kcal/g) and water, unless otherwise stated. Both lines 

have been backcrossed to C57Bl6/j animals for at least 7 generations. We generated 

heterozygous GCG:ZsGreen animals through two subsequent crosses: (1) crossing GCG-

cre homozygous females with Ai6 homozygous males and (2) crossing the resulting 

heterozygous GCGcre/+/Ai6fl/+ offspring (referred to as GCG:ZsGreen throughout). This 

strategy results in ZsGreen expression localized to GCG-expressing neurons. At weaning, 

pups were either kept on NC or transferred onto a high-calorie diet (Teklad TD.88137, 

15.2% kcal from protein, 42.7% kcal from carbohydrate, and 42% kcal from fat, Envigo, 

Dublin, VA, USA) in an effort to distribute sexes evenly across both NC and HFD 

conditions.  GCG animals were genotyped with the following primers:   Cre+ 5′-

GTGAAACAGCATTGCTGTCAC-3′, Cre– 5′-TGCTTCTGTCCGTTTGCCGGT-3′, 

M176 5′-GGTCAGCCTAATTAGCTCTGTCAT and M177 5′-

GATCTCCAGCTCCTCCTCTGTCT-3′. Ai6 mice were genotyped with the following 

primers: WT Forward 5’ -AAG GGA GCT GCA GTG GAG TA – 3’, WT Reverse 5’ – 

CCG AAA ATC TGT GGG AAG TC – 3’, Mut Reverse 5’ – GGC ATT AAA GCA GCG 

TAT CC – 3’, Mut Forward 5’ – AAC CAG AAG TGG CAC CTG AC – 3’.  

4.5.2 Nuclei isolation protocol used for pilot experiment 

Two seven-month old GCG:ZSGreen animals, one kept on NC for 7 months and one kept 

on HFD for 7 months, were euthanized using 100 uL of Euthasol euthanasia solution 

(Virbac AH, Inc., Carros, France). Once mice no longer responded to a toe pinch, mice 

were decapitated as a secondary measure of euthanasia. The brains of the animals were 
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removed and placed in ice-cold PBS to halt heat-mediated degradation of RNA. Using two 

razor blades, the hindbrain was dissected by cutting caudal of the superior colliculus and 

rostral to the cerebellum. The following protocol is an adaptation of the 10X Genomics 

protocol for isolation of nuclei399. Tissue slices were placed in a 1.5 mL microfuge tube 

filled with 200 µL of ice-cold 10X buffer (20 mM sodium bicarbonate buffer pH 8.2, 5 M 

NaCl, 1M MgCl2, 25% NP-40 brought up to 10 mL with 1X PBS). Using a sterile plastic 

pestle, tissue was disrupted with 10 twists of the pestle and then another 200 µL of ice-cold 

10X buffer was added to the homogenate. Homogenate was spun for ~2 sec in a tabletop 

minifuge to settle any non-homogenized tissue. Tissue was then further homogenized via 

ten more passes of the plastic pestle and 100 µL of 10X buffer was added to homogenate. 

Tissue was then further homogenized using an electric homogenizer at mid-speed for 20 

seconds. To fix, 0.5 mg of DTSSP (Cat # 21578, ThermoFisher, Waltham, MA, USA) was 

added to all samples. Samples were then incubated with rotation at 4°C for 30 min. DTSSP 

was quenched by 40 mM of Tris-HCl. Tissues were brought up to 1 mL total volume with 

10X wash (5% BSA in 50 mL Ca2+, Mg2+- free PBS) and 1 µL (10 µg/mL) of 7:ADD 

(Cat # SML1633, Sigma Aldrich, St. Louis, MO, USA) was added to stain DNA. Tubes 

were incubated for at with rotation at 4°C for 10 min to allow for sufficient staining of the 

DNA. Tubes were spun for 7 min at 700 x g  in a tabletop centrifuge and resuspended in 1 

mL of 10X wash two times and then passed through a 20 µm filter (Cat # 130-101-812, 

Miltenyi Biotec, Bergisch Gladbach, North Rhine-Westphalia, Germany).  

4.5.3 Sorting of Nuclei Using NanoCellect WOLF Cell Sorter 

Nuclei sorting was achieved using the NanoCellect WOLF Cell Sorter and analysis was 

done through their proprietary program (NanoCellect Biomedical, San Diego, CA, USA). 

The sorting strategy was as follows: 7-AAD staining was used to define nuclei and 

discriminate debris, FSC and BSC were used to confirm nuclei, doublets were 

discriminated using FSC-Height versus FSC-Width, and ZSGreen populations were 

selected by high fluorescence in the GFP channel.  Four 384-well plates were pre-prepared 

with 10 µL of Smart-Seq2 sample buffer and each represented a different population of 

nuclei – (1) HFD-fed 7-AAD+ZSGreen-, (2) HFD-fed 7-AAD+ZSGreen+, (3) NC-fed 7-

AAD+ZSGreen-, and (4) NC-fed 7-AAD+ZSGreen+. Plates were then spun down and flash 

frozen over dry ice.  

4.5.4 Transcriptomic analysis 

Ninety-six nuclei from each sorted group (HFD DAPI+ZSGreen+, HFD DAPI+ZSGreen-, 

NC DAPI+ZSGreen+, and NC DAPI+ZSGreen+) were prepared by Dr. John Campbell using 

the Smart-Seq2 protocol and sequenced at the Functional Genomics core at Beth Israel 

Deaconess Medical Center. 

Transcriptomic analysis of single-nuclei dataset was performed using the R package 

Seurat400, following the Satija Lab’s Seurat – Guided Clustering Tutorial414 and the Harvard 

Chan Bioinfomatics Core – Introduction to Single-cell RNA-seq415. Filter thresholds were 



77 

 

set as follows: nUMI ≥ 400, nGene ≥ 200, log10GenesperUMI > 0.6 and mitoRatio < 0.2 

based on visualizations of quality metrics and established single-nuclei protocols.  
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5 CHAPTER 5: DISCUSSION AND FUTURE DIRECTIONS 

5.1 SUMMARY 

The present dissertation outlines an effort to better understand how behavioral aberrations 

arise from atypical brain function. To that end, we conducted studies to explore cortical 

control of behavior and to establish the transcriptomic profile of proglucagon neurons 

which regulate feeding behavior and metabolism. While seemingly disparate, I will later 

discuss a large body of research that has indicated that the hindbrain has effects on 

motivation and higher cognitive functions272–279, as well as research that implicates gut 

dysbiosis in the control of behavior in response to drugs of abuse, as well as in affecting 

emotional state280–282.  

Based on studies that have implicated abnormal activity of the mPFC in patients with 

substance use disorder (SUD) or behavioral addictions (e.g., pathological gambling, 

kleptomania, binge eating, compulsive sexual behavior)25,42,53,199–206, we sought to better 

understand how specific neuronal populations in the mPFC regulate atypical behavior. We 

harnessed a cre-dependent caspase-3 ablation in both male and female mice to selectively 

ablate vasoactive intestinal peptide (VIP)-expressing interneurons in the prefrontal cortex 

to better explore how this microcircuit functions during specific behavioral tasks. Caspase-

ablated animals had no changes in anxiety-like behaviors or hedonic food intake but had a 

specific increase in impulsive responding during longer trials in the three-choice serial 

reaction time test. Together, these data suggest a circuit-level mechanism in which VIP 

interneurons function as a gate to selectively respond during periods of high expectation. 

To better understand how GLP-1 mediates weight loss and obesity, we attempted to 

establish a pipeline to isolate hindbrain neurons with minimal loss to investigate how GCG 

neurons may be transcriptionally regulated during obesity. Based on a previous study from 

our lab that showed that GCG stimulation was sufficient to drive weight loss in obese mice 

but not in lean mice, we hypothesized that GCG neurons underwent transcriptional changes  

during obesity that mediated their increased effectiveness. However, our difficulties with 

establishing an isolation technique that did not result in significant loss prevented us from 

producing robust single-nuclei sequencing data.  

5.2 DISCUSSION 

While this dissertation discusses two seemingly disparate brain areas, an emerging body of 

literature has indicated that gut-hindbrain signaling has effects on substance use and 

anxiety, which have been primarily attributed to dysfunction in the prefrontal cortex (PFC). 

By increasing our understanding of how these brain areas interact to produce behavior, we 

move towards a more integrated view of the brain, in which brain areas do not operate in 

isolation but are in fact affected by a multitude of signaling pathways. Here, I will review 

two emerging areas of research -  GLP-1 receptor agonists in the treatment of addiction 

and microbiome mediation of behavior and addiction.  
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5.2.1 GLP-1, Addiction, and the PFC  

Even though most of the literature surrounding GLP-1 primarily discusses its effects on 

food intake and metabolism, there is a body of research that implicates GLP-1 in 

modulating drug “satiety” as well as food satiety.  While this dissertation has primarily 

focused on GCG neurons that target areas such as the ARC in the control of homeostatic 

feeding, these GCG neurons additionally synapse onto areas that have been implicated in 

hedonic responses, such as the nucleus accumbens (NAc), ventral tegmental area (VTA), 

and laterodorsal tegmental area (LDTg)416,417.  

The VTA has long been implicated as the “control center” for rewarding and reinforcing 

processes and is the main source of dopaminergic inputs onto both the NAc (mesolimbic) 

and PFC (mesocortical). VTA neurons projecting to the NAc are modulated by excitatory 

inputs from the laterodorsal tegmental nucleus (LDT)418. VTA neurons also exhibit 

projection-specific alterations in synaptic plasticity following rewarding or aversive 

stimuli and in their functional role. VTA-NAc projections have an increased 

AMPA/NMDA ratio (indicating long-term potentiation) after a single cocaine injection and 

increase place preference, indicating that these neurons contribute to reward418,419. VTA-

PFC projections, in contrast, show an increased AMPA/NMDA ratio after a formalin 

injection in the hindpaw and induce conditioned place aversion, implicating these neurons 

are responsible for mediating aversion responses418,419.  

As explored in “Section 1.3.1: Dopaminergic control of cognitive function,” NAc control 

of behavioral reinforcement has ties to both ADHD and addiction and could be affected 

via the GLP-1-mediated modulations of VTA signaling discussed below. 

5.2.1.1 Cocaine 

Several studies have established a link between GLP-1R modulation and cocaine use. GLP-

1R agonism has been shown to reduce cocaine-induced place preference, decrease cocaine 

self-administration, and decrease cocaine-induced hyperlocomotion420–422. Researchers 

hypothesized that GLP-1 action occurs through the VTA, which is known to play a critical 

role in drug seeking423, based on findings that GLP-1 receptors are expressed in VTA. 

When exendin-4 (Ex-4), a GLP-1R agonist, was injected intra-VTA, it was found to reduce 

cocaine-seeking without affecting sucrose-seeking424,425, while a VTA-specific GLP-1R 

knockdown was sufficient to increase cocaine intake424. While VTA Glp1r expression was 

unchanged during extinction studies, NTS Gcg expression was significantly decreased by 

day 7 of extinction, which coincides with drug-seeking behavior426–428. It has been 

established that there is a population of monosynaptic GCG neurons in the NTS that project 

directly to the VTA417, thus implicating a possible NTS-VTA pathway for the control of 

drug-seeking. In terms of mesocorticolimbic signaling, it was found that Ex-4 infusion into 

the NAc was sufficient to attenuate cocaine-seeking425 and peripheral Ex-4 administration 

prevented cocaine-induced activation of neurons in the NAc421. One study has shown that 

acute cocaine administration impairs reactivity of the PFC to VTA stimulation, which they 

hypothesize could facilitate impulsive behaviors during drug use429.  
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5.2.1.2 Amphetamines 

Amphetamine-related hyperactivity, conditioned place preference and dopamine release in 

the NAc have all been shown to be attenuated by acute Ex-4 administration422,430. When 

GLP-1R was selectively ablated in the CNS, Ex-4 treatment had no effect on amphetamine-

conditioned place preference, indicating that its effects are mediated through Glp1r-

expressing neurons in the AP or NTS431. In addition, a synthetic DPP IV inhibitor was 

sufficient to reduce amphetamine-induced hyper-locomotion, indicating that circulating 

GLP-1 levels are important in the regulation of amphetamine-related behavior432. While 

amphetamine has been shown to induce c-Fos expression in the PFC433, reciprocal PFC 

projections to the VTA remain understudied.  

5.2.1.3 Alcohol 

Acute GLP-1R agonism both peripherally and injected directly into the NTS has been 

shown to be sufficient to reduce alcohol intake and preference for alcohol in alcohol-

dependent male rats across multiple studies434–437. Additionally, infusion of a GLP-1R 

antagonist into the NTS ameliorates Ex-4 suppression of alcohol-induced locomotion, NAc 

dopamine release, and alcohol-conditioned place preference438. The VTA is implicated in 

modulating these effects, as indicated by direct injection of Ex-4 significantly reducing 

alcohol intake436. A clinical trial studying the use of GLP-1R agonist exenatide in reducing 

alcohol intake in individuals with alcohol use disorder (AUD) found that exenatide 

significantly reduced total alcohol intake in a subgroup of obese individuals439. In terms of 

mesocorticolimbic activation, it is hypothesized that acute ethanol increases spontaneous 

dopamine transmission to promote reward440,441, while repeated alcohol intake induces 

anhedonia and altered reward processing, indicating a hypodopaminergic state in the PFC 

and NAc442,443. 

5.2.2 The microbiome, reward, and addiction 

The role of vagal afferent (VAN) signaling has been well-established as a vital pathway 

for information transfer from the gut to the brain.  As previously discussed, VAN activation 

occurs through gut-released peptides such as GLP-1, but more recently, it has been 

implicating in microbiome-related signaling. As microbial dysbiosis is linked to a variety 

of neurologic444 and psychiatric445,446 conditions, understanding the roles of microbial 

metabolites and their signaling pathways has reached heightened importance. Additionally, 

microbiome dysbiosis has been linked to altered behavior and reward pathways, indicating 

a novel target for both control of behavior (PFC-mediated) and metabolism (hindbrain-

mediated) 447–449. 

5.2.2.1 Microbial metabolites and VAN activation 

One microbial metabolite has shown strong indications of modulating VAN signaling. 

Short-chain fatty acids (SCFAs), such as acetate, butyrate and propionate, are produced by 

gut microbiota as a byproduct of polysaccharide digestion450. Propionate has been shown 

to increase VAN activity and induces fos expression in the NTS in a VAN-dependent 
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manner, indicating that SCFAs are able to mediate VAN signaling451. Oral butyrate is 

sufficient to decrease food intake and decrease neuronal activity in the NTS, which was 

abolished by a subdiaphragmatic vagotomy452. These data provide evidence that SCFAs 

are able to activate NTS pathways via VAN activation. Additionally, chronic elevation of 

lipopolysaccharide (LPS), a product of bacterial breakdown, is sufficient to induce leptin 

and CCK resistance in VAN453. Vagotomy experiments have further implicated microbial-

VAN activation to affect signaling in the CNS454,455, while it seems that other microbes are 

able to alter CNS activity through non-VAN-mediated mechanisms456,457.  

5.2.2.2 Microbiome and drugs of abuse 

While the effects of diet on microbiota dysbiosis have been well-established458–460, the 

biology surrounding drugs of abuse and their impact on microbiome dysbiosis is 

understudied. As previously discussed, drugs of abuse “hijack” CNS reinforcement 

pathways by increasing dopamine (DA) release from the VTA, primarily onto the NAc. 

The gut microbiota has been found to additionally modulate the DA pathway, as reviewed 

in 461, and it has therefore been hypothesized that microbes are able to mediate reward 

pathways in addiction. In addition, dysbiosis has been linked to a variety of neurologic 

disorders444,446,449,454–456,462–465, further necessitating the need to address the pathogenesis 

of the microbiome in the control of disease. 

5.2.2.2.1 Alcohol 

Chronic alcohol intake leads to bacterial overgrowth in both the small and large intestine, 

increased intestinal permeability, and alterations in microbial diversity in both humans and 

animal models466–473. In a study which looked at the microbiota of animals selectively bred 

to be high alcohol drinkers found that both  administration of oral antibiotics and vagotomy 

before allowing access to alcohol was sufficient to reduce voluntary ethanol intake by 

70%474. In a model of chronic intermittent ethanol (CIE) vapor exposure, which is used to 

produce alcohol dependence and escalation in self-administration in rats, another group 

found that tigecycline, a tetracycline antibiotic, was able to reduce high alcohol 

consumption in both alcohol-dependent and non-dependent animals475. Perhaps most 

convincingly, it was shown that transplantation of microbes from mice given chronic 

alcohol to normal healthy controls was sufficient to drive alcohol withdrawal-induced 

anxiety476. In animals that were considered vulnerable to addiction based on increased 

impulsive and compulsive behaviors as well as increased relapse, it was found that striatal 

dopamine receptor expression was altered477. Together, these results implicate a  microbial-

dependent mechanism for the maintenance of alcohol use.  

5.2.2.2.2 Cocaine 

Kiraly, et al. found that treatment with antibiotics for two weeks was sufficient to enhance 

cocaine-conditioned place preference as well as increase locomotor activity. They also 

found that conditioned place preference was able to be reversed via administration of 
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SCFAs. Antibiotic-treated animals were also shown to have cocaine-dependent alterations 

of dopamine- and glutamate-transcripts in the NAc478. 

5.2.2.2.3 Opioids 

Lee, et al. found that both intermittent and sustained morphine administration were 

sufficient to induce microbial changes. Intermittent morphine administration, however, 

created an impaired reward response, as measured by a  lack of morphine-conditioned place 

preference. Depletion of the gut microbiota with antibiotics was shown to recapitulate this 

lack of morphine-conditioned place preference, indicating that intermittent administration 

of morphine may have reward-related effects. Transfer of a naïve, healthy mouse’s 

microbiome to antibiotic-treated animals was sufficient to restore morphine-conditioned 

place preference479. 

5.2.2.2.4 Nicotine 

In a study by Chi, et al.¸they examined potential sex-specific differences in nicotine’s 

effects on microbial dysbiosis. They found that oxidative stress and DNA repair pathways 

were enriched in the microbiome after nicotine treatment in male mice only, and weight 

loss only occurred in the male mice. Additionally, they showed that both GABA and 

glutamate were differentially altered in female and male mice, as indicated by the fecal 

metabolome480. 

Together, these studies implicate the role of the microbiome in the control of reward 

pathways and therefore in the regulation of addiction. As the microbiome is thought to act 

primarily by increasing DA in the NAc, this may cause sensitization of the mesolimbic 

pathway and add to increased reactivity of drug cues. Thus, the microbiome represents an 

area of novel pharmaceutical intervention in the control of addiction. 

5.3 FUTURE DIRECTIONS 

5.3.1 mPFC Control of Behavior 

While our findings that VIP ablation in the IL is sufficient to modulate impulsive behavior 

in long-delay trials, there was not sufficient power to determine if this phenomenon is sex-

specific. There is a strong trend in both sexes towards increased premature responding in 

long-delay trials but remain non-significant based on our set statistical significance 

threshold. Thus, investigation into sex-specific differences must be continued.  

Additional measures of impulsivity that query different types of impulsivity, such as delay 

discounting or action cancellation during a stop-signal task would allow for improved 

understanding of how VIP signaling mediates impulsivity in disorders such as ADHD, 

which increases both motor impulsivity and delayed discounting481,482. Based on data 

indicating that motor impulsivity (measured through 5-CSRTT) is greater in male animals 

while impulsive choice (measured through delayed discounting tasks) is greater in female 
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animals483, we could additionally investigate these sex-specific differences and their 

regulation by VIP interneurons. Further stratification of VIP-mediated impulsivity will 

allow for improved understanding of how the mPFC controls the timing of actions as well 

as investigating possible sex-specific mechanisms of mPFC behavioral control.  

One study examining the role of serotonin receptor (5-HTR) antagonism in the control of 

impulsivity found that while antagonism of 5-HT2AR and 5-HT2BR had no effect on 

premature responding during a 5-CSRTT, antagonism of 5-HT2CR increased premature 

responding in an ITI-dependent manner137. As 5-HT2CR are almost exclusively expressed 

on VIP interneurons219, we can extrapolate that serotonergic innervation of VIP 

interneurons is responsible for this phenotype of motor impulsivity. To test this hypothesis, 

a VIP-specific knockout of 5-HT2CR could be created by crossing the established VIP-cre 

line  with  a  5-HT2CR -floxed  line. While the 5-HT2CR-floxed  line is not currently 

available, new methods in creating floxed animals have  greatly  decreased the amount of 

time necessary to  create a novel floxed mouse484.   If serotonergic inputs are regulating 

long-delay impulsivity as hypothesized,  conditional knockout mice should show similar 

phenotypes to those seen with VIP ablation. By examining how conditional 5-HT2CR 

knockout affects behavior, we would be able to better understand how serotonergic 

signaling affects behavior and therefore harness improved pharmacotherapies in the 

treatment of impulse-control disorders and addiction. 

Additionally, VIP neuron populations are still poorly understood and could thus result in 

muddied understanding of the functions of the mPFC circuit. This is due to two distinct 

subtypes of VIP, which differentially target either pyramidal neurons (inhibitory) or SST 

neurons (disinhibitory). Functional analysis of a VIP-cre mouse line found that activation 

of VIP neurons initiates inhibitory postsynaptic currents from SST interneurons, which 

only minorly affecting the output of pyramidal neurons, indicating that the VIP-cre line 

preferentially targets disinhibitory VIP interneurons19. Transcriptional analysis of mPFC 

neurons indicated that there are two non-overlapping populations of VIP interneurons, 

which differentially express either calretinin or cholecystokinin219. These were determined 

to be interneuron-selective (VIPCR) or pyramidal neuron-selective (VIPCCK).  

To initially examine the differential roles of these two neuro subtypes, DREADD 

expression could be differentially achieved through the use of RC::FL-hM3Dq, a dual 

recombinase-responsive Gq-coupled DREADD485 in either VIP-Flp:CR-Cre or VIP-

Flp:CCK-Cre animals to result in DREADD expression localized to those subsets of VIP 

interneurons. Their differential effects on known VIP-modulated targets such as impulsive 

responding, high-calorie diet intake, novel-object investigation, and locomotion6 could 

then be observed during CNO administration. Additionally, by examining the overlap of 

c-fos immunoreactivity and SST, PV and VGUT1/2 immunoreactivity after DREADD 

expression, more definitive evidence regarding the synaptic preferences of each subtype of 

VIP neuron would be generated. The experiments discussed here would improve 

understanding of mPFC control of behavior by addressing the following gaps in 

knowledge: (1) mPFC control during non-motor impulsivity tasks, (2) sex-specific 
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modulation of mPFC control during impulsivity tasks, (3) the necessity of serotonergic 

action to mediate the increase in long-delay impulsivity, (4) sub-type specific differences 

of VIP interneurons in the control of impulsive responding, and (5) VIP sub-type specific 

activation of downstream interneurons and pyramidal neurons.  Together, these would lead 

to significantly increased understanding of the VIP-mPFC circuitry and its contribution to 

behavior.  

5.3.2 The Role of the Hindbrain in Obesity 

Based on the hypothesis discussed in “Section 4.3: Discussion,” an important experiment 

would be to examine the effects of an inducible, vagal- or CNS- knockout of GLP-1R 

during various stages of obesity. While this would necessitate a great amount of mouse 

breeding and creation of new mouse lines, this study would be able to further elucidate 

mechanisms of obesity remodeling in both the CNS and vagus. As previously discussed, 

GLP-1R antagonism or knockouts have been sufficient to protect against DIO, while GLP-

1R agonism is sufficient to initiate weight loss in obese individuals. These disparate effects 

could be explored through temporal control of GLP-1R knockout in either the vagus or the 

CNS, in order to observe how loss of GLP-1R before HFD, during acute HFD, and during 

chronic HFD/obesity either centrally or peripherally affects DIO. This would also 

effectively decouple possible differences between diet-induced and obesity-induced 

metabolic adaptation and could lead to improved pharmacologic targeting.  

While we failed in our efforts to generate a single-nuclei RNA-seq transcriptome of GCG 

neurons, three large single-nuclei datasets of hindbrain neurons now exist, enabling us to 

examine other possible mechanisms of GCG control401,404,486.  Insights into the signaling 

pathways of other drivers of weight loss such as GFRAL and GIPR, the subgroups of 

neurons that are targeted by vagal afferents, changes in synaptic plasticity across different 

neuronal groups, differences in Gcg expression in obese versus lean animals, and more 

could be gleaned from further examination of these datasets. Additionally, two 

transcriptomic datasets exploring the molecular identities of vagal afferents have been 

produced487,488, enabling even further insight into the diverse enteric-brain signaling 

pathways mediated through the vagus, especially vagal-mediated microbial signaling. 

Together, these datasets represent vast amounts of information that can be harnessed to 

drive hypotheses and a multitude of untapped opportunities for pharmacological 

intervention.  

 Finally, based on findings indicating that Oxtr-expressing and not Glp1r-expressing VANs 

are responsible for  mediating GCG activation290 and that obese individuals have increased 

basal levels of oxytocin408–410 implicates that the pharmacological manipulation of 

oxytocin may be relevant in the control of obesity. Oxytocin receptor is expressed most 

prominently in the hypothalamus, hippocampus, pons, and substantia nigra489 and has 

diverse effects. Most notably, oxytocin has been found to inhibit the stress-induced activity 

of the hypothalamic-pituitary-adrenal (HPA) to promote reduction in cortisol levels490. 

Cortisol concentrations in the hair is highly associated with an increased risk in obesity and 
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strongly correlates with abdominal fat mass, which is considered a hallmark of excess 

cortisol491. Along with data showing that GLP-1R agonism affected transcriptional changes 

in the response to corticosterone as determined by gene ontology analysis404, these data 

highly implicate a reciprocal function of oxytocin and cortisol signaling in the control of 

obesity that has yet to be explored. 
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