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Introduction 

On the morning of May 7, 2000, 15-year old Brenton Butler was walking to retrieve a job 

application from the local Blockbuster video. Two hours earlier, a ‘skinny black male’ 

approached Mary and James Stephens outside their hotel and demanded Mary’s purse. Standing 

about three feet from the couple, the man pulled out a pistol and shot Mary dead before running 

away. Two police officers saw Butler and pulled him aside thinking he vaguely matched the 

perpetrator’s description. As Butler talked to a detective, from fifty-feet away James Stephens 

indicated that this was the teenager who shot his wife. Taken aback, the officers brought 

Stephens closer, and he confirmed that “he was sure of it, he would not put an innocent man in 

jail” (De Lestrade, 2001). Butler was tried as an adult based on this eyewitness testimony, and 

later acquitted due to investigators coercing him into a false confession. Ultimately, forensic 

evidence proved a different man committed the crime.  

Judges in the United States are advised to use certainty as an indicator of eyewitness 

reliability (Neil vs. Biggers, 1972). And, increasing evidence shows that high confidence at the 

time of the initial identification is a strong predictor of accuracy, so long as proper lineup 

administration procedures are followed (Wixted & Wells, 2017). This strong relationship 

between high confidence and accuracy is documented in many laboratory studies, using a variety 

of manipulations (e.g. weapon vs. no weapon, other-race identifications) and stimuli (e.g., 

identifications after viewing photos of faces, videos, and/or staged crimes). Moreover, a recent 

field study suggests that these findings extend to real-world identifications (Wixted, Mickes, 

Dunn, Clark, & Wells, 2016).  

However, as the Butler case demonstrates, high eyewitness confidence is not always 

reliable. In this thesis, I present research from our lab that raises important caveats to the 
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growing consensus about a strong relationship between eyewitness confidence and accuracy. 

This includes lightly adapted versions of two published first-authored articles (Grabman, 

Dobolyi, Berelovich, & Dodson, 2019; Grabman & Dodson, 2019), as well as results from a 

recently submitted first-authored manuscript.  

Part I shows that individual differences in face recognition ability influence the rate of 

high confidence errors. Specifically, weaker face recognition ability corresponds to increased 

rates of high confidence errors in both a controlled eyewitness experiment using criminal lineups 

(Study 1A), and in an uncontrolled ‘real-world’ face recognition task of actors from the popular 

television show Game of Thrones (Study 1B). Part II shows that the probative value of 

eyewitness confidence statements depends on evaluators (e.g., police officers, judges, jurors) 

properly interpreting the level of certainty the witness intended to convey.  In three experiments 

(Study 2A – C), participants systematically misinterpreted witnesses’ verbal confidence 

statements when they knew the identity of the suspect in a criminal lineup – a situation that is 

common in criminal justice decisions. Taken together, these studies suggest a degree of caution is 

warranted when using eyewitness confidence as an indicator of accuracy. 
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Study 1A: Predicting High Confidence Errors in Eyewitness Memory: The Role of Face 

Recognition Ability, Decision-Time, and Justifications (Grabman et al., 2019) 

 How confident can we be about eyewitness confidence? A growing consensus suggests 

that identifications by highly confident witnesses are generally accurate (Wixted & Wells, 2017). 

However, the question is whether there are variables that systematically influence the accuracy of 

high confidence identifications. In the sections that follow we briefly review research on three 

factors that form the foundation of the first study: (a) the speed of a lineup identification, (b) the 

basis for an identification from a lineup, and (c) face recognition ability. We focus primarily on 

face recognition ability as no one (to our knowledge) has investigated the influence of this factor 

on high confidence misidentifications.  

 Many studies find that lineup-identification accuracy worsens as decision-times increase 

when individuals choose a face from a lineup, though this association is weaker for non-

identifications (e.g., Brewer & Wells, 2006; Dobolyi & Dodson, 2018; Dodson & Dobolyi, 2016; 

Dunning & Stern, 1994; Sauer, Brewer, Zweck, & Weber, 2010). But, growing evidence shows 

that high confidence errors also change as a function of the speed of lineup decisions. For 

example, Sauerland and Sporer (2009) found that confident (90 -100%) and fast (< 6s) 

identifications produced greater identification accuracy (97.1%) than confident, but slow, 

identifications (60.4%) (for similar results, see Brewer & Wells, 2006). Similarly, modeling 

decision-times continuously, Dodson and Dobolyi (2016) observed that accuracy greatly 

diminished for highly confident responses (100%) as decision-times increased. Taken together, 

these results suggest that, even under pristine lineup administration conditions, highly confident 

identifications may be reliable only insofar as the decision is made quickly.  
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In addition to decision-time, highly confident eyewitnesses can differ in the basis for their 

identification of someone from a lineup. In the only study to examine this issue, Dobolyi and 

Dodson (2018) asked individuals to justify their level of confidence in a response to a lineup. A 

content analysis showed that nearly 50% of all lineup-identifications were justified by referring 

to a single or multiple observable features about the suspect (e.g., “I remember his eyes and 

nose”). Moreover, 20% of all identifications were accompanied by a reference to familiarity 

(e.g., “He’s familiar”), with the remaining identifications based on either an expression of 

recognition (e.g., “I recognize him”) or a reference to an unobservable feature (e.g., “He looks 

like my cousin”) or a mixture of these justification-types. For the present purposes, the key point 

is that high confidence misidentifications increased when identifications referenced familiarity as 

compared to the other justification types. However, the period between encoding and test was 

short (5-minutes), meaning that it is unclear whether this relationship holds for longer delays.  

Finally, research conclusions about the confidence-accuracy relationship are currently 

based on and apply to the average individual. This focus on the average person, however, 

neglects individual differences which may account for some of the high-confidence errors that 

appear even when investigators follow proper procedures. The ability to recognize unfamiliar 

faces varies considerably from person to person (see Wilmer, 2017 for review). At the low end 

are those with prosopagnosia (‘face-blindness’), while other individuals exhibit exceptional skill 

(‘super-recognizers’) (Ramon, Bobak, & White, 2019; Russell, Yue, Nakayama, & Tootell, 2010; 

Wan et al., 2017). Face recognition ability is highly heritable (Wilmer et al., 2010; Zhu et al., 

2010) and distinct from other cognitive markers such as verbal and visual recognition ability, and 

general intelligence (e.g., for reviews, see Wilmer, 2017; Wilmer et al., 2012).  
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Although a few studies have shown that measures of face recognition predict eyewitness 

identification performance (Andersen, Carlson, Carlson, & Gronlund, 2014; Bindemann, 

Avetisyan, & Rakow, 2012; Morgan et al., 2007), no one has examined how heterogeneity in face 

recognition ability impacts the rate of high confidence misidentifications. One hypothesis about 

this relationship stems from Deffenbacher’s (1980) optimality account, which holds that 

confidence will be a stronger predictor of accuracy under more than less ideal conditions at 

encoding, storage and retrieval. By this account, face recognition ability should influence the 

quality (optimality) of what is encoded and retrieved, which in turn will influence the 

relationship between confidence and accuracy. In short, poor face recognizers should be more 

prone than strong face recognizers to make high confidence misidentifications. Alternatively, 

Semmler, Dunn, Mickes, and Wixted’s (2018) constant likelihood ratio account argues that, 

regardless of changes in overall accuracy, people assign confidence ratings so as to maintain the 

relationship between confidence and accuracy. Even though poor face recognizers will show 

worse accuracy than strong face recognizers, this account argues that there will be few changes 

in the predictive value of confidence – a high confidence identification will be comparably 

accurate across all levels of face recognition ability.  

 In sum, the purpose of this study is to investigate factors that potentially increase the rate 

of high confidence misidentifications, namely (a) decision-time, (b) justifications, and (c) face 

recognition ability. We examine these variables in concert with two other forensically relevant 

factors: the other-race effect (e.g., Meissner & Brigham, 2001) and retention interval (Wixted, 

Read, & Lindsay, 2016).  
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Methods 

Participants 

The study was administered online on respondents’ personal laptop or desktop computers 

using Amazon’s Mechanical Turk (mTurk). The 569 participants comprising the results ranged in 

age from 18 to 50 years (M = 31.66, SD = 6.08), were primarily female (68.5%), and all self-

reported their race as White/Caucasian. Though no consensus standards are available for a-priori 

power estimates for mixed effects logistic regression models, this sample size was deemed 

sufficient in light of conservative recommendations of 50 responses per modeled variable (Van 

Der Ploeg, Austin, & Steyerberg, 2014), and findings that estimates are generally reliable for 

sample sizes greater than 30 with at least 10 responses per participant (McNeish & Stapleton, 

2016). All participants received payment for completing the study. The University of Virginia 

Institutional Review Board approved this research. 

Materials 

Lineups. Participants viewed the same six Black and six White lineups as used in Dobolyi 

& Dodson (2013, 2018). These lineups consisted of a formal “head and shoulders” photograph of 

six individuals arranged in a 2 x 3 grid, wearing a maroon colored t-shirt, and exhibiting neutral 

facial expressions (see Figure 1A.1 for an example). All lineups met the criteria that no face is 

substantially more likely to be chosen by a naïve viewer based on a description of the perpetrator 

(i.e. lineups were ‘fair’; see Dobolyi & Dodson, 2013 for more details on lineup generation). To 

avoid a simple picture-matching strategy, at encoding participants saw different photos of 

potential lineup targets wearing varied street clothing and casual expressions (e.g., ‘smiling’).  
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Figure 1A.1. Example of the identification task. Participants’ task was to select the person from 

the encoding phase, or to indicate that they were “Not Present” in the lineup. 

 

Face Recognition Task. We administered the Cambridge Face Memory Test (CFMT) 

(Duchaine & Nakayama, 2006) to assess participants’ face recognition ability. In this task, 

respondents attempt to memorize six faces in three separate orientations. For each trial, 

previously viewed faces must be selected from an array of the target face and two foils. The test 

phase proceeds across 72 trials in three increasingly difficult blocks. Past research shows that a 

simple sum of correct responses is a reliable indicator of poor to above average recognition 

ability, with performance ranging from 0-72 correct selections (Cho et al., 2015). Figure 1A.2 

shows the distribution of CFMT scores from the present study. 
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Figure 1A.2. Distribution of CFMT score for 569 participants in the study. The blue line represents 

the median score (Median = 61), while the faded area surrounding represents ± 1 Median 

Absolute Deviations (MAD = 8.9). 

 

Procedure 

Procedurally, the study is similar to Dobolyi & Dodson (2018), except for two key 

differences. First, all participants completed the CFMT at the end of the lineup memory task. 

Second, we assigned roughly half of participants (n = 277) to a 5-minute delay between the 

encoding and test phases, while the remaining participants were tested a day later (n = 292).  

Prior to the encoding phase, we instructed participants that they would “see a series of faces. 

These faces will repeat 3 times. Please pay close attention because after a delay we will ask you 

questions about who you saw.” We further informed them that some participants would be 

randomly assigned to a 5-minute delay, whereas others would be prompted to return after a one-

day delay. As an attention check, before showing the stimuli we asked, “how many times will the 

faces repeat?” Those responding anything other than ‘3’ were asked to reread the instructions. 
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Failing this check a second time resulted in termination of study procedures (9 participants failed 

this check and are not included in the results or summary statistics).  

After passing the check, participants viewed six Black and six White faces as a block 

three times in a randomized order. This order followed the stipulations that: 1) The same face 

would not appear at the end of one block and begin the subsequent block (i.e., none would be 

shown ‘back to back’) and 2) faces of the same race would be shown a maximum of two 

consecutive times. Faces appeared for three seconds with a one second interstimulus interval. 

Additionally, to control for primacy and recency effects, four filler faces (two Black, two White) 

appeared at both the beginning and end of the encoding phase, but did not appear during the test 

phase. 

Participants completed the lineup task after either five minutes of working on an online 

word search, or roughly one day later upon seeing the prompt to begin the next phase of the 

experiment (see Figure 1A.1 for an example of the task). We instructed them that they would see 

a series of lineups where a single face they viewed previously may or may not be present. Their 

task was either to identify the face they remembered from before, or to indicate that they did not 

recognize any of the faces in the lineup by selecting ‘not present’.  

After making their selection, we asked participants, “in their own words, [to] please 

explain how certain [they] are in [their] response” by typing into a text box. This was followed 

by a prompt to “please provide specific details about why” they made this expression of 

certainty. Finally, we asked them to indicate their confidence using a 6-point scale ranging from 

0% (not at all certain) to 100% (completely certain) in 20% point increments. 

To check comprehension, and to demonstrate the task, we asked participants to pretend 

that they viewed a particular yellow smiley face. We then immediately presented a lineup of six 
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colorful smiley faces. Only those who correctly selected the yellow smiley face proceeded to the 

test lineups, after reading “that previously viewed faces may look different in their lineup 

mugshots. This can be due to changes in lighting, clothing, facial hair, and/or other reasons” (33 

participants failed this check and are not included in the results or summary statistics). 

In the test phase, half of the lineups (3 Black, 3 White) contained an individual viewed during 

encoding (i.e. ‘target present’; TP), whereas the other half replaced this face with another person 

closely matched on descriptive characteristics (i.e. ‘target absent’; TA). Each lineup served as 

either a TP or TA lineup depending on its randomly assigned counterbalancing condition. One of 

two predetermined lineup presentation orders were randomly assigned to each participant, with 

both following the criteria that 1) no more than two TP/TA lineups appeared consecutively, 2) no 

more than two lineups of the same race appeared consecutively, and 3) lineups appeared in 

different serial position across the two presentation orders. Finally, after finishing the lineups, 

participants completed the CFMT, followed by a short demographic survey that included 

questions on race, age, and sex.  

Results 

Data Preparation 

The dataset is comprised of 7,248 lineup responses (12 lineups/participant x 604 

participants), and is available on the Open Science Framework (OSF) (https://osf.io/j25yc). We 

divided the data into six roughly equal-sized groups of participants, and assigned each group to 

two research assistants to code justifications for lineup responses. The coding scheme was nearly 

identical to Dobolyi & Dodson (2018), categorizing justifications based on familiarity (F; e.g., 

“he looks familiar.”), single observable feature (O; e.g., “I remember his nose.”), multiple 

observable features (Omany; e.g., ‘I remember his nose and eyes.’), single unobservable feature 
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(U; e.g., ‘he looks like my cousin.’), multiple unobservable features (Umany; e.g. ‘He looks like 

my cousin, and another guy I know.’), and recognition (R; e.g., ‘I recall seeing this guy before.’). 

However, whereas Dobolyi & Dodson (2018) assigned combinations of justification types into a 

general ‘mixed’ category, we coded these responses into categories representing either familiarity 

+ observable (FO; e.g., ‘his nose looks familiar’), or observable + unobservable (OU; e.g., ‘my 

friend’s eyes look like that’). The coding scheme for ‘not present’ responses is the same as for 

identifications, except that statements referred to the absence of a justification category, such as 

‘none of the faces look familiar’ (coded as F) or ‘I don’t recognize any of them’ (coded as R). 

Statements that did not fit any category were coded as unknown. 

 Overall interrater agreement was high, with matching categorizations for 80.5% of lineup 

justifications. Across the pairs of raters, agreement ranged from 71.6% - 85.5%, with Cohen’s 

Kappas indicating acceptable agreement across coders (range Cohen’s κ = .66 - .83). To 

maximize the number of available responses, a third research assistant (masked to the other 

raters’ categorizations) coded statements where there was disagreement. We accepted any 

categorizations where at least two out of the three raters agreed on the statement. Due to the 

cross-race manipulation, we removed 20 participants who did not self-report their race as 

White/Caucasian. Additionally, we removed 15 participants based on not providing any 

justifications (N = 1), giving the same justification for all 12 lineups (e.g., “it was the same face 

as before”; N = 11), or providing nonsensical answers (e.g., “they’re all white guys wearing the 

same t-shirt”; N = 3).  

As we planned on investigating decision-times in several analyses, we log transformed 

decision-times for each lineup, and calculated a median absolute deviation score. We removed 

decision-times shorter than .100 ms (n = 14 responses), as well as responses longer than 3 
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deviations above the median (roughly one minute) (n = 183 responses). We then eliminated 

responses where justifications could not be categorized (n = 845 responses). We also observed 

minimal numbers of OU (n = 27 responses) and Umany (n = 8 responses) categorizations, 

therefore we did not analyze these trials. Finally, we noticed many respondents mentioned that 

one of the Black target faces resembled a celebrity in the news during the experiment. Given that 

the study aims to examine responses to unfamiliar faces, this would be a major confound, and we 

removed responses to this lineup (n = 491 responses). In total, we examined 5,272 responses 

from 569 participants. 

Table 1A.1 provides a breakdown of the frequency of justifications across confidence 

levels for chooser responses (i.e., selecting a face from the TP or TA lineup) and non-chooser 

responses (i.e., responding ‘not present’). Justifications for chooser decisions most frequently 

referenced one or more observable features, either in the context of familiarity with these 

features (FO = 10.7%), or otherwise (O1 + Omany = 31.7%). In contrast, non-chooser decisions 

most commonly referred to not recognizing any faces in the lineup (R = 65.1%) or that faces 

were unfamiliar (F = 31.9%).  

We analyzed chooser responses and non-chooser responses with separate models because 

the infrequent use of many of the justification-types for non-chooser responses meant that it was 

impracticable to use the same model for both response-types. For each model of the ‘chooser’ 

and ‘non-chooser’ data, we used multi-model comparisons (Burnham & Anderson, 2002) to 

obtain the best generalized linear mixed effects model among the fixed factors: Justification 

Type, Lineup Race (Same Race, Other Race), Delay (5 minute, Day), Confidence, Decision-time 

and CFMT score. Participant ID served as a random intercept. Continuous predictors 

(confidence, decision-time, CFMT) were centered and scaled prior to model fitting. 
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    Confidence  

Response Lineup 
Race 

Justification 0 20 40 60 80 100 Total 

Chooser Same 
Race 

F 14 92 90 86 49 14 345 

FO 7 42 53 49 25 6 182 

O1 2 31 47 55 80 68 283 

Omany 1 7 23 45 55 42 173 

R 13 60 66 87 80 100 406 

U1 0 3 8 21 22 35 89 

Other 
Race 

F 13 97 88 71 56 10 335 

FO 2 28 26 32 18 6 112 

O1 1 22 41 56 53 58 231 

Omany 2 14 28 49 41 50 184 

R 10 48 59 66 66 95 344 

U1 0 5 5 9 18 26 63 

Total 65 449 534 626 563 510 2747 

Non-
Chooser 

Same 
Race 

F 31 78 84 109 109 39 450 

FO 1 1 1 3 1 0 7 

O1 0 4 2 3 5 3 17 

Omany 0 1 0 4 4 2 11 

R 51 118 170 220 230 126 915 

U1 0 1 0 1 1 0 3 

Other 
Race 

F 24 39 82 99 79 33 356 

FO 0 0 3 0 2 2 7 

O1 0 1 2 8 4 6 21 

Omany 0 0 1 0 3 1 5 

R 73 109 120 176 168 83 729 

U1 0 0 0 1 2 1 4 

Total 180 352 465 624 608 296 2525 

 

Table 1A.1. Frequency of responses in the intersection of lineup race, justification type, and 

confidence level for both Chooser and Non-Chooser decisions.  
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To begin, we started by fitting full 6-way, 5-way, 4-way, 3-way, 2-way, and main effects 

models using the lme4 package (Bates, Maechler, Bolker, & Walker, 2014, version 1.1-21) in R 

v.3.5.1 (R Core Team, 2018). Next, a backward stepwise elimination procedure based on 

Akaike’s Information Criterion (AIC) selected the most parsimonious model from each start 

point. This method removed model terms that demonstrated any improvement in AIC, so long as 

this did not violate principles of marginality (e.g. a two-way term could not be dropped if it was 

nested in a higher three-way term). We then selected the best fitting of these reduced models as 

determined by AIC. Significance testing was performed on final model terms using likelihood 

ratio tests calculated by the afex package (Singmann, Bolker, Westfall, & Aust, 2018, version 

0.21-2). The effects package (Fox, 2003, version 4.0-2) computed model estimates and 95% 

confidence intervals.  

Finally, while there are no consensus standards for assessing absolute fits for generalized 

linear mixed effects models, we examined fits for final models using three methods. First, we 

used the DHARMa package (Hartig, 2018, version 0.2.0) to perform Kolmogorov-Smirnov 

goodness-of-fit tests (KS tests), comparing the observed data to a cumulative distribution of 

1,000 simulations from model estimates. Second, we examined residual plots based on 

deviations between simulated and observed values to check for signs of model misspecification 

(i.e., ensuring errors are uniformly distributed for each predicted value). And third, we calculated 

marginal pseudo-R2 (R2
GLMM(m)) for fixed-effects, using the MuMIn package (Barton, 2018, 

version 1.42.1; see also Nakagawa & Schielzeth, 2013). This statistic includes variance 

accounted for by fixed effects in the model, while partialing out variance from the random effect 

structure (i.e., participant intercept). 
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Chooser model.  

We sought to include as much data as possible in the analysis of identification accuracy 

and so, following Dobolyi and Dodson (2018), we modeled this score as the rate of correct 

identifications from target-present lineups (TPc) relative to the sum of this score and the rates of 

foil identifications from target-present (TPfa) and target-absent (TAfa) lineups (i.e., 

TPc/[TPc+TPfa+TAfa]).  

Written in Wilkinson-Rodgers (1973) notation, the best-fitting model of identification 

accuracy consists of several main effects and two-way interactions: Accuracy ~ LineupRace + 

Confidence + Delay + DecisionTime + CFMT + Justification + Confidence:LineupRace + 

Confidence:Delay + Confidence:DecisionTime + Confidence:CFMT + Confidence:Justification 

+ DecisionTime:CFMT + DecisionTime:Justification + CFMT:Justification + (1|Participant). The 

absolute fit indices indicate that this model adequately fit the data (KS D = .017, p = .410; 

pseudo-R2
GLMM(m) = .365), as did visual inspection of the residual plots. 

Likelihood ratio tests showed significant main effects of lineup-race, χ2(1) = 6.08, p 

= .014, delay, χ2(1) = 11.75, p = .001, confidence, χ2(1) = 20.20, p < .001, face-recognition 

ability (i.e., CFMT score), χ2(1) = 20.96, p < .001, and justification-type, χ2(1) = 14.49, p = .013. 

The effect of delay reflects higher accuracy in the 5-minute (44.4%, 95% CI [39.6, 49.2]) 

compared to the one-day condition (33.4%, 95% CI [29.4, 37.7]). Other significant effects were 

all moderated by two-way interactions, which we describe below. The main effect of Decision-

time (p = .294), and the interactions between Confidence and Delay (p = .096), Decision-time 

and CFMT (p = .155), and CFMT and Justification (p = .054) are non-significant. The four 

panels in Figure 1A.3 show how identification accuracy changes as a function of both the 

participant’s level of confidence in their identification and (a) their face recognition ability 
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(CFMT score), (b) their decision-time, (c) the lineup-race and (d) the justification for their 

decision, respectively. In each of these figures, the lines represent the mixed-effects model’s 

estimates, with the shading representing the 95% confidence interval.  

 

Figure. 1A.3. Two-way interactions between Confidence and (A) CFMT, (B) Decision-time, (C) 

Lineup Race, and (D) Justification type in the chooser model. Lines represent model estimates, 

with error shading representing the 95% confidence interval. Notably, high confidence errors are 

more pronounced when participants are worse face recognizers (A), take longer to make a 

decision (B), and/or use F/FO as the basis for selecting a face (D).  

 

Figure 1A.3a shows the interaction between face recognition ability (CFMT score) and 

confidence, χ2(1) = 4.54, p = .033. Poor face recognizers (i.e., individuals with lower CFMT 

scores) are less able than strong face recognizers to use confidence ratings to distinguish between 
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correct and incorrect identifications. But, the result that we want to emphasize involves high 

confidence responses. Figure 1A.3a clearly shows that when individuals are 100% confident in 

their identification there is a drop-off in accuracy with steadily decreasing CFMT scores. Poor 

face recognizers are much more prone to make high confidence misidentifications than are 

strong face recognizers. 

Figure 1A.3b shows that relatively fast and highly confident identifications are more 

accurate than slower and less confident identifications, replicating past research (Dodson & 

Dobolyi, 2016; Sauerland & Sporer, 2007, 2009). But, the interaction between Decision-time and 

Confidence, χ2(1) = 17.48, p < .001, reflects the strong increase in high confidence errors that 

occurs with longer decision times. Although the highest confidence responses (i.e., the solid red 

line in Figure 1A.3b) are close to 100% accurate when they occur within a few seconds, the 

accuracy of these highest confidence identifications decreases to roughly 50% when decision-

time is delayed to 20s. There is no comparable drop off in accuracy with increasing decision-

time for moderate to low confidence responses. Essentially, highly confident but slow 

identifications are vulnerable to being wrong. 

The interaction between confidence and lineup-race is shown in Figure 1A.3c, χ2(1) = 

6.12, p = .013. Identification accuracy is worse for cross-race than same-race lineups when 

individuals are of moderate to low confidence in their identification than when they are highly 

confident – an effect that is consistent with past studies (e.g., Dodson & Dobolyi, 2016; Nguyen 

& Pezdek, 2017; Wixted & Wells, 2017). Put another way, highly confident identifications are 

less influenced by the cross-race effect. 

Figure 1A.3d shows that identification accuracy depends on both confidence and the 

justification for the identification, as reflected by the interaction between these factors, χ2(5) = 
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28.14, p < .001. Consistent with Dobolyi & Dodson (2018), there is a stronger relationship 

between confidence and accuracy –shown by a steeper line in Figure 1A.3d – when individuals 

refer to observable (O1 + Omany; e.g., I remember his eyes) or unobservable (U1; e.g., He looks 

like my cousin) features about the suspect than when they refer to familiarity (F; e.g., He’s 

familiar). Moreover, there are more high confidence errors when individuals provide a 

familiarity (F) or a familiarity-observable justification (FO, e.g., His chin is familiar) than when 

they provide any of the other justification-types.  

Finally, Figure 1A.4 shows that the predictive value of the different justification-types is 

stronger at faster than at slower decision-times, as reflected by the interaction between decision-

time and justification-type, χ2(5) = 12.01, p = .035. For clarity, we removed the Unobservable 

(U1) category from the figure because of the lack of data at the longer decision-times for this 

justification. References to many observable features (Omany) are associated with identifications 

that are over 80% accurate when the identification is made quickly. But, as seen in Figure 1A.4, 

the accuracy associated with this justification-type drops below 40% when this identification is 

made slowly (> 10 s). 

 

 

 

 

Figure. 1A.4. Interaction pattern between 

Decision-time and Justification type. Lines 

represent model estimates, with error shading 

representing the 95% confidence interval. 

Discerning accuracy seems to be more useful 

for fast responses than slow responses, where 

there is little differentiation between the 

justification types.  
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Non-Chooser model.  

Non-chooser accuracy is modeled as the 

rate of correct rejections from target-absent 

lineups (TAc), relative to the sum of this score 

and the number of incorrect rejections from 

target-present lineups (‘miss’; TPm) (i.e., (i.e., 

TAc/[TAc+TPm]). As shown in Table 1A.1, 

nearly all justifications (97.0%) for a Not Present 

response were based on the lack of either 

Familiarity (F) or Recognition (R), consistent 

with Dobolyi & Dodson (2018). Consequently, 

our modeling analysis consisted of these two 

justification-types as there is too little data to 

include the other justification-types.  

The best-fitting model of non-chooser 

accuracy is represented in Wilkinson-Rodgers 

notation as: Accuracy ~ LineupRace + 

Confidence + Delay + DecisionTime + CFMT + 

Justification + Confidence:CFMT + 

DecisionTime:CFMT + (1|Participant). Visual 

inspection of the residual plots and KS tests 

showed that this model fit the data (KS D = .014, 

p = .758). However, the marginal pseudo-R2 was 

Figure. 1A.5. A) Confidence and B) CFMT 

main effects on non-chooser accuracy. Lines 

represent model estimates, with error 

shading representing the 95% confidence 

interval. Notably, performance improves 

with higher levels of confidence, and greater 

face recognition ability. 
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considerably lower than in the Chooser model (pseudo-R2
GLMM(m) = .019). Given that our relative 

fit measure (i.e., AIC) and two out of three absolute fit indices supported proper model 

specification, we proceeded with this non-chooser model.  

We found the expected relationship between delay and accuracy, with participants 

exhibiting higher accuracy in the 5-minute condition (66.5%, 95% CI [63.7, 69.1]) than the one-

day condition (62.2, 95% CI [59.4, 64.9]), χ2(1) = 4.78, p = .029.  

Additionally, non-chooser 

accuracy improved as participants 

expressed more Confidence, χ2(1) = 

18.20, p < .001. As presented in 

Figure 1A.5, accuracy steadily rises 

as confidence increases, improving 

by nearly 15% from 0% to 100% 

confidence. This finding conflicts 

with multiple previous studies 

examining confidence and non-

chooser accuracy (e.g., Dobolyi & 

Dodson, 2018; Sauerland & Sporer, 

2009). We speculate on the reasons 

for this discrepancy in the Study 1A 

Discussion. 

 

Fig. 1A.6. Two-way interaction between decision-time 

and CFMT score. Lines represent model estimates for 

the 0-25th, 25-50th, 50-75th, and >75th percentiles of 

CFMT performance. Error shading represents the 95% 

confidence interval. Performance is comparable across 

face recognition ability for fast decisions, but poor face 

recognizers show worse accuracy over time. 
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The main effect of CFMT, χ2(1) = 10.30, p = .001, reflects improved non-chooser 

accuracy with stronger face recognition ability. As shown in Figure 1A.5, those with the median 

CFMT score (i.e., 61) show worse non-chooser performance (~65%) than do those with scores 

only one median deviation higher (i.e., 70) (~68%). However, this finding is qualified by a weak 

interaction between face recognition ability and decision-time, χ2(1) = 4.58, p = .032. This 

interaction suggests that performance is comparable across face recognition ability for quick 

decisions, but poorer recognizers show worse accuracy with increasing decision-time (see Figure 

1A.6). 

Finally, we found a significant main effect of justification category, χ2(1) = 4.41, p = .036. 

Familiarity-based rejections (67.3%, 95% CI [63.9, 70.4]) were more accurate than were those 

based on recognition (62.9%, 95% CI [60.5, 65.2]), although numerically the size of this 

difference is small. The main effect of decision-time (p = .137) and the interaction between 

confidence and CFMT (p = .091) are both non-significant. 

 

Suspect-Id Model  

Mickes (2015; see also Wixted & Wells, 2017) has argued that identification accuracy 

should be measured as the rate of correct identifications relative to the sum of this value and foil 

identifications from target-absent lineups – a score known as suspect ID accuracy (i.e., 

TPc/[TPc+(TAfa/6)] for fair lineups). The reason why responses to foils from target-present 

lineups (TPfa) are excluded in suspect-ID accuracy is because police know that target-present 

foils are innocent individuals. Thus, suspect-ID accuracy duplicates the perspective of law 

enforcement: given that an individual has been identified, what is the probability that this 
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individual is the guilty suspect (i.e., TPc) and not an innocent suspect (i.e., TAfa/6 with fair 

lineups). 

Because our modeling procedure does not allow for the suspect-Id adjustment without a 

substantial loss of TAfa responses (e.g., removal of 5/6 of the false alarm responses), we 

analyzed a quasi-suspect-Id accuracy score: the ratio of correct responses to target present 

lineups [i.e., TPc] over the sum of TPc and false alarms to target absent lineups [i.e. TPc/(TPc + 

TAfa)]. 

We examined suspect-Id accuracy using the same backward stepwise procedure detailed 

in the main document. Written in Wilkinson-Rodgers notation, the best fitting model of suspect-

Id accuracy consists of several main effects and two-way interactions: Accuracy ~ LineupRace + 

Confidence + Delay + DecisionTime + CFMT + Justification + LineupRace:Confidence + 

Confidence:DecisionTime + Confidence:CFMT + Confidence:Justification + 

DecisionTime:CFMT + DecisionTime:Justification + (1|Participant). Both computed absolute fit 

indices supported that this model adequately explained the data (KS D = .013, p = .812, pseudo-

R2
GLMM(m) = .353), as did visual inspection of the residual plots.  

  Likelihood ratio tests showed comparable patterns to the identification accuracy model. 

There were significant main effects of lineup-race, χ2(1) = 4.42, p = .036, delay, χ2(1) = 6.07, p 

= .014, confidence, χ2(1) = 16.04, p < .001, CFMT, χ2(1) = 32.39, p < .001, and justification-

type, χ2(5) = 14.07, p = .015. As expected, the main effect of delay reflects better accuracy in the 

5-minute (56.8%, 95% CI [52.3, 61.1]) than the 1-day (49.2%, 95% CI [44.9, 53.6]) condition.  

Crucially, we highlight the similar interactions patterns between confidence and (a) 

CFMT, χ2(1) = 3.13, p = .077, (b) decision-time, χ2(1) = 12.92, p < .001, (c) lineup-race, χ2(1) = 

4.08, p = .043, and (d) justification-type, χ2(5) = 24.37, p < .001. As seen in Figure 1A.7a-d, 
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these suspect-Id results are consistent with the identification accuracy model. Specifically, high 

confidence is associated with more errors for (a) poor face recognizers, (b) slower decision 

times, and (d) F/FO justifications, but also diminished other-race effects (c). All other effects are 

non-significant (ps > .071).  

 

 

1A.7. Suspect-Id interactions between Confidence and (A) CFMT, (B) Decision-time, (c) Lineup 

Race, and (D) Justification-type. Lines represent model estimates, with error shading 

representing the 95% confidence interval. 
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Study 1A Discussion 

Recent research suggests that high confidence eyewitness identifications are generally 

reliable (Wixted & Wells, 2017). Our study adds important caveats to this assessment. We 

document three factors that are systematically related to high confidence misidentifications: (a) 

the speed of the decision, (b) the basis for an identification from a lineup, and (c) face 

recognition ability. 

Decision-time is strongly related to high confidence misidentifications. Consistent with 

past studies (e.g., Brewer & Wells, 2006; Dodson & Dobolyi, 2016; Sauerland & Sporer, 2007, 

2009), we observed that fast and confident identifications – presented in Figure 1A.3b -- are 

many times more accurate than fast and unconfident identifications. But, the key point is that 

there is a sharp increase in high confidence errors with longer decision times. Whereas highest 

confidence (100%) identifications made in the initial seconds are nearly always accurate, these 

identifications fall to nearly 75% accuracy when decision-time increases to 6 seconds and after 

20 seconds these reports are roughly 50% accurate (see Brewer & Wells, 2006; Sauerland & 

Sporer, 2009 for a similar pattern). As Dodson and Dobolyi (2016) suggest, participants appear 

to adopt an increasingly liberal criterion for making high confidence identifications with 

increasing decision-time – causing an increase in high confidence errors. 

Additionally, consistent with Dobolyi & Dodson (2018), familiarity justifications are 

more frequently associated with high confidence misidentifications than are justifications that 

refer to either an expression of recognition, or (un)observable feature(s) about the suspect. 

Moreover, this relationship persisted across a longer delay than previously studied, and after 

accounting for the effects of face recognition ability. With both the Department of Justice (Yates, 

2017) and the National Academy of Sciences (National Research Council, 2014) advising law 
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enforcement to note the exact wording of an eyewitness’s identification, our finding provides 

investigators with an additional layer of information with which to assess witness credibility.  

Finally, for the first time, we show that the Cambridge Face Memory Test predicts the 

likely accuracy of high confidence identifications. Poor face recognizers are much more 

vulnerable than strong face recognizers to make high confidence misidentifications. Even when 

individuals are 100% confident, Figure 1A.3a shows that the average face recognizer (i.e., 

median CFMT score of 61) is much more likely than the strongest face recognizers (i.e., CFMT 

score of 72) to make a high confidence misidentification – with below-average face recognizers 

even more vulnerable to making high confidence errors.  

This finding supports the ‘optimality’ account, wherein the predictive value of a 

confidence statement is directly tied to the quality of the face representation (Deffenbacher, 

1980). As poorer face recognizers encode less robust representations of target faces, high 

confidence is a less reliable indicator of accuracy than for better recognizers. However, as a 

counterpoint to the optimality account, many studies find that eyewitnesses adjust their use of 

high confidence ratings to maintain impressive levels of accuracy in non-ideal encoding 

conditions, such as lengthy retention intervals, and increased viewing distances (Semmler et al., 

2018; Wixted & Wells, 2017). Further research will be necessary to disentangle these accounts, 

especially studies incorporating measures of individual differences. 

An additional question that needs further clarification is why poor face recognizers use 

high confidence ratings for (presumably) weak face representations. As the present experiment 

was not designed to answer this question, we can only speculate. However, a large body of 

literature shows that people can severely overestimate their competence when they perform 

poorly on a task, and correspondingly exhibit overconfidence (e.g., Kruger & Dunning, 1999; 



GRABMAN           27 
 

Lichtenstein & Fischhoff, 1977). These errors occur most frequently in content areas that people 

lack knowledge, and/or receive minimal feedback on performance. Although it seems like there 

should be consistent feedback on face recognition ability (e.g., embarrassingly introducing 

oneself to a person met the night before), there is an ongoing debate about the degree to which 

people have insight into their face recognition ability (Bobak, Mileva, & Hancock, 2018; Gray, 

Geoffrey, & Richard, 2017). It is conceivable that poor recognizers underestimate the extent of 

their deficiency, and/or place undue emphasis on non-diagnostic memory signals.   

  With respect to non-identifications, we highlight two factors that were related to the 

accuracy of a “not present” response. First, stronger face recognizers (i.e., higher CFMT scores) 

were more accurate at correctly rejecting lineups than were poorer face recognizers, presumably 

because their more robust representations of previously seen faces allowed them to recognize 

when a target individual was absent from a lineup.  

Second, contrary to research that has observed little relationship between confidence and 

non-chooser accuracy (e.g., Dodson & Dobolyi, 2016; Sauerland & Sporer, 2009), we found that 

confidence in non-chooser decisions was informative, such that highly confident rejections were 

more often correct than were low confidence rejections. But, consistent with previous findings, 

confidence is a stronger predictor of chooser accuracy than non-chooser accuracy (e.g., Brewer 

& Wells, 2006). We believe that the conflicting findings about confidence and non-chooser 

accuracy between this study and previous work stems from our decision to model chooser and 

non-chooser responses separately. To illustrate this point, we followed past studies and 

constructed a single model of chooser and non-chooser accuracy and found that confidence did 

not significantly predict non-chooser accuracy. However, there are qualitative differences 

between chooser and non-chooser decisions, as evidenced by changes in the relative use of 
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justification categories, which suggests individuals may adjust how they use the confidence scale 

in these two situations. Reinforcing the impact of the modeling procedure, Wixted and Wells 

(2017) isolated non-chooser responses from a dataset provided by Wetmore et al. (2015), and 

similarly found that high confidence rejections were more accurate than were those made with 

lower confidence.  

In sum, existing research on eyewitness identification has focused on the average 

individual and has shown that a participant’s confidence rating about an identification is 

informative of its accuracy (Wixted & Wells, 2017). We show that high confidence 

identifications do not protect against the increase in errors that accompany poorer face 

recognition ability, increasing decision-time or the use of familiarity as a justification for a 

response. Taken together, this study suggests that the justice system should take both individual 

differences and confidence into account when determining the likely accuracy of an eyewitness 

decision. 
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Study 1B. Stark Individual Differences: Face Recognition Ability Influences the 

Relationship Between Confidence and Accuracy in a Recognition Test of Game of Thrones 

Actors (Grabman & Dodson, submitted) 

Most people have experienced the embarrassment of greeting a stranger as if they were a 

recent acquaintance. Whether we risk this social faux pas depends on our certainty that we 

previously encountered this individual. In higher stakes contexts, eyewitness confidence has 

profound effects on the criminal justice system. Juror decisions are strongly influenced by 

confidence (Brewer & Burke, 2002), and judges are instructed to use certainty as an indicator of 

whether to admit the witness’s testimony in court (Neil vs. Biggers, 1972). The question is how 

probative confidence is of face recognition accuracy. 

In an influential review of the eyewitness literature, Wixted and Wells (2017) found that 

high confidence identifications are generally accurate. This relationship holds over changes in 

retention interval (i.e., the amount of time between study and test) (see Wixted, Read, et al., 2016 

for a review), exposure duration (i.e., the amount of time a face is viewed at encoding) (e.g., 

Palmer, Brewer, Weber, & Nagesh, 2013), and a variety of other manipulations (see Wixted & 

Wells, 2017 for a review). However, there is a compelling need for studies of the confidence-

accuracy relationship which capture the richness of the real-world face viewing experience. 

The fact that the average person can recognize thousands of unique faces (Jenkins, 

Dowsett, & Burton, 2018) masks aspects of this task that are remarkably complex. Faces are 

encountered in a myriad of contexts, often with considerable changes in lighting, orientation, and 

other characteristics (e.g., hair, age, clothing, etc.). While the majority of people can easily 

recognize family members and friends in a variety of situations, this task is far more challenging 

for unfamiliar faces (Kramer, Young, & Burton, 2018). As some examples of this difficulty, 
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growing literature suggests that minimal disguises (such as sunglasses) can impair face 

recognition accuracy (Mansour, Beaudry, & Lindsay, 2017; Nguyen & Pezdek, 2017; Righi, 

Peissig, & Tarr, 2012; Terry, 1994). Moreover, studies in the face matching literature (i.e., 

indicating whether two simultaneously presented faces are the same person or different people), 

show that subtle changes in viewing conditions (e.g., photos of the same person taken with 

different cameras) can substantially decrease matching decision accuracy (see Young & Burton, 

2017 for a review). 

Given the complexity of real-world face recognition, claims about the value of high 

confidence are complicated by multiple factors. First, participants in past studies generally knew 

that they were in an experiment, which potentially alters their face encoding strategies. Second, 

exposure durations are shorter than those experienced in everyday life (e.g., 90-seconds), and 

retention-intervals rarely longer than a few weeks (though see Read, Lindsay, & Nicholls, 1998 

for an exception). Third, most studies use single-trial designs, which limits conclusions to the 

small group of people presented. Finally, there is typically a single context for encoding faces, 

whereas in practice we must learn to recognize people (often encountered more than once) in 

varied environments.  

Additionally, a largely ignored aspect of the confidence-accuracy relationship in the 

eyewitness literature is heterogeneity in unfamiliar face recognition ability (Duchaine & 

Nakayama, 2006). Skill in this domain ranges from people with developmental prosopagnosia 

(i.e., face blindness), who may have difficulties recognizing even close family members (J. J. S. 

Barton & Corrow, 2016), to super-recognizers who are actively recruited to police departments 

for their face-recognition prowess (Ramon, Bobak, & White, 2019; Russell, Duchaine, & 

Nakayama, 2009). These differences are highly heritable (Shakeshaft & Plomin, 2015; Wilmer et 
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al., 2010; Zhu et al., 2010), and only weakly associated with general intelligence (Gignac, 

Shankaralingam, Walker, & Kilpatrick, 2016; Shakeshaft & Plomin, 2015; Wilhelm et al., 2010; 

Zhu et al., 2010).  

Multiple studies show that higher face recognition ability predicts increased accuracy in 

eyewitness identification tasks (Andersen, Carlson, Carlson, & Gronlund, 2014; Bindemann, 

Avetisyan, & Rakow, 2012; Morgan et al., 2007). But, only our group has investigated whether 

this skill influences the probative value of confidence in face recognition tasks. In contrast to 

previous research documenting a robust confidence-accuracy relationship across a wide range of 

manipulations, we found that weaker face recognizers are far more likely to make high 

confidence errors than are stronger recognizers (Grabman, Dobolyi, Berelovich, & Dodson, 

2019).  

However, there are several aspects that limit the real-world applicability of Grabman et al 

(2019). Participants viewed static images of faces at encoding and test, which fails to capture the 

experience of encountering moving people in varied contexts. Moreover, the study used 

relatively short exposure durations (3 repetitions of 3-seconds) and retention-intervals (up to 1 

day). It is possible that the impact of face recognition ability on the confidence-accuracy 

relationship is minimal with longer exposures or delays. Finally, the stimulus set consisted solely 

of young adult males, which further limits generalizability. 

Given the paucity of studies of the confidence-accuracy relationship under real-world 

viewing conditions, there are two aims for the current study. The first aim is to determine if the 

results from a more naturalistic setting mirror those of the carefully designed experiments cited 

in Wixted and Wells (2017). The second aim is to assess whether differences in face recognition 
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ability influence the confidence-accuracy relationship using a design that addresses each of the 

short-comings of our previous study (Grabman et al., 2019).  

To accomplish these aims, we leveraged a dataset published by Devue, Wride, and 

Grimshaw (2019), accessed using the Open Science Framework (OSF) (https://osf.io/wg8vx). In 

this study, participants viewed the first six seasons of the popular television show Game of 

Thrones (GoT) as the series aired, then completed a recognition task of 90 pictures of actors (not 

in character) intermixed with 90 strangers. Importantly, participants viewed the show for 

personal entertainment, meaning that all faces are incidentally encoded. Moreover, as Devue et 

al. (2019) note, there are several additional aspects of GoT that make it an appealing way to 

study real-world face recognition. Characters are seen in a variety of natural viewing contexts, 

with often substantial changes in appearance, lighting, clothing, age, and viewpoint. 

Additionally, screen-time is readily accessible from internet databases, allowing for assessment 

of exposure duration effects. There are many character deaths throughout the series, resulting in 

lengthy retention intervals between encoding and test for some actors. Finally, there are over 600 

actors listed in the show credits, which provides a substantial face corpus from which to prepare 

stimuli.  

From the standpoint of the current study aims, this dataset offers some additional 

advantages. Each participant completed a standard test of face-recognition, the Cambridge Face 

Memory Test+ (CFMT+), and provided confidence ratings for each decision. While the original 

authors examined associations between these variables and accuracy using correlational analysis, 

we use calibration curves, which are superior for assessing confidence-accuracy calibration 

(Wixted & Wells, 2017). And, for the first time, we analyze the conjunctive effects of confidence 

and face recognition ability on accuracy under real-world viewing conditions.  
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Additionally, whereas eyewitness studies typically use a criminal lineup paradigm, 

participants in Devue et al (2019) completed an old-new recognition task. As far as we are aware, 

only one other study has used calibration curves to examine the confidence-accuracy relationship 

in an old-new face recognition paradigm for a large set of items (> 100 trials) (Tekin & Roediger, 

2017). These researchers used a single exposure duration (2-seconds) and a short retention-

interval (10 min), and found highest confidence identifications to be about 96% accurate. It is an 

open question whether this impressive accuracy generalizes to uncontrolled settings with longer 

retention-intervals and differing levels of exposure. 

Finally, the use of another group’s dataset carries the benefit of reducing ‘researcher 

degrees of freedom’. If stronger face recognizers continue to make fewer high confidence errors 

than weaker recognizers in an uncontrolled, naturalistic context then this bolsters claims that 

there are robust associations between face recognition ability, confidence, and accuracy. 

Methods 

Participants. 

 Characteristics of the participants are reported in Devue et al., (2019). Briefly, the 

 results are comprised of 32 participants (20 women and 12 men), aged between 19 and 56 years 

(M = 28.7 years ± 10.5), who completed the task 3-6 months after the end of the sixth season of 

GoT. All participants watched six seasons of GoT once, and in order as the show aired, with the 

exception of some who viewed both Seasons 1 and 2 during the same year. While the sample size 

is low, the large number of trials per participant (n = 168) fits with current recommendations for 

the logistic mixed effects analysis outlined in the Results section (e.g., McNeish & Stapleton, 

2016).  
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Materials.  

 Cambridge Face Memory Test + (CFMT+). The CFMT+ is a frequently used test that 

assesses poor to superior face recognition ability (Russell et al., 2009). Participants memorize six 

male faces in three separate orientations. For each trial, previously viewed faces must be selected 

from an array of the target face and two foils. The test phase proceeds across 102 trials in five 

increasingly difficult blocks. Difficulty is manipulated with the use of novel images, visual noise 

filters, different levels of cropping, and (eventually) the use of a profile view with extra levels of 

noise. Scores can range from 0 – 102 correct responses, but in practice a score of 34 represents 

random guessing.  

Face Stimuli. Extensive details about the generation of the study materials are provided in 

Devue et al., (2019), with the materials themselves available on the OSF platform 

(https://osf.io/wg8vx). The researchers selected 84 actors from GoT from 15 conditions, 

consisting of the interaction between retention-interval since last viewing (Season 6, 5, 4, 3, 1/2) 

and three levels of exposure: ‘lead characters’ [20 – 90 min screen time], ‘support characters’ [9 

– 19 min], and ‘bit parts’ [<9 min, but role in story for 1 – 3 episodes]. Additionally, 6 characters 

categorized as ‘main heroes’ [> 123 min screen time] survived to the end of the sixth season, 

with the actors serving as training trials for the task. Ninety pictures of unfamiliar faces were 

collected to serve as foils (i.e., ‘new’ trials), and “matched the actor set in terms of head 

orientation, age range, facial expression, attractiveness, presence of make-up, facial hair, or 

glasses, hairstyle, clothing style, lighting, and picture quality” (Devue et al., 2019). While foils 

matched the characteristics of the sample of actors as a whole, they were not individually paired 

to specific actors.  
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In a similarity manipulation, half of the participants viewed photos of the actors which 

were similar to their last appearance on the show (similar), while the other half viewed photos 

that were as different as possible (dissimilar). These similarity groups were matched on CFMT+ 

scores, age, and gender. Due to the scarcity of available photos for ‘bit part’ actors, all 

participants responded to both similar (17 trials) and dissimilar (13 trials) pictures for this 

exposure level, regardless of their assigned similarity condition.  

Procedure. 

Full details of the procedure are outlined in Devue et al., (2019), so we mention only 

those pertinent to the present study. Participants completed all tasks on a computer. Following 

the CFMT+, participants were assigned to a similarity condition, and then started the GoT face 

recognition task. An easy block consisting of the six ‘main heroes’ and six foils served to practice 

the task, and was followed by 168 test trials consisting of 84 actors intermixed with 84 foils. 

Each trial started with a fixation cross (500 ms), followed by a picture stimulus that remained in 

the center of the screen until the participant’s response or up to 3,000 ms. Participants pressed 

the ‘K’ key to indicate they had ‘seen’ the face before (in GoT or elsewhere), or pressed ‘L’ to 

indicate that the face was ‘new’. They then provided a confidence rating for this decision using a 

5-point scale (1 = not at all confident, 5 = totally confident).  

Results 

Data preparation.  

Following the lead of the original authors, we discarded 26 trials where participants 

indicated they recognized an actor from outside of GoT, as well as the training trials (6 ‘main 

heroes’ + 6 foils per participant). One trial was omitted due to a typo (i.e., score of ‘2’ on 

accuracy, when only 0 and 1 were possible). We also removed all trials where participants 
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responded in < 300 ms (n = 371; 6.9% of total trials), as this is faster than consistent findings on 

the time to process face identity, along with the additional time needed to perform a keystroke 

(e.g., Gosling & Eimer, 2011). In total, this left 4,979 responses from 32 participants. We have 

uploaded the data file used for the analysis to the OSF platform, along with a cleaned version of 

the original Devue et al. (2019) file that is more conducive toward coding environments (e.g., R, 

Python) (https://osf.io/quhsg).  

Table 1B.1 shows the breakdown of the frequency of responses into Hits (“Seen”|Actor), 

Misses (“New”|Actor), Correct Rejections (CR; “New”|Foil), and False Alarms (FA; 

“Seen”|Foil) by confidence level and a median split of CFMT+ performance, which we 

categorize as Weaker Face Recognizers (CFMT+ scores of 52-73) and Stronger Face 

Recognizers (CFMT+ scores of 74-90). Due to low frequencies of responses in confidence 

categories 1 and 2, we collapsed these levels to form a single confidence level (‘1-2’).  

CFMT+ Confidence Hit miss fa cr 

Weaker 

Face 

Recognizers 

[52,73] 

1-2 77 142 81 193 

3 

196 257 149 348 

4 

174 212 75 384 

5 

236 117 28 141 

Stronger 

Face 

Recognizers 

[74,90] 

1-2 

44 96 25 112 

3 

104 189 52 290 

4 

103 183 28 349 

5 

222 131 4 213 

 

Table 1B.1. Frequency of responses of Hits (Seen|Actor), Misses (New|Actor), Correct 

Rejections (CR; New|Unfamiliar), and False Alarms (FA; Seen|Unfamiliar) categorized by 

confidence level and CFMT+ Median split. 
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Tables 1B.2 and 1B.3 show the frequencies of hits, misses, correct rejections, and false 

alarms across CFMT+ median split for the exposure duration and retention-interval 

manipulations, respectively. Due to the single-block design, the same foil counts (i.e., false 

alarms and correct rejections) are present in all levels of these within-subjects manipulations. To 

obtain an adequate trial count for the retention-interval contrasts (especially at the upper-end of 

the confidence scale), we recoded this variable into ‘Long Delay’ (Seasons 1-3; 34 actors), 

‘Medium Delay’ (Seasons 4-5; 32 actors), and ‘Short Delay’ (Season 6; 18 actors) conditions, 

based on comparable discriminability within these time periods. The exposure duration contrast 

is composed of ‘leading actors’ (longest exposure; 27 actors), ‘supporting actors’ (medium 

exposure; 27 actors), and ‘bit parts’ (shortest exposure; 30 actors).  

Finally, Table 1B.4 shows the counts for the between-subjects similarity manipulation. 

We removed ‘bit part’ actors who did not match the condition assigned to the participant (e.g., 

dissimilar ‘bit part’ photos in the similar condition). Note that removing the ‘bit part’ actors 

causes a slight difference in the total actor counts (i.e., hits + misses) for the similarity 

manipulation as compared to the total count for the full sample and the other manipulations. 
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CFMT+ Confidence Exposure hit miss fa cr 
Weaker 

Face 

Recognizers 

[52,73] 

1-2 ‘Bit Parts’ 28 61 81 193 

‘Supports’ 25 51 

‘Leads’ 24 30 

3 ‘Bit Parts’ 73 138 149 348 

‘Supports’ 63 76 

‘Leads’ 60 43 

4 ‘Bit Parts’ 26 115 75 384 

‘Supports’ 75 60 

‘Leads’ 73 37 

5 ‘Bit Parts’ 13 53 28 141 

‘Supports’ 62 37 

‘Leads’ 161 27 

Stronger 

Face 

Recognizers 

[74,90] 

1-2 ‘Bit Parts’ 15 41 25 112 

‘Supports’ 21 31 

‘Leads’ 8 24 

3 ‘Bit Parts’ 34 97 52 290 

‘Supports’ 38 62 

‘Leads’ 32 30 

4 ‘Bit Parts’ 19 104 28 349 

‘Supports’ 43 49 

‘Leads’ 41 30 

5 ‘Bit Parts’ 0 73 4 213 

‘Supports’ 58 33 

‘Leads’ 164 25 

 

Table 1B.2. Frequency of Hits, Misses, Correct Rejections (CR), and False Alarms (FA), 

categorized by short (‘bit parts’), medium (‘supports’) and long (‘leads’) exposures, as well as 

CFMT+ Median split. 
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CFMT+ Confidence Delay hit miss fa cr 
Weaker 

Face 

Recognizers 

[52,73] 

1-2 Long  33 71 81 193 
Medium 29 44 
Short 15 27 

3 Long  77 122 149 348 
Medium 89 91 
Short 30 44 

4 Long  55 98 75 384 
Medium 74 70 
Short 45 44 

5 Long  72 37 28 141 
Medium 86 56 
Short 78 24 

Stronger 

Face 

Recognizers 

[74,90] 

1-2 Long  18 47 25 112 
Medium 19 32 
Short 7 17 

3 Long  43 77 52 290 
Medium 45 79 
Short 16 33 

4 Long  36 74 28 349 
Medium 32 78 
Short 35 31 

5 Long  68 59 4 213 
Medium 85 44 
Short 69 28 

 

 

Table 1B.3. Frequency of Hits, Misses, Correct Rejections (CR), and False Alarms (FA) 

categorized by long (Seasons 1-3), medium (Seasons 4-5) and short (Seasons 6) retention-

intervals, as well as CFMT+ Median split. 
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Similarity CFMT+ Confidence hit miss fa cr 

Similar 

Weaker 

Face 

Recognizers 

[52,73] 

1-2 28 62 27 92 

3 54 102 58 175 

4 57 87 36 181 

5 96 73 18 122 

Stronger 

Face 

Recognizers 

[74,90] 

1-2 23 39 16 54 

3 41 82 21 144 

4 24 85 5 162 

5 62 64 3 122 

Dissimilar 

Weaker 

Face 

Recognizers 

[52,73] 

1-2 38 48 54 101 

3 105 89 91 173 

4 106 61 39 203 

5 136 12 10 19 

Stronger 

Face 

Recognizers 

[74,90] 

1-2 16 32 9 58 

3 51 62 31 146 

4 72 45 23 187 

5 160 30 1 91 

 

Table 1B.4. Frequency of Hits, Misses, Correct Rejections (CR), and False Alarms (FA) 

categorized by whether actors’ looked similar to their last appearance on the show (‘similar’) or 

as dissimilar as possible (‘dissimilar’), as well as CFMT+ Median split. Note that trial counts do 

not match Table 1B.1 because of the removal of ‘bit part’ actors who did not match the condition 

assigned to the participant (e.g., dissimilar ‘bit part’ photos in the similar condition). 
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Is there a strong relationship between confidence and accuracy in a real-world viewing context? 

 Devue et al., (2019) analyzed the relationship between confidence and overall accuracy 

using Pearson’s correlation coefficients. This analysis found minimal associations between 

overall accuracy (centered and scaled) and average confidence on accurate trials (r = .125), as 

well as average confidence on inaccurate trials (r = - .096).  

One issue with defining the confidence-accuracy relationship in terms of overall accuracy 

is that research generally shows a stronger correspondence between confidence and accuracy for 

identifications (i.e., ‘seen’ responses) than non-identifications (i.e., ‘new’ responses) (e.g., 

Brewer & Wells, 2006). Separating these response types may reveal more robust relationships 

than previously reported. Additionally, correlation analysis addresses a fundamentally different 

question than is typically of interest to applied memory researchers (Juslin, Olsson, & Winman, 

1996). Whereas correlation coefficients measure covariation, or the tendency for one variable to 

increase/decrease as another variable increases/decreases, applied researchers are generally more 

interested in the accuracy of responses made with a particular level of confidence.  

As a concrete example of this difference, imagine that a participant provides the highest 

possible confidence rating to every trial. The correlation between confidence and accuracy is 

zero because, regardless of whether accuracy increases/decreases, confidence remains the same. 

However, despite there being zero correlation, the participant would be perfectly calibrated if 

they were correct on every trial. Given that the participant used the highest possible confidence 

rating, we observed their response to be correct 100% of the time.  

 An easy way to visualize the probative value of confidence is with a calibration curve 

(Tekin & Roediger, 2017; see also Mickes, 2015). Along the X-axis are progressively increasing 

confidence values. On the Y-axis is a proportion representing the number of correct items over 
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the sum total of items at this level of confidence (i.e., correct / (correct + incorrect)). Points are 

plotted representing Y-accuracy at X-confidence level. The slope of the lines connecting the 

points provides additional information. Upward sloping lines signal increasing accuracy with 

higher levels of confidence, whereas flat lines indicate little difference in predictive power 

between two confidence ratings. 

 Figure 1B.1 shows the calibration curves for all identification (‘seen’) (hits/[fa + hits]) 

and non-identification (‘new’) (cr/[cr + misses]) responses in the GoT task, collapsed across 

participants. Replicating the eyewitness research, there is clearly a strong positive relationship 

between higher confidence responses and identification accuracy. The highest confidence level 

(‘5’) boasts accuracy rates of 93.5% (95% HDI1, [89.8, 97.0]), as compared to 53.3% (95% HDI, 

[46.3, 61.3]) at the lowest level (‘1-2’). However, as indicated by the flat line in the right panel, 

there is little association between confidence and accuracy for non-identifications. 

 

Figure 1B.1. Calibration curves for the full sample of responses. Notably, there is a strong 

relationship between confidence and accuracy for identifications (left panel), but weaker 

associations for non-identifications (right panel). The dashed lines at 50% reflect chance 

accuracy. Error bars reflect 95% HDIs. 

                                                      
1 Highest Density Intervals (HDI) are presented for consistency with later analyses. These 

intervals are based on 10,000 bootstrapped resamples and reflect 95% of values where the probability 

density is greater than points outside these bounds. 
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 Next, we examined the impact of exposure duration (‘leads’ vs. ‘supports’ vs. ‘bit parts’; 

within-subjects), retention-interval (‘long’ [S1-3] vs. ‘medium’ [S4-5] vs. ‘short’ [S6]; within-

subjects), and similarity (‘similar’ vs. ‘dissimilar’’; between-subjects) on the predictive value of 

confidence ratings. We analyzed each of these manipulations separately (i.e., main effects), as 

there are too few data-points per cell to assess interactions.  

 Because foils are not matched to specific actors in this single-block design, the same false 

alarms and correct rejections must be used in (non-)identification accuracy calculations for each 

condition. However, before computing accuracy scores, we needed to account for the unequal 

numbers of actor trials across conditions. Without an adjustment, the same hit/false alarm rates 

(at a given level of confidence) can produce different calibration curves. 

For example, imagine that participants respond ‘seen’ to 50% of actor trials and 25% of 

foil trials with a given level of confidence for both short (18 actors) and medium (32 actors) 

retention-intervals (i.e., hit rate = 50%, false alarm rate = 25% at this level of confidence). 

Multiplying out (and assuming no data eliminations), this gives 18 actors * .50 hit rate * 32 

participants = 288 hits vs. 32 actors * .50 hit rate * 32 participants = 512 hits for the short and 

medium conditions, respectively. Naively, these trials would be compared against 84 foils * .25 

false alarm rate * 32 participants = 672 false alarms for both groups. Using the formula for 

identification accuracy [hits / (hits + fa)], we would find accuracy rates of 288 hits / (288 hits + 

672 fa) ≈ 43% and 512 hits / (512 hits + 672 fa) ≈ 76%, for the short and medium retention-

intervals, respectively. In other words, despite the same use of the confidence scale across 

conditions, a difference of ~33% emerges due to disparities in the number of actor trials. 

Moreover, both group’s values are far from the nominal identification accuracy rate expected 

with a study design implementing equal numbers of actor to foil trials, or .50/ (.50 + .25) ≈ 67%. 
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 To ensure comparability between conditions, we adjusted the frequency of foil trials to 

match the frequency of actor trials in each condition. Specifically, we multiplied the frequencies 

of false alarms and correct rejections in a given condition by the ratio of actor trials to the total 

number of foil trials (adj = actorscondition/foilstotal). Thus, at each level of confidence, adjusted 

identification accuracy = hits / [hits + adj*fa], and adjusted non-identification accuracy = adj*cr / 

[adj*cr + misses].  

Using the previous example (50% hits, 25% false alarms) with the adjustment produces 

the correct interpretation of identification accuracy. The frequency of hits remains the same for 

the short (288 hits) and medium (512 hits) retention-intervals. However, the frequency of false 

alarms (672 fa) is adjusted in the denominator by the frequency of actor trials in the short (18 

actors * 32 participants = 576) and medium (32 actors * 32 participants = 1024) retention-

interval conditions over the total number of foil trials (84 trials * 32 participants = 2688 total 

foils): short ID accuracy = 288 hits /(288 hits + (576short actors /2688total foils) * 672 fa) ≈ 67% and 

medium ID accuracy = 512 hits/ (512 hits + (1024medium actors/2688total foils) * 672 fa) ≈ 67%. There 

is no longer a difference between the groups, and the identification accuracy rates match the 

nominal rate expected by equal numbers of actor and foil trials. 

Due to computation of an adjusted accuracy statistic, binomial confidence intervals are 

inappropriate for characterizing the uncertainty around the estimated proportion. For this reason, 

we bootstrapped 95% highest density intervals (HDIs) around each estimate (R functions and 

example code are available here: https://osf.io/quhsg). This procedure uses a routine that 

simulates the experimental design by:  
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1. Calculating the adjusted-accuracy at all levels of confidence for each condition. 

2. Randomly sampling participants (with replacement) from the entire dataset (for 

within-subject only comparisons), or in equivalent number to the size of the between-

group comparison (e.g., similarity, CFMT+ score group).  

3. Re-calculating the adjusted accuracy statistic from the resampled data.  

4. Repeating Steps (2) & (3), 10,000 times. 

5. Computing the 95% HDI of the distribution of resampled adjusted-accuracy statistics, 

using the bayestestR package v. 0.2.5 (Makowski, Ben-Shachar, & Lüdecke, 2019). 

We use the HDI because it is more agnostic about the symmetry of the resampling 

distribution than percentile intervals. Specifically, this interval captures modal 

outcomes, rather than mean outcomes (which are highly influenced by skew). Note 

that HDI will give the same intervals as a percentile if the resampling distribution is 

symmetrical. 

 

 Figure 1B.2 shows calibration curves for exposure duration (panel a), retention-interval 

(panel b), and similarity (panel c). The left column displays curves for identifications 

(hits/[fa*adjustment + hits]), whereas the right column represents non-identifications 

(cr*adjustment/[cr*adjustment + misses]).  

 

 

 



GRABMAN           49 
 

 

Figure 1B.2. Calibration curves for subsets of Exposure (panel a), Retention-interval (panel b), 

and similarity (panel c). The dashed line at 50% represents chance accuracy. Highest confidence 

identifications (left column) are potentially less reliable for shorter exposure durations (‘bit 

parts’), but impressively accurate across all similarity and retention-interval conditions. In 

contrast, there is little relationship between confidence and accuracy for non-identifications 

(right column). Comparing the 95% HDIs, for identifications, we see only a significant 

difference between highest confidence low vs. high exposure.  
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Beginning with exposure-duration, we found a strong positive relationship between 

confidence and accuracy for ‘lead’ (longest exposures) and ‘supporting’ (medium exposures) 

actor identifications. Moreover, highest confidence identifications exceed 90% accuracy for both 

conditions (‘lead’ = 96.9%, 95% HDI [94.8, 98.6]; ‘support’ = 92.2%, 95% HDI [87.8, 96.3]). 

However, there is a much weaker confidence-accuracy relationship for ‘bit part’ (shortest 

exposure) identifications, as demonstrated by the flat line across confidence levels. In fact, the 

accuracy for highest confidence responses (53.0, 95% HDI [29.5, 63.6]) is nearly identical to that 

of the lowest confidence responses, ‘1-2’ (53.0, 95% HDI [37.4, 58.5]). For non-identifications, 

there are non-overlapping HDIs at nearly all levels of confidence between ‘leads’ and ‘bit parts’, 

suggesting that ‘new’ responses to longer exposures are generally more accurate overall. But, 

replicating previous research, confidence is a weak predictor of non-identification accuracy 

across all exposure-durations.  

Next, examining Figure 1B.2b-c, the overlapping 95% HDIs suggest there is limited 

influence of retention-interval (panel b) or similarity (panel c) on accuracy. Highest confidence 

identifications are impressively accurate, even when considering the longest retention-intervals 

(91.6%, 95% HDI [87.5, 95.9]), and dissimilar trials (90.5%, 95% HDI [84.7, 97.0]). And, as 

with the exposure-duration analysis, there is little probative value of confidence for non-

identifications. Importantly, these results do not imply that retention-interval and similarity have 

limited influence on accuracy at a macro-level. In fact, Devue et al. (2019) found reduced 

discriminability (i.e., lower d’) for longer retention-intervals and dissimilar photos at test. 

However, it does suggest that when participants use the same level of confidence, the impact of 

retention-interval and similarity are minimal. 
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In summary, the results of the calibration curve analyses generally support previous 

findings. High confidence is strongly indicative of accuracy for identifications (Wixted & Wells, 

2017), though this comes with the caveat that short exposures may reduce reliability. Likewise, 

there are weaker relationships between confidence and accuracy for non-identifications (Brewer 

& Wells, 2006). Replicating these findings is encouraging, as the uncontrolled encoding context 

of watching GoT more closely matches our daily experiences than past experimental studies.  

However, these results apply to the average individual. We now turn to the question of 

whether the confidence-accuracy relationship is influenced by individual-differences in face 

recognition ability. 

    

Does face recognition ability influence the confidence-accuracy relationship in a real-world 

viewing context? 

 To begin, we divided participants by a median-split of CFMT+ score into weaker (scores 

= 52 – 73) and stronger (scores = 74 - 90) face recognition ability groups. Next, we plotted 

calibration curves for the totality of the data, separated by face recognition group. The positive 

slopes in Figure 1B.3 (left panel) suggest that confidence is strongly related to identification 

accuracy for both groups. But, the result that we highlight is at the highest confidence level. As 

demonstrated by the non-overlapping 95% HDIs, the stronger face recognition group (98.2%, 

95% HDI [96.3, 100.0]) is about 9 percentage points more accurate than the weaker face 

recognition group (89.4%, 95% HDI [84.7, 94.3]). The same figure (right panel) indicates that 

there is little association between confidence and non-identification accuracy for both face 

recognition groups. 
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Figure 1B.3. Calibration curves for the full dataset, comparing median splits of CFMT+ score. 

Stronger face recognizers (i.e., CFMT+ = 74 - 90) are more accurate at the highest-level of 

confidence for identifications than weaker recognizers (CFMT+ = 52-73) (left panel). There are 

few differences between groups for non-identifications (right panel). Error bars represent 95% 

HDIs.  

 

 Figure 1B.4 shows the identification accuracy calibration curves for stronger and weaker 

recognizers across varying levels of exposure (panel a), retention-interval (panel b), and 

similarity (panel c). Starting with the effects of exposure duration, there is a noticeable gap 

between stronger and weaker recognizers for highest confidence ‘supporting’ actor 

identifications. Stronger recognizers commit about 10% fewer highest confidence errors than do 

weaker recognizers in this exposure condition (97.9%, 95% HDI [95.2, 100.0] vs. 87.3%, 95% 

HDI [82.1, 92.7], respectively). However, the patterns in the curves are similar across face 

recognition groups in the other levels of exposure. Though the HDIs do not overlap, highest 

confidence identifications of ‘lead’ actors are extremely accurate for both stronger and weaker 
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recognizers (99.2%, 95% HDI [98.3, 100.0] vs. 94.6%, 95% HDI [91.4, 97.5], respectively). In 

contrast, the flat lines for ‘bit part’ identifications signify that the probative value of confidence 

is limited for shorter exposure durations, regardless of face recognition ability. As reflected by 

the missing point on the graph, the ‘bit part’ findings should be treated with caution. Table 1B.2 

indicates that stronger recognizers never used the highest confidence rating for identifications in 

this exposure condition.       

 Next, we found that retention-interval exhibits a graded pattern of differences between 

stronger and weaker face recognizers. Specifically, the gap between the two groups at the highest 

confidence level appears to grow with longer retention intervals. Whereas stronger recognizers 

are about 6 percentage points more accurate than weaker recognizers for short delays (Season 6) 

(98.7%, 95% HDI [97.3, 100.0] vs. 92.7%, 95% HDI [89.4, 96.3], respectively), the difference 

increases to 11 points for long delays (Seasons 1-3) (97.7%, 95% HDI [95.4, 100.0] vs. 86.4%, 

95% HDI [81.0, 92.1], respectively). As identification accuracy is essentially identical across 

retention-interval conditions for stronger recognizers, these differences are seemingly fueled by 

weaker recognizers committing increasing numbers of highest confidence errors over longer 

delays.   

 Concluding the identification accuracy results, both groups achieved high levels of 

accuracy for highest confidence identifications of similar faces, though stronger recognizers 

were about 5 percentage points more accurate than weak recognizers (99.5%, 95% HDI [98.6, 

100.0] vs. 94.0%, 95% HDI [92.0, 96.1]). The gap between the two face recognition groups is 

numerically greater in the dissimilar condition, but the overlapping HDIs hint that these 

differences may not be particularly robust (96.3%, 95% HDI [92.2, 1.00] vs. 87.1%, 95% HDI 

[79.6, 95.7]). 
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 Finally, Figure 1B.5 displays the non-identification calibration curves for stronger and 

weaker recognizers across the conditions of exposure duration (panel a), retention-interval (panel 

b), and similarity (panel c). The curves are essentially flat across all conditions of the 

manipulations for both groups, which implies that there is limited correspondence between 

confidence and non-identification accuracy, regardless of face recognition ability.   
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Figure 1B.4. Calibration curves for identification accuracy across manipulations, broken down 

by CFMT+ Median split. In almost all cases, there is a strong correspondence between 

confidence and accuracy. However, stronger face recognizers (CFMT+ scores = 74 – 90) commit 

fewer highest confidence errors than weaker recognizers (CFMT + scores = 52 - 73). The 

exception is for ‘bit part’ exposures (panel a, 1st column), where confidence is not predictive of 

accuracy for either face recognition group. Error bars represent 95% HDIs.  



GRABMAN           56 
 

 

Figure 1B.5. Calibration curves for non-identification accuracy, broken down by CFMT+ 

Median split. There is little relationship between confidence and accuracy across all 

manipulations. Additionally, there are few differences between the stronger (CFMT+ scores = 74 

– 90) and weaker (CFMT+ scores = 52 – 73) face recognition groups. Error bars represent 95% 

HDIs. 
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Does CFMT+ predict identification accuracy above and beyond confidence? 

Following Grabman et al. (2019), we fitted logistic mixed effects models to identification 

responses, consisting of the main effects of Confidence and CFMT+, and their interaction. This 

method has the advantage of analyzing the effects of CFMT+ as a continuous variable, as 

opposed to collapsing participants into quantiles (e.g., median split). Moreover, including 

random intercepts for each participant partials out systematic variance resulting from 

unmeasured factors that are associated with accuracy (e.g., motivation, fatigue). Combined with 

visual inspection of the plot of the model output, these analyses clarify whether including 

CFMT+ significantly improves on predictions of identification accuracy generated from 

confidence alone. 

Due to the single block design, we could not model interactions between the within-

subjects conditions (i.e., exposure duration, retention interval), confidence, and CFMT+. Instead, 

we separately modeled subsets of total false alarms and hits from each condition (e.g., modeling 

‘lead’ actor identifications separately from ‘supporting’ actor identifications). We gauged the 

relative contributions of CFMT+ and Confidence to the model by computing p-values from 

likelihood ratio tests (LRTs), provided by the afex package v. 0.24-1 (Singmann, Bolker, 

Westfall, & Aust, 2018).  

There are no consensus standards for assessing the absolute model fit for logistic mixed 

effects models. Thus, we employed a combination of three methods to evaluate fit. First, we used 

the DHARMa package (Hartig, 2018, version 0.2.4) to perform Kolmogorov-Smirnov goodness-

of-fit tests (KS tests), comparing the observed data to a cumulative distribution of 1,000 

simulations from model estimates. Second, we examined residual plots based on deviations 

between simulated and observed values to check for signs of model misspecification (i.e., 
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ensuring errors are uniformly distributed for each predicted value). And third, we calculated 

marginal pseudo-R2 (R2
GLMM(m)) for fixed-effects, using the MuMIn package (Barton, 2018, 

version 1.42.1). This statistic compares variance accounted for by fixed effects in the model to 

remaining error, while partialing out the variance accounted for by the random effect structure 

(i.e., participant intercept). 

 We fitted mixed logistic regression models to identifications from the full dataset, as well 

as each individual subset (exposure, retention-interval) using the lme4 package v. 1.1-21 (Bates, 

Maechler, Bolker, & Walker, 2014). Models consisted of the main effects and interaction 

between Confidence (as an ordered factor) and CFMT score (centered and scaled), as well as a 

random intercept for each participant. In Wilkinson-Rodgers notation (1973) all models took the 

form: Accuracy ~ Confidence + CFMT + Confidence:CFMT + (1|Participant). However, a 

slightly different model was needed for the analysis of the similarity manipulation because the 

between-subject nature of this manipulation required the inclusion of main effects and 

interactions of the similar vs. dissimilar contrast. None of these terms contributed significantly to 

the model (all ps > .144), so for brevity we discuss effects in the context of the terms common to 

all models.  
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 Table 1B.5 shows the 

chi-square and significance 

values for each of the three 

terms (CFMT, Confidence, 

CFMT:Confidence) across 

models. In all cases, 

Kolmogorov-Smirnov tests 

suggested that the models 

adequately fit the data (all ps 

> .135), with residual plots 

showing no signs of major 

misspecification. Starting 

with the model of the full 

dataset, Figure 1B.6 suggests there is a strong main effect of confidence, such that higher 

confidence values are associated with greater predicted accuracy. Critically, replicating previous 

research, the model predicts that weaker face recognizers will make more frequent high 

confidence errors (as represented by the red line) than stronger recognizers. 

 

 

 

 

 

Figure 1B.6. Plot of the logistic mixed effects model for 

the full dataset, with predictors of CFMT+ score and 

confidence. Lines represent model estimates, with error 

shading representing the 95% confidence interval. 

Notably, high confidence errors (red line) are more 

frequent when participants are worse face recognizers.  
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  CFMT  

(DF = 1) 

Confidence 

 (DF  = 3) 

CFMT:Confidence 

(DF = 3) 

R2GLMM(m) 

Model  Χ2 Sig Χ2 Sig Χ2 Sig  

All Data 6.91 .009** 197.64 < .001*** 6.51 .089 .221 

Delay Long 6.43 .011* 96.80 < .001*** 6.26 .100 .184 

Medium 4.66 .031* 133.48 < .001*** 5.67 .128 .230 

Short 7.33 .007** 195.55 < .001*** 6.12 .106 .323 

Exposure Bit Parts 0.24 .627 2.86    .414 3.27 .351 .013 

Supports 7.06 .008** 99.85 < .001*** 5.50 .139 .189 

Leads 2.99 .084 326.96 < .001*** 7.61 .055 .408 

Similarity 7.68 .006** 64.26 < .001*** 4.46 .216 .279 

*  < .05; ** < .01; *** < .001  

Table 1B.5. Output for logistic mixed effects models examining the main effects of CFMT+, 

Confidence, and their interaction. Models are fitted to the full dataset, as well as subsetted 

conditions of exposure, retention-interval, and similarity. Significance values are computed by 

Likelihood ratio tests. CFMT+ contributes to all, except in the cases of the shortest (‘bit parts’) 

and longest (‘leads’) exposures.  

 

Figure 1B.7 reveals that this interpretation persists across most of the manipulation 

analyses. Examining Table 1B.5, CFMT+ makes a significant contribution to nearly all of the 

models. In general, the models predict that weaker recognizers will commit more high 

confidence errors than stronger recognizers. Two notable exceptions come from the analysis of 

exposure duration. Consistent with the calibration curves, both confidence and face recognition 

ability are not particularly predictive of accuracy for ‘bit part’ identifications. Additionally, while 

confidence is strongly predictive of accuracy for ‘lead actors’, face recognition ability does not 

contribute significantly to this model.  
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In summary, the logistic mixed-effects modeling analyses largely reach the same 

conclusions as the calibration plots: face recognition ability influences the rate of high 

confidence errors across the dataset as a whole, and across the manipulations of retention-

interval and similarity. Concurrently, there are minimal differences in the predictive value of 

confidence between stronger and weaker recognizers at the longest exposure durations (where 

confidence is similarly predictive across CFMT+), and the shortest exposure durations (where 

confidence is not predictive of accuracy across CFMT+). 
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Figure 1B.7. Plots of the logistic mixed effects model Exposure (panel a), Delay (panel b), and 

Similarity (panel b) subsets, with predictors of CFMT+ score and confidence. Lines represent 

model estimates, with error shading representing the 95% confidence interval. Notably, high 

confidence errors (red line) are more pronounced when participants are worse face recognizers.  
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Study 1B Discussion 

The ability to evaluate whether we have encountered a person before carries real-world 

implications. The consequences of misplaced confidence range from the relatively mild (e.g., 

mistaking one actor for another on a television show) to the devastatingly severe (e.g., convicting 

an innocent person in a police lineup), yet knowledge about the probative value of confidence is 

rooted in experiments that inadequately capture the complexity of real-world face recognition. 

And, excepting results from one previous experiment (Grabman et al., 2019), little is known 

about how individual differences impact the confidence-accuracy relationship. 

Participants in Devue et al (2019) grappled with many of the challenges posed by 

everyday face recognition. They watched the television show Game of Thrones for personal 

entertainment, incidentally encoding the faces of hundreds of actors. Retention-intervals were 

much longer than in previous studies (up to 6 years) and characters appeared in varied contexts, 

often with substantial changes in appearance.  

Despite the substantial difficulties imposed by this real-world, uncontrolled viewing 

context, our reanalysis of the data finds that confidence ratings are generally predictive of 

identification accuracy (e.g., the strong positive slopes for identification in Figure 1B.1). Highest 

confidence identifications were remarkably accurate for retention-intervals of >3 years (91.6%), 

and for photos that were as dissimilar as possible from the actors’ last appearance in GoT 

(90.5%).  

In contrast, we found weak correspondence between confidence and accuracy for ‘bit 

part’ identifications. Sauer, Palmer, and Brewer (2019) recently posited there may be boundary 

conditions where the confidence-accuracy relationship does not hold -- especially in real-world 

settings. The aspects of the ‘bit part’ trials that are dampening this relationship will need further 
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clarification. As Devue et al (2019) note, beyond screen-time there are other differences 

embedded in the exposure-duration manipulation (e.g., semantic information about the 

characters, access to varying viewpoints).     

 Taken together, these findings add compelling evidence to claims of a robust association 

between confidence and accuracy for identifications in face recognition tasks (Tekin & Roediger, 

2017; Wixted & Wells, 2017). However, replicating Grabman et al. (2019), high confidence 

identifications by stronger face recognizers (upper median of CFMT+) were more reliable 

(98.2% overall) than those made by weaker recognizers (89.4%). The gaps between these two 

groups were largest when identifying photos at delays >3 years (97.7% vs. 86.4%), for medium 

exposures (97.9% vs. 87.3%), and (potentially) for dissimilar appearance (96.3% vs. 87.1%). It is 

surprising that the effects of face recognition ability on the confidence-accuracy relationship are 

so clear, given that the sample did not include individuals at the extreme tails of CFMT+ 

performance (i.e., scores closer to chance or perfect). We expect that differences would increase 

when contrasting wider ranges of ability.  

Importantly, face recognition ability is likely one among many individual-differences that 

influence the confidence-accuracy relationship for face recognition tasks. Kantner and Dobbins 

(2019) estimated the relative contributions of accuracy and individual-differences (broadly 

defined) to the confidence ratings participants assigned to recognition trials of paintings and 

words. The results showed both factors accounting for near-equal variance in confidence for 

identifications, while individual-differences explained 13-20x more variance in confidence for 

non-identifications. Martschuk, Sporer, & Sauerland, (2019) found that older eyewitnesses 

tended to make high confidence errors more frequently than younger participants. Additionally, a 

‘confidence trait’ may influence how people use confidence scales across many unrelated tasks 
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(e.g., Stankov, Kleitman, & Jackson, 2015). The Wixted & Wells (2017) review convincingly 

argues for determining the probative value of individual levels of confidence. We believe the 

next step is to determine the probative value of confidence for responses by individuals. Ideally 

these studies will use a combination of experimental and real-world designs, with an eye for 

capturing the complexities of face recognition.   

In summary, we find that confidence ratings are generally predictive of accuracy in a 

difficult, uncontrolled real-world test of face recognition. Importantly, we replicate that face 

recognition ability influences the reliability of high confidence ratings, despite using other 

researchers’ data, a different memory paradigm (old-new vs. lineup), and a more ecologically 

valid context.  
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Part II: Interpreting Eyewitness Confidence Statements 
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Prior knowledge influences interpretations of eyewitness confidence statements: “The 

witness picked the suspect, they must be 100% sure.” (Grabman & Dodson, 2019) 

Imagine you are a police officer. After a few months investigating a string of recent 

robberies, you finally have a suspect. Following the recommended ‘double-blind’ procedure, 

another officer unaware of the identity of the suspect interviews an eyewitness to one of the 

crimes. The colleague administers a lineup consisting of the suspect and five additional 

individuals known to have not committed the crime. The eyewitness points to the suspect, and 

says, “I’m very sure it’s him”. How certain is the eyewitness? Would your answer change if you 

did not know which lineup member was the suspect? 

These are increasingly important questions in the criminal justice system. Unlike most 

laboratory studies, where confidence is collected on a numeric scale (e.g. 0 – 100% certain), 

police are advised by the United States Department of Justice to “ask the witness to state, in his 

or her own words, how confident he or she is in the identification” (Yates, 2017). Evidence 

suggests that people generally report confidence verbally, rather than numerically (Brun & 

Teigen, 1988; Budescu & Karelitz, 2003; Erev & Cohen, 1990; Wallsten, Budescu, Zwick, & 

Kemp, 1993). For example, 20 out of 23 mock witnesses in a lineup identification task provided 

verbal (rather than numeric) expressions of certainty when given instructions closely mirroring 

Department of Justice guidelines (i.e. “in your own words, please explain how certain you are in 

your response”) (Dodson & Dobolyi, 2015). Using identical prompts, the same authors recently 

found that 275 out of 342 participants expressed confidence verbally for every response to 

twelve mock lineups (Dobolyi & Dodson, 2018).  

The critical question is whether law enforcement professionals accurately interpret the 

intended meaning of verbal expressions of confidence. Unfortunately, much research outside the 
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eyewitness domain indicates that the answer is no (e.g., Budescu, Por, Broomell, & Smithson, 

2014; Budescu, Broomell, & Por, 2009; Budescu & Wallsten, 1985; Gurmankin, Baron, & 

Armstrong, 2004; Mullet & Rivet, 1991; Reagan, Mosteller, & Youtz, 1989). Further, expertise 

does not eliminate interpersonal variability in the interpretation of verbal expressions of 

certainty, even when verbal statements are drawn from a content area where raters have 

considerable familiarity (Beyth-Marom, 1982; Bryant & Norman, 1980; Nakao & Axelrod, 1983; 

Wallsten, Fillenbaum, & Cox, 1986). In one illustration of this difficulty, Nakao & Axelrod 

(1983) found that physicians showed just as much variability as non-physicians in their 

assessment of the intended probability value of 17 out of 22 verbal modifiers (e.g.,” Invariably”) 

that are commonly used to express frequencies of medical events.  

Few studies have examined whether eyewitness expressions of confidence are similarly 

likely to be misinterpreted (Cash & Lane, 2017; Dodson & Dobolyi, 2015, 2017). There is urgent 

need for examining this issue, given that an eyewitness’s confidence guides many criminal 

justice decisions. For example, research indicates that the level of an eyewitness’s confidence is 

likely the most important influence on jury decision-making (e.g., Bradfield & Wells, 2000). 

Moreover, in a synthesis of over 30 years of research, Wixted and Wells (2017) note a strong 

positive relationship between eyewitness accuracy and confidence at the time of an initial 

identification, assuming that investigators follow “pristine eyewitness identification procedures” 

(e.g., one suspect per lineup; see Wixted & Wells, 2017 for a full review). However, one general 

assumption underlying this relationship is that the witness’s confidence is properly understood 

by evaluators, which may not always be the case. 

One major finding is that confidence interpretations become less consistent as contextual 

information is introduced (e.g., Brun & Teigen, 1988). This likely occurs because interpreters 



GRABMAN           72 
 

have varied conceptions of the utility and prior likelihood of the events the confidence phrases 

are modifying (Beyth-Marom, 1982). Recent work by Dodson and Dobolyi (2015) suggests that 

perceptions of certainty are influenced by how witnesses justify their selections from lineup. In 

this study, participants viewed twelve mock eyewitnesses’ identifications of one of the six 

members of the lineup, and the eyewitness’s statement of confidence about his/her identification 

(e.g., “I am very certain.  I remember his hair”).  The critical manipulation was that some 

participants saw the confidence statement only (“I am very certain”) whereas other participants 

saw the confidence statement with either a featural justification – one that referred to a visible 

feature about the suspect (e.g., “I am very certain.  I remember his hair.”) or an unobservable 

justification – one that referred to a quality about the suspect that is unobservable to anyone but 

the eyewitness (e.g., “I am very certain. He looks like a friend of mine.”). When asked to 

translate the verbal confidence statements into a numeric value of certainty, participants rated 

confidence only statements similarly to those where the eyewitness provided an unobservable 

justification. However, featural statements were interpreted as meaning significantly lower 

values than both other conditions, especially when the eyewitness used language associated with 

high certainty (see Cash & Lane, 2017 for a replication and extension of this effect). 

An open question is whether evaluators’ judgements of confidence are also impacted by 

contextual factors unstated by (or even unknown to) the witness, such as whether the suspect 

confessed to the crime. These contextual influences are (to our knowledge) unexplored in 

evaluations of confidence statements, but do appear in other criminal justice research. For 

instance, Kassin, Dror and Kukucka (2013) reviewed a variety of judgements in different 

forensic procedures that are affected by contextual knowledge. Polygraph examiners are more 

likely to interpret an interviewee’s polygraph chart as deceptive when they are told that the 
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interviewee later confessed to the crime than when told that someone else confessed (e.g., Elaad 

& Ginton., 1994). Expertise likely does not mitigate the influence of external knowledge as 

multiple studies show the effects in both experienced polygraph examiners (Elaad and Ginton, 

1994), and fingerprint examiners (e.g., Dror & Charlton, 2006; see also Dror, Charlton & Péron, 

2006).  One final key point that Kassin et al (2013) emphasize is that contextual knowledge is 

more likely to influence judgments when the evidence is ambiguous rather than clear-cut.  

The “post-identification feedback” literature suggests that investigators’ contextual 

knowledge can directly alter the witness’s actual level of confidence (see Steblay, Wells, & 

Bradfield Douglass, 2014 for a recent meta-analysis).  By their nature, lineups contain an 

individual that the police have identified as their suspect. Wells and Bradfield (1998) 

demonstrated that investigators can inflate eyewitnesses’ confidence reports by validating their 

selection from a lineup (e.g. “Good, you identified the suspect”), or (to a lesser extent) deflate 

certainty by invalidating the selection (e.g. “Actually the suspect was [somebody else]”). Of 

particular note, after receiving confirmatory feedback, roughly half of the witnesses who chose 

an incorrect face from the lineup reported high levels of confidence (6 or 7 on a 7-point scale) 

(Wells & Bradfield, 1998). This could lead observers to erroneously place high credibility on 

these witnesses’ testimony (Steblay et al., 2014; Wells & Bradfield, 1998). Concerns about 

investigator influence on witness’s lineup decisions and confidence reports lead these authors 

(and others) to emphasize double-blind lineup administration procedures (e.g., Dror, Kukucka, 

Kassin, & Zapf, 2017; Kovera & Evelo, 2017; Steblay et al., 2014),  

In addition to influencing eyewitness reports, prior knowledge of the police suspect could 

also affect evaluators’ perceptions of eyewitness certainty. In fact, in explaining the post-

identification feedback effect, Wells and Bradfield (1999) speculate that witnesses adjust 
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confidence reports based on how a hypothetical outside observer would perceive the statement. A 

confidence expression, such as “I’m pretty sure it’s him,” may be interpreted as conveying a 

higher level of confidence when the statement refers to an individual who corresponds to the 

police’s suspect than when it does not. This is important to document, because ultimately 

evaluators of these statements must make decisions about how to proceed in legal settings (e.g., 

police officers, judges, jurors). 

The purpose of this study is to investigate whether prior knowledge of the police suspect 

impacts perceptions of eyewitness confidence. The results bear on current recommendations of 

best-practices for eliciting eyewitness confidence statements. If contextual information leads 

evaluators to misinterpret witnesses’ intended level of certainty, current standards for “pristine 

lineup conditions” (including double-blind administration) (Wixted & Wells, 2017) do little to 

mitigate misinterpretations, because most legal decisions (e.g., arrests, evidence review, 

indictment) are made with knowledge of the police suspect. These mistakes could lead evaluators 

to put undue emphasis on the testimony of witnesses who identify the police suspect, potentially 

increasing false convictions. Further, Wells, Yang, and Smalarz (2015) note that picking someone 

other than the suspect (i.e. “fillers”) with high confidence should be considered strong 

exculpatory evidence, meaning that downplaying the importance of disconfirmations could 

decrease exoneration rates.  

Finally, we investigate whether knowledge of the police suspect moderates other 

contextual effects, such as the way eyewitnesses justify their selections from a lineup. Dobolyi & 

Dodson (2018) recently found that participants who picked a face from a lineup provided a 

featural justification for nearly half of their verbal confidence statements. Given the ubiquity of 

these expressions, manipulating an eyewitness’s justification for a level of confidence may 
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provide a more complete picture of the factors that influence interpretations of eyewitness 

confidence statements. 

Experiment A 

Experiment A manipulates prior knowledge of the suspect within-subjects, and 

justification condition between-subjects. In some conditions, participants will know which lineup 

member is the police’s suspect whereas in other conditions they will not have such knowledge.  

Given previous research, we expect that identical eyewitness statements of confidence will be 

evaluated as meaning higher or lower levels of confidence when the eyewitness has chosen 

someone from a lineup that either matches or mismatches, respectively, the police’s suspect. 

Further, we hypothesize that this knowledge will moderate effects of eyewitness justification. 

Specifically, we predict that (a) identifying the suspect will diminish the featural justification 

effect, as this evidence supports that the feature the witness chose is diagnostic, and (b) filler 

identifications will enhance (or have minimal influence on) the featural justification effect, 

because this bolsters perceptions of low featural discriminability.     

Method 

Participants  

We analyzed the data of 181 participants, located in the United States, who completed the 

experiment over the internet using Amazon’s Mechanical Turk (mean age = 37.07, SD = 10.92, 

range = 20 - 74, 58.01% female, 84.53% White/Caucasian), and were randomly assigned to one 

of two justification conditions: (a) Confidence only (n= 93) and (b) Featural Justification (n= 

88).  The sample size was sufficient to detect moderate-sized effects with greater than 95% 

power at an alpha level of .05, according to G*POWER (Faul, Erdfelder, Lang, & Buchner, 

2007). 
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Materials  

All participants interpreted the verbal confidence of mock eyewitnesses responding to six 

“fair” lineups (see Dobolyi & Dodson, 2013 for methodology of lineup creation). Fair lineups 

meet the conditions that no face is comparatively noticeable, and that individuals naïve to the 

target stimulus are equally likely to select each face (e.g. Gronlund, Carlson, Dailey, & Goodsell, 

2009; Malpass, Tredoux, & McQuiston-Surrett, 2007). As shown in Figure 2.1, lineups consisted 

of the head and shoulders of six white males arranged in a 2x3 grid, exhibiting a neutral 

expression, and wearing a solid maroon colored t-shirt. In each case, one face was randomly 

selected to serve as the eyewitness’s identified suspect and outlined with a red border. In the 

within-subjects prior knowledge manipulation, the word “suspect” in white text represented the 

police suspect and was superimposed over either the eyewitness’s selection (suspect-ID), another 

randomly selected face (filler-ID), or omitted (i.e. no police suspect, no-context). 

 

Figure 2.1. In Experiment A, participants evaluated the eyewitness’s intended numeric 

confidence expression under 2 justification conditions and when: (a) the eyewitness chose the 

same person as the police (suspect-Id), (b) the eyewitness chose someone other than the police 

suspect (filler-Id), and (c) when given no information about the suspect (no-context). 
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Accompanying each lineup was the eyewitness’s written verbal expression of confidence 

in their selection. Briefly, expressions of confidence were transcribed verbatim from participant 

responses to a previous eyewitness study, and reflected either “moderate” (e.g. “I am fairly 

confident”) or “high” (e.g. “I am positive”) levels of certainty (see Dodson and Dobolyi, 2015 

for a full summary on expression generation). Additionally, statements in the “featural” condition 

included justifications reflecting visible features of the suspect (e.g. “I remember his nose”) (see 

Table 2.1 for confidence statements and justification conditions).  

 

Confidence 

Level 

Context 

Condition 

Expression -- 

Verbal 

Expression – 

Numeric 

(Experiment C 

Only) 

Featural 

Justification 

Moderate suspect-ID I am pretty 

certain. 

I am 60% certain. I remember his 

chin. 

no-context I am fairly 

confident. 

I am 60% 

confident. 

I recall his hair. 

filler-ID I am pretty sure. I am 60% sure. I remember his 

ears. 

High suspect-ID I am very certain. I am 100% 

certain. 

His mouth is 

memorable. 

no-context I am very 

confident. 

I am 100% 

confident. 

I remember the 

shape of his head. 

filler-ID I am positive. I am 100% 

positive. 

I recall his eyes. 

 

Table 2.1. Confidence expressions used in Experiments A – C. Depending on condition, 

participants in Experiment C saw only Verbal expressions, or Numeric expressions. In all 

experiments, half of participants saw confidence statements with the addition of a featural 

justification.   
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Procedure 

Figure 2.1 (panels a – c) shows examples of the task. At study onset, participants were 

randomly assigned to a single justification condition and viewed the same sequence of six 

lineups. We counterbalanced the order of all possible pairings of the prior knowledge (suspect-

ID, filler-ID, no-context) and statement confidence (moderate, high) conditions across 

participants.  

Given the goal of approximating how police officers interpret eyewitness statements, we 

started by broadly informing participants about the process police use to generate criminal 

lineups. We told them that sometimes, when police create a lineup of faces, they include one 

person that they think could be the criminal. The remaining faces in the lineup are innocent 

individuals that the police know did not commit the crime. We emphasized that the eyewitness is 

never told whether his/her choice matches the police’s suspect.  

For suspect-known lineups, participants pretended to be the police officer who created the 

lineup. For no-context lineups, participants pretended to be a police officer who did not have a 

particular suspect in mind. In all cases, the participant’s task was to translate the written 

statements into a numerical value of certainty, by filling in the sentence, “the witness is ___% 

certain in their selection,” using a scale ranging from 0% (not at all certain) – 100% (completely 

certain) in 20% increments. 

To ensure participants understood all the instructions, and to preview the task, we first 

showed examples of suspect-ID and no-context lineups composed of six colorful smiley faces. In 

each case the eyewitness statement read, “I know it’s him”. Participants were instructed to 

pretend that the example eyewitness was completely certain about their decision. Finally, upon 

completing the task, we checked for comprehension by asking participants, “when the 
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eyewitness looked at the lineup, did he/she know who the police suspect was?” and “other than 

the police suspect, is it possible that anyone else in the lineup committed the crime?”  We did not 

analyze the data of 175 individuals who responded < 80% on either one of the smiley lineups (N 

= 127), and/or answered “yes” to either of the final manipulation checks (N = 93). Data can be 

found on the OSF (https://osf.io/8chmz/). 

Experiment A Results and Discussion 

We analyzed participants’ estimates of the intended meaning of an eyewitness’s verbal 

expression of confidence with a 2 (Justification: confidence only, featural; between) x 3 (Prior 

Knowledge: suspect-ID, filler-ID, no-context; within) x 2 (Confidence Level: high vs. moderate; 

within) mixed ANOVA. Replicating past results, a main effect of Justification condition, F(1, 

179) = 9.76, MSe = 985.18, p = .002, η2
p = .052, reflects participants perceiving eyewitnesses as 

less confident when the eyewitness’s confidence-statement was accompanied by a featural 

justification (M = 64.58, SD = 14.62) than when the eyewitness provided a confidence statement 

only (M = 70.53, SD = 10.84).  As hypothesized, a main effect of Prior Knowledge, F(2, 358) = 

45.24, MSe = 364.43, p < .001, η2
p = .202, is fueled by higher perceived confidence for 

statements about an identification that matched the police’s suspect (M = 75.14, SD = 14.93) 

than in the no-context condition (M = 65.75, SD = 15.53; t (180) = 7.14, p < .001, Cohen’s d 

= .53, 95% CI [.37, .68]), which in turn showed higher perceived confidence than the filler-ID 

condition (M = 62.04, SD = 20.38; t(180) = 2.85, p = .005, Cohen’s d = .21, 95% CI [ .06, .36]).  

And, as expected, there was a main effect of Confidence, F (1, 179) = 489.59, MSe = 254.61, p 

< .001, η2
p = .732, with increased perceived confidence for statements expressing high 

confidence (M = 78.38, SD = 15.24) than moderate confidence (M = 56.91, SD = 14.04).  
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These main effects should be interpreted in the context of a significant two-way 

interaction between Prior Knowledge and Confidence Level, F (2, 358) = 5.29, MSe = 203.38, p 

= .005, η2
p = .029. As Figure 2.2 shows, the same moderate confidence statement is interpreted as 

meaning a higher numeric value when the statement refers to a suspect-ID lineup (M = 65.52, SD 

= 17.78) than a no-context lineup (M = 55.91, SD = 18.46), which in turn is rated higher than the 

filler-ID lineup (M = 49.28, SD = 20.71), t(180) = 5.61, p < .001, Cohen’s d = .42, 95% CI 

[.26, .57] and t(180) = 4.17, p < .001, Cohen’s d = .31, 95% CI [.16, .46]. For high confidence 

statements, we also found that participants perceived greater confidence for suspect-ID lineups 

(M = 84.75, SD = 17.18) than no-context lineups (M = 75.58, SD = 17.18), t(180) = 6.33, p 

< .001, Cohen’s d = .47, 95% CI [.31, .62]. However, in contrast to the results for moderate 

statements, ratings for filler-ID lineups (M = 74.81, SD = 27.28) did not significantly differ from 

no-context lineups, t(180) = .41, p = .684, Cohen’s d = .03, 95% CI [ -.12, .18]. 

 

 

 Figure 2.2. In Experiment A, we found a significant two-way interaction between 

the Confidence and Context conditions. As seen on the graph, the effect of the 

Context manipulation is stronger for moderate confidence than high confidence 

statements. Error bars indicate 95% confidence intervals of the mean. 
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Unexpectedly, we did not observe any further interactions (all ps ≥ .070, η2
p ≤ .015). 

Contrary to our hypotheses, the Prior Knowledge manipulation did not significantly impact the 

effects of featural justification on perceived confidence.  

Taken together, the results of Experiment A support the conclusion that knowledge of the 

police suspect influences perceptions of eyewitness confidence. Despite acknowledging that the 

witness did not know who the police suspect was, meaning that this information should not 

influence certainty expressions, participants perceived identical confidence statements as 

expressing lower (higher) values when the statement was about a member of the lineup that 

(mis-)matched the police suspect, than when the suspect was unknown. Logically this is an error. 

However, a potential limitation of Experiment A is that Prior Knowledge is manipulated 

within-subjects. Participants could have altered their responses to no-context, suspect-ID, and 

filler-ID lineups, based on their expectation that there should be a difference between the three 

conditions.  In Experiment B, we address this concern by manipulating knowledge of the police 

suspect in a between-subjects manner.      

Experiment B 

Experiment B directly replicates the method of Experiment A, though this time prior 

knowledge is manipulated between-subjects. If task demand is the sole factor accounting for 

discrepancies between the suspect-known and no-context lineups, then in this experiment we 

would expect minimal perceived differences in confidence statement ratings between each of the 

conditions.  
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Method 

Participants  

All 476 participants who passed study manipulation checks were located in the United 

States and completed the experiment over the internet using Amazon mechanical Turk (mean age 

= 36.36 years, SD = 11.59, range = 18 - 75, 58.61% female, 81.93% White/Caucasian).  

Participants were randomly assigned to one of six conditions, each comprised of 78 – 81 

participants, representing the 3 x 2 intersection between the Prior Knowledge (suspect-ID, filler-

ID, no-context) and Justification (Statement Only, Featural) manipulations.  

 

Procedure 

All participants viewed the same order of two lineups, randomly chosen from the pool of 

six lineups in Experiment A. We arbitrarily selected a high confidence and moderate confidence 

eyewitness statement to accompany each lineup, counterbalancing the order of presentation 

across participants.  One face in each lineup was bordered in red, representing the eyewitness’s 

selection, with both lineups corresponding to the same Prior Knowledge condition (either 

suspect-ID, filler-ID, or no-context). Participants in the suspect-ID and filler-ID conditions read 

the same instructions as in Experiment A, without the paragraphs describing that sometimes 

police officers do not know the police suspect, and pretended to be the officer who created the 

lineup. Those in the no-context condition received no information about the lineup generation 

process, and simply imagined themselves to be police officers.  All other aspects of the design 

and procedure are identical to Experiment A. We excluded 259 individuals who either assigned 

values < 80% for the smiley lineup (N = 208), and/or failed one or more of the manipulation 

checks (N = 87). Data for this experiment is on the OSF (https://osf.io/8chmz/) 
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Experiment B Results and Discussion 

We examined perceived confidence using a 2 x 3 x 2 mixed ANOVA with between-

subjects factors of Justification (statement only, featural) and Prior Knowledge (suspect-ID, 

filler-ID, no-context), and a within-subjects factor of Confidence Level (moderate, high). In line 

with Experiment A, we observed a main effect of Justification, F(1,470) = 14.66, MSe = 694.04, 

p < .001, η2
p = .030, with lower levels of perceived confidence when participants encountered 

confidence statements with an accompanying featural justification (M = 61.46, SD= 20.37) than 

a confidence statement only (M = 68.06, SD = 19.49). Unsurprisingly, we found an effect of 

Confidence Level, F (1, 470) = 485.11, MSe = 206.01, p < .001, η2
p = .508, such that participants 

interpreted high confidence statements (M = 75.00, SD = 22.65) as meaning a higher value than 

moderate confidence statements (M = 54.50, SD = 21.70).  

Interestingly, we observed a main effect of Prior Knowledge, F (2, 470) = 23.34, MSe = 

694.04, p < .001, η2
p = .090. As in Experiment A, participants perceived the identical confidence 

statements as meaning a lower numeric value in the filler-ID condition (M = 56.52, SD = 21.20) 

than in either the no-context or suspect-ID conditions, t (294.82) = 5.41, p < .001, Cohen’s d 

= .61, 95% CI [.38, .83] and t(309.56) = 5.84, p < .001, Cohen’s d = .66, 95% CI [.43, .88], 

respectively. However, perceived confidence was comparable in the suspect-ID (M = 69.68, SD = 

18.80) and no-context conditions (M = 68.00, SD 16.32), t (316) = .85, p = .394, Cohen’s d = .10, 

95% CI [ -.12, .32].   

We did not observe a three-way interaction, nor any significant two-way interactions with 

the Justification condition (all F’s < 1.53, all ps ≥ .218, all η2
p ≤ .006). Additionally, in contrast 

to Experiment A, we did not find a significant interaction between Confidence Level and Prior 

Knowledge, F (2, 470) = 1.09, MSe = 206.01, p = .338, η2
p = .005.  
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Overall, we generally replicated Experiment A, even when using a more conservative 

Between-subjects design. Participants in the filler-ID condition, based on their own knowledge 

of the police suspect, perceived the witness as having a lower level of confidence, relative to the 

no-context condition, even though the same confidence statement was used in both conditions. 

While we did not replicate the finding of amplification of perceived confidence in the suspect-ID 

condition, the effects are in the same direction. These results rule out the critique that the effects 

of context in Experiment A were solely caused by task demands induced by its within-subjects 

design. Additionally, arguably, the within-subjects design is a more ecologically valid test as 

police officers often administer and interpret responses to multiple lineups over the course of 

their careers.  

Given that participants in both Experiments A and B showed susceptibility to contextual 

effects when they interpreted eyewitness statements, in Experiment C we test whether clarifying 

the witness’s confidence level using numerical information can protect against these errors.  

Experiment C 

One outstanding question in the judgement literature is the degree to which contextual 

effects are influenced by expressing confidence numerically instead of verbally. There are 

reasons to think that these effects will be weaker when witnesses clarify their level of confidence 

using numeric information. Research shows that context effects are most pernicious when 

evidence is ambiguous (Kassin et al., 2013). Multiple studies recommend that numerical 

probabilities are preferable to verbal probabilities because they are less vulnerable to flexible 

interpretations (e.g. Budescu et al., 2009, 2014; Nakao & Axelrod, 1983).  

When interpreting eyewitness confidence, the ambiguity of verbal statements may lead 

investigators to place more weight on other accessible information, such as whether the witness 
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selected the police suspect. In contrast, expressing eyewitness confidence numerically may serve 

to protect investigators from unintentionally misinterpreting the eyewitness’s intended level of 

confidence, because there is less need to search for additional context behind the statement. For 

example, there should be little chance of misunderstanding the eyewitness’s level of confidence 

when s/he expresses 100% confidence in the identification.  

However, there is an alternative explanation.  Eyewitnesses are viewed as inaccurate 

when they select someone from the lineup that is not the police’s suspect, which in turn causes 

participants to discount and lower their perception of the eyewitness’s level of certainty. This 

account is supported by recent evidence in studies of the justification bias. Cash and Lane (2017) 

found that participants perceived confidence statements with featural justifications as denoting 

both lower eyewitness certainty and accuracy than when confidence statements were presented 

alone. Moreover, Dodson & Dobolyi (2017) observed that even when participants were shown 

numeric expressions of confidence they still rated eyewitnesses as less accurate when the 

confidence statement was accompanied with a featural justification than when it appeared by 

itself.  

Experiment C is the first test of whether expressing confidence numerically (rather than 

verbally) reduces the effects of prior knowledge on interpretations of eyewitness confidence 

statements. Moreover, as a conceptual replication of Dodson & Dobolyi (2017), we test whether 

these benefits extend to statements with featural justifications.  If discordance is reduced in either 

case, then there may be enormous practical benefits to asking eyewitnesses for numeric 

expressions of confidence. 
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Method 

Participants  

In this experiment, 403 participants were randomly assigned to view numeric or verbal 

statements of certainty, with one of the two Justification conditions from Experiment A (n = 101 

for all between-group combinations, excepting numeric x featural where n = 100). These 

participants, located in the United States, completed the experiment over the internet using 

Amazon’s Mechanical Turk (mean age = 37.04, SD = 11.34, range = 18 - 72, 60.79% female, 

84.12% Caucasian), and passed all manipulation checks. We calculated that there was > 95% 

power to detect moderate effects at an alpha level of .05.  

 

Materials and Procedure  

Materials and procedures are similar to Experiment A, except for two changes. First, half 

of the participants were presented with numeric expressions of eyewitness confidence, rather 

than verbal as before (see Table 2.1 for numeric confidence statements and justifications). The 

statements remained nearly identical; however instead of using an adverb of degree (e.g. “very”) 

or an adjective (e.g. “positive”) to indicate certainty, mock eyewitnesses reported 60% 

confidence in cases of moderate certainty, and 100% when highly certain. The other half of 

participants completed the experiment using the same confidence statements from Experiment A. 

To avoid suspicion, statements in the example lineups corresponded to the participant’s 

numeric/verbal random group assignment.  

Second, we altered the response scale to avoid mirroring the numeric statements of 

certainty. Participants indicated perceived confidence by using a slider in a visual analog scale, 

ranging from a low value of “Not at all certain” to “Completely Certain”. The scale was 
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subdivided into 6 equal sections to analogize the results to Experiments A and B. We did not 

include any visual demarcation points (e.g. tick marks) to avoid the potential numeric 

information of counting up the elements. All lineups, Prior Knowledge conditions, and 

counterbalancing remain identical to Experiment A. A total of 297 individuals did not meet 

criteria for analysis -- either assigning values < 80% for at least one smiley lineup (N = 149) 

and/or responding with “yes” to at least one manipulation check (N = 199). Data for this 

experiment is available on the OSF (https://osf.io/8chmz/). 

Experiment C Results and Discussion 

We used a mixed ANOVA to analyze the 2 x 2 x 3 x 2 factors of Format (verbal vs. 

numeric; between), Justification (statement only, featural; between), Prior Knowledge (suspect-

ID, filler-ID, no-context; within), and Confidence Level (moderate, high; within). Although we 

did not find a four-way interaction, F(2,798) = .43, MSe = .46, p = .651, η2
p = .001, there are 

several significant interactions and main effects.  

Beginning with the main effects, we replicated previous findings for the Justification and 

Confidence Level manipulations, F(1,399) = 15.67, MSe = 2.73, p < .001, η2
p = .038 and F(1, 

399) = 1171.09, MSe = 1.10, p < .001, η2
p = .746, respectively. Participants perceived more 

certainty for confidence only expressions (M = 4.54, SD = .60) than those with an accompanying 

featural justification (M = 4.27, SD = .76), and assigned increased values to high confidence 

statements (M = 5.14, SD .88) compared to moderate confidence statements (M = 3.68, SD 

= .75). A main effect of Prior Knowledge replicated Experiment A, F(1.58, 629.21) = 110.96, 

MSe = 1.25, p < .001, η2
p = .218), with participants perceiving greater confidence for suspect-ID 

lineups (M = 4.77, SD = .77) than no-context lineups (M = 4.42, SD = .77), t(402) = 8.82, p 

< .001, Cohen’s d = .44, 95% CI [.34, .54], which in turn showed increased perceived confidence 
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compared to filler-ID lineups (M = 4.03, SD = 1.12), t(402) = 8.40, p < .001, Cohen’s d = .42, 

95% CI [.32, .52]. Finally, we found a main effect for Format, with numeric expressions (M = 

4.51, SD = .66) showing higher perceived confidence than verbal expressions (M = 4.30, SD 

= .71), F(1,399) = 9.37, MSe = 2.73, p = .002, η2
p = .023.  

The primary aim of this experiment was to investigate whether numeric, as compared to 

verbal, expressions of confidence reduce the effects of prior knowledge on judging an 

eyewitness’s intended confidence. We found a significant three-way interaction between 

Confidence Level x Statement Format x Prior Knowledge, F(2, 798) = 13.46, MSe = .46, p 

< .001, η2
p = .033), which we discuss below. Replicating Dodson & Dobolyi (2017), we did not 

observe significant three- or two-way interactions between the Format and Justification 

manipulations, suggesting that participants were just as susceptible to the featural justification 

effect in the numeric condition as in the verbal condition.  

 

Confidence Level x Statement Format x Prior Knowledge 

Figure 2.3 displays the 3-way interaction between Confidence Level, Statement Format, 

and Prior Knowledge. The 3-way interaction is due to a stronger interaction between Format and 

Prior Knowledge for moderate confidence level statements, F(2,798) = 10.88, MSe = .46, p 

< .001  η2
p = .026, compared to high confidence level statements, F(2,798) = 4.37, MSe = .46, p 

= .013, η2
p = .011). 
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Beginning with 

moderate confidence 

statements, we found an effect 

of Prior Knowledge in both 

Format conditions. As seen in 

the top half of Figure 2.3, 

participants perceived both 

verbal and numeric expressions 

of confidence as meaning a 

higher value when the 

expression referred to a suspect-

ID lineup (numeric M = 3.98, 

SD = .88; verbal M = 4.14, SD = 

1.08) than a no-context lineup 

(numeric M = 3.75, SD = .76, 

t(200) = 3.35, p = .001, Cohen’s 

d = .24, 95% CI [.10, .38]; 

verbal M = 3.69, SD = 1.09, t(201) = 5.37, p < .001, Cohen’s d = .38, 95% CI [.23, .52]), which 

in turn were rated significantly higher than expressions of confidence that referred to a filler-ID 

lineup (numeric M = 3.40, SD = .98, t(200) = 5.18, p <.001 , Cohen’s d = .36, 95% CI [.22, .51]; 

verbal M = 3.12, SD = 1.14, t(201) = 6.89, p < .001, Cohen’s d = .48, 95% CI [.34, .63]).  To 

determine if there is a meaningful attenuation of Prior Knowledge effects in the numeric 

compared to the verbal conditions, we computed difference scores between the no-context 

Figure 2.3. In Experiment C, participants evaluated the 

eyewitness’s intended confidence when expressed either 

verbally or numerically. Higher scores indicate greater 

perceived confidence. The figure displays the interaction 

between intended Confidence of the expression, Format of the 

expression, and the Context condition. Error bars indicate 

95% confidence interval of the mean 
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condition and the suspect-known conditions and compared these scores across statement Format. 

The comparison in perceived confidence between the suspect-ID and no-context conditions 

showed a smaller difference in the numeric format (M = .23, SD = .97) than in the verbal format 

conditions (M = .46, SD = 1.21), t(383.92) = 2.08, p = .038, Cohen’s d = .21, 95% CI [.01, .40].  

Similarly, the numeric condition (M = .35, SD = .95) produced a smaller difference in perceived 

confidence between the filler-ID and no-context conditions, relative to the verbal condition (M 

= .57, SD = 1.18), t(385.34) = 2.08, p = .039, Cohen’s d = .21, 95% CI [.01, .40]. Overall, 

supporting our hypothesis, there are smaller effects of Prior Knowledge in the numeric condition 

than in the verbal condition when participants evaluate moderate levels of confidence.  

The bottom half of Figure 2.3 shows the effects of Prior Knowledge for high confidence 

statements in both Format conditions. For both verbal and numeric statements of confidence, 

participants perceived the statements as meaning a higher value when they referred to suspect-ID 

lineups (numeric M = 5.69, SD = .73; verbal M = 5.26, SD = .95) than to no-context lineups 

(numeric M = 5.35, SD = 1.00, t(200) = 4.99, p < .001, Cohen’s d = .35, 95% CI [.21, .49]; 

verbal M = 4.91, SD = 1.02, t(201) = 5.39, p < .001 , Cohen’s d = .38, 95% CI [.24, .52]), which 

exceeded ratings for filler-ID lineups (numeric M = 4.90, SD = 1.53, t(200) = 5.04, p < .001, 

Cohen’s d = .36, 95% CI [.21, .50]; verbal M = 4.71, SD = 1.37, t(201) = 2.22, p = .027, Cohen’s 

d = .16, 95% CI [.02, .29]). As we did for the moderate confidence statements, we computed 

difference scores between the no-context condition and the suspect-ID and filler-ID conditions in 

order to examine our hypothesis that the numeric format will lessen the effect of Prior 

Knowledge as compared to the verbal format. There was little effect of numeric vs. verbal format 

on differences in perceived confidence in the comparisons between (a) the no-context and 

suspect-ID conditions (M = .34, SD = .96 vs. M = .35, SD = .91, respectively), t(401) = .088, p 
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= .930, Cohen’s d = .01, 95% CI [-.19, .20), and (b) the no-context and filler-ID conditions (M 

= .45, SD = 1.27 vs. M = .20, SD = 1.30, respectively), t(401) = - 1.95, p = .052, Cohen’s d 

=  .19, 95% CI [.00, .39]).  In sum, when participants evaluate high confidence statements, there 

are similar effects of Prior Knowledge on perceived confidence in both the numeric and verbal 

conditions. 

Prior Knowledge x Justification 

Finally, there was a significant two-way interaction between the Context and Justification 

manipulations, F(1.58, 629.21) = 5.00, MSe = 1.25, p = .012, η2
p = .012.  As seen in Figure 2.4, 

we found near-equal featural justification effects for both suspect-ID (statement only M = 4.95, 

SD = .59 vs. featural M = 4.58, SD = .88) and no-context lineups (statement only M = 4.60, SD 

= .66 vs. featural M = 4.25, SD = .84), t(379.66) = 4.65, p < .001, Cohen’s d = .46, 95% CI 

[.26, .66] and t(349.92) = 4.87, p < .001, Cohen’s d = .48, 95% CI [.29, .68], respectively. 

However, deviating slightly from Experiments A and B, we found no significant difference 

between the statement only and featural conditions for filler-ID lineups, t(401) = .78, p = .436, 

Cohen’s d = .08, 95% CI [ -.12, .27].  



GRABMAN           92 
 

 

Figure 2.4. In Experiment C, we found a significant interaction between the Context and 

Justification manipulations. For both suspect-Id and no-context lineups, participants judged the 

identical expression of confidence as meaning a lower value when it was accompanied by 

featural information than when the confidence statement was presented alone. By contrast, there 

are no differences between the statement only and featural conditions for filler-Id lineups. Error 

bars indicate 95% confidence intervals of the mean. 

 

Part II Discussion 

For a moment, again imagine yourself as one of the investigators in the opening of this 

section. After noting the eyewitness’s confidence about who they selected from the lineup, you 

take the short walk to your superior’s office. “I see that the witness selected Face 1 from the 

lineup. How confident did he seem?” she asks.  The results of three studies suggest that prior 

knowledge of the suspect will influence perceptions about the witness’s certainty.  

Across manipulations, Experiments A and C show that participants perceived the 

identical statement of confidence as meaning a higher level of certainty when the eyewitness’s 

selection from the lineup matched the police suspect, relative to a no-context condition. 

Similarly, in all experiments (excepting “High Confidence” statements in Experiment A), 
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participants perceived the same confidence statement as meaning a lower value when the 

eyewitness’s selection differed from the police suspect, again relative to a no-context condition. 

These effects reflect judgment errors. Since participants acknowledged that the eyewitness is 

unaware of which lineup member is the police’s suspect it is impossible for the eyewitness’s 

level of certainty to be influenced by whether or not their choice happens to coincide with the 

police’s suspect. Finally, results suggest that prior knowledge may add to pre-existing contextual 

effects, such as how the witness justifies their selection from a police lineup. Though, there is a 

notable exception in Experiment C, wherein the featural justification effect was eliminated for 

filler-ID lineups.  

Is it possible to attenuate the effects of prior knowledge?  We investigated whether 

numeric expressions of confidence would be less susceptible than verbal expressions to 

contextual influences because of their greater interpretive clarity. Supporting this hypothesis, 

Experiment C showed that participants were less influenced by knowledge of the police suspect 

when the witness expressed moderate confidence statements numerically rather than verbally, 

demonstrating some protective effect of a numeric format. However, the differences observed 

between the format conditions is small (about .1 SD units), and contextual knowledge still 

impacted perceptions of certainty for moderate statements. Moreover, when eyewitnesses 

imparted high confidence, there was little benefit to expressing confidence numerically, as 

Experiment C showed comparable effects of confirmation and disconfirmation on statement 

evaluations for both confidence formats. This is discouraging, because high confidence 

statements are most likely to be used to guide legal decision making. As a whole, these results 

suggest that there may be some benefit to asking witnesses to clarify their confidence using a 

numerical indicator, though this alone is unlikely to fully cancel out contextual effects.  
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We view the findings of these experiments with a caveat. We did not observe a significant 

difference between suspect-ID and no-context lineups when the Context condition was 

manipulated between participants in Experiment B, though participants continued to perceive 

less confidence for filler-ID lineups. We theorize that the consistent differences between the 

filler-Id and no-context conditions is due to a ‘presumption of calibration’ (Tenney, Spellman, & 

MacCoun, 2008), wherein participants view the eyewitness as well-calibrated (or justified) in 

their lineup decisions (especially if highly confident), unless given reason to think otherwise. 

Selection of a lineup filler is a strong signal that the eyewitness is poorly-calibrated, thus 

resulting in lower perceived confidence across all experiments, relative to the no-context control 

condition. However, task demand may explain why there are discordant findings for the suspect-

Id and no-context lineup comparisons across experimental designs. In the between-subject 

condition, there is nothing to suggest that the witness’s selection for no-context lineups differs 

from the police suspect, meaning that participants simply treated these lineups as if they are the 

same as the suspect-Id lineups. In contrast, when participants viewed all Context conditions in 

Experiments A and C (i.e., within-subjects design), they may have inferred that there should be a 

clear ordering of witness accuracy, resulting in bolstered confidence ratings for the suspect-ID 

condition as compared to the no-context condition.  

We would like to emphasize that we believe the within-subjects design is the more valid 

test of real-world practice, given that many legal roles will consider evidence in the light of their 

experience with previous cases. However, one might argue that the effects of knowing the 

suspect are relatively modest, with Cohen’s ds for statistically significant findings ranging 

from .16 to .61. On the other hand, there are reasons to think that contextual effects will have an 

even larger influence in the real-world as compared to what we observed in these experiments.  
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Our participants viewed lineups with an arbitrarily assigned police suspect. This differs from 

real-world practice where police officers construct lineups with their own suspect in mind. 

Research on the confirmation bias suggests that the tendency to interpret evidence as consistent 

with our beliefs will be stronger in the latter case where there is (or should be) evidence 

supporting a particular person as the suspect as compared to the former case where the suspect 

was simply labeled as the police’s suspect (Bastardi, Uhlmann, & Ross, 2011; Klayman & Ha, 

1987; Kunda, 1990; Nickerson, 1998). A recent survey of forensic science examiners found that 

many professionals show a bias blind spot, acknowledging that others may be affected by 

confirmation bias, but seeing themselves as impervious to its effects, or able to combat them by 

setting aside prior beliefs and expectations (Kukucka, Kassin, Zapf, & Dror, 2017). Experience 

in the field did little to protect against this assumption, while training on cognitive biases helped 

minimally. We predict that contextual effects will be even more pronounced when participants 

hold strong prior beliefs about suspect guilt before evaluating eyewitness statements. 

Additionally, this study placed participants in the role of a police officer, yet we believe 

that the observed effects could generalize to decisions in other legal roles. For example, in 

deciding whether to admit eyewitness testimony, judges often refer to criteria set forth by the 

United States Supreme Court in Neil v. Biggers (1972) and expanded in Manson v. Brathwaite 

(1977) (see Wells & Quinlivan, 2009 for a review). These include whether the witness (a) had 

ample opportunity to view the individual, (b) paid sufficient attention, (c) provided a detailed 

description, (d) made the identification promptly after the event, and –crucially— (e) professed 

certainty about the identification.  In assessing a case, judges are generally aware of the suspect, 

so they may be more likely to ascribe reliability to a witness statement when the identification 

matches the suspect than when it does not. This would result in more evidence implicating the 
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suspect making it to trial than is warranted by the witness’s certainty. Future studies should 

address whether experienced legal decision makers are similarly prone to these contextual 

effects. 

Finally, our results suggest that current recommendations for assessing eyewitness 

confidence are incomplete. Present procedures, such as double-blind lineup administration, 

prevent investigators from influencing eyewitness reports (and should continue to be used!). 

However, they do not mitigate the effects of prior knowledge on interpretations of eyewitness 

statements. To reiterate, it is probable that legal decision makers are aware of the suspect in 

advance of hearing the witness’s confidence statement. Are there any ways to ameliorate 

contextual effects? 

One potential method comes from the post-identification feedback literature, wherein 

witnesses are asked to think about their certainty level after making an identification, but before 

receiving dis-/confirmatory feedback (e.g. “Good job, you identified the suspect”) from an 

investigator (Neuschatz et al., 2007; Quinlivan et al., 2009; Wells & Bradfield, 1998, 1999). This 

‘confidence prophylactic’ is shown to dampen the impact of feedback in the short-term 

(Neuschatz et al., 2007; Quinlivan et al., 2009; Wells & Bradfield, 1998, 1999), though is less 

effective in preventing long-term effects (Neuschatz et al., 2007; Quinlivan et al., 2009). 

Nevertheless, it may be beneficial to have non-blinded evaluators reflect on the confidence 

statement of the eyewitness, before showing them the witness’s identification. Unlike witnesses, 

who may need to recall their certainty weeks or months after the fact for a trial, evaluators 

usually make decisions on a shorter time-scale, meaning that timing the intervention is less 

crucial. Undoubtedly, this will result in some difficulties related to other current recommended 

practices (e.g. video recording the lineup sessions), but making use of video editing and other 
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technologies could mitigate these issues. Research should explore if this and other methods can 

limit the effects of prior knowledge on interpretations of eyewitness statements. 

In summary, three experiments demonstrated that participants altered perceptions of 

verbal confidence ratings when they knew if a witness’s identification matched the police 

suspect. Clarifying the witness’s statement by using a numeric judgement of certainty may 

provide some protection against the biasing influences of prior knowledge when evaluators are 

interpreting moderate levels of confidence, but not when they interpret high levels of confidence. 

Finally, future efforts should be undertaken to explore contextual effects, and examine potential 

methods to limit biasing interpretations based on prior knowledge of the police suspect. We are 

certain that researchers will rise to this challenge, but leave it up to the reader to interpret the 

exact level of ‘certainty’. 
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