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This dissertation is dedicated to Jeff: 
I wish you were still here;  
I am grateful you were. 

 
 

“The beautiful changes as a forest is changed 
By a chameleon’s tuning his skin to it; 

As a mantis, arranged 
On a green leaf, grows 

Into it, makes the leaf leafier, and proves 
Any greenness is deeper than anyone knows.” 

– Richard Wilbur, The Beautiful Changes 
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Abstract 
 
Clostridioides difficile infection (CDI) is a major healthcare-acquired infection caused by dysbiosis of the gut 
microbiome, typically due to broad-spectrum antibiotics. C. difficile pathogenesis is mediated by its two toxins, 
TcdA and TcdB which damage the gut epithelial barrier. Toxin production in C. difficile is metabolically sensitive, 
responding to a variety of external metabolites. However, the intracellular metabolic phenotypes of C. difficile 
connecting these external variables to a specific toxin state are unclear. In this dissertation, I focus on elucidating 
the metabolic phenotypes associated with low and high toxin states in C. difficile. By using publicly available 
RNAseq data from C. difficile grown in 16 unique conditions in conjunction with genome-scale metabolic models, 
I discovered metabolic differences between toxin states and strains of C. difficile. Furthermore, I found reactions 
that transformed C. difficile from a metabolic state associated with a high toxin state to a low toxin state in the 
model. 
 
To further explore metabolic phenotypes in C. difficile, I next focused on metabolic interactions between C. 
difficile and the environment, using C. difficile strain type, diet, and gut commensals as the variables. By creating 
105 strain-specific metabolic models, I was able to identify metabolic phenotypes that varied by both diet and 
strain. Notably, I found a subset of C. difficile strains that have increased flux through energy-generating redox 
pathways. I also found that simulations of C. difficile-commensal interactions were not affected by the C. difficile 
strain type, however they were affected by diet. This suggests a hierarchical relationship between diet, 
commensals, and C. difficile genetics. 
 
Together, this dissertation provides a wholistic understanding of metabolic phenotypes in C. difficile related to 
toxin production, diet, genetics, and commensal interactions. I used disparate datasets and variables to 
investigate how they affect metabolism both in isolation and all together. These unique analyses have improved 
our understanding of the metabolic and ecological processes that are important to CDI pathogenesis, and they 
are a critical stepping stone towards improving treatment and management of disease. 
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Chapter 1: Introduction 
 
The gut microbiome: composition, function, and ecology 
The gut microbiome (GM) is a dynamic ecosystem, composed of approximately 500 unique species and over 
three million genes1,2. The taxonomic composition of the GM is ever shifting in response to numerous variables 
such as geographical location, age, diet, exercise, or genetics2. As a result, the specific microbiota composition 
of the gut varies significantly between individuals, such that half of the bacterial species identified are unique to 
an individual3. Despite variability in species-level composition, trends in composition emerge at the phylum-level: 
phyla such as Bacteroidetes, Firmicutes, and Actinobacteria predominate the average GM, accounting for over 
90% of the GM2. The taxonomic diversity of the GM can be measured with two metrics: alpha and beta diversity. 
Alpha diversity measures the number and relative abundance of species within a single GM sample4. Beta 
diversity measures how similar or dissimilar GM communities are across different GM samples. Taxonomic 
diversity results in metabolic redundancy. Consequently, in contrast to the compositional variability of the GM, 
the metabolic functions of the intestine are much more conserved, with 57% of metabolic functions present in 
75% or more of individuals3. 
 
The GM performs metabolic biotransformations crucial for human health. For example, bile acids (BAs), which 
digest fats and aid in the absorption of fat-soluble vitamins, depend on the GM for recycling; in BA metabolism, 
BAs are deconjugated via bile salt hydrolases (BSH) which are prevalent in Bacteroidetes, Firmicutes, and 
Actinobacteria phyla5–7. Deconjugated BAs can then be reabsorbed by the liver; approximately 95% of BAs are 
recycled in this efficient metabolic loop5,7. In cases of GM imbalance, decreased taxa with BSH functionality 
increases the primary BA pool leading to increased toxicity5. In addition to BA metabolism, the GM also ferments 
carbohydrates to short-chain fatty acids (SCFAs)8,9. SCFAs are essential to maintaining the intestinal epithelial 
barrier and are a primary energy source for enterocytes10. SCFAs are anti-inflammatory molecules and regulate 
intestinal macrophages and helper T cells11. Furthermore, the GM metabolizes neurotransmitters such as 
serotonin and dopamine; all three molecules can influence the production of stress hormones such as cortisol 
which impacts mood, appetite, and metabolism12,13. These microbiota-produced metabolites have been 
implicated in neurological disorders, such as dementia and depression13–17. Together, these metabolic processes 
comprise just a few of the numerous ways in which the GM buffers human health. 
 
Common ecological principles govern GM behavior, determining the growth and carrying capacity of the system 
and the interspecific interactions of competition and symbiosis18,19. Bacterial population growth is regulated 
through quorum sensing molecules; these molecules either limit or stimulate growth depending on environmental 
cues such as resource depletion, biofilm formation, or virulence factor production20. Nutrient niches shape the 
interspecific interactions of the GM. Dietary and mucosal polysaccharides and amino acids plus their 
innumerable byproducts are consumed, competed for, and cross-fed by members of the GM18,21. Once a bacterial 
species has claimed a nutritional niche it holds a competitive advantage over new species. In a balanced 
ecosystem, the diversity, abundance, and nutritional resources of the GM contribute to colonization resistance 
(CR) against the outgrowth of a singular taxa or pathogen, such as the nosocomial pathogen Clostridioides 
difficile22–24. 
 
Clostridioides difficile biology and pathogenesis 
Clostridioides difficile is a gram-positive, anaerobic bacteria in the Firmicutes phyla. Its genome is approximately 
4.1-4.3 Mb and contains a high proportion of mobile genetic elements25–27. C. difficile has an ultra-low level of 
genome conservation; the core genome may be as low as 16% conserved27. Furthermore, there are large 
phylogenetic distances between strains, making species classification difficult25. Metabolically, Stickland 
fermentation is highly conserved between strains27–29. Stickland fermentation is a system of coupled oxidative 
and reductive reactions that transfer electrons between amino acids, resulting in the generation of ATP and other 
energy-rich molecules29. Stickland fermentation provides a significant competitive advantage to C. difficile as 
amino acids are an abundant resource in host mucins of the large intestine29,30. 
 
C. difficile colonizes the large intestine and induces host epithelial cell death and intestinal inflammation via its 
pathogenic exotoxins TcdA and TcdB and, in some clinical strains, binary toxin31. Once released, these toxins 
disrupt the colonic epithelial barrier32. TcdA and TcdB induce a portion of this damage by glucosylating, and 
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thereby inactivating, Rho GTPases in the host epithelial cells33. Rho GTPase inactivation disrupts the actin 
cytoskeleton and tight junctions of epithelial cells, resulting in a cytopathic phenotype of altered cell morphology 
and in an impaired epithelial barrier function34. A compromised epithelial barrier can result in progression of CDI 
to pseudomembranous colitis, toxic megacolon, and, in 9.3% of cases, death35,36.  
 
C. difficile is the leading contributor to healthcare 
acquired gastrointestinal (GI) infections, accounting for 
73% of GI infections and costing an estimated $6.3 
billion annually in the United States35,37. The primary risk 
factor for developing C. difficile infection (CDI) is broad-
spectrum antibiotic use which clears the GM leaving an 
open niche for C. difficile to colonize (Fig 1.1)22. The 
standard treatment for CDI is broad-spectrum 
antibiotics, such as vancomycin or metronidazole38. 
These antibiotics are effective in resolving CDI initially; 
however, the antibiotics used to treat C. difficile act 
against the vegetative state but not the endospores and 
cause further GM disruption, priming the gut for 
recurrent CDI24. In approximately 30% of patients the 
loss of a healthy microbiome leads to recurrent CDI, 
which is defined as an episode of CDI occurring within 8 
weeks from the initial treatment39. Patients with 
recurrent CDI are treated with a fecal microbiota 
transplant (FMT) which is highly effective in resolving 
disease in 90% of cases40,41. FMT is an effective 
treatment because it restores a balanced state of the 
GM and leverages the innate immune defense of 
CR19,22,40. Thus, CDI onset and resolution can both be 
explained through ecological principles (Fig 1.1). 
 
Dementia and the gut microbiome 
Dementia affects approximately 6.5 million Americans over the age of 65, costing an estimated 321 billion dollars 
annually42,43. It is defined as a syndrome that presents with deterioration of memory, language, thinking, and 
behavior43,44. Dementias are further categorized by the physiological cause of disease; Alzheimer’s disease (AD) 
is the most common cause, comprising 60-80% of dementias43. In AD, pathogenesis occurs through build-up of 
beta-amyloid plaques around neurons and neurofibrillary tangles of protein tau inside neurons43,45. This 
neurodegeneration is progressive, manifesting a continuum of symptoms from normal cognition to mild cognitive 
impairment to dementia, typically over a time span of 10-20 years43,45.  
 
The GM plays a complicated role in dementia. The GM can metabolize neurotransmitters and modulators such 
as short-chain fatty acids (SCFA), gamma-amino butyric acid (GABA), acetylcholine, dopamine, glutamate, and 
serotonin44,45. These neurotransmitters act through the gut-brain axis, a communication pathway between the 
enteric and central nervous systems (ENS, CNS)13,44–46. Furthermore, intestinal dysbiosis and inflammation are 
consistent symptoms across neurodegenerative disorders which may be due to general diffusion of 
neuroinflammation of the CNS via the gut-brain axis13,45. Mapping the associations between the GM composition 
and function and neurocognition has been a recent focus in dementia research; several bacterial families are 
differentially abundant in AD versus controls, though findings currently lack consistency due to a variety of 
factors47–59.  
 
Systems biology approaches 
Systems biology is a framework for understanding how biological systems function as a whole; it examines how 
the individual components of a system interact and contribute to a behavior of interest in a system. A system can 
be defined at many scales, such as a cell, an organ, a disease, or an ecosystem. Systematic approaches 
frequently leverage high-throughput datasets and computational models to generate hypotheses and isolate the 

Figure 1.1 C. difficile pathogenesis. Antibiotics disrupt the normal 
gut flora, leading to a dysbiotic state with decreased abundance and 
diversity. This creates an open niche for monoclonal expansion of 
opportunistic pathogens, such as C. difficile. CDI can be treated with 
antibiotics or FMT. Treatment with antibiotics results in either a 
recurring cycle of infection or eventual recovery of a healthy 
microbiome. Figure created with BioRender. 
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variables influencing the system. Applying this framework to complex 
systems like the GM, CDI, or dementia allows us to study causal 
relationships between variables and outcomes.  
 
The primary systems biology tool used in this dissertation is genome-scale 
metabolic modeling. Metabolic models are mathematical descriptions of the 
metabolic network of an organism based on its genome sequence. A 
genome-scale metabolic network reconstruction (GENRE) consists of two 
main components: 1) a stoichiometric matrix of all the reactions and 
metabolites within a network and 2) Boolean gene-protein-reaction rules 
which define a gene’s relationship to a protein and the reaction catalyzed by 
that protein (Fig 1.2A-B)60,61. Flux balance analysis (FBA) simulates 
metabolic flux through a GENRE under the constraints of stoichiometric 
mass-balance and optimization of an objective function, for example 
maximizing biomass production60,62. FBA results predict the metabolic 
phenotype of an organism under the given constraints. GENREs can be 
manipulated at three biologically distinct levels (gene, reaction, and 
metabolite) and numerous biologically relevant objective functions can be 
set61,63. Together, these variables enable myriad permutations and 
explorations of possible metabolic phenotypes 
 
Specific Aims 
Aim 1: Define the metabolic phenotypes in C. difficile related to toxin production. 
1.1 Integrate publicly available RNA-seq data from C. difficile grown in different environments with C. difficile 

GENREs to create context-specific models. 
1.2 Determine the metabolic phenotypes associated with low and high toxin states using the context specific 

models. 
1.3 Identify metabolic switches that can shift a metabolic model from a high toxin state to a low toxin state. 
 
Aim 2: Categorize the effects of strain, diet, and microbiome interactions on C. difficile metabolic 
phenotypes. 
2.1 Reconstruct a panel of metabolic models for 100 C. difficile strains using whole-genome sequences. 
2.2 Categorize the metabolic phenotypes of C. difficile as a function of strain, diet, and microbiome interactions 

using the 100 strain models. 
2.3 Validate microbiome interaction predictions using in vitro co-culture methods. 
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Abstract  
Clostridioides difficile pathogenesis is mediated through its two toxin proteins, TcdA and TcdB, which induce 
intestinal epithelial cell death and inflammation. It is possible to alter C. difficile toxin production by changing 
various metabolite concentrations within the extracellular environment. However, it is unknown which intracellular 
metabolic pathways are involved and how they regulate toxin production. To investigate the response of 
intracellular metabolic pathways to diverse nutritional environments and toxin production states, we use 
previously published genome-scale metabolic models of C. difficile strains CD630 and CDR20291 (iCdG709 and 
iCdR703). We integrated publicly available transcriptomic data with the models using the RIPTiDe algorithm to 
create 16 unique contextualized C. difficile models representing a range of nutritional environments and toxin 
states. We used Random Forest with flux sampling and shadow pricing analyses to identify metabolic patterns 
correlated with toxin states and environment. Specifically, we found that arginine and ornithine uptake is 
particularly active in low toxin states. Additionally, uptake of arginine and ornithine is highly dependent on 
intracellular fatty acid and large polymer metabolite pools. We also applied the metabolic transformation 
algorithm (MTA) to identify model perturbations that shift metabolism from a high toxin state to a low toxin state. 
This analysis expands our understanding of toxin production in C. difficile and identifies metabolic dependencies 
that could be leveraged to mitigate disease severity. 
 
 
 
* The material presented in this chapter has been previously published here: 

Powers DA, Jenior ML, Kolling GL, Papin JA (2023) Network analysis of toxin production in 
Clostridioides difficile identifies key metabolic dependencies. PLoS Comput Biol 19(4): e1011076. 
https://doi.org/10.1371/journal.pcbi.1011076  

  

https://doi.org/10.1371/journal.pcbi.1011076
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Introduction 
Clostridioides difficile is the leading contributor to healthcare-acquired gastrointestinal (GI) infections, accounting 
for 73% of GI infections and costing an estimated $6.3 billion annually in the United States1,2. The primary risk 
factor for developing C. difficile infection (CDI) is broad-spectrum antibiotic usage which alters the structure and 
composition of the gut microbiota, allowing C. difficile to outgrow nonpathogenic competitors3. CDI is recurrent 
in 30% of cases and has a mortality rate of 9.3%, causing 29,000 deaths in the US annually1,4.  

CDI pathogenesis is primarily mediated by two large Clostridia toxins, TcdA and TcdB5,6. These toxins induce 
cytopathic and cytotoxic effects, including changes in epithelial cell morphology, cell cycle modulation, disruption 
of the colonic epithelial barrier, induction of apoptosis, and activation of an acute innate inflammatory response6–

10. TcdA and TcdB induce a portion of this damage by glucosylating, and thereby inactivating, Rho GTPases in 
the host intestinal epithelial cells7. Rho GTPase inactivation disrupts the actin cytoskeleton and tight junctions of 
epithelial cells, resulting in a cytopathic phenotype of altered cell morphology and impaired epithelial barrier 
function11. A compromised colonic epithelial barrier can lead to increased intestinal permeability and fluid 
secretion which furthers intestinal inflammation and damage5. Together, these toxins are crucial to the 
establishment of CDI.  

Regulation of C. difficile toxin synthesis is complex. TcdA and TcdB are encoded by genes on the pathogenicity 
locus (PaLoc) along with a transcriptional regulator, TcdR12. TcdR, in turn, is negatively controlled by 
metabolically sensitive global regulators such as CodY and CcpA which inhibit TcdR in the presence of 
intracellular branched chain amino acids (BCAAs) or fructose-biphosphate (FBP), respectively (Fig 2.1)12,13. In 
addition to these intracellular metabolites, the extracellular environment can also influence toxin production in C. 
difficile. Multiple defined media experiments with C. difficile demonstrate that certain carbohydrates, amino acids, 
and short chain fatty acids (SCFA) promote the increase or decrease of toxin production (Fig 2.1)14–19. 
Furthermore, C. difficile toxin production responses are dependent on the surrounding microbial community, as 
the microbial community shapes the nutritional environment of C. difficile20,21. Toxin response to environment 
may also be strain-dependent, further compounding the complexity of toxin production regulation20. While the 
exact relationship between the regulation of C. difficile toxin synthesis and extracellular environment is unclear, 
there is evidence that this process is linked to extra- and intracellular metabolism.  

 

Figure 2.1. C. difficile toxin production is regulated by multiple metabolic signals. The transcription of tcdA and tcdB to synthesize 
toxins TcdA and TcdB is positively regulated by TcdR which is in turn negatively regulated by CcpA and CodY. Each of these components 
are regulated by multiple metabolic signals. Fructose bis-phosphate (FBP); branched-chain amino acids (BCAA); Guanosine triphosphate 
(GTP). Numbers correspond to references with evidence for the indicated regulatory mechanism. 

To investigate the metabolic states contributing to shifts in toxin production related to changes in the 
environment, we use previously established and curated genome-scale metabolic network reconstructions 
(GENREs) of C. difficile22. Metabolic modeling provides a unique systems approach to studying metabolism. 
Briefly, a GENRE describes the gene-protein-reaction associations for all of the metabolic genes of an organism 
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which can then be simulated to predict the flux through the metabolic network23. We can represent the metabolic 
state of C. difficile in a specific context by integrating transcriptomic data from multiple studies (Table S2.1) with 
the metabolic model via the RIPTiDe algorithm24. Using this approach, we created context-specific metabolic 
models of two C. difficile strains (630 and R20291) for 16 different environmental conditions with a range of toxin 
production states. We analyzed these models using a combination of machine learning and flux balance analysis 
(FBA) methods and found that arginine and ornithine metabolism is more active in models with low toxin 
production. Moreover, we found that arginine and ornithine metabolism may be influenced by intracellular fatty 
acid and large polymer pools. Finally, we applied a modified metabolic transformation algorithm (mMTA) to 
identify pivotal reactions for transitioning from a metabolic state associated with high toxin production to one 
associated with low toxin production25. Integrating gene expression data with a metabolic network simultaneously 
gives the gene expression data a metabolic context and the metabolic network biological relevance, optimizing 
our predictive power. Metabolic network analysis of microbial pathogens can catalyze biological discoveries 
which can then translate to new therapeutic leads. 

Results  
Contextualized metabolic models of C. difficile 
Multiple studies have shown that toxin production in C. difficile can be altered by changing its nutritional 
environment; therefore, we wanted to investigate the intracellular metabolism of C. difficile grown in a variety of 
media conditions, inducing different toxin production states13–16,18,20,26,27. To do this, we used published GENREs 
of C. difficile strains 630 and R20291 (iCdG709 and iCdR703, respectively)22. We compiled a set of publicly 
available RNA-sequencing data for each of these strains that considers a range of environmental conditions 
(Table S2.1). For each condition, we classified the toxin states as low or high based on the median tcdA transcript 
reads per million (RPM) across all conditions (Fig S2.1). Using the RIPTiDe algorithm24, we integrated the 
transcript data with the appropriate strain model to generate a total of 16 contextualized models of C. difficile 
(Fig 2.2A).  

 
On average, the RIPTiDe models for low toxin conditions include more genes than the high toxin RIPTiDe models 
but retain similar metabolite numbers (Fig 2.2A). The RIPTiDe models do share a core set of 483 reactions, 
which accounts for approximately 80% of the reactions in each model. There are strain differences, with 630 
models accounting for more genes, reactions, and metabolites compared to R20291 models (Fig 2.2A). Principle 
component analysis (PCA) of flux samples of these models demonstrates broad clustering by strain as well as 
by context (Fig S2.2B-F); complete flux sampling details can be found in the Materials and Methods. Overall, 
these models reflect metabolic differences by strain and toxin level with more metabolic genes and reactions 
included in both 630 models and in low toxin models. 
 
Metabolic differences between strains and toxin states 
To identify reactions important in distinguishing between metabolic states of low and high toxin conditions, we 
applied a Random Forest classifier to the flux sampling data (Fig S2.3). Briefly, after randomly down-sampling 
the flux sampling data to 100 flux samples per RIPTiDe model, we used random stratified groups to split the flux 
sampling data, with a 75-25 train-test ratio (Fig S2.3). The classifier had a mean accuracy of 97%; features were 
ranked by their Gini score to identify reactions important in distinguishing between toxin states (Methods). From 
the Random Forest analysis, we determined that arginine and ornithine reactions are more active in low toxin 
conditions (Fig 2.2B). Specifically, growth media supplemented with bile acid (deoxycholate and cholate) and 
calprotectin result in increased metabolic flux through arginine and ornithine transport reactions which move 
towards Stickland fermentation and NAD+ production via D-proline catabolism (Fig 2.2B-C). Other metabolic 
processes that are more active in low toxin conditions include reactions involved in carbohydrate metabolism 
and nucleotide metabolism (Fig 2.2B-C). However, for most important reactions from Random Forest, the flux 
difference across all conditions was neither large nor significant. These results indicate that while metabolism 
can be predictive of toxin outcomes, it may be due to the cumulative effect of many tightly controlled reactions 
rather than large changes in flux through a few key reactions. 
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Figure 2.2. Metabolic differences between toxin states are driven by strain. (A) Summary table of the RIPTiDe contextualized models 
including the strain, toxin production level, and number of genes, reactions, and metabolites. (B) Normalized, absolute flux values for 
reactions indicated by Random Forest classifier as important for distinguishing between toxin levels. C. difficile strains 630 and R20291 
are shown by light and dark purple respectively. Toxin transcript levels are shown by light (low) and dark (high) teal.  (C)  Map of reactions 
in the metabolic model identified by Random Forest analysis as listed in panel (A). Arg: Arginine, Orn: Ornithine, Pro: Proline, Suc: 
Sucrose, UDP-Glc: UDP-Glucose, Glc1P: Glucose-1-phospate, ManNAc: N-acetyl-D-mannosamine, Guo: Guanosine, dGuo: 
Deoxyguanosine, G: Guanine. 
  
Because of the flux sampling results, we decided to investigate how sensitive growth and toxin production would 
be to disruptions in flux balance and intracellular metabolite concentrations. To approach this question, we 
conducted a shadow pricing analysis. Briefly, shadow pricing is the dual problem to flux balance analysis (FBA) 
in which shadow prices capture the sensitivity of an objective function (e.g., biomass) to changes in metabolites 
levels28,29. Thus, increases in levels of metabolites with negative shadow prices reduce flux through the objective 
function while increases in levels of metabolites with positive shadow prices increase flux through the objective 
function. For this analysis we iteratively set the top 20 reactions from the Random Forest analysis as the objective 
function and solved the dual problem. Reactions whose flux is predominantly increased by increasing metabolite 
concentrations may indicate tightly regulated reactions where a consistent flux is important or perhaps that the 
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reactions are not metabolically regulated. Conversely, reactions whose flux is decreased by many metabolites 
may be more responsive to the environment, allowing C. difficile to optimize its cellular function. Overall, we find 
that arginine and ornithine transport and L-aspartate:fumarate oxidoreductase are particularly sensitive to 
disruptions in metabolite concentrations with over 40 metabolites with a shadow price less than -5 (Fig 2.3). Both 
reactions are primarily sensitive to fatty acid and large polymer metabolite pools which have relatively high 
negative shadow prices (Fig 2.3B), indicating a possible source of intracellular metabolic regulation. 
 

 

Figure 2.3. Flux through arginine and ornithine reactions is sensitive to intracellular metabolite concentrations. (A) Summary of 
the shadow pricing analysis with the top 20 reactions from the Random Forest classifier set as the objective function. The number in the 
"models" column (blue) corresponds to the fraction of contextualized models that were able to carry flux with the indicated reaction set 
as the objective function (OF). The values in the orange columns indicate the following: Increase: the number of metabolites for which an 
increased level results in increased flux through the OF (median shadow price > 0, range < 2); Decrease: the number of metabolites for 
which an increased level results in decreased flux through the OF (median shadow price < -0.1, range < 2); and Variable: the number of 
metabolites whose shadow price varied across RIPTiDe models (range > 2). For example, in the first row of panel (A), the OF was able 
to carry flux in all of the models, 294 metabolites had no impact on flux through the OF in all of the models, 1 metabolite limited flux 
through the OF in all of the models, and 5 metabolites had different effects on flux through the OF across all of the models. (B) Shadow 
prices for limiting metabolites in arginine/ornithine and aspartate metabolism reactions. The metabolites categorized as sensitive in panel 
(A) for these OFs and with a shadow price < -5 are shown. Increasing negative values indicates increasing reaction flux sensitivity to the 
metabolite. 

Metabolic transformation between toxin states 
From the flux sampling and shadow pricing analyses above, we described the metabolic state of C. difficile under 
16 specific conditions and identified metabolic differences between low and high toxin producing conditions. We 
next sought to investigate whether there were pivotal reaction knockouts that could transition the model from a 
metabolic state associated with a high toxin transcript level to a metabolic state associated with a low toxin 
transcript level. For this analysis we used a modified metabolic transformation algorithm (mMTA) which identifies 
key reactions to switch a cell from one metabolic state to another. To do this, MTA classifies reactions as changed 
or unchanged based on whether there was differential flux between a reference and target state; it then solves 
a mixed integer quadratic programming (MIQP) problem that maximizes change in flux in the direction of the 
target flux for the changed reaction set while minimizing flux changes for the unchanged reaction set25. We 
modified the original MTA for compatibility with COBRApy and to use updated modeling methods throughout its 
implementation. These changes and considerations are detailed in Materials and Methods. For our reference 
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and target states we selected conditions that induce high and low toxin states respectively and that have 
transcriptomic data generated from the same study to reduce inter-study experimental variation. Therefore, we 
chose the iCdG709 RIPTiDe models contextualized with data from GSE165116, setting BHIS (high toxin) as the 
reference state and BHIS + 240 uM Deoxycholate (low toxin) as the target state (Table S2.1, Fig S2.1). Using 
mMTA, we classified 101 reactions as significantly different between the reference and target state. Out of this 
reaction set, 87 reactions were successfully changed in the desired flux direction in at least one reaction knockout 
simulation (Fig S2.6C). 396 out of 594 reaction knockouts resulted in a feasible solution; for each feasible 
reaction knockout, a transformation score (TS) was calculated (Fig S2.6B). The reaction knockouts with the top 
50 TSs induced flux transformation in reactions related to energy metabolism, such as carbohydrate metabolism 
and Stickland fermentation (Fig 2.4). Of these transformed reactions, the Stickland fermentation reactions and 
most of the amino acid metabolism reactions are involved in isoleucine fermentation (Fig 2.4, Supplemental Data 
File 2.3). Isoleucine is an important energy substrate that is metabolized via oxidative Stickland fermentation to 
form ATP 17. This finding not only supports the importance of energy metabolism in toxin production, but also 
highlights the nutritional flexibility of C. difficile to acquire energy from available resources.  
 

 
Figure 2.4. Modified MTA identifies key reaction knockouts and pathways for transformation from a high to low toxin state. The 
mMTA algorithm runs a reaction KO simulation to optimize changes in reaction flux that transform the model from the reference metabolic 
state (high toxin) to the target metabolic state (low toxin). The reaction knockouts with the highest transformation scores are shown on 
the y-axis. The reactions whose flux changed under these KO conditions are shown on the x-axis. Successfully changed reactions are 
defined as those whose flux changed from the reference in the desired direction by a minimum threshold of significance (successful: dark 
blue; unsuccessful: light blue). The metabolic pathways for these reactions are shown beneath the clustering dendrogram at the top. 
 
Discussion  
Research on C. difficile toxins has been extensive and wide-ranging, investigating biochemistry and structure, 
mechanisms of action, host and microbiome interactions, nutritional environments, genetic and metabolic 
regulation, and more6,10–12,20,30. Of these, the link between metabolism and regulation is particularly salient 
because of its therapeutic potential for virulence attenuation. Many in vitro studies have shown that C. difficile 
toxin production can be manipulated through its environment13–16,18,20,31,32. Additionally, multiple mechanisms of 
intracellular toxin regulation have been shown, such as cyclic di-GMP, carbon catabolite repression via ccpA, 
and nutritional limitation via codY13,33,34. However, while all these studies have elucidated various facets of C. 
difficile toxin regulation under specific conditions, our understanding of the relationship between metabolism and 
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toxin regulation remains fragmented. To address this, we conducted a systems analysis in which we interrogated 
an array of environmental conditions and toxin transcript levels with the goal of defining the metabolic state of C. 
difficile in these conditions.  

 
The role of arginine in C. difficile toxin production is contradictory. Early investigation of C. difficile grown in 
minimal defined media supplemented with arginine found that increasing arginine concentrations resulted in 
decreased toxin production and enhanced growth31,32. Conversely, a study using phenotype microarrays found 
that arginine, and arginine dipeptides in particular, induce toxin production26. When we simulated growth under 
a subset of PM conditions, we did not find any correlations between metabolic flux and the PM toxin data. The 
only model constraints in this simulation were growth limits rather than intracellular limits as for the RIPTiDe 
models; these constraints, combined with the differences in which strain was profiled with the PM experiments 
and which strains were modeled with the analysis presented here, may have contributed to this lack of 
correlation. Cecal metabolomics of mice infected with wild-type (inflammatory) and toxin-deficient (non-
inflammatory) C. difficile strains show that metabolic pathways for arginine and ornithine in the gut microbial 
community are more active in the non-inflammatory state35. This same study also linked ornithine metabolism in 
C. difficile with reduced inflammation during CDI. In our analysis, an arginine/ornithine transport reaction was 
identified as an important differentiator between toxin states by Random Forest and is particularly active in low 
toxin states across strains (Fig 2.2B). Shadow price analysis of these reactions found it was highly sensitive to 
fatty acids or large polymers primarily involved in cell wall synthesis (Fig 2.3B). Fatty acids have been shown to 
regulate arginine and ornithine metabolism in other organisms36–38. This potential regulatory interaction between 
fatty acids and arginine in C. difficile could explain the contradictory results for the impact of arginine and ornithine 
metabolism on toxin production.  

 
Toxin production in C. difficile is clearly linked to its nutritional status. It has recently been shown that C. difficile 
grown in cooperative community environments has significantly lower toxin production than when it is grown in 
competitive communities21. We used Random Forest to attempt to identify any underlying metabolic patterns 
between toxin states but to understand better the intracellular metabolic switches necessary for transitioning 
from a high to low toxin production state we used mMTA. The results from mMTA give us two types of information. 
First, the metabolic reactions whose activity is important for this transition and second, the metabolic reactions 
that can be modulated to induce these metabolic changes. We found that within the metabolic network model 
corresponding to C. difficile grown in BHIS with high toxin production, flux through 86% of the reactions identified 
as important for transitioning to a low toxin state could be modulated by at least one reaction knockout. With the 
Random Forest analysis we performed, we found that the 20 reactions with the highest Gini scores are heavily 
involved in energy metabolism (e.g., arginine/ornithine, glycine, glutamate, aspartate, sucrose, glucose, and N-
acetyl-D-mannosamine) as well as nucleotide metabolism (e.g., guanosine and uridine). Similar patterns of 
important metabolic pathways are replicated in the mMTA results; reactions whose flux can be changed to mimic 
a low toxin state fall into carbohydrate, amino acid, and nucleotide metabolism categories (Fig 2.4). The mMTA 
results also predict that these reactions can be metabolically modulated via knockouts of specific reactions (as 
indicated on the y-axis in Fig 2.4). The reaction knockouts with the highest transformation scores were frequently 
key reactions in alternative energy-generating pathways such as carbon metabolism and Stickland fermentation 
of leucine and valine (Fig 2.4). When these reactions were knocked out, Stickland fermentation of isoleucine 
increased (Supplemental Data 2.3). 

 
Isoleucine is another metabolite whose role in toxin production in C. difficile is unclear. Isoleucine activates CodY 
which represses toxin production (Fig 2.1)39; it is reasonable to hypothesize that conditions supplemented with 
isoleucine would have low toxin production. However, defined media experiments show the opposite effect. C. 
difficile (VPI 10463) grown in a minimal media supplemented with isoleucine demonstrated increased TcdA 
production32. Another study growing C. difficile (ATCC 9689) in phenotype microarrays found that isoleucine 
induced middle-level toxin production26. It may be that preferential fermentation of isoleucine throughout the 
exponential growth phase depletes stores of bioavailable isoleucine for CodY activation in stationary phase, 
resulting in CodY deactivation and increased toxin production. While our mMTA results show that isoleucine 
fermentation was maximized in the target low toxin state, perhaps the driving differential feature between states 
is carbohydrate metabolism (Fig S2.7). In the reference state, increased glucose metabolism is likely driving the 
high toxin transcript levels14; in the target state, suppression of glucose metabolism is accompanied by an 
increase in isoleucine fermentation to maintain energy generation. In the short-term, this increased isoleucine 
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fermentation likely results in increased uptake and availability of isoleucine which is sufficient for CodY activation 
and suppression of toxin transcription.  
 
We used C. difficile GENREs and publicly available transcriptomic data for our analyses, applying RIPTiDe for 
data integration. RIPTiDe uses genetic evidence from the transcriptomic data as weights indicating the likelihood 
that a reaction will carry flux and to what extent 24. It additionally prunes reactions for which there is no evidence 
or that do not pass a minimum flux threshold. This approach creates a contextualized model for a specific 
environmental and metabolic state. However, it is possible that this method may have inadvertently limited the 
results of our mMTA analysis. The flux bounds of reactions in a RIPTiDe model are set based on genetic evidence 
and are often quite restrictive because the goal of RIPTiDe is to describe the metabolic state of an organism in 
a specific condition. Therefore, any significant departure from the reference state flux necessary for a reaction 
to achieve a target state may not even be feasible due to preset flux bounds. However, we were able to 
successfully transform 86% of the reactions targeted for change, and therefore do not consider any potential 
limitation from application of RIPTiDe as having a significant impact on our mMTA results. 
  
We additionally used RIPTiDe to sample the flux distributions for each model which we then used for our Random 
Forest analysis. The flux samples for each condition are highly correlated in part due to the RIPTiDe restrictions 
discussed above; this characteristic could lead to overfitting in a Random Forest model because the model would 
be able to learn what condition a sample is from and then use this information to infer the toxin level. To prevent 
this, we used a random stratified group sampling approach for splitting the data into train-test sets for Random 
Forest (Methods). This approach ensures first that there is an equal (or near-equal) ratio of low and high toxin 
conditions in the train and test sets and second that all the flux samples from a single RIPTiDe model are used 
in either the train or test set. The classifier had a mean accuracy of 95% which suggests model over-fitting 
despite the feature selection and sampling approaches we took. A closer look at the features with the highest 
Gini scores shows that there is a greater difference in flux between strains than in flux between toxin states (Fig 
2.2). While the classifier is not learning what condition a sample is from, it may be learning what strain it is and 
then predicting the toxin state based on strain-specific criteria. This result highlights the importance in accounting 
for strain differences when interrogating toxin production in C. difficile. 

 
The reactions from the Random Forest Classifier with the highest Gini scores were analyzed in a shadow price 
analysis. The results of this analysis showed that arginine and ornithine transport as well as an aspartate 
fumurate oxidoreductase were highly sensitive to fatty acids and large polymers. However, two metabolites that 
also commonly occurred as limiting (shadow price < -5) were “Protein biosynthesis” and “Cell Wall Polymer” (Fig 
2.3, Fig S2.5). These metabolites are not true biological metabolites but rather in silico substitutions for high-
level cellular processes just upstream of the biomass reaction within the model. While the biomass reaction is 
not set as the objective function in the shadow pricing analysis, there may be underlying biases that drive flux 
towards biomass production. Regulation via these two “metabolites” may indicate an intracellular sensing 
mechanism or be used as proxy for cell status but it is also possible that they are merely modeling artefacts. 
 
In conclusion, we performed a systems analysis of C. difficile metabolism under different growth conditions, 
paired with the associated toxin transcript level to define the relationship between metabolism and toxin 
production. These toxins are essential in establishing a nutritional niche for C. difficile and can cause extensive 
damage in the host colon. CDI is most effectively resolved through fecal microbiota transplants (FMTs); however, 
FMTs are typically only prescribed for patients with severe or recurrent cases of CDI40. Using microbial 
engineering to design probiotic communities that can be offered as a non-invasive CDI therapeutic is a major 
advancement already underway within the field21,41,42. An important step in designing these therapeutic 
communities is identifying reactions or pathways associated with high and low toxin production and 
understanding how those reactions change as a function of the environment, resulting in specific toxin-
associated phenotypes. Future research investigating questions include accounting for the relationship between 
regulatory networks and metabolism in C. difficile toxin production as we know that toxin responses are in part 
the effect of global regulators. Additionally, modeling the effect of toxin activity once it is released from C. difficile 
could also help guide selection of members of a microbial community. Research in these areas will provide 
foundational understanding of C. difficile biology that will enable intentional and specific therapeutic community 
design. 
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Methods 
Processing the RNA-sequencing data: We compiled transcriptome count matrices from seven publicly 
available RNA-sequencing studies of C. difficile covering two strains (630 and R20291) and 16 unique conditions 
(Supplemental Table 1). Raw count matrices were normalized using the reads per million (RPM) formula 

Number of reads mapped to gene x	106

Total number of mapped reads
 . 

RPM normalized toxin gene transcripts from all studies were grouped by condition, averaged, and binned into 
high and low categories by tcdA medians (low < median < high) (Fig S2.1). We used medians of tcdA rather than 
tcdB because tcdB had low to no expression across all conditions with the exception of the tryptone yeast 
conditions (TY and TY + Cysteine). 
 
Genome-scale metabolic models: Previously published C. difficile genome-scale metabolic network 
reconstructions (GENREs) of strains 630 and R20291 (referred to as iCdG709 and iCdR703, respectively) were 
used for all of the modeling analyses 22. We created a total of 16 contextualized metabolic models of C. difficile 
using RIPTiDe and the processed transcriptomic read matrices from publicly available RNA-Seq studies (Table 
S2.1) 24.  
 
Random Forest analysis of flux samples: For each RIPTiDe model, we optimized for biomass production and 
then sampled (n=500) flux distributions of the entire feasible steady-state solution space using RIPTiDe. We then 
randomly down sampled to 100 flux samples per condition and performed a principal component analysis (PCA) 
of sampled flux distributions for all the models.  
 
To identify the most important reactions in differentiating between toxin production (low, high) we ran a Random 
Forest classifier with 500 trees on the down-sampled flux sampling data (100 flux samples per RIPTiDe model). 
We reduced the feature space by selecting features with a near-zero variance (NZV) > 0.005 and an absolute 
Pearson’s correlation coefficient < 0.8. We used random stratified group K-fold (k=5) cross validation to check 
the classifier (Fig S2.3). Using a stratified group k-fold to split the data into train and test sets ensures first that 
there is an equal (or near-equal) ratio of low and high toxin conditions in the train and test sets and second that 
all the flux samples from a single RIPTiDe model are used in either the train or test set. We used this approach 
to prevent the classifier from learning which RIPTiDe model the flux sample came from and substituting that 
information to infer toxin level; while there are many flux samples per RIPTiDe model, these flux samples tend 
to be highly correlated. For model predictions, the data was split using a random stratified group split as 
described for the cross validation. The classifier was then trained on 75% of the data and tested on the remaining 
25%.  
 
Following classifier testing, we ranked the features by their Gini score and selected the top 20 most important 
features for model predictions. For these 20 reactions, we calculated the median flux value for each condition, 
normalized, and visualized using a heatmap (Fig 2.2B). We tracked the flow of flux through these reactions to 
create a human readable metabolic map (Fig 2.2A) as well as an Escher metabolic map 43 with the GENRE IDs 
for the reactions and metabolites (Fig S2.4). To investigate metabolism of C. difficile that literature indicates can 
impact toxin production, we compiled lists of identifiers for reactions within a specific metabolic pathway. We did 
this analysis for three metabolic processes: Stickland fermentation, ATP production, and redox reactions. We 
filtered and processed the flux sampling data in the same way as for the Random Forest results.  
 
Shadow pricing analysis: The 20 reactions with the highest Gini scores from the Random Forest analysis were 
iteratively set as the objective function for each RIPTiDe model. This model was then optimized and the 
corresponding shadow price for the FBA solution was saved. For each metabolite and each objective function, 
we calculated the median shadow price and range across all RIPTiDe models. We summarized the shadow 
pricing results for each objective function (OF) across all RIPTiDe models using the following metrics: fraction of 
RIPTiDe models able to carry flux for that OF, total number of metabolites that increase flux through the OF 
(median shadow price < -0.1, range < 2), total number of metabolites that decrease flux through the OF (median 
shadow price > 0, range < 2), total number of metabolites whose shadow price varied across RIPTiDe models 
(range > 2). We then plotted the metabolites with a median shadow price < -5 and a range < 2 for the 9 objective 
functions that had metabolites in this category (Fig 2.3B, Fig S2.5).  
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Metabolic transformation algorithm (MTA): The goal of MTA is to identify perturbations that transform a 
metabolic network from a reference state (e.g., diseased) to a target state (e.g., healthy)25. In our case, we used 
the MTA to find reaction knockouts that lead to transformation of high toxin states to low toxin states in C. difficile. 
The generic MTA is comprised of four distinct steps which are briefly: (1) calculate a flux solution for the reference 
state, vref, (2) identify reactions that are changed in the forward (RF) or backward (RB) direction and unchanged 
(RS) between the reference and target state, (3) solve the MIQP optimization problem formulated to minimize 
change in RS and maximize change in RF and RB, and (4) calculate a transformation score (TS) to quantify the 
success of each reaction knockout in transforming the reference state to the target state. To successfully apply 
MTA to our problem, we made changes to the original formulation at each step, resulting in a modified MTA 
(mMTA, described below) compatible with COBRApy tools.  
 
Step 1: We created two contextualized metabolic models (reference and target) using RIPTiDe with gene 
expression data and then generated 500 flux samples using RIPTiDe24. Because the mean (or median) of the 
flux samples is not a mass-balanced solution, setting it as vref can lead to infeasible MIQP solutions downstream. 
Therefore, we used a Bray-Curtis non-parametric multidimensional scaling (NMDS) to reduce the flux samples 
to a two-dimensional space, then calculated the centroid of the flux sampling distribution, and finally calculated 
the point closest to the centroid and set this flux sample as vref (Fig S2.6A). 
 
Step 2: We determine significantly changed and unchanged reactions by using a Mann-Whitney U test with a 
Bonferroni multiple tests correction. We categorize all reactions into three sets: statistically insignificant reactions 
(RS), and statistically significant reactions which must change in the forward (RF) or backward (RB) direction in 
order to match the target state. The threshold for statistical significance is an adjusted p-value < 0.05. 
 
Step 3: The goal of the MIQP problem is to minimize changes in flux for reactions in RS and maximize changes 
in flux for reactions in RF and RB in the intended direction. We implemented the MIQP formulation as it was set 
out for the gMTA: 
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4) 𝑣1 = 0 
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7) 𝑣% − 𝑦%37𝑣%
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8) 𝑦%3 +	𝑦% = 1, 𝑖 ∈ 𝑅3 
9) 𝑦% , 𝑦%2 , 𝑦%3 ∈ {0, 1} 

Mass balance constraints, thermodynamic constraints, and the reaction knockout perturbation are enforced in 
equations 2, 3, and 4 respectively. The demands for changed reactions are represented in equations 5-8, such 
that the Boolean variables 𝑦% , 𝑦%2 , 𝑦%3 indicate whether a forward reaction (RF) either increases by more than e 
with respect to vref or maintains a preset flux minimum and whether a backward reaction (RB) either decreases 
by more than e with respect to vref or maintains a preset flux maximum. e is the vector of thresholds used to 
determine if flux changes are statistically significant (p < 0.05) and was calculated using a one-sided T-test with 
a 95% confidence interval, such that 𝜀 = 𝑡 4

√.
 where t is the critical value, S is the standard deviation, and n is 

the number of flux samples. We set a = 0.66 as in the original formulation. 
  
Step 4: We categorize forward and backward reactions as successful if vRF > (𝑣,2

&'(
 + e) or if vRB < (𝑣,3

&'( − e	), 
respectively. Next, to quantify how well each reaction knock-out transformed the reference state to the target 
state, we calculated the transformation score (TS) as formulated for the gMTA: 
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Ranking reaction knockouts by the TS provides a helpful metric for evaluating the flux solution from each 
knockout while taking the MIQP objective value would result in reaction knockouts with varying degrees of 
transformational success being set as equivalent (Fig S2.6B). 
 
Phenotype Microarray (PM) data integration and analysis: We used public data from a PM study that 
measured toxin production of C. difficile type strain ATCC 9689 when grown in each condition26. The toxin 
concentrations from this study were calculated by comparing the amount of dye reduction in cell cytotoxicity 
assays to a standard curve of toxin concentrations26. The authors defined toxins as low (<42 ng/uL), mid (42-
420 ng/uL), or high (>420 ng/uL) and we used the same categories in this analysis. The dataset from this PM 
study included 652 unique growth conditions. The GENREs iCdG709 and iCdR703 contain 171 unique 
extracellular metabolites, 65 of which overlapped with metabolites from the PM dataset (Fig S2.8A). We 
constrained the GENREs to minimal media conditions and iteratively added one of the 65 overlapping 
metabolites and simulated flux while optimizing for biomass. We normalized the flux sampling data using min-
max normalization and then removed reactions with variance < 0.05. This step trimmed the flux data from 1323 
reactions to 67 reactions. Next, we calculated the Pearson’s correlation between each reaction flux vector and 
the PM toxin data. None of the reactions were correlated with toxin production. Finally, we visualized the absolute 
flux data for each of the 65 simulated PM conditions (Fig S2.8C).  
 
Data availability  
The transcriptomic data was retrieved from public databases; the GEO IDs for each study can be found in 
Supplemental Table 1. The flux sampling, shadow pricing, and mMTA data are shared in Supplemental Data 
Files 2.1, 2.2, and 2.3 respectively. The scripts used to generate and analyze the data are available on GitHub 
(https://github.com/dap5mb/cdToxinAnalysis).  
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Supplemental Tables 
 

GEO ID Strain Growth Condition (RIPTiDe Name) Replicates Authors Year 

GSE173804 630 
BHIS – Anaerobic (BHIS-1) 3 

Weiss A, et al. 2021 
BHIS – microaerobic  3 

GSE120189 630 
CDMM + low iron (Low Iron) 3 

Berges M, et al. 2018 
CDMM + high iron (High Iron) 3 

GSE165116 630 
BHIS (BHIS-2) 3 

Monot M, et al. 2021 BHIS + 120 uM DCA 3 
BHIS + 240 uM DCA 3 

GSE135912 R20291 
BHIS (BHIS-3) 3 

Lopez CA, et al. 2019 
BHIS + Calprotectin (Calprotectin) 3 

GSE199109 R20291 
BHIS + DMSO (DMSO-1) 3 Mareddy RKR, et 

al. 2022 
BHIS + Enoxolone (Enoxolone) 3 

GSE107961 R20291 
TY 2 

Gu H, et al.  2018 
TY + 5 mM Cysteine 2 

GSE86152 R20291 
5 mM DMSO (DMSO-1) 4 

Sorg J, Monot M 2019 0.5 mM DCA (Deoxycholate) 4 
5 mM Cholate (Cholate) 4 

 
Supplemental Table 2.1. Public RNA-sequencing datasets. BHIS(G): Brain-Heart Infusion Supplemented (Glucose), Cd: C. difficile, 
CDMM: C. difficile Minimal Media, DCA: Deoxycholate, DMSO: Dimethyl Sulfoxide, GEO ID: Gene Expression Omnibus Identifier, TY: 
Tryptone Yeast. Alternate identifiers for RIPTiDe models with similar growth conditions are indicated in parentheses in the Growth 
Condition column when applicable; these identifiers are used for all analyses.  
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Supplemental Figures 
 

 
Supplemental Figure 2.1. Toxin transcript counts across conditions. Toxin transcript counts quantified as reads per million (RPM) 
are shown for all conditions included in the study (see Supplemental Table 1 for more details). Conditions were binned based on median 
tcdA transcript levels across all conditions and labeled as low (< median) or high (> median). 
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Supplemental Figure 2.2. PCA of flux sampling of RIPTiDe-contextualized iCdG709 and iCdR703 models. (A) Summary table of 
the RIPTiDe-contextualized models including the strain, toxin production level, and number of genes, reactions, and metabolites. (B) The 
iCdG709 (CD630, light purple) and iCdR703 (CDR20291, dark purple) C. difficile models were contextualized with transcriptomic data 
(Supplemental Table 1) and flux distributions were sampled (n=500) using RIPTiDe. The flux sampling for each model was randomly 
down-sampled to 100 flux samples and PCA was performed for all the models together (B) and by strain (C–F).  
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Supplemental Figure 2.3. Random Forest validation metrics. (A) Visualization of the random stratified group k-fold splits used for 
cross validation of the Random Forest classifier. (B-C) K-fold cross validation (k=5) of the Random Forest classifier testing ROC (B) and 
accuracy (C), with an average accuracy of 95% in cross validation. (D) Confusion matrix for model predictions with train and test sets 
selected in a 75-25 ratio using random stratified group splits. The model trained on this set had a 97% accuracy. (E) The top 20 features 
for model predictions by Gini score.  
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Supplemental Figure 2.4. Escher metabolic maps. Metabolic context for reactions from the Random Forest analysis labeled with the 
reaction and model IDs from the GENREs iCdG709 and iCdR703.  
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Supplemental Figure 2.5. Shadow prices of metabolites that decrease flux through reactions from Random Forest. For each 
objective function (OF) listed in Figure 2.3A, the metabolites categorized as decreasing and with a shadow price < -5 are shown.  
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Supplemental Figure 2.6. MTA calculations for centroids and transformation scores (TS). (A) Bray-Curtis NMDS of flux sampling 
results for iCdG709 contextualized for BHIS + DCA 240 uM (target, low toxin, light teal) and BHIS (reference, high toxin, dark teal) was 
used to calculate the centroids (red) and the flux sample closest to the centroid (orange) for each model. (B) The MIQP objective value 
verses the TS calculated using equation 10 demonstrates the utility of the TS in ranking flux solutions with a similar objective-value based 
on success of the flux solution in transforming reactions to the target state. (C) Successfully changed reactions for each reaction knockout. 
Successful (dark blue), unsuccessful (light blue). 
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Supplemental Figure 2.7. Comparison of metabolic flux through reactions in the Reference and Target state. 
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Supplemental Figure 2.8. Phenotype microarray (PM) simulation and analysis. (A) Venn diagram showing the overlap of unique 
metabolites from the PM dataset and the extracellular metabolites from the GENREs. (B) The toxin concentration distribution for the 65 
overlapping growth conditions from panel (A). (C) Simulated reaction flux through each in silico PM condition (n=65). The flux data was 
min-max normalized and reactions with flux variance across all conditions < 0.05 were removed and the absolute flux value of the 
remaining reactions was visualized. The PM growth conditions are sorted by their toxin category. Toxin categories were defined as low 
(<42 ng/uL), mid (42-420 ng/uL), and high (>420 ng/uL) as in Lei, XH and Bochner, BR (2013).  
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Abstract 
The primary risk factor for C. difficile infection (CDI) is broad-spectrum antibiotic use which clears the intestinal 
microbiome leaving an open niche for C. difficile to colonize. During infection, C. difficile metabolism is highly 
responsive to its nutritional environment. For example, in mice with CDI, a high protein diet exacerbates disease 
severity while a high carbohydrate, high fiber diet ameliorates disease. However, C. difficile is a genetically and 
metabolically diverse species with often significant differences between strains. To investigate  
how C. difficile metabolism differs between strains as a function of diet, we reconstructed genome-scale 
metabolic models of 105 C. difficile strains from publicly available, whole-genome sequencing data and then 
simulated metabolic flux for each model under three unique diet conditions. We found that strains cluster in two 
metabolically distinct groups by diet; these groups can be differentiated from each other by flux through alternate 
energy pathways and redox reactions. We also simulated growth of the C. difficile strains in the presence of 8 
different commensals to understand the impact of diet on common microbiome interactions in the large intestine. 
We found that C. difficile-commensal interactions were more impacted by diet than differences in C. difficile 
strain. Overall, the diverse metabolic responses of both C. difficile strains and commensals to different diet 
conditions has therapeutic implications, particularly for fecal microbiota transplants where differences in 
metabolism could impact the effectiveness of treatment and as an important parameter to incorporate in the 
design of therapeutic synthetic bacterial communities for CDI. 
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Introduction 
C. difficile infection (CDI) is a gastrointestinal infection caused by broad-spectrum antibiotic use which clears the 
intestinal microbiome leaving an open niche for C. difficile to colonize1,2. The standard treatment for CDI is broad-
spectrum antibiotics, such as vancomycin or metronidazole3. These antibiotics are effective in resolving CDI 
initially; however, because they are broad-spectrum antibiotics, they continue clearing the intestinal microbiome 
of its normal flora. In approximately 30% of patients the loss of a healthy microbiome leads to C. difficile 
recolonizing the intestine, resulting in recurrent CDI4. Patients with recurrent CDI are treated with a fecal 
microbiota transplant (FMT) which effectively resolves disease in 90% of cases5,6. FMT is effective because it 
restores the healthy state of the microbiome and provides colonization resistance to C. difficile5,7,8. However, 
inherent features of FMTs prevent it from being the standard of care in CDI, such as the invasive procedure, the 
risk of pathogen transfer from the donor to the recipient, and scalability8,9. To overcome the limitations of FMTs, 
significant research efforts are being made to engineer synthetic microbial therapeutics10–15. These efforts must 
address the complex interactions between C. difficile, the microbiome, the host, and the nutritional environment.  
 
Diet affects CDI outcomes. Mouse models of CDI given low protein diets had decreased C. difficile growth and 
decreased toxin production16. Similarly, mice with CDI given a high protein diet had increased mortality17.  
A high protein diet increases the availability of amino acids, a primary nutritional resource for energy generation 
in C. difficile via Stickland fermentation18,19. Additionally, mice given either high fat/high protein or high fat/low 
fiber diets had increased mortality20,21. High fat diets elevate primary bile acids (BAs) to digest fat; however, 
primary BAs also promote C. difficile spore germination1,22. Conversely, secondary BAs are decreased in high 
fat diets which reflects low microbiome diversity; secondary BAs have also been shown to protect against 
CDI1,22,23. Diet can also improve CDI outcomes. High carbohydrate and high fiber diets in mice protected against 
CDI20,24,25. This protective effect was non-specific and independent of the carbohydrate composition used 24,25. 
Complex and simple carbohydrates such as inulin or pectin are known as microbiota-accessible carbohydrates 
(MACs)26,27. MACs expand microbial diversity by providing easily metabolized carbohydrates and protect the 
epithelial barrier through SCFAs, a downstream byproduct of MACs26–28. The nutritional landscape of the large 
intestine modulates C. difficile through a multitude of biological systems and metabolic pathways. However, the 
role of diet on different C. difficile strains and on the efficacy of bacterial therapeutics in the treatment of CDI 
remains unknown. 

 
C. difficile has a dynamic, mosaic genome. Its genome is approximately 4.1-4.3 Mb and contains a high 
proportion of mobile genetic elements29–31. C. difficile has an ultra-low level of genome conservation; the core 
genome may be as low as 16% conserved31. Furthermore, there are large phylogenetic distances between 
strains, which makes species classification difficult29. C. difficile strain relatedness is determined in several ways 
including whole-genome sequencing, multi-locus sequence typing, and sequencing single regions within the 
genome (such as PCR ribotyping and toxinotyping). Several pan-genome analyses have been performed to 
identify the relationship between the genetic and phenotypic profiles of C. difficile strains32–35. These studies 
have found that carbohydrate metabolism in particular is highly variable across the pangenome and that 
metabolic variability does not align with any current strain typing systems32,36. However, it is unknown how these 
genotypic and phenotypic differences influence responses to diet or how they might impact microbiome 
dynamics. 

  
To investigate the effect of diet on C. difficile strains and on C. difficile-commensal interactions, we conducted a 
systematic analysis using genome-scale metabolic models of 105 C. difficile strains. We simulated metabolism 
in these models under three diet conditions. We found that C. difficile strains cluster into two groups based on 
flux through energy-generating pathways, specifically the electron bifurcating ferredoxin reduction pathway. 
Furthermore, we examined whether diet influenced metabolic interactions between C. difficile and gut 
commensals. We found that metabolic interactions between C. difficile and commensals increased as the diet 
became more restrictive. Additionally, in C. difficile-commensal interaction simulations that improved C. difficile 
growth, C. difficile had increased uptake of metabolites associated with Stickland fermentation. These results 
uncover important metabolic phenotypes to consider when designing a bacterial therapeutic that will have robust 
efficacy regardless of the C. difficile strain causing disease or the diet of the host. 
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Results 
Workflow validation 
C. difficile is metabolically versatile. In mouse models of CDI, hosts worsen under high protein, low carbohydrate 
diet conditions and improve under low protein, high carbohydrate diet conditions16,17,20,21,24,25. However, the 
underlying metabolic and ecological principles driving these responses are still undefined. To better understand 
the metabolism of C. difficile in response to different diets, we designed a metabolic modeling simulation to 
systematically investigate the range of possible metabolic responses to diet as a function of strain. We defined 
two in silico media based on mouse diet formulas20: high-protein, low-carbohydrate (HPLC) and low-protein, 
high-carbohydrate (LPHC). We additionally defined a rich media control based on brain heart infusion (BHI) 
media. Our standard workflow is to reconstruct metabolic models of C. difficile strains, gapfill to BHI, constrain 
to the 3 media (BHI, HPLC, LPHC), sample the flux distributions, and finally analyze the results (Fig S3.1A). 
 
To test if the computational modeling approach could capture known metabolic differences between C. difficile 
strains, we built genome-scale metabolic models (GEMs) for three C. difficile strains (DSM 102860, DSM 28666, 
and DSM 29629) which have unique fermentation profiles36.  A primary component analysis (PCA) of the 
metabolic flux distributions (n=50) for each strain model under each in silico diet condition separates DSM 28666 
from the other two C. difficile strains (Fig S3.1B); this separation aligns with the previously reported metabolic 
differences between these C. difficile strains based on hierarchical clustering of fermentation profiles. To 
investigate the metabolism driving this separation between strains, we applied a Random Forest classifier. Flux 
through the 15 reactions with the highest Gini Index shows increased activity in carbohydrate metabolism 
(glucose and sucrose transport reactions) and threonine transport in DSM 28666 relative to the other two strains 
(Fig S3.1C). This threonine activity in DSM 28666 corresponds with the increased 2-aminobutanoate and 2-
hydroxybutanoate (threonine oxidative Stickland fermentation products) shown in Riedel, T. 201736. Our 
approach successfully recapitulated overall separation by strain in addition to identifying strain-specific 
metabolism driving these differences giving us confidence to apply it to our primary question. 

 
Figure 3.1. C. difficile strain library. (A) Diagram of the variables and interactions that occur during CDI. (B) A phylogenetic tree of the 
105 C. difficile strains used in this analysis. The presence or absence of the TcdA and TcdB proteins in each strain is indicated by blue or 
grey, respectively. (C) KEGG annotations for metabolic reactions are binned by inclusion frequency in the 105 C. difficile GEMs. Reactions 
are classified as unique, accessory, or core based on the percent of GENREs with the reaction: 1-20%, 20-80%, 80-100% respectively. 
(D) PCA of flux distributions (n=10) from 105 C. difficile strain GENREs. The standard deviation from the cluster centroid was calculated 
by diet for BHI (13.27), HPLC (6.22), and LPHC (2.93). The median distance between centroids significantly differed for all diet conditions 
by Kruskal-Wallis test statistic (p = 2.58e-307). 
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Metabolic variation between C. difficile strains in response to diet 
To explore the range of possible metabolic responses to diet as a function of strain, we created a panel of 105 
C. difficile strains using whole-genome sequences from the BV-BRC, covering a range of phylogenetic 
relatedness (Fig 3.1B). The metabolic models reflect this phylogeny: across the models, 57% of the metabolic 
reactions are conserved and 13% are unique (Fig 3.1C). We constrained each C. difficile model to each media 
condition (BHI, HPLC, LPHC) and sampled the flux distribution space. PCA of the flux samples (n=10) from the 
105 C. difficile strain models in three conditions shows strong clustering by diet (Fig 3.1D). Nutritionally, the diets 
progress from a rich to restrictive formula from BHI to HPLC to LPHC, with LPHC being the most restricted diet. 
Metabolically, the standard deviation within diet clusters decreases with increasing nutritional restriction, 
indicating a reliance on core metabolic functions.  
 

 
Figure 3.2. C. difficile strains show differences in energy metabolism. (A) Pair-wise Bray-Curtis dissimilarity index for flux samples 
from 105 C. difficile strains constrained to BHI divides strains into similar (cluster 1) and dissimilar (cluster 2) groups. (B) The top five 
Random Forest features by Gini index for classifying models as cluster 1 or 2 are shown by diet. Asterisk indicates that a significant 
difference in reaction flux between clusters 1 and 2 by Mann-Whitney U test; circle indicates that the reaction was not included in the top 
20 features in the Random Forest analysis. (C) Distribution of the median flux by strain through bifurcating [FeFe] hydrogenase for each 
cluster and diet. (D) Normalized sum of flux through all producing reactions for reduced ferredoxin (Fd2-), ATP, and NAD+; significance 
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tested using Mann-Whitney U test. (E) Normalized flux production of ATP vs Fd2- has a Pearson’s correlation of 0.9. BHI: brain heart 
infusion; HPLC: high protein, low carbohydrate; LPHC: low protein, high carbohydrate. 

To investigate how strain differences contribute to metabolic responses, we calculated pair-wise Bray-Curtis 
dissimilarity indices using flux samples from the C. difficile strain panel under each diet condition. Hierarchical 
clustering of the indices separates the strains into two clusters that are either similar (Bray-Curtis index < 0.4) or 
dissimilar (Bray-Curtis index > 0.4) (Fig 3.2A, Fig S3.2). It is interesting to note that in all diets, Cluster 2 is not 
only dissimilar to Cluster 1, but also dissimilar to itself (Fig 3.2A, Fig S3.2). Furthermore, the metabolic 
phenotypes of C. difficile strains were most similar in HPLC (Fig S3.2A). This convergence on a similar metabolic 
phenotype in HPLC is likely due to increased reliance on highly conserved Stickland fermentation pathways in a 
restrictive but high protein condition. 
 
Next, we ran a Random Forest classifier for each diet condition to identify the metabolic features driving the 
differences between the clusters. We took the reactions with the top five Gini indices from each diet and tested 
whether the flux for those reactions was significantly different between clusters using a Mann-Whitney U test 
(Fig 3.2B). Bifurcating [FeFe] hydrogenase was the most important feature in differentiating between clusters in 
all diet conditions and the median flux by strain through this reaction was significantly more active in Cluster 2 
(Fig 3.2B-C). The bifurcating [FeFe] hydrogenase belongs to a family of enzymes that release energy from H2 
through redox reactions and is particularly important in anaerobic bacteria37. 
 
Because the bifurcating [FeFe] hydrogenase reaction was flagged as important in the Random Forest analysis, 
we decided to measure the metabolite-producing flux for energy-related metabolites. Briefly, the flux through all  
reactions that produce the metabolite of interest is multiplied by the relevant coefficient factor then summed  
and normalized across strains. This calculation provides us with a total production value for a metabolite that 
can be compared across models. From this calculation, we see that the production of reduced ferredoxin (Fd2-) 
and ATP is significantly increased in Cluster 2 while NAD+ is not significantly different between the two clusters 
(Fig 3.2D). Additionally, the Fd2- and ATP are positively correlated with a Pearson’s correlation of 0.9 (Fig 3.2E). 
Bifurcating [FeFe] hydrogenase reaction uses ferredoxin as an electron acceptor18,37,38. The reduced Fd2- is then 
able to donate these electrons to the electron transport chain to generate ATP18,37–39. This simulation data 
suggests that this pathway for energy generation is more active in Cluster 2, potentially providing a metabolic 
advantage under different diet conditions. 
 
Community cross-feeding dynamics change based on diet 
To investigate pairwise interactions between C. difficile strains and gut commensals, we used the Metabolic 
CrossTalk (MetCT) algorithm40. MetCT can be used to simulate either the mutualistic or competitive potential of 
a given pair of models; it provides three types of data for each pairwise simulation: the overall change in biomass 
for each model when grown together, a competitive and/or cooperative index, and an exchange flux vector for 
each model. Using MetCT, we ran a pairwise mutualism simulation between each C. difficile strain model and 
eight gut commensals. For each commensal, we averaged the final biomass of the C. difficile models to 
determine if growth with a commensal improved or impaired C. difficile biomass (Fig 3.3A). Under BHI conditions, 
C. difficile growth does not change regardless of the commensal pair. However, in HPLC, growth with S. 
thermophilus and E. coli significantly increases C. difficile biomass. These commensals as well as B. producta 
also increase growth in LPHC conditions.  
 
To determine which metabolic features drive changes in C. difficile biomass with specific commensal partners 
under specific diet conditions, we analyzed the exchange fluxes from the pairwise mutualism simulations 
between the C. difficile models and the commensals (Fig 3.3B). Here we see that an increase in C. difficile 
biomass is accompanied by an increase in flux through Stickland fermentation metabolites aspartate and 
glutamate as well as increased flux through water and nitrite/nitrate exchanges. This suggests a beneficial 
metabolic interaction allowing C. difficile to boost energy generation via Stickland fermentation.  
 
To experimentally test these C. difficile-commensal interactions, we grew C. difficile in co-culture with E. coli, B. 
producta, and S. thermophilus using Cerillo duet plates (Fig 3.3C, Fig S3.3). The Cerillo duets feature a semi-
permeable membrane that allows metabolite exchange between compartments but not bacterial migration. This 
system allows us to measure the individual growth of two species with the same nutritional resources. We used 
three media conditions: BHI, P40, and P10; P40 and P10 are in vitro formulations of the in silico HPLC and 
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Figure 3.3. C. difficile-commensal metabolic interactions shift based on the nutritional background. (A) The average biomass ± 2 
standard deviations (SD) of all the C. difficile models (n=105) are depicted as the grey dashed line and the grey box. The average biomass 
of all the C. difficile models when placed in a mutualistic simulation with a commensal is shown in green. (B) The median change in flux 
through exchange reactions from the pairwise mutualism simulations between the C. difficile models and the commensals. (C) Median 
optical density (600 nm) and IQR of C. difficile growth with itself (n=3, black) or with E. coli (n=3, grey) and of E. coli growth with itself 
(n=3, dark teal) or with C. difficile (n=3, light teal) in three media conditions (BHI, P40, and P10). 

LPHC, respectively. C. difficile growth in P40 was significantly greater in co-cultures with E. coli (n=3) compared 
to the control (C. difficile grown with itself) (Fig 3.3C). Similarly, E. coli growth also increased in P40 co-culture 
with C. difficile compared to growth with itself. However, in P10 medium, E. coli and C. difficile co-culture did not 
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provide a growth benefit to either species. These in vitro results partially validate the in-silico predictions from 
the MetCT analysis (Fig 3.3A). Co-culture of C. difficile and B. producta showed a slight growth benefit to C. 
difficile in P10 but not in P40, which matches the MetCT predictions (Fig S3.3A). Finally, C. difficile had a growth 
benefit in co-culture with S. thermophilus in all media conditions (Fig S3.3B). However, in the case of S. 
thermophilus co- culture, large differences in the lag phase between C. difficile and S. thermophilus may be a 
confounding variable. To control for differences in growth dynamics, we did an additional spent-media experiment 
with S. thermophilus. Briefly, S. thermophilus was grown in the three media conditions for 24 hours; C. difficile 
growth was then measured on the filter-sterilized spent media (Fig S3.3C). We found that C. difficile also 
demonstrates a growth benefit in S. thermophilus spent media compared to controls (C. difficile grown in C. 
difficile spent media). 
 
Discussion 
Using an ensemble of 105 C. difficile strains, we found that C. difficile strains could be grouped into two clusters 
based on simulated flux production for ferredoxin and ATP. Furthermore, ferredoxin and ATP production are 
positively correlated and increase with increasing nutritional resources. We also found that C. difficile biomass 
increased in simulations with S. thermophilus, E. coli, and B. producta. In these simulations, C. difficile flux 
through glutamate and aspartate exchanges are increased as well as nitrite and nitrates. Glutamate and 
aspartate are important precursors in Stickland fermentation. Additionally, as diet became more restrictive, the 
interactions between the commensals and C. difficile became more pronounced indicating a higher degree of 
cross-feeding. 
 
Our goal was to investigate the effect of diet on C. difficile strains to see if wide genetic variability resulted in 
phenotypic variability. We modified defined mouse diets to create both in silico and in vitro growth media for 
testing. These three defined diets allowed us to precisely modulate the intake of a model/organism and measure 
the resulting metabolic phenotype. However, these diets only begin to scratch the surface of the range of possible 
outcomes as the human diet is considerably more varied and imprecise. Future work including both a greater 
variety of diets and more complex components, such as dietary fats and MACs, will be an important next step.   
 
C. difficile growth increased in simulations with S. thermophilus, possibly due to resource sharing of Stickland 
fermentation precursors (Fig 3). In vitro experiments of C. difficile grown in spent media from S. thermophilus 
validated this growth benefit in C. difficile when the spent media was pH adjusted. S. thermophilus is one of the 
members of a therapeutic microbial consortia that successfully resolved CDI in mice40. S. thermophilus creates 
an acidic environment through the production of lactic acid, leading to unfavorable growth conditions for C. 
difficile.  
 
Importantly, these results showed that diet impacts C. difficile metabolism and interactions with the microbiome, 
more than strain differences. Therefore, the ecological principles that modulate C. difficile through diet and the 
surrounding microbiome could be manipulated to resolve CDI regardless of the infecting strain. Future research 
efforts should continue to investigate the efficacy of different bacterial consortia under a variety of diet conditions. 
The premise that ecological controls can be applied to resolve CDI is an exciting frontier for infectious diseases 
in general. So long as the ecological principles of control for a disease are understood, there could be 
innumerable bacterial combinations that replicate the necessary ecological and metabolic functions. Finally, 
ecological control of infection provides a timely alternative to antibiotic treatments and the growing problem of 
antibiotic resistance in pathogens. 
 
Methods 
Metabolic model reconstruction: Whole-genome sequences of 105 C. difficile strains were selected from the 
BV-BRC database by filtering for sequences that were “complete” and “good”. These sequences were used as 
the input for the Reconstructor algorithm to build genome-scale metabolic models41. All the models were gap-
filled to a rich, in-silico BHI media using Reconstructor. The same reconstruction method was applied to 8 
commensals: B. producta, B. vulgatus, B. pseudocatenulatum, E. rectale, B. longum, E. coli K-12, R. intestinalis, 
and S. thermophilus. Additionally, whole-genome sequences for 3 C. difficile strains profiled in Riedel, T., et al., 
2017 (DSM 102860, DSM 28666, and DSM 29629) were selected from the BV-BRC database and used to 
reconstruct metabolic models for the purpose of validating the computational approach. 
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Model analyses: We simulated flux under three diet conditions: BHI; high protein, low carbohydrate (HPLC); 
and low protein, high carbohydrate (LPHC). For BHI, we set the lower bounds of the exchange reactions for 
metabolites in the in-silico BHI media to -1000 and the lower bounds of the remaining exchanges to 0. For HPLC 
and LPHC, the bounds for the BHI exchanges were adjusted to represent proportions from published mouse 
diets for high and low protein diets20. We generated flux samples (n=500) for each C. difficile model (n=105) 
under each diet condition (n=3) using Gapsplit42.  
 
Flux samples were randomly down-sampled (n=50) for each diet condition for PCA. The centroid and standard 
deviation was calculated for each diet cluster from the PCA results; a Kruskal-Wallis test was used to determine 
if the groups were significantly different. Pairwise Bray-Curtis dissimilarities between C. difficile strains were 
calculated using the median flux values from the flux samples. These Bray-Curtis dissimilarities were clustered 
hierarchically, and a Random Forest classifier was applied to the two primary clusters to determine which 
metabolic features differentiated between them. The flux samples were down-sampled (n=50) before applying 
the Random Forest classifier. 
 
To calculate metabolite flux production, all reactions producing or consuming a metabolite of interest were listed. 
Two vectors were then extracted from this reaction list: the metabolite coefficient vector and the reaction flux 
vector. These vectors were then multiplied to determine the production and consumption of the metabolite of 
interest for each reaction. A positive sign indicates metabolite production, and a negative sign indicates 
metabolite consumption. Metabolite production was then summed across all the associated reactions and 
normalized across the models by diet. 

 
Metabolic Cross Talk (MetCT) algorithm: MetCT simulates metabolic interactions between bacterial GEMs 
using two main functions: mutualism and competition. In both functions, MetCT sets a minimum growth threshold 
and calculates the minimal media required to meet this threshold for each GEM. MetCT then takes the union of 
the minimal media from each GEM to create a shared media. The mutualism function measures the metabolite 
production of each model using flux variability analysis (FVA). If a metabolite is produced by the first GEM, then 
the lower bound of the corresponding exchange reaction in the second GEM is decreased by a step. These steps 
are repeated until there are no new additions to the shared media. The competitive function measures metabolite 
consumption using FVA. If both GEMs consume a metabolite, then the lower bound of the corresponding 
exchange reaction is increased in both GEMs by a pre-set fraction. These steps are repeated until one or both 
GEMs cannot grow. For both the mutualism and competition simulations, MetCT returns three levels of data: 
overall change in biomass for each model, a mutualism or competition index, and a data frame of the metabolites 
produced or consumed in the simulation. 

 
Growth experiments: Three C. difficile strains (R20291, Cd10, and Cd4) and three commensal strains 
(Escherichia coli K-12, Bacteroides producta, and Streptococcus thermophilus) were used in these experiments. 
All strains were grown anaerobically overnight at 37C in BHIS (brain heart infusion supplemented with 5% yeast 
extract). Overnight cultures were then diluted 1:2 in fresh BHIS and incubated for 2 hours. The 2-hour cultures 
were then inoculated to the three media: BHIS, P10 (10 mg/mL casaminos, 5 mg/mL sucrose, 5 mg/mL glucose, 
1% cysteine, 1% tryptophan, 1% ATCC vitamins, 1% ATCC minerals) and P40 (40 mg/mL casaminos, 0.2 mg/mL 
sucrose, 0.2 mg/mL glucose, 1% cysteine, 1% tryptophan, 1% ATCC vitamins, 1% ATCC minerals). Growth was 
measured at OD 600 every 10 minutes for 20-24 hours using a Cerillo Alto plate reader while being shaken 
continuously at 250 rpm. Statistical differences between curves was evaluated using area under the curve (AUC). 
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Publicly available whole-genome sequencing data from the BV-BRC was used to reconstruct all the metabolic 
models in this study; the genome IDs are listed in Supplemental File 1. The code used for modeling simulations 
and all analyses is available on GitHub: https://github.com/dap5mb/CdInteractions. 
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Supplemental Figures 

 
Supplemental Figure 3.1. Metabolic contextualization of genetic information recapitulates differences in C. difficile isolates. (A) 
The workflow used to test if metabolic modeling can accurately capture metabolic differences between C. difficile strains. Whole genome 
sequences of three C. difficile strains with different fermentation profiles from Riedel, T. et al. 2017 were used as the input to reconstruct 
metabolic models. (B) PCA of flux distributions (n=50) for each model under each diet condition. (C) Normalized flux values for the 15 
most important reactions from a Random Forest classification of strains. BHI: brain heart infusion; HPLC: high protein, low carbohydrate; 
LPHC: low protein, high carbohydrate.  
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Supplemental Figure 3.2. C. difficile strain clustering by diet. (A-B) Pair-wise Bray-Curtis dissimilarity index for flux samples from 
105 C. difficile strains constrained to HPLC and LPHC in panels A and B, respectively. 
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Supplemental Figure 3.3. In vitro growth curves for C. difficile strains. (A-B) Median optical density (600 nm) and IQR of C. difficile 
growth with itself (black; n=3) or with its paired commensal (grey; n=3) and of commensal growth with itself (dark teal; n=3) or with C. 
difficile (light teal; n=3) in three media conditions (BHI, P40, and P10). B. producta and S. thermophilus are the commensals in A and B, 
respectively. (C) Median optical density (600 nm) and IQR for C. difficile grown in S. thermophilus spent media with pH adjusted to 7 
(n=3). 
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Abstract 
Alzheimer’s disease and related dementias affect a significant proportion of elderly individuals worldwide,yet 
predicting which individuals will develop dementia is an active challenge. In an effort to improve predictions, 
biomarkers in blood, cerebrospinal fluid, and feces have been explored and used in conjunction with imaging 
techniques. The predictive capability of the intestinal microbiome is particularly intriguing because of its 
connection to the central nervous system via the gut-brain axis, which has been shown to be biologically 
relevant in other neuro-pathologies. However, a clear and consistent intestinal microbiome biomarker has yet 
to be identified. To explore the intestinal microbiome in dementia, we analyzed 16S rRNA and metagenomic 
sequence data from a new cohort of hospitalized patients collected from September – December 2020 (≥ 65 
years old; dementia = 48; control = 322). We observed no significant differences in alpha- or beta-diversity 
metrics between the groups; however, we found that statistically significant, modest differences at the species 
level exist. To validate these findings, we compared our cohort with four independent, cross-sectional studies 
of Alzheimer’s disease. Using a Random Forest classifier, we found that the predictive ability of the intestinal 
microbiome was cohort-specific. Additionally, differentially abundant genera were more unique across cohorts 
indicating a cohort-specific impact. Together these analyses suggest that while the intestinal microbiome may 
play a role in disease progression, its signals are complex and species compositional biomarkers may have 
limited utility as a dementia diagnostic. 
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Introduction 
Dementia affects approximately 6.5 million Americans over the age of 65, costing an estimated 321 billion dollars 
annually1,2. It is defined as a syndrome that presents with deterioration of memory, language, thinking, and 
behavior1,3. Dementias are further categorized by the physiological cause of disease; Alzheimer’s disease (AD) 
is the most common cause, comprising 60-80% of dementias1. The primary risk factors for dementia include age, 
genetics, and family history1. Dementia is one of the top 10 causes of death in the US, with dementia-related 
mortalities increasing 145% from 2000-20192. Furthermore, the impact of dementia is only increasing: incidence 
in the US is projected to expand to 13.8 million by 20602. 

 
Dementia is a progressive, neurodegenerative disease. Neurodegenerative disorders are caused by loss of 
neuron function in the central nervous system (CNS), resulting in degeneration or death of selective neuronal 
cells4,5. This neuronal damage can occur via oxidative damage, inflammation, or disrupted energy metabolism4,5. 
In AD, pathogenesis occurs through build-up of beta-amyloid plaques around neurons and neurofibrillary tangles 
of protein tau inside neurons1,6. Neurodegeneration is progressive, manifesting a continuum of symptoms from 
normal cognition to mild cognitive impairment to dementia, typically over a time span of 10-20 years1,6. Lifestyle 
and environmental factors including exercise and diet have been attributed to the rate of progression1,7–12. 
 
The gut microbiome (GM) appears to play a complex role in dementia. The GM is able to metabolize 
neurotransmitters and modulators such as short-chain fatty acids (SCFA), gamma-amino butyric acid (GABA), 
acetylcholine, dopamine, glutamate, and serotonin3,6. These neurotransmitters act through the gut-brain axis, a 
communication pathway between the enteric and central nervous systems (ENS, CNS)3,6,13,14. Furthermore, 
intestinal dysbiosis and inflammation are consistent symptoms across neurodegenerative disorders which may 
be due to general diffusion of neuroinflammation of the CNS via the gut-brain axis6,14. Mapping the associations 
between the GM composition and function and neurocognition has been a recent focus in dementia research15–

27 (Table 1). A subset of microbiome studies in dementia have found that Akkermansia18,19, Bacteroides15,24,27, 
Dialister19,24, and Roseburia15,19,23 species are differentially abundant in AD versus controls (Table 1). However, 
these findings are not consistent across all studies, likely due to a variety of factors such as study design, 
geographic locations, age, diet, disease stage, experimental protocols, and data processing. This inherent noise 
in microbiome data continues to cloud the relationship between the gut microbiome and dementia. 
 
To investigate if there are taxonomic and metagenomic GM biomarkers or patterns consistently associated with 
dementia, we analyzed 16S rRNA gene sequencing and shotgun metagenomics from a clinical cohort of 
dementia patients from the University of Virginia (UVA). The 16S rRNA gene is a hypervariable region of the 
bacterial genome that is unique to each species; amplifying and sequencing this region enables bacterial 
identification from a complex milieu, such as stool28. Conversely, metagenomic sequencing reads all of the 
genomic DNA in a sample and provides more precise differentiation of species and strains28,29. Using these 
sequencing data, we found that there were no significant differences in gross GM composition or diversity 
between dementia and control groups; however, there were significant differentially abundant species between 
groups. To determine if these results are consistent with other studies, we summarized results from 13 
microbiome studies of dementia cohorts around the world and then conducted a cross-cohort comparison using 
the UVA cohort and four independent cohorts. Overall, we found that differences between dementia and control 
groups within a cohort are not consistent across all cohorts and that there is a high degree of within-cohort 
specificity. These differences could be a function of regional differences in diet, environmental exposures, or any 
of a host of other variables that are frequently insufficiently tracked. Because of the lack of a robust microbiome 
signal in dementia, we posit that while the GM may still be important for health in dementia, it’s utility for diagnosis 
remains limited. 
 
Results 
UVA 2020 cohort description and data collection  
For this cohort, rectal swabs from 370 hospitalized UVA patients (age > 65) were collected from the UVA Clinical 
Microbiology Laboratory from September – December 2020 under IRB #22176. We conducted a manual chart 
review for all patients with rectal swabs to identify patients with dementia. Dementia was defined by a list of 
notations and/or dementia medications that were present in a patient’s chart (Supplemental Data 4.1). We did 
not exclude patients based on antibiotic usage, with 78.1% of the cohort on antibiotics at the time of collection. 
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Cohort demographics for sex, age, and race along with clinical metrics for dementia delirium, COVID status, 
antibiotic usage, and mortality during study collection are summarized in Table 4.2. Total DNA was isolated from 
all swabs resulting in 357 samples with sufficient DNA quality for 16S rRNA gene sequencing. Additionally, 20 

STUDY 
SUBJECTS 

(N) SETTING 
AGE 

RANGE 
DATA & 

ANALYSIS ↑ GENERA ↓ GENERA 
DATA 

AVAILABILITY 

HARAN 
20191 

NC (51) 
AD (24) 
D (33) 

Nursing 
home, 
MA, 
USA 

72.8 - 
93.2 

Metagenomic 
Random 
Forest 

Bacteroides† 
Odoribacter  
Barnsiella‡ 
Alistipes‡ 

Roseburia† 
Collinsella 
Eubacterium 

On request of 
original authors 

HOU 
20212 

NC (40) 
AD (21) 

Hospital*, 
Xinjin, 
China 

64.4 - 
78.8 

16S V3-V4 
QIIME 

Escherichia/ 
Shigella 
Finegoldia 
Ruminococcaceae 

Aerostipes 
Megamonas 
Enterococcus 

Supplemental 
Material 
 

LASKE 
20223 

NC (100) 
AD (75) 

Community*, 
Tübingen, 
Germany 

60 - 
77.2 

Metagenomic 
Random 
Forest 

  PRJEB47976 

LI 20194 
NC (30) 
MCI (30) 
AD (30) 

Community,  
Shanghai, 
China 

58.8 - 
71.4 

16S V3-V4 
PiCRUSt 

Lactobacillus 
Akkermansia† 
Dorea 
Bifidobacterium‡ 
Streptococcus 
Acinetobacter 
Blautia‡ 

Parabacteroides 
Alistipes‡ 
Alloprevotella 
Sutterella 
Barnesiella ‡ 
others 

PRJNA489760 
 

LING 
20215 

NC (71) 
AD (100) 

Community, 
Lishui, 
China 

64.9 - 
83.4 

16S V3-V4 
QIIME 
PiCRUSt 

Bifidobacterium‡ 
Akkermansia† 

Faecalibacterium† 
Roseburia† 
Coprococcus 
Dialister† 
others 

PRJNA633959 

LIU 
20196 

NC (32) 
MCI (32) 
AD (33) 

Community, 
Hangzhou, 
China 

63.5 - 
86.2 

16S V3-V4 
QIIME 
PiCRUSt 

Proteobacteria*  Ruminococcus 
Blautia ‡ PRJNA496408 

NAGPAL 
20197 

NC (6) 
MCI (11) 

Community, 
N. Carolina, 
USA 

58.2 - 
71 

16S V4 
QIIME   Availability not 

stated 

SAJI 
20208 

NC (82) 
D (25) 

Community, 
Aichi, 
Japan 

69-81 T-RFLP    On request of 
original authors 

SHENG 
20219 

NC (38) 
MCI (8) 
AD (6) 

Hospital*, 
Beijing, 
China 

61.7 - 
81.1 

16S V3-V4 
ZOUT/UNOISE 
(ASV) 

 Faecalibacterium† 
Roseburia† 

Availability not 
stated 

VOGT 
201710 

NC (25) 
AD (25) 

Community, 
Wisconsin, 
USA 

61.8 - 
78.6 

16S V4 
MOTHUR 
 
 

Bacteroides†  
Blautia‡ 
Alistipes‡ 
Gemella 
Biophila 
Phascolarctobacterium 

Bifidobacteria‡ 
Dialister† 
Turicibacter 
Aldercreutzia 

PRJEB51982 

XI 202111 NC (44) 
AD (21) 

Community, 
Shanghai, 
China 

66.3 - 
86.1 

16S V3-V4 
QIIME 

Faecalibacterium 
Agathobacter  
Alloprevotella 
Atopobium 
Parvimonas 
Solobacterium 
Pseudomonas 

Tyzzerella 
Erysipelatoclostridium 

PRJNA611839 
 
Metadata does 
not ID groups 
(NC or AD) 

YILDIRIM 
202212 

NC (51) 
MCI (27) 
AD (47) 

Community, 
Istanbul, 
Turkey 

61.7 - 
76.5 

16S V3-V4 
DADA2 (ASV) 

Ruminococcaceae 
Prevotella_9/ 
Bacteroides 
Escherichia/ 
Shigella 

 PRJNA734525 

ZHUANG 
201813 

NC (43) 
AD (43) 

Hospital*, 
Chongqing, 
China 

60.5 - 
79.0 

16S V3-V4 
QIIME 
PiCRUSt 

Bacteroides† 
Lachnoclostridium Subdoligranulum 

PRJNA554111 
 
Metadata does 
not ID groups 
(NC or AD) 

Table 4.1 Literature survey. Summary of dementia microbiome cohorts including study size, setting, age range, data types and 
analysis approaches, genera reported as increased or decreased in the original study, and data availability. AD: Alzheimer’s disease; D: 
dementia; MCI: mild cognitive impairment; NC: normal control. * Not explicitly stated. † Genera identified as differentially abundant in 
more than one study; ‡ genera identified as differentially abundant in more than one study, including in opposite directions. 

https://www.frontiersin.org/articles/10.3389/fnins.2021.619051/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.619051/full#supplementary-material
https://www.ebi.ac.uk/ena/browser/view/PRJEB47976
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA489760
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA633959
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA496408
https://www.ebi.ac.uk/ena/browser/view/PRJEB51982
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA611839
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA734525
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA554111
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samples representative of the cohort demographics were processed for shotgun metagenomic sequencing (Fig 
4.1). This cohort has several unique features compared to other published cohorts that have explored the 
microbiome in AD. The samples were collected from hospitalized patients while most published studies are 
collected from community or nursing home settings (Table 4.1). Additionally, the dementia criterion is not limited 
to AD, including multiple dementia types. Most importantly, we included patients on antibiotic medications. 
Together these features represent common clinical settings that a diagnostic tool must be able to reliably perform 
in to be clinically useful.  
 

 
Figure 4.4. UVA 2020 dementia cohort workflow. Of the 370 recruited patients, rectal swabs from 357 patients were of sufficient 
quality for 16S rRNA gene sequencing. Out of those 357 patients, 20 representative patients were selected for metagenomics 
sequencing. The cross-cohort comparison reviewed 13 studies of the Alzheimer’s microbiome; four of these studies were included in 
cross-cohort analysis of 16S rRNA gene sequencing. VRE: Vancomycin resistant Enterococcus.  

 

 
DEMENTIA (N=48) CONTROL (N = 322) P-VALUE 

SEX (F/M) 26/22 (54.2%) 138/184 (42.9%) NS 

AGE (MEDIAN) 83.2 73.1 <0.00001 

RACE   NS 

ASIAN 0 (0%) 2 (0.6%)  

AFRICAN AMERICAN 2 (4.2%) 26 (8.1%)  

OTHER 1 (2.1%) 2 (0.6%)  

CAUCASIAN 26 (54.2%) 179 (55.6%)  

NR 19 (39.6%) 113 (35.1%)  

DELIRIUM 11 (22.9%) 39 (12.1%) 0.0693 

COVID 1 (2.08%) 47 (8.07%) NS 

ANTIBIOTIC USAGE 35 (72.9%) 254 (78.9%) NS 

MORTALITY 17 (35.4%) 83 (25.8%) NS 
Table 4.2. Cohort demographics. Descriptive summary of cohort features. Significance of differences in sex, race, delirium, covid, 
antibiotic usage, and mortality between dementia and control groups was calculated using a chi-squared test. Significance of 
differences in age between dementia and control groups was calculated using the Wilcoxon rank sum test. NR = Not Reported, NS = 
Not Significant. 
 
16S rRNA gene sequencing analysis shows minor differentiation between groups 
Because of significant differences in the age and size of the dementia (n = 48) and control groups (n = 322) 
(Table 4.2), we randomly down sampled the control group while matching for age, sex, and race before 

Sample metadata 
(n = 370)

16S rRNA gene sequencing
(n = 357)

Metagenomics
(n = 20)

II. Data Processing and AnalysisI. UVA Cohort Recruitment III. Cross-Cohort Comparison

Hospitalized UVA patients 
(age > 65) with rectal 
swabs collected for VRE 
surveillance from Sept-
Dec 2020

Literature review
(n = 13)

16S data analysis
(n = 4)
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conducting our 16S analysis. Relative abundance of family-level taxa composition averaged by group as well as 
alpha- (Inverse Simpson) and beta-diversity do not show any high-level, significant differences between the 
dementia and control groups (Fig 4.2A-C). While it is possible this lack of differentiation between groups could 
be driven by the high antibiotic usage within the cohort (78.1% overall), we did not find any significant differences 
in Inverse Simpson or Shannon diversity metrics based on antibiotic usage (Fig S4.1A-B). Despite a lack of gross 
differences between groups, we identified significant differential taxa abundances between the groups using 
DESeq2 that included increased abundance of several Bacteroides species and decreased abundance of 
Porphyromonas, Prevotella, and Corynebacterium species in the dementia group relative to the control (Fig 
4.2D). To investigate the metabolic function of the significant differentially abundant species, we correlated the 
16S taxa profile of each sample with the inferred metabolic function of each sample using PiCRUSt2 (Fig 4.2E). 
Notably, degradation and detoxification pathways were present in species differentially abundant in the control 
group compared to the dementia group. 

 
Figure 4.2. Differences between dementia and control groups in the UVA 2020 cohort are complex. (A) Taxonomic composition of 
dementia and control groups demonstrates similar abundances. (B) MDS with Bray-Curtis distance of beta-diversity of dementia and 
control groups; no significant difference between centroids by PERMANOVA (r = 0.122, R2 = 0.0139). (C) Alpha-diversity measure by 
inverse Simpson of dementia and control groups; no significant difference between groups by Kolmogorov-Smironv test (r = 0.75). (D) 
Differentially increased (dark blue) and decreased (blue) abundance of taxa in dementia relative to control. (E) Pearson’s correlation 
between the predicted metabolic function and the differentially abundant taxa. 
 
Metagenomic sub-sampling supports lack of functional differentiation  
Because there were minimal differences in gross GM compositions and few differentially abundant species, we 
considered whether microbial function was more important than microbial composition in differentiating between 
dementia and controls. To test the GM metabolic functional profile, 20 samples representative of the cohort 
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demographics were selected for shotgun metagenomic sequencing (Supplemental Data 4.1). The inferred 
taxonomic composition replicated similar compositional trends of the 16S rRNA sequencing from the same 
samples (Fig S4.1 E-F). However, there were no significant functional differences between the groups (Fig 
S4.1G). This result validates the PiCRUST2 inferred metabolic function from the 16S rRNA sequencing data 
which also found no differences between the dementia and control groups (Fig S4.1H). 
 
Limited consensus in differentially abundant species across dementia microbiome cohorts 
To discern whether the findings from the UVA 2020 cohort were consistent with microbiome data from other 
dementia cohorts, we surveyed findings from 13 unique studies of the intestinal microbiome in AD (Table 4.1). 
These studies encompassed a range of geographic locations, population environments, ages, dementia and AD 
definitions, sequencing regions, and analysis protocols. Akkermansia, Alistipes, Bacteroides, Bifidobacterium, 
and Blautia genera were reported as differentially abundant in dementia patients in more than one study while 
Dialister, Faecalibacterium, and Roseburia genera were differentially decreased in more than one study (Table 
4.1). However, there were no genera that were consistently differential across all studies; the maximum 
consensus across cohorts for any genus reported as differential was 3 out of 13. 
 

 
Figure 4.3. Cross-cohort 16S comparison fails to find a consistent, robust microbiome signal. (A) Taxonomic composition of 
dementia and control groups across cohorts. (B) Predictive accuracy of Random Forest model across cohorts. The bolded diagonal line 
highlights within-cohort testing. (C) Genera that were significantly differentially abundant in dementia binned by the number of cohorts in 
which they were found to be significantly differential. (D) Differential abundance of genera that were significant in at least one cohort as 
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calculated by DESeq2 with Benjamin-Hochberg correction. Asterisks indicate adjusted 𝜌-values < 0.05; circles indicate a genus not 
identified within the cohort. 

 
Because differences in sequencing and differential abundance analysis methods can have a significant impact 
on the findings from microbiome data analysis30, we decided to re-analyze the raw sequencing data from a 
subset of cohorts in our literature review to standardize the comparison. We selected data from Li 2019, Ling 
2021, Vogt 2017, and Yildirim 2022 for our cross-cohort analysis because the sequencing data was publicly 
available, the metadata clearly identified sample dementia status, and the studies covered a range of geographic 
locations. There were no significant differences in phylum-level taxa composition, alpha, or beta diversity 
between dementia and control groups across cohorts (Fig 4.3A, Fig S4.2A-B) with the exception of Li 2019 which 
had differences in the Bacteroidota to Firmicutes ratio between the dementia and control groups and a significant 
difference in alpha diversity (r = 0.015).  
 
To identify if there are consistently differential genera in dementia vs control microbiomes, we conducted a 
differential genera-level abundance analysis using DESeq2. The majority of genera identified as significantly 
differential (r < 0.05, Benjamin-Hochberg correction) were only detected as significant in one or two cohorts and 
there were none detected as significant across all cohorts (Fig 4.3C). Furthermore, for the genera that were 
significant in more than one cohort, there is often disagreement in the direction of the log2 fold changes. For 
example, Alistipes is detected as significant in UVA 2020, Li 2019, Ling 2021, and Vogt 2017; however, it is 
differentially decreased in Li 2019 and differentially abundant in the other cohorts (Fig 4.3D). The absence of 
any genera that are consistently differential across all cohorts further highlights the challenges with the 
microbiome as a marker for dementia diagnosis. 
 
Poor predictive ability of dementia across cohorts  
While we did not find specific species or genera that were consistently differential, it is possible that a machine 
learning model could be generated that accounts for small differences across the entire microbiome that could 
be predictive of dementia status. To generate such a model, we applied a Random Forest classifier to genera-
level abundance data. Briefly, we prepared the data by filtering out low-abundance genera, applying a log10 
transformation and then converting to standardized Z-scores. We then conducted three Random Forest 
analyses: within-cohort predictions, cohort-pairwise predictions, and leave-one-group-out (LOGO) predictions. 
For the within-cohort predictions, we applied a Random Forest classifier with a five-fold, stratified cross-validation 
repeated 20 times to each cohort and then calculated the median accuracy (Fig 4.3B, bolded diagonal). For the 
cohort-pairwise predictions, we trained a Random Forest classifier on a single cohort and then iteratively tested 
on the remaining cohorts. We repeated each train-test cohort pair 20 times and then calculated the median 
accuracy (Fig 4.3B). Finally, for the LOGO predictions, we trained a Random Forest classifier on all the cohorts 
except one; each LOGO permutation was repeated 20 times and the median accuracy calculated (Fig 4.3B). 
Overall, there is poor cross-cohort predictive ability, with the majority of accuracy scores centering around 0.5 
(random chance). The within-cohort accuracy scores are much higher, in particular for Li 2019 and Vogt 2017. 
Both of these results point to the high-degree of cohort specificity and the lack of a robust signal that can 
consistently be used to predict dementia status across studies. 
 
Discussion 
The GM is a largely unmined, unexplored aspect of health and disease; it possesses great potential for diagnosis, 
staging, and treatment in a number of diseases. For example, C. difficile infection (CDI), which occurs when the 
GM has been disrupted through administration of antibiotics, can be completely resolved by restoring a healthy 
microbiome through fecal microbiota transplants (FMT)31. Similar bacteriotherapy interventions in intestinal 
bowel disease (IBD) are an active area of research because the GM in IBD presents with consistent patterns of 
reduced diversity, decreased abundances of specific taxa within the Firmicutes and Bacteroides phyla, as well 
as decreased synthesis of metabolites critical for gut health32. The GM has also been found to impact diseases 
not directly associated with intestinal health. Notably, in depression, the GM presents with specific compositional 
patterns and multiple studies have independently found reduced symptoms of depression following various 
probiotic interventions33,34. Hypothesizing analogous biological interactions via the gut-brain axis as well as novel 
diagnosis and treatment opportunities, the relationship between the GM and dementia has been studied 
extensively in multiple settings and geographical locations15–27,35. Unanimously, these studies have found 
associations between the GM and dementia; however, these studies have yet to uncover a consistent signal 
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across all cohorts. GM data is noisy and the recent best-practice recommendation in the field is to conduct cross-
cohort analyses to increase statistical power36–39. Therefore, we conducted a cross-cohort analysis in which we 
collected and analyzed data from a UVA dementia cohort and then validated these findings using four 
independent dementia cohorts with the goal of identifying a signal within the noise. 
 
The UVA cohort has small GM differences between the dementia and control groups. Taxa composition and 
alpha- and beta-diversity are not statistically different between groups (Fig 4.2A-C), indicating a similar ecological 
structure. We did find differentially abundant species between groups; when we correlated these species to their 
predicted associated metabolic function, species increased in dementia had reduced predicted functions in 
degradation and detoxification pathways (Fig 4.2D-E). This result may indicate that while there is overall a similar 
taxonomic structure, differentially abundant species are contributing to differences in function and metabolism. 
However, both PCA of the PiCRUSt2 inferred metabolic pathway abundances as well as the NMDS of functional 
metagenomic data do not show any functional clustering by group (Fig S4.1G-H).  
 
The analysis of the UVA cohort does present specific challenges, such as the classification of dementia, antibiotic 
use, age, and number of patients between groups (Table 4.2). We addressed the differences in median age and 
group size by randomly down-sampling the control group while matching on age, sex, and race. We included 
patients on antibiotics because they represent a majority of elderly patients which should be considered when 
searching for a potential GM biomarker diagnostic. While it is possible that the wide antibiotic use throughout the 
cohort erases GM differences between the groups, we did not see significant differences in diversity between 
patients who were not on antibiotics versus patients who were on 1-4 antibiotic regimens; at 5 or more antibiotic 
treatments we do see significant drops in diversity (Fig S4.1A-B). An important caveat to this antibiotic analysis 
is that it is unknown if patients who were not on antibiotics at the time of collection were on antibiotics within the 
previous 3-6 months. Finally, the functional analysis of the cohort should be interpreted with caution as the 
metabolic function from PiCRUSt2 is an inferred function based on the taxonomic profile of each sample; the 
functional data from metagenomic sequencing is not inferred, but the small sample size (n = 20) has limited 
statistical power. However, PiCRUSt2 analysis of the 16S rRNA sequencing data from the cross-cohort 
comparison also showed no functional differences based on dementia status (Fig S4.2C), providing support to 
the interpretation that there are no consistent GM functional differences in dementia versus controls. 
 
The cross-cohort comparison tests the robustness and generalizability of GM patterns in dementia, addressing 
limitations within the UVA cohort specifically but also single-cohort analyses in general. The literature survey of 
13 independent dementia GM cohorts was geographically diverse and included multiple community settings 
(Table 4.1). Taxonomic structure was determined by 16S rRNA gene sequencing or metagenomic sequencing 
and certain genera were increased or decreased in more than one study; however, the maximum consensus 
across all studies was 3 out of 13 (Table 4.1). This poor consensus across studies indicates that either there is 
not a consistent GM signal in dementia or that differences in cohort preparation and analysis are obscuring the 
true signal. However, in the analysis of 16S rRNA gene sequencing data from five independent cohorts we failed 
to find a robust GM signal. Overall, there were not significant differences between the dementia and control 
groups by taxonomy and diversity (Fig 4.3A, Fig S4.2A-B). Additionally, most differentially abundant genera were 
found in only one or two cohorts, and none were found in all five cohorts (Fig 4.3C-D). Furthermore, Random 
Forest machine learning was only accurate for within-cohort training and testing and had poor prediction 
accuracy when trained on one cohort and then tested on another (Fig 4.3B). These results support the hypothesis 
that the lack of consensus between the studies in the literature survey is due to an inconsistent GM signal in 
dementia and not due to differences in sequencing analysis. Another possibility is that a larger metagenomics 
comparison could find functional similarities not seen in a species compositional comparison across geographical 
locations. 
 
In conclusion, we conducted a cross-cohort analysis of dementia microbiome data to determine if the GM can 
be used as a reliable biomarker of dementia. The GM is critical to overall health and disruption of the GM in 
dementia can lead to a host of secondary symptoms40. In cases with a clear association between disease and 
the GM, the GM has successfully been used as a biomarker for disease or as a therapeutic target. A recent study 
used microbiome data in conjunction with current gold-standard imaging methods to predict preclinical status in 
AD but found only minor improvements in predictions35. Additionally, we have not found a consistent association 
between the GM and dementia. Instead, we find that the GM in dementia experiences non-specific dysbiosis, 



 54 

which is more likely a secondary symptom of disease rather than a causative agent. Future microbiome research 
in dementia could focus on whether the GM can be used as a therapeutic target even if it cannot be used as a 
predictor. For example, intervention with probiotics or microbial communities could improve secondary symptoms 
of disease similar to depression. It would also be of interest to explore whether alleviation of these symptoms 
lead to overall improvement or slower progression of disease.  
 
 
Methods 
Cohort description: The study presented herein was conducted from September to December of 2020 at UVA 
Health (IRB-HSR# 22176) to pair microbiome and patient health data from vancomycin-resistant Enterococcus 
surveillance rectal swabs.  Rectal swabs have been used as surrogates for fecal samples41, and in the study 
presented here, enabled a survey of inpatients during a defined window of time. Specifically, all surveillance 
swabs were collected after processing by the clinical microbiology laboratory at UVA prior to discarding on a 
weekly basis. Once swabs were collected, the sample set was refined by retaining any swab from a patient ≥ 65 
years old and a unique identifying number was assigned to each sample. In addition to age, we also collected 
sex, cognitive status (e.g., delirium, dementia), medications related to dementia, death within 10d of swab 
collection, and COVID19 status at sample collection (Supplementary Data File 1). Details of the cohort are 
presented in Table 2; significance of differences in sex, race, delirium, covid, antibiotic usage, and mortality 
between dementia and control groups was calculated using a chi-squared test; significance of differences in age 
between dementia and control groups was calculated using the Wilcoxon rank sum test. Samples were stored 
at -20C until DNA isolation was performed.   
 
DNA isolation and sequencing: Total DNA was extracted from rectal swabs using the Qiagen QIAamp 
PowerFecal Pro DNA Kit by letting the swab sit in solution CD1 for 5-10 min, mixed to remove debris and then 
processed according to the manufacturer’s instructions. Extracted DNA was stored at -20C until further 
processing. Total DNA was measured using the DeNovix Broad Range or High Sensitivity dsDNA kits on a 
DeNovix fluorometer. Libraries were prepared for 16S sequencing through amplification of the V4 region of the 
16S rRNA gene according to established protocols42 and sequenced by Genewiz. Metagenomic sequencing was 
performed on total DNA samples using Illumina NextSeq 2000 sequencing (2 x 151bp; SeqCenter, LLC., 
Pittsburgh, PA).   
 
16S rRNA gene sequencing data processing: Processing and analysis of the 16S samples was performed 
using a combination of computational methods. Demultiplexing and adaptor and primer trimming of the raw reads 
were performed as part of the MiSeq platform standard protocol. The removal of adaptor and primer sequences 
as well as overall read quality was verified using FASTQC and MultiQC43.  Further processing of the raw reads 
including filtering, trimming, merging, and sample inference was completed using DADA244 resulting in a final 
ASV counts table to be used for downstream analysis. For the UVA cohort, we filtered out control samples with 
delirium and then randomly downsampled the control group to match the dementia group using an optimization 
solver set to best match for the following constraints: sex, age, race, antibiotic use. In the cross-cohort analysis, 
samples classified as mild cognitive impairment (MCI) were removed before downstream analyses. We analyzed 
taxonomic composition, alpha diversity, and beta diversity using R packages Phyloseq45 and microbiome46. 
Alpha diversity was calculated using inverse Simpson and significance between groups was calculated using 
the Kolmogorov-Smironv test with Bonferroni correction; beta diversity was calculated using multidimensional 
scaling (MDS) with Bray-Curtis distance and significance between group centroids was calculated using 
permutational multivariate analysis of variance (PERMANOVA). Differential abundance was calculated using 
DESeq247 with multiple tests correction by Benjamin-Hochberg. Metabolic function was inferred using 
PiCRUSt248 and visualized using principle component analysis (PCA). The correlation between taxa abundance 
and the PiCRUSt2 inferred metabolic pathway abundance was calculated using Pearson’s correlation. 
 
Metagenomics analysis: 20 samples from the cohort were chosen for metagenomics sequencing using best 
match for gender, age, antibiotics, and race metrics between the dementia and control groups while also 
maintaining an age and antibiotics distribution similar to the original cohort. Adaptors, primers, duplicate reads, 
and host genome contamination were removed using Trimmomatic49, Bowtie250, and custom scripts. We used 
HUMAnN351 for functional annotation and Kraken252 for taxonomic profiling. Non-metric multidimensional scaling 
(NMDS) was used to visualize similarities between groups. 
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Random Forest cross-cohort analysis: For all five cohorts, we calculated the genera-level relative abundance 
and filtered out low-abundance genera (relative abundance < 0.001). Then we transformed the data using log10 
transformation and converted to standardized Z-scores. Using this data, we performed three Random Forest 
analyses: within-cohort, pairwise, and leave-one-group-out (LOGO) testing. For within-cohort, we used stratified 
5-fold cross-validation repeated 20 times to create 100 unique train-test permutations which were then fit to a 
Random Forest classifier. The median accuracy for each cohort was then calculated. For pairwise cohort testing, 
we trained a Random Forest classifier on one cohort and then tested on the remaining cohorts. For each pair, 
the classifier was fit 20 times using 20 randomized random-states and the median accuracy was then calculated. 
Finally, for the LOGO testing, the classifier was trained on all of the cohorts except for one which was reserved 
as the test set. For each LOGO permutation, the classifier was fit 20 times using 20 randomized random-states 
and the median accuracy was then calculated. 
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Supplemental Figures 
 

 
Figure S4.1. Supporting information for UVA 2020 cohort. (A-B) 16S alpha-diversity by the number of antibiotics at the time of 
collection calculated by Inverse Simpson and Shannon diversity metrics, respectively. (C) Inverse Simpson alpha-diversity of AD, 
dementia, and control 16S samples. (D) MDS with Bray-Curtis distance of beta-diversity with samples colored by group. (E-F) Taxa 
composition for the 20 samples with both 16S and metagenomics data, respectively. (G) NMDS of functional metagenomic data using 
Bray-Curtis distance. (H) PCA of PiCRUSt2 predicted functional pathway abundance. 
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Figure S4.2. 16S rRNA sequencing data does not have a consistent or robust signal across cohorts. (A) Alpha-diversity 
measured by inverse Simpson for all cohorts. There is no significant difference in diversity between the dementia and control groups 
with the exception of Li 2019 which had a p-value of 0.015. (B) MDS with Bray-Curtis distance of beta-diversity for all cohorts. (C) MDS 
of 16S-inferred pathway abundance using PiCRUSt2. 
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Chapter 5: Discussion and Future Directions 
 
Network analysis of toxin production in C. difficile 
Summary  
In chapter 2, we sought to systematically define the metabolic drivers of toxin production in C. difficile using two 
strains (630 and R20291) with publicly available transcriptomic data from a total of 16 growth conditions. Arginine 
and isoleucine play particularly conflicting roles in toxin production in C. difficile. For example, arginine has been 
shown to both increase and decrease toxin production depending on the experimental study1,2. Our in-silico 
analysis supports a model of increased arginine and ornithine metabolism in a low toxin state. Additionally, we 
identified a possible up-stream regulatory relationship of fatty acids on arginine which may be an uncontrolled 
variable that explains experimental differences in previous literature. Isoleucine has a similarly confusing role on 
toxin production3,4. The modified Metabolic Transformation Algorithm (mMTA) analysis suggests that C. difficile 
may preferentially metabolize isoleucine as an energy source via Stickland fermentation during exponential 
phase, resulting in decreased bioavailable isoleucine in stationary phase. Decreased isoleucine in the stationary 
phase would then result in CodY deactivation and thereby increased toxin production. In addition to these specific 
amino acid interactions with toxin production, the mMTA analysis also identified 20 reactions that when knocked-
out switched C. difficile from a high-toxin metabolic state to a low-toxin state. In this aim we also developed a 
novel application for the MTA, resulting in our modified algorithm, mMTA. By applying a systems analysis 
approach to this aim, we were able to identify mechanistic hypotheses that resolve discrepancies and gaps in 
the experimental literature on toxin production in C. difficile. 
 
Next steps  
Direct in vitro toxin measurement was a significant limitation in this aim. We measured toxin phenotypes using 
qRT-PCR, cytotoxicity assays, and ELISA assays. We also consulted and collaborated with labs with expertise 
in C. difficile toxin quantification. However, despite extensive efforts, neither we or our collaborators were able 
to reproducibly or reliably measure toxin phenotypes using these methods. Therefore, we propose further 
development of toxin quantification protocols at the gene and protein level. At the gene level, qRT-PCR provides 
a focused snapshot of relative and absolute gene expression. In our initial experiments, we iterated though 
multiple housekeeping genes from literature, prior work within our own lab, and consultation with Dr. Tamayo’s 
lab at UNC; none of these provided consistent, interpretable results. To address this problem, we will use the 
geNorm algorithm to identify the most stable reference genes in C. difficile and then test this panel of 
housekeeping genes with C. difficile grown in experimental conditions (e.g. BHIS, defined minimal media). At the 
protein level, primary monoclonal antibodies to TcdA and TcdB have been developed for use in Western blots. 
We will validate these antibodies to qualitatively assess toxin protein presence or absence in C. difficile in our 
experimental conditions of interest. By improving the reproducibility of experimental tools and protocols for toxin 
measurement, we will expand the ability to validate the relationships between a multitude of variables and toxin 
production. 
 
Our in silico mMTA analysis identified several reactions that could function as metabolic switches for transforming 
from a high protein to low protein state. We propose knocking-out these reactions in vitro to see if toxin production 
is decreased. First, we will filter the top reaction hits from mMTA by the gene-protein-reaction rules. Specifically, 
we will search for reactions whose activity is controlled through either a single gene or a gene combination with 
a Boolean “AND” expression. Historically, generating gene knockouts in C. difficile has been difficult due to low 
transformation efficiency and restriction-modification systems. However, recently, CRISPR-Cas9 systems have 
been successfully used to create gene knockouts in C. difficile. Therefore, after identifying the target genes from 
GPR rules, we will use this list to create gene knockouts using CRISPR-Cas9. After creating and validating our 
knockouts, we will compare toxin production between the wild-type and mutants in both rich and minimal media 
conditions. 
 
Translational application 
Metabolic drivers of toxin production in C. difficile can be leveraged to treat CDI. In CDI, toxin damage to the 
colon is a severe symptom of disease, both inducing significant pain for patients and establishing nutritional 
niches for C. difficile to perpetuate in the colon. Blocking toxin production is an attractive therapeutic strategy 
because 1) it is specific to C. difficile thereby preventing further microbiome loss through broad spectrum 



 61 

antibiotics and 2) it alleviates the physical damage and toxic effects on the colon thereby improving patient 
outcomes. By conducting a systematic network analysis of toxin states, we have provided a framework for 
understanding opposing reports on the connections between metabolism and toxin production. Additionally, 
mMTA provides a starting point for exploring candidate metabolic genes and reactions whose knockout could 
attenuate the toxic impacts of C. difficile. Together, these findings establish a necessary foundation for continued 
research. 
 
Nutritional, commensal, and genetic drivers of metabolic phenotypes in C. difficile 
Summary 
In chapter 3, we investigated the metabolic interactions between C. difficile, the gut microbiome, and diet using 
genome-scale metabolic models of 105 C. difficile strains and 8 gut commensals. The composition and function 
of the gut microbiome are responsive to a variety of variables such as diet, exercise, genetics, and antibiotics. 
For example, broad-spectrum antibiotics can clear the normal microbiome creating an open niche for 
opportunistic clonal expansion of C. difficile. In cases of recurrent CDI, a fecal microbiota transplant (FMT) can 
resolve disease by restoring a healthy microbiome. However, FMTs are not without risk, therefore extensive 
research efforts are being made in designing synthetic microbial communities that could replace FMTs. 
Expanding our knowledge of the underlying microbial interactions and variables in CDI resolution is a critical 
step for engineering successful communities. In our in-silico analysis, we found that strain differences in C. 
difficile give rise to different metabolic phenotypes under the same diet conditions. Specifically, a subset of strains 
had increased flux through energy-generating reactions across all diet conditions. However, in our Metabolic 
CrossTalk (MetCT) analysis, strain differences play a negligible role in metabolic interactions between 
commensals and C. difficile. In these instances, competition and mutualism appear to dominate interactions 
more than diet or strain differences in C. difficile. In completing this aim, we created a new collection of metabolic 
models for 105 C. difficile strains and applied novel ecological interaction simulation methods.  

 
Next steps 
The first portion of this aim found significant differences in energy metabolism across strains in the same diet 
condition. To experimentally validate these metabolic differences, we will perform metabolomics on C. difficile 
strains from different clusters. We have selected two strains (Cd10 and Cd4) which are from clusters 1 and 2, 
respectively. These strains have been grown in vitro in defined diet media that replicates the HPLC and LPHC 
media used in silico. The spent media from these cultures has been collected and filter-sterilized in preparation 
for metabolomics analysis at the Duke Metabolomics Core Facility. The samples will be tested with a panel of 
500 metabolites. Based on modeling simulations, we expect to see differences in the relative abundance of 
amino acids and their Stickland fermentation by-products.  
 
From the MetCT simulations and validating in vitro experiments, the commensal pairs were more important in 
predicting C. difficile growth than diet or C. difficile strain differences. We conducted a limited number of validating 
experiments for these results, however multiple facets of validation remain. Therefore, we propose two sets of 
validating experiments. In the first set of validating experiments, we will test the robustness of potential 
therapeutic microbial communities under different diet conditions. Previous work in the lab has identified 4-
member community that can resolve CDI in mice. We will grow this community under four diet conditions: HPLC, 
LPHC, high fat/high protein (HFHP), and high fat/high carbohydrate (HFHC). We will assess community 
composition by measuring the relative species abundance with 16S rRNA sequencing and we will assess the 
community function by measuring C. difficile growth in the community spent media. In the second set of validating 
experiments, we will test whether ecological interactions between C. difficile and commensals are robust to C. 
difficile strain differences. We will use a panel of 20-30 clinical C. difficile isolates collected from the UVA hospital. 
Using the procedure above, we will collect community spent media and then measure growth of the C. difficile 
strains in the spent media. These two complementary experiments will create a valuable dataset for formalizing 
the ecological relationships between diets, C. difficile strains, and commensals. 
 
In this project, we developed two defined diets, HPLC and LPHC, with in silico and in vitro formulas for both. 
However, these two diets represent a minute fraction of possible diets. To expand on nutritional research, we 
propose developing new, high-throughput experimental assays for common diets across the world. In contrast 
to a Biolog phenotype microarray plate which measures the effect of a single metabolite, this diet assay will 
contain a panel of defined, complex media based on the three primary macronutrients: proteins, carbohydrates, 
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and fats. Using a high, medium, and low level for each macronutrient will yield 27 possible formulations. These 
media formulas could be further refined by altering mineral or other micronutrient amounts to reflect specific diets 
commonly associated with malnutrition or other metabolic disorders. Furthermore, each in vitro diet formula will 
be paired with an in-silico version to facilitate complementary use of computational and experimental 
approaches. The development of this experimental resource will advance nutritional research not only in 
relationship to the gut microbiome and C. difficile, but also in metabolic disorders such as diabetes, obesity, or 
malnutrition. 
 
Finally, this aim highlights an opportunity in the metabolic modeling field to expand microbial community tools for 
investigating ecological dynamics. Using computational approaches to identify reduced microbial community 
structures that can carry out a desired metabolic function increases the chances for success in vitro. Metabolic 
modeling can also provide mechanistic insights into the specific metabolic cross-feeding pattern of a community 
that can be leveraged in developing solutions. Therefore, we propose updating the MetCT algorithm to 
accommodate larger microbial communities and to improve the ecological functions. These updates would allow 
investigation into overall community function as well as individual interactions within the community. Furthermore, 
by enabling the analysis of larger communities, MetCT could be applied to an array of microbiome-associated 
disorders, such as depression, inflammatory bowel disease, Crohn’s disease, dementia, diabetes, and others. 
Moreover, this tool could also be used to study microbial solutions outside of human health, such as reversing 
coral bleaching, treating wastewater or algal blooms, degrading plastic, or producing bio-compounds of interest.  
 
Translational application 
Microbial communities can be powerful biological solutions. For example, in the case of the current FDA-
approved microbial therapeutic for CDI, the synthetic community prevents recurrent CDI by restoring a healthy 
microbiome5–7. Microbial therapeutic treatment of CDI has several advantages over traditional antibiotics: 1) it 
breaks the cycle antibiotic-induced dysbiosis of the gut microbiome and 2) it does not contribute to the 
development of antibiotic resistance in pathogens. In general, microbial antibiotic resistance is a growing problem 
that far outpaces the development of new antibiotics. To combat these challenges, new bacterial infection 
treatments will need to be effective, specific, and robust. Microbial therapeutics provide one alternate solution; 
however, they have been limited by the lack of mechanistic research into the community interactions that lead to 
resolution of infection. By reducing the system to three variables (diet, C. difficile strain, and commensal), we 
were able to distinguish between metabolic phenotypes that stem from genetic differences and metabolic 
phenotypes that stem from commensal interactions. Isolating the variables that induce these metabolic 
phenotypes as well as the hierarchical relationships of those variables is critical for designing effective microbial 
solutions. 
 
Cohort-specific microbiome predictors of dementia 
Summary 
In chapter 4, we investigated compositional and functional patterns in the GM associated with dementia using 
16S rRNA gene sequencing and shotgun metagenomics from a clinical cohort of UVA patients and four publicly 
available datasets. The association between the GM and dementia has been studied extensively in recent years 
to discover both its role in disease and predictive GM biomarkers of disease. However, consistent intestinal 
microbiome patterns across studies have not yet been identified. In our cross-cohort analysis using both new 
and publicly available data, we found that the GM successfully predicted dementia within most cohorts. However, 
the predictive ability of the biomarkers was limited to the cohort in which they were identified. Furthermore, the 
differentially abundant species in dementia and control groups were not consistent across all cohorts. This 
indicates that uncontrolled variables such as diet, geography, or environmental exposures may hinder the 
identification and development of a robust GM biomarker for dementia. In completing this project, we also 
collected, processed, and analyzed rectal swabs from 357 hospitalized UVA patients providing a valuable new 
dataset for future research. 
 
Next steps 
The cross-cohort analysis in this chapter was limited to compositional comparisons and predictions because 
most publicly available data for the GM in dementia are 16S rRNA sequencing data. However, as discussed 
previously, taxonomic composition is the most variable feature of the GM. Investigating the GM function across 
cohorts could identify a more universal metabolic function or ecological pattern underlying the noise of taxonomic 
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composition. GM function is primarily measured via metagenomics, but there is a paucity of GM metagenomic 
data in dementia making a statistically powered cross-cohort analysis challenging. Therefore, we propose 
modeling community metabolic phenotypes across cohorts using metabolic models. First, we will create a 
reduced microbial community (n=10-20) for each group (dementia and normal controls) in each cohort to a 
representative set of species. Next, we will create GENREs for each species using Reconstructor and then 
analyze the ecology and function of each community using MetCT. Comparing the community metabolic 
functions across cohorts will provide insight into the underlying ecological patterns of dysbiosis in dementia 
 
Translational application  
While the nature of the association between the GM and dementia remains elusive, evidence continues to build 
that there is an association. In this chapter we find that the compositional features of the GM are inconsistent 
predictors of disease due to shifting taxonomic composition of the GM.  The negative space of taxonomic noise 
accentuates the potential of in-depth research into the functional and ecological patterns of the GM in dementia 
as the path towards understanding the correlative and causative relationships. Additionally, this finding focuses 
future research questions towards investigating the GM in dementia as a therapeutic target for improving or 
slowing the progression of symptoms rather than as a tool for diagnosis. 
 
Conclusion 
Frequently, discoveries regarding the disparate variables that effect metabolic phenotypes in health and disease 
arrive in piecemeal: in vitro experiments, animal studies, and clinical studies. This research is hard-won and 
foundational to furthering our understanding of the relationships between bacterial metabolism and disease. 
However, between these fragmented studies are gaps in knowledge and gaps in context. By applying a systems 
biology approach to these gaps, we can consider the data and variables from multiple studies at once. This type 
of integrative analysis can provide context to and resolve discrepancies between different studies. We have used 
a systems approach to understand the diverse metabolic phenotypes in C. difficile associated with toxin 
production, diet, genetics, and microbiome interactions as well as the characteristics of the GM in dementia. 
These analyses have generated new hypotheses for metabolic phenotypes in C. difficile, identified variables that 
affect C. difficile metabolism in a weighted order, and provided context for interpreting GM characteristics in 
dementia. These wholistic analyses complement the current body of work and expand our knowledge. 
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much as my body.  
 
Thank you, Maira for being a calming presence at home and the best roommate. You are so wise and one of the 
most empathetic persons I know. 
 
Thank you, Shaylyn, for being a treasured friend and crafting wizard. I appreciate you making me take it out, 
redo it, cast it on, write it down, and all the other crafting and life things you encourage me to do to make life 
easier for future Deb. 
 
Dinner with friends has been a gold thread running through my years in Charlottesville: watermelon group therapy 
with Michelle and Natalia; cheffing with Dawson and Lillian (FYP); dinner party with Lindsey, Katie, Mel, and 
Lillian; bach brunch with the house; crafting dinners with Shaylyn and Maira; kids night with Joe, Sami, Emma, 
Connor, Will, and Rusty; summer sips with Glynis, Sami, and Emma; and Saturday night dinners with Noah and 
Emily. You all have made every failure easier and every success sweeter. 
 
 
 
 


