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ABSTRACT 

The traditional Travel Demand Forecasting Model (TDFM), used within the Long 

Range Transportation Planning (LRTP) process, has mainly focused on the evaluation 

of transportation system effectiveness and environmental impact with various 

performance measures to assess transportation investment alternatives. However, 

TDFM does not explicitly account for delays due to incidents that contribute non-

recurrent urban congestion. Previous studies have developed ad-hoc techniques to 

consider incident impacts (e.g., safety studies that identify crash hotspots or pre-

defined incident scenarios at the subarea level).  

 This dissertation research developed an approach to integrate the large amount 

of increasingly available incident data with a region’s TDFM. This dissertation 

research has explored incident data and their impacts (the number of blocked lanes, 

duration, etc.) on the network and shown how incident data should be prepared to be 

integrated into traditional TDFM networks. Known as a Travel Demand Forecasting 

Model with Incidents (TDFMI), the approach incorporates historical incident 

information (the duration and reduced capacity due to the incidents) into the 

corresponding links and nodes of the traditional TDFM network.  

 Incident impacts were accommodated in the traffic assignment step by 

modifying the functional form of volume delay functions (VDFs) to consider incident 

duration and capacity reduction. Field traffic data and crash data in Virginia DOT’s 

database were explored to find crash-involved traffic data by using common temporal 
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and spatial information. The prepared crash-involved traffic data were split into 

subgroups by facility types to calibrate VDFs separately. The Bureau of Public Roads 

(BPR) and Akcelik VDFs were modified with additional variables for considering 

incident impacts (duration and reduced capacity) at link segments and intersections. 

The parameters of modified VDFs were calibrated using crash involved traffic data 

and application results showed better performance measures compared to the TDFM 

results.  

 The approach is demonstrated in the Hampton Roads, Virginia region. 

Prepared incident data were successfully matched with corresponding segments and 

intersections on the networks of traditional TDFM. For the base year comparisons, 

TDFMI offers better percent root mean square error (%RMSE) than TDFM for all 

facility types even without the calibration and validation of TDFMI; with larger 

improvements in %RMSE for higher volume groups (over 40,000 vehicles per day). 

Especially, TDFMI results for interstate freeways and principal arterials, and rural area 

showed improvements in both %RMSE and volume/count ratio.  

 For the future year evaluation of scenario investment, TDFMI results were 

evaluated by three major criteria: project utility, economic vitality, and project 

viability. From the three criteria, six quantitative sub-criteria, contributing 85 points 

out of a total 300 points, were evaluated and scored. Relative to TDFM, the 

applications of TDFMI to nine candidate major investments show that the TDFMI 

notably affected the prioritization of investments by explicitly considering each 

investment’s impact on incidents.  While the top ranked project is unaffected, three 
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projects changed their ranking by one position and another three projects changed their 

ranking by three positions. The paired t-Tests for the nine projects showed that the 

evaluation scores for three projects in the TDFMI were significantly different than 

those generated by the TDFM. These changes in prioritization demonstrate that the 

explicit consideration of a project’s ability to reduce incidents is feasible with TDFMI 

and can materially influence which investments are selected during LRTP process.  
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CHAPTER 1. INTRODUCTION 

1.1 Background 

The travel demand forecasting is an essential task in the Long Range Transportation 

Planning process (LRTP) to evaluate alternative strategies for accommodating future 

needs such as land use development, supply and demand, policy-related strategy, etc. 

The traditional Travel Demand Forecasting Model (TDFM)—an evolutionary tool 

based on the sequential steps of trip generation, trip distribution, mode choice, and 

traffic assignment—is used to evaluate these alternatives. The four step model is the 

primary trip-based tool for forecasting future travel demand and performance of a 

transportation system on a regional scale. While the investment choices are not 

dictated by the TDFM results alone, they provide a foundation for evaluating major 

infrastructure investments when preparing the LRTP (Martin and McGuckin 1998). 

However the existing TDFM does not have any variables or components to quantify 

traffic congestion properly, and thus, traffic congestion is not factored into the 

prioritization of capital investments in the transportation planning process.  

USDOT defined the congestion as “one of the single largest threats” to the 

Nation’s economic prosperity and way of life (Owens et al. 2010). Work zones, 

crashes, breakdowns, adverse weather, sub-optimal signal timing, toll facilities, and 

railroad crossings caused over 3.5 billion estimated vehicle-hours of delay on U.S. 

freeways and principal arterials in 1999 (Chin et al. 2004). Based on 2007 data, 
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wasted time was 4.2 billion hours and wasted fuel was 2.8 billion gallons, congestion 

cost about $87.2 billion combined in the top 439 urban areas in the United States 

(Owens et al. 2010). About 50% of all highway congestion is caused by the non-

recurrent congestion, which leads the variations in travel times (Cambridge 

Systematics 2013a). 

Table 2.1 lists the major causes of non-recurrent congestion. The Highway 

Capacity Manual 2010 version (HCM 2010) identified the major causes of non-

recurrent congestion as: incident, weather, work zones, special events, fluctuation in 

demand, special events, traffic control devices, and inadequate base capacity 

(Transportation Research Board 2010). Other literature identified the major causes of 

non-recurrent congestion as: incident (including crash), work zone, and weather 

(Skabardonis, Varaiya, and Petty 2003). 

 
Table 2.1 Major Causes of Non-recurrent Congestion 

TRB  Skarbardonis et al.  

1. Incidents 

2. Weather 

3. Work zones 

4. Fluctuation in demand 

5. Special events 

6. Traffic control devices 

7. Inadequate base capacity 

1. Crashes (both fatal and non-fatal)  

2. Breakdowns  

3. Work zones  

4. Weather events (rain, fog, ice, and snow)  

5. Sub-optimal signal timing (principal arterials)  

6. Highway-railroad crossings (principal arterials)  

7. Toll facilities  

8. Commercial truck pickup and delivery (PUD) 

activities (urban principal arterials)  
Source: * (Transportation Research Board 2010) 

 ** (Skabardonis, Varaiya, and Petty 2003) 
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Traffic incidents (e.g., crash, breakdown, abandoned vehicles, etc.) account 

for 25% of non-recurrent congestion in urban traffic (Cambridge Systematics and 

Texas Transportation Institute 2005). Crashes represent a major source of non-

recurrent congestion, which is estimated to be about half of all congestion in some 

locations (Cambridge Systematics and Maryland Bethesda 2010). Incidents cause 

sequential negative impacts on the road network, including but not limited to, 

congestion, delay, more mobile emissions, and more fuel consumption. 

 

1.2 Research Motivations  

The performance measures used by TDFM, such as vehicle miles traveled (VMT) 

and vehicle hours traveled (VHT), can be relatively good surrogates for measuring 

the system effectiveness in terms of delay, air quality, and emissions.  For example, 

an increase in VMT will be highly correlated with an increase in greenhouse gas 

emissions regardless of vehicle type.  However, the accuracy of these performance 

measures is limited in the case of TDFM because it does not consider network 

disruption caused by the incidents (whether planned or unplanned).  As fiscal 

constraints require that decision makers decide which projects should be 

implemented, this inability to consider non-recurrent congestion may adversely 

affect the transportation programming process, especially in prioritizing multiple 

investment alternatives. 

There are two main gaps in knowledge that this research addresses. First, 

there is no framework or methodology to incorporate network disruption from 
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incidents into the TDFM. Second, there are very few proposed methodologies 

incorporating incident impacts as an additional delay in the network analysis. 

Previous research efforts did not explicitly consider incidents as a variable, but 

treated them as pre-determined additional delay time regardless of traffic conditions. 

They focused on either: 1) microscopic dynamic or stochastic assignment model for 

Advanced Traveler Information System (ATIS) strategy on simple test bed network 

loading (Fu and Rilett 1997; Ngassa 2006; Bian 2008; Thomas and Robert 2008), or 

2) macroscopic static assignment with simplified volume delay function and incident 

conditions (Li, Zhou, and Rouphail 2011a; Li, Zhou, and Rouphail 2011b).  

The Federal Highway Administration (FHWA) has led various management 

and operation (M&O) strategies to consider operational variables in the 

transportation planning process to improve system efficiency, reliability, and safety 

(Grant et al. 2010). Recently, the second Strategic Highway Research Program 

(SHRP 2) has conducted various research specialized in four areas (safety, renewal, 

reliability, and capacity) to improve the safety and reliability of the nation’s highway 

system (Transportation Research Board of the National Academies 2013). As the 

part of efforts for incorporating the reliability performance measures into the 

transportation planning process, SHRP 2 has analyzed predefined simple scenarios 

for non-recurrent congestions including incident, work zone, and inclement weather 

to evaluate reliability performance measures (Cambridge Systematics 2013b). 

The volume delay function (VDF) in traffic assignment appears to be the best 

place to consider incident impact properly in the four step travel demand forecasting 



5 
 

model because it determines the relationship between supply side (free flow speed 

and link capacity) and demand side (loaded link volume) by an equation relating how 

many trips will be loaded on each link. By using a modified VDF, the TDFM 

incorporating incident impact (referred as TDFMI) could not only predict travel 

demand considering incident impact but also assess various performance measures to 

evaluate incident-related goals and objectives in transportation planning and 

prioritization of investments. From the functional form of VDF, incident impacts 

could be added as additional variables accommodating incidents’ frequency, duration, 

and capacity reduction. 

 

1.3 Problem Statement  

The non-recurrent congestion is a major cause of reduced mobility, emission, and 

other sustainability issues, and the consequential impact of non-recurrent traffic 

events are already integrated with the field traffic observations that used in the 

calibration and validation of TDFM. However, the traditional macroscopic static 

TDFMs do not consider these impacts properly because they do not have the 

capability to analyze these impacts in the model structure. Moreover, incident 

impacts have not been well addressed in even emerging modeling practices such as 

activity-based models, dynamic traffic assignment models, and traffic simulation 

models regarding the travel demand forecasting techniques (Cambridge Systematics 

et al. 2012). The lack of data and limited analysis tools are the main reason why 

incident impacts are not well addressed and rely on subjective assessments in the 
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long range planning process in many cases (Chatterjee et al. 2001; Chatterjee et al. 

2003).  

The factors affecting the impact of non-recurrent congestion on freeway 

operation are 1) incident duration, 2) reduction in capacity, and 3) demand rate 

(Garib, Radwan, and Al-Deek 1997). Even though conventional evaluation of 

various alternatives focuses mainly on transportation system effectiveness (mobility, 

congestion, VMT,VHT, delay, etc.) and environmental impact (air quality, emissions, 

and noise) as predominant performance measures, there are no variables or factors 

for incorporating incident in the travel demand forecasting model (Jeon 2007). The 

majority of goals and performance measures in sustainability are more or less related 

to safety issues such as crash, incident, delay, congestion, emission, etc. In order to 

incorporate incident impact properly into planning and decision making process, 

TDFM should have the capability to assess incident impacts in it because TDFM is a 

core component to access and evaluate various alternatives strategies for 

accommodating various future needs.  

 

1.4 Research Goals and Objectives  

The primary goal of this dissertation is to develop a TDFMI incorporating incident 

impacts. The hypothesis of this dissertation is that the TDFMI would forecast the 

travel demand incorporating the incident impacts that is unavailable from the 

traditional TDFM, which would provide additional useful information to 
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transportation planners and decision makers to improve the decision-making process. 

The main objectives of this dissertation to examine the hypothesis are to: 

1. Prepare incident data for base year and estimate incident data for future year 

to integrate incident impact (frequency, severity, and duration) into 

traditional TDFM. 

2. Modify the functional forms of VDFs to be used in TDFMIs and calibrate 

them to accommodate incident impacts with additional variables. 

3. Evaluate the performance of the developed base year TDFMI by comparing 

them with field observations and traditional TDFM. 

4. Evaluate selected highway projects from 2034 Hampton Roads LRTP by 

using TDFMI and compare the projects prioritization results from TDFMI 

with those from TDFM. 

 

1.5 Dissertation Organization 

This document contains seven chapters. In chapter 1, the background, motivations 

and goal and objectives of this dissertation are presented. Chapter 2 presents the 

relevant literature reviews on the following major tasks: i) Long Range 

Transportation Planning process, ii) traditional Travel Demand Forecasting 

Modeling, iii) traffic incident modeling for frequency, duration, and reduced capacity, 

and iv) volume delay functions. Chapter 3 addresses a framework incorporating 
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incident impacts into the traditional TDFM and the data preparation for the base year 

and future year TDFMIs. Chapter 4 presents the incident data preparation for the 

modification and calibration of VDFs with incident data. Chapter 5 addresses the 

procedure of how prepared incident data and modified VDFs are incorporated with 

the traditional TDFM networks. In Chapter 6, the various comparisons and 

evaluations of TDFM and TDFMI are presented with a prioritization of future 

alternative projects. Finally, in Chapter 7, conclusions and recommendations learned 

from this dissertation research are presented. 
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CHAPTER 2. LITERATURE REVIEW 

A literature review was undertaken to understand the current best practices in Long 

Range Transportation Planning (LRTP), Travel Demand Forecasting Model (TDFM), 

network simulation combined with incident, incident analysis in various temporal 

and spatial horizons from real time to long range future year, and/or from corridor 

level to regional level. 

 

2.1 Long Range Transportation Planning (LRTP) and Decision Making Process 

By Federal law (Title 23 United States Code, Section 134 Metropolitan Planning), an 

urbanized area with population above 50,000 should have a Metropolitan Planning 

Organization (MPO), which is a regional transportation planning agency. MPOs 

should prepare the Metropolitan Transportation Planning and Programming Process 

for LRTP, which should be continuing, cooperative, and comprehensive (3Cs) with 

no more than a 30-year horizon (Transportation Planning Capacity Building Program 

2007). The transportation planning and programming process should be prepared: 1) 

to promote the safe and efficient management, operation, and development of surface 

transportation systems, 2) to improve the mobility of people and freight within and 

through urbanized areas, and 3) to minimize the transportation-related fuel 

consumption and air pollution (Transportation Planning Capacity Building Program 

2007).   
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Figure 2.1 shows a typical transportation planning process and the role of 

TDFM (Beimborn, Kennedy, and Schaefer 1996; Meyer and Miller 2001; National 

Highway Institute 2012).  

 

Source: (National Highway Institute 2012) 

Figure 2.1 Transportation Planning Process 

 

Goals and objectives are established and evaluation criteria are prepared first.  

The problems, scope, area, and issues are defined in this step to determine the final 

goals and objectives. The assessments of the current (base year) problems and the 

expected future year problems are followed. For a reliable assessment, various data, 

including socio-demographic data, land use data, field traffic data, and various 
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archived data are collected and the models are calibrated and validated. Based on the 

assessment results of the problems, various alternatives for the base year and the 

future year are developed. From the evaluation of alternatives, preferred alternatives 

or plans are selected. The evaluation results of selected alternatives are used to assist 

the final decision making process. TDFM is the major tool used to develop 

quantitative analyses for the assessment of problems to the evaluation of alternatives. 

Many types of transportation planning analyses may be developed using the 

modeling approaches listed below (Virginia DOT 2007):  

1. Evaluate Transportation System Performance 

2. Long Range Transportation Planning for MPO areas and Statewide 

3. Short Range Transportation Planning such as Transportation Improvement 

Program (TIP) and Six-Year Improvement Program (SYIP) 

4. Support Air Quality Conformity Analysis 

5. Support Alternative Analysis 

 

Title 23 of the United States Code describes the eight Federal Planning Factors 

issued by Congress to emphasize planning factors from a national perspective 

(Caltrans 2012):  

1. Support the economic vitality of the metropolitan area, especially by enabling 

global competitiveness, productivity, and efficiency.  

2. Increase the safety of the transportation system for motorized and non-

motorized users.  
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3. Increase the security of the transportation system for motorized and non-

motorized users.  

4. Increase the accessibility and mobility of people and for freight.  

5. Protect and enhance the environment, promote energy conservation, improve 

the quality of life, and promote consistency between transportation 

improvements and State and local planned growth and economic development 

patterns.  

6. Enhance the integration and connectivity of the transportation system, across 

and between modes, people and freight.  

7. Promote efficient system management and operation.  

8. Emphasize the preservation of the existing transportation system.  

The Metropolitan Planning Organization considers these eight factors when 

developing projects and strategies during the transportation planning process. These 

planning factors remain unchanged in MAP-21, the Moving Ahead for Progress in 

the 21st Century Act (P.L. 112-141), signed into law by President Obama on July 6, 

2012. 

2.1.1 MPO and State Department of Transportation (DOT) 

The planners and modelers in the MPOs and State DOTs have various 

responsibilities in carrying out the Metropolitan Transportation Planning Process and 

below are some examples (Virginia DOT 2007): 

• Prepare and adopt a long range transportation plan  
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• Develop a financial plan that demonstrates how the adopted long range 

transportation plan can be implemented.  

• For the designated non-attainment or maintenance areas for ozone or carbon 

monoxide under the Clean Air Act, the MPO shall demonstrate Air Quality 

Conformity by coordinating the development of the long range transportation 

plan with the process for the development of transportation control measures 

in the State Implementation Plan (SIP) required by the Clean Air Act. 

• Review and update the financially constrained long range transportation plan 

to confirm its validity and consistency with current and forecasted 

transportation and land use conditions. 

• The MPO annually certifies to the Federal Highway Administration (FHWA) 

and the Federal Transit Administration (FTA), with the corporation with the 

state DOT, that the planning and programming process is addressing major 

transportation issues and is being conducted in accordance with all applicable 

requirements. 

In addition to having responsibilities associated with the planning process, 

the planners and modelers in the MPOs and DOTs also have certain responsibilities 

in carrying out the programming process for their areas as listed below: 

• Developing a Transportation Improvement Program (TIP) 

• Creating a financial plan that demonstrates how the TIP can be implemented  
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• Adhering to the Air Quality Conformity standards for the designated non-

attainment or maintenance areas for ozone or carbon monoxide under the 

Clean Air Act. 

 
 

2.2 Travel Demand Forecasting Modeling (TDFM) 

Travel demand forecasting and modeling (TDFM) has been used as an important tool 

in transportation plans, projects, and policies under various temporal-spatial horizons 

in MPO areas and statewide (Cambridge Systematics et al. 2012). As noted in 

Chapter 2.1, TDFM develops traffic forecasts and evaluates alternative transportation 

scenarios and regional-wide transportation systems to assist in prioritizing 

transportation projects. TDFMs are usually developed using demographic, survey, 

and transportation network data. Demographic and survey data are used to develop 

the mathematical equations necessary for modeling. Highway and transit data (e.g. 

number of lanes, speed limit, road capacity, transit schedules and fares, etc.) are used 

to model the transportation network (Virginia DOT 2007).  

2.2.1 Four Step TDFM Model 

The most common TDFM method used worldwide, including in the United States, is 

the traditional four step approach. This approach is an aggregate sequential process 

with four steps: 

1. Trip Generation  =  How many trips will be made? 

2. Trip Distribution  =  Where will the trips go? 
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3. Mode Choice  =  What mode of transportation will the trips use? 

4. Trip Assignment =  What route will the trips take? 

Figure 2.2 depicts the sequential process of the traditional four step TDFM from trip 

generation to trip assignment. Figure 2.2 shows that each step uses the outputs from 

the previous step as key inputs, in addition other external input data. The Time-of-

Day step is an optional step that is generally placed between the mode choice and the 

trip assignment step. It is widely used in the areas where traffic patterns and/or 

characteristics differ by time of day, such as in the morning, mid-day, afternoon and 

evening periods (AM, MD, PM, and NT). 
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Source: (National Highway Institute 2012) 

Figure 2.2 Four Step Travel Demand Forecasting Modeling Process 

 

Demographic and socio-economic data are aggregated and prepared to the 

Transportation Analysis Zones (TAZs) level before they are used as inputs into the 

four step model. TAZs are established based on geographic location and census data, 

and are typically derived from a combination of census blocks and/or census block 

groups.  
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Trip Generation  

The Trip Generation step determines the number of person trips that begin (produced) 

or end (attracted) in each individual TAZ in a model region. Socio-demographic data 

and land use data are used in the trip generation model to determine the produced 

and attracted trips at TAZs. Usually the regression model or the cross-classification 

model is used in Trip Generation, but the cross-classification model is more accepted 

when modeling larger regions. In order to estimate the total number of trips 

generated/attracted from/to TAZs, a household travel survey data, such as the 

National Household Travel Survey (NHTS), is used to determine household 

variables (e.g. number of persons, workers, vehicles, children, income, etc.) in each 

TAZ. There are four trip types used in the Trip Generation model:  

• (I-I) trips that begin inside and end inside of the model region 

• (I-E) trips that begin inside but end outside of the model region 

• (E-I) trips that begin outside but end inside of the model region 

• (E-E) trips that begin outside and end outside of the model region, but travels 

through the model region 

All trips other than E-E trips are calculated by trip generation models. E-E 

trips are modeled from traffic counts, Origin-Destination surveys taken from external 

stations, and/or relevant traffic data. Trips are usually split into trip purposes, 

including home-based trips and non-home-based (NHB) trips, because they have 

different characteristics in trip generation. Furthermore, home-based trips can be 

further divided into more categories, such as for work (HBW), school or college 
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(HBSc), shopping (HBSh), and social and recreational or other trips (HBO) (Ortuzar 

and Willumsen 2001). 

 Ortuzar and Willumsen (2001) identified major factors affecting personal trip 

generation as: income, car ownership, household structure, family size, value of land, 

residential density, and accessibility. Special facilities, such as hospitals, military 

bases, ports, colleges and universities, warehouses, etc., are treated as special 

generators because additional survey and estimation data are necessary to estimate 

trips from/to special facilities.  To estimate freight trips in modeling region, the 

following data are used: number of employees, number of sales, roofed area of firm, 

and total area of firm are used (Ortuzar and Willumsen 2001) . 

Trip Distribution  

The Trip Distribution step determines the number of person trips between all pairs of 

TAZs. The predominant model used is the gravity model, derived from Newton’s 

Law of Gravitation. In the functional form, the number of trips between TAZ i and 

TAZ j has a positive relationship to the magnitude of produced trips from TAZ i and 

attracted trips to TAZ j and a negative relationship to the impedance (travel time and 

cost) between TAZ i and TAZ j (Virginia DOT 2007). The Standard Gravity model 

formula is shown below: 

∑ ∗∗
∗∗∗

=

n
ijijj

ijijji
ij KFFA

KFFAP
Trips

           Eq. (2.1)

 

Where: i= Origin TAZ 
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j = Destination TAZ 

n= Number of TAZs 

P=Trip Productions 

A=Trip Attractions 

FF=Friction Factor 

K=Optional Adjustment Factor (K factor) 

The calibration of the gravity model is to fit friction factor (FF) matrices from 

the locally observed data per trip purposes. The FF represents the impedance 

between zone i and zone j in time, distance, and cost. Thus, friction factors are higher 

as travel time decreases. FF varies by trip types (I-I, I-E, E-I and E-E). The widely 

used functional form for estimating FF is the gamma function as shown below: 

)exp( ij
b
ij

p
ij tctaF ×××=                   Eq. (2.2) 

where p
ijF =Friction Factor 

ijt =Travel Impedance from zone i to zone j 

a,b,c = Scale Parameters 

Travel impedance used to estimate the FF typically uses a generalized travel 

cost that is calculated by incorporating travel times, distance, and costs such as tolls, 

parking, etc. Travel times include in-vehicle travel time (IVTT) and out-of-vehicle 

travel time (OVTT) to account for the difference of the traveler’s value of time 
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(VOT).  K-Factor is used to account for the effects of variables other than travel 

impendence in the gravity model (Cambridge Systematics et al. 2012). 

Mode Choice  

The Mode Choice step splits the person trips into mode specific trips such as Single 

Occupant Vehicle (SOV), High Occupancy Vehicle (HOV), Bus, Rail, etc. The 

expression for the probability of choosing an alternative i  is (Koppelman and Bhat 

2006): 

∑ =

=
J

j j

i

V

V
i

1
)exp(

)exp(
)Pr(            Eq. (2.3) 

Where )Pr(i  = probability of the decision-maker choosing alternative i  

jV = systematic component of the utility of alternative j  

Multinomial logit or nested logit models are typically used in practice, based 

on the combination of modes in the model structure. The National Highway Institute 

identified factors affecting model split from five major categories (National Highway 

Institute 2012): 

• Personal/household (HH) characteristics: vehicle availability, HH income, 

HH size, etc. 

• Trip characteristics: trip purpose, trip chaining, departure time, 

origin/destination, trip length, etc. 

• Land use characteristics: sidewalk, pedestrian facility, distance to transit, 

parking availability, etc. 
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• Service characteristics: facility design (HOV, bike, etc.), frequency, 

congestion, cost (parking, tolls, fares, out-of-pocket cost, etc.), stop spacing, 

etc. 

Koppelman and Bhat (2006) listed the commonly used explanatory variables 

associated with travelers, mode, and trip itself in mode choice models. Traveler 

(decision-maker) related variables include traveler and/or household information, 

such as income, number of vehicles, number of workers, sex, age group, etc. Trip 

Context variables include: trip purpose, the employment density of the workplace, 

the population density of the residential area, Central Business District (CBD). Mode 

related variables include: total travel time (TVTT), in-vehicle travel time (IVTT), 

out-of-vehicle travel time (OVTT), wait time, number of transfers, transit headway 

and travel cost. Some variables are computed together to derive additional 

information, such as travel cost divided by household income, travel time divided by 

cost grouped by sex or age group, and OVTT divided by total trip distance. 

Trip Assignment  

The Trip Assignment step determines which transportation routes on the network 

will be used for mode specific trips between the origin and destination TAZs. The 

common traffic assignment methods are an all-or-nothing (AON) approach or an 

equilibrium assignment approach. AON, generally used in small urban areas and 

relatively uncongested networks, assigns all trips between an origin-destination pair 

that has the minimum travel cost. Although the AON method is useful because it is 
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easy to understand the results and evaluate the total demand on the roadway under 

ideal circumstances, it is not appropriate in most cases because it generates an 

unrealistic flow pattern that does not consider the traveler’s behavior on how they 

select their route from a set of all available choices.  

User Equilibrium (UE) assignment, as an alternative of the AON method, 

utilizes the concept of capacity restraint of the roadways (National Highway Institute 

2012). The UE assignment repeats the AON assignment through an iterative process 

using the capacity restraint methodology until Wardrop’s first principle is satisfied, 

which is that “the journey times in all routes actually used are equal and less than 

those which would be experienced by a single vehicle on any unused route” 

(Cambridge Systematics et al. 2012). The equilibrium assignment is a useful method 

because the results would be stable and satisfies certain convergence criteria, which 

is desirable for the comparison between alternatives with no oscillations between 

computational iterations (National Highway Institute 2012). 

However, the UE assignment generally has an unrealistic assumption that all 

travelers have perfect information on all routes and always chooses the optimal route 

for given flow rates, which is a deterministic assignment model. As an alternative, 

the stochastic assignment model is based on the assumption that travelers do not 

have perfect information on all routes, and thus, route choice decision is not always 

the same even under the same flow rates due to inherent uncertainty (Tatineni, Boyce, 

and Mirchandani 1997). Even though stochastic assignment is a more realistic 

alternative over deterministic assignment in modeling assumption for loading traffic 
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onto a network, deterministic models may be sufficient for long range transportation 

planning (LRTP). (Tatineni, Boyce, and Mirchandani 1997) 

Both AON and UE methods allocate trips to all links on the shortest path 

from origin to destination at each iteration, using a fixed Origin/Destination (O/D) 

trip table for a fixed time period, and thus, are static assignment approaches. By 

contrast, a dynamic assignment approach has more than one O/D trip table for 

multiple time periods, so that it assigns trips to each link on the shortest path 

sequentially. Thus, the travel time of each link and the shortest path are updated in 

each simulation time period along each link. 

The volume delay function (VDF) is a central part of traffic assignment 

models and describes how the travel time on an individual link changes based on 

traffic demand, which will be discussed in detail Chapter 2.4. 

Model Calibration and Validation  

In the four step model, the outputs of the previous step are used as the inputs of the 

next step. As a result, any errors from the previous step are propagated to the next 

step, resulting in more inaccurate data with each successive step. Thus, 

transportation planners must carefully calibrate and validate the each step of the 

model, and review the final model run results. Travel Model Validation and 

Reasonableness Checking Manual (Federal Highway Administration 2010) defines 

model calibration and model validation as below: 
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 “Calibration is the adjustment of constants and other model parameters in 

estimated or asserted models in an effort to make the models replicate 

observed data for a base (calibration) year or otherwise produce more 

reasonable results.  

Validation is the application of the calibrated models and comparison of the 

results against observed data. Ideally, the observed data are data not used 

for the model estimation or calibration but, practically, this is not always 

feasible.” 

Even though many modeling practitioners in MPO and local, state, and 

federal governments are satisfied with their current four step models and believe it is 

adequate for most planning purposes (Transportation Research Board 2007), typical 

limitations should be considered in its application. The four step model does not 

adequately address intersection delays, intra-zonal travel within TAZs, and time of 

day variations. Link capacities are over-simplified and peak hour travel is 

overemphasized (Beimborn, Kennedy, and Schaefer 1996) 

The Transportation Research Board (2007) listed the shortcomings of the 

current four step modeling practice: 

• Four step model is not adequate to address many new policy concerns  

• Four step model has inherent weakness. Since four step model is not based 

on travelers’ behavioral nature, it is not suited to represent travelers’ 
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response to the policy-related scenario analyses such as toll, HOT, and 

congestion price. 

• Four step model has limitations to consider induced travel, interaction 

between land use policies, non-motorized travel 

• Four step model has limitations to consider freight, goods movement, and 

commercial vehicles  

As a result, the four step model is limited in its ability to reflect small scale 

changes, dynamic effects, and changes in travel behavior associated with complex 

trade-offs of costs (Corradino, Inc. 2009). Although there have been many successful 

implementations of the four step modeling framework, most of the literature that 

addresses the limitations in the four step model propose a shift toward the activity-

based model framework (Bhat and Koppelman 2003; Corradino, Inc. 2009; 

Transportation Research Board 2007; Cambridge Systematics et al. 2012). 

2.2.2 Activity Based Model (ABM) 

A fundamental conceptual problem of the trip-based approach, such as the four step 

model, is that it uses trips as the analysis unit without consideration of dependence 

among trips (Bhat and Koppelman 1999). Activity-Based Model (ABM) views travel 

as a derived demand from the need to pursue activities. It considers complex 

interactions between activity participation and travel behavior (Transportation 

Research Board 2007). Activity-based models analyze travel as “tours” that consists 

of multiple trips starting from and ending in important points, such as home or work 
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(Corradino, Inc. 2009). The major differences between the activity-based model and 

the four-step model are: the activity-based model has a consistent/continuous 

representation of time for travelers, it has a detailed representation of travelers and 

households, it has time-dependent routing, and it has a microsimulation of travelers 

and aggregated traffic (Transportation Research Board 2007).  

The overall process, when an activity-based model is implemented, consists 

of a sequence of three steps as listed below (Cambridge Systematics et al. 2012): 

1. Population synthesis 

2. Long-term choice models 

3. Activity-based travel models 

Southern California Association of Government (SCAG), the MPO of the 

Los Angeles Metropolitan area, has adopted an activity-based model that 

incorporates the above three major steps, as shown in Figure 2.2. SCAG’s ABM is 

currently being developed, but stage 1 was completed in 2013, which included: 

developing the modeling framework, completing the initial estimation of core 

modules, and performing an initial calibration of the 2003 base year model (G. 

Huang et al. 2013). The ABM is expected to be fully implemented in 2016. The 

completed ABM is expected to generate various performance indicators for the 

analyses of infrastructure investment, land use development, pricing policy, active 

transportation strategies, high speed rail, and travel demand management (Huang et 

al. 2013).  
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Source: (Huang et al. 2013) 

Figure 2.3 Flow Chart of SCAG Activity-Based Model 
 

 

2.3 Traffic Incident Models 

An incident is defined as “a non-recurrent event that causes a reduction of roadway 

capacity or an abnormal increase in demand. Such events include traffic crashes, 

disabled vehicles, spilled cargo, highway maintenance and reconstruction projects, 

and special non-emergency events (FHWA, USDOT 2000). ” As mentioned in 

Chapter 1.1, traffic incidents are one of the major causes of non-recurrent 

congestions in urban highways, which leads to variations in travel times (Cambridge 

Systematics 2013a). The factors affecting the impact of non-recurrent congestion on 

freeways are: 1) incident duration, 2) reduction in capacity, and 3) demand rate 



28 
 

(Garib, Radwan, and Al-Deek 1997). In this section, previous studies on various 

modeling analyses associated with incidents are summarized. 

2.3.1 Incident Frequency Model 

Lord and Mannering (2010) provided a comprehensive review of crash frequency 

models, by type, describing the strengths and weaknesses of various prediction 

models and analyzed the data that they generate. The functional forms they reviewed 

are listed below: 

• Poisson regression model 

• Negative Binomial (Poisson-gamma) Regression Model 

• Poisson-Lognormal Model 

• Zero-inflated Poisson and Negative Binomial 

• Conway-Maxwell-Poisson Model 

• Gamma Model 

• Generalized estimating equation Model 

• Generalized additive Model 

• Random-Effect Model 

• Negative Multinomial Models 

• Random-Parameter Models 

• Bivariate/Multivariate Model 

• Finite Mixture/Markov Switching Models 

• Duration Models 
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• Hierarchical/Multilevel Models 

• Neural, Bayesian Neural Network, Support Vector Machine Models 

Along the models’ functional forms, they raised major issues regarding data and 

methodology as listed below, and summarized associated problems for each issue: 

• Over-dispersion and under-dispersion 

• Time-varying explanatory variables  

• Temporal and spatial correlation 

• Low sample means and small sample size 

• Crash type correlation 

• Injury severity and crash type correlation 

• Underreporting  

• Omitted variables bias 

• Endogenous variables 

• functional form  

• fixed parameters 

 
Crash Analysis at the Network Level 

Lamptey et al. (2010) proposed a framework for incorporating crash analysis in 

network level transportation planning. They developed a crash prediction model 

using the Safety Performance Function (SPF) at the network level for two-lanes and 

multi-lanes for urban and rural areas. Kiattikomol et al. (2008) developed a negative 

binomial regression model using segment length and Annual Average Daily Traffic 
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(AADT) to predict crashes on segments and intersections of urban freeways. The 

models were split into subgroups by segment types, number of lanes, and type of 

severity. These crash prediction models were developed using roadway geometry 

and traffic data (Tarko et al. 2008; Abdel-Aty et al. 2011). 

Hampton Roads Planning District Commission (HRPDC1) conducted a crash 

analysis of interstate segments and intersections in the region as part of their 

congestion management system (CMS) (Ravanbakht, Belfield, and Nichols 2005). A 

crash severity analysis was conducted to identify the top high-crash locations in the 

region. Safety-related countermeasures and solutions for the top-10 high-crash 

locations were developed and recommended to be applied in the region’s 

transportation improvement program (TIP) (Ravanbakht, Belfield, and Nichols 2005).  

Spatial analysis of crash data 

Aguero-Valverde and Jovanis (2006) developed Full Bayes Hierarchical models with 

county-level crash frequency and common categories of independent variables 

including: socioeconomic, roadway geometry, and environmental characteristics.  

These models were compared with traditional Negative Binomial estimates. The 

results showed that spatial correlation, time trends, and space-time interactions are 

significant at the county-level Full Bayes Hierarchical models. Huang, Abdel-Aty, 

and Darwiche (2010) proposed a Bayesian spatial model to account for the variation 

of county-level crash risk in Florida. They used four types of data (crash data, road 

                                                           
1  Now its name has been changed to Hampton Roads Transportation Planning Organization (HRTPO) 
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and traffic characteristics, demographic and socioeconomic data, and spatial features 

of each county) for county-level analysis to develop linear regression models by 

taking the natural logarithm to the variables. Wang and Kockelman (2007) considers 

the spatial and temporal correlations across crash observations in China using a 

seemingly unrelated regression (SUR) model.  

TAZ Level Crash Analysis 

There are community (TAZ) level collision prediction models to evaluate the 

roadway safety of regional transportation plans by forecasting crash frequency 

(Lovegrove, Lim, and Sayed 2010; Lovegrove and Sayed 2006; de Guevara, 

Washington, and Oh 2004; Hadayeghi, Shalaby, and Persaud 2003). Macroscopic 

safety analysis using zonal level data and TDFM has been accomplished with a zonal 

safety planning model. Aggregated TAZ level crash prediction or collision prediction 

models were developed based on social-demographic data that are used in trip 

generation (Siddiqui, Abdel-Aty, and Huang 2011; Siddiqui 2009; Naderan and 

Shahi 2010) and network structure (Lovegrove and Litman 2008; G. R. Lovegrove 

and Sayed 2006). An et al. used TDFM and traffic analysis zone (TAZ) level data to 

predict planning-level crashes for estimating safety benefits from two add-capacity 

projects (An, Casper, and Wu 2011). Hadayeghi, Shalaby, and Persaud (2007) 

developed a TAZ level crash prediction model that can be commonly used in urban 

transportation planning. They developed 23 multiple linear regression models by 

selecting combinations of independent variables in model development, including 

land use, network, traffic, demographic, and socioeconomic data. 
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Planning Level Crash Analysis 

There has been some research effort to incorporate crash (part of incidents) into the 

planning process. Hamidi, Fontaine, and Demetsky (2010) developed a safety 

performance function (SPF)-based methodology to identify high-crash sections of 

primary roadway in Virginia, by using crash data and roadway geometry data. Miller, 

Garber, and Josephine (2010) and Miller, Garber, and Kamatu (2011) developed a 

resource guide for enhancing the incorporation of safety into the regional planning 

process. The guide proposed eight steps for integrating safety into the regional 

transportation planning process with Virginia examples. 

Real Time Crash Prediction Model 

Drawing from the relationship between traffic flow conditions and the likelihood of 

crashes, Golob, Recker, and Alvarez (2004) proposed a tool for the real-time safety 

assessment of any traffic flow pattern on an urban freeway. They conducted a 

clustering analysis with macroscopic traffic flow data (eight traffic regimes with 

speed and volume) and crash data (type, location, severity, etc.) on three-lane 

freeways. Pre-crash data with 30-second intervals for 27.5 minutes were used to 

prepare four traffic flow variables of speed and volume. As a safety performance 

monitoring tool, from comparing traffic flow data before and after crash, they 

accessed the benefits of Advanced Traffic Management System (ATMS) operations 

or other Intelligent Transportation System (ITS) applications, forecasted the safety 

implications of proposed projects by evaluating the level of safety implied by traffic 
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simulation outputs, prioritized higher risk locations from simulation results, and 

identified where/when crash would occur on freeways. 

2.3.2 Incident duration Model 

As shown in  Figure 2.4, the incident duration time consists of four phases: detection 

time, response time, clearance time, and recovery time (Transportation Research 

Board 2000; Smith and Smith 2000). The HCM 2010 does not provide any guidance 

regarding the estimation of incident duration but some researchers (L08) under 

SHRP 2 have been examining non-recurrent congestion, including incident duration 

and frequency, to revise HCM 2010 Chapter 35 ‘Active Transportation & Demand 

Management’ and Chapter 36 ‘Travel Time Reliability’ (Transportation Research 

Board of the National Academies 2013).  

 

 

Source: (Smith and Smith 2001) 

 Figure 2.4 Typical 4 Phases of Freeway Incident over Time 
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1) Detection time: the time period between the incident occurrence and the 

incident detection or reporting by stakeholders, including traffic operators, 

police officers, or the freeway response team. 

2) Response time: the time period between the incident detection and the arrival 

of the emergency treatment team at the scene. 

3) Clearance time period: the time between the arrival of the treatment team at 

the scene and the incident being cleared, including treating victims, closing 

lanes, and removing vehicles and debris. 

4) Recovery time: the time period between incident clearance and the 

resumption of normal traffic flow without any upstream congestion caused by 

the incident. 

Incident duration could be analyzed on the time-spatial diagram. Abdel-

Rahim and Khanal (2001) showed a diagram representing incident-based delay with 

and without an incident management system on the time-spatial dimension as shown 

in Figure 2.5. The horizontal axis shows time periods from incident occurrence to 

traffic conditions returning to normal, similar to the phases in Figure 2.4. 
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Adopted from (Abdel-Rahim and Khanal 2001) 

Figure 2.5 Incident-Based Delay With and Without an Incident Management 

System 

 

The vertical axis represents the distance of cumulative arrivals and departures. 

The area with dashed lines represents the total delay from the incident (vehicle-time) 

when an incident management system is not available. The black colored area 

represents the total delay from the incident when an incident management system is 

used. Thus, the total delay from the incident and incident duration is reduced when 

an incident management system is used.  
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Various statistical models and techniques have been applied and analyzed for 

modeling incident duration as below: 

• Probabilistic model (lognormal distribution) (Golob, Recker, and Lernard 

1987),  

• Conditional probability model (Log-logistic hazard-based duration model) 

(Jones, Janssen, and Mannering 1991; Nam and Mannering 2000) 

• Analysis of variance model with truck involvement (Giuliano 1989) 

• Linear regression (Garib, Radwan, and Al-Deek 1997),  

• Time sequential model (truncated linear regression) (Khattak, Schofer, and 

Wang 1994),  

• Classification tree model (Smith and Smith 2000),  

• Decision trees regression (Wei Wu, Pushkin, and Kaan 1998; Abdel-Aty, 

Keller, and Brady 2005; He et al. 2011),  

• Hybrid-tree based quantile regression model (He et al. 2011) 

• Ordered Probit model (Duncan, Khattak, and Counclil 1998; Li et al. 2010) 

• Traffic incident duration prediction model based on support vector regression 

(Wei-wei Wu, Chen, and Zheng 2011) 

• Influence factor analysis for incident duration by using analysis of variance 

(ANOVA) to apply Cusp Catastrophe Model (CCM) (Cong, Wang, and Fang 

2011) 

• Bayesian Decision Tree Method (Yang, Zhang, and Sun 2008) 
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Garib, Radwan, and Al-Deek (1997) estimated the duration of incident delays 

using a regression model. Variables used in the model development have been 

grouped into four categories: incident characteristics, traffic characteristics, weather 

condition, and geometric characteristics, as shown in Table 2.2. 

Table 2.2 Variables used in the Incident Duration Model 

Category Variable Used in the Model 

Incident Characteristics 

 

 

 

 

Incident duration 

Number of vehicles involved in the incident 

Number of lanes affected by the incident 

Incident type (in-lane accident, in-lane breakdown, 

shoulder accident, shoulder breakdown, truck involvement) 

Traffic Characteristics 

 

 

Average traffic flow upstream of the incident before its 

occurrence 

Capacity reduction caused by the incident 

Weather Condition Rainy or dry 

Geometric 

Characteristics 

Occurrence within bottleneck 

Number of segments upstream of the incident 

Source: (Garib, Radwan, and Al-Deek 1997) 

 

 Gomez (2005) claimed that incident duration has a Weibull distribution. 

Incident time, incident location, vehicle type, number of vehicles involved in the 

crash, and severity of the crash are the main factors that influence the incident 

duration. He developed the incident duration model based on Fuzzy logic theory. 

The following variables were used in the model development: 

• vehicle size 

• breakdown time, location, duration 
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• vehicle number 

• crash time 

• crash severity, duration 

Ramani et al. (2009) used various variables, including: time, crash type, 

severity, disposal type, etc., in developing their incident duration model. All incident 

duration data were split into 7 categories at an increment of 20 minutes. The 

reliability of the model is quite satisfactory. The correct estimation ratio of the model 

is 69.11%. Hallenbeck, Ishimaru, and Nee (2003) claimed that models tend to 

overestimate the duration times when load spill is used as a dummy variable. It was 

simply because several incidents with load spill data had excessively long clearance 

times and a variety of load spill types were not incorporated into the models. 

Studies have shown that modeling incident duration is very difficult (Wang, 

Chen, and Bell 2002). First, there is not enough data. Some variables cannot be 

obtained, either because of limited facilities available, or because they were not 

realized. Secondly, some variables are linguistic variables, such as weather 

conditions, date, vehicle type, etc. Thirdly, some variables are very subjective and 

difficult to mathematically quantify. For example, severity of incident is normally 

described as "not serious”, “serious", or "very serious". 

The primary drawback of linear regression models is the bulkiness of the 

predictive equation due to the categorical nature of independent variables resulting in 

a lot of dummy variables. Another disadvantage of using linear models is in 
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assuming a ‘simplifying’ linear relationship between the dependent variable and the 

predictor variables (Gomez 2005). Golob, Recker, and Lernard (1987) claimed that 

none of the forecasting models produced results that were accurate enough to 

warrant implementation in an operational incident management system. The 

shortcomings of accident data greatly contributed to the poor reliability of 

forecasting models. Golob et al. (1987) concluded that the classification tree model 

stands out as a better choice to be used in an incident management system. 

Golob et al. (1987) recently proposed an incident duration prediction model 

with a hybrid tree-based quantile regression using unbiased recurrent partitioning 

(URP) on both incident and traffic data.  It showed that the URP trees and the hybrid 

tree-based quantile regression model has a higher prediction accuracy than the other 

models, including classification, regression tree (CART), and the K-nearest neighbor 

approach (He et al. 2011). 

 

2.3.3 Capacity Reduction Model from Incidents 

Regarding incident duration, a case study from Washington state shows useful 

information as described below (Hallenbeck, Ishimaru, and Nee 2003): 

• Lane blocking incidents are responsible for between 2 and 20 percent of total 

daily delay in urban freeway corridors. 

• Non-recurrent delay generally ranges between 30 to 50 percent of all peak 

period, peak direction delay, but it is between 30 and 70 percent of total daily 

delay. 
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• Lane blocking incidents generally account for between 10 and 35 percent of 

all non-recurrent delay. 

• In peak periods, on any facility, a lane blocking incident of even a short 

duration tends to result in substantial delay. 

Capacity reductions due to traffic accidents or vehicular breakdowns are 

generally short-lived, ranging from less than 1 hour (for a minor fender-bender 

involving only passenger vehicles) to as long as 12 hours (for a major accident 

involving fully loaded tractor-trailer rigs) before they are cleared. The effect of an 

incident on capacity depends on the proportion of the traveled roadway that is 

blocked by the stopped vehicles, as well as on the number of lanes on the roadway at 

that point (Transportation Research Board 2010).  

Table 2.3 and Table 2.4 show the proportion of available freeway capacity 

under incident conditions. The estimated reduced capacity from the two tables were 

based on extensive survey data (Chin et al. 2004; Transportation Research Board 

2010). The freeway capacity is reduced even when a disabled vehicle is located in 

the shoulder lane. The magnitude of reduced capacity varies by the number of 

freeway lanes going in that direction. It was found that shoulder disablement seems 

to have little or no effect when the total number of lanes is more than two. Other 

research has found that the loss of capacity is usually greater than the proportion of 

original capacity that was physically blocked (Lindley 1987). 
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Table 2.3 Reduced Capacity Due to Freeway Crashes  

Effect of Crash Number of Freeway Lanes 

1 2 3 4 5+ 

Shoulder 

1 Lane Blocked 

2 Lane Blocked 

3 Lane Blocked 

4 Lane Blocked 

0.450 

0.000 

N/A 

N/A 

N/A 

0.75 

0.32 

0.00 

N/A 

N/A 

0.84 

053 

0.22 

0.00 

N/A 

0.89 

0.56 

0.34 

0.15 

0.00 

0.93 

0.75 

0.50 

0.20 

0.10 

Adopted from (Chin et al. 2004) 

 

Table 2.4 Proportion of Freeway Segment Capacity Available under Incident 

Conditions 

Number of 
Freeway Lanes 
by Direction 

Shoulder 
Disabled 

Shoulder 
Accident 

One Lane 
Blocked 

Two 
Lanes 
Blocked 

Three Lanes 
Blocked 

2 

3 

4 

5 

6 

7 

8 

0.95 

0.99 

0.99 

0.99 

0.99 

0.99 

0.99 

0.81 

0.83 

0.85 

0.87 

0.89 

0.91 

0.93 

0.35 

0.49 

0.58 

0.65 

0.71 

0.75 

0.78 

0.00 

0.17 

0.25 

0.40 

0.50 

0.57 

0.63 

N/A 

0.00 

0.13 

0.20 

0.26 

0.36 

0.41 

Adopted from (Transportation Research Board 2010) 

 

In the case of a blocked lane, the loss of capacity is likely to be greater than 

simply the proportion of original capacity that is physically blocked. For example, 

when two lanes are blocked in a four-lane freeway, the freeway capacity may be 

effectively reduced to 25% of its original capacity. The reduction may range from an 
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extra 5% capacity loss for a single-car accident and one emergency vehicle to an 

extra 25% capacity loss for a multivehicle accident with several emergency vehicles. 

The added loss of capacity arises because drivers slow to look at the incident while 

they are abreast of it and are slow to react to the possibility of speeding up to move 

through the incident area. 

While some research literatures have shown mean capacity reductions per 

various cases, other research literatures have developed forecasting models. However, 

the forecasting models have not met industry expectations (Smith, Qin, and 

Venkatanarayana 2003; Transportation Research Board 2000; Chin et al. 2004; 

Knoop, Googendoorn, and van Zuylen 2008; FHWA, USDOT 2000; Transportation 

Research Board 2010). Most literatures have suggested that incident capacity 

reduction is a random variable rather than a deterministic value, due to the variations 

in incident characteristics (e.g., duration, extent, time of day, and traffic demand). 

Modeling incident capacity reduction as a random variable could provide a more 

realistic estimation of incident characteristics. 

 Lindley (1987) developed a methodology to quantify urban freeway 

congestion using the highway performance monitoring system (HPMS) database. He 

determined the reduction in section capacity due to an incident as a function of the 

total number of lanes and the number of blocked lanes.  

 Roess, Prassas, and McShane (2004) presented an example to illustrate the 

effect of capacity reduction on the volume to capacity ratio (v/c). They considered 

three different values for v/c ratios and then they simulated the losses in capacity due 
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to an incident by changing these three values by different percentages. They 

concluded that decreasing capacity by 10% or more may change freeway operation 

from a functional system to an oversaturated system; this also depends on the 

demand level at the capacity reduction time. 

The rubbernecking factor is also responsible for a reduction in capacity in the 

direction of travel opposite to that in which the accident occurred. No quantitative 

studies of this effect have been published, but experience suggests that it depends on 

the magnitude of the incident (including the number of emergency vehicles present). 

The reduction may range from 5% for a single-car accident and one emergency 

vehicle to 25% for a multivehicle accident with several emergency vehicles. 

Due to the limitation of available data, it was assumed that the capacity losses 

on principal arterials were the same as for crashes on freeways. Since most arterials 

do not have a shoulder, it was assumed that any crash would produce a lane closure, 

independent of the type of crash and the number and type of vehicles involved. It 

was also assumed that the number of lanes closed was the same as for freeways. 

However a severe crash on a principal arterial would likely close lanes in both 

directions of traffic. To account for this, the total number of lanes in both directions 

was considered when assigning the number of lanes closed. 

Incident delay on a freeway depends largely on the capacity at the incident 

location, which is determined by the drivers’ behavior at the accident location 

(Knoop, Googendoorn, and Van Zuylen 2008). Knoop et al. (2008) used video traffic 

flow data captured by a helicopter around two accidents to investigate delay that was 
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caused by an incident. Counts show that the (outflow) capacity of the remaining 

lanes is about 50% lower than the (free-flow) capacity of the same number of lanes. 

This means that road capacity in the opposite direction is reduced by half due to the 

rubbernecking effect. The capacity of the road in the direction of the accident is 

reduced by more than a half because not all lanes are in use (Knoop, Googendoorn, 

and Van Zuylen 2008). 

2.3.4 Incident Analysis with Network Simulation 

There are various models to estimate incident impacts with network simulation. 

Przybyla et al. (2011) evaluated the impact of incident information of a network 

based on stochastic capacity due to probabilistic crashes on simple corridor networks. 

Fu and Rilett (1997) estimated real-time incident delay in dynamic and stochastic 

networks and Li, Lan, and Gu (2006) proposed a stochastic incident delay model to 

estimate incident delay and its uncertainty on freeway networks. Some researchers 

proposed methodologies to estimate travel time using dynamic traffic assignment 

(DTA) under incident conditions (Ngassa 2006; Kamga, Mouskos, and Paaswell 

2011) and to quantify the benefits of ATIS strategies under various stochastic 

capacity conditions assuming incident situations (Fu and Rilett 1997; Ngassa 2006; 

Bian 2008; Thomas and Robert 2008; Li, Zhou, and Rouphail 2011a; Li, Zhou, and 

Rouphail 2011b).  

Previous research conducted incident impact analysis using network 

simulation tools and/or travel demand forecasting models. Some researchers 
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proposed frameworks of ATIS strategies for driver groups who have different level 

of traffic information associated with incidents (Cambridge Systematics 2013b; Li, 

Lan, and Gu 2006; Przybyla et al. 2011; Li, Zhou, and Rouphail 2011b). They 

focused on static deterministic user equilibrium under stochastic capacity and/or 

dynamic traveler behavior modeling within the classical user equilibrium analysis. 

They set a simple incident case on a toy network to examine incident impact on the 

network with no specific incident situation including crash type, frequency, duration, 

capacity reduction, etc. Moreover, they did not examine any detailed relationships 

between incident and traffic simulation for models of large MPOs. 

 Mahmassani et al. (2009) developed dynamic traffic assignment (DTA) 

models that consider weather impact, including rainfall and snow, for traffic 

estimation and prediction. They investigated user responses over various inclement 

weather scenarios such as traffic advisory information and control actions. Samba 

and Park (2011) proposed a probabilistic model to determine the reduction of traffic 

demand from both inclement rain and snowfall conditions, which was investigated 

based on weather type, severity, duration, and time of day. Lam, Shao, and Sumalee 

(2008) developed a model to consider the impacts of adverse weather conditions 

such as different rainfall intensities on a road network with uncertainties. Chin et al. 

(2004) proposed a three-step process to estimate delay from vehicle crashes as 

described below: 

1. Assign vehicle crash on the highway using the Monte Carlo simulation 
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2. Estimate capacity reduction based on look-up tables that consist of crash type, 

number/ type of vehicles involved, crash location, time of day, and duration. 

3. Estimate delay based on capacity reduction, vehicle demand, time of day, day 

of week, and duration of capacity reduction 

 

2.4 Volume Delay Function (VDF)  

There has been much advanced research on functional forms, comparisons of their 

performance, and analytical applications regarding volume delay functions for the 

TDFM (Akcelik 1991; Skabardonis and Dowling 1997; Dowling, Singh, and Cheng 

1998; Kurth, Hout, and Ives 1998; Singh 1999; Akcelik 2003; Cetin et al. 2011; 

Cetin et al. 2012).  

 Cetin et al. (2011) extensively reviewed various volume delay functions for 

their functional forms and listed different terms of volume delay functions from the 

basic relationship between traffic flow and travel speed as shown in Table 2.5. 

. 

 
  



47 
 

Table 2.5 Terms of Volume Delay Function by Researchers 

Term Author, Year 

volume-delay function Branston, 1976 

link-capacity function  Branston, 1976 

link performance function  Sheffi, 1985 

congestion function  Spiess, 1990 

travel time-flow function  Akcelik, 1991 

link-cost function  Skabardonis and Dowling, 1997 

speed-flow function Ortúzar and Willumsen, 2001 

cost-flow function Ortúzar and Willumsen, 2001 

Source: (Cetin et al. 2011) 
 

VDF Functional Forms 

Klieman et al. (2011) developed VDFs for both HOV and general purpose lanes on 

the freeway and arterials for several area types using field data from Maricopa 

Association of Governments (MAG). They estimated parameters of several 

functional forms, including the Bureau of Public Roads (BPR), Spiess conical delay, 

and Akcelik functions. From their analysis, the BPR function showed better 

goodness-of-fit to the data than the other functions. User equilibrium traffic 

assignments using BRP VDFs produced more accurate speeds and smaller errors 

than existing VDFs. 

 Lee and Munn (2009) estimated Akcelik VDFs per facility types for travel 

demand models in Virginia after investigating speed-flow relationships. Cetin et al. 

(2012) used a Genetic Algorithm (GA) to estimate the optimal parameters of various 
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VDFs, including BPR, Conical, and Akeclik functions in their model calibration. The 

following list summarizes their research: 

• Evaluated speed-flow relationships per facility types including freeways, 

arterials, collectors 

• Estimated free flow speed and capacity from field data 

• Tested and calibrated VDFs of BPR, Conical, and Akcelik per facility types. 

• Conducted goodness of fit test using R�, %RMSE, and Chi-Square test 

• Concluded that BPR performed well across facility types but suggested 

Akcelik for its more rigorous theoretical foundations  

Cetin et al. (2011) categorized existing VDFs into five groups based on 

functional forms and characteristics, as shown in Table 2.6, which consists of linear 

function, curvilinear function, logarithmic/ hyperbolic function, queuing based 

function, and signal based function.  
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Table 2.6 (a) Summary of Volume Delay Functional Form 

Authors Equation and parameters Comments Author (Year) 
Linear 
Functions 

T=T0+αC’p+α(V’-C’p)    for V’<C’p 

T=T0+αC’p+β(V’-C’p)   for V’ ≥C’p 

 Irwin, Dodd, and Von Cube   
(1961) 

T=T0+αC’p+α(V’-C’p)   for V’<C’p 

T=T0+αC’p+ β(V’-C’p)  for C’p≤V’≤C’s 

T=T0+αC’p+ β(V’-C’p)+ γ(V’-C’s)   for V’>C’s 

 Irwin, Dodd, and Von Cube   
(1962) 

Curvilinear 
Functions 

T=T0*exp(V/Cs)  Exponential function Smulick (1961) and Smock 
(1962) 

T=T0*2
(V/Cp) where V/Cp<=2, polynomial 

function 
Schneider (1963) and Soltman 
(1965) 

T=T0*(1+α(Q/Cp)
 β) Alpha=0.15, Beta=4 Bureau of Public Roads (1964) 

T=T0*α
 (V/Cp)^β  1.0<Alpha<1.7 Overgaard (1967) 

T=T0*(1+α(Q/Cs)
 β) Alpha=2.62, Beta=5 Steenbrink (1974) 

Logarithmic 
and 
hyperbolic 
functions 

T=T0+ln(α)-ln(α-V)    for V≤α Mosher (1963) 

T=T0+ βln(α)-βln(α-V)   for V≤Cs 

T=T0+ βln(α)-βln(α-Cs)+Vβ/(α-Cs)  for V>Cs 

where α>Cs Mosher (1963) 

T=β-α(T0-β)/(V-α)   for V≤α   Mosher (1963) 

T=β-α(T0-β)/(V-α)   for V≤Cs 

T= β-α(T0-β)/(Cs-α)+Vα(T0- β)/(Cs-α)2  for V>Cs 

where α >Cs, T0> β Mosher (1963) 

T = α+ β�Q′ − γ	 + 
�β��Q′ − γ� + δ�  Traffic Research Corporation 
(1966) 

T=T0 * (2+(α2*(1-V/C)2+β2)1/2-α*(1-V/C)-β) where β=(2α-1)/(2α-2), α>1 Spiess (1990) 

Source: (Cetin et al. 2011) 
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Table 2. 6(b) Summary of Volume Delay Functional Form (Continued) 

Authors Equation	and	parameters	 Comments Author (Year) 

Queuing-

based 

Functions 

t = ��[1 + "#x/�1 − x]  Davison (1966) 

t = ��'1 + 0.25,-	[z + �z� + 8"#x/r-�.0]	1  Akcelik (1981) 

t = ��'1 + 0.25,-	[z + �z� + 8"2x/�Qt�r-�.0]	1 
 
  

"2: Freeway=0.1, 
Uninterrupted arterial=0.2, 
Interrupted arterial=0.4, 
Secondary interupted=0.8, 
Secondary high friction=1.6 

Akcelik (1991) 

Signal-

based 

Functions 

T=T0    for V/Cs≤0.6 

T=T0+α(V/Cs-0.6)   for V/Cs>0.6 

 Campbell, Keefer, and Adams 

(1959) 

T=min[T0, 1/β(1- γV)]+nα/(1-V/λS)  Wardrop (1968)  

T=T0/(1- γV)+αβ/(α-V)/L where α>Cs, γ<1/Cs Wardrop (1968) 

T=(T0+0.5NC(1-g/C)2PF)(1+0.05(V/C)10)  Skabardonis and Dowling (1997) 

T=T0+0.9(C(1-g/C)2/2(1-g/C*V/C) +(V/C)2/2q(1-

V/C)) 

where 0<=V/C<1, q=arrival 

rate (veh/sec) 

Xie, Cheu, and Lee (2001) 

Source: (Cetin et al. 2011) 
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Where: Cp: practical capacity a link, C’p: practical capacity per lane of a link,  
 CS: state-state capacity a link, C’S: state-state capacity per lane of a link 
 α: delay parameter to be estimated 

Source: (Cetin et al. 2012) 

Figure 2.6 Relationship between Flow and Travel Time per VDF Group
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FFS Estimation 

Dowling, Kittelson, and Zegeer (1997) investigated various techniques to estimate 

speed and service volume for planning applications. They examined speed-flow 

relationships of various methods including BPR type methods, HCM methods, and 

other methods using traffic operation tools used in different areas for uninterrupted 

and interrupted flow facilities. They also showed how travel speeds are changed over 

different levels of volume/capacity ratio in various VDFs. The BPR type function, as 

shown Equation (2.4), is still widely used in most TDM applications.   

 34 = 3� 51 + 6 789:;<       Eq. (2.4) 

where: 34: Congested link travel time 

 3�: Link travel time at free flow speed  

 6 and =: Parameters 

 v: Link volume 

 c: Link capacity 

However, a BPR type VDF cannot explicitly consider delays due to 

oversaturation conditions at intersections. Unlike the BPR function, the Akcelik 

function considers oversaturation conditions and delays at both the node and link 

simultaneously (Akcelik 1991; Dowling and Skabardonis 2008). Akcelik function 

has advantages as below: 

 



53 
 

• Akcelik VDFs consider intersection approach delays, which are based on 

simple gap-acceptance theory, similar to those used in the SIDRA 

intersection modeling software  

• Akcelik VDFs have special procedures for modeling over-capacity conditions 

on the motorway 

Akcelik (2003) states that the HCM speed-flow models for both basic 

freeway segments and multilane highways indicate some features that do not appear 

to be consistent with expected traffic flow characteristics related to in-stream vehicle 

interaction and queuing considerations. The HCM speed-flow models suggest that, 

when traffic flow increases, the rate of delay increase is much higher than the rate of 

speed reduction. Further, the traffic delay is larger at higher roadway facilities. 

Singh (1999) claimed that the Akcelik function has been applied successfully 

in their applications and analytical comparisons with other functional forms from 

many studies. Dowling et al. (1998) claimed that the Akcelik curve is as accurate as 

the updated BPR curve and has the advantage of correctly predicting the linear 

impact of congestion on speeds. The Akçelik curve results in significantly improved 

traffic assignment run times and provides more accurate speed estimates than the 

standard or modified BPR curves (Dowling, Singh, and Cheng 1998). In the Akcelik 

function, link parameters (i.e., capacity, free speed, etc.) are allocated globally based 

on defined link type.  The Akcelik function has variables to assess intersection 

approach delays as well. Intersection approach capacities are based on simple gap-
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acceptance theory and have special procedures for modeling over-capacity 

conditions on the motorway (Akcelik 1991). 

When evaluating data for demands less than the approach capacity, many 

equations perform equally as well. The fitted BPR, fitted exponential, and the fitted 

Akcelik equations all performed equally as well. The fitted Akcelik equation 

performed slightly better because it adds signal delay to the segment free-flow travel 

time, rather than treating delay as a multiplicative factor of the segment length, as is 

done in the BPR and exponential equations (Dowling et al., 2008). 

When evaluating the speed-flow equations against theoretical delays for 

hourly demands greater than hourly capacities, only the Akcelik equation produced 

the expected delays due to oversaturated conditions at the downstream signal on a 

street segment. The other equations significantly underestimated delay within the 

1.00 to 2.00 v/c range. At significantly higher v/c’s the BPR curve eventually catches 

up to and surpasses the delay estimates produced by queuing theory and the Akcelik 

equation. 

The ideal speed-flow curve would not cross the theoretical solid line for 

queue delay. As can be seen, both the standard and fitted BPR curves cross the 

theoretical queuing delay line. Both of these curves underestimate the delay due to 

queuing when demand exceeds the real world capacity of an intersection at the end 

of the link. The fitted Akcelik curve is consistent with the queue delay line, because 

the Akcelik curve is derived from classical queuing theory.  
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 Kalaee (2010) found that that for v/c < 1, the calibrated BPR functions has 

the best overall performance among tested models for studied locations, but standard 

BPR functions overestimate travel times for v/c ratios close to 1. The conical 

function highly overestimates travel times for v/c < 1. The conical function assumes 

that the travel time at capacity is two times larger than the free-flow travel time, 

which is not always true. When v/c > 1, the Akçelik and the HCM 2000 models were 

found to be the most consistent models with queuing theory. The Akçelik and HCM 

2000 models underestimate travel times for v/c < 0.9 and overestimate travel times 

for v/c close to 1. Akcelik has two components - segment (link) delay and 

intersection (node) delay. Total delay is the sum of both link delay and node delay. 

� = �> + �?           Eq. (2.5) 

�> = �@> + 0.253 A�B − 1 + 
�B − 1� + CDEFGH I       Eq. (2.6) 

�? = 0.5J �KLM/9NKLFM/9            Eq. (2.7) 

Where, t = Total delay 

�> =Segment delay, 

�? = Intersection delay, 

�@>= Free-flow travel time per unit distance, 

X = Degree of saturation (volume-to-capacity ratio), 

T = Duration of analysis period (h), 

c = Capacity (vph), 

JA= Delay parameter (unitless), 



56 
 

 O = Green time, 

J = Cycle length 

The delay parameter JA corresponds to the quality of service provided by the 

road section and is independent of the traffic flow but sensitive to the value of travel 

time at capacity (Dowling et al. 2004; Akcelik 1991). To obtain a rough estimate of 

the delay parameter, Akcelik provided the following formula: 

"P = �GH ��G − ���        Eq. (2.8) 

Where,�G: Travel time at capacity  

 ��: Travel time at free flow 

When evaluating data for demands less than the approach capacity, many 

equations, including the fitted BPR, the fitted exponential, and the fitted Akcelik 

functions, all performed equally well.  However, the BPR type curves underestimate 

the delay due to queuing when demand exceeds the real world capacity of an 

intersection at the end of the link.  

The fitted Akcelik curve is consistent with the queue delay line because the 

Akcelik curve is derived from the classical queuing theory. When v/c > 1, the 

Akcelik and the HCM 2000 models were found to be the most consistent with 

queuing theory (Dowling and Skabardonis 2008). In addition, the Akcelik equation 

assumes no initial queue at the start of the flow period. The HCM 2000 suggests the 

modified speed-flow equation that calculates the extra delay caused by the leftover 
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queue from the prior period and adds to the Akcelik equation (Dowling et al. 2004; 

Transportation Research Board 2000).  

Recently, a couple of researchers used surrogate measures to consider over 

saturated traffic conditions in parameter calibration (Lee and Munn 2009; Klieman et 

al. 2011; Huntsinger and Rouphail 2011).  V/C was derived by dividing the given 

density by the density at the maximum flow (capacity), so that the oversaturated 

traffic condition at V/C>1.0 was available to be used in curve fitting with data (Lee 

and Munn 2009; Klieman et al. 2011). The measured queue at the bottleneck was 

added to the capacity at the bottleneck to adjust demand, which was used to calculate 

the Demand over Capacity (D/C) ratio as a surrogate measure of V/C in VDF 

calibration (Huntsinger and Rouphail 2011). 

Intersection delay at intersection  

Although recent research efforts considered the delay at a node, including signalized 

intersections (Mazloumi, Moridpour, and Mohsenian 2010; Paschai, Yu, and Mirzaei 

2010), they used BPR type functions for link delay estimation and their application is 

limited to undersaturated traffic conditions. The functional form of VDF should be 

continuous, monotonically increasing, and differentiable to guarantee convexity, 

convergence, and unique solution, and must be defined for oversaturated regions as 

well (Sheffi 1984). 

The Davidson function is not defined for flows over the practical capacity, 

and the travel time goes to infinity as the link flow approaches the practical capacity. 
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Akcelik proposed modified forms of Davidson's function to obtain finite values of 

travel time for flows near and above capacity (Akcelik 1991). As identified by 

Akcelik, his function does relate to intersection delay modeling and indeed forms the 

basis of the SIDRA intersection modeling software. For interrupted facilities, replace 

the free-flow travel time �@ with ��. 

�� = �? + QR  , which is the travel time in seconds at zero flow 

QR	is the minimum delay per unit distance (sec/km) at zero flow conditions 

QR = 0 for uninterrupted facilities.  

QR = 0.5,�1 − S, at a signalized intersection with zero flow (or flow ratio 

y=0) 

= 0.5J �1 − S�1 − T = 0.5J �1 − S�1 − US  

= 0.5J �1 − O/J�1 − BO/J  

Where  , =	effective red time 

 S = green time ratio (O/J) 

 O=green time and  

J=cycle length 

From the comprehensive comparison of different VDFs, Cetin et al. (2011) 

proposed the below recommendations for choosing the correct VDFs; 
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• If link counts are used, use the BPR function and Genetic Algorithm (GA) to 

optimize the VDF parameter values.  

• BPR parameters range 0<α<2.0 and 1.0<β<10.0.  

• If speed-volume data is used, the Akcelik equation provides more realistic 

travel times than the conical and BPR functions, especially when v/c exceeds 

1.0.  

 

2.5 Chapter Summary 

This chapter provided an overview of the long range transportation planning (LRTP) 

process and travel demand forecasting modeling (TDFM). The various incident 

models for forecasting frequency, duration, reduced capacity and VDFs were 

reviewed. Research literature has indicated that the incident duration modeling is 

difficult due to the lack of data availability at some facilities, and linguistic and/or 

subjective variables such as weather conditions and incident severity. A recent 

research showed that the URP trees and hybrid tree-based quantile regression model 

has a higher prediction accuracy than previous models. There is literature to suggest 

that incident capacity reduction is a random variable rather than a deterministic value 

due to the variations in incident characteristics. 

For incident impact analysis using network simulation tools and/or travel 

demand forecasting models, researchers used a simple incident case on a toy network 

to examine the incident impact on the network without taking into account specific 

incident situations, like crash type, frequency, duration, capacity reduction, etc. 
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Regarding the VDFs, there are many advanced analytical applications 

regarding volume delay functions for the TDFM.  Even though BPR type functions 

are still widely used in TDFM applications, it cannot explicitly consider delays due 

to oversaturation conditions and intersections. Unlike the BPR function, the Akcelik 

function considers oversaturation conditions and delays at both the node and link 

simultaneously. The Akcelik curve is as accurate as the updated BPR curve and has 

the advantage of correctly predicting the linear impact of congestion on speeds. The 

fitted Akcelik curve is consistent with the queue delay line because the Akcelik 

curve is derived from classical queuing theory.  
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CHAPTER 3. METHODOLOGY AND DATA PREPARATION 

3.1 A Framework Incorporating Incident Impact in the TD FM 

Figure 3.1 shows the proposed framework of the TDFMI. There are three major 

differences when TDFMI is compared to the traditional TDFM. As shown in the 

green shaded steps in Figure 3.1, the major differences between TDFM and TDFMI 

are: the use of incident-related data as additional network information and the Traffic 

Assignment step in the four step modeling process. Prior to running the traditional 

four step model, incident data and incident-related traffic data are prepared. For the 

2009 base year model, historical incident data are analyzed and prepared for 

individual weekdays as key inputs of TDFMI. 

For the 2034 future year model, annual incidents are forecasted and assigned 

on future networks. In order to forecast future incidents, loaded link volumes from 

future TDFM, the safety performance function (SPF), and incident forecasting 

models are used. Both base year and future year incident data are incorporated into 

the existing base year and the future year TDFM networks with additional node and 

link attributes later. Networks incorporating incident data, referred as TDFMI 

networks, have three incident related attributes: incident frequency, reduced capacity, 

and incident duration. 
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Figure 3.1 Framework of TDFMI for Incorporating Inc ident Impact into Travel 

Demand Forecasting Modeling Process 

 

As opposed to the traditional TDFM structure that has a feedback loop 

between trip distribution through trip assignment, the TDFMI, on this dissertation 

research, assumes that all input/outputs from three steps (i.e., trip generation, trip 

distribution, and mode choice) prior to traffic assignment are not changed and remain 

the same for the whole modeling process. The main reason why this assumption is 

more reasonable in the TDFMI is that travelers rarely have the perfect information 

on incidents that occur randomly in the model area. If the feedback loop between trip 

distribution and trip assignment in the TDFM was applied to the TDFMI, there 

would be a significant influence in the highway skims that determine the amount of 
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trips between origin and destination in the trip distribution step. This overestimated 

impact would be propagated and exaggerated in the sequential steps - mode choice 

and trip assignment. This is obviously a different situation with the typical case for 

the scenario analysis, such as a long term road closure for road work.  

TDFMI addresses short term route choices made in response to unforeseen 

incidents.  Accordingly, it would not be appropriate to use such network 

conditions—which change daily—to modify the trip generation, distribution, or 

mode choice steps.  Thus, there is not a feedback loop from the results of this traffic 

assignment piece to these earlier steps. If one had reason to believe, however, that 

somehow knowledge of incidents should inform travelers’ long term residential, 

employment, and mode choices, then the computational complexity increases.  (Note 

that the required model execution time would be more than doubled since one would 

have to re-execute the steps of trip distribution, mode choice, and traffic assignment 

until convergence was achieved.)  

For the base year model, since incident records vary for each of the 249 

individual weekdays in 2009, 249 TDFMI networks, one for each weekday are 

prepared for the 249 runs of traffic assignments. Weekends and holidays are 

excluded from this study as the TDFM and the TDFMI have focused on weekday 

traffic. For the future year model, multiple TDFMI networks are also prepared to 

consider daily variation of incident impact on the network. Existing O/D trip tables, 

after the mode choice step, are used with TDFMI networks in the traffic assignment 

step. In the traffic assignment step, VDF is modified to accommodate incident 
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impacts (incident frequency, reduced capacity, and incident duration) within its 

functional form.  

For the base year model, traffic assignment is repeated 249 times with 

different TDFMI networks to simulate the incident impact of each of the 249 

individual weekdays in 2009. Then, the results of 249 individual runs of TDFMI are 

averaged to make an annual average result. Final TDFMI results are compared with 

results from the TDFM that ran just once in the model evaluation. 

 

3.2 TDFM Data Preparation 

3.2.1 Existing TDFM 

To apply the proposed TDFMI to a large size real model, this dissertation study uses 

the Hampton Roads TDFM. Hampton Roads is the largest MPO area in Virginia, 

USA. Many local jurisdictions in Northern Virginia area do not have their own MPO 

for TDFM but are part of the MPO of Washington D.C. Hampton Roads TDFM was 

recently developed with various modeling resources, including: 2009-2010 NHTS, 

2009 VEC, ESRI Business Analyst, GIS resources (RNS and NavTeq), INRIX, TMS 

traffic database, and external-to-external origin-destination survey. Hampton Roads 

TDFM consists of four time-of-day models covering am peak, midday, pm peak, and 

night time. The TDFM network, as shown in Figure 3.2, consists of 1,094 TAZs, 

21,160 nodes, 39,372 links, and 6,723 intersections or junctions. It covers freeways, 

major arterials, minor arterials and major collectors in the modeling area. The 
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network also includes minor collectors and local streets to provide appropriate 

connectivity in the network. 

 

Figure 3.2 Hampton Roads TDFM Network (2009 Base Year) 

 

The Hampton Roads TDFM model area comprises 13 jurisdictions – 

Gloucester County, Isle of Wight County, James City County, York County, City of 

Chesapeake, City of Hampton, City of Newport News, City of Norfolk, City of 
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Poquoson, City of Portsmouth, City of Suffolk, City of Williamsburg and City of 

Virginia Beach.  

Table 3.1 shows land use data information relating to households, population, 

the number of vehicles, retail employment, and non-retail employment for the model 

area. 

Table 3.1 Base Year (2009) Land Use Data 

Data Number 

Total Households 606,902 

Total Population 1,627,273 

Total Autos 1,263,199 

Total Retail Employment 187,111 

Total Non-Retail Employment 853,826 

 

 The area type of a zone was determined by the density of the population and 

employment of each zone. Both density thresholds were split into seven categories 

based on visual observations (AECOM 2013). Based on the combination of two 

densities in the entire modeling region, area types are categorized as Central 

Business District (CBD), Urban, Dense Suburban, Suburban and Rural (AECOM 

2013). Hampton Roads area has TAZ 1 through TAZ 1,503 but consists of 1,464 

internal TAZs and 30 external TAZs. HR TDFM has totally 12 facility types based 

on their function and/or design characteristics associated with area type and the 

development density of each link (AECOM 2013). The combination of area type and 
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facility type determines the free flow speed and capacity, which was developed as a 

cross-classification table.  

 Figure 3.3 shows the major bridges, tunnels, toll roads, and HOV lanes in 

Hampton Roads.  

 

Figure 3.3 Bridges, Tunnels, Tolls, and HOV Lanes in Model Area 
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The Hampton Roads area has the following High Occupancy Vehicle (HOV) 

Lane corridors during peak hours (6-8 AM and 4-6 PM):  

• I-264 between Virginia Beach and Norfolk 

• I-64 between Norfolk and Chesapeake (reversible divided HOV for some 

segments) 

• I-64 between Hampton and Newport News 

 

As shown in Figure 3.3, the Hampton Roads area has the following bridges 

and tunnels, which form the bottlenecks of major roadways:  

• Hampton Roads Bridge Tunnel (HRBT) on I-64 

• Monitor Merrimac Memorial Bridge-Tunnel (MMMBT) on I-664 

• James River Bridge on Route 17 

• Downtown Tunnel on I-264 

• Midtown Tunnel on Route 58 

• Chesapeake Bay Bridge Tunnel on Route 13 (Toll) 

• George P. Coleman Bridge on Route 17 (Toll) 

• Berkley Bridge on I-264 

• High Rise Bridge on I-64 

• Gilmerton Bridge on Route 13/460 

• Jordan Bridge on Route 337 (Toll) 

• Chesapeake Expressway (Toll) 
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Since Hampton Roads has limited roadway connections, with bridges and 

tunnels between regions, vehicle traffic is interrupted when bridges and tunnels are 

closed, which has a significant negative impact to the region. Incidents at bridges and 

tunnels will be analyzed in Chapter 3.3.  

There are four toll facilities in the Hampton Roads area. Three toll facilities 

are located on bridges and one is located on Route 168 near the state boundary with 

North Carolina. In the TDFMI, two fixed toll locations (George P. Coleman Bridge 

and Chesapeake Expressway) were modeled and two locations were excluded; the 

Chesapeake Bay Bridge Tunnel was coded as an external TAZ, which trip was given 

as fixed input, and the Jordan Bridge was closed for construction in 2009. Transit 

routes are operated by Hampton Roads Transit (HRT) and Williamsburg Area 

Transit Authority (WATA). 

As a reference model, the existing TDFM was run and all results were saved 

for comparisons with those of TDFMI. Using incident and crash data from 2009, 

incident duration was calculated first, and reduced capacity was determined using a 

cross-classification table developed from research literature (Chin et al. 2004; 

Transportation Research Board 2010).  

Free flow speed and link capacity were determined using a cross-

classification table based on facility type and area type, which was developed from 

the old Hampton Roads TDFM. Free flow speed was updated using observed speed 

data by INRIX. 
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3.2.2 Existing Volume Delay Functions (VDFs) 

Conical VDF developed by Spiess was used in the Hampton Roads TDFM due to its 

geometrical interpretation and its ability to deliver optimal calibration results from 

VDFs at the preliminary analysis level under a limited time schedule (AECOM 

2013). The hyperbolic conical sections is defined below (AECOM 2013). Functional 

form and used parameters are shown in Equation (3.1.) and Table 3.2. 

3 = 3� ∗ W2 + [6� ∗ �1 − X/J� + =�]K/� − 6 ∗ �1 − X/J − =Y       Eq. (3.1) 

where,  T = average link travel time  

T0 = link travel time at free-flow status  

V = volume (or demand) 

C = capacity 

B = �26 − 1�26 − 2, 6 > 1					   
Table 3.2 Parameters of Conical VDF Used in the Model 

Facilities Alpha Beta 

Freeways 9.0 1.06 

Minor Freeways/Principal Arterials 7.0 1.08 

Major/Minor Arterials, Major Collectors 4.5 1.14 

Minor Collectors/Locals 2.0 1.50 

Source: (AECOM 2013)   
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 Cetin et al. (2012) conducted VDFs calibrations for MPO models in Virginia. 

They examined BPR, Conical, and Akcelik VDFs and recommended BPR functions 

under general conditions and Ackelik Functions for congested conditions. 

Since the Hampton Roads area has a very high portion of heavy truck traffic 

from/to port facilities and numerous freight warehouses, truck traffic of Class 6 or 

higher, based on the FHWA vehicle classification definition, was modeled using a 

truck model (AECOM 2013). The truck trip generation and distribution models were 

developed separately. Truck zones were identified to estimated truck trips as special 

generators (AECOM 2013). 

3.2.3 Base Year TDFM Mode Run Statistics 

Table 3.3 shows the performance measures (%RMSE and volume over count ratio) 

of the TDFM base year model runs statistics, using 3,287 links that have traffic 

observations. Performance measures were categorized within three subgroups: 

loaded link volume group, facility type, and area type. Virginia Travel Demand 

Modeling Policies and Procedure Manual (VTM PPM) defined the validation criteria 

and their target values (Virginia DOT 2011). In the case of a large MPO model such 

as the Hampton Roads TDFM, validation standards are shown below: 

• R� for the Model Region > 0.90 

• Percent RMSE for Model Region < 40% 

• Percent RMSE by Facility Type:    

o Freeways < 20% 
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o Principal Arterials < 35% 

o Minor Arterials < 50% 

o Collectors < 90% 

Overall, the performance measures of the model show that %RMSE is very 

close to the threshold and volume-to-count ratio is very close to 1.0. However, when 

it comes to %RMSE per facility type, not all TDFM results exceeded the threshold 

of %RMSE. Freeways %RMSE exceeded the threshold 20% and appeared to be 

under-assigned from the volume-to-count ratio. Meanwhile, arterials and collectors 

were less than the thresholds of 35% and 50%, respectively. However, arterials and 

collectors appeared to be over-assigned when compared to field counts. 
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Table 3.3 2009 Base Year TDFM Model Run Statistics 

  Subgroup Count  Sites  % RMSE Volume Volume/Count 
Loaded Link 
Volume 

1 - 5,000 3,585,574 1,599 72.13 4,196,262 1.17 
5,000 - 10,000 5,315,469 752 40.13 5,632,658 1.06 
10,000 - 20,000 9,044,430 637 29.12 9,247,413 1.02 
20,000 - 30,000 4,205,604 174 25.17 3,939,216 0.94 
30,000 - 40,000 1,870,669 55 20.43 1,847,092 0.99 
40,000 - 50,000 1,982,331 45 18.52 1,785,410 0.90 
50,000 - 60,000 1,048,384 19 24.50 957,715 0.91 
60,000 - 70,000 195,459 3 30.26 158,896 0.81 
70,000 - 80,000 223,816 3 21.05 178,167 0.80 

Facility Type Interstate Freeway 5,347,521 150 23.24 5,177,018 0.97 

Minor Freeway  1,303,229 72 27.20 1,306,282 1.00 

Principal Art 6,335,433 394 30.47 6,751,022 1.07 

Major Art 1,586,969 180 38.54 1,502,746 0.95 

Minor Art 9,790,532 1,248 38.94 9,996,655 1.02 

Major Collector 408,273 228 71.60 425,635 1.04 

Minor Collector 2,600,421 972 63.86 2,692,414 1.04 

Local 29,782 36 43.38 29,803 1.00 

H.S. Ramp 27,812 1 27.32 20,213 0.73 

L.S. Ramp 41,764 6 57.32 41,042 0.98 
Area Type CBD 128,030 10 68.11 62,859 0.49 

OBD 5,342,234 525 38.90 5,323,046 1.00 
Urban 6,174,351 703 35.79 6,231,953 1.01 
Sub Urban 7,328,412 778 41.64 7,236,930 0.98 
Rural 8,498,709 1,271 43.35 9,088,041 1.07 

All  27,471,736 3,287 40.98 27,942,829 1.02 
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3.3 Incident Data Preparation for Base year 

As reviewed in Chapter 2, this dissertation considered three major incident factors in 

developing the TDFMI: incident frequency, incident duration, and the reduced 

capacity resulting from the incident. From the 2009 incident dataset for the base year, 

three key incident data (frequency, duration, and reduced capacity) were prepared 

first. Incident data were matched with corresponding links and nodes of the TDFM 

network by using geographic location information on GIS software. During the GIS 

matching process, each individual incident record was identified as either segment or 

intersection incident based on the intersection boundary. After matching incident 

data with the TDFM network, data on the three key incident factors were merged 

with the TDFMI network as additional link attributes. Figure 3.4 shows the flow of 

how incident data was prepared for the base year. 

 

Figure 3.4 Flow of Incident Data Preparation for Base Year 
 

3.3.1 Incident Frequency 

This study utilized incident data from the Virginia DOT’s traffic database, referred to 

as VaTraffic, which categorizes incidents into five types: incident, event, planned 
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event, short term weather, and long term weather (Virginia DOT 2011). Short term 

weather events are defined as localized weather events in a small area, such as fog, 

high winds, and standing water. Long term weather incidents include large, 

widespread weather events, such as hurricanes, flooding, or snow/ice storms 

(Virginia DOT 2011). Within the “incident” category, incidents are further divided 

into three sub-categories: traffic, disaster, and security. For the traffic incident 

category, VaTraffic has collected data on vehicle crashes (recorded as accidents), 

disabled vehicles, bridge/tunnel stoppage, and other traffic incidents (Virginia DOT 

2011). The key information on each incident include: time, location, duration, 

facility type, crash severity, number of total lanes, number of affected lanes, etc. 

VaTraffic incident data are entered by staff members from the one of five Regional 

Transportation Operations Centers and tunnel facilities in the Hampton Roads 

area.  Incident data is entered close to real-time, with minimal time delay, as it is 

entered by the Virginia State Police, Safety Service Patrol, or observed on cameras, 

etc. (Rose Lawhorne 2013).  

VaTraffic database had, in total, 20,046 incident records with various 

incident related information within the Hampton Roads modeling boundary in 2009. 

Table 3.4 shows the cross-classification of incident frequency between major 

categories, including time of day, roadway types, and incident types. Table 3.5 and 

Table 3.6 show the proportion of incident frequency by category and the component 

ratio within each category.  



76 
 

When it comes to the category ‘Time of Day (TOD)’, about 15% and 23% of 

incidents occurred during the AM peak (6 AM to 9 AM) and PM peak periods (3 PM 

to 6 PM), respectively, while 41% and 21% of incidents occurred during the Midday 

(9 AM to 3 PM) and Nighttime (6 PM to 6 AM of next day) periods, respectively. 

About 38% of incidents occurred during the peak periods (a duration of six hours), 

while 62% of incidents occurred during the non-peak periods (a duration of 18 

hours). It was found that the PM peak period had the highest incident rate per hour, 

which is equivalent to 8% of daily incidents. On the contrary, the Nighttime period 

had the lowest incident rate per hour, which is about 2% of daily incidents. 

From the incidents by roadway facility types, as shown in Table 3.5, about  

24% of incidents occurred at interstate freeways. Over three quarters of disabled 

vehicle incidents and congestion/delay incidents occurred at special facilities, such as 

bridges and tunnels, which contributed to 71.5% of all incidents that occurred at 

special facilities. As shown in Figure 3.3, there are many bridges and tunnels on 

interstate freeways and major arterials. Bridges and tunnels are known as major 

traffic bottlenecks in Hampton Roads. When examining incidents at special facilities 

by incident types, as shown in Table 3.5, it was found that a very high proportion of 

incidents occurred at special facilities, such as bridges and tunnels. It was found that 

78% of incidents at special facilities were categorized as bridge/tunnel stoppage 

(43.5%) and congestion/delay (34.4%), as shown in Table 3.6.  

Consequently, bridge/tunnel stoppage and congestion/delay at a bridge/tunnel 

contributed to more than 55% of total incidents in the Hampton Roads area. Selected 
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bridges are frequently closed at the request of vessel traffic passing through under 

the bridges. Temporary bridge closures are typically arranged in advance with bridge 

operation agencies.  

Since the majority of incidents were found at interstate freeways and 

bridges/tunnels, less than 5% of incidents were found at the primary and secondary 

roadways, as shown in Table 3.5 and Table 3.6. The reason why such a small 

proportion of incidents were found at the primary and secondary roadways is that 

VaTraffic has been more focused on the safety and mobility of interstate freeways 

and special facilities in Hampton Roads.  

VaTraffic incident records categorize incident types as: crashes (17.9%), 

congestion/delay (32%), bridge/tunnel stoppage (31.1%), disabled vehicles (14.3%), 

and other (4.7%), as shown Table 3.6. Other incidents encompasses all other types of 

incidents, including vehicle fire, security, brush fire, chemical, other disaster, etc. 

(Virginia DOT 2012). 

 When incidents were broken down by time-of-day and incident type, as 

shown as Table 3.6, it was found that different types of incidents occurred at 

different times during the day. Congestion/delay incidents were the most common 

during both AM and PM peak periods, while bridge/tunnel stoppage incidents 

occurred most frequently during MD and NT non-peak periods. Indeed, 

congestion/delay incidents comprised of 48% and 46% of total incidents in the AM 

and PM peak periods, while incidents at bridges/tunnels accounted for 44% and 32% 

of total incidents during MD and NT periods, respectively. 
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When incidents are analyzed by incident type and roadway type, as shown in 

Table 3.5, it was found that about 78% and 18% of crashes occurred at interstates 

and special facilities, such as bridges/tunnels, respectively. Interestingly, most of the 

non-crash incidents occurred at special facilities (bridges and tunnels).  
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Table 3.4 Incident Frequency per Subcategory 

Counts 

Roadway Type Incident Type 

Row Sum  
Interstate Primary Secondary Special Others Crash 

Disabled 
Vehicles 

Bridge/ 
Tunnel 

Congestion
/ Delay 

Others 

Time of 
day 

AM 534 225 - 2,246 1 487 408 579 1,433 99 3,006 

MD 1,274 301 7 6,638 9 976 914 3,641 2,331 367 8,229 

PM 1,531 183 8 2,912 13 955 692 705 2,115 180 4,647 

NT 1,421 187 10 2,539 7 1,173 846 1,310 537 298 4,164 

Roadway 
Type 

Interstate 
     

2,793 689 2 888 388 4,760 

Primary 
     

114 8 3 591 180 896 

Secondary 
     

18 - - - 7 25 

Special  
     

644 2,162 6,230 4,936 363 14,335 

Others 
     

22 1 - 1 6 30 

Column Sum  4,760 896 25 14,335 30 3,591 2,860 6,235 6,416 944 20,046 

Note: Special Roadway Type represents Tunnels and Bridges 
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Table 3.5 Proportion of Incident Frequency per Subcategory by Column Sum 

 

Roadway Type Incident Type 
Row 
Average  Interstate Primary Secondary Special Others Crash 

Disabled 
Vehicles 

Bridge/ 
Tunnel 

Congestion
/ Delay 

Others 

Time of 
day 

AM 11.2 25.1 - 15.7 3.3 13.6 14.3 9.3 22.3 10.5 15.0 

MD 26.8 33.6 28.0 46.3 30.0 27.2 32.0 58.4 36.3 38.9 41.1 

PM 32.2 20.4 32.0 20.3 43.3 26.6 24.2 11.3 33.0 19.1 23.2 

NT 29.9 20.9 40.0 17.7 23.3 32.7 29.6 21.0 8.4 31.6 20.8 

Roadway 
Type 

Interstate           77.8 24.1 0.0 13.8 41.1 23.7 

Primary           3.2 0.3 0.0 9.2 19.1 4.5 

Secondary           0.5 - - - 0.7 0.1 

Special           17.9 75.6 99.9 76.9 38.5 71.5 

Others           0.6 0.0 - 0.0 0.6 0.1 

Column Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Note: Special Roadway Type represents Tunnels and Bridges 
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Table 3.6 Proportion of Incident Counts per Subcategory by Row Sum 

 

Roadway Type Incident Type 

Row Sum  
Interstate Primary Secondary Special Others Crash 

Disabled 
Vehicles 

Bridge/ 
Tunnel 

Congestion
/ Delay 

Others 

Time of 
day 

AM 17.8 7.5 - 74.7 0.0 16.2 13.6 19.3 47.7 3.3 100.0 

MD 15.5 3.7 0.1 80.7 0.1 11.9 11.1 44.2 28.3 4.5 100.0 

PM 32.9 3.9 0.2 62.7 0.3 20.6 14.9 15.2 45.5 3.9 100.0 

NT 34.1 4.5 0.2 61.0 0.2 28.2 20.3 31.5 12.9 7.2 100.0 

Roadway 
Type 

Interstate           58.7 14.5 0.0 18.7 8.2 100.0 

Primary           12.7 0.9 0.3 66.0 20.1 100.0 

Secondary           72.0 - - - 28.0 100.0 

Special           4.5 15.1 43.5 34.4 2.5 100.0 

Others           73.3 3.3 - 3.3 20.0 100.0 

Column Average 23.7 4.5 0.1 71.5 0.1 17.9 14.3 31.1 32.0 4.7 100.0 

Note: Special Roadway Type represents Tunnels and Bridges 
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Even though VaTraffic provides very useful incident information, it has 

incomplete crash records in the Hampton Roads area because VDOT has primarily 

focused its resources on reporting incidents on interstate freeways and special 

facilities, such as bridges/tunnels. Thus, crash data compiled by the Virginia 

Department of Motor Vehicles (DMV) was used to account for the missing incident 

data on primary and secondary roadways, and complete the crash data analysis. 

Virginia DMV’s crash database includes all crash records reported by police officers, 

which includes crashes involving death, injury, or total property damages exceeding 

$1,000.  

The DMV’s crash database contains 121,143 crash records that originated 

from all over the state in 2009. Hampton Roads had 20,176 crashes within its 

jurisdiction boundary. However, the DMV’s crash database also lacks information 

that is required in this research: 1) how long traffic was blocked (or affected) due to 

the crash and 2) accurate location where each crash occurred. Not all crash records 

have locatable data. Only 11,686 crash records (57.9%) included latitude and 

longitude coordinates and even then, 9.1% of those records (1,068 crashes) listed 

incorrect location information. 

Figure 3.5 plots the location of each individual crash record by latitude and 

longitude information using data from the DMV’s crash database. As shown, many 

crashes were located in the North Carolina area or even in the sea. Most of the 

incorrect locations appear to have been systematically shifted from actual locations. 

Thus, for crash records with invalid locations, new locations were generated using 



83 
 

roadway route information (route prefix, route number, route suffix, and mile point) 

available from each crash record in the DMV database. 

 

Figure 3.5 Location of Crash Data Before and After Adjustment 

 

This study generated new Route IDs based on routable information for two 

purposes: 1) to double check if the given latitude and longitude coordinates on the 

DMV’s crash records were correct and 2) to generate new Route IDs for the crash 

records with invalid location information. Each new Route ID consists of 14 digits of 

three components: a route prefix (4 digits), a route number (5 digits), and a route 

suffix (5 digits). The final latitude and longitude coordinates of each crash record 

were determined by a mile point indicating the distance from the starting point of 
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Route IDs. Table 3.7 shows examples of new Route IDs and new latitude and 

longitude coordinates based on routable information (route prefix, route number, 

route suffix, and mile point). 

Table 3.7 Example of New Route ID and X-Y Coordinates 

Prefix 
Route 
No. 

Suffix New Route ID 
Mile 
Point 

New 
Latitude 

New 
Longitude 

134 8669 
 

13408669 0 -76.003991 36.550387 

SR 165 
 

SR00165 0 -76.344216 36.740913 

C1SR 168 
 

C1SR00168 12.65 -76.245788 36.749314 

IS 264 W IS00264W 16.58 -76.137144 36.834076 

C7US 17 
 

C7US00017 5.23 -76.344888 36.756823 

IS 64 E242B IS00064E242B 0.21 -76.646113 37.25666 

IS 64 W IS00064W 234.5 -76.731263 37.352841 

US 58 
 

US00058 496.74 -76.197433 36.85524 

US 17 
 

US00017 0 -76.37627 36.550595 

 

After the successful processing of routable data, 93.4% of all crash data have 

new latitude and longitude. 6.6% of crash records were omitted from this study as no 

routable information was available in the DMV’s crash database. Figure 3.5 shows 

the final location of each crash record after correcting the ones with invalid location 

information. 

After correcting location information on crash records with invalid data using 

route information, comparisons were made between the original location coordinates 

with the corrected location coordinates to examine if the new location coordinates 
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were reliable. After excluding outliers located outside of the Hampton Roads 

jurisdiction, a total of 10,450 corresponding locations were compared in a XY plot as 

shown Figure 3.6.  

  

 

Figure 3.6 Comparisons between Observed and Estimated Coordinates of 

Longitude (Top) and Latitude (Bottom) 
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Both latitude and longitude coordinates matched very well. Linear regression 

models for both cases have ]� > 0.995. Consequently, about 96% of all crash data 

have new reliable location information, which was used in matching process with 

TDFM network. 

Regarding the crash database, VDOT is currently undergoing a migration 

process to put all GIS and traffic related resources into a single new database called 

the Roadway Network System (RNS). The RNS has maintained all crash records that 

were provided by Virginia DMV throughout the state. 

Even though VaTraffic accumulated incident data close to real time from 

various sources on incidents that occurred on the interstate freeway, and primary and 

secondary roadways in Virginia, its data heavily relied upon input from personnel.  

Table 3.8 shows crash records from VDOT’s VaTraffic and DMV’s crash 

database. VaTraffic has only 2% of DMV’s crash records on non-freeways, while it 

has about 73% of DMV’s crash records on freeways. It appears that not all crashes 

on the freeways have been reported to VaTraffic. Even worse, most of the crashes on 

non-freeways were not reported to VaTraffic. Thus, all crash data used in this 

dissertation research came from the DMV database, as it has complete crash records, 

while non-crash incidents all came from VaTraffic to avoid potential duplication.  
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Table 3.8 2009 Hampton Roads Crash Data from VaTraffic and DMV 

Source Freeway Non-freeway Total 

Crash in VaTraffic (1) 3,329 262 3,591 

Crash in DMV(2) 4,584 15,259 19,843 

Percentage (1)/(2) 72.6 1.7 18.1 

 

 

This study focused on crashes, disabled vehicles, and bridge/tunnel stoppages. 

Congestion delays were excluded because congestion/delay is a traffic phenomenon 

during over-saturated traffic conditions, which is not directly related to incidents. 

Incident type, severity level, and priority level are the key variables used in incident 

analysis (Virginia DOT 2011).  

After excluding crashes and the congestion/delay data from VaTraffic, 6,945 

and 3,094 incidents were finally prepared for freeways and non-freeways, 

respectively. Table 3.9 shows the final cross-classification table of incident data 

associated with incident type (crash and non-crash incident) and roadway type 

(freeway, segment of non-freeway, and intersection of non-freeway). Table 3.10 and 

Table 3.11 also show the percentages of final incident frequency by incident type 

and roadway type, respectively.  
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Table 3.9 Final Incident Counts Used in the TDFMI Network 

  Freeway 
Non-freeway 

Row Sum 
Segment Intersection 

Crashes 4,584 6,727 8,532 19,843 

Non-Crash Incidents 6,945 2417 677 10,039 

Column Sum 11,529 9,144 9,209 29,882 

 

Table 3.10 Proportion of Final Incident Counts per Roadway Type 

  Freeway 
Non-freeway Row 

Average Segment Intersection 

Crashes 39.8 73.6 92.6 66.4 

Non-Crash Incidents 60.2 26.4 7.4 33.6 

Column Sum 100.0 100.0 100.0 100.0 

 

Table 3.11 Proportion of Final Incident Counts per Incident Type 

  Freeway 
Non-freeway 

Row Sum 
Segment Intersection 

Crashes 23.1 33.9 43.0 100.0 

Non-Crash Incidents 69.2 24.1 6.7 100.0 

Column Average 38.6 30.6 30.8 100.0 

 

More specifically, 66.4% of all incidents are crashes and 33.6% of all 

incidents are non-crash incidents, as shown in Table 3.10. Freeways have 38.6% of 

all incidents on the TDFMI network and non-freeways have about 61.4% (30.6% for 

the segments and 30.8% for the intersections) of all incidents, as shown in Table 3.11. 

When roadway types are combined with incident types, 40% of all crashes and the 

60% of non-crash incidents occurred on the freeways. Regarding non-freeway 
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incidents, 73.6% of segment incidents and 92.6% of intersection incidents are 

crashes.  

Figure 3.7 shows the average daily incident frequency throughout the TDFMI 

network.  Most of the interstate freeways have more than one incident per day and 

some segments of interstate freeways have higher incident frequencies - up to 10 

incidents per day.  
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Figure 3.7 Average Daily Incident Frequency on the TDFMI Network 

 
In particular, some segments located at the entrance of key bridges/tunnels, 

including the Hampton Roads Bridge Tunnel (HRBT) and the Monitor Merrimac 

Memorial Bridge Tunnel (MMMBT), have very high incident frequencies ranging 10 

to 30 incidents per day. 
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3.3.2 Incident Duration 

In VaTraffic, the incident duration is measured since an event is verified and logged 

in, until all responders have cleared (Virginia DOT 2011). Table 3.12 shows cross-

classification tables listing average incident duration by time-of-day, roadway type, 

and incident type.  

The average incident duration varies by time-of-day, roadway type and 

incident type. AM had the highest incident duration at 64 minutes, while NT had the 

lowest incident duration at 34 minutes. The average incident duration at interstates 

and special facilities, such as the bridges/tunnels, were 48 minutes and 40 minutes, 

respectively, while the average incident duration at primary roadways was 147 

minutes. The secondary and other roadway types had too small of a frequency (less 

than 30) for values to be meaningful.   

When it comes to incident duration by incident type, crashes had an average 

duration of 47 minutes, while the average incident duration at bridges/tunnels was 

only 6 minutes. Congestion/delay had the highest incident duration time at 99 

minutes. When the three categories were combined, it was found that the average 

duration time at primary roadways was greater than the averages for all four time 

periods, while duration times at special facilities such as the bridges/tunnels were 

less than the averages for all four time periods. Regarding the duration on interstate 

freeways, both AM and PM peak periods had higher duration times than the overall 

average duration time while both non-peak periods (MD and NT) had lower duration 

times than the average duration time.  
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From the incident types, the average durations of the congestion/delays were 

much greater than the average durations for four time periods. On the contrary, the 

averages of durations at bridges/tunnels were much smaller than the average 

durations for all time periods. Regarding the duration of the crash, both AM and PM 

peak periods had higher durations than the average had while both non-peak periods 

(MD and NT) had lower duration time than the average had. 
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Table 3.12Average Duration Time (minute) of Incidents per Subcategory 

 

Roadway Type Incident Type 
Row 
Average Interstate Primary Secondary Special Others Crash 

Disabled 
Vehicles 

Bridge/ 
Tunnel 

Congestion/ 
Delay 

Others 

Time of 
day 

AM 44 144 - 61 120 47 17 6 108 45 64 

MD 53 153 296 38 49 48 16 4 114 73 45 

PM 46 126 66 49 55 41 17 6 82 48 51 

NT 47 162 125 17 57 52 17 9 75 46 34 

Roadway 
Type 

Interstate           49 24 13 63 48 48 

Primary 
     

100 25 51 160 140 147 

Secondary 
     

88 - - - 323 154 

Special 
     

28 15 6 98 19 40 

Others           54 2 - 14 79 56 

Column Average 48 147 154 40 56 47 17 6 99 57 47  
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Table 3.13 shows the cross classification of the incident frequency as shown 

in Chapter 3.3.1 among duration and three sub-categories: time of day, roadway type, 

and incident types. The incident duration data were split into five categories from 0 

to over 120 minutes with 30-minute intervals.  

Table 3.13 Frequency of Incident Duration per Subcategory 

 

Incident Duration (min) 
Row Sum 

< 30 30-60 60-90 90-120 > 120 

Time of 
Day 
 
 
 
 

AM 1,420  430  280  230  646  3,006  

MD 5,957  802  390  177  903  8,229  

PM 2,469  798  461  317  602  4,647  

NT 2,898  600  338  89  239  4,164  

Roadway 
Type 
 
 
 
 
 

Interstate 2,068  1,373  767  294  258  4,760  

Primary 121  128  83  60  504  896  

Secondary 6  4  4  2  9  25  

Special 10,538  1,117  611  453  1,616  14,335  

Others 11  8  4  4  3  30  

Incident 
Type 
 
 
 
 
 
 

Crash 1,498  1,092  650  201  150  3,591  

Disabled 
Vehicles 

2,539  229  68  15  9  2,860  

Bridge/Tunnel 6,114  71  29  8  13  6,235  

Congestion/ 
Delay 

2,027  1,083  654  553  2,099  6,416  

Others 566  155  68  36  119  944  

Column Sum 12,744  2,630  1,469  813  2,390  20,046  
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Table 3.14 and Table 3.15 show the incident duration category combined 

with time-of-day, roadway type, and incident types. 56.3% of all incidents on the 

primary roadways and 36.0% of all incidents on the secondary roadways had an 

incident duration of greater than 120 minutes. 32.7% of all congestion/delay 

incidents had an incident duration of greater than 120 minutes. 

Table 3.14 shows that 63.6% of all incidents had a duration of less than 30 

minutes, 76.7% of all incidents had a duration of less than 60 minutes, and 11.9% of 

all incidents had a duration of over 120 minutes. When incident duration is analyzed 

for incidents across all time periods, all roadway types, and all incident types, the 

majority of incidents had a duration of less than 30 minutes, except for incidents on 

primary and secondary roadways.  

  



96 
 

Table 3.14 Proportion of the Incident Duration per Subcategory by Row Sum 

 Incident Duration (min) 
Row Sum 

< 30 30-60 60-90 90-120 > 120 

Time of 
Day 
 
 
 
 

AM 47.2 14.3 9.3 7.7 21.5 100.0 

MD 72.4 9.7 4.7 2.2 11.0 100.0 

PM 53.1 17.2 9.9 6.8 13.0 100.0 

NT 69.6 14.4 8.1 2.1 5.7 100.0 

Roadway 
Type 
 
 
 
 
 

Interstate 43.4 28.8 16.1 6.2 5.4 100.0 

Primary 13.5 14.3 9.3 6.7 56.3 100.0 

Secondary 24.0 16.0 16.0 8.0 36.0 100.0 

Special 73.5 7.8 4.3 3.2 11.3 100.0 

Others 36.7 26.7 13.3 13.3 10.0 100.0 

Incident 
Type 
 
 
 
 
 
 

Crash 41.7 30.4 18.1 5.6 4.2 100.0 

Disabled 
Vehicles 88.8 8.0 2.4 0.5 0.3 100.0 

Bridge/Tunnel 98.1 1.1 0.5 0.1 0.2 100.0 

Congestion/ 
Delay 31.6 16.9 10.2 8.6 32.7 100.0 

Others 60.0 16.4 7.2 3.8 12.6 100.0 

Column Average 63.6 13.1 7.3 4.1 11.9 100.0 

 

Table 3.15 shows that the proportion of the incident duration time for each of 

the three sub categories. Reviewing incident duration by time-of-day showed that 

46.7% of all incidents that had a duration of less than 30 minutes occurred during the 

MD period only. 60.8% of all incidents that had a duration of between 30 and 60 

minutes occurred during MD and PM periods.  Reviewing incident duration by 

roadway types showed that the majority of the incidents occurred at the interstate 



97 
 

freeways or special facilities, such as bridges/tunnels, for all incident duration 

categories. Specifically, the 82.7% of all incidents that had the duration of less than 

30 minutes occurred at special facilities. 

Table 3.15 Proportion of the Incident Duration per Subcategory by Row Sum 

 

Incident Duration (min) Row 
Average < 30 30-60 60-90 90-120 > 120 

Time of 
Day 
 
 
 
 

AM 11.1 16.3 19.1 28.3 27.0 15.0 

MD 46.7 30.5 26.5 21.8 37.8 41.1 

PM 19.4 30.3 31.4 39.0 25.2 23.2 

NT 22.7 22.8 23.0 10.9 10.0 20.8 

Roadway 
Type 
 
 
 
 
 

Interstate 16.2 52.2 52.2 36.2 10.8 23.7 

Primary 0.9 4.9 5.7 7.4 21.1 4.5 

Secondary 0.0 0.2 0.3 0.2 0.4 0.1 

Special 82.7 42.5 41.6 55.7 67.6 71.5 

Others 0.1 0.3 0.3 0.5 0.1 0.1 

Incident 
Type 
 
 
 
 
 
 

Crash 11.8 41.5 44.2 24.7 6.3 17.9 

Disabled 
Vehicles 

19.9 8.7 4.6 1.8 0.4 14.3 

Bridge/Tunnel 48.0 2.7 2.0 1.0 0.5 31.1 

Congestion/ 
Delay 

15.9 41.2 44.5 68.0 87.8 32.0 

Others 4.4 5.9 4.6 4.4 5.0 4.7 

Column Sum 100.0 100.0 100.0 100.0 100.0 100.0 

 

Over 90% of all incidents with a duration of less than 120 minutes, occurred 

at both the interstate freeways and special facilities. Reviewing incident duration by 

incident types showed that the majority of incidents (48%) at bridges/tunnels had a 
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duration of less than 30 minutes. The majority of all incidents with a duration of 

greater than 30 minutes were caused by crashes and congestion/delays. 

Duration of Crash Data 

As mentioned earlier, the crash records in the DMV’s database do not have incident 

duration information. Since all incident records in VaTraffic have duration 

information, the crash records in VaTraffic were utilized to generate an incident 

duration estimation model for DMV’s crash records. From the comparison between 

the DMV’s crash database and the VaTraffic incident database, 42 common 

variables were selected for incident model development.  

Various independent variables in different categories associated with crash 

duration were available, and they interact with each other and are highly correlated. 

The independent variables used in the model development consists of 42 variables 

from the three major categories: crash information, roadway geometric information, 

and environmental information, as shown Table 3.16.  

If a single global model, such as a linear or non-linear model, is developed by 

using the 42 variables, it may be difficult to interpret the model results even if the 

developed model generates good results, because 42 variables may arguably interact 

with each other in complicated, non-linear ways. As a result, many independent 

variables should be modeled for the various features (Shalizi 2006).  

As an alternative approach to linear and non-linear regression, a 

Classification and Regression Tree (CART) model may be used, which can handle 
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data that have non-linear relationships and the interactions between the variables. A 

CART does not need to specify any functional forms because it is a nonparametric 

model, and does not need to select variables in advance of developing the model 

(Roman Timofeev 2004). A CART model has a recursive binary decision tree 

method in hierarchical clustering manner for the regression. A recursive partitioning 

at the each branching node is repeated, based on the values of explanatory variables, 

until stopping criteria are met (e.g., the minimum number of sample size, and the 

maximum reduction of variance) (S. Sumathi and Surekha Paneerselvam 2010). The 

global model of the regression tree consists of two parts - the partition and the 

regression (Shalizi 2006). Hierarchical partitioned clusters show key information that 

divides the group into child groups, which is very useful to understand the 

underlying nature of the data (MathWorks 2013). 
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Table 3.16 Independent Variables used in Regression Tree Models for Duration  

Category Independent Variables 

Crash Information • Accident Severity (CAT) 
• Collision type (CAT) 
• Crash Hour (CAT) 
• Damage Amount 
• Day of Week (CAT) 
• Fatal Count 
• Pedestrian Fatal Count 
• First Harmful Event (CAT) 
• Injury Count 
• Non Pedestrian Fatal Count 
• Non Pedestrian Injury Count 
• Pedestrian Fatal Count 
• Pedestrian Injury Count 
• Reported Vehicle Count 

Roadway geometric 
Information 

• DMV Surface Type (CAT) 
• Facility Type (CAT) 
• First Harmful Event Location (CAT) 
• Intersection Type (CAT) 
• Jurisdiction (CAT) 
• Lane Count  
• Related to Roadway 
• Roadway  Relation Type (CAT) 
• Roadway Alignment Type (CAT) 
• Roadway Defect Type (CAT)                                  
• Roadway Surface Condition Type (CAT) 
• Roadway Surface Type (CAT) 
• Roadway Type (CAT) 
• School Zone Type (CAT) 
• Shoulder Width (CAT) 
• Speed Limit (CAT) 
• Surface Width (CAT) 
• Traffic Control Status Type (CAT) 
• Traffic Control Type (CAT) 
• Traffic Controller Working (CAT) 
• Work Zone Location Type (CAT) 
• Work Zone Related (CAT) 
• Work Zone Type (CAT) 
• Work Zone Workers Present (CAT) 
• Work Zone (CAT) 

Environmental 
information 

• Light Condition (CAT) 
• Lighting (CAT) 
• Weather Condition (CAT) 

Note: CAT represents category data 
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The CART models using the crash data in VaTraffic were developed to 

estimate the incident duration for four time-of-day periods (AM peak, Midday, PM 

peak, and Night time). Both categorical and continuous variables were used 

simultaneously in model development. In CART models, after the entire tree 

building structures are developed, a pruning algorithm is applied to the entire tree 

structure to make the optimal tree structure by minimizing the errors between 

predicted values and real observed values. The pruning algorithm maximizes the tree 

size and removes all branches and leaves that do not generalize to avoid overfitting 

of the data (S. Sumathi and Surekha Paneerselvam 2010). To predict the optimal size 

of the tree, a v-fold cross validation method was applied, which is known to be 

accurate, especially for analyses with small sample sizes because it does not need to 

separate learning (training) sample and testing (validating) sample data (S. Sumathi 

and Surekha Paneerselvam 2010).  

Prior to predicting the incident durations, classification tree models are 

developed first to check how well the independent variables explain the duration. 

The criteria to find the optimal regression tree structure were to minimize the error of 

predictions compared to the learning and testing data. Table 3.17 shows the model 

summary of optimized tree structures for four TODs.  Mean Square Error (MSE), 

Percentage Root Mean Square Error (%RMSE), and ]� from learning data and 

testing data show that the four models did not generate good estimation results. 

Further, optimized models showed poor prediction results (]�	values from testing 
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data were much worse than those from learning data). Table 3.17 shows selected 

important variables that have high contribution from classification tree analyses.  

 
Table 3.17 Summary of Developed Classification Tree Models 

  AM MD PM NT 

Mean Square 
Error  

2024.047 1077.076 1796.729 1408.848 

% RMSE 44.989 32.819 42.388 37.535 ]�	Learn Data ]� Test Data 

0.116 

0.040 

0.412 

0.063 

0.324 

0.154 

0.215 

0.107 

Important 
Variables 

Reported 
Vehicles 

Fatal Count 

Pedestrian Fatal 
Count 

Collision Type 

Day of Week 

Work zone 

Damage 
Amount 

# of Lanes 

Traffic Control 
type 

Related to 
Roadway 

Shoulder Width 

Day of Week 

Collision Type 

First Harmful 
Event Location 

Speed Limit 

Roadway 
Defect Type 

Fatal Count 

Day of Week 

Crash Hour 

Pedestrian 
Injury 

Pedestrian Fatal 
Count 

Fatal Count 

Reported 
Vehicles 

Roadway 
Surface Type 

Jurisdiction 

Collision Type 

Shoulder Width 

Roadway 
Defect Type 

Surface 
Condition 

Fatal Count 

Reported 
Vehicles 

Pedestrian 
Injury 

Pedestrian Fatal 
Count 

Day of Week 

Facility Type 

Shoulder Width 
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The trade-off between tree impurity and complexity of the tree exists for 

determining the optimal tree size. When the size of the tree increases, 

misclassification error decreases. At the maximum tree structure, misclassification 

error is zero. However, complex decision trees often poorly performed on 

independent data (Roman Timofeev 2004). Even though the larger tree structure 

makes variance (relative error) increase, it could generate better goodness-of-fit (]� 
results with a smaller bias.  

By using selected important variables from the classification tree analysis, as 

shown in Table 3.17, the full structure of regression tree models were developed to 

predict the duration of four time-of-day periods. Figure 3.8 shows the comparison 

results between the observed duration from VaTraffic and the estimated duration 

from the developed models for four time-of-day periods. Overall, the estimated 

durations appeared to fit well with the observed durations, but the values were lower 

for all time periods. The majority of the data had durations of less than 100 minutes. 

The estimated durations of less than 100 minutes were matched well with observed 

durations for all time-of-day categories. Even if some of the estimated durations of 

greater than 100 minutes were overestimated or underestimated compared to the 

observed durations, it’s impact is expected to be insignificant from the overall 

analysis, because this study uses incident duration as a categorical variable from 0 to 

greater than or equal to 120 minutes for base year models, and from 0 to greater than 

or equal to 90 minutes for future year models with 30-minute intervals.  
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Figure 3.8 Comparison of Duration between Observation and Estimation for 

Four Time Periods 

 
The developed duration models were then applied to DMV’s 2009 year crash 

data (i.e., base year) to estimate the duration for four time periods. Figure 3.9shows 

the average daily incident duration throughout the network.  Most of the interstate 

freeways had an average incident duration of longer than 10 minutes per day. In 

particular, some segments of interstate freeways located in the upstream of key 
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bridges/tunnels, including the Hampton Roads Bridge Tunnel (HRBT) and the 

Monitor Merrimac Memorial Bridge Tunnel (MMMBT), have much higher incident 

durations, ranging 10 to 60 minutes per day. 

 

 

Figure 3.9 Average Daily Incident Duration on the TDFMI Network 
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3.3.3 Reduced Capacity from Incident 

There is research literature associated with reduced capacity due to incidents. A 

couple of publications show how much capacity would be reduced from incidents on 

freeways, based on the total number of lanes on the freeway and the number of 

blocked lanes, including the shoulder lane, from the incidents (Chin et al. 2004; TRB 

2010).  

Table 3.18 shows a cross-classification table for freeways to determine the 

proportion of reduced link capacity based on the number of lanes that involved 

incidents. For example, an incident occurred at a three lane freeway, and one lane is 

affected (blocked) from the incident, the capacity of the freeway would be decreased 

to 53% (0.53).  

Table 3.18 Reduced Link Capacity for Freeways 

 

Total Number of Lanes 

1 2 3 4 5 

Affected 

Number  

of Lanes 
 
 
 

Shoulder 0.45 0.75 0.84 0.89 0.93 

1 0 0.32 0.53 0.56 0.75 

2 N/A 0 0.22 0.34 0.5 

3 N/A N/A 0 0.15 0.2 

4 N/A N/A N/A 0 0.1 

5 N/A N/A N/A N/A 0 

Source: (Chin et al. 2004; Transportation Research Board 2010) 
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Since there is no available data for non-freeway roadways, it is assumed that the 

magnitude of capacity reduction of non-freeways is the same as freeways. The cross-

classification table of capacity reduction for non-freeways may be updated if data 

becomes available in the future. 

Currently, the available crash data in VDOT have no information regarding 

capacity reduction due to incidents. Fortunately, the total number of lanes and the 

number of affected lanes from the incidents are available in the VaTraffic database 

(Virginia DOT 2012). Thus, the cross-classification table shown in Table 3.18 was 

utilized to determine the reduced capacity of individual crash records by using the 

total number of lanes and the number of affected lanes from the incidents in 

VaTraffic. 

3.3.4 Combination of Incident Frequency and Duration 

The incident frequency and duration data were processed by a daily basis to see how 

the daily frequencies and average durations vary over time. Figure 3.10 Figure 3.10 

shows the distribution of incident frequencies and durations for 249 weekdays in 

2009.  The frequency and duration show very similar fluctuations over time, which 

looks more obvious in the scatter plot of the two variables, as shown in Figure 3.11. 

A linear regression model in Figure 3.11 shows that incident frequency and duration 

have a positive linear relationship each other.  Based on the developed model, for 

every incident that occurs, the total incident duration is increased by 0.775 hours 

(about 47 minutes) on average. 
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Figure 3.10 Distributions of Frequency and Duration over Time 

 

 

Figure 3.11 Scatter Plot of Incident Frequency and Duration 
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3.4 Incident Data Prediction for Future Year  

The first step in predicting incidents for a future year is to forecast traffic for the 

future year because the loaded link volume is a key input for the prediction of 

incidents. Thus, the 2034 future year TDFM needs to be run to generate the loaded 

link volumes on the TDFM network.  Figure 3.12 shows the process to prepare final 

incident data for the future year TDFMI. 

 

Figure 3.12 Flow of Data Preparation for Future Year 

 

3.4.1 Incident Frequency 

This study considers the three major types for incidents: crashes, bridge/tunnel 

closures, and the other incidents, such as disabled vehicles, vehicle fires, chemical, 

and bush fires. A future annual crash frequency was forecasted by using Virginia 

Safety Performance Functions (SPFs). To forecast the future annual frequency of 

stoppage at key bridges/tunnels and disabled vehicles, four linear regression models 

for four TODs were developed based on historical data in Hampton Roads from 2008 

to 2012.   
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Figure 3.13 shows historical trends of non-crash incidents for each time-of-

day with fitted linear regression models.  The four equations showed that AM and 

PM have negative slopes while MD and NT have positive slopes over time. Thus, the 

non-crash incidents for the 2034 future year are forecasted by applying the linear 

regression models. As a result, the number of non-crash incidents for four TODs in 

2034 is forecasted to increase by 5.0% from the 2009 incidents. The non-crash 

incidents for the future year could be forecasted with a revised model from the 

extensive data analysis later. 

 

 

Figure 3.13 Historical Trends of Non-Crash Incidents per Time of Day 
 

SPF is a mathematical equation estimating and/or predicting the number of 

crashes based on traffic and roadway information using different types of site 

characteristics (Carter and Srinivasan 2011). SPF has been adopted in the Highway 
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Safety Manual (HCS), a comprehensive highway safety analysis guide book by the 

American Association of State Highway and Transportation Officials (AASHTO) 

(Transportation Research Board 2010). SPFs shown at Equation (3.2) and Equation 

(3.3) are used to predict the number of crashes for a future year; the Average Annual 

Weekday Traffic (AWDT) is prepared from the corresponding future year. 

 TDFM.Link crashes = _4 × abc3d × e        Eq. (3.2) 

where, crashes: predicted crash frequency per year 

AWDT:  annual average weekday traffic (vehicles/day) 

L: segment length (miles) 

a and b: regression parameters. 

Intersection crashes = _4 × fghabc3;i × fjkabc3;N       Eq. (3.3) 

Where, crashes= predicted crash frequency per intersection per year 

MajAWDT=AWDT on the major road (vehicles/day) 

MinAWDT= AWDT on the minor road (vehicles/day) 

β1=coefficient of mayor AWDT  

β2=coefficient of minor AWDT 

 

Table 3.19 shows the frequency and proportion of Virginia’s 2009 crash data 

by severity. Fatal crashes make up less than 1% of all crashes, while property 

damage only accounts for 62.3%.  This proportion is used to split the forecasted 

crashes by using forecasted AWDT and SPFs. 
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Table 3.19 2009 Virginia Crash Severity 

 
Number Percentage 

Fatal Crash 689 0.6 

Injury Crashes 43,149 37.1 

Property Damage Only 72,548 62.3 

Total 116,386 100 

 

The Virginia Department of Transportation (VDOT) has tried to develop 

SPFs with Virginia's historical crash data from 2004 to 2008 to adopt Safety Analyst, 

a highway safety management tool. As the part of the effort, SPFs for multilane 

highways and directional freeway segments were developed and expected to replace 

the default SPFs of Safety Analyst (Kweon and Lim 2013). SPFs developed by 

Kweon and Lim (Kweon and Lim 2013) were applied to forecast the 2034 future 

year segment crashes in the Hampton Roads area. In estimating segment crashes, 

different SPF model parameters for 2 lane freeways, over 3 lane freeways, and non-

freeways were used. Non-freeway SPFs for the Hampton Roads district were applied. 

For intersection SPFs, the Virginia statewide model developed by Garber et al. was 

used (Garber and Rivera 2010).  

For the Hampton Roads TDFM network, since there is no available 

information associated with traffic controllers at the intersections, each intersection 

was classified as signal controlled or stop sign controlled, based on the facility type 

information of the two crossing roadways. For example, if two arterials are crossing 

at an intersection, this intersection is assumed to have a signal controller. If a 
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collector or local road is crossed with the same level or higher level facility type, it is 

assumed to have stop sign at the intersection. Table 3.20 shows the parameters used 

in SPFs. 

Table 3.20 Safety Performance Functions for segment and intersections 

  
Alpha Beta 1 Beta2 

Segment * 2-lane freeway -12.85 1.45 - 

 
3+lane freeway -18.05 1.98 - 

 
Non-freeway -7.88 0.94 - 

Intersection** Signal controlled -7.6234 0.6742 0.3453 

 
Stop sign controlled -6.9589 0.4558 0.347 

Source: *(Kweon and Lim 2013) and ** (Garber and Rivera 2010) 

 

In order to obtain incident frequency from SPFs, the number of incidents was 

estimated first by using the 2034 TDFM loaded link volumes and SPFs. When the 

number of incident frequency was estimated, Negative Binomial Distribution was 

applied to consider the random effect of crashes. Then, the estimated frequency was 

later split into subcategories for severity, which is based on Virginia’s crash data. 

After the annual incident frequency was forecasted, the incidents were 

assigned on the network using the Monte Carlo simulation based on the relationship 

between the incident frequency and the functional classification of roadways and the 

time-of-day for each segment and intersection.  
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3.4.2 Incident Duration 

The cross-classification table for incident duration by incident severity was compiled 

using the field data by Virginia DOT and New York State DOT, as shown in Table 

3.21 (Virginia DOT 2012; New York State DOT 2013). The percentage of crash per 

severity (row sum) was calculated from the observed data in Virginia DOT’s 

database and the percentage of crash per duration category was calculated from the 

observed data in New York State DOT. Based on the row sum and column sum data, 

the percentage of duration per crash severity and duration category were determined. 

 
Table 3.21 Percentage of Crash Duration by Severity  

 
Fatal Injury Property Column Sum 

under 30min 0.0 8.2 13.7 21.9 

30-60min 0.0 14.5 24.3 38.8 

60-90min 0.0 7.8 13.1 20.9 

over 90min 0.6 6.7 11.2 18.5 

Row Sum 0.6 37.1 62.3 100.0 

Source: (New York State DOT 2013; Virginia DOT 2012) 

 

3.4.3 Reduced Capacity from Incident 

For the reduced capacity from the incident, the future year TDFMI used the same 

cross-classification table used by the base year TDFMI, which is shown in Table 

3.18. 
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3.5 Chapter Summary  

This chapter identified a framework of incorporating incident impact into the TDFM 

process. Prior to preparing incident data, the existing Hampton Roads TDFM was 

briefly explored, which included the land use data summary, network dimension, key 

facilities, operational characteristics, VDFs, and model run statistics. Based on the 

proposed framework, three key incident data (frequency, reduced capacity, duration) 

were prepared. For the base year incident data, the incident frequency and duration 

were derived from incident records, while the reduced capacity was estimated by 

consulting research literature, as no data was available.  For the future year incident 

data, the crash frequency was forecasted by the loaded volume from the future year 

TDFM and estimated SPFs. The number of non-crash incidents was forecasted by 

linear regression models per TOD based on historical data. Then a forecasted 

frequency was split into subgroups for severity and assigned on the TDFMI network 

using the Monte Carlo Simulation technique. For incident duration, the cross-

classification table from research literature was used, which consists of incident 

duration and incident severity. The reduced capacity for the future year used the 

same look-up table as the base year case. Table 3.22 shows assumptions applied in 

this chapter and the expected impacts of those assumptions on the analysis results. 
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Table 3.22 Assumptions and Impacts on Results 

Assumption Impacts on Result 

1. Feedback Loop is in trip assignment 
 

2. Capacity reduction in arterial is the same as freeway 
 

3. Incident impacts that are not included in TDFM 
network are minimal 

4. Non-crash incident frequency of future year follow the 
historical trend 

5. Crash frequency of future year can be forecasted using 
existing SPFs 

6. Cross table of incident durations are determined by the 
filed data of VDOT and NYSDOT 

1. Network simulation results may be different (better or worse) 
Computation time would increase 

2. Capacity reduction on arterials may be different � Incident impact 
may be different (better or worse) 

3. Incident impacts may be underestimated (same or worse) 
 

4. Non-crash incidents for future year may be decreased � Incident 
impact may be decreased (better or worse) 

5. SPFs may be updated in the future (better or worse) 
 

6. Duration may affect the incident impact on network (better or worse) 
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CHAPTER 4. VOLUME DELAY FUNCTION WITH 

INCIDENT DATA 

The impact of an incident on a roadway can be measured by two factors: the reduced 

capacity on the roadway and the incident duration. As reviewed in Chapter 2.3.3, 

reduced capacity can be calculated, regardless incident type, by examining how 

many lanes (including shoulder) were blocked from the incidents and how many 

lanes are still available to traffic. In this chapter, in order to incorporate the incident 

impact into TDFM, modified BPR and Akcelik VDFs were developed and calibrated 

with selected field traffic data that are associated with the crashes.  

 

4.1 Incident Data Preparation 

This study utilized field traffic data and incident data that VDOT has collected. To 

collect field traffic data associated with incidents (crashes), this study applied 

temporal/spatial information to both crash data and traffic count data archived in 

VDOT’s Traffic Monitoring System (TMS). Consequently, once traffic and crash 

data have the same time and location, daily traffic data of the matched link was 

extracted from the TMS. The traffic data in the TMS are 15-min interval counts 

classified by FHWA and 21 speed bins with 5 mph range intervals from 0 to greater 

than 100 mph. Since a crash is a relatively rare event, all matching cases from 2007 

to 2010 were searched. Figure 4.1 shows one example of field traffic data that was 
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associated with an incident. The vertical red bars in the left and middle graphs 

represent the time the crash occurred, which was around 6:00 pm.  

This crash occurred on the 5-lane freeway, I-264 westbound in the Norfolk 

area outside of the I-64/I-664 circle, on April 24, 2009. The graphs of volume (left) 

and speed data (middle) by the time-of-day indicate that, prior to the crash, the total 

traffic volume throughout the five lanes was about 2,300 vehicles per 15-minutes and 

the average travel speed was about 59 mph.  When the crash occurred, speed was 

dropped drastically to around 10 mph and traffic volume was dropped to less than 

1,000 vehicles per 15 minutes. It took about 105 minutes before travel speed was 

restored back up to 60 mph, the travel speed prior to the crash. When the speed 

volume graph (right) shows only seven records with traffic volumes of less than 

2,500 vehicles/15-min and traffic speeds of less than 40 mph, these samples 

obviously represent incident traffic conditions. 
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Road Name: I-264 WB 
TMSID: 050203 
AWDT 73,603 
Incident Date: 4/24/2009 
 

 

Figure 4.1 Example of Incident Involved Traffic Data 
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After data mining five-years of traffic crash data from 2007 to 2010 in the 

Hampton Roads area, 45 TMS traffic count locations with valid field traffic data for 

the date when crashes occurred were found. At the 45 locations, 182-day traffic data 

were collected, which means some locations have more than two crashes during four 

years. Table 4.1 shows the summary how many data points were extracted from the 

archived TMS database. 

Even though the existing TDFM has total of 11 facility types, VDF was 

grouped, as below, into five classes with similar facility types, because of the lack of 

data for calibrating VDF functions with facility types (AECOM 2013).  

• Class 1: Centroid Connectors  

• Class 2: Freeways, Ramps  

• Class 3: Minor Freeways/Principal Arterials  

• Class 4: Major/Minor Arterials, Major Collectors 

• Class 5: Minor Collectors/Locals  

Since the VDFs of TDFM have five classes, this study followed the same rule 

to group collected traffic data that matched crashes before VDF calibration. After 

grouping field traffic data by facility type, minor freeways/ principal arterials have 

the largest field traffic data that matched with the crash data while the major/minor 

arterials and major collectors have the least field traffic data that matched with the 

crash data.  
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Table 4.1 Summary of Sample Data used in VDF Calibration 

Facility Type 
# of Sample  
Sites 

# of Sample  
Dates 

# of  
Samples 

Interstate Freeway 9 25 2,864 

Minor Freeway, Principal Arterial 27 129 13,901 

Major/Minor Arterial, Major Collector 5 10 1,002 

Minor Collector, Local Roads 4 18 1,576 

Total 45 182 19,343 

 

4.2 VDF Modification 

In order to consider the incident impacts properly, VDF needs three major inputs: 

incident duration, reduction in capacity, and demand rate. While original VDFs have 

a variable for demand rate (as link volume), the modified VDF has two additional 

variables including reduced capacity from the incident and its duration. Thus, the 

final travel time is determined by the sum of travel times during non-incident and 

incident conditions, as shown in Equation (4.1). Previous research adopted the same 

concept to consider incident impacts on simplified network simulation (Przybyla et 

al. 2011) 

lm = n�op + �q − n�or         Eq. (4.1) 

Where, 3s = Total	travel	time 

 v = Proportion	of	Incident	duration	out	of	simulation	time 

J{ = Reduced	link	capacity 
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J~ = Full	link	capacity 

For example, an incident occurred at an interstate freeway segment during the 

AM peak period and a roadway was cleared (or opened) to traffic 90 minutes later. 

Link capacity during the incident period was reduced to 40% of the full capacity. If 

the simulation time of am peak period is 3 hours, a proportion of incident duration 

would be 0.5. The rest of the simulation time (90 minutes) will represent the normal 

traffic condition without the incident at full link capacity (1.0).  

4.2.1 BPR VDFs 

Although the Akcelik VDF appears to be the best candidate for considering incident 

impact, the BPR VDF is also considered as another alternative because the BPR 

VDF has a simple functional form, and is still widely used in practice. Equation (4.2) 

shows the equation of a modified BPR VDF, similar to the equation presented in 

research (M. Li, Zhou, and Rouphail 2011b; M. Li, Zhou, and Rouphail 2011a). The 

original functional form was used to represent the relationship between traffic 

volume and travel time under non-incident traffic conditions with full link capacity 

(�~. On the contrary, the modified functional form was used for the volume-time 

relationships under the incident condition, by replacing a variable for reduced 

capacity (�{.  
34 = v �3� 51 + 61 7 8G�:;K<� + �1 − v �3� 51 + 62 7 8G�:;�<�       Eq. (4.2) 

Where, 34 = Congested link travel time 
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 3� = 	Link	travel	time	at	free	flow	speed	 
61	gkQ	=1 = Parameters	for	incident	condition 

62	gkQ	=2 = Parameters	for	non − incident	condition 

Incident duration will be represented as the proportion of incident duration 

out of the simulation time. For example, if an incident occurred at 12:30 PM during 

the Midday non-peak period (six hours from 9:00 AM to 3:00 PM) for 90 minutes, 

the duration parameter for the incident component will be v = 	90/360	 = 0.25. As 

a result, the duration parameter for the non-incident condition will be �1 − v =
�1 − 0.25 = 0.75. 

4.2.2 Akcelik VDFs 

The one major advantage of the Akcelik VDF over the BPR VDF is that the Akcelik 

VDF can consider node delay and queue. In order to consider the incident impacts at 

links and nodes, this study modified original Akcelik VDFs. Equation (4.3) and 

Equation (4.4) show the functional forms of modified Akcelik VDFs that have link 

delay and node delay from incidents, respectively. 

�> = �@> + v> �0.253��v/�{> − 1	 + ��v/�{> − 1	� + 8"P��{> �3�� 

+�1 − v> A0.253 ���/�~> − 1	 + 
��/�~> − 1	� + CD�8G�� NH�I         Eq. (4.3) 

�? = v? � �.09�KLM/9NKL�8/G��	�M/9� + �1 − v? � �.09�KLM/9NKL�8/G��	�M/9�           Eq. (4.4) 



124 
 

Where, �> = link delay 

�? = node delay 

�@> = free-flow travel time per unit distance 

T = duration of analysis period (h) 

� = link volume 

�~> =  full capacity of link (vph) 

�{> = reduced capacity of link (vph) 

JA = delay parameter for incident condition (unitless) 

JB = delay parameter for normal condition (unitless) 

 O = green time 

J =	cycle length 

v? = proportion of incident duration out of simulation period at node 

v> =	proportion of incident duration of simulation period at link 

Just like modified BPR VDFs, the modified Akcelik VDF introduced 

additional components for incident traffic conditions and variables for capacity and 

duration. For incident traffic conditions, four variables were introduced: reduced 

capacity variables for link ��{>   and for intersection��{? , and the proportion of 

incident duration out of simulation period for link �v> and node �v?. For non-

incident traffic conditions, four variables were also introduced: full capacity 

variables for link ��~>   and for intersection ��~? , and the proportion of incident 

duration out of simulation period for link �1 − v> and node �1 − v?. 
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4.3  BPR and Akcelik VDFs Calibration 

Model calibration is the process of finding the best values for a model’s input 

parameters, until the model’s predictions are matched to field observations within 

some acceptable criteria (Federal Highway Administration 2010). Calibration usually 

minimizes objective functions, such as %RMSE, which indicate errors between 

observations and predictions. During the calibration process,	]�and %RMSE are 

examined. The visual examination is also used to see how estimated values fit the 

data in sensitive areas. 

For the modified VDF calibration, the major key inputs - free flow speed and 

link capacity - should be determined first. This study utilized the cross-classification 

tables developed by AECOM for TDFM as shown in Table 4.2 and Table 4.3, which 

were based on area type and facility type. 
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Table 4.2 Free Flow Speed per Facility Type and Area Type 

  Area Type 

CBD Urban 
Dense 
Suburban 

Sub-
urban 

Rural 

Facility 

Type  

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Interstate/Principal Freeway 55 57 60 60 64 

Minor Freeway 48 51 55 57 62 

Principal Arterial/Highway 32 39 41 47 52 

Major Arterial/Highway 29 32 36 43 45 

Minor Arterial/Highway 28 34 38 42 45 

Major Collector 27 30 34 41 44 

Minor Collector 23 30 32 38 40 

Local 20 23 26 32 33 

High Speed Ramp 40 40 40 45 45 

Low Speed Ramp 25 30 30 35 35 

Centroid Connector 17 22 27 31 35 

External Station Connector 20 25 35 45 55 

Source: (AECOM 2013) 
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Table 4.3 Link Capacity (Vehicle/Hour) Cross-classification table 

  
Area Type 

CBD Urban 
Dense 
Suburban 

Sub-
urban 

Rural 

Facility 

Type 

 

 

 

 

 

 

 

 

 

 

 

Interstate/Principal Freeway 1,850 1,900 1,900 1,900 2,000 

Minor Freeway 1,200 1,250 1,300 1,400 1,500 

Principal Arterial/Highway 900 950 1,000 1,100 1,150 

Major Arterial/Highway 850 900 950 1,000 1,050 

Minor Arterial/Highway 800 850 900 950 1,000 

Major Collector 700 750 800 850 900 

Minor Collector 550 600 650 700 800 

Local 400 425 450 475 500 

High Speed Ramp 1,500 1,550 1,600 1,650 1,700 

Low Speed Ramp 800 900 900 1,000 1,000 

Centroid Connector 9,999 9,999 9,999 9,999 9,999 

External Station Connector 9,999 9,999 9,999 9,999 9,999 

Source: (AECOM 2013) 

 

The parameters for incident components of modified BPR and Akcelik VDFs 

on the TDFMI need to be calibrated with the observed incident data because the 

flow-speed relationships under incident conditions would not be the same as normal 

traffic conditions. The calibration was made by four different functional classes: 1) 

freeways, 2) major arterials, 3) minor arterials, and 4) collectors/local roads. Since 

the fifth class was for Centroid connectors, it was excluded in the VDF calibration. 
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van Arder’s traffic Stream Model 

From the successful implementations of surrogate measures for V/C to consider 

oversaturated traffic conditions in previous research efforts (Lee and Munn 2009; 

Klieman et al. 2011; Huntsinger and Rouphail 2011), this study used the density rate, 

the ratio of a given density divided by the density at maximum flow (capacity), to 

calculate V/C for both undersaturated and oversaturated traffic conditions in the 

VDF calibration. Density ratio rK  can be calculated by Equation (4.5) 

c

xr

k

k
K =             Eq. (4.5) 

Where,   

rK = density ratio 

xk= density at given level x 

ck= density at capacity 

The density at capacity ( ) indicating optimum density can be determined 

from field traffic data. Thus, the traffic conditions can be identified from Equation 

(4.5) if it is an under-saturated traffic condition ( <1) or an over-saturated traffic 

condition ( ≥ 1). In order to estimate the density rate ( ) based on density at 

capacity , van Arder’s traffic stream model (Hesham Rakha and Brent Crowther 

2002) was utilized to determine boundary conditions of the field data, including free 

flow speed, maximum flow (capacity), density at capacity, and jam density. van 

Arder’s traffic stream model has the relationships between parameters and boundary 

ck

rK

rK rK

ck
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conditions, as shown in Equation (4.6) to Equation (4.10)  (Hesham Rakha and Brent 

Crowther 2002). 

ℎ = �K + ��S + GN��L�         Eq. (4.6) 

� = ���L�����L��N        Eq. (4.7) 

�� = K
���R  i¡�¢	        Eq. (4.8) 

�K = ���        Eq. (4.9) 

�� = LGi ¡�£�L �N¡�¤¡���        Eq. (4.10) 

 
Where,�K = fixed distance headway constant (mile) 

�� = first variable distance headway constant (mi�/h) 

�� = Second variable distance headway constant (h) 

S@ = free speed (mph) 

SG = speed at capacity (mph) 

¦G = flow at capacity (veh/h) 

§̈ = jam density (veh/mi) 

� = constant used to solve for three headway constant (h/mi) 

An optimization of parameter values was performed by minimizing errors 

between field data and predicted data from the model.  
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Table 4.4 shows the boundary conditions of four facility types from the 

optimized van Aerde’s traffic stream model. 

 
Table 4.4 Boundary Conditions of Estimated Traffic Stream Model 

 
Minor 
Collector 

Major Collector 
Minor Arterial 

Principal Arterial
Minor Freeway 

Interstate 
Freeway 

Jam Density �§¨ (VPM) 108 115 168 178 

Density at Capacity �§G	(VPM) 33 36 36 38 

Free Flow Speed	�S@ (MPH) 46 50 59 69 

Speed at Capacity�S� (MPH) 35 40 53 58 

Capacity �¦R	(VPH) 1,210 1,380 2,085 2,130 

 

By using developed traffic stream models, the density at capacity �§G was 

determined and density measures were calculated per facility type. The relationships 

between speed (S and density rate �©ª were plotted with the developed traffic 

stream models as shown in Figure 4.2. Basic relationships between speed, volume, 

and density and their fitted curves show that all four facility types fit well with field 

data. 

 

 

 

 

 



131 
 

 

 
Figure 4.2 Fitted van Arder Traffic Stream Models with Observations 

c) Minor Freeways/Principal Arterials 

d) Interstate Freeways 

a) Minor Collectors 

b) Major Arterials/Major Collectors 
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Figure 4.3 shows the fitted curves on field crash data for four facility types of 

BPR and Akcelik VDFs.  Table 4.5 shows the estimated parameters of BPR and 

Akcelik VDFs for four facility types. From the functional forms of BPR VDFs, 

parameter 6 accounts for the ratio of travel time at free flow speed over the travel 

time at the capacity and parameter = accounts for the level of travel time increase 

from the travel time at free-flow (Kalaee 2010).  

From a visual examination, fitted curves fit well with field data and BPR 

VDFs show better shapes than Akcelik VDFs. As previous researchers have shown, 

BPR VDFs fit well for all V/C ranges while Akcelik VDFs do not. Akcelik VDFs 

show that speeds are steadily decreased as the V/C ratio increases up to V/C<0.8. As 

V/C is closer to 1.0, speeds are drastically dropped to lower than 10 mph at X/J ≅
	1.2 for all facility types. 

 
Table 4.5 Calibrated Parameters of BPR and Akcelik VDFs  

  
BPR Akcelik 

Alpha Beta J 

Interstate Freeways 0.39 3.41 0.00059 

Principal Arterials Minor Freeways 0.34 2.91 0.00012 

Major Collectors Minor Arterials 0.27 4.71 0.00006 

Minor Collectors 0.20 5.01 0.00003 
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Figure 4.3 Fitted Curves on Field Crash Data for BPR and Akcelik VDFs 
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Table 4.6 shows the statistics of calibrated BPR and Akcelik VDFs per 

facility type. Both p¬ and %RMSE statistics were used to evaluate the goodness of 

fit of calibrated VDFs. Akcelik VDFs have higher ¬ than BPR VDFs for all facility 

types. However BPR VDFs showed a lower %RMSE than Akcelik VDFs, except for 

the major collectors/ minor arterials. The minor collectors showed the highest ¬ and 

the lowest %RMSE across all categories for both VDFs. 

 

Table 4.6 VDF Calibration Statistics 

 Performance Measure BPR Akcelik 

Interstate Freeways 
 

R� 0.799 0.806 

%RMSE 6.250 6.980 

Principal Arterials/ 
Minor Freeways 
 

R� 0.866 0.869 

%RMSE 4.080 4.600 

Major Collectors/ 
Minor Arterials 
 

R� 0.687 0.717 

%RMSE 4.340 4.250 

Minor Collectors 
 

R� 0.872 0.894 

%RMSE 3.400 3.590 
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Figure 4.4 shows the calibrated curves of the BPR and Akcelik VDFs. The 

Akcelik VDFs showed very little speed reduction at V/C < 1.0, while the BPR VDFs 

have a gradual decline of the travel speed from the all facility types. The V/C range 

of 0.5-0.75 still had no significant changes in the Akcelik VDFs but the BPR VDFs 

had larger speed reductions compared to the Akcelik VDFs at the same range. When 

V/C approaches 1.0 and exceeds 1.0, the speed drastically dropped at all Akcelik 

VDFs facility types. On the contrary, BPR VDFs did not show significant drops as 

Akcelik VDFs did in the slope of the curves for the all of the facility types, which 

means BPR VDFs overestimate travel times as the V/C ratio approaches 1.0 and 

exceeds 1.0.  

 

 

Figure 4.4 Calibrated BPF and Akcelik VDF Curves per Facility Types 
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4.4 Model Validation and Reasonableness Check 

By applying both calibrated modified-BPR and modified-Akcelik VDFs to the traffic 

assignment step, the three model run results (TDFM, TDFMI with BPR VDFs, 

TDFMI with Akcelik VDFs) were compared and evaluated to examine if new VDFs 

for the TDFMI improved the existing TDFM in terms of accuracy and the level of 

effort of calibration. The model run results of the TDFMI are expected to be inferior 

to those of the existing TDFM because the TDFMI has not been extensively 

calibrated and validated before.  

Since the major differences of TDFMI from TDFM are the network (with or 

without incident information on links and nodes) and the functional form of VDF 

(with or without incident variables), the main effort for the validation of TDFMI was 

placed on the traffic assignment step. In reasonableness checking of the traffic 

assignment step, the free flow speed and the link capacity on both networks and 

VDFs are usually examined (Federal Highway Administration 2010). 

 

4.5 Chapter Summary 

This chapter explored the field traffic data and crash data from the VDOT’s database.  

The crash data and the traffic data were matched first by using the common temporal 

and spatial information. The crash involved data were then prepared to calibrate the 

modified VDFs for the incident impact. The prepared crash and traffic data were 

split into the facility types such as freeways, arterials, and collectors, and local roads 
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to calibrate VDFs. The BPR and Akcelik VDFs were modified to incorporate the 

incident impact into the functional form in this study. The functional form of the 

modified VDFs had two components for the normal traffic condition and the incident 

condition, which had additional variables representing the reduced capacity and the 

incident duration from the incidents. After parameters were calibrated, ]� 

and %RMSE statistics were examined to evaluate the goodness of fit of the 

calibrated VDFs by the facility types. Akelik VDFs have higher R� than BPR VDFs 

for all facility types. However BPR VDFs showed lower %RMSE than Akcelik 

VDFs except the major collectors/ minor arterials. The minor collectors showed the 

highest R� and the lowest %RMSE throughout the all categories for both VDFs. 
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CHAPTER 5. INCORPORATING INCIDENT IMPACTS 

INTO TDFMI NETWORKS  

Once incident-related inputs, including incident frequency, duration, and reduced 

capacity resulting from incident, are prepared, as described in Chapter 3, the TDFMI 

network should have incident information with additional link attributes, by 

matching individual incident records with their corresponding nodes and links on the 

TDFMI network. This chapter describes how the prepared incident data are matched 

with segments and intersections of the TDFMI network. 

 

5.1 Matching Base Year Incident Data with TDFMI Network 

All incident data with location information needs to be matched with the TDFMI 

network, in order to accommodate properly in network simulation (traffic assignment 

step). Figure 5.1 shows various geographic information data used in the incident 

matching process. Since most of the incidents and crashes have location information, 

all incidents were matched with their corresponding segments on the actual roadways. 

However the TDFM network does not cover all roadways; it does not have lower 

classified roadways, such as local roads or frontage roads. It is assumed that the 

impact of incidents on roadways that were excluded from the TDFM network is 

small enough to ignore. Indeed, most of the incidents that occurred on local roads 

may not have had any impact on higher classified roadways, like interstate freeways 

and/or arterials, but may have had an impact on collectors. Figure 5.1 shows an 
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example of matched incidents in the TDFM network and unmatched incidents on 

local roads that are excluded from the TDFM network. The matched incident data 

were split into incidents on freeways and non-freeways again. The incident data that 

matched in the TDFM network were used in the development of the TDFMI network, 

while the incident data did not match in the TDFM network were excluded in this 

study.  

 
Figure 5.1 Matching Incidents with TDFM Network 

 

Using the matched incident data, a further matching process was conducted 

to identify intersection incidents. The definition of an intersection crash is a crash 

that occurs within a 250 ft. boundary from the middle of an intersection. Thus, 
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incidents located within a 250 ft. boundary from the virtual center point of an 

intersection were categorized as intersection incidents. 

Figure 5.2 shows the TDFM network with matched incidents, freeway 

junctions, non-freeway intersections, and 250 ft. intersection crash boundaries. Every 

incident located inside of a 250 ft. boundary of any intersection or junction was 

identified as an intersection incident, and the rest of the incidents were identified as 

segment incidents.  

 

Figure 5.2 Example of Identifying Segment and Intersection Incidents 
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After the matching process using the 250 ft. intersection boundaries was complete, 

all individual incidents were categorized as either a segment incident or an 

intersection incident. 

In the case of an intersection incident, all inbound approaches connected to 

the intersection were assumed to be affected by the incident. However, the 

proportion of reduced capacity might be different for each approach because it 

should be determined based on the number of lanes on each approach link. Since no 

adequate information was available to determine the reduced capacity difference 

between the incident link and its adjacent links, this study assumed that all 

approaches from intersection incidents have the same reduced capacity impact 

resulting from the incident. Thus, for intersection incidents, all approaches connected 

to the intersection are assumed to have the same incident duration. 

After all incident data passed through the two map matching processes on the 

TDFM network layer and the TDFM intersection layer, the matched incident data 

were connected to its corresponding segment (link) or intersection (node) on the 

TDFMI network. This map matching process was conducted four times for different 

time periods, AM peak, Midday, PM peak, and Night time. Since TDFMI networks 

have corresponding incident information linked to a primary key based on incident 

IDs, additional link attributes for the frequency in numbers, duration in minutes, and 

reduced link capacity in proportion were added to TDFMI networks.  

After the matching incidents process in the TDFM network was complete, a 

total of 45,470 final incidents were selected as shown in Table 5.1. It is worthy to 
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note that each individual intersection incident was counted multiple times based on 

the number of the approaches associated to it.  Thus, the final number of non-

freeway incidents after the matching process is greater than before the matching 

process.  

Table 5.1 Incidents After Matching with TDFM Network 

  Freeway Non-Freeway Total 

 Crash 4,584 30,584 35,168 

Non-Crash Incident 6,945 3,357 10,302 

Sum 11,529 33,941 45,470 

 

Once the matching of individual incident records on the TDFMI network was 

completed, the reduced capacity and the incident duration of the matched incident 

records were stored to additional link attributes on the TDFM network. Finally, the 

spatiotemporal incident matrices for the duration and the reduced capacity were 

developed.  

Table 5.2, Table 5.3, and Table 5.4 show conceptual examples of 

spatiotemporal incident frequency, reduced capacity, and incident duration, 

respectively. The three tables had 39,372 rows representing the individual links of 

the TDFMI network and 249 columns representing individual weekdays of the 2009 

base year (weekends and holidays were excluded). The three tables show different 

incident information associated to a common incident record on the same link of the 

network. For example, a link from node 10001 to node 10003 had one incident in 

Day1 and Day 248, respectively. Each incident had a reduced capacity of 0.55 and 
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0.91, respectively. And those durations were 38 minutes and 25 minutes, respectively. 

In summary, the link from node 10001 to node 10003 had one incident in Day 1 that 

caused a reduced capacity to 0.55 of normal condition for 38 minutes. After the base 

year TDFMIs are run 249 times, the incident information of individual links will be 

used in the traffic assignment step via corresponding variables in the modified VDFs 

(BPR and Akcelik). 

 

Table 5.2 Example of Time-Space Incident Frequency Matrix (counts) 

From To Day1 Day2 Day3 … Day 248 Day 249 

10001 10002 
   …  

1 

10001 10003 1 
  … 1 

 
10001 10004 

 
2 

 …   
10002 10001 

   …   
10002 10005 

   …   
10002 10006 2 

  …   
10003 10004 

   …   
10003 10009 

  
3 …  

2 

: :    …   
 
 
Table 5.3 Example of Time-Space Incident Reduced Capacity Matrix (ratio) 

From To Day1 Day2 Day3 … Day 248 Day 249 

10001 10002 
   …  

0.25 

10001 10003 0.55 
  … 0.91 

 
10001 10004 

 
0.82 

 …   
10002 10001 

   …   
10002 10005 

   …   
10002 10006 0.37 

  …   
10003 10004 

   …   
10003 10009 

  
0.35 …  

0.72 

: :    …   
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Table 5.4 Example of Time-Space Incident Duration Matrix (min) 

From To Day1 Day2 Day3 … Day 248 Day 249 

10001 10002 
   …  

85 

10001 10003 38 
  … 25 

 
10001 10004 

 
112 

 …   
10002 10001 

   …   
10002 10005 

   …   
10002 10006 90 

  …   
10003 10004 

   …   
10003 10009 

  
230 …  

380 

: :    …   
 

 

5.2 Matching Future Year Incident Data with TDFMI Netwo rk 

Since future year incident data do not exist, incident frequency, duration, reduced 

capacity should be predicted to be used in the future year TDFMI. Chapter 3.4 

described how to prepare the incident data for the future year TDFMI. The future 

year TDFM, developed by (AECOM 2013), was used to generate key input data such 

as AWDT from loaded link volumes for future year incident prediction. For the 

future year crash prediction, SPFs and forecasted AWDT were utilized, as described 

in Chapter 3.4.1. Once the annual incident frequency was forecasted, the incidents 

were assigned on the future year TDFMI network using a Monte Carlo simulation 

based on the relationships between the incident frequency of base year and the 

functional classification of the TDFM network and four time-of-day periods. 
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The cross-classification table for incident duration, described in Chapter 3.4.2, 

was used for the future year TDFMI. Table 3.21 shows the probability of incident 

duration based on the combination of four different incident duration periods and 

three levels of incident severity. Similar to incident duration, the cross-classification 

table for the reduced capacity ratio of the base year was also used for the future year 

TDFMI. Table 3.18 shows the reduced link capacity to determine how much 

capacity would be reduced from an incident, based on the total number of lanes and 

the number of blocked lanes from the incident (Chin et al. 2004; TRB 2010). 

 

5.3 Exceptional Cases in Matching Process 

When two or more incidents occurred at the same location (link or node) during the 

same TOD period (e.g., MD off-peak period), data for those incidents were 

combined and converted into a single event because the TDFMI network and the 

modified VDFs have a single link attribute and a single variable that accommodates 

incident impact for each simulation period. For example, two incidents occurred at a 

freeway segment at different time stamps but within the same time-of-day period 

(e.g., the six-hour MD period from 9 AM to 3 PM).  The reduced capacity and the 

duration of two incidents are as follows: 

• Link capacity was reduced to 0.5 by incident 1 for 30 minutes 

• Link capacity was reduced to 0.3 by incident 2 for 60 minutes 
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Table 5.3 shows a diagram to represent two exclusive incidents and the 

combined incident by calculating weighted reduced capacity and combining the 

incident duration.  

 

Figure 5.3 Example of Combined Incidents Impacts from Multiple Incidents 

 

A combined incident duration can be determined by simply summing up the 

two incident durations. However, the combined reduced capacity needs to be 

calculated by using the duration and reduced capacity of each incident. An area of 

each incident, calculated by using the incident duration ratio and the reduced 

capacity ratio, represents the incident impact out of the total time-space dimension of 

the simulation. Thus, incident 1 has an impact of 0.042 out of the total time-space 
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dimension (1.0) that represents a no incident (full capacity) traffic condition for 6 

hours. 

• Incident	1	impact = reduced	capacity	 × duration = 0.50 × 0.083 =
0.042 

• Incident	2	impact = 0.30 × 0.167 = 0.050 

• Combined	incident	impact = �0.042 + 0.050 
= combined	reduced	capcity × combined	duration	 
= 	combined	reduced	capcity × 0.250 

• Combined	reduced	capacity = �0.042 + 0.050	/0.250		 = 	0.367 

Thus, the combined reduced capacity was calculated as 0.367 when its impact was 

0.092 and duration was 90 minutes (0.25) from the total simulation period of 360 

minutes. Table 5.5 shows the results after multiple incidents were converted into a 

single event.  

Table 5.5 Example Calculation for Multiple Incident Impacts 

  Incident 1 Incident 2 Combined 

Reduced Capacity 0.50 0.30 0.367 

Duration (min) 30 60 90 

Proportion of Duration 0.083 0.167 0.250 

Simulation Period (min) 360 360 360 

 

 

As described in Chapter 4, the modified VDF has two additional variables for 

reduced capacity and incident duration per link. An incident at the intersection was 
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treated as an intersection delay in the VDF. If a link does not have an incident, two 

variables (reduced capacity and incident duration) are zero, which makes the 

modified VDF the same as the original VDF. If a link has an incident, the value of 

the incident duration and the reduced link capacity of the corresponding link from 

the incident matrices are applied in the VDF. Incident duration is represented as a 

proportion of the incident duration out of the total simulation period, and is given a 

value between zero and one. There may be a situation when the duration of incidents 

is longer than the simulation period, or the incident duration extends into the next 

simulation period, regardless if a single incident or multiple incidents occurred. 

Since traffic simulation is run and summarized separately by individual TOD periods, 

incident impact should be considered separately for each TOD period.   

Since each of the four TODs has its own simulation time period, the 

proportion of incident duration should be recalculated based on the actual incident 

duration at each TOD period. By using the starting time of each incident and the 

duration of each incident, the actual duration can be calculated and the proportion of 

the incident duration for each TOD period can be determined.  

Figure 5.4 shows an example how a single incident can be split into two 

subsets for different TOD periods. An incident occurred at the MD period and its 

impact lasted for 4 hours (240 minutes). As a result, incident impact on the roadway 

was cleared during the PM period. This incident had negative impact (reduced link 

capacity to 0.367 for 240 minutes) for 180 minutes during the MD period and 60 

minutes during the PM period. The proportions of incident duration for both MD and 
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PM periods are 0.50 (180/360) and 0.33 (60/180), respectively. Both subsets of the 

incident would have the same reduced capacity of 0.367. In summary, a single 

incident impacted two different time periods. The reduced capacity was 0.367 for 

both the MD and PM periods and their incident durations were 180 minutes and 60 

minutes, respectively.  

 

Figure 5.4 Example of Single Incident Impacts during Two Simulation Periods 

 

5.4 Chapter Summary 

This chapter described how the incident data, prepared in Chapter 3, was matched 

with the segments and the intersections of TDFMI networks. For the base year case, 

the matched links and nodes on TDFMI networks were identified by using the 



150 
 

geometric location information from each individual incident record. When an 

incident occurred inside of the 250 ft. intersection boundary, determined based on 

the virtual center point of an intersection, the incident was assumed to be an 

intersection incident. Then, the matched incident data was connected to the 

corresponding segment (link) or intersection (node) information on the TDFMI 

networks. This map matching process was conducted four times for four TODs. 

Consequently, the incident frequency, the duration, and the reduced capacity for 249 

weekdays, calculated based on information from both field data and research 

literature, were prepared to run 249 TDFMIs.  

For the future year case, the loaded link volumes from the future year TDFM 

and the SPFs were used to forecast the annual incident frequency. Then, the 

forecasted incidents were assigned on the future year TDFMI networks using a 

Monte Carlo simulation technique based on the relationships between the incident 

frequency of the base year and the functional classification of the TDFM network 

and four TODs. The incident duration and the reduced capacity were prepared from 

field data and research literature, just like the base year case. Throughout the 

sensitivity test, the TDFMI runs were repeated 100 times with different inputs using 

the Monte Carlo Simulation technique to generate the annual average weekday travel 

demand, which was compared to those of the future TDFM in Chapter 6.  
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Table 5.6 shows assumptions applied in this chapter and the expected impact 

of those assumptions on the analysis results. 

Table 5.6 Assumptions and Impacts on Results 

Assumption Impacts on Result 

1. Intersection incident has the same 
impact on all approaches 
 

2. Impact of multiple incidents is the 
sum of individual incidents 

1. Impact may be different to individual 
approaches (better or worse) 
 

2. Impact of multiple incidents may be 
higher than the sum of individual 
incidents (same or worse) 
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CHAPTER 6. EVALUATION OF TDFMIs 

To evaluate TDFMIs, three major tasks were performed for both the 2009 base year 

and the 2034 future year scenarios as described below: 

• Task 1: Prepared incident data (e.g., frequency, reduced capacity, and 

duration), as described in Chapter 3. 

• Task 2: Modified & calibrated VDFs (BPR type & Akcelik type) to consider 

the impact of incidents, as described in Chapter 4. 

• Task 3: Matched the incident impact with the corresponding links and nodes 

on TDFMI networks, as described in Chapter 5. 

In this Chapter, the comparison between TDFM and TDFMI and the 

evaluation were made for both the 2009 base year and the 2034 future year. In the 

base year models, various performance measures and validation statistics, including 

VMT, VHT, volume over count ratio, %RMSE, and ]�, were used. In the case of 

future year models, the same performance measures as base year models were used. 

The validation statistics were excluded during the comparison and evaluation process, 

as those were unavailable for the future year models. Most of the performance 

measures were compared by subgroup criteria such as the facility type, area type, 

jurisdiction, loaded link volume group, etc.  
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6.1 Comparison of Base Year TDFM and TDFMI 

It has been acknowledged that the four step travel demand model has very 

complicated and time consuming tasks to develop, especially for a big MPO area, 

such as Hampton Roads. Since the goals of this study are to: develop a framework 

and propose a methodology on how to incorporate incident impact into the 

traditional TDFM, and compare and evaluate incident impacts on the TDFMI, a 

limited effort for the calibration and reasonableness checking of the entire TDFMI 

framework was performed in this study. As described briefly in Chapter 2.2, TDFMs 

typically have large amount of inputs, outputs, parameters, factors, models, and 

functions to be calibrated and validated from various observed, measured, surveyed, 

and estimated data, such as socio-demographic data (base year and future year), 

traffic data, and network simulation results. VDOT Transportation Planning & 

Mobility Division (TMPD) has spent over a million dollars for TDFM modeling 

activities in the Hampton Roads area since 2010, including a revision of the TDFM 

with the new 2009 base year, surveys, and VDF development, etc..  

Prior to the model comparison with TDFM, the brief reasonableness checks 

of TDFMI were made when calibrating VDFs for incidents in Chapter 4. Many valid 

field traffic data was used in TDFMI reasonableness checking, in the same way as 

traditional TDFM. Since the major differences between TDFM and TDFMI are the 

network attributes and the functional form of the VDF indicating incident 

information (duration and reduced capacity ratio), network analysis was focused on 

the traffic assignment step. All inputs/outputs from the previous three steps (i.e., trip 
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generation, trip distribution, and mode choice) were assumed to be the same, which 

is reasonable for a short-term analysis on a daily basis focused on route choice 

behavior.  

Table 6.1 shows the performance measures (%RMSE and volume/count ratio) 

of three models - the TDFM, the TDFMI with BPR VDFs, and the TDFMI with 

Akcelik VDFs - using 3,287 links that have traffic observations (AWDT). The 

performance measures were categorized by three subgroups: loaded link volume, 

facility type, and area type.  

Even though extensive model calibration, validation, and reasonableness 

checking was not performed on the TDFMIs, unlike the TDFM, %RMSE and 

volume/count ratio for the TDMFI with BPR VDFs showed improvements in most 

of the subgroups and the whole model, as shown by the shaded cells in Table 6.2. 

The results of the TDFMI with Akcelik VDFs showed improvements in fewer 

subgroups compared to the TDFMI with BPR VDFs. 

 When two performance measures (%RMSE and volume/count ratio) were 

examined, significant improvements were found at some subgroups. The bold 

numbers in Table 6.2 indicate the areas where the %RMSE and volume/count 

showed improvement in the two TDFMIs over TDFM. In particular, performance 

measures improved in all three categories for the TDFMI with BPR VDFs, even 

though %RMSE showed improvement in some subgroups but did in the 

volume/count ratio. 
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Table 6.1 2009 Model Run Statistics of TDFM and TDFMI  

  Subgroup  Volume   Sites 
% Root Mean Square Error Volume/Count Ratio 

TDFM 
TDFMI 

TDFM 
TDFMI 

BPR Akcelik BPR Akcelik 

Loaded 
Link 
Volume 

1 - 5,000 3,585,574 1,599 72.13 70.72 76.09 1.17 1.20 1.17 
5,000 - 10,000 5,315,469 752 40.13 36.22 38.34 1.06 1.01 1.03 
10,000 - 20,000 9,044,430 637 29.12 28.08 30.42 1.02 0.95 0.97 
20,000 - 30,000 4,205,604 174 25.17 27.70 28.16 0.94 0.90 0.89 
30,000 - 40,000 1,870,669 55 20.43 21.47 23.00 0.99 0.97 0.99 
40,000 - 50,000 1,982,331 45 18.52 15.40 26.71 0.90 0.93 0.95 
50,000 - 60,000 1,048,384 19 24.50 20.76 23.73 0.91 0.94 0.97 
60,000 - 70,000 195,459 3 30.26 23.02 21.38 0.81 0.91 0.91 
70,000 - 80,000 223,816 3 21.05 18.17 19.85 0.80 0.82 0.80 

Facility 
Type 

Interstate Freeway 5,347,521 150 23.24 20.23 27.71 0.97 1.00 0.99 
Minor Freeway  1,303,229 72 27.20 26.16 27.50 1.00 0.96 0.98 
Principal Art 6,335,433 394 30.47 30.10 30.71 1.07 1.00 1.01 
Major Art 1,586,969 180 38.54 38.14 41.05 0.95 0.88 0.91 
Minor Art 9,790,532 1,248 38.94 38.60 39.37 1.02 0.95 0.97 
Major Collector 408,273 228 71.60 69.07 75.61 1.04 1.07 1.00 
Minor Collector 2,600,421 972 63.86 65.44 69.25 1.04 1.12 1.11 
Local 29,782 36 43.38 44.45 49.12 1.00 1.05 1.02 
H.S. Ramp 27,812 1 27.32 20.50 33.31 0.73 0.80 0.67 
L.S. Ramp 41,764 6 57.32 60.71 52.31 0.98 0.99 1.00 

Area Type 

CBD 128,030 10 68.11 68.34 68.35 0.49 0.47 0.48 
OBD 5,342,234 525 38.90 36.98 42.77 1.00 0.96 0.97 
Urban 6,174,351 703 35.79 36.06 36.74 1.01 0.98 1.00 
Sub Urban 7,328,412 778 41.64 40.19 45.16 0.98 0.95 0.96 
Rural 8,498,709 1,271 43.35 40.20 46.12 1.07 1.05 1.04 

All 27,471,736 3,287 40.97 39.38 43.88 1.02 0.99 0.99 
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In the case of the TDFMI with BPR VDFs, the shaded cells represent the 

subgroups of three categories that have shown improvement in both %RMSE and 

volume/counts compared with the TDFM results. 

The higher loaded link volume groups (5,000 to 10,000 vehicles per day and 

greater than 40,000 vehicles per day categories) in the TDFMI showed significant 

improvement in %RMSE from 15.40% to 36.22% compared to the TDFM. In the 

facility type category, the interstate freeways and the principal arterials also showed 

improvements for both performance measures under the TDFMI models. When it 

comes to area type, the rural area showed improvements for both performance 

measures.  

As a result, the TDFMI showed overall improvement for both the %RMSE 

and the volume/count ratio. Table 6.2 is a network-wide summary comparing the 

TDFM with the TDFMI with BPR VDFs. The TDFMI with BPR VDFs showed a 

higher network-wide VMT, but a lower VHT than the TDFM, which seems 

reasonable because some travelers would choose longer distance detour routes to 

avoid congestion (to reduce travel time) that they are aware of. 

 
Table 6.2 Network-wide Summary of TDFM and TDFMI (BPR) 

 
TDFM TDFMI(BPR) 

TDFMI-
TDFM 

Percentage 

Volume 236,837,428 236,796,651 -40,777 -0.02 

VMT 41,111,073 42,086,016 974,943 2.37 

VHT 1,146,780 1,104,196 -42,584 -3.71 
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Volume and Speed Comparison between TDFM and TDFMI 

In order to calculate an annual average of weekday travel demand forecasting with 

incidents, the TDFMIs were run 249 times, once for each weekday in 2009, 

excluding weekends and holidays. Half-day holidays, such as the day before 

Thanksgiving Day and Christmas Eve, were excluded in the analysis because they 

were treated like regular holidays. Even though the TDFMI shows the variation of 

traffic conditions affected by the impact of incidents on each individual weekday, an 

average of TDFMI simulations showed similar results to the TDFM at the individual 

links level. 

Figure 6.1 shows an example of the distribution of the loaded link volumes 

and travel speeds across 249 TDFMI runs. The average link volume and travel speed 

from the 249 TDFMI runs and the link volume and travel speed from a single TDFM 

run are shown on the same distribution graphs. The graph of the loaded link volume 

of Tyre Neck Rd. has a similar shape to a normal distribution, as shown in Figure 6.1 

(top). The mean TDFMI link volume (1,572 vehicles per day) was very close to the 

TDFM link volume (1,570 vehicles per day). The TDFMI distribution of travel 

speeds showed a very small variation compared to link volume distribution. The 

TDFM travel speed and the mean TDFMI travel speed were found to be the same at 

35.9 mph. No incidents were found at this link segment and intersection (both 

upstream and downstream sides) in the 2009 base year.  

Figure 6.1 (bottom) shows another example on interstate freeway I-564 

westbound which had two incidents in 2009. The mean TDFMI loaded link volume 
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was very similar to the TDFM loaded link volume, at about 53,000 and 53,300 

vehicles per day, respectively. The mean TDFMI travel speed was very similar to the 

TDFM travel speed, at 54.0 mph and 54.5 mph, respectively.   

 

 

Figure 6.1 Examples of Volume and Speed Comparison of TDFM and TDFMI 

 

It would be premature to conclude that the reason why the I-564 loaded link 

volume and travel speed graphs generated from 249 TDFMI runs were not close to a 
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normal distribution because of two incidents. However, it could be expected that the 

variation of traffic conditions on interstates are much higher than in minor collectors. 

The detail analyses based on the 2009 incident observations in Chapter 3.3 show the 

distinctive difference of incident frequency by TOD, roadway types, and incident 

types. When more incidents occurred in one facility type (e.g., interstate freeways), a 

higher variation of traffic conditions would likely be found. 

Sensitivity Test of TDFMI 

Even though there are many strengths of the TDFMI over the TDFM, one of the 

major weaknesses of the TDFMI is its computational burden. The average model run 

time of 249 TDFMI base year models was 41 minutes using an Intel i7 3.20 GHz 

Octa Cores CPU with 60 GB of RAM on the Windows 7 64 Bit Operating System. 

Thus, the model run time and the storage space requirements would increase when 

running future year TDFMI analyses with multiple scenarios, as is required for the 

project list prioritization process. If the 10 projects plus a ‘Do-Nothing’ case needs to 

be evaluated with 250 simulations per scenario, 2,750 TDFMI runs are required to 

compare with the TDFM. The computational time may vary based on the hardware 

and software platform used for the TDFM and TDFMI.  

To mitigate the computational load, this research examined how many 

simulations should be run to obtain reliable TDFMI results. To find the optimum 

(minimum) number of simulations, a sensitivity test was performed on 249 TDFMI 

runs based on the 2009 base year data. The results of the sensitivity analysis were 

applied to determine the number of simulations required for the 2034 future year 
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TDFMI scenarios. Thus, the number of dates for the incident data and the number of 

TDFMI networks per four TODs were determined after the number of simulations 

was determined.   

In order to examine how many TDFMI model runs should be made to 

generate the same results (or results within an acceptable range of difference) as 

those from all 249 runs, the average model runs for five cases were compared as 

described below. The days for multiple runs of the sensitivity analysis were 

randomly selected from the 249 days. 

1. One run TDMFI (G1) 

2. The average of 10 TDFMI runs (G10) 

3. The average of 50 TDFMI runs (G50) 

4. The average of 100 TDFMI runs (G100) 

5. The average of 249 TDFMI runs  (G249) 

Figure 6.2 shows the loaded link volume difference between the G1, G10, 

G50, G100, and G249. The loaded link volume difference between G1 and G249 is 

as high as 20% for the links of lower loaded volume groups (less than 10,000 

vehicles per day) and is as low as less than 3% for the links of higher loaded volume 

groups (greater than 60,000 vehicles per day).  

The differences between G10 and G25 are much smaller than the differences 

between G1 and G249, especially in the lower link volume range. G50 shows a very 

small link volume difference from G249. The maximum difference between G50 and 
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G249 at the lower link volume group is less than 3%. The volume difference 

between G100 and G249 becomes even smaller across all links. There is even less 

than a 1% difference at the lower link volume group of less than 3,000 vehicles per 

day.  

 

Figure 6.2 Difference of Loaded Link Volumes over G249 
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The histograms of differences between the G1, G10, G50, and G100 over 

G249, as shown in Figure 6.3, show that the G100 generated the same results as the 

G249 with less than a 1% error range.  Even though 249 TDFMIs were used to 

generate the average of weekday model runs for the 2009 base year, this study 

assumed that 100 replications of Hampton Roads TDFMIs would be good enough 

and a conservative enough number of simulations for the evaluation and 

prioritization of 2034 future year TDFMIs. 

 

Figure 6.3 Histogram of Volume Difference over G249 
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 However, the minimum number of replications for the TDFMIs may be 

mainly determined by the network characteristics, including network size, the level 

of detail, the level of congestion, and the variation of incidents on the network, etc. 

Further research is required to determine the optimal number of replications of the 

TDFMIs based on the levels of TDFM network and incidents. 

 

6.2 Comparison of Future Year TDFM and TDFMI 

6.2.1  Prioritization of 2034 TDFM 

Hampton Roads MPO (referred as HRTPO) has published numerous technical 

reports regarding their project priorities for the 2034 LRTP (Kimley-Horn and 

Associates, Inc. 2010; Hampton Roads Transportation Planning Organization 2010). 

HRTPO made a list of regionally funded construction projects based on the 

prioritization categories: bridge/tunnel projects, highway projects, intermodal 

projects, transit, bicycle, pedestrian, and rail mode. Kimley-Horn and Associates, Inc. 

(2010) showed the project prioritization process and the evaluation results with the 

scores used in the 2034 LRPT. 

Table 6.3 shows the 158 project candidates proposed by local jurisdictions by 

project type in the 2034 LRTP. In the highway investment category, 113 projects 

worth about $9.5 billion were proposed by local jurisdictions. Even though only 19 

Tunnel and Bridge investment projects were proposed, their estimated costs were 

over $26 billion. Consequently, the total amount of estimated project funds for 158 

proposed projects were approximately $38 billion. 



164 

 

Table 6.3 Project Candidates used in 2034 LRTP Prioritization 

Project Type # of Projects Estimated Cost (YOE) 

Highway 113 9,439,468,048 

Interchange 18 1,184,118,458 

Tunnel/Bridge 19 26,086,886,200 

Multimodal 5 217,418,000 

Intermodal 3 688,563,008 

Total 158 37,616,453,714 

YOE: Year-Of-Expenditure 
Source: HRTPO, 2013 

 

 The list of projects is composed of three groups: 1) committed funded 

investments, 2) proposed regionally funded investments and ongoing funded studies, 

and 3) unfunded projects for future consideration (HRTPO, 2013). As of March 2011, 

approximately $6.64 B worth of funded projects were included in the 2034 LRTP, 

which was sourced by local, regional, state, federal, and private funds (HRTPO, 

2013). 

HRTPO staff conducted a thorough analysis to prioritize all 158 proposed 

projects. In other words, they revised the 2034 TDFM network for 158 projects and 

ran the TDFM model 159 times for individual different scenarios, including the ‘Do-

Nothing’ case. From the prioritization process of all projects, HRTPO identified 

three major evaluation criteria - project utility, economic vitality, and project 

viability - to evaluate and score each project. HRTPO weighted four criteria used in 

their prioritization evaluation as described below: 

• Evaluation of congestion level base on V/C ratio and ADT 

• Cost effectiveness based on construction cost and VMT 
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• Travel time reduction  

• Increase of travel time reliability 

During the prioritization process, all projects were evaluated by three main 

categories that have 100 points each and consisted of sub-categories with both 

quantitative and qualitative criteria. Table 6.4 shows the criteria of the three major 

categories and their subcategories with their associated points. The shaded criteria in 

the Project Utility and Economic Vitality categories show the quantitative criteria 

contributing 85 out of a total 300 points, which are closely related to the area’s 

mobility. Thus, the below six criteria, equivalent to 85 points, were evaluated and 

scored based on the TDFMI model run results in prioritization. 

• % Reduction between Existing and Future V/C Ratios: 10 points 

• Existing V/C Ratio: 10 points 

• Impact to Nearby Roadway (Future ADT - Existing ADT): 10 points 

• Total Cost ($) / VMT: 15 points 

• Total Reduction in Regional Travel Time (VHT): 30 Points 

• Increase Travel Time Reliability: 10 points 
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Table 6.4 Criteria and Scores for Prioritization 

Category Criteria Score 
Project Utility 
 (100) 

Congestion level:   
     (a) % reduction in existing and future V/C ratios [ (Existing V/C-Future V/C)/Existing V/C ] 10 
     (b) Existing V/C ratio 10 
     (c) Impact to Nearby Roadways (Future ADT-Existing ADT) 10 
System Continuity and Connectivity (Regional:25, Multi-Jurisdictional:16.75, or Local:8.25) 25 
Cost Effectiveness (Estimated cost/2034 daily VMT) 15 
Land Use Compatibility 10 
Safety and Security 15 
Modal Enhancements 5 

Economic Vitality 
(100) 

Total Reduction in Regional Travel Time (Very high:30, high:20, medium:10, low:5, very low:0) 30 
Labor Market Access   
     (a) Increase Travel Time Reliability (high:10, medium high:8, medium:6, medium low:4, low:2) 10 
     (b) Increased Access for High Density Employment Areas (very high:10, high:7, medium:3, low:0) 10 
Address the Needs of Basic Sector Industries? 30 
     Defense Access? 
     Will the project significantly reduce travel time for trips to major tourism areas? 
     Will the project significantly reduce travel time for trips to ports? 
Increased Opportunity 20 

Project Viability 
(100) 

Funding   
     Percentage of Funding Committed 50 
Process/Project Readiness   
Prior Commitment (is project in LRTP) 10 
     Percentage of Project Design Complete 10 
     Are Environmental Documents Complete 15 
     Are Environmental Decisions Obtained 5 
     Is ROW Obtained and Utilities Coordinated 5 
     Are additional environmental permits obtained 5 

Grand Total   300 

Source: HRTPO, 2013 



167 

 

Since this dissertation research focused solely on highway projects, the top 

10 highway projects (e.g., new roadway construction, existing roadway widening) 

were selected to compare the prioritization results generated from the 2034 future 

TDFMI models with the 2034 Hampton Roads LRTP Prioritization list. Initially, the 

top 10 ranked highway projects were selected, but one project was excluded for 

further analysis because the geometric information was not sufficient to be 

incorporated into the TDFMI network. Thus nine separate TDFMIs corresponding to 

nine highway projects were developed. The nine TDFMI networks were revised 

from the TDFMI network for the ‘Do-Nothing’ case, while the modified VDFs 

remained the same. 

Figure 6.4 shows the locations of the nine highway projects and their spatial 

boundaries. Table 6.4 shows the geometric boundary and other information, 

including length and number of lanes, for the nine projects. Project ID 65 and project 

ID 152 are new roadway construction projects; the seven remaining projects widen 

existing roadways. Project ID 5 and project ID 16 are multi-jurisdiction widening 

projects on I-64 and the new US-460, while the other seven projects are within a 

single jurisdiction.  



168 

 

 

Figure 6.4 Locations Top Nine Projects in Prioritization List from 2034 CLRP 
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Table 6.5 Location and Brief Information of Top Nine Prioritization List from 2034 CLRP 

ID Project Name From To 
Length  

(miles) 

Existing 

Lanes 

Proposed 

Lanes 

5 I-64 Peninsula Widening Route 199 (Exit 242) Jefferson Ave (Exit 255) 12.83 4 8 

16 US 460 Relocation Suffolk Bypass at US 58 Southampon/IW corp limit 14.87 0 4 

65 Middle Ground Blvd Jefferson Ave Warwick Blvd (Rte 60) 1.00 0 4 

78 Military Hwy Lowery Rd Robin Hood Rd 1.33 4 6 

86 Wythe Creek Road Alphus St Hampton CL 0.96 2 4 

96 Holland Road (Rte 58) Route 58 Bypass Ramp Manning Bridge Rd 2.23 4 6 

99 Nansemond Pkwy (Rte 337) Helen St Chesapeake CL 0.37 2 4 

152 Lynnhaven Pkwy Centerville Tnpk Indian River Rd 2.05 4 6 

188 G.W. Memorial Highway (Rte 17) Hampton Highway Dare Road 2.78 4 6 
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Table 6.6 shows the 2034 TDFM prioritization scores for the three categories 

and the total scores with ranking. Project ID 188, a widening project on the George 

Washington Memorial Highway (Route 17), ranked 1st place with the highest score 

of 202 in the highway project prioritization process. Even though Project 188 did not 

have the highest score in any of the three categories, as indicated by the shaded cells 

in Table 6.6, it ranked as one of top three highest scores (in bold) in all three 

categories and ranked 1st place with the highest overall total score. Project ID 5, a 

project to widen the I-64 Peninsula from 4 lanes to 8 lanes, had the highest scores at 

two categories (Project Utility and Economic Vitality) but had the lowest score in the 

third category (Project Viability). As a result, project ID 5 was ranked 5th in the 

overall total score.  

 

Table 6.6 2034 TDFM Prioritization Scores and Ranking 

Rank 
Project 
ID 

Project 
Utility 

Economic 
Vitality 

Project 
Viability 

Grand  
Total 

1 188 82 40 80 202 

2 152 62 30 99 191 

3 16 71 53 63 187 

4 96 75 34 71 180 

5 5 85 75 18 178 

6 65 55 38 79 172 

7 86 63 26 78 167 

8 99 62 19 78 159 

9 78 69 26 62 157 
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6.2.2  Prioritization of 2034 TDFMI 

 To prepare the 2034 TDFMI models, 2034 TDFMs for 10 scenarios, including the 

‘Do-Nothing’ case, were run first to generate loaded link volumes on TDFM 

networks, as described in Chapter 4. The key incident data (frequency, reduced 

capacity, and duration) for the 2034 future year TDFMI were prepared, as described 

in Chapter 3.4, and matched with TDFMI networks, as described in Chapter 5.2. 

Since incident severity is a key factor in determining incident duration and reduced 

capacity, it was used along with incident type and the number of blocked lanes 

(based on incident observations) to determine the frequency, duration, and reduced 

capacity. When the incident data were forecasted, the Monte Carlo Simulation 

technique was applied to assign the forecasted incident information on the 2034 

TDFM network. As described in Chapter 6.1, 100 replications were repeated to 

calculate an average of TDFMI runs. The 2034 future year TDFMI model runs were 

repeated 100 times per scenario, and then the average TDFMI results were calculated.  

Using the average TDFMI results, 10 TDFMI scenarios were summarized to 

calculate the scores by applying the same criteria that were used in the TDFM 

prioritization process, as shown in Table 6.3. Figure 6.5 shows the prioritization 

rankings of nine projects from the 2034 TDFM and the 2034 TDFMI based on the 

scores of the three subgroup criteria and total. Since the impact of incidents on the 

TDFMI caused changes in the V/C ratio, ADT, VMT, VHT, and travel time 

reliability, the final project priorities and total scores were changed. Project 188, the 

top ranked project in the TDFM, remained as the top rank project in the TDFMI, 
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even though there were some changes to V/C and VHT values. Project 65, the new 

construction of Middle Ground Blvd, was ranked 6th in the TDFM but ranked 9th in 

the TDFMI, as it received lower or equal scores to the TDFM in all six criteria. In 

contrast, project 86, widening Wythe Creek Rd., was ranked 4th in the TDFMI from 

7th in the TDFM, as it had the highest scores in reduction of VHT.   
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Figure 6.5 Priority Rankings and Their Scores of TDFM and TDFMI 
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 Figure 6.6 represents the comparison results of TDFM with TDFMI under 

three evaluation categories. The graph of each project shows the differences between 

TDFM and TDFMI in the three categories. Most of the projects have significant 

score differences in the Economic Vitality category. No changes were found in the 

Project Viability category, as there were no quantitative criteria to evaluate. 

When it comes to the Project Utility category, project ID 65 and project ID 

152 had the biggest score reductions. They received very low scores in ‘Congestion 

Level‘, which consists of three sub-criteria: current V/C level, V/C reduction in the 

future, and the impact to nearby roadways. TDFMI showed a lower V/C ratio and 

lower V/C improvements from those projects compared to TDFM. When it comes to 

the Economic Vitality category, project IDs 5, 96, and 188 had significant score 

reductions of greater than 10 points, for criteria closely related to the total reduction 

of regional travel time and its reliability. When the Project Utility and Economic 

Vitality categories were evaluated together in the Grand Total, project IDs 5, 65, 96, 

and 152 had significant score reductions by over 10 points. In particular, the Grand 

Total score of project IDs 65 and 152 were reduced by 28.5 and 22.2 points, 

respectively. Those significant score reductions forced their rankings to be reduced 

from 6th and 2nd to 9th and 3rd, respectively.  
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Figure 6.6 Evaluation Scores of Three Categories for Nine Projects
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As opposed to the evaluation of three categories per project in Figure 6.6, 

Figure 6.7 shows the evaluation scores of TDFM and TDFMI for nine projects with 

six sub-criteria.  

 

Figure 6.7 Evaluation Scores of Nine Projects for Six Sub-Criteria 

 

 Six graphs in Figure 6.7 show which projects have significant differences 

between the TDFM and the TDFMI by individual sub-criteria. From the visual 

inspection of score differences for the nine projects based on criteria, all criteria 
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appeared to have significantly different scores throughout the projects except for 

‘Cost Effectiveness’ and ‘Reduction of Regional Travel Time’. 

Figure 6.8 shows the cumulative project costs of TDFM and TDFMI based 

on their prioritization rankings. Since the rankings of projects were changed from 

using TDFM vs. TDFMI, the curves of cumulative project costs by prioritization 

ranking may show different results. If a limited number of highway investment 

projects should be selected based on investment budget constraints, TDFM and 

TDFMI results could generate a different list of feasible investment projects to 

planners and decision makers.   

 

 
Figure 6.8 Cumulative Project Cost per Prioritization Ranking 
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For example, investment funding for highway projects in the 2034 LRTP is 

limited to $ 1.5 billion, as shown in Figure 6.8. TDFM would recommend five 

projects (IDs 188, 152, 16, 96, and 5), while TDFMI would recommend seven 

projects (IDs 188, 16, 152, 86, 99, 96, and 5) that would meet budget conditions. 

TDFMI added two more projects (IDs 86 and 99) as investment projects that TDFMI 

did not. Thus, it is worthy for HRTPO planners and decision makers to examine if 

they should include those two projects in their 2034 LRTP. It is noted that project ID 

5 would not be selected by both 2034 the TDFM and the TDFMI, based on the 

budget allocated.  

In addition to a visual inspection, a paired t-Test was performed using both 

evaluation scores from TDFMs and TDFMIs to examine if the score differences 

between the TDFM and the TDFMI were statistically significant over the six criteria 

for the nine projects. Table 6.7 shows the paired t-Test results using the evaluation 

scores of the six criteria for the nine projects. From the paired t-Test results for nine 

projects, it turns out that three TDFMI scenarios, project IDs 65, 86, and 99, 

generated significantly different evaluation scores between the TDFM and the 

TDFMI, which means that the mean difference of evaluation scores were 

significantly greater than zero.  

On the contrary, a second paired t-Test was conducted to examine if any 

individual criteria generated statistically significant differences between the TDFM 

and the TDFMI over nine projects. Table 6.8 shows the paired t-Test results using 

evaluation scores of the nine projects for the six criteria. From t-values and p-values, 
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it turns out that no one of the six sub-criteria generated significantly different 

evaluation scores between the TDFM and the TDFMI.  

These results show that the TDFMI could generate different quantitative 

analysis results that would change the prioritization results. Thus, the application of 

TDFMI to nine candidate major investments of future scenarios shows that while the 

top ranked project is unaffected, three projects experienced a rank change by one 

position and three projects experienced a rank change by three positions.  This 

change in prioritization demonstrates that explicit consideration of a project’s ability 

to reduce incidents is feasible with TDFMI and can materially influence which 

investments are selected. 
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Table 6.7 Paired t-Test Results for Nine Projects 

  
5 16 65 78 86 96 99 152 188 

TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI 

Mean 12.8 12.0 6.3 7.1 7.9 3.5 6.0 6.8 5.3 7.0 5.3 5.3 4.4 7.3 7.0 4.1 8.8 8.9 

Variance 82.4 92.1 13.9 11.1 7.5 13.9 11.4 3.7 18.7 26.5 36.7 20.4 19.4 27.0 31.7 18.3 24.0 18.8 

Pearson Correlation 0.962   -0.386   0.745   -0.784   0.975   -0.356   0.872   0.715   0.639   

t Stat 0.728   -0.34   4.349   -0.373   -3.068   0.017   -2.757   1.812   -0.092   

P(T<=t) two-tail 0.499   0.748   0.007   0.725   0.028   0.987   0.040   0.130   0.930   

t Critical two-tail 2.571   2.571   2.571   2.571   2.571   2.571   2.571   2.571   2.571   

Note:  Observations = 6 
df = 5 ±� = The average difference between TDFM and TDFMI was 0 

 

Table 6.8 Paired t-Test Results for Six Criteria 

Criteria 
1 2 3 4 5 6 

TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI TDFM TDFMI 

Mean 4.4 6.5 5.0 4.4 7.3 7.0 11.7 8.8 8.3 8.9 5.8 5.8 

Variance 13.8 14.9 25.0 15.3 16.4 8.7 13.4 43.9 75.0 73.6 7.4 11.4 

Pearson Correlation 0.637 
 

0.160 
 

0.075 
 

0.569 
 

0.939 
 

-0.439 
 

t Stat -1.886 
 

0.286 
 

0.213 
 

1.632 
 

-0.555 
 

0.000 
 

P(T<=t) two-tail 0.096 
 

0.782 
 

0.836 
 

0.141 
 

0.594 
 

1.000 
 

t Critical two-tail 2.306 
 

2.306 
 

2.306 
 

2.306 
 

2.306 
 

2.306 
 

Note:  Observations = 9 
df = 8 ±� = The average difference between TDFM and TDFMI was 0 
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Table 6.9 shows the project rankings, evaluation scores, and project cost of 

TDFM and TDFMI. Since project IDs 65, 86, and 99 showed significantly different 

project scores and rankings between the TDFM and the TDFMI from the paired t-

Test, those three projects should be examined with special care in the project 

selection process under a limited investment budget. Based on the example shown in 

Figure 6.8, project IDs 86 and 99 should be included when the investment project 

budget is $1.5 billion. 

 

Table 6.9 2034 Prioritization Ranking, Scores, and Project Cost 

Rank 
TDFM TDFMI 

Project Score 
Project 
Cost 

Cumulative 
Cost 

Project Score 
Project 
Cost 

Cumulative 
Cost 

1 188 202 56.7 56.7  188 197 56.7 56.7  
2 152 191 41.1 97.8  16 185 700.0 756.7  
3 16 187 700.0 797.8  152 169 41.1 797.8  
4 96 180 75.0 872.8  86 168 34.2 832.0  
5 5 178 779.4 1,652.2  99 166 8.9 840.9  
6 65 172 65.3 1,717.5  96 166 75.0 915.9  
7 86 167 34.2 1,751.7  5 166 779.4 1,695.3  
8 99 159 8.9 1,760.6  78 153 105.3 1,800.6  
9 78 157 105.3 1,865.9  65 143 65.3 1,865.9  

Unit: Million dollars 
Source: HRTPO, 2011 
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6.3 Chapter Summary 

 In this chapter, the comparison between and the evaluation of the TDFM and the 

TDFMI were made for both the 2009 base year and the 2034 future year. For the 

base year models, various performance measures and validation statistics were 

compared by subgroup criteria. Even though extensive model calibration, validation, 

and reasonableness checking was not performed on the TDFMI, unlike the 

TDFM, %RMSE and volume/count ratio of TDMFI with BPR VDFs showed 

improvements in most subgroups and the model as a whole.  

TDFMI results with BPR VDFs showed better improvements for most of the 

subgroups, compared to TDFMI results with Akcelik VDFs. For the future year 

models, the top nine highway projects were selected from the prioritization list in the 

2034 LRTP. One TDFM for annual average daily traffic and 249 TDFMIs for 249 

weekdays were prepared for the evaluation of ten scenarios, including the ‘Do-

Nothing’ case. The average of 249 TDFMIs runs were prepared to compare with the 

TDFM results.  

By applying the same evaluation criteria identified by HRTPO, TDFMI 

results were evaluated by three major criteria: project utility, economic vitality, and 

project viability. From the three criteria, six quantitative sub-criteria, contributing 85 

points out of a total 300 points, were evaluated and scored. The comparison results 

between TDFM and TDFMI showed that the priority ranking of eight out of nine 

projects, with the exception of the top ranked project, were changed as the impact of 
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incidents on the TDFMI influenced traffic simulation results. The paired t-Tests for 

the six sub-criteria showed that no one of six sub-criteria showed significantly 

different evaluation scores between the TDFMs and the TDFMIs.  

On the contrary, the paired t-Tests for the nine projects showed that the 

evaluation scores for three projects in the TDFMI were significantly different than 

those generated by the TDFM. These results showed that the TDFMI could generate 

different quantitative analysis results that would change the prioritization results. 

This change in prioritization demonstrated that explicit consideration of a project’s 

ability to reduce incidents is feasible with the TDFMI and can materially influence 

which investments are selected. Table 6.10 shows the assumptions applied in this 

chapter and the expected impacts of those assumptions on the analysis results. 

Table 6.10 Assumptions and Impacts on Results 

Assumption Impacts on Result 

1. Average of 100 replications is good 

enough to generate reliable future 

TDFMI results 

1. Average of 250 replications may 

generate different results (same or 

worse) 
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions  

In this section, the conclusions from conducting this dissertation research are 

presented below:  

The integration of a travel demand forecasting model (TDFM) with models for 

incident frequency, duration, and reduced capacity is technically feasible. 

• The approach used herein takes advantage of the large number of incident 

records available in areas that actively manage their roadways. It is 

technically feasible to integrate a travel demand forecasting model with 

incident data. 

• Incident data (frequency, duration, and reduced capacity ratio) were prepared 

from historical incident records for the base year. For the future year,  various 

models and techniques were successfully applied to forecast future incident 

frequency, duration, and reduced capacity 

• Forecasted incident data for the future year could be allocated on the TDFMI 

network by using the Monte Carlo Simulation technique based on the 

characteristics of incidents (type, severity, TOD, duration, etc.) and roadway 

geometry (functional classification). 
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The volume delay functions (VDFs) with additional terms for incident impact should 

be modification and calibrated by using incident involved field data. 

• The functional forms of BPR and Akcelik VDFs were modified to 

accommodate the impact of incidents, with additional variables for capacity 

reduction and incident duration. 

• Field traffic data and crash data in VDOT’s database were explored to find 

crash-involved traffic data by using common temporal and spatial 

information. The prepared crash-involved traffic data were split into 

subgroups by facility types (freeways, arterials, and collectors, and local 

roads) to calibrate VDFs separately.  

• The modified BPR and Akcelik VDFs generated better nominal base year 

performance than the VDFs in TDFM. 

• From the TDFMI using BPR VDFs, the higher link volume groups (5,000-

10,000 vehicles/day and +40,000 vehicles/day) showed significant 

improvements in %RMSE from 10% to 24%, compared to the TDFM. From 

the facility type category, TDMFI results for interstate freeways and principal 

arterials also showed improvements on both performance measures. When it 

comes to the area type, TDMFI results for rural areaa showed improvements 

on both performance measures.  
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The Travel Demand Forecasting Model with Incidents (TDFMI) needs to be 

examined along with the TDFM by planners for selecting investment projects from a 

prioritization list under limited budget conditions.  

• The TDFMI considerably affected the prioritization of investments by 

explicitly considering each investment’s impact on incidents.   

• With the exception of the region’s top-ranked project, the ranking of the next 

eight projects were affected by the use of TDFMI; for instance, the 7th and 8th 

ranked projects under the TDFM became the 4th and 5th ranked projects under 

the TDFMI.  

• Three projects (IDs 65, 86, and 99) showed significantly different project 

scores and rankings between the TDFM and the TDFMI from the paired t-

Test evaluation. Those three projects should be examined with special care in 

the project selection process, especially with a limited investment budget. 

Thus the approach allows planners to evaluate the regional impacts of various 

strategies. 

 

When compared to the TDFM, the TDFMI has more flexibility in its application for 

travel demand forecasting modeling, including a network analysis for ‘what if’ 

scenarios and a prioritization of investment projects. 

• The TDFMI can be simplified to the TDFM when all incident variables, such 

as duration and reduced capacity, shown in Equation 3, are set to zero.   
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• Due to the additional incident impact variables, various project-level network 

analyses are possible by simply changing the link capacity and the duration 

of incidents. 

• For regions that question the quality of their incident data, TDFMI model 

runs can be performed with and without the modification are zeros. 

 

7.2 Research Contributions 

 This dissertation research made several contributions to best practices in the 

Transportation field, including developing a framework for the TDFMI and applying 

it, and introducing state-of-the-art modifications to VDFs to include incident data. 

Key contributions are as follows: 

1. This dissertation research has developed a methodology for preparing and 

integrating incident impacts into the traditional TDFM. 

• This dissertation research has explored incident data and their impacts (the 

number of blocked lanes, duration, etc.) on the network and shown how 

incident data should be prepared to be integrated into traditional TDFM 

networks. 

2. This dissertation research has modified the VDFs and calibrated the model 

parameters using incident involved traffic data to account for incident 

components. 



188 

 

• The BPR and Akcelik VDFs were modified with additional variables for 

considering the impact of incidents (duration and reduced capacity) at link 

segments and intersections. 

• The parameters of modified VDFs were calibrated using crash-involved 

traffic data and the application results showed better performance measures 

compared to the TDFM results. 

 
3. This dissertation research has developed a TDFMI that integrates a traditional 

TDFM with incident data. 

• The base year comparison results showed that the TDFMI has provided better 

nominal performance than the traditional TDFM, by using additional variables 

reflecting incident duration and the corresponding capacity reduction in the 

VDFs. 

• This dissertation research has shown that the TDFMI affects the prioritization 

of future investments by explicitly considering each investment’s impact on 

incidents.  Thus the TDFMI could allow planners to evaluate the regional 

impacts of various strategies. 

4. This dissertation has shown that the TDFMI has a flexible opportunity in its 

application for planners and modelers to evaluate various incident impacts at the 

regional level.  

• The traditional TDFM would be a part of the TDFMI when all incident 

variables (duration and reduced capacity) in the TDFMI are set to zero. 
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• The TDFMI provides practical applications to planners and modelers at the 

state and/or MPO level for their various scenarios analyses (e.g., daily 

dynamics) to evaluate incident impact at the regional level (incident duration, 

number of incidents for corridor, lane blocks, etc.) 

 

7.3 Recommendations for Future Research 

 TDFMI using Dynamic Traffic Assignment (DTA) 

A limitation of the accuracy of both TDFMI and TDFM is that they rely on static 

traffic assignments, suitable for planning rather than more detailed approaches 

common to DTA. For future research, a TDFMI with mesoscopic or microscopic 

simulation models for transportation planning and decision making could generate 

more realistic and detailed incident impacts on the network by better considering 

queuing and spillback effects. Certainly, a TDFMI that is integrated with DTA could 

have generated more detailed incident impacts by considering queuing and spillback 

effects. The benefits of such detail would need to be compared with the cost of data 

preparation and processing, but represents an area for further exploration for some 

prioritizations that might occur at a sub-regional level.  

 

TDFMI with Other Non-Recurrent Congestion Sources 

This dissertation research has focused on incident impacts for incorporating with the 

TDFM. As mentioned earlier, incidents account for part of non-recurrent congestion 

in urban traffic. Other non-recurrent congestion factors, such as work zone, 
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inclement weather, and special events may have a significant negative impact on 

urban traffic networks and needs to be addressed in urban traffic analysis. Like 

incident data, the above mentioned non-recurrent congestion factors would not have 

any technical or practical obstacles in preventing its incorporation into the traditional 

TDFM. Since the TDFMI shows potential applications to combine various 

operational variables in the transportation planning process, various safety and 

reliability research under SHRP 2 could be expanded using the TDFMI when key 

inputs of non-recurrent congestion factors are prepared. 

 

Improvement of Incident Forecasting Models for Future Year TDFMI 

Future year forecasting models for incident frequency, incident duration, and 

reduced capacity assumed that current trends based on historical observations will 

not be changed in the future. However, various new emerging technologies are 

expected to have notable impacts of reducing traffic incidents in future transportation 

systems. Many Intelligent Transportation System (ITS) applications have focused on 

the improvement of vehicles’ mechanical performance, known as Advanced Driver 

Assistance Systems (ADAS) (Wikipedia 2013a), for safety optimization, which 

includes a vehicle collision warning or avoidance system, speed adaptation, 

Connected Vehicle (CV), etc. Recently, Google has been working on a driverless car 

project (self-driving car project) and has tested autonomous cars on public roads in 

the states of Nevada, Florida, and California in the U.S. Thus, incident models may 
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need to account for the impact of new technologies in future incident forecasting 

(Wikipedia 2013b).   

 

7.4 Recommendations for the HRTPO and VDOT 

Recommendations for HRTPO 

The evaluation results of the prioritization analysis with TDFM and TDFMI indicate 

that HRTPO may need to revisit highway projects ID 65, 86, and 99 and reevaluate if 

their TDFM analysis results and prioritization scores per criteria are reliable. When 

comparing the analysis results of TDFM with those of TDFMI, v/c ratio, cost 

effectiveness (cost/VMT), and travel time reliability were major contributor of the 

statistical difference. Thus, HRTPO could conduct a pilot study to evaluate the level 

of congestion, VMT, and travel time of the corridors that related to the three projects 

This dissertation research examined the highway prioritization of investments 

with TDFMI and compared the ranking with the results of TDFM. TDFMI could be 

applied to other prioritization categories, such as bridge/tunnel projects, intermodal 

projects, transit and rail mode projects, and to compare the prioritization ranking of 

TDFMI with those of TDFM.  

HRTPO could utilize the TDFMI in various applications, including traffic 

impact analysis and/or short-term network analyses. For example, if two out of three 

lanes need to be blocked during midday due to roadwork on the interstate freeway I-

64, TDFMI could run and show the incident impact by setting the link capacity of 
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that link and the proportion of road work time out of simulation time. By comparing 

the loaded network results of TDFM and TDFMI, the traffic impact of road work on 

interstate freeways could be assessed. 

In order to analyze the incident impacts by using TDFMI in various 

application levels, VDOT and HRTPO could work together especially for the 

TDFMI model development and incident data collection. HRTPO could identify 

problems in the future from travel demand forecasting modeling (short term or long 

term) and develop alternatives to maximize the improvement from the TDFMI 

analysis. Based on identified problems and alternatives, HRTPO could make a list of 

projects and they want to analyze and data they need to collect for the analyses of 

specific corridors or intersections.  

Recommendations for the VDOT  

In order to develop TDFMIs for small and large MPO models as well as the 

statewide model, incident data and traffic data in VDOT’s database need to be 

explored based on spatial and temporal boundaries. All incident data that occurred in 

the weekdays of the base year within modeling boundaries should be collected. 

Large MPO areas that use the TOD step in the TDFM structure should have separate 

incident dataset for each of the four TODs.  For the calibration of modified BPR and 

Akcelik VDFs, crash-involved traffic data also need to be collected by using 

common temporal and spatial information from both crash and traffic data.  
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With the exception of the Richmond and Hampton Roads models, the 

networks of all MPO models should be extensively revised by using the latest GIS 

roadway information. Current networks of all model areas are sparsely coded and the 

links of lower functional classifications, such as collectors and local roads, are not 

included. Furthermore, all links on networks are coded as ‘stick’, which simply 

connects nodes with a straight line, ignoring the true shape of roadways. Thus, a true 

display of roadways, including collectors and local roads, is crucial when matching 

incidents to TDFMI networks. Indeed, at least a base year model update may be 

necessary because model run results would change if the network is extensively 

revised. If the network changes significantly, model calibration, validation, and 

reasonableness checking need to be conducted. 
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