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ABSTRACT

The traditional Travel Demand Forecasting Model M), used within the Long

Range Transportation Planning (LRTP) process, haslynfocused on the evaluation
of transportation system effectiveness and enviental impact with various

performance measures to assess transportationtrimaes alternatives. However,
TDFM does not explicitly account for delays dueintgidents that contribute non-
recurrent urban congestion. Previous studies haweldped ad-hoc techniques to
consider incident impacts (e.g., safety studieg tHantify crash hotspots or pre-

defined incident scenarios at the subarea level).

This dissertation research developed an appraastiggrate the large amount
of increasingly available incident data with a oegs TDFM. This dissertation
research has explored incident data and their itap@ce number of blocked lanes,
duration, etc.) on the network and shown how intidata should be prepared to be
integrated into traditional TDFM networks. Known @aslravel Demand Forecasting
Model with Incidents (TDFMI), the approach incorptes historical incident
information (the duration and reduced capacity doethe incidents) into the

corresponding links and nodes of the traditionaFMDnetwork.

Incident impacts were accommodated in the traHgsignment step by
modifying the functional form of volume delay furmts (VDFs) to consider incident
duration and capacity reduction. Field traffic dated crash data in Virginia DOT'’s

database were explored to find crash-involveditrafta by using common temporal



and spatial information. The prepared crash-inwbl¥eaffic data were split into
subgroups by facility types to calibrate VDFs sepely. The Bureau of Public Roads
(BPR and Akcelik VDFs were modified with additional nables for considering
incident impacts (duration and reduced capacityljnkt segments and intersections.
The parameters of modified VDFs were calibratechgigirash involved traffic data
and application results showed better performaneasores compared to the TDFM

results.

The approach is demonstrated in the Hampton Ro¥dsginia region.
Prepared incident data were successfully matchédl earresponding segments and
intersections on the networks of traditional TDFFor the base year comparisons,
TDFMI offers better percent root mean square e@RMSE) than TDFM for all
facility types even without the calibration and idation of TDFMI; with larger
improvements in %RMSE for higher volume groups (o4@,000 vehicles per day).
Especially, TDFMI results for interstate freewaysl gorincipal arterials, and rural area

showed improvements in both %RMSE and volume/coatrd.

For the future year evaluation of scenario investtn TDFMI results were
evaluated by three major criteria: project utilitgconomic vitality, and project
viability. From the three criteria, six quantitaisub-criteria, contributing 85 points
out of a total 300 points, were evaluated and stoReelative to TDFM, the
applications of TDFMI to nine candidate major invesnts show that the TDFMI
notably affected the prioritization of investmerity explicitly considering each

investment’s impact on incidents. While the topked project is unaffected, three



Vi

projects changed their ranking by one position @mather three projects changed their
ranking by three positions. The paired t-Teststha nine projects showed that the
evaluation scores for three projects in the TDFMravsignificantly different than
those generated by the TDFM. These changes initration demonstrate that the
explicit consideration of a project’s ability todwuece incidents is feasible with TDFMI

and can materially influence which investmentssalected during LRTP process.
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CHAPTER 1. INTRODUCTION

1.1Background

The travel demand forecasting is an essentialitatike Long Range Transportation
Planning process (LRTP) to evaluate alternativaetlies for accommodating future
needs such as land use development, supply anchdepalicy-related strategy, etc.
The traditional Travel Demand Forecasting Model FM)—an evolutionary tool

based on the sequential steps of trip generatigndistribution, mode choice, and
traffic assignment—is used to evaluate these alteses. The four step model is the
primary trip-based tool for forecasting future hdemand and performance of a
transportation system on a regional scale. Whike ittvestment choices are not
dictated by the TDFM results alone, they providewndation for evaluating major

infrastructure investments when preparing the LRVRrtin and McGuckin 1998).

However the existing TDFM does not have any vaegsllr components to quantify
traffic congestion properly, and thus, traffic cestion is not factored into the

prioritization of capital investments in the trang@ation planning process.

USDOT defined the congestion as “one of the sit@lgest threats” to the
Nation’s economic prosperity and way of life (Owestsal. 2010). Work zones,
crashes, breakdowns, adverse weather, sub-optigmall 2iming, toll facilities, and
railroad crossings caused over 3.5 billion estichatehicle-hours of delay on U.S.

freeways and principal arterials in 1999 (Chin ket2904) Based on 2007 data,



wasted time was 4.2 billion hours and wasted fueed @.8 billion gallons, congestion
cost about $87.2 billion combined in the top 43Baur areas in the United States
(Owens et al. 2010). About 50% of all highway castg is caused by the non-
recurrent congestion, which leads the variationstriavel times (Cambridge

Systematics 2013a).

Table 2.1 lists the major causes of non-recurrenigestion. The Highway
Capacity Manual 2010 version (HCM 2010) identifiget major causes of non-
recurrent congestion as: incident, weather, workesp special events, fluctuation in
demand, special events, traffic control devicesd amadequate base capacity
(Transportation Research Board 2010). Other litieeaidentified the major causes of
non-recurrent congestion as: incident (includingsb), work zone, and weather

(Skabardonis, Varaiya, and Petty 2003).

Table 2.1 Major Causes of Non-recurrent Congestion

TRB Skarbardonis et al.

1. Incidents 1. Crashes (both fatal and non-fatal)

2. Weather 2. Breakdowns

3. Work zones 3. Work zones

4. Fluctuation in demand 4. Weather events (rain, fog, ice, and snow)

5. Special events 5. Sub-optimal signal timing (principal arterials)
6. Traffic control devices 6. Highway-railroad crossings (principal arterials)
7. Inadequate base capacity7. Toll facilities

8. Commercial truck pickup and delivery (PUD)
activities (urban principal arterials)

Source: * (Transportation Research Board 2010)
** (Skabardonis, Varaiya, and Petty 2003)



Traffic incidents (e.g., crash, breakdown, abandowehicles, etc.) account
for 25% of non-recurrent congestion in urban taffCambridge Systematics and
Texas Transportation Institute 2005). Crashes sgmtea major source of non-
recurrent congestion, which is estimated to be tbali of all congestion in some
locations (Cambridge Systematics and Maryland Bethe2010). Incidents cause
sequential negative impacts on the road networkluding but not limited to,

congestion, delay, more mobile emissions, and riu@leconsumption.

1.2 Research Motivations

The performance measures used by TDFM, such asledahiles traveled (VMT)
and vehicle hours traveled (VHT), can be relativgbpd surrogates for measuring
the system effectiveness in terms of delay, ailigpi@and emissions. For example,
an increase in VMT will be highly correlated witim ancrease in greenhouse gas
emissions regardless of vehicle type. However,aituracy of these performance
measures is limited in the case of TDFM becaus#goés not consider network
disruption caused by the incidents (whether planoedunplanned). As fiscal
constraints require that decision makers decide chwhprojects should be
implemented, this inability to consider non-recatr&ongestion may adversely
affect the transportation programming process, @ajpye in prioritizing multiple

investment alternatives.

There are two main gaps in knowledge that thisareseaddresses. First,

there is no framework or methodology to incorporastwork disruption from



incidents into the TDFM. Second, there are very femposed methodologies
incorporating incident impacts as an additionalageln the network analysis.
Previous research efforts did not explicitly comsidncidents as a variable, but
treated them as pre-determined additional delag tiegardless of traffic conditions.
They focused on either: 1) microscopic dynamictoclsastic assignment model for
Advanced Traveler Information System (ATIS) strgtenm simple test bed network
loading (Fu and Rilett 1997; Ngassa 2006; Bian 200 mas and Robert 2008), or
2) macroscopic static assignment with simplifieduwee delay function and incident

conditions (Li, Zhou, and Rouphail 2011a; Li, Zhaand Rouphail 2011b).

The Federal Highway Administration (FHWA) has learieus management
and operation (M&QO) strategies to consider openatio variables in the
transportation planning process to improve systémiency, reliability, and safety
(Grant et al. 2010). Recently, the second Stratéjghway Research Program
(SHRP 2) has conducted various research specidhzflir areas (safety, renewal,
reliability, and capacity) to improve the safetydaeliability of the nation’s highway
system (Transportation Research Board of the Naltidkwademies 2013). As the
part of efforts for incorporating the reliabilityegormance measures into the
transportation planning process, SHRP 2 has amhlgredefined simple scenarios
for non-recurrent congestions including incidentrkvzone, and inclement weather

to evaluate reliability performance measures (CahglerSystematics 2013b).

The volume delay function (VDF) in traffic assignm@ppears to be the best

place to consider incident impact properly in therfstep travel demand forecasting



model because it determines the relationship betveegply side (free flow speed
and link capacity) and demand side (loaded linkina) by an equation relating how
many trips will be loaded on each link. By usingradified VDF, the TDFM
incorporating incident impact (referred as TDFMbutd not only predict travel
demand considering incident impact but also assa$sus performance measures to
evaluate incident-related goals and objectives remsportation planning and
prioritization of investments. From the functiorfafm of VDF, incident impacts
could be added as additional variables accommaglatoidents’ frequency, duration,

and capacity reduction.

1.3Problem Statement

The non-recurrent congestion is a major cause diiaed mobility, emission, and
other sustainability issues, and the consequeitigbct of non-recurrent traffic

events are already integrated with the field tcaffbservations that used in the
calibration and validation of TDFM. However, theditional macroscopic static
TDFMs do not consider these impacts properly bexabhgey do not have the
capability to analyze these impacts in the modealctire. Moreover, incident

impacts have not been well addressed in even engergodeling practices such as
activity-based models, dynamic traffic assignmermdeis, and traffic simulation

models regarding the travel demand forecastingnigales (Cambridge Systematics
et al. 2012). The lack of data and limited analysisls are the main reason why

incident impacts are not well addressed and relysulnjective assessments in the



long range planning process in many cases (Chedtetj al. 2001; Chatterjee et al.

2003).

The factors affecting the impact of non-recurrenhgestion on freeway
operation are 1) incident duration, 2) reductioncapacity, and 3) demand rate
(Garib, Radwan, and Al-Deek 1997). Even though eaotienal evaluation of
various alternatives focuses mainly on transpamasiystem effectiveness (mobility,
congestion, VMT,VHT, delay, etc.) and environmeimabact (air quality, emissions,
and noise) as predominant performance measuras, @ne no variables or factors
for incorporating incident in the travel demandefmasting model (Jeon 2007). The
majority of goals and performance measures in swidity are more or less related
to safety issues such as crash, incident, delaygestion, emission, etc. In order to
incorporate incident impact properly into planniagd decision making process,
TDFM should have the capability to assess incidapicts in it because TDFM is a
core component to access and evaluate variousnaliless strategies for

accommodating various future needs.

1.4Research Goals and Objectives

The primary goal of this dissertation is to devedo@DFMI incorporating incident
impacts. The hypothesis of this dissertation ig¢ tha TDFMI would forecast the
travel demand incorporating the incident impactat tis unavailable from the

traditional TDFM, which would provide additional efsl information to



transportation planners and decision makers toawgthe decision-making process.

The main objectives of this dissertation to exantiveehypothesis are to:

1. Prepare incident data for base year and estimeigeint data for future year
to integrate incident impact (frequency, severignd duration) into

traditional TDFM.

2. Modify the functional forms of VDFs to be used iDHMIs and calibrate

them to accommodate incident impacts with additioaaables.

3. Evaluate the performance of the developed base &Ml by comparing

them with field observations and traditional TDFM.

4. Evaluate selected highway projects from 2034 HampRoads LRTP by
using TDFMI and compare the projects prioritizati@sults from TDFMI

with those from TDFM.

1.5Dissertation Organization

This document contains seven chapters. In chaptérelbackground, motivations
and goal and objectives of this dissertation amsgmted. Chapter 2 presents the
relevant literature reviews on the following majdasks: i) Long Range
Transportation Planning process, ii) traditionalaviel Demand Forecasting
Modeling, iii) traffic incident modeling for frequey, duration, and reduced capacity,

and iv) volume delay functions. Chapter 3 addressdsamework incorporating



incident impacts into the traditional TDFM and theda preparation for the base year
and future year TDFMIs. Chapter 4 presents thedemti data preparation for the
modification and calibration of VDFs with incidedata. Chapter 5 addresses the
procedure of how prepared incident data and matMBFs are incorporated with
the traditional TDFM networks. In Chapter 6, therisas comparisons and
evaluations of TDFM and TDFMI are presented withpréoritization of future
alternative projects. Finally, in Chapter 7, cosabms and recommendations learned

from this dissertation research are presented.



CHAPTER 2. LITERATURE REVIEW

A literature review was undertaken to understamddinrent best practices in Long
Range Transportation Planning (LRTP), Travel Dem@oicecasting Model (TDFM),
network simulation combined with incident, incideamalysis in various temporal
and spatial horizons from real time to long rangeire year, and/or from corridor

level to regional level.

2.1Long Range Transportation Planning (LRTP) and Deci®n Making Process

By Federal law (Title 23 United States Code, Secli84 Metropolitan Planning), an
urbanized area with population above 50,000 shbakk a Metropolitan Planning
Organization (MPO), which is a regional transpaotatplanning agency. MPOs
should prepare the Metropolitan Transportation Riteghand Programming Process
for LRTP, which should be continuing, cooperatigad comprehensive (3Cs) with
no more than a 30-year horizon (Transportationftf@nCapacity Building Program
2007). The transportation planning and programnpiragess should be prepared: 1)
to promote the safe and efficient management, tipaeraand development of surface
transportation systems, 2) to improve the mobiitypeople and freight within and
through urbanized areas, and 3) to minimize thenspartation-related fuel
consumption and air pollution (Transportation PlagnCapacity Building Program

2007).
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Figure 2.1 shows a typical transportation plannamgcess and the role of
TDFM (Beimborn, Kennedy, and Schaefer 1996; Meyet Kliller 2001; National

Highway Institute 2012).

N\ Develop goals, Objectives, and
Evaluation Criteria

!

Assess Current and Likely Future
Problems

1 Travel

Demand
Develop Alternative Solutions [ Forecasting

T Model

‘ (TDFM)

Evaluation Alternatives

!

Assist in Decision Making

N

Public Involvement

N

Source: (National Highway Institute 2012)

Figure 2.1 Transportation Planning Process

Goals and objectives are established and evaluetitamnia are prepared first.
The problems, scope, area, and issues are defingndsistep to determine the final
goals and objectives. The assessments of the tylrase year) problems and the
expected future year problems are followed. Fogliable assessment, various data,

including socio-demographic data, land use datd firaffic data, and various
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archived data are collected and the models arbratdid and validated. Based on the
assessment results of the problems, various alteesafor the base year and the
future year are developed. From the evaluationtefratives, preferred alternatives
or plans are selected. The evaluation resultsletts alternatives are used to assist
the final decision making process. TDFM is the majool used to develop

guantitative analyses for the assessment of prabterthe evaluation of alternatives.

Many types of transportation planning analyses tmayleveloped using the
modeling approaches listed below (Virginia DOT 2007
1. Evaluate Transportation System Performance
2. Long Range Transportation Planning for MPO areasStatewide
3. Short Range Transportation Planning such as Tratampm Improvement
Program (TIP) and Six-Year Improvement Program (Y]
4. Support Air Quality Conformity Analysis

5. Support Alternative Analysis

Title 23 of the United States Code describes thgatdrederal Planning Factors
issued by Congress to emphasize planning factans fa national perspective
(Caltrans 2012):

1. Support the economic vitality of the metropaliea, especially by enabling

global competitiveness, productivity, and efficignc

2. Increase the safety of the transportation systemmotorized and non-

motorized users.
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3. Increase the security of the transportationesgstor motorized and non-
motorized users.

4. Increase the accessibility and mobility of peaghd for freight.

5. Protect and enhance the environment, promotggrmm®nservation, improve
the quality of life, and promote consistency betmve&ansportation
improvements and State and local planned growtheandomic development
patterns.

6. Enhance the integration and connectivity of tta@sportation system, across
and between modes, people and freight.

7. Promote efficient system management and operatio

8. Emphasize the preservation of the existing prartation system.

The Metropolitan Planning Organization considemséheight factors when
developing projects and strategies during the pramation planning process. These
planning factors remain unchanged in MAP-21, theviig Ahead for Progress in
the 21st Century Act (P.L. 112-141), signed intw lay President Obama on July 6,

2012.

2.1.1 MPO and State Department of Transportation (DOT)

The planners and modelers in the MPOs and State sD@dve various
responsibilities in carrying out the Metropolitareiisportation Planning Process and
below are some examples (Virginia DOT 2007):

* Prepare and adopt a long range transportation plan
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* Develop a financial plan that demonstrates how abdepted long range
transportation plan can be implemented.

* For the designated non-attainment or maintenaregsaor ozone or carbon
monoxide under the Clean Air Act, the MPO shall dastrate Air Quality
Conformity by coordinating the development of thed range transportation
plan with the process for the development of transpion control measures
in the State Implementation Plan (SIP) requiredhayClean Air Act.

* Review and update the financially constrained loangge transportation plan
to confirm its validity and consistency with curteland forecasted
transportation and land use conditions.

» The MPO annually certifies to the Federal HighwalmAnistration (FHWA)
and the Federal Transit Administration (FTA), witie corporation with the
state DOT, that the planning and programming pdesddressing major
transportation issues and is being conducted iardaace with all applicable

requirements.

In addition to having responsibilities associatethwhe planning process,
the planners and modelers in the MPOs and DOTshalge certain responsibilities

in carrying out the programming process for thedaa as listed below:

* Developing a Transportation Improvement Progran®)Tl

» Creating a financial plan that demonstrates howliRecan be implemented
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* Adhering to the Air Quality Conformity standards fine designated non-
attainment or maintenance areas for ozone or canbomoxide under the

Clean Air Act.

2.2 Travel Demand Forecasting Modeling (TDFM)

Travel demand forecasting and modeling (TDFM) heenbused as an important tool
in transportation plans, projects, and policiesarndgrious temporal-spatial horizons
in MPO areas and statewide (Cambridge Systematica. €2012). As noted in
Chapter 2.1, TDFM develops traffic forecasts anal@ates alternative transportation
scenarios and regional-wide transportation systeimsassist in prioritizing
transportation projects. TDFMs are usually devealopsing demographic, survey,
and transportation network data. Demographic amdegudata are used to develop
the mathematical equations necessary for modetinghway and transit data (e.g.
number of lanes, speed limit, road capacity, tteswiedules and fares, etc.) are used

to model the transportation network (Virginia DOQ0Z).

2.2.1 Four Step TDFM Model

The most common TDFM method used worldwide, ingigdn the United States, is
the traditional four step approach. This approachn aggregate sequential process
with four steps:

1. Trip Generation = How many trips will be made?

2. Trip Distribution = Where will the trips go?
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3. Mode Choice What mode of transportation wi# thps use?

4. Trip Assignment What route will the trips take?

Figure 2.2 depicts the sequential process of tmiitional four step TDFM from trip
generation to trip assignment. Figure 2.2 showsdhah step uses the outputs from
the previous step as key inputs, in addition otheernal input data. The Time-of-
Day step is an optional step that is generallygadoetween the mode choice and the
trip assignment step. It is widely used in the aredere traffic patterns and/or
characteristics differ by time of day, such ashea morning, mid-day, afternoon and

evening periods (AM, MD, PM, and NT).
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Figure 2.2 Four Step Travel Demand Forecasting Modieg Process

Demographic and socio-economic data are aggregatddprepared to the
Transportation Analysis Zones (TAZs) level befdneyt are used as inputs into the
four step model. TAZs are established based onrgpbi location and census data,
and are typically derived from a combination of @i blocks and/or census block

groups.
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Trip Generation
The Trip Generation step determines the numbeerdgn trips that begin (produced)
or end (attracted) in each individual TAZ in a mlogigion. Socio-demographic data
and land use data are used in the trip generatmaehto determine the produced
and attracted trips at TAZs. Usually the regressimuel or the cross-classification
model is used in Trip Generation, but the crosssifeation model is more accepted
when modeling larger regions. In order to estimtte total number of trips
generated/attracted from/to TAZs, a household trauevey data, such as the
National Household Travel Survey (NHTS), is used determine household
variables (e.g. number of persons, workers, vehidhildren, income, etc.) in each
TAZ. There are four trip types used in the Trip &ation model:

* (I-1) trips that begin inside and end inside of thedel region

* (I-E) trips that begin inside but end outside & thodel region

* (E-I) trips that begin outside but end inside & thodel region

* (E-E) trips that begin outside and end outsidéhefrhodel region, but travels

through the model region

All trips other than E-E trips are calculated b tgeneration models. E-E
trips are modeled from traffic counts, Origin-Daation surveys taken from external
stations, and/or relevant traffic data. Trips amaally split into trip purposes,
including home-based trips and non-home-based (NtiB¥, because they have
different characteristics in trip generation. Ferthore, home-based trips can be

further divided into more categories, such as farkw(HBW), school or college
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(HBSc), shopping (HBSh), and social and recreationather trips (HBO) (Ortuzar

and Willumsen 2001).

Ortuzar and Willumsen (2001) identified major tastaffecting personal trip
generation as: income, car ownership, househaldtsiie, family size, value of land,
residential density, and accessibility. Specialilitggs, such as hospitals, military
bases, ports, colleges and universities, warehpuses are treated as special
generators because additional survey and estimdaten are necessary to estimate
trips from/to special facilities. To estimate @kt trips in modeling region, the
following data are used: number of employees, nurobsales, roofed area of firm,

and total area of firm are used (Ortuzar and Wiam2001) .

Trip Distribution

The Trip Distribution step determines the numbepearfson trips between all pairs of
TAZs. The predominant model used is the gravity ehoderived from Newton’s
Law of Gravitation. In the functional form, the nber of trips between TAZ and
TAZ j has a positive relationship to the magnitude ofipced trips from TA4 and
attracted trips to TAZ and a negative relationship to the impedancetrame and
cost) between TAZ and TAZj (Virginia DOT 2007). The Standard Gravity model
formula is shown below:

PLA LCFF, LK,
ZA]. OFF; OK;

Trips; =
Eqg. (2.1)

Where:i= Origin TAZ
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| = Destination TAZ
n= Number of TAZs
P=Trip Productions
A=Trip Attractions
FF=Friction Factor

K=Optional Adjustment Factor (K factor)

The calibration of the gravity model is to fit fien factor (FF) matrices from
the locally observed data per trip purposes. Theréfresents the impedance
between zoneand zong in time, distance, and cost. Thus, friction fastare higher
as travel time decreases. FF varies by trip typ&sl{E, E-1 and E-E). The widely

used functional form for estimating FF is the ganforection as shown below:
R =axt) xexpExt;) Eq. (2.2)

whereF,” =Friction Factor

t; =Travel Impedance from zone i to zone |

a,b,c = Scale Parameters

Travel impedance used to estimate the FF typicaiBs a generalized travel
cost that is calculated by incorporating travelgsndistance, and costs such as tolls,
parking, etc. Travel times include in-vehicle tratimme (IVTT) and out-of-vehicle

travel time (OVTT) to account for the difference thle traveler's value of time
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(VOT). K-Factor is used to account for the effeotsvariables other than travel

impendence in the gravity mod&ambridge Systematics et al. 2012)
Mode Choice

The Mode Choice step splits the person trips intalenspecific trips such as Single
Occupant Vehicle (SOV), High Occupancy Vehicle (HOWBus, Rail, etc. The
expression for the probability of choosing an alétivei is (Koppelman and Bhat
2006):
pr(i) = —XPM) Eq. (2.3)
> = &xpV))
Wherepr() = probability of the decision-maker choosing altgive i

v, = systematic component of the utility of alternativ

Multinomial logit or nested logit models are tydigaused in practice, based
on the combination of modes in the model structliree National Highway Institute
identified factors affecting model split from fiveajor categories (National Highway
Institute 2012):

» Personal/household (HH) characteristics: vehiclailalility, HH income,

HH size, etc.

 Trip characteristics: trip purpose, trip chainingleparture time,
origin/destination, trip length, etc.
* Land use characteristics: sidewalk, pedestrianliigcdistance to transit,

parking availability, etc.
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» Service characteristics: facility design (HOV, hiketc.), frequency,
congestion, cost (parking, tolls, fares, out-of}iccost, etc.), stop spacing,

etc.

Koppelman and Bhat (2006) listed the commonly usqalanatory variables
associated with travelers, mode, and trip itselfmode choice models. Traveler
(decision-maker) related variables include travelad/or household information,
such as income, number of vehicles, number of werk&ex, age group, etc. Trip
Context variables include: trip purpose, the emplemnt density of the workplace,
the population density of the residential area,t@Business District (CBD). Mode
related variables include: total travel time (TVTT)-vehicle travel time (IVTT),
out-of-vehicle travel time (OVTT), wait time, numbef transfers, transit headway
and travel cost. Some variables are computed tegetb derive additional
information, such as travel cost divided by housglvacome, travel time divided by

cost grouped by sex or age group, and OVTT divigetbtal trip distance.

Trip Assignment

The Trip Assignment step determines which transpiort routes on the network
will be used for mode specific trips between thggiarand destination TAZs. The
common traffic assignment methods are an all-ohingt (AON) approach or an
equilibrium assignment approach. AON, generallyduse small urban areas and
relatively uncongested networks, assigns all thpsveen an origin-destination pair

that has the minimum travel cost. Although the A@®thod is useful because it is
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easy to understand the results and evaluate takdemand on the roadway under
ideal circumstances, it is not appropriate in mosses because it generates an
unrealistic flow pattern that does not consider tiia@eler’'s behavior on how they

select their route from a set of all available cksi

User Equilibrium (UE) assignment, as an alternabfehe AON method,
utilizes the concept of capacity restraint of thadways (National Highway Institute
2012). The UE assignment repeats the AON assignthenigh an iterative process
using the capacity restraint methodology until Wapds first principle is satisfied,
which is that‘the journey times in all routes actually used aqual and less than
those which would be experienced by a single vehorl any unused route”
(Cambridge Systematics et al. 2012). The equilrassignment is a useful method
because the results would be stable and satisfrégirt convergence criteria, which
is desirable for the comparison between alternativeéh no oscillations between

computational iterations (National Highway Inst#@®012).

However, the UE assignment generally has an ustEaissumption that all
travelers have perfect information on all routed always chooses the optimal route
for given flow rates, which is a deterministic gssnent model. As an alternative,
the stochastic assignment model is based on thengsi®n that travelers do not
have perfect information on all routes, and thosite choice decision is not always
the same even under the same flow rates due toeimhencertainty (Tatineni, Boyce,
and Mirchandani 1997). Even though stochastic agsgt is a more realistic

alternative over deterministic assignment in maagkssumption for loading traffic
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onto a network, deterministic models may be sudfitifor long range transportation

planning (LRTP). (Tatineni, Boyce, and Mirchanda8B7)

Both AON and UE methods allocate trips to all links the shortest path
from origin to destination at each iteration, usadixed Origin/Destination (O/D)
trip table for a fixed time period, and thus, atatis assignment approaches. By
contrast, a dynamic assignment approach has maire dhe O/D trip table for
multiple time periods, so that it assigns tripseach link on the shortest path
sequentially. Thus, the travel time of each linkl @he shortest path are updated in

each simulation time period along each link.

The volume delay function (VDF) is a central paftt@ffic assignment
models and describes how the travel time on arvishal link changes based on

traffic demand, which will be discussed in detdilapter 2.4.

Model Calibration and Validation

In the four step model, the outputs of the previstep are used as the inputs of the
next step. As a result, any errors from the previsiep are propagated to the next
step, resulting in more inaccurate data with eacltcessive step. Thus,
transportation planners must carefully calibratel aalidate the each step of the
model, and review the final model run results. ®aModel Validation and
Reasonableness Checking Manual (Federal Highwayidighiration 2010) defines

model calibration and model validation as below:



24

“Calibration is the adjustment of constants andhet model parameters in
estimated or asserted models in an effort to mdie models replicate
observed data for a base (calibration) year or othiee produce more

reasonable results.

Validation is the application of the calibrated netsl and comparison of the
results against observed data. Ideally, the obstmata are data not used
for the model estimation or calibration but, pratily, this is not always

feasible.”

Even though many modeling practitioners in MPO dochl, state, and
federal governments are satisfied with their curfear step models and believe it is
adequate for most planning purposes (Transport®Esearch Board 2007), typical
limitations should be considered in its applicatidime four step model does not
adequately address intersection delays, intra-ziwaaél within TAZs, and time of
day variations. Link capacities are over-simplifiethd peak hour travel is

overemphasized (Beimborn, Kennedy, and Schaefe§)199

The Transportation Research Board (2007) listedstin@tcomings of the
current four step modeling practice:
* Four step model is not adequate to address manypadiay concerns
* Four step model has inherent weakness. Since feprmodel is not based

on travelers’ behavioral nature, it is not suited tepresent travelers’
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response to the policy-related scenario analyseshsas toll, HOT, and
congestion price.

* Four step model has limitations to consider indudeavel, interaction
between land use policies, non-motorized travel

* Four step model has limitations to consider frejghwods movement, and

commercial vehicles

As a result, the four step model is limited inatsility to reflect small scale
changes, dynamic effects, and changes in travedvi@hassociated with complex
trade-offs of costs (Corradino, Inc. 2009). Althbubere have been many successful
implementations of the four step modeling framewonlost of the literature that
addresses the limitations in the four step modepgse a shift toward the activity-
based model framework (Bhat and Koppelman 2003;radoro, Inc. 2009;

Transportation Research Board 2007; Cambridge Sdies et al. 2012).

2.2.2 Activity Based Model (ABM)

A fundamental conceptual problem of the trip-baspgroach, such as the four step
model, is that it uses trips as the analysis uitihaut consideration of dependence
among trips (Bhat and Koppelman 1999). Activity-8&adModel (ABM) views travel
as a derived demand from the need to pursue aesivitt considers complex
interactions between activity participation andvéla behavior (Transportation
Research Board 2007). Activity-based models andiygesl as “tours” that consists

of multiple trips starting from and ending in impart points, such as home or work



26

(Corradino, Inc. 2009). The major differences bemvéhe activity-based model and
the four-step model are: the activity-based moda$ la consistent/continuous
representation of time for travelers, it has a itkdarepresentation of travelers and
households, it has time-dependent routing, andstd microsimulation of travelers

and aggregated traffic (Transportation Researchd32@07).

The overall process, when an activity-based masl@hplemented, consists

of a sequence of three steps as listed below (GdgaEystematics et al. 2012):

1. Population synthesis
2. Long-term choice models

3. Activity-based travel models

Southern California Association of Government (SGAGe MPO of the
Los Angeles Metropolitan area, has adopted an igethased model that
incorporates the above three major steps, as showigure 2.2. SCAG’s ABM is
currently being developed, but stage 1 was comgl@ie2013, which included:
developing the modeling framework, completing tmatial estimation of core
modules, and performing an initial calibration bet2003 base year model (G.
Huang et al. 2013). The ABM is expected to be futhplemented in 2016. The
completed ABM is expected to generate various perdmce indicators for the
analyses of infrastructure investment, land usesldgwnent, pricing policy, active
transportation strategies, high speed rail, aneetrdemand management (Huang et

al. 2013).
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Figure 2.3 Flow Chart of SCAG Activity-Based Model

2.3 Traffic Incident Models

An incident is defined as “a non-recurrent eveuat ttauses a reduction of roadway
capacity or an abnormal increase in demand. Suehtgvnclude traffic crashes,
disabled vehicles, spilled cargo, highway mainteeaand reconstruction projects,
and special non-emergency events (FHWA, USDOT 2000s mentioned in
Chapter 1.1, traffic incidents are one of the magauses of non-recurrent
congestions in urban highways, which leads to tiana in travel times (Cambridge
Systematics 2013a). The factors affecting the irnpaoon-recurrent congestion on

freeways are: 1) incident duration, 2) reductioncapacity, and 3) demand rate
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(Garib, Radwan, and Al-Deek 1997). In this sectiprevious studies on various

modeling analyses associated with incidents arersanmzed.

2.3.1 Incident Frequency Model

Lord and Mannering (2010) provided a comprehensexgew of crash frequency

models, by type, describing the strengths and wesdaes of various prediction

models and analyzed the data that they generagefuRetional forms they reviewed

are listed below:

Poisson regression model

Negative Binomial (Poisson-gamma) Regression Model
Poisson-Lognormal Model

Zero-inflated Poisson and Negative Binomial
Conway-Maxwell-Poisson Model

Gamma Model

Generalized estimating equation Model
Generalized additive Model

Random-Effect Model

Negative Multinomial Models
Random-Parameter Models
Bivariate/Multivariate Model

Finite Mixture/Markov Switching Models

Duration Models
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Hierarchical/Multilevel Models

Neural, Bayesian Neural Network, Support Vector Mae Models

Along the models’ functional forms, they raised amajssues regarding data and

methodology as listed below, and summarized assoc@oblems for each issue:

Over-dispersion and under-dispersion
Time-varying explanatory variables
Temporal and spatial correlation

Low sample means and small sample size
Crash type correlation

Injury severity and crash type correlation
Underreporting

Omitted variables bias

Endogenous variables

functional form

fixed parameters

Crash Analysis at the Network Level

Lamptey et al. (2010) proposed a framework for ipoecating crash analysis in

network level transportation planning. They devebbpa crash prediction model

using the Safety Performance Function (SPF) ahéteork level for two-lanes and

multi-lanes for urban and rural areas. Kiattikorabhl. (2008) developed a negative

binomial regression model using segment length Aamaual Average Daily Traffic
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(AADT) to predict crashes on segments and inteisestof urban freeways. The
models were split into subgroups by segment typamber of lanes, and type of
severity. These crash prediction models were deeelausing roadway geometry

and traffic data (Tarko et al. 2008; Abdel-Aty et2011).

Hampton Roads Planning District Commission (HRPD®nducted a crash
analysis of interstate segments and intersectionghé region as part of their
congestion management system (CMS) (RavanbakHieBeland Nichols 2005). A
crash severity analysis was conducted to identiéytop high-crash locations in the
region. Safety-related countermeasures and sokition the top-10 high-crash
locations were developed and recommended to beiedpph the region’s

transportation improvement program (TIP) (RavanbaRhlfield, and Nichols 2005).
Spatial analysis of crash data

Aguero-Valverde and Jovanis (2006) developed Falle® Hierarchical models with
county-level crash frequency and common categooiesndependent variables
including: socioeconomic, roadway geometry, andirenmental characteristics.
These models were compared with traditional NegaBmomial estimates. The
results showed that spatial correlation, time tserathd space-time interactions are
significant at the county-level Full Bayes Hieraozth models. Huang, Abdel-Aty,
and Darwiche (2010) proposed a Bayesian spatiakhtodaccount for the variation

of county-level crash risk in Florida. They usedrfoypes of data (crash data, road

! Now its name has been changed to Hampton Roaafsfortation Planning Organization (HRTPO)
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and traffic characteristics, demographic and s@adnemic data, and spatial features
of each county) for county-level analysis to depelmear regression models by
taking the natural logarithm to the variables. Wang Kockelman (2007) considers
the spatial and temporal correlations across codservations in China using a

seemingly unrelated regression (SUR) model.

TAZ Level Crash Analysis

There are community (TAZ) level collision predictianodels to evaluate the
roadway safety of regional transportation plans fosecasting crash frequency
(Lovegrove, Lim, and Sayed 2010; Lovegrove and 8a2606; de Guevara,
Washington, and Oh 2004; Hadayeghi, Shalaby, amdabé 2003). Macroscopic
safety analysis using zonal level data and TDFMUd&es accomplished with a zonal
safety planning model. Aggregated TAZ level crasddjztion or collision prediction

models were developed based on social-demograpdte tthat are used in trip
generation (Siddiqui, Abdel-Aty, and Huang 2011lddsgui 2009; Naderan and
Shahi 2010) and network structure (Lovegrove arichan 2008; G. R. Lovegrove
and Sayed 2006). An et al. used TDFM and traffilygsis zone (TAZ) level data to
predict planning-level crashes for estimating safetnefits from two add-capacity
projects (An, Casper, and Wu 2011). Hadayeghi, &iyaland Persaud (2007)
developed a TAZ level crash prediction model thaat be commonly used in urban
transportation planning. They developed 23 multiighear regression models by
selecting combinations of independent variablesnodel development, including

land use, network, traffic, demographic, and samoemic data.
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Planning Level Crash Analysis

There has been some research effort to incorporash (part of incidents) into the
planning process. Hamidi, Fontaine, and Demetskyl@? developed a safety
performance function (SPF)-based methodology tatifje high-crash sections of
primary roadway in Virginia, by using crash datal anadway geometry data. Miller,
Garber, and Josephine (2010) and Miller, Garbed, Kkamatu (2011) developed a
resource guide for enhancing the incorporationadéty into the regional planning
process. The guide proposed eight steps for iriegraafety into the regional

transportation planning process with Virginia ex#sp

Real Time Crash Prediction Model

Drawing from the relationship between traffic flmenditions and the likelihood of
crashes, Golob, Recker, and Alvarez (2004) propastxbl for the real-time safety
assessment of any traffic flow pattern on an urbaeway. They conducted a
clustering analysis with macroscopic traffic flovatd (eight traffic regimes with
speed and volume) and crash data (type, locatieweriy, etc.) on three-lane
freeways. Pre-crash data with 30-second inten@as2¥7.5 minutes were used to
prepare four traffic flow variables of speed anduwwe. As a safety performance
monitoring tool, from comparing traffic flow dataetore and after crash, they
accessed the benefits of Advanced Traffic Managéi@gstem (ATMS) operations
or other Intelligent Transportation System (ITSplagations, forecasted the safety

implications of proposed projects by evaluating lthes| of safety implied by traffic
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simulation outputs, prioritized higher risk locaig from simulation results, and

identified where/when crash would occur on freeways

2.3.2 Incident duration Model

As shown in Figure 2,4he incident duration time consists of four phasiesection

time, response time, clearance time, and recovarg {Transportation Research
Board 2000; Smith and Smith 2000). The HCM 2010sdw& provide any guidance
regarding the estimation of incident duration batme researchers (LO8) under
SHRP 2 have been examining non-recurrent congestioluding incident duration

and frequency, to revise HCM 2010 Chapter 35 ‘Aefivransportation & Demand
Management’ and Chapter 36 ‘Travel Time ReliabilfJransportation Research

Board of the National Academies 2013).

Incident Duration Time

Detection ) Response ) Clearance ) Recovery
: Time \;I Time \g/ Time \3, Time :
f f f i
Incident Incident Incident Incident ;’Zf::]io:)
Occurred Detected Responded Cleared Normal

Source: (Smith and Smith 2001)

Figure 2.4 Typical 4 Phases of Freeway Incident ev Time
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1) Detection time: the time period between the incideccurrence and the
incident detection or reporting by stakeholdergjuding traffic operators,
police officers, or the freeway response team.

2) Response time: the time period between the incidetgction and the arrival
of the emergency treatment team at the scene.

3) Clearance time period: the time between the arovdhe treatment team at
the scene and the incident being cleared, inclutheating victims, closing
lanes, and removing vehicles and debris.

4) Recovery time: the time period between incidentardace and the
resumption of normal traffic flow without any upsam congestion caused by

the incident.

Incident duration could be analyzed on the timeiapaliagram. Abdel-
Rahim and Khanal (2001) showed a diagram represgmicident-based delay with
and without an incident management system on the-gipatial dimension as shown
in Figure 2.5. The horizontal axis shows time p#sidrom incident occurrence to

traffic conditions returning to normal, similartiee phases in Figure 2.4.
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Some traffic using Diverted traffic

alternative route

_.Traffic condition
returns to normal

Incident occurred

Cumulative arrivals and departui

l """ Incident removed

nnnnnnn

»
le .| i
}< * >1 >1 Time
Time to detect and  Time to clear Time for traffic
to response to incident condition to return
incident to normal

Adopted from (Abdel-Rahim and Khanal 2001)
Figure 2.5Incident-Based Delay With and Without an Incident Management

System

The vertical axis represents the distance of cutivelarrivals and departures.
The area with dashed lines represents the totaydedm the incident (vehicle-time)
when an incident management system is not availalie black colored area
represents the total delay from the incident whemaident management system is
used. Thus, the total delay from the incident araldient duration is reduced when

an incident management system is used.
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Various statistical models and techniques have hpehed and analyzed for

modeling incident duration as below:

Probabilistic model (lognormal distribution) (GoloRecker, and Lernard
1987),

Conditional probability model (Log-logistic hazapdsed duration model)
(Jones, Janssen, and Mannering 1991; Nam and Magr&£00)

Analysis of variance model with truck involveme@iliano 1989)

Linear regression (Garib, Radwan, and Al-Deek 1997)

Time sequential model (truncated linear regress(&attak, Schofer, and
Wang 1994),

Classification tree model (Smith and Smith 2000),

Decision trees regression (Wei Wu, Pushkin, andnKa898; Abdel-Aty,
Keller, and Brady 2005; He et al. 2011),

Hybrid-tree based quantile regression model (Hd.&2011)

Ordered Probit model (Duncan, Khattak, and Coud@88; Li et al. 2010)
Traffic incident duration prediction model basedsupport vector regression
(Wei-wei Wu, Chen, and Zheng 2011)

Influence factor analysis for incident duration lising analysis of variance
(ANOVA) to apply Cusp Catastrophe Model (CCM) (Cpligang, and Fang
2011)

Bayesian Decision Tree Method (Yang, Zhang, andZR08)
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Garib, Radwan, and Al-Deek (1997) estimated thatthum of incident delays
using a regression model. Variables used in theeinddvelopment have been
grouped into four categories: incident charactesstraffic characteristics, weather

condition, and geometric characteristics, as shiowirable 2.2.

Table 2.2 Variables used in the Incident Duration Mdel

Category Variable Used in the Model

Incident Characteristicdncident duration
Number of vehicles involved in the incident
Number of lanes affected by the incident
Incident type (in-lane accident, in-lane breakdown,
shoulder accident, shoulder breakdown, truck insmlent)

Traffic Characteristics Average traffic flow upstream of the incident befats
occurrence

Capacity reduction caused by the incident

Weather Condition Rainy or dry
Geometric Occurrence within bottleneck
Characteristics Number of segments upstream of the incident

Source: (Garib, Radwan, and Al-Deek 1997)

Gomez (2005) claimed that incident duration haseaibull distribution.
Incident time, incident location, vehicle type, raen of vehicles involved in the
crash, and severity of the crash are the main fadtwat influence the incident
duration. He developed the incident duration mdakded on Fuzzy logic theory.
The following variables were used in the model dgwaent:

» vehicle size

* breakdown time, location, duration
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e vehicle number
e crash time

» crash severity, duration

Ramani et al. (2009) used various variables, inolydtime, crash type,
severity, disposal type, etc., in developing timtident duration model. All incident
duration data were split into 7 categories at acreiment of 20 minutes. The
reliability of the model is quite satisfactory. Tberrect estimation ratio of the model
is 69.11%. Hallenbeck, Ishimaru, and Nee (2003)med that models tend to
overestimate the duration times when load spillsed as a dummy variable. It was
simply because several incidents with load spiladead excessively long clearance

times and a variety of load spill types were nebiporated into the models.

Studies have shown that modeling incident duraisovery difficult (Wang,
Chen, and Bell 2002). First, there is not enougta.d8ome variables cannot be
obtained, either because of limited facilities &atae, or because they were not
realized. Secondly, some variables are linguistariables, such as weather
conditions, date, vehicle type, etc. Thirdly, sowagiables are very subjective and
difficult to mathematically quantify. For examplegverity of incident is normally

described as "not serious”, “serious”, or "verymes".

The primary drawback of linear regression modelshes bulkiness of the
predictive equation due to the categorical nat@iiedependent variables resulting in

a lot of dummy variables. Another disadvantage sing linear models is in
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assuming a ‘simplifying’ linear relationship betwetthe dependent variable and the
predictor variables (Gomez 2005). Golob, Recked, barnard (1987) claimed that
none of the forecasting models produced result$ Wexe accurate enough to
warrant implementation in an operational incidenanagement system. The
shortcomings of accident data greatly contributed the poor reliability of

forecasting models. Golob et al. (1987) concluded the classification tree model

stands out as a better choice to be used in aseintmanagement system.

Golob et al. (1987) recently proposed an incidamation prediction model
with a hybrid tree-based quantile regression usinbiased recurrent partitioning
(URP) on both incident and traffic data. It showieat the URP trees and the hybrid
tree-based quantile regression model has a higkeigiion accuracy than the other
models, including classification, regression tréART), and the K-nearest neighbor

approach (He et al. 2011).

2.3.3 Capacity Reduction Model from Incidents

Regarding incident duration, a case study from Wagbn state shows useful
information as described below (Hallenbeck, Ishumand Nee 2003):
» Lane blocking incidents are responsible for betw2emd 20 percent of total
daily delay in urban freeway corridors.
* Non-recurrent delay generally ranges between 3B0t@ercent of all peak
period, peak direction delay, but it is betweeraB@ 70 percent of total daily

delay.
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* Lane blocking incidents generally account for betw@&0 and 35 percent of
all non-recurrent delay.
* In peak periods, on any facility, a lane blockimgident of even a short

duration tends to result in substantial delay.

Capacity reductions due to traffic accidents orimgar breakdowns are
generally short-lived, ranging from less than 1 @oer a minor fender-bender
involving only passenger vehicles) to as long ashbBrs (for a major accident
involving fully loaded tractor-trailer rigs) befotbey are cleared. The effect of an
incident on capacity depends on the proportion haf traveled roadway that is
blocked by the stopped vehicles, as well as omtimber of lanes on the roadway at

that point (Transportation Research Board 2010).

Table 2.3 and Table 2.4 show the proportion of labée freeway capacity
under incident conditions. The estimated reducgaady from the two tables were
based on extensive survey data (Chin et al. 20@dnsportation Research Board
2010). The freeway capacity is reduced even whdisabled vehicle is located in
the shoulder lane. The magnitude of reduced capaeties by the number of
freeway lanes going in that direction. It was fouhdt shoulder disablement seems
to have little or no effect when the total numbédames is more than two. Other
research has found that the loss of capacity iallysgreater than the proportion of

original capacity that was physically blocked (Lieyi1987).
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Table 2.3 Reduced Capacity Due to Freeway Crashes

Number of Freeway Lanes

Effect of Crash

1 2 3 4 5+
Shoulder 0.450 0.75 0.84 0.89 0.93
1 Lane Blocked 0.000 0.32 053 0.56 0.75
2 Lane Blocked N/A 0.00 0.22 0.34 0.50
3 Lane Blocked N/A N/A 0.00 0.15 0.20
4 Lane Blocked N/A N/A N/A 0.00 0.10

Adopted from (Chin et al. 2004)

Table 2.4 Proportion of Freeway Segment Capacity Aailable under Incident

Conditions
Erlojarg\?vzg/oljanes S_houlder Sho_ulder One Lane -II_-;vr?es Three Lanes
by Direction Disabled Accident  Blocked Blocked Blocked

2 0.95 0.81 0.35 0.00 N/A

3 0.99 0.83 0.49 0.17 0.00

4 0.99 0.85 0.58 0.25 0.13

5 0.99 0.87 0.65 0.40 0.20

6 0.99 0.89 0.71 0.50 0.26

7 0.99 0.91 0.75 0.57 0.36

8 0.99 0.93 0.78 0.63 0.41

Adopted from (Transportation Research Board 2010)

In the case of a blocked lane, the loss of capagitikely to be greater than
simply the proportion of original capacity thatphysically blocked. For example,
when two lanes are blocked in a four-lane freewhg, freeway capacity may be

effectively reduced to 25% of its original capacityre reduction may range from an
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extra 5% capacity loss for a single-car accidertt ane emergency vehicle to an
extra 25% capacity loss for a multivehicle accideith several emergency vehicles.
The added loss of capacity arises because dril@sste look at the incident while

they are abreast of it and are slow to react tgtssibility of speeding up to move

through the incident area.

While some research literatures have shown meaacitgpreductions per
various cases, other research literatures havdapmadforecasting models. However,
the forecasting models have not met industry esdects (Smith, Qin, and
Venkatanarayana 2003; Transportation Research Ba@0@d; Chin et al. 2004,
Knoop, Googendoorn, and van Zuylen 2008; FHWA, USIXDO0O0; Transportation
Research Board 2010). Most literatures have sugdetitat incident capacity
reduction is a random variable rather than a detestic value, due to the variations
in incident characteristics (e.g., duration, exteime of day, and traffic demand).
Modeling incident capacity reduction as a randomakde could provide a more

realistic estimation of incident characteristics.

Lindley (1987) developed a methodology to quantifiyban freeway
congestion using the highway performance monitosiygfem (HPMS) database. He
determined the reduction in section capacity duantoncident as a function of the

total number of lanes and the number of blockeddan

Roess, Prassas, and McShane (2004) presentecaaplexto illustrate the
effect of capacity reduction on the volume to caya@tio (v/c). They considered

three different values for/c ratios and then they simulated the losses in cgpduae
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to an incident by changing these three values Hierdint percentages. They
concluded that decreasing capacity by 10% or mag change freeway operation
from a functional system to an oversaturated systiéms also depends on the

demand level at the capacity reduction time.

The rubbernecking factor is also responsible feedaction in capacity in the
direction of travel opposite to that in which thecident occurred. No quantitative
studies of this effect have been published, buesg&pce suggests that it depends on
the magnitude of the incident (including the numbieemergency vehicles present).
The reduction may range from 5% for a single-caricemt and one emergency

vehicle to 25% for a multivehicle accident with seal emergency vehicles.

Due to the limitation of available data, it waswased that the capacity losses
on principal arterials were the same as for crasineseeways. Since most arterials
do not have a shoulder, it was assumed that ash evauld produce a lane closure,
independent of the type of crash and the numbertymel of vehicles involved. It
was also assumed that the number of lanes closedtiveasame as for freeways.
However a severe crash on a principal arterial ddikely close lanes in both
directions of traffic. To account for this, theabhumber of lanes in both directions

was considered when assigning the number of ldnesd:

Incident delay on a freeway depends largely onctyeacity at the incident
location, which is determined by the drivers’ bebavat the accident location
(Knoop, Googendoorn, and Van Zuylen 2008). Knoogl .f2008) used video traffic

flow data captured by a helicopter around two amtisl to investigate delay that was
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caused by an incident. Counts show that the (om}floapacity of the remaining
lanes is about 50% lower than the (free-flow) c#@paaf the same number of lanes.
This means that road capacity in the opposite timeds reduced by half due to the
rubbernecking effect. The capacity of the roadha tirection of the accident is
reduced by more than a half because not all lareeshause (Knoop, Googendoorn,

and Van Zuylen 2008)

2.3.4 Incident Analysis with Network Simulation

There are various models to estimate incident itsp&adth network simulation.
Przybyla et al. (2011) evaluated the impact ofdeat information of a network
based on stochastic capacity due to probabilistishes on simple corridor networks.
Fu and Rilett (1997) estimated real-time incidealagl in dynamic and stochastic
networks and Li, Lan, and Gu (2006) proposed ahststic incident delay model to
estimate incident delay and its uncertainty onvilae networks. Some researchers
proposed methodologies to estimate travel timegusiynamic traffic assignment
(DTA) under incident conditions (Ngassa 2006; Kamieuskos, and Paaswell
2011) and to quantify the benefits of ATIS stradsgiunder various stochastic
capacity conditions assuming incident situations &Rd Rilett 1997; Ngassa 2006;
Bian 2008; Thomas and Robert 2008; Li, Zhou, anddRail 2011a; Li, Zhou, and

Rouphail 2011b).

Previous research conducted incident impact arsalyssing network

simulation tools and/or travel demand forecastingdels. Some researchers
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proposed frameworks of ATIS strategies for drivesups who have different level
of traffic information associated with incidentsaf@bridge Systematics 2013b; Li,
Lan, and Gu 2006; Przybyla et al. 2011; Li, Zhood &Rouphail 2011b). They
focused on static deterministic user equilibriundemstochastic capacity and/or
dynamic traveler behavior modeling within the cleasuser equilibrium analysis.
They set a simple incident case on a toy networkxtmmine incident impact on the
network with no specific incident situation incladicrash type, frequency, duration,
capacity reduction, etc. Moreover, they did notreixee any detailed relationships

between incident and traffic simulation for modafisarge MPOs.

Mahmassani et al. (2009) developed dynamic traffssignment (DTA)
models that consider weather impact, including fedinand snow, for traffic
estimation and prediction. They investigated ussponses over various inclement
weather scenarios such as traffic advisory informmaand control actions. Samba
and Park (2011) proposed a probabilistic modeleteminine the reduction of traffic
demand from both inclement rain and snowfall caadg, which was investigated
based on weather type, severity, duration, and tihtlay. Lam, Shao, and Sumalee
(2008) developed a model to consider the impactadverse weather conditions
such as different rainfall intensities on a roativeek with uncertainties. Chin et al.
(2004) proposed a three-step process to estimdsy dem vehicle crashes as
described below:

1. Assign vehicle crash on the highway using the M@d#€do simulation
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2. Estimate capacity reduction based on look-up tatblasconsist of crash type,
number/ type of vehicles involved, crash locattome of day, and duration.
3. Estimate delay based on capacity reduction, veliefeand, time of day, day

of week, and duration of capacity reduction

2.4 Volume Delay Function (VDF)

There has been much advanced research on functamas, comparisons of their
performance, and analytical applications regardiolyime delay functions for the
TDFM (Akcelik 1991; Skabardonis and Dowling 1997vling, Singh, and Cheng
1998; Kurth, Hout, and Ives 1998; Singh 1999; Akc@003; Cetin et al. 2011;

Cetin et al. 2012).

Cetin et al. (2011) extensively reviewed variowdume delay functions for
their functional forms and listed different termisvolume delay functions from the

basic relationship between traffic flow and traspéed as shown in Table 2.5.
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Table 2.5 Terms of Volume Delay Function by Reseaners

Term Author, Year

volume-delay function Branston, 1976

link-capacity function Branston, 1976

link performance function Sheffi, 1985

congestion function Spiess, 1990

travel time-flow function Akcelik, 1991

link-cost function Skabardonis and Dowling, 1997
speed-flow function Ortazar and Willumsen, 2001
cost-flow function Ortazar and Willumsen, 2001

Source: (Cetin et al. 2011)

VDF Functional Forms

Klieman et al. (2011) developed VDFs for both HOMlageneral purpose lanes on
the freeway and arterials for several area typesguBeld data from Maricopa
Association of Governments (MAG). They estimatedrapseters of several
functional forms, including the Bureau of Publicdgis (BPR), Spiess conical delay,
and Akcelik functions. From their analysis, the BR#&nction showed better
goodness-of-fit to the data than the other funstiobiser equilibrium traffic
assignments using BRP VDFs produced more accupsteds and smaller errors

than existing VDFs.

Lee and Munn (2009) estimated Akcelik VDFs peiilityctypes for travel
demand models in Virginia after investigating spéled relationships. Cetin et al.

(2012) used a Genetic Algorithm (GA) to estimate dptimal parameters of various
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VDFs, including BPR, Conical, and Akeclik functiomstheir model calibration. The
following list summarizes their research:

» Evaluated speed-flow relationships per facility égpincluding freeways,

arterials, collectors

» Estimated free flow speed and capacity from fiedthd

» Tested and calibrated VDFs of BPR, Conical, andefikqer facility types.

« Conducted goodness of fit test uskig %RMSE, and Chi-Square test

* Concluded that BPR performed well across facilypes but suggested

Akcelik for its more rigorous theoretical foundats

Cetin et al. (2011) categorized existing VDFs ifitce groups based on
functional forms and characteristics, as shownabl& 2.6, which consists of linear
function, curvilinear function, logarithmic/ hypedic function, queuing based

function, and signal based function.
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Authors Equation and parameters Comments Authoar)Ye
Linear T=T¢+aC'p+a(V’-C'p) for V'<C’p Irwin, Dodd, and Von Cube
Functions =1 +oC'p+(V'-C'p) for V' >C'p (1961)
T=TotaC'p+a(V’-C’p) for V'<C'p Irwin, Dodd, and Von Cube
T=To+aC'p+ B(V'-C'p) for Cp<V'<C's (1962)
T=To+aC'p+ B(V'-C'p)+y(V’-C’s) for V'>C’s
Curvilinear T=Ty*exp(V/Cs) Exponential function Smulick (1961) and Smock
Functions (1962)
T=T*2VP where V/Cp<=2, polynomial Schneider (1963) and Soltman
function (1965)
T=T*(1+a(Q/C)") Alpha=0.15, Beta=4 Bureau of Public Roads (1964)
T=To*oP7 1.0<Alpha<1.7 Overgaard (1967)
T=To*(1+a(Q/CY)P) Alpha=2.62, Beta=5 Steenbrink (1974)
Logarithmic T=Tg+In(a)-In(a-V) for V<a Mosher (1963)
;md o T=To+ Bm(a)_ﬁm(a_v) for V<Cs whereoa>Cs Mosher (1963)
yperbolic
functions T=Tg+ BIn(a)-pIn(a-Cs)+WB/(a-Cs) for V>Cs

T=B-a(To-p)/(V-a) for V<a

Mosher (1963)

T=B-a(To-B)/(V-a) for V<Cs

T=B-o(To-B)/(Csw)+Va(Te- B)/(Cs)?® for V>Cs

wherea >Cs, T>

Mosher (1963)

T=a+NQ—ﬂ+JW%Q—@H@]

Traffic Research Corporation
(1966)

T=To - (2+(*(1-VIC) > %-0*(1-V/C)-p)

wherep=(2a-1)/(20-2), a>1

Spiess (1990)

Source: (Cetin et al. 2011)
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Table 2. 6(b) Summary of Volume Delay Functional Faon (Continued)

Authors Equation and parameters Comments Author (Year)
Queuing-  t=ty[1+ Jpx/(1 —x)] Davison (1966)
based t = to{1 + 0.257¢ [z + (z% + 8Jpx/1p)*°] } Akcelik (1981)
Functions  t = ¢ {1 + 0.257¢ [z + (2% + 8/,%/(Qtor) %]}  Ja: Freeway=0.1, Akcelik (1991)

Uninterrupted arterial=0.2,
Interrupted arterial=0.4,
Secondary interupted=0.8,
Secondary high friction=1.6

Signal- T=TO for V/C%0.6 Campbell, Keefer, and Adams

based T=TO0+u(V/Cs-0.6) for V/Cs>0.6 (1959)

Functions  T=min[TO, 1B(1-yV)]+na/(1-V/AS) Wardrop (1968)
T=TO/(1-yV)+ap/(a-V)/L wherea>Cs,y<1/Cs Wardrop (1968)
T=(T0+0.5NC(1-g/CIPF)(1+0.05(V/CY) Skabardonis and Dowling (1997)
T=T0+0.9(C(1-g/Cy2(1-g/C*VIC) +(VICY/2q(1- where 0<=V/C<1, g=arrival Xie, Cheu, and Lee (2001)

V/C)) rate (veh/sec)

Source: (Cetin et al. 2011)
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Curvilinear volume-delay funcitons
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Figure 2.6 Relationship between Flow and Travel Tima per VDF Group
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FFS Estimation

Dowling, Kittelson, and Zegeer (1997) investigatedious techniques to estimate
speed and service volume for planning applicatioff®ey examined speed-flow
relationships of various methods including BPR typethods, HCM methods, and
other methods using traffic operation tools usedifferent areas for uninterrupted
and interrupted flow facilities. They also showextravel speeds are changed over
different levels of volume/capacity ratio in var®oMDFs. The BPR type function, as

shown Equation (2.4), is still widely used in mo&tM applications.

T, =T, (1 +a [g]ﬁ) Eq. (2.4)
where:T,: Congested link travel time

T,: Link travel time at free flow speed

a andf: Parameters

v: Link volume

c: Link capacity

However, a BPR type VDF cannot explicitly considéelays due to
oversaturation conditions at intersections. Unltke BPR function, the Akcelik
function considers oversaturation conditions anthydeat both the node and link
simultaneously (Akcelik 1991; Dowling and SkabandoR008). Akcelik function

has advantages as below:
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» Akcelik VDFs consider intersection approach delaybjch are based on
simple gap-acceptance theory, similar to those usedthe SIDRA

intersection modeling software

» Akcelik VDFs have special procedures for modelingrecapacity conditions

on the motorway

Akcelik (2003) states that the HCM speed-flow medé&r both basic
freeway segments and multilane highways indicateesteatures that do not appear
to be consistent with expected traffic flow chaesistics related to in-stream vehicle
interaction and queuing considerations. The HCMeddow models suggest that,
when traffic flow increases, the rate of delay @age is much higher than the rate of

speed reduction. Further, the traffic delay iséargt higher roadway facilities.

Singh (1999) claimed that the Akcelik function teeen applied successfully
in their applications and analytical comparisonshwother functional forms from
many studies. Dowling et al. (1998) claimed that Akcelik curve is as accurate as
the updated BPR curve and has the advantage ofctigrpredicting the linear
impact of congestion on speeds. The Akcgelik cupsilts in significantly improved
traffic assignment run times and provides more @teuspeed estimates than the
standard or modified BPR curves (Dowling, Singld &heng 1998). In the Akcelik
function, link parameters (i.e., capacity, freeesheetc.) are allocated globally based
on defined link type. The Akcelik function has Mdiles to assess intersection

approach delays as well. Intersection approachctizgmare based on simple gap-
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acceptance theory and have special procedures fodelng over-capacity

conditions on the motorway (Akcelik 1991).

When evaluating data for demands less than theoapprcapacity, many
equations perform equally as well. The fitted BFiRed exponential, and the fitted
Akcelik equations all performed equally as well. eTlitted Akcelik equation
performed slightly better because it adds signlyd® the segment free-flow travel
time, rather than treating delay as a multiplicatigctor of the segment length, as is

done in the BPR and exponential equations (Dowgingl., 2008).

When evaluating the speed-flow equations againsordtical delays for
hourly demands greater than hourly capacities, tmyAkcelik equation produced
the expected delays due to oversaturated condiibitise downstream signal on a
street segment. The other equations significantigevestimated delay within the
1.00 to 2.00 v/c range. At significantly higher’g/the BPR curve eventually catches
up to and surpasses the delay estimates producgdduwyng theory and the Akcelik

equation.

The ideal speed-flow curve would not cross the itbigzal solid line for
gueue delay. As can be seen, both the standarditted BPR curves cross the
theoretical queuing delay line. Both of these caruaderestimate the delay due to
gueuing when demand exceeds the real world capatiy intersection at the end
of the link. The fitted Akcelik curve is consistemith the queue delay line, because

the Akcelik curve is derived from classical queuthgory.
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Kalaee (2010) found that that for v/ic < 1, thelrated BPR functions has
the best overall performance among tested modelstdidied locations, but standard
BPR functions overestimate travel times for v/costclose to 1. The conical
function highly overestimates travel times for wd. The conical function assumes
that the travel time at capacity is two times largen the free-flow travel time,
which is not always true. When v/c > 1, the Akcelikd the HCM 2000 models were
found to be the most consistent models with quethegry. The Akcelik and HCM
2000 models underestimate travel times for v/cSd&hd overestimate travel times
for vic close to 1. Akcelik has two components gment (link) delay and

intersection (node) delay. Total delay is the sdimnath link delay and node delay.

t=t+t" Eg. (2.5)
t! =t} +0.25T l(X —1)+ \/(X — 1)+ %l Eqg. (2.6)
i = o.sc% Eq. (2.7)

Where,t = Total delay
t! =Segment delay,
t" = Intersection delay,
t}: Free-flow travel time per unit distance,
X = Degree of saturation (volume-to-capacity ratio),
T = Duration of analysis period (h),
¢ = Capacity (vph),

Ja= Delay parameter (unitless),
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g = Green time,

C = Cycle length

The delay parametéi corresponds to the quality of service provided hogy t
road section and is independent of the traffic flmw sensitive to the value of travel
time at capacity (Dowling et al. 2004; Akcelik 199To obtain a rough estimate of

the delay parameter, Akcelik provided the followfogmula:

Ja == (te — to)? Eq. (2.8)

Wheret,.: Travel time at capacity

to: Travel time at free flow

When evaluating data for demands less than theoapprcapacity, many
equations, including the fitted BPR, the fitted empntial, and the fitted Akcelik
functions, all performed equally well. HoweveretBPR type curves underestimate
the delay due to queuing when demand exceeds #@lewarld capacity of an

intersection at the end of the link.

The fitted Akcelik curve is consistent with the geedelay line because the
Akcelik curve is derived from the classical queuitiggory. When v/ic > 1, the
Akcelik and the HCM 2000 models were found to be thost consistent with
gueuing theory (Dowling and Skabardonis 2008). dditaon, the Akcelik equation
assumes no initial queue at the start of the flewga. The HCM 2000 suggests the

modified speed-flow equation that calculates theaeselay caused by the leftover
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qgueue from the prior period and adds to the Akcetjkation (Dowling et al. 2004,

Transportation Research Board 2000).

Recently, a couple of researchers used surrogassures to consider over
saturated traffic conditions in parameter calilmmatfLee and Munn 2009; Klieman et
al. 2011; Huntsinger and Rouphail 2011). V/C waswkd by dividing the given
density by the density at the maximum flow (capgciso that the oversaturated
traffic condition at V/C>1.0 was available to besdsn curve fitting with data (Lee
and Munn 2009; Klieman et al. 2011). The measunseug at the bottleneck was
added to the capacity at the bottleneck to adjestahd, which was used to calculate
the Demand over Capacity (D/C) ratio as a surrogasasure of V/C in VDF

calibration (Huntsinger and Rouphail 2011).

Intersection delay at intersection

Although recent research efforts considered thaydal a node, including signalized
intersections (Mazloumi, Moridpour, and Mohseni@i@, Paschai, Yu, and Mirzaei
2010), they used BPR type functions for link detayimation and their application is
limited to undersaturated traffic conditions. Thmdtional form of VDF should be
continuous, monotonically increasing, and diffelnle to guarantee convexity,
convergence, and unigue solution, and must be etkfior oversaturated regions as

well (Sheffi 1984)

The Davidson function is not defined for flows ovhe practical capacity,

and the travel time goes to infinity as the linbwl approaches the practical capacity.
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Akcelik proposed modified forms of Davidson's fuantto obtain finite values of
travel time for flows near and above capacity (Aikcd991). As identified by
Akcelik, his function does relate to intersectiaiay modeling and indeed forms the
basis of the SIDRA intersection modeling softwéier. interrupted facilities, replace

the free-flow travel time; with ¢,.

to = t, +d,, , which is the travel time in seconds at zerwflo

d,, is the minimum delay per unit distance (sec/kmeab Zlow conditions

d,, = 0 for uninterrupted facilities.

d,, = 0.5r(1 — u), at a signalized intersection with zero flow (tmwf ratio

y=0)
_ 2 _ 2
N ) MRV ClL))
-y 1—xu
o (-g/C)?
=050y

Wherer = effective red time
u = green time ratiog/C)
g=green time and

C=cycle length

From the comprehensive comparison of different VDEstin et al. (2011)

proposed the below recommendations for choosingdhect VDFs;
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» If link counts are used, use the BPR function aetdtic Algorithm (GA) to
optimize the VDF parameter values.

* BPR parameters range @<2.0 and 1.08<10.0.

» If speed-volume data is used, the Akcelik equapoovides more realistic
travel times than the conical and BPR functionpeemlly when v/c exceeds

1.0.

2.5 Chapter Summary

This chapter provided an overview of the long ratitgasportation planning (LRTP)
process and travel demand forecasting modeling MDHhe various incident
models for forecasting frequency, duration, reducegbacity and VDFs were
reviewed. Research literature has indicated thatiniident duration modeling is
difficult due to the lack of data availability abree facilities, and linguistic and/or
subjective variables such as weather conditions iaodient severity. A recent
research showed that the URP trees and hybricbased quantile regression model
has a higher prediction accuracy than previous tsod&ere is literature to suggest
that incident capacity reduction is a random vdeahther than a deterministic value
due to the variations in incident characteristics.

For incident impact analysis using network simwolatitools and/or travel
demand forecasting models, researchers used aesingdlent case on a toy network
to examine the incident impact on the network withtaking into account specific

incident situations, like crash type, frequencyation, capacity reduction, etc.
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Regarding the VDFs, there are many advanced acalyapplications
regarding volume delay functions for the TDFM. Euwbough BPR type functions
are still widely used in TDFM applications, it cartrexplicitly consider delays due
to oversaturation conditions and intersections.ikénihe BPR function, the Akcelik
function considers oversaturation conditions anthydeat both the node and link
simultaneously. The Akcelik curve is as accuratéhasupdated BPR curve and has
the advantage of correctly predicting the lineapaat of congestion on speeds. The
fitted Akcelik curve is consistent with the queuelay line because the Akcelik

curve is derived from classical queuing theory.
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CHAPTER 3. METHODOLOGY AND DATA PREPARATION

3.1A Framework Incorporating Incident Impact in the TD FM

Figure 3.1 shows the proposed framework of the TDFMere are three major
differences when TDFMI is compared to the tradilomDFM. As shown in the
green shaded steps in Figure 3.1, the major difte® between TDFM and TDFMI
are: the use of incident-related data as additinoeddork information and the Traffic
Assignment step in the four step modeling procBs®r to running the traditional
four step model, incident data and incident-reldtatfic data are prepared. For the
2009 base year model, historical incident data amalyzed and prepared for

individual weekdays as key inputs of TDFMI.

For the 2034 future year model, annual incidengsfarecasted and assigned
on future networks. In order to forecast futureideats, loaded link volumes from
future TDFM, the safety performance function (SP&hd incident forecasting
models are used. Both base year and future yemleimcdata are incorporated into
the existing base year and the future year TDFMvorkds with additional node and
link attributes later. Networks incorporating inerd data, referred as TDFMI
networks, have three incident related attributesidient frequency, reduced capacity,

and incident duration.



62

Social Economic Data QTraffic: AADT (Base Year), Loaded Link Volume (Future Year)
Network Data ORoadway Geometry: # of lanes, free flow speed, functional
class, area type, intersection, traffic controller,
l Qlncident: disabled, crash (severity, type, vehicle, involved
| Trip Geperation | people, temporal-spatial information, etc.)
| Trip Distribution |
| Mode Choice I
O/D Trip O/D Trip O/D Trip
Tables Tables S8 Tables
Base Y Future Y¢
Day 1 Day 2 Day D . ase ear. : u urg gar :
Incidents Incidents Incidents | < Develop time-space incident | Forecast & assign incidents
on network on network cee on network matrix from historical incident | on time-space matrix using
database Monte Carlo Simulation
cl'\;e(;lé::tei cl'\;eglé::tei 00 czeglé?tei <] | Incorporating estimated capacity reduction & incident duration
dSratign dSratign dSratign into corresponding links and nodes on network
T T T
v v v
Trip Trip Trip <« Modified VDF considers incidentimpacts (reduced capacity &
Assignment Assignment see Assignment incident duration) at segment & intersection
[ | ]
v
Average Model Run Result

Figure 3.1 Framework of TDFMI for Incorporating Inc ident Impact into Travel

Demand Forecasting Modeling Process

As opposed to the traditional TDFM structure thas ha feedback loop
between trip distribution through trip assignmehg TDFMI, on this dissertation
research, assumes that all input/outputs from tkteps (i.e., trip generation, trip
distribution, and mode choice) prior to traffic igsenent are not changed and remain
the same for the whole modeling process. The neasan why this assumption is
more reasonable in the TDFMI is that travelerslyanave the perfect information
on incidents that occur randomly in the model alfethe feedback loop between trip
distribution and trip assignment in the TDFM wa9lau to the TDFMI, there

would be a significant influence in the highwayrskithat determine the amount of
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trips between origin and destination in the triptdbution step. This overestimated
impact would be propagated and exaggerated indgbeestial steps - mode choice
and trip assignment. This is obviously a differsittiation with the typical case for

the scenario analysis, such as a long term roadi@dor road work.

TDFMI addresses short term route choices madesSporese to unforeseen
incidents. Accordingly, it would not be appropeiato use such network
conditions—which change daily—to modify the tripngeation, distribution, or
mode choice steps. Thus, there is not a feedlwagkffom the results of this traffic
assignment piece to these earlier steps. If oneréasbn to believe, however, that
somehow knowledge of incidents should inform trax&l long term residential,
employment, and mode choices, then the computatcamaplexity increases. (Note
that the required model execution time would beertban doubled since one would
have to re-execute the steps of trip distributimogde choice, and traffic assignment

until convergence was achieved.)

For the base year model, since incident recordg far each of the 249
individual weekdays in 2009, 249 TDFMI networks,eofor each weekday are
prepared for the 249 runs of traffic assignmentseekénds and holidays are
excluded from this study as the TDFM and the TDHMVe focused on weekday
traffic. For the future year model, multiple TDFMeEtworks are also prepared to
consider daily variation of incident impact on tetwork. Existing O/D trip tables,
after the mode choice step, are used with TDFMlvagks in the traffic assignment

step. In the traffic assignment step, VDF is medifito accommodate incident
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impacts (incident frequency, reduced capacity, amident duration) within its

functional form.

For the base year model, traffic assignment is atgge 249 times with
different TDFMI networks to simulate the incidemhpact of each of the 249
individual weekdays in 2009. Then, the results 49 ihdividual runs of TDFMI are
averaged to make an annual average result. FineBMIDesults are compared with

results from the TDFM that ran just once in the elalaluation.

3.2TDFM Data Preparation

3.2.1 Existing TDFM

To apply the proposed TDFMI to a large size reatiehothis dissertation study uses
the Hampton Roads TDFM. Hampton Roads is the lalgg¥O area in Virginia,
USA. Many local jurisdictions in Northern Virginerea do not have their own MPO
for TDFM but are part of the MPO of Washington DHampton Roads TDFM was
recently developed with various modeling resourcesluding: 2009-2010 NHTS,
2009 VEC, ESRI Business Analyst, GIS resources (RNSENavTeq), INRIX, TMS
traffic database, and external-to-external origastothation survey. Hampton Roads
TDFM consists of four time-of-day models covering peak, midday, pm peak, and
night time. The TDFM network, as shown in Figur@, onsists of 1,094 TAZs,
21,160 nodes, 39,372 links, and 6,723 intersectionanctions. It covers freeways,

major arterials, minor arterials and major collestan the modeling area. The
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network also includes minor collectors and locaketis to provide appropriate

connectivity in the network.

s
R

o

!
i
E} Rl <1
Y,
“

Figure 3.2 Hampton Roads TDFM Network (2009 Base Ya)

The Hampton Roads TDFM model area comprises 13diations —
Gloucester County, Isle of Wight County, James Cigunty, York County, City of

Chesapeake, City of Hampton, City of Newport Ne@gy of Norfolk, City of
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Poquoson, City of Portsmouth, City of Suffolk, Cy Williamsburg and City of

Virginia Beach.

Table 3.1 shows land use data information relatinigouseholds, population,
the number of vehicles, retail employment, and reia employment for the model

area.

Table 3.1 Base Year (2009) Land Use Data

Data Number
Total Households 606,902
Total Population 1,627,273
Total Autos 1,263,199
Total Retail Employment 187,111
Total Non-Retail Employment 853,826

The area type of a zone was determined by thetgeishe population and
employment of each zone. Both density threshold® wplit into seven categories
based on visual observations (AECOM 2013). Basedhencombination of two
densities in the entire modeling region, area types categorized as Central
Business District (CBD), Urban, Dense Suburban,uitdn and Rural (AECOM
2013). Hampton Roads area has TAZ 1 through TAD3 But consists of 1,464
internal TAZs and 30 external TAZs. HR TDFM hasatiyt 12 facility types based
on their function and/or design characteristicsoaiséed with area type and the

development density of each link (AECOM 2013). Thenbination of area type and
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facility type determines the free flow speed angacdty, which was developed as a

cross-classification table.

Figure 3.3 shows the major bridges, tunnels, mdids, and HOV lanes in

Hampton Roads.

i George Coiman Bridge
2 (Toll)

Hampton Roads
Bridge-Tunnel

Chesapeake Bay
Bridge-Tunnel (Toll)

James River Bridge

Monitor-Merrimac
Memorial Bridge-Tunnel

Midtown Tunnel

N

Midtown Tunnel

High Rise Bridge

Gilmerton Bridge

Legend

mmmmm HOV Lanes

Chesapeake
Interstate Freeways GE Expressway (Toll)
TDFM Networks

Figure 3.3 Bridges, Tunnels, Tolls, and HOV LanesiModel Area
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The Hampton Roads area has the following High Oacayp Vehicle (HOV)

Lane corridors during peak hours (6-8 AM and 4-6)PM

* [|-264 between Virginia Beach and Norfolk
* [|-64 between Norfolk and Chesapeake (reversibleddds HOV for some
segments)

* |-64 between Hampton and Newport News

As shown in Figure 3.3, the Hampton Roads areah®$ollowing bridges

and tunnels, which form the bottlenecks of maj@dways:

» Hampton Roads Bridge Tunnel (HRBT) on I-64

* Monitor Merrimac Memorial Bridge-Tunnel (MMMBT) oh664

» James River Bridge on Route 17

* Downtown Tunnel on I-264

* Midtown Tunnel on Route 58

* Chesapeake Bay Bridge Tunnel on Route 13 (Toll)

* George P. Coleman Bridge on Route 17 (Toll)

* Berkley Bridge on [-264

* High Rise Bridge on I-64

* Gilmerton Bridge on Route 13/460

» Jordan Bridge on Route 337 (Toll)

» Chesapeake Expressway (Toll)
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Since Hampton Roads has limited roadway connectiaith bridges and
tunnels between regions, vehicle traffic is intptad when bridges and tunnels are
closed, which has a significant negative impacheoregion. Incidents at bridges and

tunnels will be analyzed in Chapter 3.3.

There are four toll facilities in the Hampton Roadea. Three toll facilities
are located on bridges and one is located on RifiBenear the state boundary with
North Carolina. In the TDFMI, two fixed toll locains (George P. Coleman Bridge
and Chesapeake Expressway) were modeled and twbolos were excluded; the
Chesapeake Bay Bridge Tunnel was coded as an eki#ed&, which trip was given
as fixed input, and the Jordan Bridge was closeccémstruction in 2009. Transit
routes are operated by Hampton Roads Transit (H&W) Williamsburg Area

Transit Authority (WATA).

As a reference model, the existing TDFM was run ahdesults were saved
for comparisons with those of TDFMI. Using incidearid crash data from 2009,
incident duration was calculated first, and reducaplacity was determined using a
cross-classification table developed from resedrdrature (Chin et al. 2004,

Transportation Research Board 2010).

Free flow speed and link capacity were determinesingy a cross-
classification table based on facility type andaatyge, which was developed from
the old Hampton Roads TDFM. Free flow speed wastguoblusing observed speed

data by INRIX.
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3.2.2 Existing Volume Delay Functions (VDFs)

Conical VDF developed by Spiess was used in thepgtamRoads TDFM due to its
geometrical interpretation and its ability to delivoptimal calibration results from
VDFs at the preliminary analysis level under a tedi time schedule (AECOM
2013). The hyperbolic conical sections is definetbly (AECOM 2013). Functional

form and used parameters are shown in Equatior) ghtl Table 3.2.

T=Ty*{2+[a?*(1-V/C)?+p?]Y2—ax(1-V/C)— B} Eqg. (3.1)
where, T = average link travel time

To= link travel time at free-flow status

V = volume (or demand)

C = capacity

B=Qa—-1)Qa-2),a>1

Table 3.2 Parameters of Conical VDF Used in the Mad

Facilities Alpha Beta
Freeways 9.0 1.06
Minor Freeways/Principal Arterials 7.0 1.08
Major/Minor Arterials, Major Collectors 4.5 1.14
Minor Collectors/Locals 2.0 1.50

Source: (AECOM 2013)
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Cetin et al. (2012) conducted VDFs calibrationsMi&®O models in Virginia.
They examined BPR, Conical, and Akcelik VDFs antbremended BPR functions

under general conditions and Ackelik Functionsdmngested conditions.

Since the Hampton Roads area has a very high pastibeavy truck traffic
from/to port facilities and numerous freight warakes, truck traffic of Class 6 or
higher, based on the FHWA vehicle classificatiofinigon, was modeled using a
truck model (AECOM 2013). The truck trip generateomd distribution models were
developed separately. Truck zones were identifbeglstimated truck trips as special

generators (AECOM 2013).

3.2.3 Base Year TDFM Mode Run Statistics

Table 3.3 shows the performance measures (%RMSE@nde over count ratio)
of the TDFM base year model runs statistics, us#7 links that have traffic
observations. Performance measures were categonziéton three subgroups:
loaded link volume group, facility type, and argg@d. Virginia Travel Demand
Modeling Policies and Procedure Manual (VTM PPMijresd the validation criteria
and their target values (Virginia DOT 2011). In dase of a large MPO model such

as the Hampton Roads TDFM, validation standardstame/n below:

« R? for the Model Region > 0.90
* Percent RMSE for Model Region < 40%
* Percent RMSE by Facility Type:

o Freeways < 20%
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o Principal Arterials < 35%
0 Minor Arterials < 50%

o0 Collectors < 90%

Overall, the performance measures of the model gshatv%RMSE is very
close to the threshold and volume-to-count ratieeis/ close to 1.0. However, when
it comes to %RMSE per facility type, not all TDFMsults exceeded the threshold
of %RMSE. Freeways %RMSE exceeded the threshold a@ébcappeared to be
under-assigned from the volume-to-count ratio. Médle, arterials and collectors
were less than the thresholds of 35% and 50%, cdgpky. However, arterials and

collectors appeared to be over-assigned when cadparfield counts.
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Subgroup Count Sites % RMSE Volume Volume/Count
Loaded Link 1-5,000 3,585,574 1,599 72.13 4,196,262 1.17
Volume 5,000 - 10,000 5,315,469 752 40.13 5,632,658 1.06
10,000 - 20,000 9,044,430 637 29.12 9,247,413 1.02
20,000 - 30,000 4,205,604 174 25.17 3,939,216 0.94
30,000 - 40,000 1,870,669 55 20.43 1,847,092 0.99
40,000 - 50,000 1,982,331 45 18.52 1,785,410 0.90
50,000 - 60,000 1,048,384 19 24.50 957,715 0.91
60,000 - 70,000 195,459 3 30.26 158,896 0.81
70,000 - 80,000 223,816 3 21.05 178,167 0.80
Facility Type  Interstate Freeway 5,347,521 150 23.24 5,177,018 97 0.
Minor Freeway 1,303,229 72 27.20 1,306,282 1.00
Principal Art 6,335,433 394 30.47 6,751,022 1.07
Major Art 1,586,969 180 38.54 1,502,746 0.95
Minor Art 9,790,532 1,248 38.94 9,996,655 1.02
Major Collector 408,273 228 71.60 425,635 1.04
Minor Collector 2,600,421 972 63.86 2,692,414 1.04
Local 29,782 36 43.38 29,803 1.00
H.S. Ramp 27,812 1 27.32 20,213 0.73
L.S. Ramp 41,764 6 57.32 41,042 0.98
Area Type CBD 128,030 10 68.11 62,859 0.49
OBD 5,342,234 525 38.90 5,323,046 1.00
Urban 6,174,351 703 35.79 6,231,953 1.01
Sub Urban 7,328,412 778 41.64 7,236,930 0.98
Rural 8,498,709 1,271 43.35 9,088,041 1.07
All 27,471,736 3,287 40.98 27,942,829 1.02
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3.3Incident Data Preparation for Base year

As reviewed in Chapter 2, this dissertation congide¢hree major incident factors in
developing the TDFMI: incident frequency, incideddiration, and the reduced
capacity resulting from the incident. From the 2@@89dent dataset for the base year,
three key incident data (frequency, duration, aedluced capacity) were prepared
first. Incident data were matched with correspogdinks and nodes of the TDFM
network by using geographic location information®I& software. During the GIS
matching process, each individual incident recoad wientified as either segment or
intersection incident based on the intersectionndawy. After matching incident
data with the TDFM network, data on the three kagident factors were merged
with the TDFMI network as additional link attribsteFigure 3.4 shows the flow of

how incident data was prepared for the base year.

Historical

R Ing(r;Ler;tS:na:terix
Database —
Frequency &
Duration
) ) Add_ltlonal ) ) REduc.ed Tedneea
Final Incident Attributes Matching with Capacity

Capacity

Network TDFM Network .
Ehaer R — etwork  (EEEEEN  wodeling

Figure 3.4 Flow of Incident Data Preparation for Bae Year

3.3.1 Incident Frequency

This study utilized incident data from the VirgiddDT’s traffic database, referred to

as VaTraffic, which categorizes incidents into fiyges: incident, event, planned
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event, short term weather, and long term weathegifva DOT 2011). Short term
weather events are defined as localized weathartewe a small area, such as fog,
high winds, and standing water. Long term weath®idents include large,
widespread weather events, such as hurricanesdifigo or snow/ice storms
(Virginia DOT 2011). Within the “incident” categaryncidents are further divided
into three sub-categories: traffic, disaster, aedusdty. For the traffic incident
category, VaTraffic has collected data on vehidlgskes (recorded as accidents),
disabled vehicles, bridge/tunnel stoppage, andrdth#ic incidents (Virginia DOT
2011). The key information on each incident inctudiene, location, duration,
facility type, crash severity, number of total lan@umber of affected lanes, etc.
VaTraffic incident data are entered by staff meraldesm the one of five Regional
Transportation Operations Centers and tunnel fesliin the Hampton Roads
area. Incident data is entered close to real-tiwty minimal time delay, as it is
entered by the Virginia State Police, Safety SerRatrol, or observed on cameras,

etc. (Rose Lawhorne 2013).

VaTraffic database had, in total, 20,046 incideatords with various
incident related information within the Hampton Esanodeling boundary in 2009.
Table 3.4 shows the cross-classification of incidéequency between major
categories, including time of day, roadway typex] ancident types. Table 3.5 and
Table 3.6 show the proportion of incident frequebgycategory and the component

ratio within each category.
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When it comes to the category ‘Time of Day (TORpout 15% and 23% of
incidents occurred during the AM peak (6 AM to 9 Ahd PM peak periods (3 PM
to 6 PM), respectively, while 41% and 21% of inaitdeoccurred during the Midday
(9 AM to 3 PM) and Nighttime (6 PM to 6 AM of negslly) periods, respectively.
About 38% of incidents occurred during the peakqasr (a duration of six hours),
while 62% of incidents occurred during the non-pgekiods (a duration of 18
hours). It was found that the PM peak period hadhighest incident rate per hour,
which is equivalent to 8% of daily incidents. Or ttontrary, the Nighttime period

had the lowest incident rate per hour, which isual286 of daily incidents.

From the incidents by roadway facility types, asveh in Table 3.5, about
24% of incidents occurred at interstate freewaygerQhree quarters of disabled
vehicle incidents and congestion/delay incidentaioed at special facilities, such as
bridges and tunnels, which contributed to 71.5%albfincidents that occurred at
special facilities. As shown in Figure 3.3, there anany bridges and tunnels on
interstate freeways and major arterials. Bridged amnels are known as major
traffic bottlenecks in Hampton Roads. When exangnicidents at special facilities
by incident types, as shown in Table 3.5, it wasmtbthat a very high proportion of
incidents occurred at special facilities, such iadges and tunnels. It was found that
78% of incidents at special facilities were categad as bridge/tunnel stoppage

(43.5%) and congestion/delay (34.4%), as showrainlel' 3.6.

Consequently, bridge/tunnel stoppage and congédatay at a bridge/tunnel

contributed to more than 55% of total incidentshe Hampton Roads area. Selected
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bridges are frequently closed at the request ofalesaffic passing through under
the bridges. Temporary bridge closures are typicaailanged in advance with bridge

operation agencies.

Since the majority of incidents were found at istate freeways and
bridges/tunnels, less than 5% of incidents weredoat the primary and secondary
roadways, as shown in Table 3.5 and Table 3.6. rBason why such a small
proportion of incidents were found at the primandaecondary roadways is that
VaTraffic has been more focused on the safety aadility of interstate freeways

and special facilities in Hampton Roads.

VaTraffic incident records categorize incident typas: crashes (17.9%),
congestion/delay (32%), bridge/tunnel stoppagel@). disabled vehicles (14.3%),
and other (4.7%), as shown Table 3.6. Other in¢gdencompasses all other types of
incidents, including vehicle fire, security, brushe, chemical, other disaster, etc.

(Virginia DOT 2012).

When incidents were broken down by time-of-day amcident type, as
shown as Table 3.6, it was found that differentesypf incidents occurred at
different times during the day. Congestion/delagidants were the most common
during both AM and PM peak periods, while bridgefiel stoppage incidents
occurred most frequently during MD and NT non-pegkriods. Indeed,
congestion/delay incidents comprised of 48% and #6%6tal incidents in the AM
and PM peak periods, while incidents at bridgeswlsmaccounted for 44% and 32%

of total incidents during MD and NT periods, respesty.
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When incidents are analyzed by incident type amdway type, as shown in
Table 3.5, it was found that about 78% and 18%ra$ltes occurred at interstates
and special facilities, such as bridges/tunnelpeetively. Interestingly, most of the

non-crash incidents occurred at special faciliigglges and tunnels).
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Roadway Type Incident Type
Counts i i i Row Sum
Interstate Primary SecondarySpecial Others Crash D|sqbled Bridge/  Congestion Others
Vehicles Tunnel /Delay
AM 534 225 - 2,246 1 487 408 579 1,433 99 3,006
Time of MD 1,274 301 7 6,638 9 976 914 3,641 2,331 367 $B,22
day PM 1,531 183 8 2,912 13 955 692 705 2,115 180 4,647
NT 1,421 187 10 2,539 7 1,173 846 1,310 537 298 64,1
Interstate 2,793 689 2 888 388 4,760
Primary 114 8 3 591 180 896
Roadway Secondary 18 - - - 7 25
Type
Special 644 2,162 6,230 4,936 363 14,335
Others 22 1 - 1 6 30
Column Sum 4,760 896 25 14,335 30 3,591 2,860 56,236,416 944 20,046

Note: Special Roadway Type represents Tunnels aiog&s
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Table 3.5 Proportion of Incident Frequency per Subategory by Column Sum

Roadway Type Incident Type
Row

Disabled Bridge/ Congestion Average
Vehicles Tunnel /[ Delay Others

Interstate Primary SecondarySpecial Others Crash

AM 11.2 25.1 - 15.7 3.3 13.6 14.3 9.3 22.3 10.5 15.0
Time of MD 26.8 33.6 28.0 46.3 30.0 27.2 32.0 58.4 36.3 3891.114
day PM 32.2 20.4 32.0 20.3 43.3 26.6 24.2 11.3 33.0 19.13.22

NT 29.9 20.9 40.0 17.7 23.3 32.7 29.6 21.0 8.4 31.6 .820

Interstate 77.8 24.1 0.0 13.8 41.1 23.7

Primary 3.2 0.3 0.0 9.2 19.1 4.5
$oadway Secondary 0.5 - - - 0.7 0.1

ype

Special 17.9 75.6 99.9 76.9 38.5 71.5

Others 0.6 0.0 - 0.0 0.6 0.1
Column Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 .0100100.0

Note: Special Roadway Type represents Tunnels aiddé&s
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Table 3.6 Proportion of Incident Counts per Subcatgory by Row Sum

Roadway Type Incident Type
i i i Row Sum
Interstate Primary SecondarySpecial Others Crash Dlsgbled Bridge/ - Congestion Others
Vehicles Tunnel /Delay
AM 17.8 7.5 - 74.7 0.0 16.2 13.6 19.3 47.7 3.3 100.0
Time of MD 155 3.7 0.1 80.7 0.1 11.9 111 44.2 28.3 4.5 100.0
day PM 32.9 3.9 0.2 62.7 0.3 20.6 14.9 15.2 45.5 3.9 100.0
NT 34.1 4.5 0.2 61.0 0.2 28.2 20.3 315 12.9 7.2 100.0
Interstate 58.7 14.5 0.0 18.7 8.2 100.0
Primary 12.7 0.9 0.3 66.0 20.1 100.0
Roadway Secondary 72.0 - - - 28.0 100.0
Type
Special 4.5 15.1 43.5 34.4 2.5 100.0
Others 73.3 3.3 - 3.3 20.0 100.0
Column Average 23.7 4.5 0.1 71.5 0.1 17.9 14.3 31.1 32.0 4.7 100.0

Note: Special Roadway Type represents Tunnels aiogé&s
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Even though VaTraffic provides very useful incidenformation, it has
incomplete crash records in the Hampton Roads la@eause VDOT has primarily
focused its resources on reporting incidents oersthte freeways and special
facilities, such as bridges/tunnels. Thus, crasha d@mpiled by the Virginia
Department of Motor Vehicles (DMV) was used to agdofor the missing incident
data on primary and secondary roadways, and coeplet crash data analysis.
Virginia DMV'’s crash database includes all crastords reported by police officers,
which includes crashes involving death, injurytaal property damages exceeding

$1,000.

The DMV'’s crash database contains 121,143 crastrdscthat originated
from all over the state in 2009. Hampton Roads BAd76 crashes within its
jurisdiction boundary. However, the DMV’s crash atzdse also lacks information
that is required in this research: 1) how longdfitalas blocked (or affected) due to
the crash and 2) accurate location where each aeslrred. Not all crash records
have locatable data. Only 11,686 crash records9%b)/.included latitude and
longitude coordinates and even then, 9.1% of threserds (1,068 crashes) listed

incorrect location information.

Figure 3.5 plots the location of each individuastr record by latitude and
longitude information using data from the DMV'’s shadatabase. As shown, many
crashes were located in the North Carolina areaven in the sea. Most of the
incorrect locations appear to have been systentigtsfaifted from actual locations.

Thus, for crash records with invalid locations, nieeations were generated using
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roadway route information (route prefix, route nianlroute suffix, and mile point)

available from each crash record in the DMV databas

4+ Existing Location

e Calculated Location
—— TDM Network
[ | TDOM Boundary 4

|:| VA Jurisdiction A A N

Figure 3.5 Location of Crash Data Before and AfteiAdjustment

This study generated new Route IDs based on rauialdrmation for two
purposes: 1) to double check if the given latitade longitude coordinates on the
DMV'’s crash records were correct and 2) to genenai® Route IDs for the crash
records with invalid location information. Each nBaeute ID consists of 14 digits of
three components: a route prefix (4 digits), a eontimber (5 digits), and a route
suffix (5 digits). The final latitude and longitud®ordinates of each crash record

were determined by a mile point indicating the ahise from the starting point of
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Route IDs. Table 3.7 shows examples of new Route dDd new latitude and
longitude coordinates based on routable informafi@ute prefix, route number,

route suffix, and mile point).

Table 3.7 Example of New Route ID and X-Y Coordinas

Prefix ngﬂe Suffix ~New Route ID I\P/l(i)liit Taet\i,:u de soer\:\é]itu de
134 8669 13408669 0 -76.003991 36.550387
SR 165 SR00165 0 -76.344216 36.740913
C1SR 168 C1SR00168 12.65 -76.245788 36.749314
IS 264 W 1IS00264W 16.58 -76.137144 36.834076
Cc7us 17 C7US00017 5.23 -76.344888 36.756823
IS 64 E242B I1S00064E242B 0.21 -76.646113 37.25666
IS 64 W ISO0064W 234.5 -76.731263 37.352841
us 58 US00058 496.74 -76.197433 36.85524
us 17 us00017 0 -76.37627  36.550595

After the successful processing of routable da@3a4% of all crash data have

new latitude and longitude. 6.6% of crash recordsevomitted from this study as no

routable information was available in the DMV’s shadatabase. Figure 3.5 shows

the final location of each crash record after acting the ones with invalid location

information.

After correcting location information on crash red®with invalid data using

route information, comparisons were made betweerotiginal location coordinates

with the corrected location coordinates to exanifrthe new location coordinates
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were reliable. After excluding outliers located side of the Hampton Roads
jurisdiction, a total of 10,450 corresponding leoas were compared in a XY plot as

shown Figure 3.6.
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Figure 3.6 Comparisons between Observed and Estined Coordinates of

Longitude (Top) and Latitude (Bottom)
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Both latitude and longitude coordinates matched wezll. Linear regression
models for both cases haRé > 0.995. Consequently, about 96% of all crash data
have new reliable location information, which wased in matching process with

TDFM network.

Regarding the crash database, VDOT is currentlyergaing a migration
process to put all GIS and traffic related resosiioéo a single new database called
the Roadway Network System (RNS). The RNS has miaied all crash records that

were provided by Virginia DMV throughout the state.

Even though VaTraffic accumulated incident dataseldo real time from
various sources on incidents that occurred onritezstate freeway, and primary and

secondary roadways in Virginia, its data heavilieceupon input from personnel.

Table 3.8 shows crash records from VDOT's VaTra#fimd DMV’s crash
database. VaTraffic has only 2% of DMV’s crash rdsoon non-freeways, while it
has about 73% of DMV’s crash records on freewayappears that not all crashes
on the freeways have been reported to VaTraffierBwvorse, most of the crashes on
non-freeways were not reported to VaTraffic. Thal, crash data used in this
dissertation research came from the DMV databasi,es complete crash records,

while non-crash incidents all came from VaTrafficawvoid potential duplication.
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Table 3.8 2009 Hampton Roads Crash Data from VaTrét and DMV

Source Freeway Non-freeway Total
Crash in VaTraffic (1) 3,329 262 3,591
Crash in DMV(2) 4,584 15,259 19,843
Percentage (1)/(2) 72.6 1.7 18.1

This study focused on crashes, disabled vehictespadge/tunnel stoppages.
Congestion delays were excluded because congestlag/is a traffic phenomenon
during over-saturated traffic conditions, whichnst directly related to incidents.

Incident type, severity level, and priority leveedhe key variables used in incident

analysis (Virginia DOT 2011)

After excluding crashes and the congestion/delas ftam VaTraffic, 6,945
and 3,094 incidents were finally prepared for fragsv and non-freeways,
respectively. Table 3.9 shows the final cross-diaasion table of incident data
associated with incident type (crash and non-crasident) and roadway type
(freeway, segment of non-freeway, and interseationon-freeway). Table 3.10 and
Table 3.11 also show the percentages of final amtidrequency by incident type

and roadway type, respectively.
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Table 3.9 Final Incident Counts Used in the TDFMI M:twork

Non-freeway

Freeway Segment Intersection Row Sum
Crashes 4,584 6,727 8,532 19,843
Non-Crash Incidents 6,945 2417 677 10,039
Column Sum 11,529 9,144 9,209 29,882

Table 3.10 Proportion of Final Incident Counts perRoadway Type

Non-freeway Row
Freeway -
Segment Intersection Average
Crashes 39.8 73.6 92.6 66.4
Non-Crash Incidents 60.2 26.4 7.4 33.6
Column Sum 100.0 100.0 100.0 100.0

Table 3.11 Proportion of Final Incident Counts perincident Type

Non-freeway

Freeway Segment Intersection Row Sum
Crashes 23.1 33.9 43.0 100.0
Non-Crash Incidents 69.2 241 6.7 100.0
Column Average 38.6 30.6 30.8 100.0

More specifically, 66.4% of all incidents are crashand 33.6% of all
incidents are non-crash incidents, as shown inerado0. Freeways have 38.6% of
all incidents on the TDFMI network and non-freewagse about 61.4% (30.6% for
the segments and 30.8% for the intersections)l ai@tents, as shown in Table 3.11.
When roadway types are combined with incident tyg@86 of all crashes and the

60% of non-crash incidents occurred on the freew&®msgarding non-freeway
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incidents, 73.6% of segment incidents and 92.6%intérsection incidents are

crashes.

Figure 3.7 shows the average daily incident frequenroughout the TDFMI
network. Most of the interstate freeways have ntbhes one incident per day and
some segments of interstate freeways have higlegdeint frequencies - up to 10

incidents per day.
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Figure 3.7 Average Daily Incident Frequency on th& DFMI Network

In particular, some segments located at the erdrafdkey bridges/tunnels,
including the Hampton Roads Bridge Tunnel (HRBTY ahe Monitor Merrimac
Memorial Bridge Tunnel (MMMBT), have very high inlgnt frequencies ranging 10

to 30 incidents per day.
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3.3.2 Incident Duration

In VaTraffic, the incident duration is measuredcsimn event is verified and logged
in, until all responders have cleared (Virginia D@Q11). Table 3.12 shows cross-
classification tables listing average incident dioraby time-of-day, roadway type,

and incident type.

The average incident duration varies by time-of;depadway type and
incident type. AM had the highest incident duratedr64 minutes, while NT had the
lowest incident duration at 34 minutes. The avernag&lent duration at interstates
and special facilities, such as the bridges/tunneése 48 minutes and 40 minutes,
respectively, while the average incident duratianpamary roadways was 147
minutes. The secondary and other roadway typegdwmdmall of a frequency (less

than 30) for values to be meaningful.

When it comes to incident duration by incident typeashes had an average
duration of 47 minutes, while the average incidéumtation at bridges/tunnels was
only 6 minutes. Congestion/delay had the highestdent duration time at 99
minutes. When the three categories were combirteslas found that the average
duration time at primary roadways was greater ttenaverages for all four time
periods, while duration times at special facilit®sch as the bridges/tunnels were
less than the averages for all four time periodsgadRding the duration on interstate
freeways, both AM and PM peak periods had higheatéan times than the overall
average duration time while both non-peak periddl® @nd NT) had lower duration

times than the average duration time.
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From the incident types, the average durationfi®fcongestion/delays were
much greater than the average durations for fone fperiods. On the contrary, the
averages of durations at bridges/tunnels were mamaller than the average
durations for all time periods. Regarding the dorabf the crash, both AM and PM
peak periods had higher durations than the avdradevhile both non-peak periods

(MD and NT) had lower duration time than the averhgd.
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Table 3.12Average Duration Time (minute) of Incidets per Subcategory

Roadway Type Incident Type

Row

Interstate Primary Secondary Special Others Crash Disabled Bridge/ Congestior Others Average

Vehicles Tunnel Delay

g;n;e of  AMm 44 144 - 61 120 47 17 6 108 45 64
MD 53 153 296 38 49 48 16 4 114 73 45
PM 46 126 66 49 55 41 17 6 82 48 51
NT 47 162 125 17 57 52 17 9 75 46 34

_lFf;;edwai Interstate 49 24 13 63 48 48
Primary 100 25 51 160 140 147
Secondary 88 - - - 323 154
Special 28 15 6 98 19 40
Others 54 2 - 14 79 56

Column Average 48 147 154 40 56 47 17 6 99 57 47
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Table 3.13 shows the cross classification of tleedent frequency as shown

in Chapter 3.3.1 among duration and three sub-oateg time of day, roadway type,

and incident types. The incident duration data vegié into five categories from 0

to over 120 minutes with 30-minute intervals.

Table 3.13 Frequency of Incident Duration per Subdagory

Incident Duration (min)

Row Sum
<30  30-60 60-90 90-120 > 120
Time of AM 1,420 430 280 230 646 3,006
Day MD 5057 802 390 177 903 8,229
PM 2469 798 461 317 602 4,647
NT 2.898 600 338 89 239 4,164
Interstate 2,068 1,373 767 294 258 4,760
Roadway
Type Primary 121 128 83 60 504 896
Secondary 6 4 4 2 9 25
Special 10538 1117 611 453 1,616 14,335
Others 11 8 4 4 3 30
incident  Crash 1,498 1,092 650 201 150 3,591
Type Disabled 2539 229 68 15 9 2 860
Vehicles
Bridge/Tunnel 6,114 71 29 8 13 6,235
Congestion/  , »7 1083 654 553 2,099 6416
Delay
Others 566 155 68 36 119 944
Column Sum 12,744 2630 1,469 813 2,390 20,046
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Table 3.14 and Table 3.15 show the incident dumatiategory combined
with time-of-day, roadway type, and incident typB6.3% of all incidents on the
primary roadways and 36.0% of all incidents on sleeondary roadways had an
incident duration of greater than 120 minutes. 82.6f all congestion/delay

incidents had an incident duration of greater th2d minutes.

Table 3.14 shows that 63.6% of all incidents hatlgtion of less than 30
minutes, 76.7% of all incidents had a durationesilthan 60 minutes, and 11.9% of
all incidents had a duration of over 120 minutefieWWincident duration is analyzed
for incidents across all time periods, all roadvigges, and all incident types, the
majority of incidents had a duration of less th@n3nutes, except for incidents on

primary and secondary roadways.
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Table 3.14 Proportion of the Incident Duration perSubcategory by Row Sum

Incident Duration (min)

Row Sum
<30 30-60 60-90 90-120 >120
Time of AM 47.2 14.3 9.3 7.7 21.5 100.0
Day MD 72.4 9.7 4.7 2.2 11.0 100.0
PM 53.1 17.2 9.9 6.8 13.0 100.0
NT 69.6 144 8.1 2.1 5.7 100.0
Interstate 43.4 28.8 16.1 6.2 5.4 100.0
Roadway
Type Primary 13.5 14.3 9.3 6.7 56.3 100.0
Secondary 24.0 16.0 16.0 8.0 36.0 100.0
Special 73.5 7.8 4.3 3.2 11.3 100.0
Others 36.7 26.7 13.3 13.3 10.0 100.0
Incident  Crash 41.7 30.4 18.1 5.6 4.2 100.0
Type Disabled
Vehicles 88.8 8.0 2.4 0.5 0.3 100.0
Bridge/Tunnel 98.1 1.1 0.5 0.1 0.2 100.0
Congestion/ 5,6 169 102 86 327  100.0
Delay
Others 60.0 164 7.2 3.8 12.6 100.0
Column Average 63.6 13.1 7.3 4.1 11.9 100.0

Table 3.15 shows that the proportion of the incidkmation time for each of

the three sub categories. Reviewing incident domaby time-of-day showed that

46.7% of all incidents that had a duration of lges 30 minutes occurred during the

MD period only. 60.8% of all incidents that had aration of between 30 and 60

minutes occurred during MD and PM periods.

Revngwincident duration by

roadway types showed that the majority of the ieotd occurred at the interstate
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freeways or special facilities, such as bridgesi&lsy for all incident duration
categories. Specifically, the 82.7% of all incidetttat had the duration of less than

30 minutes occurred at special facilities.

Table 3.15 Proportion of the Incident Duration perSubcategory by Row Sum

Incident Duration (min) Row

<30 30-60 60-90 90-120 >120 Average

Time of AM 111 163 191 283 270 150
bay MD 467 305 265 218 378 411
PM 19.4 303 314 390 252 232
NT 227 228 230 109 100 208
Roadway [nterstate 16.2 52.2 52.2 36.2 10.8 23.7
Type Primary 0.9 4.9 5.7 7.4 211 45
Secondary 0.0 0.2 0.3 0.2 0.4 0.1
Special 82.7 425 416 557  67.6 715
Others 0.1 0.3 0.3 0.5 0.1 0.1
Incident  Crash 11.8 415 442 247 6.3 17.9
Type  Disabled 199 87 46 18 04 143
Vehicles
Bridge/Tunnel 48.0 2.7 2.0 1.0 0.5 31.1
gg{;gyeS“O”’ 159 412 445 680  87.8 320
Others 4.4 5.9 4.6 4.4 5.0 4.7
Column Sum 100.0  100.0 100.0 100.0 100.0  100.0

Over 90% of all incidents with a duration of lekan 120 minutes, occurred
at both the interstate freeways and special faslitReviewing incident duration by

incident types showed that the majority of incide(®8%) at bridges/tunnels had a
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duration of less than 30 minutes. The majority bfircidents with a duration of

greater than 30 minutes were caused by crashesoagestion/delays.

Duration of Crash Data

As mentioned earlier, the crash records in the Dd/database do not have incident
duration information. Since all incident records WaTraffic have duration

information, the crash records in VaTraffic werdizged to generate an incident
duration estimation model for DMV’s crash recorBisom the comparison between
the DMV’'s crash database and the VaTraffic incidelatabase, 42 common

variables were selected for incident model develemm

Various independent variables in different categmssociated with crash
duration were available, and they interact withheather and are highly correlated.
The independent variables used in the model dexwedap consists of 42 variables
from the three major categories: crash informatroagdway geometric information,

and environmental information, as shown Table 3.16.

If a single global model, such as a linear or nordr model, is developed by
using the 42 variables, it may be difficult to imieet the model results even if the
developed model generates good results, becaugariébles may arguably interact
with each other in complicated, non-linear ways. éAsesult, many independent

variables should be modeled for the various feat(®&alizi 2006).

As an alternative approach to linear and non-lineagression, a

Classification and Regression Tree (CART) model ayused, which can handle
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data that have non-linear relationships and therastions between the variables. A
CART does not need to specify any functional folmasause it is a nonparametric
model, and does not need to select variables iarady of developing the model
(Roman Timofeev 2004). A CART model has a recurdieary decision tree

method in hierarchical clustering manner for thgregsion. A recursive partitioning
at the each branching node is repeated, baseceoralhes of explanatory variables,
until stopping criteria are met (e.g., the minimamember of sample size, and the
maximum reduction of variance) (S. Sumathi and EhaePaneerselvam 2010). The
global model of the regression tree consists of paots - the partition and the
regression (Shalizi 2006). Hierarchical partitiormfgsters show key information that
divides the group into child groups, which is vemgeful to understand the

underlying nature of the data (MathWorks 2013).
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Table 3.16 Independent Variables used in Regressidimee Models for Duration

Category

Independent Variables

Crash Information

Accident Severity (CAT)
Collision type (CAT)

Crash Hour (CAT)

Damage Amount

Day of Week (CAT)

Fatal Count

Pedestrian Fatal Count
First Harmful Event (CAT)
Injury Count

Non Pedestrian Fatal Count
Non Pedestrian Injury Count
Pedestrian Fatal Count
Pedestrian Injury Count
Reported Vehicle Count

Roadway geometric
Information

DMV Surface Type (CAT)

Facility Type (CAT)

First Harmful Event Location (CAT)
Intersection Type (CAT)
Jurisdiction (CAT)

Lane Count

Related to Roadway

Roadway Relation Type (CAT)
Roadway Alignment Type (CAT)
Roadway Defect Type (CAT)
Roadway Surface Condition Type (CAT)
Roadway Surface Type (CAT)
Roadway Type (CAT)

School Zone Type (CAT)

Shoulder Width (CAT)

Speed Limit (CAT)

Surface Width (CAT)

Traffic Control Status Type (CAT)
Traffic Control Type (CAT)

Traffic Controller Working (CAT)
Work Zone Location Type (CAT)
Work Zone Related (CAT)

Work Zone Type (CAT)

Work Zone Workers Present (CAT)
Work Zone (CAT)

Environmental
information

Light Condition (CAT)
Lighting (CAT)
Weather Condition (CAT)

Note: CAT represents category data
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The CART models using the crash data in VaTraffieravdeveloped to
estimate the incident duration for four time-of-dagriods (AM peak, Midday, PM
peak, and Night time). Both categorical and cordusu variables were used
simultaneously in model development. In CART mogdelfter the entire tree
building structures are developed, a pruning atgoriis applied to the entire tree
structure to make the optimal tree structure byimmzing the errors between
predicted values and real observed values. Thamguatgorithm maximizes the tree
size and removes all branches and leaves that tdgemeralize to avoid overfitting
of the data (S. Sumathi and Surekha Paneerselva).2Do predict the optimal size
of the tree, av-fold cross validation method was applied, whichkmown to be
accurate, especially for analyses with small sarsjles because it does not need to
separate learning (training) sample and testingdang) sample data (S. Sumathi

and Surekha Paneerselvam 2010).

Prior to predicting the incident durations, classifion tree models are
developed first to check how well the independemtiables explain the duration.
The criteria to find the optimal regression traeciure were to minimize the error of
predictions compared to the learning and testirtg.dBable 3.17 shows the model
summary of optimized tree structures for four TODgean Square Error (MSE),
Percentage Root Mean Square Error (%RMSE), Riflom learning data and
testing data show that the four models did not garegood estimation results.

Further, optimized models showed poor predicticsults ®? values from testing
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data were much worse than those from learning data)le 3.17 shows selected

important variables that have high contributiomirolassification tree analyses.

Table 3.17 Summary of Developed Classification Treiodels

AM MD PM NT
'l\z"rerg‘r” Sauare 50,4047 1077.076 1796.729 1408.848
% RMSE 44.989 32.819 42.388 37.535
R? Learn Data 0.116 0.412 0.324 0.215
R? Test Data 0.040 0.063 0.154 0.107
Important Reported Shoulder WidthDay of Week Fatal Count
Variables Vehicles Day of Week Crash Hour Reported
Fatal Count Collision Type Pedestrian Vehicles
Pedestrian Fat Injury Pedestrian

Count
Collision Type
Day of Week
Work zone

Damage
Amount

# of Lanes

Traffic Control
type

Related to
Roadway

First Harmful
Event Location

Speed Limit

Roadway
Defect Type

Fatal Count

Pedestrian Fat
Count

Fatal Count

Reported
Vehicles

Roadway
Surface Type

Jurisdiction
Collision Type

Shoulder Width

Roadway
Defect Type

Surface
Condition

Injury

Pedestrian Fat
Count

Day of Week
Facility Type
Shoulder Width
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The trade-off between tree impurity and complexfythe tree exists for
determining the optimal tree size. When the size tbé tree increases,
misclassification error decreases. At the maximuee structure, misclassification
error is zero. However, complex decision trees rofigoorly performed on
independent data (Roman Timofeev 2004). Even thdbhghlarger tree structure
makes variance (relative error) increase, it cgdderate better goodness-of-Rt{

results with a smaller bias.

By using selected important variables from the sifaation tree analysis, as
shown in Table 3.17, the full structure of regressiree models were developed to
predict the duration of four time-of-day periodsgufe 3.8 shows the comparison
results between the observed duration from Valovadfd the estimated duration
from the developed models for four time-of-day pds. Overall, the estimated
durations appeared to fit well with the observedatians, but the values were lower
for all time periods. The majority of the data hthdations of less than 100 minutes.
The estimated durations of less than 100 minutes weatched well with observed
durations for all time-of-day categories. Evenafre of the estimated durations of
greater than 100 minutes were overestimated orrastimated compared to the
observed durations, it's impact is expected to m&gnificant from the overall
analysis, because this study uses incident durasam categorical variable from O to
greater than or equal to 120 minutes for base iymalels, and from 0 to greater than

or equal to 90 minutes for future year models \Bihminute intervals.
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Figure 3.8 Comparison of Duration between Observatin and Estimation for

Four Time Periods

The developed duration models were then applidaMd’s 2009 year crash
data (i.e., base year) to estimate the duratiorioiar time periods. Figure 3.9shows
the average daily incident duration throughout rieévork. Most of the interstate
freeways had an average incident duration of lorigan 10 minutes per day. In

particular, some segments of interstate freewagatdéol in the upstream of key



105

bridges/tunnels, including the Hampton Roads Bridgenel (HRBT) and the
Monitor Merrimac Memorial Bridge Tunnel (MMMBT), kka much higher incident

durations, ranging 10 to 60 minutes per day.

Legend
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@ 120001 - 1’7'83,878

Figure 3.9 Average Daily Incident Duration on the DFMI Network
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3.3.3 Reduced Capacity from Incident

There is research literature associated with redlwagpacity due to incidents. A
couple of publications show how much capacity wdwddreduced from incidents on
freeways, based on the total number of lanes onfrdeavay and the number of
blocked lanes, including the shoulder lane, fromititidents (Chin et al. 2004; TRB

2010).

Table 3.18 shows a cross-classification table feeways to determine the
proportion of reduced link capacity based on thenlber of lanes that involved
incidents. For example, an incident occurred direet lane freeway, and one lane is
affected (blocked) from the incident, the capaoityhe freeway would be decreased

to 53% (0.53).

Table 3.18 Reduced Link Capacity for Freeways

Total Number of Lanes

1 2 3 4 5
Shoulder 0.45 0.75 0.84 0.89 0.93
Affected
0 0.32 0.53 0.56 0.75
Number
N/A 0 0.22 0.34 0.5
of Lanes
3 N/A N/A 0 0.15 0.2
4 N/A N/A N/A 0 0.1
5 N/A N/A N/A N/A 0

Source: (Chin et al. 2004; Transportation ReseBodrd 2010)
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Since there is no available data for non-freewagdweays, it is assumed that the
magnitude of capacity reduction of non-freewaythessame as freeways. The cross-
classification table of capacity reduction for noeeways may be updated if data

becomes available in the future.

Currently, the available crash data in VDOT haveinformation regarding
capacity reduction due to incidents. Fortunatdtg total number of lanes and the
number of affected lanes from the incidents arelave in the VaTraffic database
(Virginia DOT 2012). Thus, the cross-classificati@ale shown in Table 3.18 was
utilized to determine the reduced capacity of imdiral crash records by using the
total number of lanes and the number of affectetedafrom the incidents in

VaTraffic.

3.3.4 Combination of Incident Frequency and Duration

The incident frequency and duration data were @®@e by a daily basis to see how
the daily frequencies and average durations vaey tme. Figure 3.10 Figure 3.10
shows the distribution of incident frequencies ahudations for 249 weekdays in
2009. The frequency and duration show very sinfilastuations over time, which
looks more obvious in the scatter plot of the tvamiables, as shown in Figure 3.11.
A linear regression model in Figure 3.11 shows theident frequency and duration
have a positive linear relationship each other.seflaon the developed model, for
every incident that occurs, the total incident dorais increased by 0.775 hours

(about 47 minutes) on average.
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3.4Incident Data Prediction for Future Year

The first step in predicting incidents for a futyrear is to forecast traffic for the
future year because the loaded link volume is a ikgut for the prediction of

incidents. Thus, the 2034 future year TDFM needbeaun to generate the loaded
link volumes on the TDFM network. Figure 3.12 sksaive process to prepare final

incident data for the future year TDFMI.

Forecasted

2034 TDFM Ao LS Incident Prediction Time-Space

— Modeling - Incident Matrix

Incident

Frequency &
Duration

Additional Reduced Reduced
Final Incident Attributes Matching with Capacity Capacity

TDFM .
NEhSK G VYN a— Motellng

Figure 3.12 Flow of Data Preparation for Future Yea

3.4.1 Incident Frequency

This study considers the three major types fordecis: crashes, bridge/tunnel
closures, and the other incidents, such as disatdbttles, vehicle fires, chemical,
and bush fires. A future annual crash frequency feescasted by using Virginia
Safety Performance Functions (SPFs). To forecastfuture annual frequency of
stoppage at key bridges/tunnels and disabled \eshiébur linear regression models
for four TODs were developed based on historictd daHampton Roads from 2008

to 2012.
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Figure 3.13 shows historical trends of non-crasiidents for each time-of-
day with fitted linear regression models. The feguations showed that AM and
PM have negative slopes while MD and NT have posgiopes over time. Thus, the
non-crash incidents for the 2034 future year aredasted by applying the linear
regression models. As a result, the number of maskcincidents for four TODs in
2034 is forecasted to increase by 5.0% from the92@@idents. The non-crash
incidents for the future year could be forecastath wa revised model from the

extensive data analysis later.
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Figure 3.13 Historical Trends of Non-Crash Incidens per Time of Day

SPF is a mathematical equation estimating and/edigiing the number of
crashes based on traffic and roadway informatiomguslifferent types of site

characteristics (Carter and Srinivasan 2011). S&Fbeen adopted in the Highway
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Safety Manual (HCS), a comprehensive highway sadelysis guide book by the
American Association of State Highway and Transgarh Officials (AASHTO)

(Transportation Research Board 2010). SPFs shovg@tion (3.2) and Equation
(3.3) are used to predict the number of crashea fature year; the Average Annual

Weekday Traffic (AWDT) is prepared from the corresging future year.

TDFM.Link crashes =% x AWDT? x L Eg. (3.2)
where, crashes: predicted crash frequency per year

AWDT. annual average weekday traffic (vehicles/day)

L: segment length (miles)

a andb: regression parameters.

Intersection crashese® x MajAWDTF1 x MinAW DTP> Eg. (3.3)
Where, crashes= predicted crash frequency pesgtgon per year
MaJAWDT=AWDT on the major road (vehicles/day)
MinAWDT= AWDT on the minor road (vehicles/day)
p1=coefficient of mayor AWDT

Sr=coefficient of minor AWDT

Table 3.19 shows the frequency and proportion ofiiia’s 2009 crash data
by severity. Fatal crashes make up less than 19%llofrashes, while property
damage only accounts for 62.3%. This proportiomsed to split the forecasted

crashes by using forecasted AWDT and SPFs.
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Table 3.19 2009 Virginia Crash Severity

Number Percentage
Fatal Crash 689 0.6
Injury Crashes 43,149 37.1
Property Damage Only 72,548 62.3
Total 116,386 100

The Virginia Department of Transportation (VDOT)shtaied to develop
SPFs with Virginia's historical crash data from 2@0 2008 to adofbafety Analyst,
a highway safety management tool. As the part efdffort, SPFs for multilane
highways and directional freeway segments wereldped and expected to replace
the default SPFs ofafety Analys{Kweon and Lim 2013). SPFs developed by
Kweon and Lim (Kweon and Lim 2013) were appliedfdcecast the 2034 future
year segment crashes in the Hampton Roads aresstimating segment crashes,
different SPF model parameters for 2 lane freewaysr 3 lane freeways, and non-
freeways were used. Non-freeway SPFs for the HamiRtzads district were applied.
For intersection SPFs, the Virginia statewide matileloped by Garber et al. was

used (Garber and Rivera 2010).

For the Hampton Roads TDFM network, since therendgs available
information associated with traffic controllersthe intersections, each intersection
was classified as signal controlled or stop signtradled, based on the facility type
information of the two crossing roadways. For exlEni two arterials are crossing

at an intersection, this intersection is assumedawe a signal controller. If a
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collector or local road is crossed with the sanveller higher level facility type, it is
assumed to have stop sign at the intersectioneTaB0 shows the parameters used

in SPFs.

Table 3.20 Safety Performance Functions for segmeand intersections

Alpha Beta 1 Beta2
Segment * 2-lane freeway -12.85 1.45 -
3+lane freeway -18.05 1.98 -
Non-freeway -7.88 0.94 -
Intersection**  Signal controlled -7.6234 0.6742 0.3453

Stop sign controlled  -6.9589 0.4558 0.347
Source: *(Kweon and Lim 2013) and ** (Garber anddra 2010)

In order to obtain incident frequency from SPFs, tikmber of incidents was
estimated first by using the 2034 TDFM loaded hidkumes and SPFs. When the
number of incident frequency was estimated, NegaBinomial Distribution was
applied to consider the random effect of crashéenTthe estimated frequency was

later split into subcategories for severity, whigtbased on Virginia’'s crash data.

After the annual incident frequency was forecasténdd incidents were
assigned on the network using the Monte Carlo satrarl based on the relationship
between the incident frequency and the functiofessification of roadways and the

time-of-day for each segment and intersection.
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3.4.2 Incident Duration

The cross-classification table for incident dunatiny incident severity was compiled
using the field data by Virginia DOT and New Yortat DOT, as shown in Table
3.21 (Virginia DOT 2012; New York State DOT 2013he percentage of crash per
severity (row sum) was calculated from the obserdath in Virginia DOT’s

database and the percentage of crash per durategary was calculated from the
observed data in New York State DOT. Based ondlesum and column sum data,

the percentage of duration per crash severity anatidn category were determined.

Table 3.21 Percentage of Crash Duration by Severity

Fatal Injury Property Column Sum
under 30min 0.0 8.2 13.7 21.9
30-60min 0.0 14.5 24.3 38.8
60-90min 0.0 7.8 13.1 20.9
over 90min 0.6 6.7 11.2 18.5
Row Sum 0.6 37.1 62.3 100.0

Source: (New York State DOT 2013; Virginia DOT 212

3.4.3 Reduced Capacity from Incident

For the reduced capacity from the incident, tharkiyear TDFMI used the same
cross-classification table used by the base ye&MIDwhich is shown in Table

3.18.
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3.5Chapter Summary

This chapter identified a framework of incorporgtincident impact into the TDFM

process. Prior to preparing incident data, thetigjsHampton Roads TDFM was
briefly explored, which included the land use datenmary, network dimension, key
facilities, operational characteristics, VDFs, anddel run statistics. Based on the
proposed framework, three key incident data (fregyereduced capacity, duration)
were prepared. For the base year incident datantigent frequency and duration
were derived from incident records, while the remticapacity was estimated by
consulting research literature, as no data wadadlai For the future year incident
data, the crash frequency was forecasted by tldetbaolume from the future year
TDFM and estimated SPFs. The number of non-crasidents was forecasted by
linear regression models per TOD based on histode#a. Then a forecasted
frequency was split into subgroups for severity assigned on the TDFMI network
using the Monte Carlo Simulation technique. Forident duration, the cross-
classification table from research literature wagd) which consists of incident
duration and incident severity. The reduced capdoait the future year used the
same look-up table as the base year case. TalesB&vs assumptions applied in

this chapter and the expected impacts of thosergs#sans on the analysis results.
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Assumption

Impacts on Result

1. Feedback Loop is in trip assignment
2. Capacity reduction in arterial is the same as fegew

3. Incident impacts that are not included in TDFM
network are minimal

4. Non-crash incident frequency of future year follthe
historical trend

5. Crash frequency of future year can be forecastedjus 5.

existing SPFs

6. Cross table of incident durations are determinethby 6.

filed data of VDOT and NYSDOT

1.

2.

3.

4.

Network simulation results may be different (betieworse)
Computation time would increase

Capacity reduction on arterials may be differ@ntncident impact
may be different (better or worse)

Incident impacts may be underestimated (same aseyor

Non-crash incidents for future year may be deciaséncident
impact may be decreased (better or worse)
SPFs may be updated in the future (better or worse)

Duration may affect the incident impact on netw(é&tter or worse)
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CHAPTER 4. VOLUME DELAY FUNCTION WITH
INCIDENT DATA

The impact of an incident on a roadway can be nmredsy two factors: the reduced
capacity on the roadway and the incident duratfs.reviewed in Chapter 2.3.3,
reduced capacity can be calculated, regardlesslantitype, by examining how
many lanes (including shoulder) were blocked frdra incidents and how many
lanes are still available to traffic. In this chaptin order to incorporate the incident
impact into TDFM, modified BPR and Akcelik VDFs veedeveloped and calibrated

with selected field traffic data that are assodatgth the crashes.

4.1Incident Data Preparation

This study utilized field traffic data and incideddta that VDOT has collected. To
collect field traffic data associated with incidenfcrashes), this study applied
temporal/spatial information to both crash data &madfic count data archived in
VDOT’s Traffic Monitoring System (TMS). Consequentlonce traffic and crash
data have the same time and location, daily trafita of the matched link was
extracted from the TMS. The traffic data in the TM& 15-min interval counts
classified by FHWA and 21 speed bins with 5 mphgeaimtervals from 0 to greater
than 100 mph. Since a crash is a relatively ramg\all matching cases from 2007

to 2010 were searched. Figure 4.1 shows one examfield traffic data that was



118

associated with an incident. The vertical red harghe left and middle graphs

represent the time the crash occurred, which wasnar 6:00 pm.

This crash occurred on the 5-lane freeway, I-264thaund in the Norfolk
area outside of the 1-64/1-664 circle, on April 2009. The graphs of volume (left)
and speed data (middle) by the time-of-day inditla&ée, prior to the crash, the total
traffic volume throughout the five lanes was alid300 vehicles per 15-minutes and
the average travel speed was about 59 mph. Wlherdsh occurred, speed was
dropped drastically to around 10 mph and traffitusee was dropped to less than
1,000 vehicles per 15 minutes. It took about 10&ut@s before travel speed was
restored back up to 60 mph, the travel speed podhe crash. When the speed
volume graph (right) shows only seven records wi#ific volumes of less than
2,500 vehicles/15-min and traffic speeds of lesantdl0 mph, these samples

obviously represent incident traffic conditions.
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Road Name: I-264 WB
TMSID: 050203

603
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Figure 4.1 Example of Incident Involved Traffic Dat
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After data mining five-years of traffic crash ddtam 2007 to 2010 in the
Hampton Roads area, 45 TMS traffic count locatwith valid field traffic data for
the date when crashes occurred were found. At3hechtions, 182-day traffic data
were collected, which means some locations have ithan two crashes during four
years. Table 4.1 shows the summary how many datdspeere extracted from the

archived TMS database.

Even though the existing TDFM has total of 11 facitypes, VDF was
grouped, as below, into five classes with simitaility types, because of the lack of

data for calibrating VDF functions with facilitypes (AECOM 2013).

* Class 1: Centroid Connectors

» Class 2: Freeways, Ramps

» Class 3: Minor Freeways/Principal Arterials

» Class 4: Major/Minor Arterials, Major Collectors

e Class 5: Minor Collectors/Locals

Since the VDFs of TDFM have five classes, this gtiadlowed the same rule
to group collected traffic data that matched crasbefore VDF calibration. After
grouping field traffic data by facility type, mindreeways/ principal arterials have
the largest field traffic data that matched witle ttrash data while the major/minor
arterials and major collectors have the least fieddfic data that matched with the

crash data.
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Table 4.1 Summary of Sample Data used in VDF Calilation

Facility Type # of Sample # of Sample # of

Sites Dates Samples
Interstate Freeway 9 25 2,864
Minor Freeway, Principal Arterial 27 129 13,901
Major/Minor Arterial, Major Collector 5 10 1,002
Minor Collector, Local Roads 4 18 1,576
Total 45 182 19,343

4.2VVDF Modification

In order to consider the incident impacts prope¥idF needs three major inputs:
incident duration, reduction in capacity, and detheate. While original VDFs have
a variable for demand rate (as link volume), thediired VDF has two additional
variables including reduced capacity from the ieaidand its duration. Thus, the
final travel time is determined by the sum of tdatimes during non-incident and
incident conditions, as shown in Equation (4.1gMus research adopted the same
concept to consider incident impacts on simplifiedwork simulation (Przybyla et

al. 2011)

T = p(Cp) + (1 - p)(Cp) Eq. (4.1)

Where, T = Total travel time
p = Proportion of Incident duration out of simulation time

Cgr = Reduced link capacity
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Cr = Full link capacity

For example, an incident occurred at an interstagavay segment during the
AM peak period and a roadway was cleared (or opetwettaffic 90 minutes later.
Link capacity during the incident period was redute 40% of the full capacity. If
the simulation time of am peak period is 3 hourpr@portion of incident duration
would be 0.5. The rest of the simulation time (9@utes) will represent the normal

traffic condition without the incident at full linkapacity (1.0).
4.2.1 BPR VDFs

Although the Akcelik VDF appears to be the bestdadate for considering incident
impact, the BPR VDF is also considered as anottiernative because the BPR
VDF has a simple functional form, and is still wiglesed in practice. Equation (4.2)
shows the equation of a modified BPR VDF, similarthhe equation presented in
research (M. Li, Zhou, and Rouphail 2011b; M. Lihazi, and Rouphail 2011a). The
original functional form was used to represent te&tionship between traffic
volume and travel time under non-incident traffanditions with full link capacity

(cr). On the contrary, the modified functional form wased for the volume-time

relationships under the incident condition, by aeplg a variable for reduced

capacity €r).
T, = p{T0 (1 +al [i]m)} +(1-p) {TO (1 + a2 [é]m)} Eq. (4.2)

Where,T, = Congested link travel time
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T, = Link travel time at free flow speed
al and 1 = Parameters for incident condition

a2 and 2 = Parameters for non — incident condition

Incident duration will be represented as the proporof incident duration
out of the simulation time. For example, if an demt occurred at 12:30 PM during
the Midday non-peak period (six hours from 9:00 Ad3:00 PM) for 90 minutes,
the duration parameter for the incident compondhtbe p = 90/360 = 0.25. As
a result, the duration parameter for the non-ingideondition will be(1 — p) =

(1 —0.25) = 0.75.

4.2.2 Akcelik VDFs

The one major advantage of the Akcelik VDF overBfR VDF is that the Akcelik
VDF can consider node delay and queue. In ordeomsider the incident impacts at
links and nodes, this study modified original AkkeVDFs. Equation (4.3) and
Equation (4.4) show the functional forms of modifidkcelik VDFs that have link

delay and node delay from incidents, respectively.

tt =t} +p!

O.ZST{(V/C}% — 1) + J(V/c}e _ 1)2 + 81]1;1;}‘
cg T

R

+(1—ph) [0.257‘ {(v/c}; 1)+ \/(v/c}, ~1)"+ S{E‘T’}] Eqg. (4.3)

0.5C(1—g/C)?
1-(v/cg)(g/C)

0.5C(1—g/C)?

n n —_— T
t=r [ 1-(v/cl)(G/0)

+(1-pM) [ Eq. (4.4)



124

Where,t! = link delay
t" = node delay
t} = free-flow travel time per unit distance
T = duration of analysis period (h)
v = link volume
ct = full capacity of link (vph)
ck = reduced capacity of link (vph)
Ja= delay parameter for incident condition (unitless)
Js = delay parameter for normal condition (unitless)
g = green time
C = cycle length
p™ = proportion of incident duration out of simulatipariod at node

p' = proportion of incident duration of simulation petiat link

Just like modified BPR VDFs, the modified AkcelikD¥ introduced
additional components for incident traffic conditsoand variables for capacity and
duration. For incident traffic conditions, four iasles were introduced: reduced
capacity variables for linkck) and for intersectiofc}), and the proportion of
incident duration out of simulation period for lik!) and nodep™). For non-
incident traffic conditions, four variables weresal introduced: full capacity
variables for link(c}) and for intersectioric?), and the proportion of incident

duration out of simulation period for lifk — p') and nod&1 — p™).
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4.3 BPR and Akcelik VDFs Calibration

Model calibration is the process of finding the tbealues for a model’s input
parameters, until the model’'s predictions are netdcto field observations within
some acceptable criteria (Federal Highway Admiaigin 2010). Calibration usually
minimizes objective functions, such as %RMSE, whicticate errors between
observations and predictions. During the calibratyocessR?and %RMSE are
examined. The visual examination is also used éohsev estimated values fit the

data in sensitive areas.

For the modified VDF calibration, the major key utp - free flow speed and
link capacity - should be determined first. Thigdst utilized the cross-classification
tables developed by AECOM for TDFM as shown in bR and Table 4.3, which

were based on area type and facility type.
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Table 4.2 Free Flow Speed per Facility Type and AeeType

Area Type
CBD  Urban [S)Str)lj(raban Srubzn Rural
Facility Interstate/Principal Freeway 55 57 60 60 64
Type Minor Freeway 48 51 55 57 62
Principal Arterial/Highway 32 39 41 47 52
Major Arterial/Highway 29 32 36 43 45
Minor Arterial/Highway 28 34 38 42 45
Major Collector 27 30 34 41 44
Minor Collector 23 30 32 38 40
Local 20 23 26 32 33
High Speed Ramp 40 40 40 45 45
Low Speed Ramp 25 30 30 35 35
Centroid Connector 17 22 27 31 35
External Station Connector 20 25 35 45 55

Source: (AECOM 2013)
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Table 4.3 Link Capacity (Vehicle/Hour) Cross-clasgication table

Area Type
CBD Urban

Dense Sub-

Suburban urban Rural

Facility Interstate/Principal Freeway 1,850 1,900900 1,900 2,000

Type  Minor Freeway 1,200 1,2501,300 1,400 1,500
Principal Arterial/Highway 900 950 1,000 1,100 115
Major Arterial/Highway 850 900 950 1,000 1,050
Minor Arterial/Highway 800 850 900 950 1,000
Major Collector 700 750 800 850 900
Minor Collector 550 600 650 700 800
Local 400 425 450 475 500
High Speed Ramp 1,500 1,550,600 1,650 1,700
Low Speed Ramp 800 900 900 1,000 1,000
Centroid Connector 9,999 9,999,999 9,999 9,999

External Station Connector 9,999 9,9%9999 9,999 9,999

Source: (AECOM 2013)

The parameters for incident components of modiB&R and Akcelik VDFs
on the TDFMI need to be calibrated with the obserircident data because the
flow-speed relationships under incident conditisrmild not be the same as normal
traffic conditions. The calibration was made byrfalifferent functional classes: 1)
freeways, 2) major arterials, 3) minor arterialsg &) collectors/local roads. Since

the fifth class was for Centroid connectors, it wasluded in the VDF calibration.
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van Arder’s traffic Stream Model

From the successful implementations of surrogatasemes for V/C to consider

oversaturated traffic conditions in previous reskagfforts (Lee and Munn 2009;

Klieman et al. 2011; Huntsinger and Rouphail 2011i} study used the density rate,
the ratio of a given density divided by the densitymaximum flow (capacity), to

calculate V/C for both undersaturated and overasgdr traffic conditions in the

VDF calibration. Density rati" can be calculated by Equation (4.5)

Ky

KMN==>%
ke

Eqg. (4.5)

Where,
K" = density ratio
k= density at given level x

k= density at capacity

The density at capacityk( ) indicating optimum dgnsian be determined
from field traffic data. Thus, the traffic conditis can be identified from Equation
(4.5) if it is an under-saturated traffic conditipr" <1) or an over-saturated traffic
condition (k"> 1). In order to estimate the density rat€ ( ) basedlensity at
capacityk. , van Arder’s traffic stream model (HeshRakha and Brent Crowther

2002) was utilized to determine boundary conditiohthe field data, including free
flow speed, maximum flow (capacity), density at aapy, and jam density. van

Arder’s traffic stream model has the relationslpsveen parameters and boundary
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conditions, as shown in Equation (4.6) to Equaf®i0O) (Hesham Rakha and Brent

Crowther 2002).
h=c +csu+ u;iu Eq. (4.6)
_ 2Uc—Uf
= ot Eq. (4.7)
¢, = 1 Eq. (4.8)
k](m+ﬁ>
c; = mc, Eq. (4.9)
Cg=—ruo I = Eq. (4.10)

Whereg; = fixed distance headway constant (mile)
c, = first variable distance headway constani?(/h)
c; = Second variable distance headway constant (h)
us = free speed (mph)
u. = speed at capacity (mph)
q. = flow at capacity (veh/h)
k; = jam density (veh/mi)

m = constant used to solve for three headway congtémi)(

An optimization of parameter values was performgdnbnimizing errors

between field data and predicted data from the mode
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Table 4.4 shows the boundary conditions of fouilifsctypes from the

optimized van Aerde’s traffic stream model.

Table 4.4 Boundary Conditions of Estimated TrafficStream Model

Minor Major Collector Principal Arterie Interstate
Collector Minor Arterial Minor Freeway Freeway

Jam Density(k;) (VPM) 108 115 168 178
Density at Capacityk.) (VPM) 33 36 36 38
Free Flow Spee;) (MPH) 46 50 59 69
Speed at Capacity,) (MPH) 35 40 53 58
Capacity(qm,) (VPH) 1,210 1,380 2,085 2,130

By using developed traffic stream models, the dgrei capacityk,.) was
determined and density measures were calculatethpiéty type. The relationships
between speedul and density ratéK") were plotted with the developed traffic
stream models as shown in Figure 4.2. Basic relships between speed, volume,
and density and their fitted curves show that@lir ffacility types fit well with field

data.



80

70

60

131

80 -
- Observations

v —Fitted Curve ||

50

50

2 g
g g«
= =
3 2 w0 N
2 -4 !
w w i
* 20 e
-+ Observations 5 =
= Fitted Curve 7
0 - ; 1 0 i :
0 500 1000 1500 2000 2500 00 10 20 30 40 50
Volume(Veh/15 min) Density (Veh/Mile)
a) Minor Collectors
80 80 -
- Observation
n 0 —Fitted Curve
60 60
50 it S
Tl : L £
g g
1 T
S 3 8
8 -3
[ / «
20 : S k \
10 . / Observation 10 N
Ml L _\ .
0 H 0 —
0 500 1000 1500 2000 2500 0o 10 20 30 40 50
Volume(Veh/15 min) Density (Veh/Mile)
b) Major Arterials/Major Collectors
80 80 -
+ Observation
70 70 \
——Fitted Curve
60 -+ A - . ] 60
50 50
2 z
E® g«
2 3
2 2 & 30 ;
@ @ :
20 20 o=
- - Observation W
3 ==rFitted Curve e
i A : ; i i !
0 500 1000 1500 2000 2500 00 10 20 30 40 50
Volume(Veh/15 min) Density (Veh/Mile)
¢) Minor Freeways/Principal Arterials
80 80 T
+ Observation
0 70 -
= Fitted Curve
60 & 7
50 50
g% g
B 2
2% 2 30
w 2]
20 20

- Observation
= Fitted Curve

20 30 40

Density (Veh/Mile)

1000 1500 2000 2500

Volume(Veh/15 min)

d) Interstate Freeways
Figure 4.2 Fitted van Arder Traffic Stream Models with Observations



132

Figure 4.3shows the fitted curves on field crash data for fagility types of
BPR and Akcelik VDFs. Table 4.5 shows the estiohgtarameters of BPR and
Akcelik VDFs for four facility types. From the funonal forms of BPR VDFs,
parameter accounts for the ratio of travel time at free flepeed over the travel
time at the capacity and paramegeaccounts for the level of travel time increase

from the travel time at free-flow (Kalaee 2010).

From a visual examination, fitted curves fit welithvfield data and BPR
VDFs show better shapes than Akcelik VDFs. As mesiresearchers have shown,
BPR VDFs fit well for all V/C ranges while AkcellWDFs do not. Akcelik VDFs
show that speeds are steadily decreased as thea#éGncreases up to V/C<0.8. As
V/C is closer to 1.0, speeds are drastically drdpelower than 10 mph &/C =

1.2 for all facility types.

Table 4.5 Calibrated Parameters of BPR and Akcelil/DFs

BPR Akcelik

Alpha Beta J
Interstate Freeways 0.39 3.41 0.00059
Principal Arterials Minor Freeways 0.34 291 0.0R01
Major Collectors Minor Arterials 0.27 4.71 0.00006

Minor Collectors 0.20 5.01 0.00003
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Figure 4.3 Fitted Curves on Field Crash Data for BR and Akcelik VDFs
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Table 4.6 shows the statistics of calibrated BPR akcelik VDFs per
facility type. BothR? and %RMSE statistics were used to evaluate the rggssdof
fit of calibrated VDFs. Akcelik VDFs have highRF than BPR VDFs for all facility
types. However BPR VDFs showed a lower %RMSE thlceAk VDFs, except for
the major collectors/ minor arterials. The minollettors showed the higheRt and

the lowest %RMSE across all categories for both ¥DF

Table 4.6 VDF Calibration Statistics

Performance Measure BPR Akcelik
Interstate Freeways R? 0.799 0.806

%RMSE 6.250 6.980
Principal Arterials/ R2 0.866 0.869
Minor Freeways

%RMSE 4.080 4.600
Major Collectors/ R2 0.687 0.717
Minor Arterials

%RMSE 4.340 4.250
Minor Collectors R? 0.872 0.894

%RMSE 3.400 3.590
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Figure 4.4 shows the calibrated curves of the BR® Akcelik VDFs. The

Akcelik VDFs showed very little speed reductiorWVAC < 1.0, while the BPR VDFs

have a gradual decline of the travel speed fromathtacility types. The V/C range

of 0.5-0.75 still had no significant changes in Kieelik VDFs but the BPR VDFs

had larger speed reductions compared to the Akséks at the same range. When

V/C approaches 1.0 and exceeds 1.0, the speedcdHlgstiropped at all Akcelik

VDFs facility types. On the contrary, BPR VDFs didt show significant drops as

Akcelik VDFs did in the slope of the curves for tak of the facility types, which

means BPR VDFs overestimate travel times as the rdtid approaches 1.0 and

exceeds 1.0.
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4.4Model Validation and Reasonableness Check

By applying both calibrated modified-BPR and maetifiAkcelik VDFs to the traffic
assignment step, the three model run results (TDFBEMI with BPR VDFs,
TDFMI with Akcelik VDFs) were compared and evaluate examine if new VDFs
for the TDFMI improved the existing TDFM in term$ accuracy and the level of
effort of calibration. The model run results of thBFMI are expected to be inferior
to those of the existing TDFM because the TDFMI Imaé been extensively

calibrated and validated before.

Since the major differences of TDFMI from TDFM dhe network (with or
without incident information on links and nodes)ahe functional form of VDF
(with or without incident variables), the main etftor the validation of TDFMI was
placed on the traffic assignment step. In reas@masls checking of the traffic
assignment step, the free flow speed and the lapgacty on both networks and

VDFs are usually examined (Federal Highway Admraisbn 2010).

4.5 Chapter Summary

This chapter explored the field traffic data anastr data from the VDOT's database.
The crash data and the traffic data were matchstdy using the common temporal
and spatial information. The crash involved dataentben prepared to calibrate the
modified VDFs for the incident impact. The prepamdsh and traffic data were

split into the facility types such as freewaysegdis, and collectors, and local roads
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to calibrate VDFs. The BPR and Akcelik VDFs weredified to incorporate the
incident impact into the functional form in thisudy. The functional form of the
modified VDFs had two components for the normdfitraondition and the incident
condition, which had additional variables represgnthe reduced capacity and the
incident duration from the incidents. After paraerst were calibratedR?
and %RMSE statistics were examined to evaluate gbedness of fit of the
calibrated VDFs by the facility types. Akelik VDsive higheR? than BPR VDFs
for all facility types. However BPR VDFs showed kew%RMSE than Akcelik
VDFs except the major collectors/ minor arteridlee minor collectors showed the

highestR? and the lowest %RMSE throughout the all categddesoth VDFs.
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CHAPTER 5. INCORPORATING INCIDENT IMPACTS
INTO TDFMI NETWORKS

Once incident-related inputs, including incidenéguency, duration, and reduced
capacity resulting from incident, are preparedjescribed in Chapter 3, the TDFMI
network should have incident information with aduhtl link attributes, by
matching individual incident records with their cesponding nodes and links on the
TDFMI network. This chapter describes how the pregancident data are matched

with segments and intersections of the TDFMI nekwor

5.1 Matching Base Year Incident Data with TDFMI Network

All incident data with location information needs lbe matched with the TDFMI
network, in order to accommodate properly in nelwsimulation (traffic assignment
step). Figure 5.1 shows various geographic infolonatiata used in the incident
matching process. Since most of the incidents amshes have location information,
all incidents were matched with their correspondiagments on the actual roadways.
However the TDFM network does not cover all roadsyaly does not have lower
classified roadways, such as local roads or frantagds. It is assumed that the
impact of incidents on roadways that were excluttedh the TDFM network is
small enough to ignore. Indeed, most of the indislehat occurred on local roads
may not have had any impact on higher classifiedhnays, like interstate freeways

and/or arterials, but may have had an impact ofecors. Figure 5.1 shows an
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example of matched incidents in the TDFM networkl ammatched incidents on
local roads that are excluded from the TDFM netwdike matched incident data
were split into incidents on freeways and non-fragsvagain. The incident data that
matched in the TDFM network were used in the dgvalent of the TDFMI network,

while the incident data did not match in the TDFktwork were excluded in this

study.
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Figure 5.1 Matching Incidents with TDFM Network

Using the matched incident data, a further matclpragess was conducted
to identify intersection incidents. The definitiaf an intersection crash is a crash

that occurs within a 250 ft. boundary from the nkeddf an intersection. Thus,
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incidents located within a 250 ft. boundary frome thirtual center point of an

intersection were categorized as intersection erdsl

Figure 5.2 shows the TDFM network with matched decis, freeway
junctions, non-freeway intersections, and 25Mtersection crash boundaries. Every
incident located inside of a 250 ft. boundary of/ antersection or junction was
identified as an intersection incident, and the ofghe incidents were identified as

segment incidents.

% Incident
® |[ntersection
4 Freeway Junction

|:| 250 ft. Buffer

—— HR Non Freeway

= HR Freeway

—/

\/&

Figure 5.2 Example of Identifying Segment and Intesection Incidents
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After the matching process using the 250 ft. irgetisn boundaries was complete,
all individual incidents were categorized as eitlersegment incident or an

intersection incident.

In the case of an intersection incident, all inkb@pproaches connected to
the intersection were assumed to be affected by itlcelent. However, the
proportion of reduced capacity might be differeat £ach approach because it
should be determined based on the number of lamesch approach link. Since no
adequate information was available to determinerddiced capacity difference
between the incident link and its adjacent linkisis tstudy assumed that all
approaches from intersection incidents have theesamduced capacity impact
resulting from the incident. Thus, for intersectionidents, all approaches connected

to the intersection are assumed to have the saiteirt duration.

After all incident data passed through the two mmegtching processes on the
TDFM network layer and the TDFM intersection laydre matched incident data
were connected to its corresponding segment (lorkintersection (node) on the
TDFMI network. This map matching process was cotethéour times for different
time periods, AM peak, Midday, PM peak, and Nighte. Since TDFMI networks
have corresponding incident information linked tpramary key based on incident
IDs, additional link attributes for the frequencynumbers, duration in minutes, and

reduced link capacity in proportion were added BFWI networks.

After the matching incidents process in the TDFMwaek was complete, a

total of 45,470 final incidents were selected aswshin Table 5.1. It is worthy to
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note that each individual intersection incident wasnted multiple times based on
the number of the approaches associated to it. s, Tthe final number of non-

freeway incidents after the matching process istgrethan before the matching

process.

Table 5.1 Incidents After Matching with TDFM Network

Freeway Non-Freeway Total
Crash 4,584 30,584 35,168
Non-Crash Incident 6,945 3,357 10,302
Sum 11,529 33,941 45,470

Once the matching of individual incident recordstioe TDFMI network was
completed, the reduced capacity and the inciderdtdun of the matched incident
records were stored to additional link attributestile TDFM network. Finally, the

spatiotemporal incident matrices for the duratiowd dahe reduced capacity were

developed.

Table 5.2, Table 5.3, and Table 5.4 show concepwemples of
spatiotemporal incident frequency, reduced capacdapd incident duration,
respectively. The three tables had 39,372 rowsesgmting the individual links of
the TDFMI network and 249 columns representingviatlial weekdays of the 2009
base year (weekends and holidays were excluded).tiree tables show different
incident information associated to a common incidenord on the same link of the
network. For example, a link from node 10001 toend®003 had one incident in

Dayl and Day 248, respectively. Each incident haddaiced capacity of 0.55 and
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0.91, respectively. And those durations were 38uteim and 25 minutes, respectively.
In summary, the link from node 10001 to node 10088 one incident in Day 1 that
caused a reduced capacity to 0.55 of normal camdfor 38 minutes. After the base
year TDFMIs are run 249 times, the incident infotiora of individual links will be
used in the traffic assignment step via correspunsariables in the modified VDFs

(BPR and Akcelik).

Table 5.2 Example of Time-Space Incident Frequendylatrix (counts)

From To Dayl Day?2 Day3 Day 248 Day 249
10001 10002 1

10001 10003 1 1

10001 10004 2

10002 10001

10002 10005

10002 10006 2

10003 10004

10003 10009 3 2

Table 5.3 Example of Time-Space Incident Reduced @acity Matrix (ratio)

From To Dayl Day2 Day3 Day 248 Day 249
10001 10002 0.25
10001 10003 0.55 0.91

10001 10004 0.82

10002 10001

10002 10005

10002 10006 0.37

10003 10004

10003 10009 0.35 0.72
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Table 5.4 Example of Time-Space Incident Duration Mtrix (min)

From To Dayl Day?2 Day3 Day 248 Day 249
10001 10002 85
10001 10003 38 25

10001 10004 112

10002 10001

10002 10005

10002 10006 90

10003 10004

10003 10009 230 e 380

5.2Matching Future Year Incident Data with TDFMI Netwo rk

Since future year incident data do not exist, ieotdfrequency, duration, reduced

capacity should be predicted to be used in therdugtear TDFMI. Chapter 3.4

described how to prepare the incident data forftinere year TDFMI. The future

year TDFM, developed by (AECOM 2013), was usedeoegate key input data such

as AWDT from loaded link volumes for future yeaciohent prediction. For the

future year crash prediction, SPFs and forecasi&DA were utilized, as described

in Chapter 3.4.1. Once the annual incident frequemas forecasted, the incidents

were assigned on the future year TDFMI network gignMonte Carlo simulation

based on the relationships between the incidemjuéecy of base year and the

functional classification of the TDFM network aralf time-of-day periods.
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The cross-classification table for incident dunafidescribed in Chapter 3.4.2,
was used for the future year TDFMI. Table 3.21 shake probability of incident
duration based on the combination of four differertident duration periods and
three levels of incident severity. Similar to inemd duration, the cross-classification
table for the reduced capacity ratio of the base yeas also used for the future year
TDFMI. Table 3.18 shows the reduced link capaciy determine how much
capacity would be reduced from an incident, basethe total number of lanes and

the number of blocked lanes from the incident (Gitial. 2004; TRB 2010).

5.3 Exceptional Cases in Matching Process

When two or more incidents occurred at the samatilme (link or node) during the
same TOD period (e.g., MD off-peak period), data fbose incidents were
combined and converted into a single event becthese DFMI network and the
modified VDFs have a single link attribute and regé variable that accommodates
incident impact for each simulation period. Forrapée, two incidents occurred at a
freeway segment at different time stamps but withi@ same time-of-day period
(e.g., the six-hour MD period from 9 AM to 3 PMYhe reduced capacity and the

duration of two incidents are as follows:

» Link capacity was reduced to 0.5 by incident 130minutes

* Link capacity was reduced to 0.3 by incident 260minutes
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Table 5.3 shows a diagram to represent two exausisidents and the
combined incident by calculating weighted reducaplacity and combining the

incident duration.
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Figure 5.3 Example of Combined Incidents Impacts fom Multiple Incidents

A combined incident duration can be determinedilmpl/ summing up the
two incident durations. However, the combined reducapacity needs to be
calculated by using the duration and reduced ctpatieach incident. An area of
each incident, calculated by using the incidentation ratio and the reduced
capacity ratio, represents the incident impactoduhe total time-space dimension of

the simulation. Thus, incident 1 has an impact.0#P out of the total time-space
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dimension (1.0) that represents a no incident @apacity) traffic condition for 6

hours.

* Incident 1 impact = reduced capacity X duration = 0.50 X 0.083 =
0.042

* Incident 2 impact = 0.30 X 0.167 = 0.050

* Combined incident impact = (0.042 + 0.050)
= combined reduced capcity X combined duration
= combined reduced capcity x 0.250

* Combined reduced capacity = (0.042 + 0.050) /0.250 = 0.367

Thus, the combined reduced capacity was calculase@.367 when its impact was
0.092 and duration was 90 minutes (0.25) from ttal tsimulation period of 360
minutes. Table 5.5 shows the results after multipbédents were converted into a

single event.

Table 5.5 Example Calculation for Multiple Incident Impacts

Incident 1 Incident 2 Combined
Reduced Capacity 0.50 0.30 0.367
Duration (min) 30 60 90
Proportion of Duration 0.083 0.167 0.250
Simulation Period (min) 360 360 360

As described in Chapter 4, the modified VDF has &dditional variables for

reduced capacity and incident duration per link.iAcident at the intersection was
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treated as an intersection delay in the VDF. lih& Hoes not have an incident, two
variables (reduced capacity and incident duratiarg zero, which makes the
modified VDF the same as the original VDF. If aklinas an incident, the value of
the incident duration and the reduced link capacftyhe corresponding link from
the incident matrices are applied in the VDF. leatduration is represented as a
proportion of the incident duration out of the tatamulation period, and is given a
value between zero and one. There may be a situatien the duration of incidents
is longer than the simulation period, or the inatdduration extends into the next
simulation period, regardless if a single incidentmultiple incidents occurred.
Since traffic simulation is run and summarized saigdy by individual TOD periods,

incident impact should be considered separatelgdch TOD period.

Since each of the four TODs has its own simulatione period, the
proportion of incident duration should be recaltedabased on the actual incident
duration at each TOD period. By using the startinge of each incident and the
duration of each incident, the actual duration lsarcalculated and the proportion of

the incident duration for each TOD period can bembeined.

Figure 5.4 shows an example how a single incidant ke split into two
subsets for different TOD periods. An incident aced at the MD period and its
impact lasted for 4 hours (240 minutes). As a tesutident impact on the roadway
was cleared during the PM period. This incident hadative impact (reduced link
capacity to 0.367 for 240 minutes) for 180 minudesing the MD period and 60

minutes during the PM period. The proportions aident duration for both MD and
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PM periods are 0.50 (180/360) and 0.33 (60/18@peetively. Both subsets of the
incident would have the same reduced capacity 870. In summary, a single
incident impacted two different time periods. Theeluced capacity was 0.367 for
both the MD and PM periods and their incident doret were 180 minutes and 60

minutes, respectively.
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Figure 5.4 Example of Single Incident Impacts durig Two Simulation Periods

5.4 Chapter Summary

This chapter described how the incident data, pegpan Chapter 3, was matched
with the segments and the intersections of TDFMWoeks. For the base year case,

the matched links and nodes on TDFMI networks wedsntified by using the
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geometric location information from each individualcident record. When an
incident occurred inside of the 250 ft. intersectlmoundary, determined based on
the virtual center point of an intersection, theident was assumed to be an
intersection incident. Then, the matched incideatadwas connected to the
corresponding segment (link) or intersection (noad¥prmation on the TDFMI

networks. This map matching process was conductad times for four TODs.

Consequently, the incident frequency, the duratamal the reduced capacity for 249
weekdays, calculated based on information from biéld data and research

literature, were prepared to run 249 TDFMIs.

For the future year case, the loaded link volumeshfthe future year TDFM
and the SPFs were used to forecast the annualemiciftequency. Then, the
forecasted incidents were assigned on the futuex J®FMI networks using a
Monte Carlo simulation technique based on the icelahips between the incident
frequency of the base year and the functional leason of the TDFM network
and four TODs. The incident duration and the reduzapacity were prepared from
field data and research literature, just like thaseb year case. Throughout the
sensitivity test, the TDFMI runs were repeated fifies with different inputs using
the Monte Carlo Simulation technique to generageattnual average weekday travel

demand, which was compared to those of the futieM in Chapter 6.



151

Table 5.6 shows assumptions applied in this chagptdrthe expected impact

of those assumptions on the analysis results.

Table 5.6 Assumptions and Impacts on Results

Assumption Impacts on Result
1. Intersection incident has the samé. Impact may be different to individual
impact on all approaches approaches (better or worse)

2. Impact of multiple incidents is the2. Impact of multiple incidents may be
sum of individual incidents higher than the sum of individual
incidents (same or worse)
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CHAPTER 6. EVALUATION OF TDFMIs

To evaluate TDFMIs, three major tasks were perfarfioe both the 2009 base year
and the 2034 future year scenarios as describegvbel
» Task 1. Prepared incident data (e.g., frequencguaed capacity, and
duration), as described in Chapter 3.
» Task 2: Modified & calibrated VDFs (BPR type & Akitetype) to consider
the impact of incidents, as described in Chapter 4.
* Task 3: Matched the incident impact with the cqoesling links and nodes

on TDFMI networks, as described in Chapter 5.

In this Chapter, the comparison between TDFM andFNID and the
evaluation were made for both the 2009 base yedutlaan 2034 future year. In the
base year models, various performance measuresahiddtion statistics, including
VMT, VHT, volume over count ratio, %RMSE, ard, were used. In the case of
future year models, the same performance meassareasae year models were used.
The validation statistics were excluded duringdbmparison and evaluation process,
as those were unavailable for the future year nsoddost of the performance
measures were compared by subgroup criteria sut¢heafacility type, area type,

jurisdiction, loaded link volume group, etc.
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6.1 Comparison of Base Year TDFM and TDFMI

It has been acknowledged that the four step traleghand model has very
complicated and time consuming tasks to developeaaslly for a big MPO area,
such as Hampton Roads. Since the goals of thiy sttelto: develop a framework
and propose a methodology on how to incorporatadémt impact into the
traditional TDFM, and compare and evaluate incidiempacts on the TDFMI, a
limited effort for the calibration and reasonablenehecking of the entire TDFMI
framework was performed in this study. As describedfly in Chapter 2.2, TDFMs
typically have large amount of inputs, outputs, apaeters, factors, models, and
functions to be calibrated and validated from vasiobserved, measured, surveyed,
and estimated data, such as socio-demographic (datse year and future year),
traffic data, and network simulation results. VDOTansportation Planning &
Mobility Division (TMPD) has spent over a millionotlars for TDFM modeling
activities in the Hampton Roads area since 201@uding a revision of the TDFM

with the new 2009 base year, surveys, and VDF deweént, etc..

Prior to the model comparison with TDFM, the briedsonableness checks
of TDFMI were made when calibrating VDFs for inande in Chapter 4. Many valid
field traffic data was used in TDFMI reasonablengsscking, in the same way as
traditional TDFM. Since the major differences beewel DFM and TDFMI are the
network attributes and the functional form of theDF indicating incident
information (duration and reduced capacity ratr@twork analysis was focused on

the traffic assignment step. All inputs/outputsirthe previous three steps (i.e., trip
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generation, trip distribution, and mode choice) avassumed to be the same, which
is reasonable for a short-term analysis on a dadlgis focused on route choice

behavior.

Table 6.1shows the performance measures (%0RMSE and voluond/catio)
of three models - the TDFM, the TDFMI with BPR VDFand the TDFMI with
Akcelik VDFs - using 3,287 links that have traffabservations (AWDT). The
performance measures were categorized by threerayisy loaded link volume,

facility type, and area type.

Even though extensive model calibration, validatiamd reasonableness
checking was not performed on the TDFMIs, unlike thDFM, %RMSE and
volume/count ratio for the TDMFI with BPR VDFs shedvimprovements in most
of the subgroups and the whole model, as showrhéyshaded cells in Table 6.2.
The results of the TDFMI with Akcelik VDFs showedhprovements in fewer

subgroups compared to the TDFMI with BPR VDFs.

When two performance measures (%RMSE and volumefcatio) were
examined, significant improvements were found ameosubgroups. The bold
numbers in Table 6.2ndicate the areas where the %RMSE and volume/count
showed improvement in the two TDFMIs over TDFM. darticular, performance
measures improved in all three categories for tB&NI with BPR VDFs, even
though %RMSE showed improvement in some subgroups did in the

volume/count ratio.
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% Root Mean Square Error

Volume/Count Ratio

Subgroup Volume Sites TDFMI TDFMI
TDFM BPR Akcelik TOFM BPR Akcelik
1-5,000 3,585,574 1,599 72.13 70.72 76.09 1.17 1.20 1.17
5,000 - 10,000 5,315,469 752 40.13 36.22 38.34 1.06 1.01 1.03
10,000 - 20,000 9,044,430 637 29.12 28.08 30.42 1.02 0.95 0.97
Loaded 20,000 - 30,000 4,205,604 174 25.17 27.70 28.16 409 090 0.89
Link 30,000 - 40,000 1,870,669 55 20.43 21.47 23.00 0.99 0.97 0.99
Volume 40,000 - 50,000 1,982,331 45 18.52 15.40 26.71 0.90 0.93 0.95
50,000 - 60,000 1,048,384 19 24.50 20.76 23.73 0.91 0.94 0.97
60,000 - 70,000 195,459 3 30.26 23.02 21.38 0.81 0.91 0.91
70,000 - 80,000 223,816 3 21.05 18.17 19.85 0.80 0.82 0.80
Interstate Freeway 5,347,521 150 23.24 20.23 27.71 0.97 1.00 0.99
Minor Freeway 1,303,229 72 27.20 26.16 27.50 1.00 0.96 0.98
Principal Art 6,335,433 394 30.47 30.10 30.71 1.07 1.00 1.01
Major Art 1,586,969 180 38.54 38.14 41.05 0.95 0.88 0.91
Facility Minor Art 9,790,532 1,248 38.94 38.60 39.37 1.02 0.95 0.97
Type Major Collector 408,273 228 71.60 69.07 75.61 1.04 1.07 1.00
Minor Collector 2,600,421 972 63.86 65.44 69.25 41.0 1.12 1.11
Local 29,782 36 43.38 44.45 49.12 1.00 1.05 1.02
H.S. Ramp 27,812 1 27.32 20.50 33.31 0.73 0.80 0.67
L.S. Ramp 41,764 6 57.32 60.71 52.31 0.98 0.99 1.00
CBD 128,030 10 68.11 68.34 68.35 0.49 0.47 0.48
OBD 5,342,234 525 38.90 36.98 42.77 1.00 0.96 0.97
Area Type Urban 6,174,351 703 35.79 36.06 36.74 1.01 0.98 1.00
Sub Urban 7,328,412 778 41.64 40.19 45.16 0.98 0.95 0.96
Rural 8,498,709 1,271 43.35 40.20 46.12 1.07 1.05 1.04
All 27,471,736 3,287 40.97 39.38 43.88 1.02 0.99 0.99
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In the case of the TDFMI with BPR VDFs, the shadetls represent the
subgroups of three categories that have shown wepment in both %RMSE and

volume/counts compared with the TDFM results.

The higher loaded link volume groups (5,000 to @0,0ehicles per day and
greater than 40,000 vehicles per day categoriethanTDFMI showed significant
improvement in %RMSE from 15.40% to 36.22% compdaredhe TDFM. In the
facility type category, the interstate freeways #mel principal arterials also showed
improvements for both performance measures undeMFMI models. When it
comes to area type, the rural area showed improvesmier both performance

measures.

As a result, the TDFMI showed overall improvement lhoth the %RMSE
and the volume/count ratio. Table 622 a network-wide summary comparing the
TDFM with the TDFMI with BPR VDFs. The TDFMI with BR VDFs showed a
higher network-wide VMT, but a lower VHT than theDFM, which seems
reasonable because some travelers would chooserlaligfance detour routes to

avoid congestion (to reduce travel time) that theyaware of.

Table 6.2 Network-wide Summary of TDFM and TDFMI (BPR)

TDFMI-

TDFM TDFMI(BPR) TDEM Percentage
Volume 236,837,428 236,796,651 -40,777 -0.02
VMT 41,111,073 42,086,016 974,943 2.37

VHT 1,146,780 1,104,196 -42,584 -3.71
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Volume and Speed Comparison between TDFM and TDFMI

In order to calculate an annual average of weekdasel demand forecasting with
incidents, the TDFMIs were run 249 times, once &ach weekday in 2009,
excluding weekends and holidays. Half-day holidagsch as the day before
Thanksgiving Day and Christmas Eve, were excludethé analysis because they
were treated like regular holidays. Even though TB#-MI shows the variation of
traffic conditions affected by the impact of inadg on each individual weekday, an
average of TDFMI simulations showed similar restdtshe TDFM at the individual

links level.

Figure 6.1 shows an example of the distributiorthef loaded link volumes
and travel speeds across 249 TDFMI runs. The agdnal volume and travel speed
from the 249 TDFMI runs and the link volume andrélaspeed from a single TDFM
run are shown on the same distribution graphs.graph of the loaded link volume
of Tyre Neck Rd. has a similar shape to a norngttidution, as shown in Figure 6.1
(top). The mean TDFMI link volume (1,572 vehicle=sr play) was very close to the
TDFM link volume (1,570 vehicles per day). The TDFHistribution of travel
speeds showed a very small variation comparednto Ublume distribution. The
TDFM travel speed and the mean TDFMI travel speeteviound to be the same at
35.9 mph. No incidents were found at this link segtmand intersection (both

upstream and downstream sides) in the 2009 base yea

Figure 6.1 (bottom) shows another example on itaergreeway 1-564

westbound which had two incidents in 2009. The mEaRMI loaded link volume
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was very similar to the TDFM loaded link volume ahbut 53,000 and 53,300
vehicles per day, respectively. The mean TDFMldtapeed was very similar to the

TDFM travel speed, at 54.0 mph and 54.5 mph, res@by.

+  Tyre Neck Rd (10289-10291)
¢ Zero Incident in 2009
Histogram of TDFMI Volumes Histogram of TDFMI Speeds
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Figure 6.1 Examples of Volume and Speed Comparisai TDFM and TDFMI

It would be premature to conclude that the reasby the 1-564 loaded link

volume and travel speed graphs generated from B¥MI runs were not close to a
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normal distribution because of two incidents. Hoarewt could be expected that the
variation of traffic conditions on interstates anach higher than in minor collectors.
The detail analyses based on the 2009 incidentnadagens in Chapter 3.3 show the
distinctive difference of incident frequency by TOiadway types, and incident
types. When more incidents occurred in one fadilipe (e.g., interstate freeways), a

higher variation of traffic conditions would likelye found.

Sensitivity Test of TDFMI

Even though there are many strengths of the TDFkr aghe TDFM, one of the
major weaknesses of the TDFMI is its computatidnablen. The average model run
time of 249 TDFMI base year models was 41 minutgaguan Intel i7 3.20 GHz
Octa Cores CPU with 60 GB of RAM on the Windows47Hit Operating System.
Thus, the model run time and the storage spacearesgents would increase when
running future year TDFMI analyses with multipleesarios, as is required for the
project list prioritization process. If the 10 profs plus a ‘Do-Nothing’ case needs to
be evaluated with 250 simulations per scenaricb@,VFDFMI runs are required to
compare with the TDFM. The computational time mayybased on the hardware

and software platform used for the TDFM and TDFMI.

To mitigate the computational load, this researcgilangned how many
simulations should be run to obtain reliable TDFMS$ults. To find the optimum
(minimum) number of simulations, a sensitivity te&sts performed on 249 TDFMI
runs based on the 2009 base year data. The resuhg sensitivity analysis were

applied to determine the number of simulations iregufor the 2034 future year
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TDFMI scenarios. Thus, the number of dates fonnc&lent data and the number of
TDFMI networks per four TODs were determined aftex number of simulations

was determined.

In order to examine how many TDFMI model runs sbHobke made to
generate the same results (or results within aepaable range of difference) as
those from all 249 runs, the average model rundifer cases were compared as
described below. The days for multiple runs of @ensitivity analysis were

randomly selected from the 249 days.

1. One run TDMFI (G1)

2. The average of 10 TDFMI runs (G10)

3. The average of 50 TDFMI runs (G50)
4. The average of 100 TDFMI runs (G100)

5. The average of 249 TDFMI runs (G249)

Figure 6.2 shows the loaded link volume differebedween the G1, G10,
G50, G100, and G249. The loaded link volume diffeezbetween G1 and G249 is
as high as 20% for the links of lower loaded volugreups (less than 10,000
vehicles per day) and is as low as less than 3%h&links of higher loaded volume

groups (greater than 60,000 vehicles per day).

The differences between G10 and G25 are much snthda the differences
between G1 and G249, especially in the lower liakume range. G50 shows a very

small link volume difference from G249. The maximdifference between G50 and
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G249 at the lower link volume group is less than. 3Bkhe volume difference
between G100 and G249 becomes even smaller adtdsks There is even less
than a 1% difference at the lower link volume grafipess than 3,000 vehicles per

day.
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The histograms of differences between the G1, @&&), and G100 over
G249, as shown in Figure 6show that the G100 generated the same resulteas t
G249 with less than a 1% error range. Even thaz4fh TDFMIs were used to
generate the average of weekday model runs for2@@® base year, this study
assumed that 100 replications of Hampton Roads TISRAbuld be good enough
and a conservative enough number of simulations tfoe evaluation and

prioritization of 2034 future year TDFMIs.
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However, the minimum number of replications foe thDFMIs may be
mainly determined by the network characteristiogjuding network size, the level
of detail, the level of congestion, and the vaoiatof incidents on the network, etc.
Further research is required to determine the @tmumber of replications of the

TDFMIs based on the levels of TDFM network and diecits.

6.2 Comparison of Future Year TDFM and TDFMI

6.2.1 Perioritization of 2034 TDFM

Hampton Roads MPO (referred as HRTPO) has publish@derous technical
reports regarding their project priorities for tB834 LRTP (Kimley-Horn and
Associates, Inc. 2010; Hampton Roads Transport&lanning Organization 2010).
HRTPO made a list of regionally funded constructiprojects based on the
prioritization categories: bridge/tunnel projectsighway projects, intermodal
projects, transit, bicycle, pedestrian, and raibedKimley-Horn and Associates, Inc.
(2010) showed the project prioritization procesd #re evaluation results with the

scores used in the 2034 LRPT.

Table 6.3 shows the 158 project candidates propogdalcal jurisdictions by
project type in the 2034 LRTP. In the highway inwesnt category, 113 projects
worth about $9.5 billion were proposed by localgdictions. Even though only 19
Tunnel and Bridge investment projects were propofieeir estimated costs were
over $26 billion. Consequently, the total amounesfimated project funds for 158

proposed projects were approximately $38 billion.
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Table 6.3 Project Candidates used in 2034 LRTP Prittization

Project Type # of Projects Estimated Cost (YOE)
Highway 113 9,439,468,048
Interchange 18 1,184,118,458
Tunnel/Bridge 19 26,086,886,200
Multimodal 5 217,418,000
Intermodal 3 688,563,008

Total 158 37,616,453,714

YOE: Year-Of-Expenditure
SourceHRTPO, 2013

The list of projects is composed of three groups:committed funded
investments, 2) proposed regionally funded investsiand ongoing funded studies,
and 3) unfunded projects for future consideratidRTPO, 2013). As of March 2011,
approximately $6.64 B worth of funded projects werguded in the 2034 LRTP,
which was sourced by local, regional, state, fddexad private funds (HRTPO,

2013).

HRTPO staff conducted a thorough analysis to praariall 158 proposed
projects. In other words, they revised the 2034 MD#etwork for 158 projects and
ran the TDFM model 159 times for individual diffatescenarios, including the ‘Do-
Nothing’ case. From the prioritization process df @ojects, HRTPO identified
three major evaluation criteria - project utilitgconomic vitality, and project
viability - to evaluate and score each project. R®Tweighted four criteria used in
their prioritization evaluation as described below:

» Evaluation of congestion level base on V/C ratid AbT

+ Cost effectiveness based on construction cost ad V
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* Travel time reduction

* Increase of travel time reliability

During the prioritization process, all projects wezvaluated by three main
categories that have 100 points each and consdtesiib-categories with both
guantitative and qualitative criteria. Table 6.4wh the criteria of the three major
categories and their subcategories with their agtamt points. The shaded criteria in
the Project Utility and Economic Vitality catega@ishow the quantitative criteria
contributing 85 out of a total 300 points, whicke arlosely related to the area’s
mobility. Thus, the below six criteria, equivaldnt 85 points, were evaluated and

scored based on the TDFMI model run results inrpization.

* % Reduction between Existing and Future V/C Ratl@spoints

» Existing V/C Ratio: 10 points

* Impact to Nearby Roadway (Future ADT - Existing ADTO points
e Total Cost ($) / VMT: 15 points

» Total Reduction in Regional Travel Time (VHT): 30ifts

* Increase Travel Time Reliability: 10 points
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Table 6.4 Criteria and Scores for Prioritization

Category Criteria Score
Project Utility Congestion level:
(100) (a) % reduction in existing and future V/QGaat[ (Existing V/C-Future V/C)/Existing V/C ] 10
(b) Existing V/C ratio 10
(c) Impact to Nearby Roadways (Future ADT-ERrR ADT) 10
System Continuity and Connectivity (Regional:25, Miti-Jurisdictional:16.75, or Local:8.25) 25
Cost Effectiveness (Estimated cost/2034 daily VMT) 15
Land Use Compatibility 10
Safety and Security 15
Modal Enhancements 5

Economic Vitality  Total Reduction in Regional Travel Time (Very high30, high:20, medium:10, low:5, very low:0) 30
(100) Labor Market Access
(a) Increase Travel Time Reliability (high:0edium high:8, medium:6, medium low:4, low:2) 10
(b) Increased Access for High Density Emplogtri&reas (very high:10, high:7, medium:3, low:0) 10
Address the Needs of Basic Sector Industries? 30
Defense Access?
Will the project significantly reduce travehe for trips to major tourism areas?
Will the project significantly reduce travehe for trips to ports?

Increased Opportunity 20
Project Viability Funding
(100) Percentage of Funding Committed 50
Process/Project Readiness
Prior Commitment (is project in LRTP) 10
Percentage of Project Design Complete 10
Are Environmental Documents Complete 15
Are Environmental Decisions Obtained 5
Is ROW Obtained and Utilities Coordinated 5
Are additional environmental permits obtained 5
Grand Total 300

Source: HRTPO, 2013
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Since this dissertation research focused solelyighway projects, the top
10 highway projects (e.g., new roadway constructmxsting roadway widening)
were selected to compare the prioritization resgéserated from the 2034 future
TDFMI models with the 2034 Hampton Roads LRTP Ruwiation list. Initially, the
top 10 ranked highway projects were selected, Imat project was excluded for
further analysis because the geometric informatwas not sufficient to be
incorporated into the TDFMI network. Thus nine sepa TDFMIs corresponding to
nine highway projects were developed. The nine TDMRetworks were revised
from the TDFMI network for the ‘Do-Nothing’ case,hiie the modified VDFs

remained the same.

Figure 6.4 shows the locations of the nine highwagjects and their spatial
boundaries. Table 6.4 shows the geometric boundary other information,
including length and number of lanes, for the mingects. Project ID 65 and project
ID 152 are new roadway construction projects; #nvens remaining projects widen
existing roadways. Project ID 5 and project ID X6 enulti-jurisdiction widening
projects on I-64 and the new US-460, while the o#even projects are within a

single jurisdiction.
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Figure 6.4 Locations Top Nine Projects in Prioritiation List from 2034 CLRP
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Table 6.5 Location and Brief Information of Top Nine Prioritization List from 2034 CLRP

Length Existing Proposed

ID Project Name From To (miles) Lanes Lanes
5 [-64 Peninsula Widening Route 199 (Exit 242)  Jefferson Ave (Exit 255) 12.83 4 8
16 US 460 Relocation Suffolk Bypass at US 5¢ Southampon/IW corp limi 14.87 0 4
65 Middle Ground Blvd Jefferson Ave Warwick Blvd (Rte 60) 1.00 0 4
78 Military Hwy Lowery Rd Robin Hood Rd 1.33 4 6
86 Wythe Creek Road Alphus St Hampton CL 0.96 2 4
96 Holland Road (Rte 58) Route 58 Bypass Ramp Manning Bridge Rd 2.23 4 6
99 Nansemond Pkwy (Rte 337) Helen St Chesapeake CL 0.37 2 4
152  Lynnhaven Pkwy Centerville Tnpk Indian River Rd 2.05 4 6

188 G.W. Memorial Highway (Rte 17 Hampton Highway Dare Road 2.78 4 6
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Table 6.6 shows the 2034 TDFM prioritization scdasthe three categories
and the total scores with ranking. Project ID 188yidening project on the George
Washington Memorial Highway (Route 17), rankébplace with the highest score
of 202 in the highway project prioritization proseg&ven though Project 188 did not
have the highest score in any of the three categjoas indicated by the shaded cells
in Table 6.6, it ranked as one of top three higlsesires (in bold) in all three
categories and ranked' place with the highest overall total score. Projéc5, a
project to widen the 1-64 Peninsula from 4 lane8 tanes, had the highest scores at
two categories (Project Utility and Economic Vitglibut had the lowest score in the
third category (Project Viability). As a result,opgct ID 5 was ranked"5in the

overall total score.

Table 6.6 2034 TDFM Prioritization Scores and Rankig

Rank Project Pr_o_ject E_conomic P_roje_:c_;t Grand
ID Utility Vitality Viability Total
1 188 82 40 80 202
2 152 62 30 99 191
3 16 71 53 63 187
4 96 75 34 71 180
5 5 85 75 18 178
6 65 55 38 79 172
7 86 63 26 78 167
8 99 62 19 78 159
9 78 69 26 62 157
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6.2.2 Perioritization of 2034 TDFMI

To prepare the 2034 TDFMI models, 2034 TDFMs fOrstenarios, including the
‘Do-Nothing’ case, were run first to generate lohdenk volumes on TDFM

networks, as described in Chapter 4. The key imtidiata (frequency, reduced
capacity, and duration) for the 2034 future yealFMD were prepared, as described
in Chapter 3.4, and matched with TDFMI networks,dascribed in Chapter 5.2.
Since incident severity is a key factor in detefimgnincident duration and reduced
capacity, it was used along with incident type d@he number of blocked lanes
(based on incident observations) to determine thguency, duration, and reduced
capacity. When the incident data were forecasthd, Monte Carlo Simulation

technique was applied to assign the forecastedlentiinformation on the 2034
TDFM network. As described in Chapter 6.1, 100 icgpions were repeated to
calculate an average of TDFMI runs. The 2034 fuya TDFMI model runs were

repeated 100 times per scenario, and then thegav@faFMI results were calculated.

Using the average TDFMI results, 10 TDFMI scenavi@se summarized to
calculate the scores by applying the same critdréd were used in the TDFM
prioritization process, as shown in Table 6.3. Feg6.5 shows the prioritization
rankings of nine projects from the 2034 TDFM and 8034 TDFMI based on the
scores of the three subgroup criteria and totaicé&the impact of incidents on the
TDFMI caused changes in the V/C ratio, ADT, VMT, VHand travel time
reliability, the final project priorities and totatores were changed. Project 188, the

top ranked project in the TDFM, remained as the ramk project in the TDFMI,
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even though there were some changes to V/C and YéHies. Project 65, the new
construction of Middle Ground Blvd, was rankellif the TDFM but ranked™®in
the TDFMI, as it received lower or equal scoresh® TDFM in all six criteria. In
contrast, project 86, widening Wythe Creek Rd., veasked X in the TDFMI from

7" in the TDFM, as it had the highest scores in rédoof VHT.
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Figure 6.6 represents the comparison results diMDvith TDFMI under
three evaluation categories. The graph of eaclegrghows the differences between
TDFM and TDFMI in the three categories. Most of {h®jects have significant
score differences in the Economic Vitality categddp changes were found in the

Project Viability category, as there were no quatitie criteria to evaluate.

When it comes to the Project Utility category, patjID 65 and project ID
152 had the biggest score reductions. They receieeglow scores in ‘Congestion
Level‘, which consists of three sub-criteria: cumr&//C level, V/C reduction in the
future, and the impact to nearby roadways. TDFMivedd a lower V/C ratio and
lower V/C improvements from those projects compace@dDFM. When it comes to
the Economic Vitality category, project IDs 5, 9hd 188 had significant score
reductions of greater than 10 points, for criteli@sely related to the total reduction
of regional travel time and its reliability. Whehet Project Utility and Economic
Vitality categories were evaluated together in@rand Total, project IDs 5, 65, 96,
and 152 had significant score reductions by ovepdiats. In particular, the Grand
Total score of project IDs 65 and 152 were redubgd28.5 and 22.2 points,
respectively. Those significant score reductionsdd their rankings to be reduced

from 6" and 29to 9" and ¥, respectively.
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As opposed to the evaluation of three categoriesppgect in Figure 6.6,
Figure 6.7 shows the evaluation scores of TDFM BR&MI for nine projects with

Six sub-criteria.
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Six graphs in Figure 6.7 show which projects haigmificant differences
between the TDFM and the TDFMI by individual suliezia. From the visual

inspection of score differences for the nine prgdeased on criteria, all criteria
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appeared to have significantly different score®ughout the projects except for

‘Cost Effectiveness’ and ‘Reduction of RegionalvielaTime'.

Figure 6.8 shows the cumulative project costs oFVDand TDFMI based

on their prioritization rankings. Since the ranlsngf projects were changed from

using TDFM vs. TDFMI, the curves of cumulative mdij costs by prioritization

ranking may show different results. If a limitednmoer of highway investment

projects should be selected based on investmergeburbnstraints, TDFM and

TDFMI results could generate a different list obdéble investment projects to

planners and decision makers.
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For example, investment funding for highway prageict the 2034 LRTP is
limited to $ 1.5 billion, as shown in Figure 6.8DAM would recommend five
projects (IDs 188, 152, 16, 96, and 5), while TDFbuld recommend seven
projects (IDs 188, 16, 152, 86, 99, 96, and 5) thatild meet budget conditions.
TDFMI added two more projects (IDs 86 and 99) asatment projects that TDFMI
did not. Thus, it is worthy for HRTPO planners atetision makers to examine if
they should include those two projects in their2Q8TP. It is noted that project ID
5 would not be selected by both 2034 the TDFM dral TDFMI, based on the

budget allocated.

In addition to a visual inspection, a paired t-Tesis performed using both
evaluation scores from TDFMs and TDFMIs to examiinéhe score differences
between the TDFM and the TDFMI were statisticalngicant over the six criteria
for the nine projects. Table 6.7 shows the pair@ddt results using the evaluation
scores of the six criteria for the nine projectrk the paired t-Test results for nine
projects, it turns out that three TDFMI scenaripspject IDs 65, 86, and 99,
generated significantly different evaluation scotetween the TDFM and the
TDFMI, which means that the mean difference of esabn scores were

significantly greater than zero.

On the contrary, a second paired t-Test was corduttd examine if any
individual criteria generated statistically sigoént differences between the TDFM
and the TDFEMI over nine projects. Table 6.8 sholes paired t-Test results using

evaluation scores of the nine projects for thecsiteria. From t-values and p-values,
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it turns out that no one of the six sub-criteriangmated significantly different

evaluation scores between the TDFM and the TDFMI.

These results show that the TDFMI could generatierdnt quantitative
analysis results that would change the prioritaratiesults. Thus, the application of
TDFMI to nine candidate major investments of futscenarios shows that while the
top ranked project is unaffected, three projectseernced a rank change by one
position and three projects experienced a rank gddyy three positions. This
change in prioritization demonstrates that exptomsideration of a project’s ability
to reduce incidents is feasible with TDFMI and aaaterially influence which

investments are selected.
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5 16 65 78 86 96 99 152 188
TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI
Mean 128 120 63 7.1 79 35 6.0 53 70 53 53 44 73 70 41 8.8 8.9
Variance 824 921 139 111 75 139 114 3.7 18.7 26.5 36.7 204 194 27.0 31.7 18.3 24.0 1838
Pearson Correlatior0.962 -0.386 0.745 -0.784 0.975 -0.356 0.872 0.715 0.639
t Stat 0.728 -0.34 4.349 -0.373 -3.068 0.017 -2.757 1.812 -0.092
P(T<=t) two-tail 0.499 0.748 0.007 0.725 0.028 0.987 0.040 0.130 0.930
t Critical two-tail  2.571 2.571 2.571 2.571 2.571 2.571 2.571 2.571 2.571
Note: Observations =6
df=5
H, = The average difference between TDFM and TDFMI Qvas
Table 6.8 Paired t-Test Results for Six Criteria
1 2 3 4 5 6
Criteria
TDFM TDFMI  TDFM TDFMI  TDFM TDFMI  TDFM TDFMI  TDFM TDFMI  TDFM TDFMI
Mean 4.4 6.5 5.0 4.4 7.3 7.0 11.7 8.8 8.3 8.9 5.8 5.8
Variance 13.8 14.9 25.0 15.3 16.4 8.7 13.4 43.9 75.0 73.6 7.4 11.4
Pearson Correlatior 0.637 0.160 0.075 0.569 0.939 -0.439
t Stat -1.886 0.286 0.213 1.632 -0.555 0.000
P(T<=t) two-tall 0.096 0.782 0.836 0.141 0.594 1.000
t Critical two-tail 2.306 2.306 2.306 2.306 2.306 2.306
Note: Observations =9

df =8

H, = The average difference between TDFM and TDFMI Qras
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Table 6.9 shows the project rankings, evaluatiares; and project cost of
TDFM and TDFMI. Since project IDs 65, 86, and 99whd significantly different
project scores and rankings between the TDFM aadltbFMI from the paired t-
Test, those three projects should be examined wgpibcial care in the project
selection process under a limited investment bud@geted on the example shown in
Figure 6.8, project IDs 86 and 99 should be inaludden the investment project

budget is $1.5 billion.

Table 6.9 2B4 Prioritization Ranking, Scores, and Project Cost

TDFM TDFMI
Rank . Project Cumulative . Project Cumulative
Project Score Cosjt Cost Project Score Cosjt Cost
1 188 202 56.7 56.7 188 197 56.7 56.7
2 152 191 41.1 97.8 16 185 700.0 756.7
3 16 187 700.0 797.8 152 169 41.1 797.8
4 96 180 75.0 872.8 86 168 34.2 832.0
5 5 178 779.4 1,652.2 99 166 8.9 840.9
6 65 172 65.3 1,717.5 96 166 75.0 915.9
7 86 167 34.2 1,751.7 5 166 779.4 1,695.3
8 99 159 8.9 1,760.6 78 153 105.3 1,800.6
9 78 157 105.3 1,865.9 | 65 143 65.3 1,865.9

Unit: Million dollars
Source: HRTPO, 2011
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6.3 Chapter Summary

In this chapter, the comparison between and tlauation of the TDFM and the
TDFMI were made for both the 2009 base year and208% future year. For the
base year models, various performance measuresvaliahtion statistics were
compared by subgroup criteria. Even though extensiedel calibration, validation,
and reasonableness checking was not performed enTDFMI, unlike the
TDFM, %RMSE and volume/count ratio of TDMFI with BPVDFs showed

improvements in most subgroups and the model dsodew

TDFMI results with BPR VDFs showed better improvensefor most of the
subgroups, compared to TDFMI results with AkcelilORs. For the future year
models, the top nine highway projects were selefrted the prioritization list in the
2034 LRTP. One TDFM for annual average daily tcafind 249 TDFMIs for 249
weekdays were prepared for the evaluation of tesnaos, including the ‘Do-
Nothing’ case. The average of 249 TDFMIs runs weepared to compare with the

TDFM results.

By applying the same evaluation criteria identifieg HRTPO, TDFMI
results were evaluated by three major criteriajgatoutility, economic vitality, and
project viability. From the three criteria, six oigative sub-criteria, contributing 85
points out of a total 300 points, were evaluated secored. The comparison results
between TDFM and TDFMI showed that the priority kiagy of eight out of nine

projects, with the exception of the top ranked @cgjwere changed as the impact of
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incidents on the TDFMI influenced traffic simulatioesults. The paired t-Tests for
the six sub-criteria showed that no one of six euteria showed significantly

different evaluation scores between the TDFMs aedltDFMIs.

On the contrary, the paired t-Tests for the ninejgmts showed that the
evaluation scores for three projects in the TDFMIrevsignificantly different than
those generated by the TDFM. These results shomagdhie TDFMI could generate
different quantitative analysis results that wogliange the prioritization results.
This change in prioritization demonstrated thatliekpconsideration of a project’s
ability to reduce incidents is feasible with the HNDI and can materially influence
which investments are selected. Table 6.10 shoesafisumptions applied in this

chapter and the expected impacts of those assumspiinthe analysis results.

Table 6.10 Assumptions and Impacts on Results

Assumption Impacts on Rest

1. Average of 100 replications is good 1. Average of 250 replications may
enough to generate reliable future generate different results (same or

TDFMI results worse)
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

7.1Conclusions

In this section, the conclusions from conductings tdissertation research are

presented below:

The integration of a travel demand forecasting nhod®FM) with models for

incident frequency, duration, and reduced capaisitiyechnically feasible.

* The approach used herein takes advantage of the farmber of incident
records available in areas that actively manager treadways. It is
technically feasible to integrate a travel demandedasting model with
incident data.

* Incident data (frequency, duration, and reducecac#pratio) were prepared
from historical incident records for the base y&ar. the future year, various
models and techniques were successfully appligdracast future incident
frequency, duration, and reduced capacity

» Forecasted incident data for the future year cbeléllocated on the TDFMI
network by using the Monte Carlo Simulation teclueigbased on the
characteristics of incidents (type, severity, T@IDration, etc.) and roadway

geometry (functional classification).
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The volume delay functions (VDFs) with additiorshts for incident impact should

be modification and calibrated by using incidentatved field data.

 The functional forms of BPR and Akcelik VDFs wereodified to
accommodate the impact of incidents, with additiorziables for capacity
reduction and incident duration.

* Field traffic data and crash data in VDOT’s databasre explored to find
crash-involved traffic data by using common tempoend spatial
information. The prepared crash-involved traffictadawere split into
subgroups by facility types (freeways, arterialed aollectors, and local
roads) to calibrate VDFs separately.

 The modified BPR and Akcelik VDFs generated betteminal base year
performance than the VDFs in TDFM.

* From the TDFMI using BPR VDFs, the higher link vale groups (5,000-
10,000 vehicles/day and +40,000 vehicles/day) sdowsgnificant
improvements in %RMSE from 10% to 24%, comparetheoTDFM. From
the facility type category, TDMFI results for ins¢ate freeways and principal
arterials also showed improvements on both perfoomaneasures. When it
comes to the area type, TDMFI results for ruraharshowed improvements

on both performance measures.
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The Travel Demand Forecasting Model with Incide(i©FMI) needs to be
examined along with the TDFM by planners for saétgcinvestment projects from a

prioritization list under limited budget conditions

e The TDFMI considerably affected the prioritizatiaof investments by
explicitly considering each investment’s impactiocidents.

* With the exception of the region’s top-ranked pecgj¢he ranking of the next
eight projects were affected by the use of TDFMt;ifstance, the"7and &'
ranked projects under the TDFM became tAadd %' ranked projects under

the TDFMI.

» Three projects (IDs 65, 86, and 99) showed sigmifily different project
scores and rankings between the TDFM and the TDfivMh the paired t-
Test evaluation. Those three projects should benawal with special care in
the project selection process, especially withnaitéd investment budget.
Thus the approach allows planners to evaluateetiemal impacts of various

strategies.

When compared to the TDFM, the TDFMI has morelfiét in its application for
travel demand forecasting modeling, including awwek analysis for ‘what if’

scenarios and a prioritization of investment pragec

* The TDFMI can be simplified to the TDFM when altident variables, such

as duration and reduced capacity, shown in Equétiamne set to zero.
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* Due to the additional incident impact variablegjaas project-level network
analyses are possible by simply changing the lagbacity and the duration
of incidents.

* For regions that question the quality of their desit data, TDFMI model

runs can be performed with and without the modiitcaare zeros.

7.2 Research Contributions

This dissertation research made several contabsitito best practices in the
Transportation field, including developing a franwelwfor the TDFMI and applying
it, and introducing state-of-the-art modificatiotts VDFs to include incident data.

Key contributions are as follows:

1. This dissertation research has developed a metbggolor preparing and
integrating incident impacts into the tradition@HAM.
* This dissertation research has explored incidetd dad their impacts (the
number of blocked lanes, duration, etc.) on thavagk and shown how
incident data should be prepared to be integratad traditional TDFM

networks.

2. This dissertation research has modified the VDFd aalibrated the model

parameters using incident involved traffic data aocount for incident

components.
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» The BPR and Akcelik VDFs were modified with addiab variables for
considering the impact of incidents (duration aaduced capacity) at link
segments and intersections.

» The parameters of modified VDFs were calibratechgistrash-involved
traffic data and the application results showedebgierformance measures

compared to the TDFM results.

3. This dissertation research has developed a TDFMl ititegrates a traditional
TDFM with incident data.

* The base year comparison results showed that th&iThas provided better
nominal performance than the traditional TDFM, lsyng additional variables
reflecting incident duration and the correspondoagacity reduction in the
VDFs.

e This dissertation research has shown that the TD&ifdcts the prioritization
of future investments by explicitly considering kdovestment’s impact on
incidents. Thus the TDFMI could allow plannersewaluate the regional

impacts of various strategies.

4. This dissertation has shown that the TDFMI haseailfle opportunity in its
application for planners and modelers to evaluarégous incident impacts at the
regional level.

* The traditional TDFM would be a part of the TDFMIhan all incident

variables (duration and reduced capacity) in th&WDare set to zero.
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* The TDFMI provides practical applications to plarsmand modelers at the
state and/or MPO level for their various scenarmmlyses (e.g., daily
dynamics) to evaluate incident impact at the reglitevel (incident duration,

number of incidents for corridor, lane blocks, etc.

7.3Recommendations for Future Research

TDFMI using Dynamic Traffic Assignment (DTA)

A limitation of the accuracy of both TDFMI and TDFM that they rely on static
traffic assignments, suitable for planning rathbant more detailed approaches
common to DTA. For future research, a TDFMI with sogcopic or microscopic
simulation models for transportation planning amtision making could generate
more realistic and detailed incident impacts on nieévork by better considering
gueuing and spillback effects. Certainly, a TDFR#ttis integrated with DTA could
have generated more detailed incident impacts bhgidering queuing and spillback
effects. The benefits of such detail would needdaompared with the cost of data
preparation and processing, but represents anfardarther exploration for some

prioritizations that might occur at a sub-regioleaiel.

TDFMI with Other Non-Recurrent Congestion Sources

This dissertation research has focused on incidepécts for incorporating with the
TDFM. As mentioned earlier, incidents account fartpf non-recurrent congestion

in urban traffic. Other non-recurrent congestiorctdes, such as work zone,
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inclement weather, and special events may havgrafisant negative impact on
urban traffic networks and needs to be addresseagrban traffic analysis. Like
incident data, the above mentioned non-recurrengjestion factors would not have
any technical or practical obstacles in preveniisgncorporation into the traditional
TDFM. Since the TDFMI shows potential applicatioms combine various
operational variables in the transportation plagnprocess, various safety and
reliability research under SHRP 2 could be expanggdg the TDFMI when key

inputs of non-recurrent congestion factors are gnegh

Improvement of Incident Forecasting Models for Fet¥ear TDFMI

Future year forecasting models for incident fregquyenincident duration, and

reduced capacity assumed that current trends b@sdustorical observations will

not be changed in the future. However, various reeerging technologies are
expected to have notable impacts of reducing tratfitidents in future transportation
systems. Many Intelligent Transportation SystenSjl@pplications have focused on
the improvement of vehicles’ mechanical performamke®wn as Advanced Driver
Assistance Systems (ADAS) (Wikipedia 2013a), fofesa optimization, which

includes a vehicle collision warning or avoidancgstem, speed adaptation,
Connected Vehicle (CV), etc. Recently, Google heenbworking on a driverless car
project (self-driving car project) and has testatbaomous cars on public roads in

the states of Nevada, Florida, and California i thS. Thus, incident models may
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need to account for the impact of new technologietuture incident forecasting

(Wikipedia 2013b).

7.4Recommendations for the HRTPO and VDOT

Recommendations for HRTPO

The evaluation results of the prioritization anaysith TDFM and TDFMI indicate
that HRTPO may need to revisit highway project$H) 86, and 99 and reevaluate if
their TDFM analysis results and prioritization sEoper criteria are reliable. When
comparing the analysis results of TDFM with thodeT®FMI, v/c ratio, cost
effectiveness (cost/VMT), and travel time reliayilivere major contributor of the
statistical difference. Thus, HRTPO could condupilat study to evaluate the level

of congestion, VMT, and travel time of the corrigldnat related to the three projects

This dissertation research examined the highwayripgation of investments
with TDFMI and compared the ranking with the reswdf TDFM. TDFMI could be
applied to other prioritization categories, suchbadge/tunnel projects, intermodal
projects, transit and rail mode projects, and tmgare the prioritization ranking of

TDFMI with those of TDFM.

HRTPO could utilize the TDFMI in various applicaig including traffic
impact analysis and/or short-term network analygses.example, if two out of three
lanes need to be blocked during midday due to rogian the interstate freeway I-

64, TDFMI could run and show the incident impactd®gting the link capacity of
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that link and the proportion of road work time afitsimulation time. By comparing
the loaded network results of TDFM and TDFMI, theffic impact of road work on

interstate freeways could be assessed.

In order to analyze the incident impacts by usinQFWMI in various
application levels, VDOT and HRTPO could work tdgst especially for the
TDFMI model development and incident data collecti®lRTPO could identify
problems in the future from travel demand forecastnodeling (short term or long
term) and develop alternatives to maximize the owpment from the TDFMI
analysis. Based on identified problems and alterest HRTPO could make a list of
projects and they want to analyze and data they teeollect for the analyses of

specific corridors or intersections.

Recommendations for the VDOT

In order to develop TDFMIs for small and large MRabdels as well as the
statewide model, incident data and traffic dataviDOT's database need to be
explored based on spatial and temporal boundaklescident data that occurred in
the weekdays of the base year within modeling batied should be collected.
Large MPO areas that use the TOD step in the TDFMttsIre should have separate
incident dataset for each of the four TODs. Ferdalibration of modified BPR and
Akcelik VDFs, crash-involved traffic data also ne&ml be collected by using

common temporal and spatial information from batisb and traffic data.
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With the exception of the Richmond and Hampton Roadbdels, the
networks of all MPO models should be extensiveljsed by using the latest GIS
roadway information. Current networks of all modetas are sparsely coded and the
links of lower functional classifications, such @slectors and local roads, are not
included. Furthermore, all links on networks arelem as ‘stick’, which simply
connects nodes with a straight line, ignoring tiie shape of roadways. Thus, a true
display of roadways, including collectors and loazdds, is crucial when matching
incidents to TDFMI networks. Indeed, at least aebgsar model update may be
necessary because model run results would chanties ihetwork is extensively
revised. If the network changes significantly, modalibration, validation, and

reasonableness checking need to be conducted.
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