
PiMulator: A Processing-in-Memory Emulation
Platform

Dissertation

presented to the faculty of the

University of Virginia School of Engineering and Applied Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

by

Sergiu Mosanu

Committee:

Chair: Kevin Skadron, CS, UVA

Advisor: Mircea R. Stan, CPE, UVA

Samira Khan, CS, UVA

Barry W. Johnson, CPE, UVA

Steven M. Bowers, ECE, UVA

Ted Way, Microsoft

May, 2023

sm7ed@virginia.edu

To my family and friends. ♡

© Copyright 2023 Sergiu Mosanu

All rights reserved.

Abstract

Motivated by the memory wall problem, researchers propose numerous Processing-in-Memory

(PiM) architectures to bring computation closer to data. Evaluating the performance of these

emerging architectures is challenging due to the lack of tools that accurately mimic both software

and hardware aspects. This thesis presents PiMulator, an open-source platform for system-level

PiM emulation, suitable for rapid prototyping and evaluation of PiM architectures.

At its core, PiMulator incorporates MEMulator, a main-memory emulation model implemented

in SystemVerilog, enabling users to generate any desired memory configuration on the FPGA

fabric with complete control over the PiM logic units. Furthermore, we develop and implement the

FreezeTime mechanism, effectively extending the emulated memory capacity by synchronizing the

limited FPGA chip memory resources with the board’s DDR4 and HBM2 resources. This approach

offers flexibility in modeling memory and logic behavior without compromising emulated time

accuracy.

The platform integrates the Memory+PiM model into the LiteX framework, ensuring compatibility

with a robust FPGA and RISC-V ecosystem. We adopt a system emulation approach that combines

CPUs, memory controllers, memories, interconnect, and peripherals using soft cores synthesizable

on FPGA boards. This enables architects to prototype, emulate, and evaluate various PiM architec-

tures and designs at the system level. PiMulator facilitates high-speed and high-fidelity modeling

and evaluation of emerging memory and PiM architectures with workloads of interest, utilizing

soft cores synthesizable on FPGA boards.

vi

This thesis demonstrates strategies to model several pioneering PiM architectures and provides de-

tailed benchmark performance results, showcasing the platform’s ability to facilitate design space

exploration.

vii

Acknowledgments

This dissertation signifies the fruitful culmination of several invaluable collaborations and serves

as a pivotal stepping stone into the next phase of my life. I am overwhelmed with gratitude for

the numerous forms of support I’ve received from the academic and industry communities, as well

as from family and friends. These collective efforts have profoundly and positively impacted both

me and my work. I seize this moment to express my profound appreciation and reciprocate with a

solemn pledge of future support.

First, I extend my heartfelt gratitude to my advisor, Professor Mircea R. Stan, who warmly wel-

comed me to UVA and firmly believed in my capabilities, guiding me through intriguing research

projects. His adept navigation toward our ultimate goals and insistence on adopting a top-down

approach ensured that we worked on essential aspects that matter and will lead to success. Be-

yond being an extraordinary research advisor, he has provided me with invaluable life and career

guidance, helping me evolve into a more competent scientist, engineer, instructor, researcher, and

individual. I offer my earnest thanks, dear Mircea, for your unwavering support and patient guid-

ance. And I sincerely apologize for the instances when I didn’t quite meet expectations.

Next, I express my deep gratitude to Professor Kevin Skadron, who has been akin to a mentor in

my journey. His participation in most of our work meetings was instrumental in shaping our in-

novative research solutions, while his critical feedback tremendously improved the quality of our

published papers. His help fostering networking opportunities and establishing external collabora-

tions was invaluable, for which I remain eternally grateful. In the same spirit, I convey my sincere

appreciation to my doctoral dissertation advising committee members - Professors Samira Khan,

viii

Barry W. Johnson, Steven M. Bowers, and Dr. Ted Way. Their respective contributions have pro-

foundly enriched my academic experience and enabled the successful completion of my doctoral

journey.

I have been extraordinarily fortunate to collaborate closely with many esteemed industry researchers

who have generously shared their wealth of knowledge. My heartfelt thanks go to the Micron Au-

tomata team and the vibrant summer internships at Microsoft Research and at Microsoft Azure ML,

all of which played critical roles in honing my technical skills and expanding my research hori-

zons. The individual contributions of Gavin Huggins, Nicholas Terrell, Paul Dlugosch, Indranil

Roy, Matt Grimm, Trishul Chilimbi, Blake Pelton, Daniel Lo, Ted Way, Charles Fu, Valentin Chu-

ravy, and Doug Burger not only positively influenced the success of the projects we undertook but

also significantly fostered my professional growth.

A vital part of my academic journey has been the support from the UVA ECE and CPE depart-

ments, whose contributions are indispensable. My deepest gratitude goes to Beth A. Eastwook-

Beatty, Jayne Weber, Natalie Ann Edwards, and Terry B. Tigner for their steadfast support and

understanding throughout the academic process. My thanks also extend to Gary Li for his tech-

nical expertise and assistance with our IT infrastructure needs. In addition, I am deeply thankful

to all the professors who imparted their wisdom and supported me during my stints as TA and

co-instructor.

The invaluable contributions of my peers have been an integral part of this journey. Our cama-

raderie, insightful debates, shared advice, and mutual growth significantly enriched both my grad-

uate student life and the quality of research leading to this dissertation and our numerous published

papers. I extend my profound respect and admiration to all individuals from the High-Performance

Low-Power (HPLP) Laboratory — past, present, and future members, and the many other col-

laborators. In particular, I wish to acknowledge: Mohammad Nazmus Sakib, Yimin Gao, Khyati

Kiyawat, Tommy Tracy II, Vaibhav Verma, Xinfei Guo, Ted Xie, Arijit Banerjee, Luisa Patricia

Gonzalez Guerrero, Mohamed El-Hadedy, Nathan Brunelle, Alif Ahmed, Alec Roelke, Mandi

Das, Ben Melton, Pai Wang, Mateja Putic, Robert (Trey) West, Yunfei Gu, Rahul Sreekumar, Ro-

ix

cio Elisa Pantoja Rodriguez, Muhammed Ceylan Morgul, Jun-han Han, Jay Sheth, Vinay Iyer,

Jesse Moody, Robert Costanzo, Pouyan Bassirian, Karina Torres Castro, Henry Bishop, and oth-

ers whose names I may have unintentionally missed. Your collective insights, dedication, and

friendship have immeasurably shaped my work and personal growth. Thank you all!

My family has unquestionably been the cornerstone of my strength and success. I am incredibly

grateful to my wife, Rocio Elisa, whose steadfast love and support have guided me throughout

this journey. To my parents and brother, your unwavering backing and the pride you take in my

academic endeavors have fueled my passion. My little son, Marcus, from the moment I felt the

flutter of your first heartbeats to the present day, filled with your heartwarming smiles, has been

a constant source of motivation and joy. I am deeply grateful to my extended family, uncles, and

cousins, who have helped me feel at home and offered unwavering support. Each of you has played

a pivotal role in my academic journey, and I am infinitely thankful for this.

Lastly, I want to acknowledge the generous funding support from various organizations, including

the Semiconductor Research Corporation (SRC), Multi-functional Integrated System Technology

(MIST), DARPA under the PERFECT program, and the CRISP JUMP center. Their financial

backing was instrumental in bringing my research aspirations to fruition.

In closing, I am profoundly grateful for all the experiences, opportunities, and support that I have

been fortunate to receive during my doctoral journey. This dissertation is a testament to the con-

tributions of all those acknowledged here and many more who have remained unnamed. From the

bottom of my heart, thank you all.

x

Contents

1 Introduction and Motivation 2

1.1 Thesis Statement . 2

1.1.1 Elaboration . 2

1.2 Advancing Memory Modeling . 4

1.2.1 Prototyping Memory Architectures . 4

1.2.2 Modeling Memory Systems, Co-design 5

1.2.3 Breaking the Simulation Wall . 6

1.2.4 Enablers of FPGA-based Architecture Emulation 7

1.3 Architectural Virtualization with FreezeTime . 8

1.3.1 Challenges with Design Mapping on FPGA 8

1.3.2 Remedy - Synchronized Architectural Virtualization 9

1.4 Modeling Processing-in-Memory Architectures 10

1.4.1 Drivers of PiM Architecture Research . 10

1.4.2 Interest in PiM Architecture Research . 11

1.4.3 Challenges in Evaluating PiM Architectures 12

xi

1.4.4 FPGA-based PiM Architecture Emulation 13

1.5 Contributions . 14

2 Insights into Memory and PiM 17

2.1 Background on Memory and PiM . 17

2.1.1 Memory Hierarchy . 17

2.1.2 DRAM Memory Cell and Subarray Operation 18

2.1.3 DRAM Bank Structure . 20

2.1.4 DIMM Module, Chip, Bank Groups Structure and Operation 21

2.1.5 DRAM Bank State and Timing . 22

2.1.6 RowHammer and Physical Effects . 23

2.1.7 Emerging Memory Technologies . 23

2.2 Real-World Processing-in-Memory Architectures 24

2.2.1 UPMEM PiM Architecture . 24

2.2.2 Samsung HBM-PiM . 26

2.2.3 SK Hynix Accelerator-in-Memory (AiM) 27

2.2.4 Samsung AxDIMM . 28

3 Modeling Methods 30

3.1 Related Simulation Frameworks . 30

3.1.1 The gem5 Simulator . 30

3.1.2 PIMSim . 31

xii

3.1.3 MultiPIM . 31

3.1.4 PIMulator-NN . 32

3.2 Challenges in Computer Architecture Simulation 33

3.3 Enhancing Simulation Performance with Emulation 34

3.3.1 FireSim . 34

3.3.2 LiME . 35

3.3.3 MEG-HMC and MEG-HBM . 35

3.3.4 PiDRAM . 36

3.3.5 RAMP-Gold . 36

3.3.6 Industrial Tools for Emulation and Prototyping 37

3.4 PiM Prototyping Framework Attributes . 38

3.4.1 Fidelity . 38

3.4.2 Target vs Model Speed . 38

3.4.3 Underlying Memory Model . 40

3.4.4 Design Space Exploration . 40

3.4.5 Full System Evaluation . 40

3.4.6 Affordability and Adoptability . 40

3.5 Resulting Platform Organization . 41

3.5.1 Target System . 41

3.5.2 Logic Model . 42

3.5.3 Host FPGA . 42

xiii

4 MEMulator: System-level Memory Emulation 44

4.1 System Emulation with Soft Modules, including Memory 45

4.2 Technology Stack . 46

4.2.1 Target System . 47

4.2.2 Target System Logic Model . 48

4.2.3 Host FPGA Platform . 50

4.2.4 Host CPU Options . 50

4.2.5 Design Flow . 51

4.2.6 LiteX Integration . 52

4.3 Memory Emulation Model Implementation Details 53

4.3.1 Interface, Command Decoding and Controls 54

4.3.2 Bank State and Timing . 54

4.3.3 Modeling ACTIVATE Timing . 56

4.3.4 Memory hierarchy: Rank, Chip, Bank Group, Bank and Subarray 57

4.3.5 Data Synchronization Engine . 57

4.4 Time Modeling at System Level . 59

4.4.1 Time Scaling Frequency . 59

4.4.2 Virtual Time Modeling . 60

4.4.3 Target System Time Emulation . 61

4.5 Modeling Different Memory Types . 61

4.5.1 Scope of MEMulator . 62

xiv

5 FreezeTime: System Emulation through Architectural Virtualization 65

5.1 Using FPGAs to Emulate Large Systems . 65

5.1.1 Spatial Scaling across Multiple FPGAs 66

5.1.2 Time Domain Multiplexing . 66

5.2 FreezeTime Mechanism and Implementation . 67

5.2.1 Target System Mapping for Virtualized Emulation 68

5.2.2 Generic Template for Virtual Instances 69

5.2.3 Sync-by-stall . 73

5.3 Experimental Results and Discussion . 74

5.3.1 Experimental Setup . 74

5.3.2 Freezing Time Demonstration . 75

5.3.3 Benchmark and Run Environments . 76

5.3.4 Results and Interpretation . 78

5.4 Related Work and Adoption Opportunities . 80

6 PiMulator: Fast and Flexible Processing-in-Memory Emulation 82

6.1 Proposed FPGA-based Emulation Model . 82

6.1.1 Bank array model for memory and PiM 83

6.1.2 Templates for PiM logic . 85

6.1.3 Top PiMulator Module . 85

6.1.4 Integration with LiteX . 86

6.1.5 Strategies adopted to provide increased usability 86

xv

6.2 Strategies for Emulating Bitwise-PiM and Generic PiM 87

6.2.1 Emulating RowClone . 87

6.2.2 Emulating LISA . 88

6.2.3 Emulating Ambit . 88

6.2.4 Emulating Fulcrum . 89

6.2.5 Emulating Sieve . 89

6.3 Evaluation . 90

7 Conclusion and Future Work 93

7.1 Conclusion . 93

7.2 Future Work and Directions . 95

7.2.1 Memory model enhancements . 95

7.2.2 Models for Comprehensive PiM Taxonomy Support 96

7.2.3 Full-system Integration Enhancements . 96

7.2.4 Firmware and Software Stack . 97

7.2.5 Fostering Community Engagement . 98

A DRAM Memory Timings 99

A.1 DRAM Memory Timings . 99

B List of Publications 101

B.1 In progress . 101

B.2 Journals/Letters . 102

xvi

B.3 Conferences . 102

B.4 Workshops, Posters, Presentations and Demos . 103

B.5 SRC TECHCON . 104

B.6 Awards . 105

Glossary 106

Bibliography 122

xvii

List of Figures

1.1 PiM-related publications per year suggesting exponential increase in interest. . . . 11

2.1 DRAM cell circuit components, access signals, and operation 18

2.2 DRAM open bit line architecture subarray circuit region 19

2.3 DIMM module structure, chip data layout . 21

3.1 PiMulator top-level diagram. The target system is modeled with open-source IP

primitives and synthesized on a host FPGA board. Workloads run directly on the

hardware configuration at FPGA speed. 41

4.1 Comprehensive Overview of the Framework Technology Stack: Tools and IP Inte-

gration, Organizational Structure, and Memory Emulation Model Implementation . 46

4.2 Design flow steps from configuration files to logic layer generation, deployment

and runtime . 51

4.3 Memory emulation model (MEM) block diagram consisting of memory compo-

nents (blue), auxiliary structures (brown), and peripherals. 53

4.4 Emulation model Finite State Machine (FSM) for modeling bank state and timing

based on existing standards and counters. 55

4.5 FSM model for a) tFAW and b) other ACT global timing rules 56

xviii

4.6 Emulation model Finite State Machine (FSM) for bank data synchronization en-

gine (DSync) with FPGA board memory resources. 58

4.7 System Time Emulation: Depiction of Target System Frequencies (blue) and Cor-

responding FPGA-based Soft Core Model Frequencies (black) and FreezeTime

stalls for Accurate Time Scaling. 60

4.8 Using the memory emulation model to generate and emulate different memory types. 62

5.1 FreezeTime top-level diagram with physical to virtual mapping. 68

5.2 Architecture partitioning in FreezeTime where emulation blocks group duplicate

instances and virtualize them using a template. 69

5.3 Virtual (a and b) and physical (c and d) flowchart of FreezeTime components. Com-

pute (a and c), and memory (b and d) constructs are shown with gray and green

backgrounds, while the virtual and physical mapping are separated with purple and

blue borders, respectively. 71

5.4 Target system to be emulated and b) Logic model that freezes the processor during

L2 cache miss state, hiding the auxiliary data sync time, effectively virtualizing

large SRAM capacity. 74

5.5 Architectural virtualization with time multiplexing: (a) Waveform of stalled VexRiscV

CPU using a gated clock enable buffer. (b) Runtime mapping of virtual compute

instances to a physical module preserving time in sync. 75

5.6 Experimental results showing host and simulation time for Linux boot for different

evaluation approaches. With FreezeTime, we achieve fast runtime and observe a

similar simulation time as Verilator RTL simulation. 78

5.7 Experimental results showing higher measured memory bandwidth utilization when

running selected hopscotch bandwidth kernels on the FreezeTime versus the LiteX

and system. 79

xix

6.1 Memory and PiM emulation model block diagram consisting of memory compo-

nents (blue), PiM processing units (red), auxiliary structures (brown), and periph-

erals. 83

6.2 Comparative Bank Array Shapes for Memory and Processing-in-Memory (PiM)

Data Storage Architectures. (a) Depicts the array shape tailored for standard mem-

ory operations and PiM outside the Bank, while (b) illustrates the array shape

that enables access to the entire row buffer, making it suitable for various high-

bandwidth PiM architectures. 84

6.3 PiM kernel minimal logic template. 85

6.4 Bitwise PiM operations for RowClone, LISA, and Ambit AND/OR. 87

6.5 Runtimes for CPU Simulation and FPGA Emulation of a DDR4 memory system

stressed for 1s of real target time with different access patterns; ratio between the

two runtimes and the corresponding DSync hitrate. 90

6.6 Pareto curve for Ambit design space exploration. 91

xx

List of Tables

3.1 Comparison among PiM system prototyping and other evaluation approaches over

selected attributes. 39

A.1 Description of Memory timings. 100

xxi

Chapter 1

Introduction and Motivation

1.1 Thesis Statement

Comprehensive FPGA-based memory emulation enables fast, high-fidelity design-space explo-

ration and evaluation of processing-in-memory architectures as part of a whole system stressed

with heavy workloads.

1.1.1 Elaboration

The thesis statement encapsulates key challenges and discoveries addressed in this work, which

are expanded upon below.

• “Comprehensive” implies the detailed construction methodology encompassing every mem-

ory architecture aspect for PiM kernel modeling and system-level evaluation. This includes

the interface, data bus, data layout, memory bank states and latencies, topology, organiza-

tion, and pertinent physical effects.

• “FPGA-based memory emulation” indicates the development and use of an FPGA-synthesizable

soft memory model using SystemVerilog, facilitating memory system emulation via FPGA

2

Chapter 1. Introduction and Motivation 3

reconfigurable hardware resources. This represents a departure from traditional approaches,

where other system components were emulated on the FPGA while the memory was used

as-is, simulated, or approximated with delay elements and clock frequency scaling.

• “Enables fast, high-fidelity” signifies that the emulation leverages FPGA capabilities, al-

lowing the memory model to operate at hardware speed, with numerous behavioral aspects

running in parallel. Furthermore, this approach ensures high accuracy as functionality, be-

havior, and performance correspond to RTL structural and signal representations.

• “Design-space exploration and evaluation” suggests that the memory model’s flexibility sup-

ports various design variations, enabling rapid evaluation of distinct architectural choices

during the design process.

• “Of processing-in-memory architectures” indicates the memory model’s compatibility to

incorporate a broad spectrum of PIM architectures.

• “As part of a whole system” emphasizes the integration of the memory and PIM model

within a comprehensive system, including processors, cache hierarchy, memory controllers,

buses, and peripherals. These soft modules, implemented on the FPGA, form the logic

representation of the whole target architecture, facilitating system-level evaluation of the

studied PiM architectures.

• Lastly, “stressed with heavy workloads” underscores the ability to execute real, compute-

intensive benchmarks on the emulated system. Exploiting the emulation’s speed and level

of detail, large-scale applications, which previously required days, can now be completed in

mere hours, offering valuable performance insights under realistic conditions.

This thesis presents a comprehensive FPGA-based emulation framework for emerging memory

technologies and Processing-in-Memory (PiM) architectures. Chapter 4 introduces MEMulator,

a memory emulation model (MEM) seamlessly integrated into an entire computing system. To

address the challenge of emulating large memory capacities on FPGAs, Chapter 5 presents the

Chapter 1. Introduction and Motivation 4

FreezeTime technique, a solution for modeling virtual time and enabling broader architectural

virtualization. Finally, Chapter 6 unveils PiMulator, detailing the implementation, modeling, and

evaluation of PiM kernels and their associated logic behavior. These components - MEMulator,

FreezeTime, and PiMulator - form the foundation of our proposed emulation framework.

1.2 Advancing Memory Modeling

Main memory is a critical SoC and system design component that directly affects performance,

power, and cost. There are various types of memory, such as DDR, LPDDR, GDDR, HBM, HMC,

Wide I/O, and NVMM, each optimized for select core metrics, such as capacity, bandwidth, and

efficiency, to meet the requirements of different computing platforms. Computer architects can

maximize system performance by selecting the appropriate memory architecture and optimizing

the memory access method (ex. compression, clustering, deduplication, tiering [1], disaggregation,

processing-in-memory [2]).

1.2.1 Prototyping Memory Architectures

However, as architectures become increasingly specialized and complex, such as Google’s TPU [3],

AMD’s EPYC Rome, or Intel’s Cascade Lake SP [4], designing a memory system that best meets

the performance requirements is a daunting task. To validate promising analytical results, it is

necessary to experiment with various “what-if” scenarios for the internal memory architecture

and analyze the effects of different internal memory components’ arrangements on overall sys-

tem performance. These experiments must be performed fast and with high accuracy/fidelity, thus

facilitating iterative improvement toward a design that optimizes the desired metrics, such as per-

formance per watt or cost. The first goal of this work was to develop an open emulation model

that enables memory architects to create new memory standards or more intelligent memories by

prototyping new ideas or porting innovations from one memory type to another. For example,

new techniques such as bank grouping and channel splitting were first introduced with GDDR and

Chapter 1. Introduction and Motivation 5

HBM and were later adopted to DDR4 and DDR5.

1.2.2 Modeling Memory Systems, Co-design

Optimizing system performance requires comprehensive modeling and evaluation of systems with

different memory architectures or hybrid heterogeneous memory hierarchies. Researchers should

have the ability to easily switch between different memory types or create hybrid heterogeneous

memory hierarchies in order to optimize system performance for various use cases by combining

the strengths of different memory types. Recent trends in high-performance computing point to the

increasing adoption of hybrid computing systems. For example, the compute express link (CXL)

allows the host CPU to access additional persistent memory in conjunction with the DRAM mem-

ory, thereby improving the performance of high-capacity workloads of interest [5]. Likewise, the

recently introduced AMD Instinct MI300 [6] combines 13 chiplets to create a single chip featuring

a CPU, a GPU, and HBM3. This design allows the CPU and GPU to operate simultaneously on

the same data in memory using a zero-copy mechanism, which leads to power savings, improved

performance, and easier programming. Furthermore, the AMD Versal family of devices combines

CPU, RPU, PL (LUTs, LUTRAM, FFs, BRAM, URAM), DSP, AIE, PCIe, DDR and HBM and

more interfaces linked with a NoC, a heterogeneous platform for efficient high-performance com-

puting [7].

Inspired by the above-mentioned developments, the second goal of this work was to develop a fast

modeling framework that facilitates design and analysis from a system-level perspective. We en-

vision a framework that enables architects to run applications of interest and observe the impact of

localized design decisions at a module level on overall system performance. Therefore, researchers

can optimize performance in a holistic approach by co-designing multiple system modules, such

as the CPU, GPU, and memory in ensemble. By considering the interdependencies between these

modules, co-design enables a more comprehensive optimization of the hybrid system. In this the-

sis, we present a flexible implementation of a whole system utilizing soft IP modules synthesized

on an FPGA board, capable of running real workloads at hardware speed. This thesis describes a

Chapter 1. Introduction and Motivation 6

new, parameterized implementation of a memory emulation model in System Verilog that can be

configured to model many desired memory types and integrate it into a whole compute system.

1.2.3 Breaking the Simulation Wall

Simulation frameworks play a crucial role in research for evaluating memory and computer ar-

chitectures. However, they struggle to achieve both speed and fidelity when modeling complex

architectures with heavy workloads and large datasets [8]. The increasing complexity of computer

architectures tends to outpace the performance improvements of computer simulations, leading to

a phenomenon known as the ”simulation wall” [9]. Consequently, a comprehensive evaluation of

a full system can take weeks or months, rendering it impractical for iterative improvements.

In response to these challenges, emerging memory systems and processing-in-memory (PiM) ar-

chitectures have turned to FPGA-based emulation as an effective alternative. PiM architectures

encompass a wide range of kernels, such as CPU-like, FPGA-like, DPU-like, and ASIC-like, and

can be placed at various levels, including the subarray, bank, bank group, chip, rank, or DIMM.

This diversity in configurations, coupled with concurrent activity and communication between ker-

nels, contributes to the significant complexity of PiM architectures.

FPGA-based emulation offers several advantages over simulation on a CPU or FPGA-accelerated

simulation. By constructing memory systems using FPGA resources, emulation provides higher fi-

delity and evaluation speeds, as well as increased system transparency. This approach is well-suited

for handling the intricate designs and high event rates of PiM architectures, allowing researchers

to implement and test their designs directly on FPGA hardware as opposed to relying on slower,

less accurate simulations [10–14].

In summary, the utilization of FPGA-based emulation offers a promising solution for overcoming

the limitations of traditional simulation methods in the face of increasing architectural complexity.

By harnessing the power and flexibility of FPGAs, researchers can efficiently explore and validate

advanced memory system designs and PiM architectures, paving the way for further innovation

Chapter 1. Introduction and Motivation 7

and performance optimization.

1.2.4 Enablers of FPGA-based Architecture Emulation

Several factors make FPGAs suitable for architecture modeling and evaluation. Developing IP for

FPGAs became more accessible, productive, and agile following the advancement and adoption of

high-level synthesis and hardware construction languages [15–17]. In addition, the emergence of

system generation and runtime management tools have facilitated reliable, reproducible, flexible,

and automated integration of said IP. The levels of abstraction in these tools further enhanced com-

patibility with various hardware backends [10, 18]. Next, riding Moore’s Law, technology scaling

and combining several chiplets on an interposer led to large FPGAs packing plentiful quantities of

FFs, LUTs, DSPs, BRAM, UltraRAM, and other resources in a single package. Moreover, with

the increased demand for reconfigurable high-performance computing, high-end FPGA accelera-

tor cards featuring peripherals such as PCIe interface and DDR4 / HBM2 memory became readily

and economically available in the cloud. Hence, architects seek to fit larger architectures on a

single high-end FPGA board and evaluate them even on a limited budget. Finally, state-of-the-art

emulation frameworks [10–12, 19] demonstrate the feasibility of modeling aspects of large, high-

performance computing architectures using miniaturized systems implemented on an FPGA board,

running only an order of magnitude slower while preserving fidelity, accuracy, and level of insight.

Therefore, researchers can conveniently assemble systems using existing or newly developed pro-

totype IPs, host the logic on a high-end FPGA board, and use this infrastructure to efficiently run

heavy workloads of interest.

FPGA-based emulation, utilizing soft-core prototypes, serves as a valuable approach for validating

simulation results with the high fidelity of a hardware system, while extracting crucial insights

related to performance, hardware cost, power, and area. An apt analogy can be drawn between

FPGA-based emulation and wind tunnel testing, commonly used to validate the aerodynamic prop-

erties of structures, vehicles, and aircraft. Just as wind tunnels employ miniatures or actual objects

to emulate environmental factors such as wind, tire rotation, and road behavior (using a large tread-

Chapter 1. Introduction and Motivation 8

mill), FPGA-based emulation leverages LUTs, FFs, and BRAM to construct intricate computer

architectures, including CPUs, memory systems, and PiM kernels. By running workloads such as

operating systems and compiled applications on this emulation platform, researchers can assess

the system’s performance at hardware speed and with the fidelity of the final target architecture.

This wind tunnel-like approach allows for the comprehensive evaluation of computer architectures,

ensuring their efficacy and reliability before implementation in real-world scenarios.

1.3 Architectural Virtualization with FreezeTime

Computer architects and technology developers employ simulation and emulation tools to model,

evaluate and thus guide the development of future technologies and architectures. These tools al-

low users to estimate the cost and performance benefits of new ideas and different architectural

topologies [20]. Ideally, the simulation tools will accurately and efficiently evaluate complex ar-

chitectures and provide macro/micro-architectural insights. However, as computer architecture

complexity increases, computer simulation becomes prohibitively slow, leading to accuracy trade-

offs [9]. Modeling and evaluating multiple iterations of large, heterogeneous architectures with

heavy workloads of interest is a high-performance computing (HPC) problem. Previous research

demonstrates that FPGA-accelerated simulation, emulation, and prototyping, using realistic mod-

els, are capable of delivering high evaluation speed, fidelity, and system transparency [10, 21, 22].

1.3.1 Challenges with Design Mapping on FPGA

The capacity or capabilities of high-end FPGAs still limit the emulated design size and com-

plexity. The emulated systems may consist of larger and faster memory hierarchies than on the

FPGA board, such as large caches and high-bandwidth/capacity main memory. Similarly, they

may consist of numerous heterogeneous computation instances, such as CPU, GPU, AI/ML pro-

cessing units, and accelerator cores, which do not fit even when miniaturized and on the largest

of FPGAs. Finally, it can prove impossible to map and model all the target system communica-

Chapter 1. Introduction and Motivation 9

tion infrastructure, such as the buses and the network between the many modules. As we develop

system-wide emulation IP models, for example the memory and PiM emulation models described

in this thesis, and utilize them to evaluate emerging heterogeneous architectures, we are facing the

above-mentioned challenges. FreezeTime is a technique we adopted to overcome these challenges.

In the MEMulator and PiMulator frameworks, one of the key aspects being modeled is the mem-

ory device’s data layout. Considering that Field-Programmable Gate Arrays (FPGAs) possess

significantly fewer memory resources compared to Dynamic Random-Access Memory (DRAM)

modules (approximately 0.05%), a mechanism is required to emulate the presence of a larger data

capacity. The adopted solution utilizes the FPGA chip’s Block RAM (BRAM) and UltraRAM

resources to represent a subset of memory rows per bank, in conjunction with a data synchro-

nization engine that ensures data coherence between these rows and the board memory resources.

Although the synchronization process introduces additional delays that may impact the modeled

time, the subsequent section delineates the methodology employed to conceal these induced time

intervals.

1.3.2 Remedy - Synchronized Architectural Virtualization

To address these challenges, we propose FreezeTime: a coarse architectural virtualization approach

facilitating cycle-accurate emulation of large systems on high-end FPGA boards. The model logic

has to emulate the behavior of numerous compute instances or other taxing aspects of a system that

can not fit on the FPGA (e.g., memory size and speed). We present a virtualized serial execution

approach that leverages a subset of the architecture mapped on the FPGA to account for the whole

system’s behavior using auxiliary mechanisms, blocks of clock cycles, and stalls. For example,

to emulate large scratchpad memories on an FPGA with insufficient BRAM, the model can syn-

chronize data between small BRAM pools and board DDR memory, which will incur additional

latency. Similarly, the workload on multiple parallel compute instances can be modeled by queuing

the operand data and directing it to a subset of compute instances. The FreezeTime technique is to

freeze a whole emulated module’s activity and state during the additional time intervals necessary

Chapter 1. Introduction and Motivation 10

for the action on the virtualized modules to elapse. Consequently, the model logic accounts for the

activity and cycle-accurate timing of all architectural modules with only the subset of instances

that fit on the FPGA board, effectively virtualizing aspects of the system.

1.4 Modeling Processing-in-Memory Architectures

Processing-in-Memory (PiM) is a topic of great interest to computer architects aiming to design

systems less affected by the memory wall problem that stresses the growing disparity between mi-

croprocessor and memory speeds [23]. In addition to enabling access to the high internal-memory

bandwidth, bringing computation closer to memory can reduce data movement, thus reducing uti-

lization and reliance on memory bus bandwidth. Moreover, it can reduce cache pollution, latency,

and energy consumption associated with data movement via the memory bus [24, 25].

1.4.1 Drivers of PiM Architecture Research

Numerous applications can greatly benefit from Processing-in-Memory (PiM) architectures, thanks

to their unique advantages. Firstly, applications with low computational intensity (low computa-

tion per datum) and memory-bound characteristics can leverage the high in-memory bandwidth

and computational parallelism provided by PiM architectures. Secondly, PiM is particularly well-

suited for power-efficient computing, as data migration from memory to the processing unit con-

sumes significantly more power compared to the operation itself, while in-memory computation

offers improved performance per Watt efficiency [26].

A diverse array of application domains can reap the advantages of PiM architectures, encompassing

bioinformatics, image and video analytics, encryption and compression, as well as general data

manipulation. Furthermore, high-performance computing applications such as databases, search,

graph applications, and machine learning stand to benefit. Given the ever-increasing demand for

computational capacity, speed, performance, and data volume, PiM architectures are set to play

Chapter 1. Introduction and Motivation 11

62

115

162

240

318

408

0

50

100

150

200

250

300

350

400

450

1965 1975 1985 1995 2005 2015 2025

o

f
P

iM
 p

u
b

lic
at

io
n

s

Number of PiM publications per year

Figure 1.1: PiM-related publications per year suggesting exponential increase in interest.

a pivotal role in augmenting processing units, ultimately facilitating higher throughput, reduced

latency, and superior energy efficiency.

1.4.2 Interest in PiM Architecture Research

Consequently, numerous PiM architectures have been developed, classified into a taxonomy based

on memory technology, computation location, computation type, and extracted parallelism [27].

The dramatic increase in PiM-related research publications over the past decade, as depicted in

Fig. 1.1, demonstrates a significant growth in interest within the scientific community [28]. The

concept of PiM was first introduced by Harold Stone in 1970 through his paper titled “A logic-in-

memory computer” [29]. This topic remained relatively dormant for approximately four decades,

with only a few publications annually. However, around 2009-2010, the research interest in PiM

experienced a remarkable surge. The number of annual publications grew exponentially, reaching

up to 408 papers in 2019. This rapid acceleration in PiM research can be attributed to various

factors, such as advancements in technology, the increasing demand for high-performance and

energy-efficient computing, and the emergence of new application areas. As a result, there has

Chapter 1. Introduction and Motivation 12

been a notable shift in the landscape of PiM research, with several products already available in

the market. The exponential growth trend, as shown in Fig. 1.1, signifies the potential impact

of PiM technology on future computing systems, warranting further investigation and develop-

ment in this domain. Moreover, this trend highlights the necessity for a unified, fast, flexible, and

high-fidelity modeling and evaluation framework that can serve as a baseline methodology for the

evaluation and continued development of PiM architectures. Establishing such a framework will

enable researchers and practitioners to effectively explore and optimize PiM technologies, further

advancing the field.

1.4.3 Challenges in Evaluating PiM Architectures

To evaluate these architectures, researchers often have had to develop in-house tools or modify and

combine capabilities of existing tools, leading to low-fidelity measurement results and an arduous

PiM evaluation experience. The lack of a dedicated PiM framework further compounded the diffi-

culties faced during the modeling and evaluation of pioneering PiM architectures. Researchers had

to rely on manual calculations, statistical models, and improvised methods, resulting in outcomes

that were hard to replicate and scale.

Moreover, the absence of standardized benchmarks and metrics for evaluating PiM architectures

has made it challenging to compare and contrast different designs in a consistent and meaningful

manner. This lack of standardization can impede the development and adoption of new PiM ar-

chitectures, as researchers struggle to demonstrate the true advantages of their designs without a

common ground for comparison.

PiM simulation frameworks [30,31] formalize this approach of fusing and PiM-augmenting several

well-established simulation tools. However, such heterogeneous computing architectures introduce

a high level of complexity that is difficult to simulate, leading to limited, low-fidelity, and low-

performance simulation tools. Computer systems complexity is known to advance faster than

computer simulation performance, a phenomenon known as the simulation wall [9]. As a result,

Chapter 1. Introduction and Motivation 13

better alternative approaches are necessary. Modeling performance is shown to be significantly

higher with FPGA-accelerated simulation [21] or approximated FPGA-emulation [11, 12].

1.4.4 FPGA-based PiM Architecture Emulation

An alternative approach to harness an FPGA is to implement a structurally accurate target model

- a prototype. This approach enables faithful emulation on the FPGA at only an order of magni-

tude lower clock rate than the original target. Infrastructure for high-speed cycle-accurate FPGA-

emulated processor systems has long been under development [22], and a handful of RISC-V soft-

cores are now available for FPGAs [16, 18, 32]. However, no framework so far enables fast and

accurate FPGA-emulation of the detailed aspects of main memories (e.g., shared bus, granular data

organization layout, bank state and timing) to facilitate prototyping of various PiM architectures

on different memory standards and technologies. This thesis describes the effort to develop such

a framework called PiMulator: a soft-memory and soft-PiM infrastructure for PiM prototyping on

FPGA boards.

PiMulator enables architects to generate a configurable memory and PiM model as part of a whole

compute system. The memory model emulates operations such as burst write/read, refresh, bank

interleaving, behaviors such as latencies and bank states, and components such as the shared data

bus, row buffer, and subarrays. Accounting for both memory structure and behavior facilitates de-

ployment of the desired PiM logic at any desired location. Finally, to demonstrate the capabilities

of the PiMulator platform, we demonstrate strategies to prototype and emulate both pioneering

bitwise-PiM architectures such as RowClone [33], LISA [34], and Ambit [35] as well as generic

PiM architectures such as Fulcrum [36] and BLIMP [37]. These prior works demonstrate high-

bandwidth, low-latency, and energy-efficient PiM operations at the subarray, bank, and chip level.

Emulating these architectures requires modeling the above-mentioned detailed aspects of the main

memory and showcases the strength of our proposed framework. We also develop features to

support modeling of memory physical effects and conduct a case study on RowHammer [38] mod-

eling. We incorporate the memory and PiM model as part of a compute system consisting of a

Chapter 1. Introduction and Motivation 14

processor system, a memory controller and the emulated memory. We use open-source soft IP

blocks that can be updated and modified as desired. The result is an emulated system that is com-

posed only of soft IP blocks that can run at a high speed on a high end FPGA board. Finally, we

release the platform together with helpful documentation and tutorials, and encourage users to get

started with modeling, emulating, and evaluating their designs.

1.5 Contributions

In this thesis, we present a comprehensive framework that combines MEMulator, FreezeTime, and

PiMulator for computer system emulation, design space exploration, and evaluation. MEMula-

tor features a parameterizable, synthesizable memory emulation model (MEM) that generates an

FPGA synthesizable logic representation of the modeled architectures, facilitating system-level

evaluation with heavy workloads. FreezeTime and Architectural Virtualization mechanisms fur-

ther enhance the capabilities of this framework. Building upon the MEMulator memory model,

PiMulator allows users to inject logic for PiM kernels, enabling evaluation and development of

PiM architectures. We summarize the combined contributions of MEMulator, FreezeTime, and

PiMulator as follows:

• We present the first end-to-end full system emulation framework consisting of soft, open-

source, configurable, and FPGA synthesizable modules for the CPU, bus interconnect, mem-

ory controller, main memory modules, and peripherals. We leverage high-end FPGA boards

to host the emulated system logic, thus enabling researchers to rapidly and accurately evalu-

ate a wide variety of their designs with heavy workloads of interest.

• We implement the framework using separate abstraction layers for the target system, logic

model, and host FPGA. We provide a script that maps the target system description to a

suitable logic model and use LiteX to integrate the soft modules and automatically generate

the RTL and bitstream.

Chapter 1. Introduction and Motivation 15

• We present an open-source, FPGA synthesizable memory emulation model in System Ver-

ilog that implements the main memory components, models their behavior, and accurately

emulates memory operations. The memory model is flexible, parameterizable, and feature-

rich to efficiently emulate different memory types. We integrate the memory emulation

model into the LiteX framework to achieve full system emulation.

• We run several benchmarks of interest on systems with different CPU and memory config-

urations and measure significant evaluation speedup compared to computer simulation and

matching accuracy with RTL behavioral models. We use both mid and high-end FPGA

boards and observe matching target performance results, ensuring that modeling accuracy is

preserved independent of the FPGA host.

• We present a coarse system-level to module-level sync-by-stall mechanism that ensures

cycle-accurate emulation of a target system while facilitating architectural virtualization

through time multiplexing. The novelty comes from the coarse virtualization approach: spa-

tially at the block level and temporally at the operation level.

• We present architectural virtualization for all parts of a system: compute, memory, and in-

terconnect. To this end, we describe how this virtualization can be used to emulate complete

system-on-chip (SoC) architectures without the need for custom timing models.

• We compare the accuracy and evaluation speed between FPGA-based emulation, FPGA-

accelerated simulation, and simulation with gem5 and Verilator. We also describe how the

proposed techniques can enhance the capabilities of state-of-the-art emulation platforms.

• We implement and test a parameterizable, structurally accurate main memory and PiM model

in System Verilog, synthesizable on FPGA boards. The memory model supports comprehen-

sive emulation of many memory flavours and allows prototyping of various PiM architectures

by injecting PiM logic into reserved placeholders.

• For increased usability, we integrate the memory and PiM model into the LiteX [18] frame-

work, facilitating easy interfacing, system generation, and deployment of the target system

Chapter 1. Introduction and Motivation 16

on a preferred FPGA board. We demonstrate correct operation of the emulated system con-

sisting of a number of VexRISC-V [16] soft cores, LiteDRAM memory controller, and dif-

ferent memory flavors and PiM architectures modeled with MEMulator and PiMulator.

• We demonstrate strategies for prototyping and design-space exploration of bitwise-PiM and

more general/complex PiM architectures. We conduct PiM architecture evaluations by ex-

ploring various subarray configurations for RowClone [33] and Ambit [35], including inter-

subarray links as described in LISA [34]. Next, we showcase emulation and explore various

configurations of PiM architectures that together cover a larger PiM space, such as Flu-

crum [36], DRISA [39], Sieve [40] and BLIMP [37]. Finally, we assist pioneering users of

the platform to model, run and evaluate their desired emulated PiM architectures. The focus

is on new, viable PiM architectures that are of interest and use to academic and industry

partners.

• We present memory emulation vs. simulation performance and accuracy results running a

memory micro-benchmark [41] as well as common user workloads and benchmarks such as

Linux boot. We evaluate the memory model alone, as well as the whole system, and compare

emulation, FPGA-accelerated simulation and computer simulation results. We explore the

main differences between emulation and other means such as simulation or hybrid frame-

works in order to bolster the main advantages of emulation, such as high performance and

fidelity.

• We optimize the memory, PiM and system emulation framework for performance, efficient

resource utilization, and ease of use. At this time, the emulation framework is ∼ 28× faster

(weighted average) than simulation [42] for memory operations alone and even higher for

PiM architectures. For the memory and PiM model alone, we efficiently utilize the available

BRAM, and only 1% of the available LUTs, leaving sufficient resources for the remaining

system components. We demonstrate PiMulator system operation hosted on different high-

end FPGA boards, especially on boards available in the cloud.

Chapter 2

Insights into Memory and PiM

2.1 Background on Memory and PiM

This section explains the memory and processing in memory concepts relevant to this research

work in detail.

2.1.1 Memory Hierarchy

Computer architectures balance the strengths and weaknesses of several memory types to achieve

high performance, reliability, endurance, low power, and low cost. Several factors such as the

technology process characteristics (speed, power, density), physical aspects of the data retention

mechanism, the volatile nature, or the addressing circuit delays motivate the use of a memory

hierarchy: near-instant level 1 instruction and data cache, swift level 2 cache, agile level 3 and

last level cache, fast DRAM and non-volatile main memory, moderately-slow flash, slower disk,

and finally tape or other cheap and reliable archival methods. Cache memory is low density, high

cost, and power-hungry, therefore only present in small amounts, up to several MB. Caches hold

the hottest operand data and make the main memory seem faster to the processor. DRAM memory

is high density and low cost, but less fast, volatile, and suffers from leakage, requiring frequent

17

Chapter 2. Insights into Memory and PiM 18

Gate driver - word line

VG/REF

Storage
capacitor

Access
transistor

So
ur

ce
 d

riv
er

 -
bi

t l
in

e

VG/REF

Active word line

V D
D

 o
r V

G
 a

t b
it

lin
e

VG/REF

Active word line

V D
D

/2
 a

t b
it

lin
e

ΔV

a) DRAM cell b) Writing to DRAM cell c) Reading from DRAM cell

Figure 2.1: DRAM cell circuit components, access signals, and operation

refreshing, which results in increased power usage and makes the memory unavailable during

the refresh process duration. Non-volatile main memories do away with the refreshes, however,

the technology is young(er) and under-performs DRAM in speed and endurance. Main memory

is suitable for the bulk of application data and is a perfect candidate for PiM architectures for

applications with low computation intensity.

2.1.2 DRAM Memory Cell and Subarray Operation

All memories, at their core, utilize an elementary unit of memory mechanism that allows writing,

storing and reading a bit of information. A DRAM memory cell consists of an access transistor

with the drain connected to a charge storage capacitor, as shown in Figure 2.1a. Applying a voltage

to the transistor gate allows current to flow through the transistor, charging or discharging the

capacitor. The charge level on the capacitor represents a logic value of 0 or 1. Driving the word line

activates the access transistor, thus allowing to write the bit line logic value to the storage capacitor,

shown in Figure 2.1b. Similarly, placing the bit line in a pre-charged floating state and then driving

the word line allows sensing the storage capacitor charge, shown in Figure 2.1c. Reading the logic

value of a cell changes the charge level of the capacitor and is therefore a destructive process.

Chapter 2. Insights into Memory and PiM 19

SA/PR SA/PR SA/PR SA/PR SA/PR SA/PR SA/PR SA/PR

Word line

Bi
t l

in
e

Enable

Bi
t l

in
e

Figure 2.2: DRAM open bit line architecture subarray circuit region

DRAM cells are arranged in a two-dimensional array, forming rows and columns, as shown in

Figure 2.2. The gates of a row’s transistors connect to a word line, while the sources of a column’s

transistors connect to a bit line. This allows sharing of the word and bit line wires between mul-

tiple cells, which reduces cost. Additional circuitry at the end of each bit line, known as a sense

amplifier, facilitates bit line precharging, sensing, amplifying, then value holding and writing to

the cell [43]. A sense amplifier can be abstracted as a chain loop of two inverters, similar to an

SRAM cell. Figure 2.2 depicts the DRAM cells in the 4 rows and 8 columns near 8 sense ampli-

fiers of a subarray circuit region. Placing the row of sense amplifiers (row buffer) in the middle of

a subarray has the advantage of shorter bit line wires, which leads to improved efficiency, perfor-

mance, and manufacturing yield. The sense amplifier and precharge circuit is larger (wider) than

a dram cell therefore the columns of neighboring subarrays (shown with light blue and purple) are

fit in between the subarray columns (light green). Given that the word line is shared, an entire row

has to be read to determine the value of one or a few cells in the row. For reading, first, all bit

lines are precharged and left to float, then the row word line is driven high, which opens the pass

transistors. The bit lines of a subarray receive a precharge from the sense amplifier, setting them to

VDD/2 which places the inverter chain in a metastable state. Upon activation of the word line, the

access transistor triggers a slight deviation ∆V in the bit line voltage caused by the charge on the

Chapter 2. Insights into Memory and PiM 20

capacitor. This deviation prompts the sense amplifier to deviate from its metastable state, which

is quickly amplified to an absolute state, either 0 or 1. Concurrently, the value is latched, driving

the bit line and causing restoration of the capacitor charge. Keeping the high voltage set on the

word line will allow the sense amplifier to write back the previously read values, thus restoring the

original charge on the capacitor. Due to the leakage current through the pass transistors, each cell

charge leaks with time and requires periodic refreshes.

We accomplish an accurate emulation of DRAM cells on an FPGA by utilizing BRAM or LU-

TRAM resources for data storage. Additionally, state machines monitor the circuit state, control-

ling data access during specific time frames. These periods include when the bit lines undergo

precharging, when charge sensing and amplification occurs, and during the RC delays associated

with writing to the capacitor. The state machines also manage data access during the cell, row, or

array refresh duration and transitions from several read/write processes, as well as other latency-

related activities, ensuring a comprehensive emulation of DRAM cell behavior.

2.1.3 DRAM Bank Structure

A cell in the memory array is identified by its row and column addresses. A row address decoder

translates the row address to activate a specific row’s word line. As a result, the row data is

latched into the sense amplifiers, which act as a row buffer for the row of interest. Next, a column

multiplexer/demultiplexer translates the column address to interact with a specific value in the row

buffer. During a read (write) operation, data is multiplexed (demultiplexed) from (to) the row buffer

to (from) the data bus. The number of peripheral components per column (sense amplifier, Mux,

DeMux) is higher than per row (row address decoder). Therefore, memory arrays are designed

to have more rows than columns (e.g., 217 rows vs. 210 columns) to maximize density. Handling

so many rows reliably and at high speed is achieved by splitting the array into subarrays, each

subarray equipped with its row of sense amplifiers and local bit lines. Similarly, the many columns

in a subarray are split into sections, with local word line drivers, forming MAT/Tile regions [44].

For example, a common design configuration is to allocate 28 = 256 rows per subarray, further

Chapter 2. Insights into Memory and PiM 21

 DRAM Bank

MAT MAT MAT MAT. . .

MAT MAT MAT MAT. . .

MAT MAT MAT MAT. . .

MAT MAT MAT MAT. . .
. . .

. . .

. . .R
aw

 A
dd

re
ss

 D
ec

od
er

Subarray

Row Buffer

Bit Arrays

Column Multiplexer/Demultiplexer
DataAddr

Ctlr

DRAM Chip

Bank Group

Bank

Bank Group

Bank

Bank Group

Bank

Bank Group

Bank
Processing Agent (CPU, GPU, Accelerator)

Memory
Controller

Memory
Channel

DIMM module

Address, Control
Data Bus

ECC
Chip

Chip Chip Chip Chip Chip Chip Chip Chip
Rank

Figure 2.3: DIMM module structure, chip data layout

dividing it into MATs of 28 = 256 columns, with global word/bit lines driving much shorter local

word/bit lines. For a device width higher than 1 bit, the row-column address pair and control

signals are sent to a group of arrays, each contributing 1 bit to the data bus. The memory arrays,

together with the associated peripheral components, form a memory bank. The bank is the smallest

structure with which the memory controller can directly interact. A bank receives address, controls,

commands, and data signals and is characterized by its state.

2.1.4 DIMM Module, Chip, Bank Groups Structure and Operation

The data layout hierarchy for a DIMM module is shown in Figure 2.3. A memory chip consists

of several memory banks, each identifiable by a bank address. Banks can be grouped into bank

groups, each identifiable by a bank group address. All banks and bank groups share the chip’s

address, control, and data bus signals. Bank plurality facilitates high bus utilization, achieved

by scheduling operations on banks that are in active state. Similarly, bank grouping facilitates

prefetching [45]. A rank consists of several memory chips on a circuit board sharing the same ad-

dress and control signals but contributing different data bus bits. This aggregation approach makes

it possible to use multiple chips for more memory capacity and have a narrow data bus interface at

each chip. One or more ranks form a dual (2x32/64-bit) inline memory module (DIMM). A mem-

Chapter 2. Insights into Memory and PiM 22

ory controller interfaces with one or more DIMMs via a memory channel. The memory channel

consists of control signals, an address bus, and a 64(+8ECC)-bit wide data bus, i.e., 8-byte words.

Some memory types, such as GDDR and HBM, have wider data buses. During read/write oper-

ations, the memory controller manages data flow between the cache and the memory channel in

bursts that fill a 64-byte cache line, a process known as prefetching. Prefetching also alleviates the

mismatch between the interface and memory core speed [45]. With the introduction of dual data

rate (DDR) SDRAM, the gap between the interface and the memory core speed continued to grow,

requiring larger prefetching. The use of bank groups is an alternative to increasing the prefetch

size by allowing simultaneous independent prefetching at each bank group. Moreover, the mem-

ory controller engages with each bank independently and consecutively to increase DIMM bus

utilization and fill multiple cache lines in close succession, a process known as bank interleaving.

The design of the Dynamic Random-Access Memory (DRAM) cell remains largely standardized;

however, all subsequent elements within the memory architecture are meticulously optimized to

align with critical metrics such as power efficiency, throughput, and cost. Various parameters,

including the number of ranks, chips, chip data width, bank groups and banks within each group,

rows and columns, the size of subarrays, the frequency of the memory core and interface, latencies,

on/off-chip error correction mechanisms, addressing schemes, among others, collectively influence

the cost, bandwidth, latency, throughput, reliability, and endurance of the final memory module.

In order to accommodate a broad configuration space, our methodology embraces a parameterized

implementation for the memory model within System Verilog. Consequently, the memory model

assumes its desired configuration at the synthesis phase.

2.1.5 DRAM Bank State and Timing

The read, write, and refresh DRAM operations incur several kind of latencies that have to be

accurately respected to ensure data and hardware integrity. These latencies form a memory timing

specification. Other than delays associated to the operation of the memory cell and array, the

memory timings specify memory core and interface clock frequency, interface protocol timings,

Chapter 2. Insights into Memory and PiM 23

data bus switching delays, and power budget limits. A list of memory timings and their description

is presented in Table A.1. In addition to memory timings, during operation, the memory arrays

are in active states, describing physical behavior, with limited permitted action sequences. This

behavior is best represented and modeled using a finite state machine.

2.1.6 RowHammer and Physical Effects

Repeatedly accessing a particular row multiple times in a modern DRAM chip causes bit flips

in cells in the rows neighboring the accessed row in a predictable and consistent manner. It is

caused by a hardware failure mechanism called DRAM disturbance errors, which is a manifes-

tation of circuit-level cell-to-cell interference in a scaled memory technology [38]. RowHammer

is a vulnerability of DRAM memory caused by the physical properties of the technology, with

previously demonstrated exploits. Due to the lack of cost effective prevention mechanisms, and

with the continuing technology scaling, it is expected that RowHammer effects will only worsen.

Other physical effects of interest are aging, manufacturing defects, non-uniform charge leakage,

and others. A number of prevention mechanisms have been proposed and have to be thoroughly

investigated to be adopted by the industry.

2.1.7 Emerging Memory Technologies

Emerging Non-Volatile Main Memory (NVMM) technologies such as Phase Change Memory

(PCM), Spin-Transfer Torque RAM (STT-RAM), Resistive Random-Access Memory (RRAM),

and 3D XPoint are promising technologies for the future of memory systems. They offer desirable

properties such as high density, byte-addressability, non-volatility, low cost, absence of refresh

disruptions, and energy efficiency. However, they are not (yet) ideal, with disadvantages such as

high write latency, high write power consumption, and limited write endurance. As competitive

alternatives to Dynamic Random Access Memory (DRAM), they bring many research challenges

to system architectural designs [46]. Other than the nature of the memory cell physics mechanism

Chapter 2. Insights into Memory and PiM 24

and its effects on the array design, emerging memories share the same structure and similar state

and timing behavior, therefore can be modelled using the same tools without significant changes

to the memory model.

2.2 Real-World Processing-in-Memory Architectures

Numerous PiM architectures have been proposed over the last decades and studied in a number

of survey papers [27, 47–49]. Additionally, we refer to a list of PiM architectures of interest with

a brief description and taxonomy classification in [28]. PiM architectures can be characterized

by several distinct attributes. The computation location indicates where in the memory the com-

putations are performed (e.g., module interface, chip, bank or subarray) while the computation

type can be the memory circuit itself, fixed or configurable logic resources, programmable cores

or a combination of them. The memory technology indicates the host memory technology that

the PiM architecture is implemented on. Finally, the computation parallelism specifies the level

of parallelism that can be exploited as a result of the auxiliary computation enabled by the PiM

kernels. PiM architectures introduce additional costs in terms of design, manufacturing steps, re-

duced memory density, power consumption, and overall system modifications, therefore have to

be thoroughly evaluated and proven to bring benefits that outweigh the costs.

In the last few years PiM architectures started to transition from research to startup and industry

products. In this section we describe several such products, existing at the time of writing this

thesis [50, 51], and speculate on how PiMulator can be used to emulate, model, evaluate and

develop new aspects of these PiM architectures.

2.2.1 UPMEM PiM Architecture

UPMEM, founded in 2015, announced the first real-world PiM architecture in 2016 and began

commercializing it in 2019. UPMEM’s architecture augments standard DIMM modules with a

Chapter 2. Insights into Memory and PiM 25

large number of DRAM Processing Units (DPUs) located near the DRAM banks. UPMEM fab-

ricates PiM-enabled DIMM chips in a DRAM technology process. The first generation of such

chips was 8-bit wide data width, with 8 chips forming a single rank, and the DPUs ran at 267

MHz. Later generations expanded to 16 chips forming two ranks with DPUs running at 350-425

MHz. With the DPU located close to the memory bank, the energy spent for data access is reduced

by 20x. Due to the DRAM manufacturing process applied for the DPU logic, the energy spent for

the operation itself is doubled, resulting in an overall energy reduction of 17x. The DRAM process

adds several constraints, such as 3x slower transistors, 10x lower density, 3x reduced routing metal

layers, and others. These mandate for strong design choices, and a high-fidelity emulation platform

can come in handy.

The UPMEM architecture consists of the memory array at the memory banks, a first processor

as the DPUs, a processor control interface interfacing with the central processor and making the

memory banks available to the central processor, resembling the accelerator model of computation.

UPMEM PiM-enabled memory DIMMS can coexist with standard memory DIMMs in a system.

Each UPMEM DIMM chip contains 8 64MB banks, each bank paired with a DPU. Therefore, there

are 8 DPUs per chip and 64 DPUs per rank, and 4GB of memory capacity. The DPU resembles

a highly pipelined processor, connected to a register file, 24KB instruction and 64KB scratchpad

caches, and DMA engine with a 64-bit wide access to the DRAM bank. The DPU had to be

pipelined into 14 stages in order to meet the desired high frequency using the slow DRAM process.

This design approach is quite innovative and highlights a real-world constraint that perhaps would

be otherwise ignored by a computer architect using simulation tools alone.

The DPU consists of 6 main stages that are further pipelined into 14 stages to meet an Fmax

of 425MHz in a DRAM manufacturing process. It can support up to 24 hardware threads to

enable tasklets. The Dispatch stage deals with thread selection, Fetch123 fetches the instruction

from I-cache, ReadOP123 reads the operands from the register file, Format formats the operands,

ALU1234 implements the operation and writes to scratch and Merge12 formats the result.

Example systems consist of dual socket central processors with 20 UPMEM DIMMs of 2 ranks

Chapter 2. Insights into Memory and PiM 26

(16 chips) and 2 conventional DDR4 DIMMs for a total of 160GB PiM enabled memory with

2560 DPUs; or a single central processor with 10 UPMEM DIMMS of 1 rank (8 chips) and 2

conventional DDR4 DIMMs for a total of 40GB of PiM enabled memory and 640 DPUs.

Emulating the UPMEM architecture in PiMulator can be achieved by connecting the UPMEM

PiM processor logic to the PiMulator Bank array interface dedicated for PiM data access. The

UPMEM PiM processor logic will account for the computational functionality. For timing, a PLL

can generate a clock of frequency matching the UPMEM PiM scaled down according to the system

scale factor. The Bank state and timing model can model additional latency aspects.

2.2.2 Samsung HBM-PiM

Samsung unveiled the High Bandwidth Memory (HBM) with integrated Artificial Intelligence

(AI) processing capabilities, known as HBM-PIM, in early 2021 [52–54]. It is also known by

its aliases, Aquabolt-XL and FIMDRAM [55]. Despite the HBM’s wide, high-bandwidth, multi-

channel interface, it still falls short for many memory-bound Machine Learning (ML) workloads.

To address this limitation, Samsung’s design dedicates several layers of the HBM dies to either

FIMDRAM or HBM-PIM dies.

Each HBM-PIM die features four pseudo channels, each enhanced by one Programmable Com-

puting Unit (PCU) per two bank cell arrays, facilitating direct access to two bank arrays by the

PCU. The PCU microarchitecture comprises 16 16-bit SIMD Floating-Point Units (FPUs) capable

of executing multiple multiply-add instructions. The PCU includes a 32-bit RISC-like processor

with a 5-stage pipeline. The Instruction Set Architecture (ISA) consists of 9 instructions: 4 float-

ing point arithmetic, 2 data, and 3 control operations. The circuit consists of control, file registers,

FP16 Multiplication, and FP16 Addition execution logic. Instructions are delivered as DRAM

commands, adhering to JEDEC controller standards. The operand data can originate from bank

array cells, row buffers, registers, or the result bus.

The HBM-PIM architecture supports simultaneous bank activation, enabling concurrent access to

Chapter 2. Insights into Memory and PiM 27

multiple rows across all banks. Samsung envisions integrating the HBM-PIM architecture with

high-performance GPUs or other high-end System-on-Chips (SoCs).

The emulation of this architecture necessitates instantiating multiple PiMulator instances to model

the HBM pseudo-channels. Additionally, users need to configure the interface, command decoder,

data bus, and data layout to reflect the HBM and PIM data flow. Auxiliary multiplexers must be set

up to link a PCU to two banks, modeled using true dual-port BRAM. The user must also implement

the PCU processor within the PiM template kernels. Lastly, configuring further timing and state

behaviors is necessary, which must be incorporated into the Timing FSM models.

2.2.3 SK Hynix Accelerator-in-Memory (AiM)

In early 2022, SK Hynix announced the development of a PiM AI accelerator based on the GDDR6

memory module, referred to as the GDDR6-AiM [56–58]. The architectural blueprint of the

GDDR6-AiM features 16 AI processing units (PUs) located next to the 16 banks of the GDDR6

memory module, establishing a one-to-one correspondence between the PUs and the memory

banks. Every PU encompasses multiply-accumulate (MAC), element-wise multiplication (EW-

MUL), and activation function (AF) logic units. Additionally, two global buffers, each with a

1KB SRAM capacity, are implemented for storing computation vectors. The MAC unit’s struc-

ture includes multipliers and several layers of adders, which perform the accumulation operation

and subsequently output the result or pass it through AFs. The GDDR6-AiM capitalizes on the

extensive device width of the GDDR6 chip, targeting a burgeoning range of AI applications.

Further, the architecture includes specialized commands and features that facilitate the simultane-

ous activation of four or all sixteen banks. These commands also control the PiM logic related

to computation and data management operations. Multiple banks are activated simultaneously by

sending identical word line addresses to the banks. A reserve capacitor is also incorporated to offer

additional power, thereby alleviating the Four Activate Window constraint (tFAW).

PiM operations employ multiple banks for reading operand data and writing the resultant output,

Chapter 2. Insights into Memory and PiM 28

necessitating a data bus design that accommodates this specific data flow pattern. The MAC unit

incorporates 16 multipliers operating on BF16 data, followed by an adder tree that accumulates the

computed products. The kernel functions in a Single Instruction, Multiple Data (SIMD) fashion.

Finally, the AF logic unit supports many activation functions such as (Leaky) ReLU, Sigmoid,

GELU, Tanh, among others, of which some are implemented using a look-up table (LUT). Beyond

these microarchitectural components, the GDDR6-AiM also introduces a software and firmware

stack to enhance user-friendliness.

The GDDR6-AiM architecture can be emulated on an FPGA using PiMulator tools. This involves

configuring the memory model to accommodate GDDR6 specifications, defining the PU logic

within the given PiM templates, optimally utilizing the dual port BRAM memory and data bus,

extending the command decoder table implementation, and incorporating the computation states

and delays in the timing state machine model.

2.2.4 Samsung AxDIMM

In August 2021, Samsung launched another Processing-in-Memory (PIM) architecture, AxDIMM [59,

60]. This architecture aims to augment acceleration to DIMM modules. The design strategy capi-

talizes on rank-level parallelism by introducing an FPGA device between the DDR4 DIMM chan-

nel interface and the two concurrently interfaced DDR5 ranks, deviating from the traditional se-

quential rank interfacing. The host communicates with the module through the DIMM memory

channel and interfaces with the FPGA via a DDR4 Slave PHY. Subsequently, the FPGA processes

host requests utilizing the programmed compute IP while concurrently interfacing with the two

DDR5 rank chips via two Memory Interface Generator (MIG) IP PHYs. The FPGA logic kernels

can be customized to boost various applications of interest.

One studied application is accelerating Deep Neural Network (DNN) computation and table lookups

as part of a personalized recommendation algorithm for social network users. Another example

includes in-memory acceleration of database operations, such as scan queries, where a memory

Chapter 2. Insights into Memory and PiM 29

crossbar facilitates multiple kernel memory accesses to both ranks.

In many ways, the AxDIMM module mirrors numerous FPGA accelerator cards, with the primary

distinction being the DIMM interface of the module rather than the conventional PCIe interface.

To model the AxDIMM in PiMulator, users must instantiate a hierarchy of DIMM interfaces. This

includes an initial interface from the host, followed by an additional interface for each rank, with

the FPGA logic kernels acting as a compute node in the wire.

Chapter 3

Modeling Methods

3.1 Related Simulation Frameworks

Employing a computer architecture simulation tool running on a general-purpose processor system

is the most straightforward, cost-effective, and flexible initial approach for evaluating a target

architecture with relevant workloads.

3.1.1 The gem5 Simulator

The gem5 simulator [61], among numerous other tools, stands out as a prevalent, versatile, and

widely adopted computer architecture simulation framework, enabling high-accuracy simulations

of processor, cache, and memory system configurations. The initial release of gem5 integrated the

notable features of both M5 [62] and GEMS [63] simulators, encompassing support for multiple

Instruction Set Architectures (ISAs) and a broad spectrum of CPU models, such as in-order and

out-of-order processors. Over time, community-driven updates have solidified gem5’s position as

a vital tool for researchers and educators in the computer architecture field, with many enhance-

ments and new features outlined in [64]. The framework boasts modularity, extensibility, usability,

and improved support for various ISAs, memory models, and other architectural components. For

30

Chapter 2. Modeling Methods 31

example, users can model main memory using distinct memory simulation tools within gem5, such

as DRAMsim3 [42], Ramulator [65], or alternative memory simulation tools. However, achiev-

ing high accuracy and fidelity using simulation models running on a CPU entails a considerable

performance trade-off.

3.1.2 PIMSim

PIMSim [30] is a flexible PiM system simulator that facilitates circuit, architecture, and system-

level research on heterogeneous Processing-in-Memory architectures. The framework offers a

range of speed versus accuracy tradeoffs through three distinct simulation modes: fast, instrumentation-

driven, and full-system. PIMSim provides detailed performance and energy models to simulate

PiM-enabled instructions and in-memory processing logic across various memory devices, em-

ploying multiple distinct memory simulation tools.

The frontend of PIMSim incorporates an application partitioner that identifies and allocates PiM

instructions to PiM kernels executed within memory. The PiM kernel logic can be configured as

processors or specified accelerators. Similar to other simulation tools, PIMSim accurately simu-

lates diverse aspects of the system and PiM architecture by combining several simulation tools and

managing their input and output traces, yielding reliable performance estimates. However, simula-

tion times range from 4× 104 slower than target execution in the fast simulation mode to 3× 105

slower in the full-system mode.

3.1.3 MultiPIM

MultiPIM [31] is a comprehensive, general-purpose Processing-in-Memory simulation framework

designed to support multiple memory stacks, such as multiple Hybrid Memory Cube (HMC) con-

figurations. One primary goal of MultiPIM is to accurately simulate architectural details and pro-

gramming interfaces, which are essential for practical PiM systems. The framework consists of a

frontend and a backend, where the frontend primarily manages non-memory instructions and cache

Chapter 2. Modeling Methods 32

accesses, while the backend simulates the latency of memory requests issued from the frontend.

MultiPIM leverages existing simulation frameworks for CPU, PiM kernels, and memory systems to

simulate system-level PiM architectures. The framework generates memory interconnections us-

ing user-defined connections between memories and CPUs and employs a packet-routing scheme

among memory nodes, complemented by a crossbar switch implementation. Additionally, Multi-

PIM supports virtual memory, further enhancing its versatility. For PiM-specific functionality, the

framework introduces a coherence directory for PiM cores and provides two offloading interfaces.

With these features, MultiPIM offers a powerful, flexible, and accessible platform for simulating

and exploring PiM architectures in various configurations.

3.1.4 PIMulator-NN

The PIMulator-NN [66] simulation framework, distinct from this thesis work, serves as an event-

driven, cross-level platform for evaluating processing-in-memory based neural network accelera-

tors. By integrating various circuit-level simulation frameworks, PIMulator-NN accurately models

PiM architecture details and assesses analog computation units’ area, latency, and energy con-

sumption. This renders it particularly apt for simulating PiM architectures that employ memory

fabric for logic operations.

The authors showcase PIMulator-NN’s utility by implementing several PiM designs and conduct-

ing comprehensive simulations and evaluations for a memristor crossbar-like PiM architecture.

This process includes examining power, performance, and area outcomes while capturing the im-

pact of different design choices. As an event-driven simulator for neural network workloads ex-

ecution, PIMulator-NN fuses multiple tools that model atomic aspects of the architecture. Users

can make assumptions and approximations about the hardware, memory, and data mapping to

optimize for simplicity and performance. The results provide valuable estimations of the perfor-

mance, latency, energy, and area of these architectures, positioning PIMulator-NN as a significant

contribution to the field of PiM-based neural network accelerators.

Chapter 2. Modeling Methods 33

3.2 Challenges in Computer Architecture Simulation

Computer architecture simulation, employing tools like gem5 [61] or DRAMsim3 [42], can be

slow due to several factors that contribute to performance limitations when running on even high-

end CPUs. In the context of computer architecture research, these simulations are designed to

model intricate systems and execute detailed analyses of processor and memory behaviors. Con-

sequently, they often trade off speed for accuracy and precision [67].

One primary bottleneck is the complexity of accurately modeling the architectural components

and their interactions. Simulations often rely on detailed cycle-accurate models, which require

a vast number of calculations per cycle to represent the behavior of processors, caches, memory

controllers, and other architectural elements. As a result, the computational overhead for these

simulations increases significantly, leading to extended execution times [68].

Another factor that slows down computer architecture simulation is the need to model the full

system, including the operating system and applications. Booting the OS and running applica-

tions within the simulation can take a considerable amount of time, as the simulation has to per-

form millions of instructions for each task [64]. Additionally, the simulation of large datasets and

memory-intensive workloads further increases the simulation time.

Furthermore, traditional CPU-based simulators may be unable to leverage the full potential of

modern multi-core processors, as their execution can be inherently sequential due to dependencies

between architectural components. This lack of parallelism in simulations can further contribute

to slow performance [69].

In summary, computer architecture simulation tools like gem5 and DRAMsim3 often exhibit slow

performance due to the trade-off between accuracy and speed, the complexity of modeling intricate

architectural components and interactions, and the limitations in leveraging the full potential of

modern multi-core processors.

Chapter 2. Modeling Methods 34

3.3 Enhancing Simulation Performance with Emulation

PiM architectures introduce an additional degree of complexity, aggravating the simulation perfor-

mance issue. For example, PIMSim [30] attempts to alleviate the simulation performance issue

by offering three simulation modes: full-system mode models a complete system employing de-

tailed coherence mechanisms, instrumentation-driven mode models the PiM component driven by

real-time traces extracted by instrumenting a full system, and fast mode which simulates only the

primary components and quickly processes the input traces to generate “believable” performance

and energy results. Even with the simplifications and accuracy tradeoffs, PIMSim is 104× to 105×

slower than the target system. Likewise, MultiPIM [31], in terms of simulation performance is on

average 105× slower than the real target architecture being simulated.

FPGA-accelerated simulation and FPGA-based emulation is shown to run only at a factor of 10×

to 100× slower than the target architecture modeled while preserving functionality, accuracy, and

level of insight.

3.3.1 FireSim

FireSim [10] is a versatile and widely-used framework for simulating RISC-V processors, mul-

ticore systems, and networks while running Linux and other workloads. Adopting an FPGA-

accelerated simulation approach, the framework emulates system processors and peripherals using

soft IP modules synthesized onto FPGA and supports a variety of peripherals, including UART and

Ethernet. FireSim incorporates FASED [21], an FPGA-accelerated memory simulation tool that

models memory architectures, accounts for state and timing, and facilitates system-level memory

evaluation. Despite its significant speedup and minimal loss of accuracy when compared to stan-

dalone cycle-accurate memory simulators, extending FASED to model various PIM architectures

remains challenging due to the absence of structural component models and limited bandwidth

between the simulation model and host memory. As an alternative, integrating the memory and

PIM model introduced in this study can effectively enhance the FireSim framework, providing

Chapter 2. Modeling Methods 35

support for a range of PIM architectures. Designed to run on AWS F1 or the Alveo U250 board,

FireSim interfaces with the IP shell and combines various tools and scripts, including AWS, Chisel,

compiler, and FPGA vendor tools. The framework is not an emulation but rather a hybrid mix of

FPGA-implemented architecture simulation models and atomic soft-core modules.

3.3.2 LiME

The LiME framework, presented in [11], utilizes a hard processor system interfacing with the

DRAM memory on a Zynq UltraScale+ board to emulate high-performance computing (HPC)

systems. The framework directs the memory access of the processor to the programmable logic,

where it employs a loopback technique to approximately emulate different memories by insert-

ing variable delay and throttle units on the loopback path to host memory. LiME makes use of

techniques such as frequency scaling and runtime configurable delays to model the target system

frequency and approximate the timing of different memory types.

The framework demonstrates fast full system modeling, system-wide frequency scaling, observ-

ability, and a near-memory configurable accelerator. It showcases how a slowed down and minia-

turized system can serve as a model platform to accurately, transparently, and quickly emulate

larger HPC systems and emerging memory architectures. While LiME provides overall insight

into memory performance, it does not model the memory aspects past the memory interface.

3.3.3 MEG-HMC and MEG-HBM

MEG-HMC [19] and MEG-HBM [12] are frameworks that employ soft RISC-V cores, an adapt-

able memory controller, and HMC/HBM memory to emulate HPC systems featuring HMC/HBM,

enabling users to efficiently integrate emerging memories into compute systems. These frame-

works facilitate system-level integration, software-hardware co-optimization, and offer support for

virtual memory for the study of near-memory accelerators. Users can leverage the RISC-V proces-

sor system, configurable memory controller, adaptation module layer, and performance monitor

Chapter 2. Modeling Methods 36

to model their desired architecture and extract useful insights on memory utilization. The MEG

framework is particularly suitable for HMC/HBM integration and near-memory processing studies,

while other memory flavors can be approximated with configurable delay elements.

3.3.4 PiDRAM

PiDRAM [14] demonstrates RowClone FPM [33] data copy, Ambit-like [35] AND-OR-NOT oper-

ations and true random number generation using DDR3 memory by violating the memory timings.

PiDRAM makes use of an in-house developed memory controller and a RISC-V processor system

to issue the precisely timed memory commands to a DDR3 memory module on an FPGA evalua-

tion board. The framework also offers a PiM ISA extension, drivers, a software library, compiler

and OS support to facilitate end-to-end processing-using-memory. PiDRAM uses the memory as

is, while PiMulator emulates the memory as a soft IP module on the FPGA fabric.

3.3.5 RAMP-Gold

RAMP Gold [69] is an innovative and cost-effective FPGA-based architecture simulator, developed

at the UC Berkeley Parallel Computing Lab. It has been designed to facilitate the early exploration

of design space in manycore systems. With its high throughput and cycle-accurate full-system sim-

ulation capabilities, the prototype effectively uses a single Xilinx Virtex-5 FPGA board to simulate

a 64-core shared-memory target machine with the capability to boot real operating systems. The

system uniquely segregates the modeling of target-system timing and functionality, enabling accu-

rate and efficient modeling of complex functions over multiple clock times. The functional model,

composed of a multithreaded pipeline, executes hardware functionalities of the target cores, while

the timing model meticulously tracks the performance and event timing of each simulated core

and other system components, such as the L1/2 caches and the DRAM controller. Debugging and

control are realized through an Ethernet link between the FPGA and the host machine, allowing

seamless interaction.

Chapter 2. Modeling Methods 37

The prototype’s performance was evaluated using a modern parallel benchmark, with the results

indicating a speedup of two orders of magnitude in comparison to a widely-used software-based

architecture simulator. In a 2010 mid-sized FPGA setup, RAMP Gold was limited by the BRAM

for total simulated cache size. However, even with a single, pipelined and multithreaded instance of

the architecture, it demonstrated a staggering 250 times faster simulation speed over a widely-used

simulation tool, underscoring the potential of FPGA-based simulation. RAMP Gold represents

a foundational effort, significantly influencing the development of the RISC-V architecture and

FireSim framework over the years.

3.3.6 Industrial Tools for Emulation and Prototyping

Industrial emulation tools distinguish themselves from previously discussed solutions by facil-

itating direct emulation and verification of intricate hardware architectures, with the additional

benefits of swift compilation times and reliable results. Notable among these are Cadence Pal-

ladium, Siemens Veloce, and Synopsys ZeBu [70]. These systems, tailored for pre-fabrication

hardware verification, harness extensive platforms integrating multi-node CPU and FPGA servers,

underpinning a robust framework for hardware simulation, emulation, and verification processes.

They offer optimal verification capabilities during the early design cycle, precisely when RTL is

most susceptible to changes. Further, they incorporate comprehensive systems merging exemplary

virtual platforms, hardware emulation, and FPGA prototyping technologies, which are the foun-

dation of advanced verification methodologies. Capitalizing on unique architectures, commercial

FPGAs, and avant-garde emulation techniques, these tools deliver enhanced performance, effec-

tively catering to the escalating verification needs across diverse sectors like automotive, 5G, AI,

and data center SoCs.

Chapter 2. Modeling Methods 38

3.4 PiM Prototyping Framework Attributes

In order to support the increase in heterogeneity, complexity, and parallelism that PiM architectures

bring to the field, a PiM modeling and evaluation framework must offer additional attributes, as

summarized in Table 3.1. In this section, we perform a comparison between different modeling

and evaluation approaches over several attributes of interest and make a case for FPGA-based PiM

emulation.

3.4.1 Fidelity

High fidelity is critical during PiM architecture modeling and evaluation for providing convincing

results and insight. Although not an exact quantifiable metric, high fidelity typically suggests

cycle-accurate, cycle-exact microarchitectural modeling, including RTL structural correspondence

and hardware signal granularity. These features lead to accurate workload execution modeling on

realistic hardware abstraction and enable hardware-software co-design. Achieving fidelity with

software simulation comes at a high cost in performance, motivating framework developers to opt

for statistical, analytical, or simplified models, which result in reduced fidelity. Conversely, FPGA

emulation can intrinsically deliver higher fidelity at a reasonable performance by using a structural

correspondence of the model with the targeted architecture.

3.4.2 Target vs Model Speed

High performance is crucial because it enables faster evaluation of increasingly complex architec-

tures with heavy workloads of interest. PiM architectures can be emulated and evaluated at high

speed by harnessing the spatial, parallel, and reconfigurable nature of FPGAs and board peripher-

als.

Chapter 2. Modeling Methods 39
A

pp
ro

ac
h

Fi
de

lit
y

Sp
ee

d
U

nd
er

ly
in

g

M
em

or
y

M
od

el

D
es

ig
n

Sp
ac

e

E
xp

lo
ra

tio
n

Fu
ll

Sy
st

em

E
va

lu
at

io
n

A
ffo

rd
ab

ili
ty

A
do

pt
ab

ili
ty

V
er

ilo
g

B
eh

av
io

ra
l

Si
m

ul
at

io
n

[7
1]

H
ig

h
L

ow

In
te

rf
ac

e,
St

at
e,

Ti
m

in
g,

D
at

a
flo

w

Fl
ex

ib
le

,

B
eh

av
io

ra
l

C
om

pa
tib

ili
ty

,

C
or

re
ct

ne
ss

A
ff

or
da

bl
e,

Te
di

ou
s

So
ft

w
ar

e

Si
m

ul
at

io
n

[3
0,

31
]

L
ow

,

M
ed

iu
m

L
ow

Ti
m

in
g

Fl
ex

ib
le

O
S/

A
pp

lic
at

io
n,

Po
w

er
,

Pe
rf

or
m

an
ce

A
ff

or
da

bl
e,

Fa
m

ili
ar

FP
G

A

A
cc

el
er

at
ed

Si
m

ul
at

io
n

[9
,2

1]

M
ed

iu
m

M
ed

iu
m

Ti
m

in
g

Fl
ex

ib
le

O
S/

A
pp

lic
at

io
n,

Po
w

er
,

Pe
rf

or
m

an
ce

C
lo

ud
pr

ic
e,

Fa
m

ili
ar

A
pp

ro
xi

m
at

e

FP
G

A

E
m

ul
at

io
n

[1
1,

12
]

L
ow

,

L
im

ite
d

H
ig

h
In

te
rf

ac
e,

A
pp

ro
xi

m
at

e

Ti
m

in
g,

D
at

a
flo

w
C

on
st

ra
in

ed

O
S/

A
pp

lic
at

io
n,

A
pp

ro
xi

m
at

e

Pe
rf

or
m

an
ce

Pl
at

fo
rm

pr
ic

e,

FP
G

A
to

ol
flo

w

FP
G

A

E
m

ul
at

io
n

P
iM

ul
at

or

H
ig

h
H

ig
h

In
te

rf
ac

e,
St

at
e,

Ti
m

in
g,

D
at

a
flo

w
an

d
la

yo
ut

Fu
ll

fle
xi

bi
lit

y

O
S/

A
pp

,P
ow

er
,

Pe
rf

or
m

an
ce

,A
re

a,

H
ar

dw
ar

e
M

od
el

C
lo

ud
pr

ic
e,

FP
G

A
to

ol
flo

w
,

L
ite

X

D
R

A
M

us
e

vi
ol

at
io

n
[1

4]
M

ax
im

um
R

ea
lti

m
e

Ph
ys

ic
al

m
em

or
y

C
on

st
ra

in
ed

O
S/

A
pp

lic
at

io
n,

R
ea

lh
ar

dw
ar

e

Pl
at

fo
rm

pr
ic

e,

FP
G

A
to

ol
flo

w

H
ar

dw
ar

e

ta
pe

-o
ut

[7
2,

73
]

M
ax

im
um

R
ea

lti
m

e
Ph

ys
ic

al

m
em

or
y

C
on

st
ra

in
ed

O
S/

A
pp

lic
at

io
n,

R
ea

lh
ar

dw
ar

e

Pr
oh

ib
iti

ve
ly

E
xp

en
si

ve
,

A
SI

C
&

PC
B

Table 3.1: Comparison among PiM system prototyping and other evaluation approaches over se-

lected attributes.

Chapter 2. Modeling Methods 40

3.4.3 Underlying Memory Model

Modeling and evaluating PiM architectures with high fidelity requires a detailed underlying mem-

ory model that accounts for data flow, data layout, latencies, technology process, area and power

budget, etc. Compared to software simulation, an FPGA emulation approach can preserve the

spatial nature of memories and PiM architectures, thus providing further hardware insights.

3.4.4 Design Space Exploration

PiM architectures introduce many design variables [27] resulting in the need to perform a com-

plex and vast design space exploration (DSE). In addition to speed, fidelity, and generated insight,

a framework must have a high degree of flexibility and capability to accommodate a vast design

space. Both software simulation and FPGA emulation offer similar high flexibility, but only emu-

lation allows high performance.

3.4.5 Full System Evaluation

Ultimately, a good PiM prototyping framework must facilitate PiM architecture evaluation as part

of a full system and software stack. The metrics of interest include correctness of operation,

application performance, reduction in data migration and cache pollution, energy savings, hard-

ware cost, etc. FPGA emulation outperforms other approaches in measurements and capabili-

ties [10, 12].

3.4.6 Affordability and Adoptability

Finally, to be user-friendly, a framework must be affordable, available, and easy to use. Several

cloud providers now offer high-end FPGA boards at competitive prices. With the advancement of

high-level synthesis, hardware construction languages, and frameworks such as LiteX [18], FPGA

Chapter 2. Modeling Methods 41

H
o
st

FP
G
A

Ta
rg
et

Sy
st
em

W
o

rk
lo

ad
C

o
m

p
u

te
En

gi
n

e
M

em
o

ry
+

 P
iM

Lo
g
ic

M
o
d
el

Soft Memory ControllerSoft Memory Controller

Soft SoCSoft SoC
AXI

Memory + PiM Channel
Model

P
H

Y

FPGA Board
DRAMDDR4 Space

FPGA Board
DRAMDDR4 SpaceFPGA HBM2HBM2 SpaceFPGA HBM2HBM2 Space

A
X

I

A
X

I

FP
G

A
H

B
M

2
H

B
M

2
D

D
R

4
D

D
R

4
D

D
R

4
D

D
R

4

Figure 3.1: PiMulator top-level diagram. The target system is modeled with open-source IP primi-

tives and synthesized on a host FPGA board. Workloads run directly on the hardware configuration

at FPGA speed.

tools are becoming more user-friendly.

3.5 Resulting Platform Organization

When combining all the attributes mentioned above, we believe that an FPGA platform is the best

fit as a host for PiM modeling and evaluation. We propose a framework for emulating PiM archi-

tecture target systems using highly configurable and FPGA synthesizable soft IPs for processor,

memory controller, memory, and PiM, structured as shown in Figure 3.1.

3.5.1 Target System

The PiMulator user will begin by describing the target system in detail using configuration files.

The processor system description will include aspects such as number of cores, cache sizes, and

Chapter 2. Modeling Methods 42

operating frequency. The memory system description will include aspects such as number of

memory channels, memory type, interface width and frequency, memory timing parameters and

data layout. The PiM configuration description will consist of number of PiM units, their location,

type and operating frequency, together with instructions and controls. Finally, the application

description will consist of the executable, or source code together with compilation scripts. We

categorize these configuration files and scripts as part of the target system layer. At this layer

the user is only concerned with correct target system description and runtime monitoring. For

increased usability, the configuration scripts, as well as the collected metrics, will be similar in

format to the standard adopted by gem5 and DRAMsim3.

3.5.2 Logic Model

We develop scripts that take as inputs the target system configurations and generate the logic model.

At this layer the user is concerned with correct representation of the target system components with

soft logic modules. The processor system is modelled by a system of VexRISC-V [16] soft cores

equivalent to the target processor. The memory channels are modeled with instances of LiteDRAM

memory controller. Finally, each memory and PiM system is modeled in detail using the memory

and PiM model that is the basis of PiMulator. We expect PiMulator users to implement the PiM

logic of their architectures of interest into reserved placeholders, and provide testbenches to easily

validate their designs. Similarly, unsupported features of emerging memories can be modeled by

expanding the state machine with new states and/or timing monitors.

3.5.3 Host FPGA

Finally, the logic model is synthesized onto a host FPGA. Here, the user is concerned with efficient

utilization of the host FPGA board resources, such as BRAM/URAM, LUTs, FFs, board memory

resources, and runtime at a sufficiently high frequency.

We adopted such a layered approach to ensure correctness via separation of concerns. For example,

Chapter 2. Modeling Methods 43

the host FPGA can influence the evaluation runtime duration, by accommodating larger memory

models or achieving a higher operating frequency, but can not influence the final results of the

target system.

Chapter 4

MEMulator: System-level Memory

Emulation

In the field of computer architecture modeling and evaluation, utilizing computer simulation tools

such as gem5 [61], SST [74], ZSim [75], and Intel® CoFluent™ Studio [76] has proven to be

a highly effective, expedient, and adaptable method. These tools employ accurate cycle-based

models for main memory simulations, such as DRAMsim [42, 77, 78] and RAMulator [65]. Re-

searchers employ these tools to examine and assess innovative computer architecture proposals,

outline the intended architectures, run relevant applications on simulated representations of these

architectures, collect measurable data, and detect performance constraints.

However, as the complexity of the architecture soars, these tools manifest prohibitively slow sim-

ulation speeds. Furthermore, introducing novel features necessitates modifications to the existing

models, raising concerns regarding the accuracy, correctness, and preservation of simulation fi-

delity. Drawing parallels to the fields of architecture, civil, and mechanical engineering, where

concepts that appear sound in simulation must be validated in a wind tunnel, computer architec-

tures can similarly be emulated on FPGAs. The objective of this chapter is to present a memory

emulation model that serves to both complement and validate existing memory simulators.

44

Chapter 4. MEMulator: System-level Memory Emulation 45

4.1 System Emulation with Soft Modules, including Memory

Modeling a computing system utilizing a logic layer composed entirely of soft cores offers signifi-

cant advantages. It enables customization, configuration, and evaluation of various aspects of inter-

est by emulating high-performance systems running real-world workloads. An all-encompassing

system, built out of open-source soft cores that are easily modifiable, parameterizable, synthesiz-

able on FPGA, and representative of high-performance computing architectures, can function as a

holistic, system-level rapid prototyping framework.

Furthermore, this approach preserves the hardware’s spatial aspect, granting valuable insights to

digital designers and facilitating hardware development. Additionally, the fast runtime achiev-

able at FPGA hardware speeds enables swift evaluation with heavy workloads. While numerous

soft-core models exist for CPU, bus, cache, and other peripherals, main memory models typically

consist of the hardware as is or a throttled/delayed version. For example, in [11,79] the authors em-

ulate the memory access throughput and latency using frequency scaling and runtime configurable

delay units. Our solution addresses this gap by integrating a soft memory model with existing IP

for the CPU, controller, interconnect, and peripherals. Other soft models can also be incorporated,

such as accelerators, GPU, TPU, reconfigurable fabric, and other compute kernel types.

Previous research, notably RAMP-Gold [69], has made substantial progress toward emulating

highly configurable architectures using soft IP modules. Our approach builds upon these lessons,

principles, and an array of robust open-source development tools and IP cores. We incorporate our

in-house developed emulation model for main memory into a framework that employs numerous

other tools and software / hardware components. In the following sections, we detail the tech-

nology stack, flow, and system time modeling principles that render our framework capable and

versatile.

Chapter 4. MEMulator: System-level Memory Emulation 46

Target System

Target System Logic Model

Framework
User

cores, FCLK

L1/L2 Cache

Memory flavors

Wishbone, AXI

Host FPGA Platform

Sy
nt

he
si

s
To

ol
ch

ai
n

A
pp

lic
at

io
n

En
vi

ro
nm

en
t

Pr
oc

es
so

r S
ys

te
m

IO
 IP

L2
 C

ac
he

M
EM

ul
at

or

Li
te

D
R

A
M

M
em

or
y

In
te

rf
ac

e
G

en
er

at
or

NaxRiscv VexRiscvL1
 C

ac
he

LitePCIe LiteScope/JTAGLiteUART LiteETH

TCL

Baremetal

IO

FPGA

HBM2

DDR4GCEBUFF

CLK, PLL

Data Layout using BRAM

CMD
RAS/CAS

Data Sync FSM

C
hi

p
(D

ie
) 0

Ba
nk

G
ro

up
 0

Ba
nk

G
ro

up
 1

Ba
nk

G
ro

up
 2

Ba
nk

G
ro

up
 3

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

C
hi

p
(D

ie
) 1

Ba
nk

G
ro

up
 0

Ba
nk

G
ro

up
 1

Ba
nk

G
ro

up
 2

Ba
nk

G
ro

up
 3

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

C
hi

p
(D

ie
) 2

Ba
nk

G
ro

up
 0

Ba
nk

G
ro

up
 1

Ba
nk

G
ro

up
 2

Ba
nk

G
ro

up
 3

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

C
hi

p
(D

ie
) 3

Ba
nk

G
ro

up
 0

Ba
nk

G
ro

up
 1

Ba
nk

G
ro

up
 2

Ba
nk

G
ro

up
 3

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

Bank
FSMBank

FSMBank
FSM

FAW, RRD
FSM ACT

WR/RDWTR, CCD
FSMSt

at
e

an
d

Ti
m

in
g

Soft PHY

Board Memory

stall

addressing, ctrls

MEMulator

Figure 4.1: Comprehensive Overview of the Framework Technology Stack: Tools and IP Integra-

tion, Organizational Structure, and Memory Emulation Model Implementation

4.2 Technology Stack

Building on the principled structure of the framework depicted in Figure 3.1, we develop each

framework layer by incorporating various valuable open-source and proprietary tools. The frame-

work’s current organization of IP and tools, depicted in Figure 4.1, facilitates the transition from

an architecture target description to a suitable logic representation and generates deployable bina-

ries and executables with minimal engineering effort. This technology stack encompasses a broad

range of computing systems and offers flexibility for future expansion. Furthermore, it can be

cost-effectively executed on entry-level, mid-range, and high-end FPGA hosts from various ven-

dors, with most of the components being open-source. We also aim to showcase the tool space as a

technology stack employed by the framework, highlighting the dependencies between the blocks.

Furthermore, we emphasize how our IP contributions enhance the original LiteX framework.

Chapter 4. MEMulator: System-level Memory Emulation 47

4.2.1 Target System

The platform user provides a comprehensive description of the target system to be emulated, en-

compassing software (compiler, BIOS, OS, application workload) and detailed hardware specifica-

tions. The target system’s processor configuration may comprise multiple CPU cores with varying

complexity and cache hierarchy, running at a particular frequency. Additionally, the memory sys-

tem may consist of one or more main memory modules, with their microarchitecture meticulously

described in DRAMsim-like [42] configuration files. The target system layer also entails user

experience aspects such as FPGA programming, user I/O, BIOS and OS boot, workload deploy-

ment, and observability. We chose open-source RISC-V ISA implementations and compilation

tools [80] and utilized Buildroot OpenSBI Linux [81] for the OS. We leverage RISC-V GCC/G++

cross-compiler tools for constructing workloads and LiteX [18] BIOS and UART/JTAG peripherals

for I/O.

Frequently, the target system will be a complex, extensive, resource-demanding architecture op-

erating at a high clock rate. However, on the FPGA, the system must be modeled using soft,

scaled-down IP modules composed of FPGA blocks (LUTs, FFs) and operating at a reduced clock

frequency. Analogous to how an object in a wind tunnel is often a miniature, simplified yet repre-

sentative version of the target, exposed to scaled stresses, MEMulator serves as a framework that

assembles an entire system from FPGA blocks, paying particular attention to the memory system

and subjecting it to corresponding stresses. The framework includes a script that analyzes the per-

formance metrics of both the target and host systems, determining the appropriate Target System

Logic Model values. These values are then supplied as parameters to the Target System Logic

Model generator.

By default, we experiment with and provide RISC-V and other soft or hard CPU cores featured

in the LiteX framework as logic models for the target CPUs. Users have the flexibility to expand

this system with other CPU or software stack components (compiler, BIOS, OS) according to their

preferences.

Chapter 4. MEMulator: System-level Memory Emulation 48

4.2.2 Target System Logic Model

The target system logic model uses soft IP blocks to accurately represent the target system, includ-

ing RISC-V softcore processors such as NaxRiscV [82] and VexRiscV [16]. These processors,

implemented in SpinalHDL [83], are optimized for FPGA deployment and offer reliability, perfor-

mance, scalability, community support, and compatibility with various application modes, such as

bare metal, BIOS, RISC-V compiler tools, Linux, and Linux-based operations.

The MEMulator logic layer employs the LiteX framework [18], which supports a wide range of

processor cores, languages, and implementations. LiteX uses Migen [17] for Python-based HDL

development and offers several IP blocks, including interconnect bus, Wishbone, and AXI. Our

memory emulation model connects with the LiteDRAM [84] memory controller, which features

a Level 2 cache and supports various memory configurations. This controller has been tested on

multiple FPGA boards with DDR3, DDR4, and LPDDR physical memories. The MEMulator

memory model connects to the Memory Interface Generator (MIG) to synchronize model data

with board memory resources. We also include various Input/Output (I/O) components, such as

LiteUART, LiteEthernet, LitePCIe, LiteScope, and LiteJTAG, to enable deployment, interfacing,

booting, and high-performance observability and debugging features.

In summary, we use the LiteX framework to integrate, generate, synthesize, and deploy the logic

system. LiteX incorporates different IP modules, including ROM, RAM, buses like Wishbone and

AXI, interfaces like UART and I2C/SPI, L1/2 Cache, LiteDRAM memory controller, LitePCIe

DMA, and other important IP. Additionally, LiteX employs Migen (Milkymist generator) to wrap

custom or third-party IPs. We use vendor IP such as the physical memory interface generator

(MIG), PLL, gated clock enable buffers, and more. For processors, we use open-source RISC-V

cores, including the FPGA-optimized in-order VexRISC-V and the high-performance out-of-order

NaxRISC-V implementations.

Chapter 4. MEMulator: System-level Memory Emulation 49

Memory Emulation Model Overview

We have developed a memory emulation model that accommodates various memory types, the

main components shown in Figure 4.1. The model is implemented in SystemVerilog and features

the main components of a memory device, such as a DIMM interface acting as a synthesizable soft

model of a physical (PHY) layer, a decoder, a timing and state model, a data bus, and RAM as

blocks modeling data layout. The memory model is synthesizable to FPGA boards, efficiently uti-

lizes FPGA fabric, and can run at various frequencies. The design is parameterizable and wrapped

using a Python Migen script parsing configuration files and passing the values to parameters. The

data layout supports Rank, Chips or HBM Dies, Bank Groups, Banks, Subarray rows and columns,

together with the data bus and necessary addressing logic. A Data Synchronization Engine com-

bines the memory model with the FPGA board memory resources, facilitating high capacity.

The implemented interface is a soft-PHY (also called NoPHY), which is a logical representation

of all interface signals and their behavior. A Command Decoder module decodes these signals into

commands, generating controls for row address strobe (RAS) and column address strobe (CAS)

processes. A JEDEC-compliant state machine models each memory bank’s state, incorporating

all memory states, transitions, and protections against prohibited actions. Furthermore, memory

timings for state transitions are modeled with counters, ensuring appropriate delays. Additional

state machines impose inter-Bank and inter-BankGroup global timings, such as tFAW.

A small fraction of the memory core is mapped to FPGA block RAM (BRAM) resources. With

a limited amount of BRAM, only a few full rows per memory Bank are modeled at the same

time. The accessed row serves as data storage and an active row buffer. The Data Synchronization

Engine manages these rows as floating rows, mapping them to actual row IDs in the emulated

memory. This engine also functions as a cache control unit, synchronizing the memory data with

the onboard memory data.

Users can easily tailor a memory microarchitecture by modifying an existing configuration in terms

of its structure, behavior, and operation. For instance, users can prototype new interfaces, com-

Chapter 4. MEMulator: System-level Memory Emulation 50

mands, or data hierarchy organizations, such as additional banks or intra-bank features like concur-

rent row activations at subarrays (subarray interleaving). The memory controller similarly includes

multiple configurations to adapt to the desired memory type accordingly. This capability facilitates

rapid prototyping and system-level evaluation of new features.

4.2.3 Host FPGA Platform

The soft modules are synthesized and programmed on the FPGA’s reconfigurable fabric. The con-

figuration leverages the board peripherals, such as the memory resources, to accurately model the

target system. Emulating a high-performance computing system implies a scale-down factor, plus

additional stalling for architectural virtualization, as detailed in Chapter 5. The FPGA platform

specifics are isolated within the Host FPGA Platform layer. In this layer, the user must consider

factors such as run frequency, clock, phase-locked loop (PLL), efficient resource utilization for

fitting the design, and optimizations for speed. Separating these layers enables targeting different

architectures on various hosts while replicating consistent results.

For instance, users can target a high-end FPGA board, in-situ or in the cloud, or a mid-range FPGA

evaluation platform. By fitting the corresponding logic layer on each of these platforms, they can

execute experimental runs and ultimately observe the same insightful results. These results remain

consistent even though the logic model on the mid-range FPGA board will have fewer allocated

resources and longer runtime.

4.2.4 Host CPU Options

For the host CPU, we leverage the popular open-source RISC-V soft-core implementations sup-

ported as part of the LiteX framework. These FPGA-optimized implementations efficiently utilize

the available resources and meet a target Fmax of 330MHz. The availability of multicore in-order

and out-of-order versions and configurable variations allows modeling a whole system at a reason-

ably high clock speed for target systems with matching RISC-V processors. Alternatively, the user

Chapter 4. MEMulator: System-level Memory Emulation 51

Compile BIOS
(SysClk, CPU, Address

Space)

Litex engine
TCL / Vendor

generate FPGA
project

Config parser

Parameterize
target system

model
Instantiate
Memory

Channel Model

Compile OS, App

Synthesis
Implementation

Bitstream
Reports

Program FPGA
&

Deploy
Workload

Observability

User Interaction

Figure 4.2: Design flow steps from configuration files to logic layer generation, deployment and

runtime

can utilize the hardened ARM-based multicore processor system as part of the Zynq UltraScale+

SoC, which LiteX also supports, to emulate a target system with a matching ARM-based processor.

At this time, we do not support X86/64 or other ISA implementations.

4.2.5 Design Flow

Our framework implementation enables system generation from configuration files and system in-

tegration through an automated script. This script instantiates soft modules for the CPU, memory

controller, and memory model, ultimately constructing the final binaries. Concurrently, the frame-

work compiles the necessary tools, BIOS, OS, and application. The user then deploys the gateware,

firmware, and software to gather runtime data, as depicted in Figure 4.2.

The design flow illustrates how the framework processes configuration files and host information,

leveraging LiteX IP and our mmory emulation model to create a project that accurately represents

the target system and maps it to the specified host. The user-defined configuration files, in conjunc-

tion with host board details, determine the clock scaling factor between the target system and the

logic model. For instance, a 2.5GHz target system can be modeled using a 250MHz miniaturized

soft-core on the FPGA, resulting in a 10× scale-down factor. Subsequently, the parameters for

each CPU core and memory aspect are supplied to a LiteX system definition script as arguments,

Chapter 4. MEMulator: System-level Memory Emulation 52

which then instantiates soft modules for the processor, memory controller, memory channel model,

interconnect, and peripherals. LiteX generates a project structure, and a build TCL script executes

the project generation, synthesis, implementation, bitstream generation, and reports logs and re-

source utilization reports. The final bitstream is deployed on the FPGA, initiating BIOS boot and

memory calibration.

LiteX builds the LiteX BIOS, a minimal firmware system serving as a shell for the generated sys-

tem configuration, providing memory testing and calibration tools, control over memory space and

peripherals, and facilitating application or OS boot initiation. The BIOS is also suitable for bare-

metal experiments. The UART and Ethernet interfaces serve as valuable system communication

channels. The universally present UART enables basic access, file and data transfer, while Ethernet

offers faster and more reliable file transfer and network boot capabilities.

Applications can be built separately using RISC-V cross-compile tools and loaded via UART, Eth-

ernet, or SD card. We run Buildroot OpenSBI Linux [81] and other applications, cross-compiling

them either using the RISC-V GCC compiler for bare-metal execution or the Buildroot Linux

RISC-V GCC compiler for Buildroot Linux execution. Binary files are transferred via UART

or Ethernet, and workload deployment resembles interfacing with a remote computer. Users can

observe the application through the terminal or trace collection.

4.2.6 LiteX Integration

We encapsulate the top-level MEMulator SystemVerilog module within the LiteX framework [18],

enabling its interfacing with the LiteDRAM memory controller and VexRiscV processor system

through an appropriate target script. We also define the platform for the Xilinx Alveo U280 FPGA

board and validate its functionality using provided utilities and standalone applications. The LiteX

framework boasts a vast collection of open-source IPs, compatibility with over 60 FPGA boards

from various vendors, support for multiple soft cores, and a comprehensive suite of development,

building, system-on-a-chip (SoC) generation, communication, application compilation, and de-

Chapter 4. MEMulator: System-level Memory Emulation 53

Memory Channel Emulation Model

Trace
Capture

Command
Decoder +
RAS/CAS

Chip 0

Chip NChip N

dq_out
Concat &

Mux

dq_in
Slice &
Demux

stall

Timing & State

bg3ba3
Timing FSM

bg0ba1
Timing FSMbg0ba0

Timing FSM

bg3ba3
Timing FSM

bg0ba1
Timing FSMbg0ba0

Timing FSM

Timing & State

bg3ba3
Timing FSM

bg0ba1
Timing FSMbg0ba0

Timing FSM

Data Sync Engine

bg3ba3
DSync FSM

bg0ba1
DSync FSMbg0ba0

DSync FSM

bg3ba3
DSync FSM

bg0ba1
DSync FSMbg0ba0

DSync FSM

Data Sync Engine

bg3ba3
DSync FSM

bg0ba1
DSync FSMbg0ba0

DSync FSM

dq_in_M

dq_in_C

DSync AXI Ctrl

act

Addr

dq_out_C

A
X

I

stats

dq_out_M Tristate

dq_out_C

dq_in_C

bg/ba

U
lt

ra
R

A
M

 C
ac

h
e

A
X

I I
n

te
rc

o
n

n
ec

t

So
ft

 M
em

o
ry

 C
o

n
tr

o
lle

r
So

ft
 M

em
o

ry
 C

o
n

tr
o

lle
r

dq

Bank Group 4Bank Group 4
Bank Group 3Bank Group 3

Bank Group 2Bank Group 2
Bank Group 1Bank Group 1

Bank 1
 Rs Rs

Bank 1
 Rs

Bank 2
 Rs Rs

Bank 2
 Rs

Bank 3
 Rs Rs

Bank 3
 Rs

Bank 4
 Rs Rs

Bank 4
 Rs

Bank Group 1

Bank 1
 Rs

Bank 2
 Rs

Bank 3
 Rs

Bank 4
 Rs

Bank Group 4
Bank Group 3

Bank Group 2
Bank Group 1

Bank 1
 Rs

Bank 2
 Rs

Bank 3
 Rs

Bank 4
 Rs

Bank Group 4
Bank Group 3

Bank Group 2
Bank Group 1Bank Group 1

act

bg/ba

Addr

ck_c/t

act

bg/ba

Addr

ck_c/t

H
B

M
2

H
B

M
2

H
B

M
2

H
B

M
2

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

H
B

M
2

H
B

M
2

D
D

R
4

D
D

R
4

Figure 4.3: Memory emulation model (MEM) block diagram consisting of memory components

(blue), auxiliary structures (brown), and peripherals.

ployment tools.

To integrate the memory emulation model into LiteX, we devise a wrapper for the SystemVerilog

top module using Migen Instances. This wrapper parses configuration files, extracts parameter

values, and instantiates a parameterized memory model module. Similarly to the LiteDRAM PHY,

we create a ”NoPHY” alternative that connects to the memory model wrapper, bypassing the need

for physical FPGA pins wired to board memory. The integration utilizes a 1:1 clock bridge between

the memory controller and the memory emulation model, diverging from typical FPGA interfacing

with physical memory but aligning with expectations for system modeling and emulation.

4.3 Memory Emulation Model Implementation Details

In this section, we describe the memory emulation model in detail, with the main modules and

signals depicted in Figure 4.3. The model comprises of various logic structures, including an

interface, command decoder, controls, data bus, and organization. These structures emulate the

Chapter 4. MEMulator: System-level Memory Emulation 54

associated behaviors of memory state and latencies on the FPGA fabric. Additionally, to increase

the emulated memory capacity, we leverage the memory resources of the FPGA board, such as dy-

namic random-access memory (DRAM) and high-bandwidth memory (HBM), through the use of

a data synchronization engine (DSync). The MEMulator model is implemented using SystemVer-

ilog Hardware Description Language (HDL) to achieve high performance, which also allows for

future low-level modifications at the register-transfer level (RTL).

4.3.1 Interface, Command Decoding and Controls

The memory and PiM model implements a native, configurable DIMM interface compatible with

most memory standards. We drive the model with a clock with double the frequency of the in-

terface clock to model the dual data rate (DDR). The interface signals are passed to a command

decoder module and are translated into memory commands according to memory standards truth

tables. The memory commands are used to implement the Row Address Strobe (RAS) and Column

Address Strobe (CAS) control logic. During an activate (ACT) command, the address is recorded

as row for the indicated bank, keeping track of the active rows on each bank. Similarly, during

read or write commands, the address is recorded as column, while a burst counter automatically

increments, keeping track of the active columns on each bank. Finally, the write or read state of

each bank is determined, allowing control of both the local data arrays as well as the inout data

port and data strobe signals.

4.3.2 Bank State and Timing

We model the state of each bank and the latencies associated with state transitions using the state

machine depicted in Figure 4.4.

The state machine implementation is based on common memory standards [85] while latencies

are modeled using counters that, together with the decoded commands, condition the associated

state transitions. For example, the state machine switches from Bank Active to Reading upon

Chapter 4. MEMulator: System-level Memory Emulation 55

Reading
tRTP++
tRAS++

tABAR++
Burst++

Reading APR
tRTP++
tRAS++
Burst++

Writing
tWR++
tRAS++
tABA++
Burst++

Writing APR
tWR++
tRAS++
Burst++

Activating
tRCD++
tRAS++

Refreshing
tRFC++

RDA & tCL

WR

ReActivating
RowClone

PiM
tCL++

tRP

Idle

Bank Active
tCL++

tCWL++
tRAS++

Precharging
tRP++

Figure 4.4: Emulation model Finite State Machine (FSM) for modeling bank state and timing

based on existing standards and counters.

receipt of RD command and expiry of tCL counter. With this approach, the state and latencies of

different memory standards and technologies can be modeled. Moreover, it can be easily modified

to model additional PiM latencies. We implement the state machine by using FizZim [86], which

is an easy-to-use graphical tool for designing state machine RTL modules, thus facilitating ease of

development and adaptability of the framework.

Chapter 4. MEMulator: System-level Memory Emulation 56

Idle

ACTIVATE3 ACTIVATE2

ACTIVATE1ACTIVATE4

ACT

ACT & ctFAW

ACT &ctFAW

ACT & ctFAW

Block1

Block4

Block3

Block2

ACT & ctFAW

ACT & ctFAW=0

ACT & ctFAW

ACT & ctFAW=0ACT & ctFAW

ACT & ctFAW=0

ACT & ctFAW

ACT & ctFAW=0 ACT & ctFAW

Block

ctCCD_L --

OUT<= 0

Block

ctCCD_S --
OUT<= 0

(Burst_WR == 0) & (BGPrev != BG)

ctCCD_S== 0 ctCCD_L== 0

(Burst_WR ==0) & (BGPrev == BG)

Pass
BGPrev <= INP?BG:BGPrev

OUT<=INP
ctCCD_L= tCCD_L
ctCCD_S= tCCD_S

tCCD fsm

Block

ctRRD_S --

OUT<= 0

Block
ctRRD_L

 --

OUT<= 0

ACT & (BGPrev != BG)

ctRRD_S== 0 ctRRD_L== 0

ACT & (BGPrev == BG)

Pass
BGPrev <= ACT?BG:BGPrev

OUT<=ACT
ctRRD_L= tRRD_L
ctRRD_S= tRRD_S

tRRD fsm

tWTR fsm

Block
ctWTR_L

 --

OUT<= 0

Block
ctWTR_S

 --

OUT<= 0

(Burst_WR == 0) & (BGPrev != BG)

ctWTR_S== 0 ctRRD_L== 0

(Burst_WR ==0) & (BGPrev == BG)

Pass
BGPrev <= RD?BG:BGPrev

OUT<=RD
ctWTR_L=tWTR_L

ctWTR_S=tWTR_S

(a) (b)

Figure 4.5: FSM model for a) tFAW and b) other ACT global timing rules

4.3.3 Modeling ACTIVATE Timing

The ACTIVATE command initiates the opening of a row within a bank. In relation to the ACTI-

VATE command, it is important to note the existence of three timing parameters: tRRDL, tRRDLS ,

and tFAW . In order to issue consecutive ACTIVATE commands to banks in different bank groups

or the same bank group, it is necessary to observe the respective row-to-row-delay–short and row-

to-row-delay–long. However, the Four Activate Window (tFAW) is a timing restriction, which

limits the ability to issue consecutive fifth ACTIVATE commands. The state machines for tFAW ,

and tRRD are shown in Figure 4.5 (a) and (b), respectively. We model the tFAW state machine in a

modular fashion that will allow different activation window modeling for future memory technolo-

gies. There is a block state between each ACTIVATE to ACTIVATE state transition that blocks the

fifth ACTIVATE command if thetFAW timing is not respected. We use four counters, one for each

ACTIVATE state. Once any of the four counter values expire, the value of ctFAW will be high and

an ACTIVATE command issued when the ctFAW is high will ensure a successful state transition to

Chapter 4. MEMulator: System-level Memory Emulation 57

an ACTIVATE state.

We also use block state to model the row-to-row-delay, tRRD. A register in the pass state keeps

track of the bank group information. When an ACT command is issued and the previous bank

group and the current bank group match (mismatch), a state transition from pass to block state

occurs and it stays there until the counter value of the row-to-row-delay–long (row-to-row-delay–

short) expires, ensuring tRRD is respected while issuing consecutive ACTIVATE command. We

use a similar approach to model the tFAW and the tWTR which are shown in Figure 4.5

Finally, the ACTIVATE signal passed to the bank FSM will be an AND reduce between incoming

ACT and passing (non-blocking) states.

4.3.4 Memory hierarchy: Rank, Chip, Bank Group, Bank and Subarray

Memory hierarchy, data flow, and data layout are modeled by harnessing most FPGA BRAM

resources together with addressing logic. The memory interface data bus bits are sliced over the

few Chip modules and further de-multiplexed into bank group and bank modules. Due to the

limited BRAM (similarly, LUTRAM) resources on the FPGA, only a tiny part of the total emulated

memory capacity can be modeled on the FPGA fabric. The memory emulated on the FPGA fabric,

despite its small size, allows modeling several whole rows at each bank module, equivalent to

≈ 0.05% of a DDR4 array. For these rows to act as any rows in the memory array, they are

controlled by an auxiliary data synchronization engine (DSync), which also models row subarray

membership.

4.3.5 Data Synchronization Engine

The Memory and PiM Emulation Model makes use of a data synchronization engine (DSync) per

bank module, which handles the use of bank module rows. The DSync implementation is based

on a standard cache design [87] adapted for memory modeling, as depicted in Figure 4.6, with

Chapter 4. MEMulator: System-level Memory Emulation 58

Idle Compare Tag

Update Tag

replacement
policy

Write Back
dirty=0
stall=1

Allocate
valid=1
stall=1

RD || WR

Read

Write
dirty=1

Read

Write
dirty=1

Idle Compare Tag

Update Tag

replacement
policy

Write Back
dirty=0
stall=1

Allocate
valid=1
stall=1

RD || WR

Read

Write
dirty=1

Idle Compare Tag

Update Tag

replacement
policy

Write Back
dirty=0
stall=1

Allocate
valid=1
stall=1

RD || WR

Read

Write
dirty=1

Figure 4.6: Emulation model Finite State Machine (FSM) for bank data synchronization engine

(DSync) with FPGA board memory resources.

block size equal to a whole bank module row. The Idle, Compare Tag, Read and Write states, as

well as the state transitions, align with states of the bank state machine. This design choice has

the advantage of reducing the number of cycles the framework has to stall to synchronize model

rows data with board memory resources since the DSync engine will begin processing the miss

state while the row is still activating. The DSync begins when a row is activated and maintains it

in a hit case until precharged. The miss case time penalty is decreased by overlapping with RCD,

CL and RAS delays with the DSync write back and/or allocate time. We select the block size to be

equal to a whole row to facilitate emulating PiM architectures taking advantage of data locality by

utilizing the entire row [33–35, 39]. The modular design of the framework allows users to modify

the block size as desired.

A tag table keeps track of the status (valid, dirty) of the rows in the bank module, as well as of

the subarray number and address of the row data in the board memory resources. Upon a read

or write, the row address is compared with values in the tag table. If present and valid (a hit),

the bank module row index is returned for use, and no stall signal is issued. In case of a miss,

Chapter 4. MEMulator: System-level Memory Emulation 59

a bank module row is selected for update by the replacement policy. Users can choose between

FIFO, random, or implement their desired replacement policy. If the selected row is dirty, its data

is written to the board memory prior to fetching the data of the new row. A controller (DSync AXI

Ctrl) links the data synchronization engines with board memory resources such as HBM and DDR

using a fixed addressing scheme that maximizes bandwidth utilization. A stall signal has to be

issued during the Write Back and Allocate states in order to pause all modeled activity (processor,

controller, memory and PiM) in order to prevent the emulated time ticks from running ahead. Thus,

a full-sized memory array is modeled with FPGA BRAM and board memory resources, with the

maximum emulated capacity being determined by the latter.

4.4 Time Modeling at System Level

The primary challenge is maintaining accurate system-level time synchronization across all com-

ponents, including processors, caches, buses, memory controllers, memory models, peripherals,

accelerators, and upward to the firmware and user interaction level. The primary focus is often on

modeling high-performance computing systems, which may exhibit varying operating frequencies.

In this section we describe HPC (GHz) target system emulation with FPGA soft cores running at

10× to 100× lower clock frequency.

4.4.1 Time Scaling Frequency

The feasible frequency range for FPGAs is typically between 100 and 330 MHz, with the mem-

ory model and LiteX modules successfully tested at the upper limit. Modeling a target system

with components at different frequencies can be achieved by identifying the low and high frequen-

cies among the target system components, such as processors and memories, thus determining the

range. Subsequently, the appropriate speed for the logic model is determined based on the min and

max frequencies, which dictates the system’s slowdown factor. An example system is presented in

Figure 4.7, illustrating a synthesized logic system featuring multiple CPU cores, caches, intercon-

Chapter 4. MEMulator: System-level Memory Emulation 60

Hybrid Memory System

Processor System

RISC-V core
VexRiscV
NaxRiscV L1

IO Ctrls

Storage
Interface

L2
Ti

m
er

LiteDRAM
/MIG

Board
DDR4

LiteDRAM Memory Model
DDR5 HBM2 IP Packge

HBM2

LiteDRAM
/MIG

Board
DDR4

LiteDRAM Memory Model
DDR4

LiteDRAM Memory Model
STT-RAM

D
Sy

nc
E

D
Sy

nc
E

D
Sy

nc
E

3.6GHz

2.4GHz

4.8GHz

1.6GHz

Bus

2.4GHz

4.8GHz

1.6GHz

180MHz

120MHz

240MHz

80MHz

120MHz

240MHz

80MHz

GCEBUFF

180MHz

120MHz

240MHz

80MHz

120MHz
Logic and resources for memory capacity

Figure 4.7: System Time Emulation: Depiction of Target System Frequencies (blue) and Corre-

sponding FPGA-based Soft Core Model Frequencies (black) and FreezeTime stalls for Accurate

Time Scaling.

nects, and a hybrid memory system consisting of three distinct memory types. The significance

of this design lies in the framework’s ability to model hybrid memory systems. A hybrid memory

system may combine various memory types, such as high-speed but expensive DDR5, more af-

fordable DDR4 for increased capacity, and STT-RAM for persistence. The model utilizes separate

instances of LiteDRAM and MEM modules to emulate each memory channel, with each MEM

leveraging an on-board memory resource for enhanced capacity. When multiple processors and

memories are involved, it is crucial to maintain the slowdown scaling uniformly throughout the

system. This factor represents the degree to which the emulated system operates at a slower pace

than the actual system.

4.4.2 Virtual Time Modeling

An additional challenge arises from stalling due to memory data synchronization. When one syn-

chronization engine stalls, it necessitates stalling all other components in the system, including the

memory model, other memory models, memory controllers, and the processor system. This will

further slow emulation time, though improved DSync operation could alleviate this drawback.

Chapter 4. MEMulator: System-level Memory Emulation 61

4.4.3 Target System Time Emulation

Finally, interpreting the results requires scaling both the bandwidth and runtime. For instance, if

a task takes one hour to run on the FPGA with an overall scale factor of 10, the actual runtime in

real-life conditions would be only six minutes. User collected traces should include both host time

and simulation time, with the latter automatically determined by the framework based on system

configuration.

In summary, system-level time modeling faces several challenges, including maintaining accu-

rate time synchronization across all components, operating within FPGA frequency limitations,

preserving slowdown scaling, handling stalling, and interpreting the results correctly by applying

scaling factors. Addressing these challenges requires a comprehensive understanding of the target

system’s intricacies and the ability to adapt and adjust models accordingly.

4.5 Modeling Different Memory Types

With the provided full system support (LiteX, VexRiscV CPU, LiteDRAM), users can utilize this

model to run heavy workloads that can complete in hours instead of days. MEMulator is challeng-

ing the existing simulation approach by developing an emulation alternative that enables faster and

detailed design space exploration of different memory types (DDRx, HBM, HMC, STT-MRAM)

and even modeling of physical effects. DRAM memories are all based on the same technology

principles, with differences only at what is around them. Moreover, emerging memory technolo-

gies share a lot of similarities too. We leverage this high similarity between the different memory

models to enable emulation of different memory types using a common general parameterizable

memory channel model. The base memory channel model implements a DDR4 memory channel,

with the ability to customize data layout, latencies, and so on. To modify the DDR4 model for

LPDDR users have to instantiate two MEM instances, configure the width to x16, and use a low

power FSM. For GDDR, the DDR4 has to be assigned a wide device width and lower number

of chips. For HBM the number of MEM instances has to be increased to 8 or 16 to account for

Chapter 4. MEMulator: System-level Memory Emulation 62

DDR4 Memory Channel Model

STT-MRAMDDR5

two independent MEM instances

serialized DDR

extra FSM states

for persistent memory

two MEM instances for

x16x2 channel & use LP FSM

parameterize for high

bus and device width

GDDR4

GDDR5

GDDR6

multiple MEM instances account

for HBM channel plurality

HBM1

HBM2

HBM3

LPDDR4

LPDDR5/5X

Figure 4.8: Using the memory emulation model to generate and emulate different memory types.

independent HBM channels. If necessary, a crossbar can be implemented to enable cross channel

data access. The DDR4 model is augmented to support DDR5 channel clock serialization, and two

MEM instances will account for the two channels. Finally, for emerging memory technologies,

such as STT-MRAM, the FSM has to be modified to use the persistent memory states.

4.5.1 Scope of MEMulator

The scope of MEMulator encompasses prototyping and evaluating what-if scenarios, crafting ar-

chitectures aimed at reducing memory accesses, fostering the development and experimentation

of intelligent memory controllers, modeling physical effects such as aging and RowHammer, and

estimating repercussions of DRAM process limitations. Additionally, the memory model is em-

Chapter 4. MEMulator: System-level Memory Emulation 63

bedded into an entire computing system as part of a flexible, comprehensive memory hierarchy

and facilitates the swift and accurate evaluation of high-performance computing systems with real

workloads.

A crucial objective of MEMulator is to help guide memory technology development. Within the

multitude of potential enhancements to memory systems, only a select few innovations are ul-

timately assimilated into new standards and consequently adopted into various memory types.

Noteworthy instances of such adoption encompass the transition of the bank group concept from

GDDR5 to DDR4, and the incorporation of the multichannel interface, as channel splitting, from

HBM to DDR5.

Reducing memory accesses can significantly improve both computation performance and energy

efficiency. Thus, another key aim of MEMulator is to monitor data transfers, focusing on param-

eters such as latency and average throughput across varying requests, including those originating

from the CPU or GPU. This feature is especially advantageous in the assessment of emerging archi-

tectures, such as Processing-in-Memory (PiM), Processing-using-memory (PuM), and Processing-

near-Memory (PnM), along with the advanced functionalities of memory controllers.

A vital part of MEMulator’s scope is the modeling of memory controller designs. This process

is essential for understanding how to use a memory module effectively by maximizing bank acti-

vation and refresh interleaving, leveraging active row locality, and ensuring high throughput and

low latency. The memory controller deals with transactions from diverse sources, including the

host CPU and SIMD-like compute units such as GPUs, accelerators, or vector instruction ker-

nels. These different sources present varied requirements - CPU transactions demand low latency,

whereas other sources prioritize bandwidth, highlighting the necessity for the memory controller

to maintain a precise balance.

In addition, the memory controller can refine refresh activities and identify RowHammer attacks,

along with other tasks related to managing physical effects on memory. Users, for example, can

create an error-injection model to imitate aging, RowHammer, or other forms of errors, subse-

quently experimenting with recovery or mitigation methods. MEMulator provides users with com-

Chapter 4. MEMulator: System-level Memory Emulation 64

prehensive component and behavior models, facilitating these experimental procedures.

Emulating the effects of the DRAM fabrication process on the speed and behavior of logic circuits -

including registers, addressing, ECC, or other advanced logic - poses a significant challenge. Take,

for example, the UPMEM architecture: it shows how the DRAM process’s inherent constraints can

limit the PiM core’s complexity. Crucial factors to consider are switching time, which is generally

higher than CMOS, and the reduced number of metal layers that constrain routing options, thereby

affecting the design’s complexity. These constraints necessitate robust design decisions concerning

complexity, pipelining depth, and other elements. In this context, MEMulator is adept at evaluating

design prototypes for system-level fit, which involves assessing how well a design performs as part

of an entire system.

The final aspect of MEMulator’s scope is optimizing a complete computing system’s memory

hierarchy. This hierarchy comprises L1/2/3 caches, data buses, coherency mechanisms, buffers,

memory controllers, a heterogeneous main memory system, and more. By running targeted ap-

plications and continuously observing all facets of system behavior, architects are empowered to

fine-tune each component. This iterative process allows detecting and eliminating bottlenecks,

leading to an optimally balanced system. The result is a memory architecture perfectly tailored

from the ground up to meet specific performance needs.

Chapter 5

FreezeTime: System Emulation through

Architectural Virtualization

High-end FPGAs enable architecture modeling through emulation with high speed and fidelity.

However, the available reconfigurable logic and memory resources limit the size, complexity, and

speed of the emulated target designs. In addition to the spatial dimension, this work uses the tem-

poral dimension, implemented with architectural multiplexing coupled with block-level synchro-

nization, to model a complete system-on-chip architecture. Our approach presents mechanisms

to abstract instance plurality while preserving timing in sync. We demonstrate this technique by

emulating a hypothetical system consisting of a processor and a large SRAM memory. For Linux

boot, we measure significant emulation vs. simulation speedup while matching RTL simulation

accuracy.

5.1 Using FPGAs to Emulate Large Systems

Full system FPGA-based emulation poses several challenges. The primary challenge is to scale

FPGA mapping to extensive and complex target systems. The two main methods for handling this

65

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 66

type of scaling are spatially scaling the emulation across multiple FPGAs and temporally scaling

instances through time domain multiplexing.

5.1.1 Spatial Scaling across Multiple FPGAs

One method to emulate large systems is to partition the design across multiple FPGAs. This

approach introduces numerous challenges and extra steps, such as partitioning the design into small

sections that do not exceed the utilization of the individual FPGAs, matching the links between the

sections with the physical connections between FPGAs, synthesis, implementation, generation,

and handling of multiple bitstreams, etc. [88,89]. FreezeTime can be combined with this approach

to simplify the partitioning process.

5.1.2 Time Domain Multiplexing

An alternative method to emulate large systems is to take advantage of their granular structure

and virtualize the individual building blocks (instances) by mapping them to a subset of physical

blocks. The virtual instances’ emulation will occur according to a scheduling scheme (often round-

robin). A trade-off to this method is the increased time required to emulate multiple instances and

the need for a dedicated mechanism to store, hold and load the state of the multiple instances. In

particular, for the case of memory, it is challenging to achieve faster emulation speed and emulate

memories larger than the memory resources available on the FPGA. For example, emerging archi-

tectures feature a hybrid mix of memory flavors (DDR6, DDR5, DDR4, HBM, persistent memory,

etc.) or accelerators with large scratchpad memory. Modeling the capacity and speed of such sys-

tems using Block RAM and FPGA board DDR3/4 cannot be performed accurately with simplistic

mechanisms such as delay elements and frequency scaling. For computation, the challenge is to

scale the number of instances (e.g., cores or PEs) from few to many and evaluate parallel execu-

tion with workloads of interest. Both memory and compute emulation can be augmented using

the temporal dimension, namely system stall while preserving state and time synchronization and

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 67

while virtualizing the memory address space or compute instance plurality.

Other approaches, such as hybrid software simulation combined with FPGA-based emulation, or

FPGA-accelerated simulation, manifest lower fidelity and simulation speed than the hardware em-

ulation used in this work.

5.2 FreezeTime Mechanism and Implementation

In this work, we leverage the property that, during FPGA-accelerated architectural emulation,

the simulated clock cycles need not coincide with the host FPGA clock cycles. Henceforth in this

chapter, we refer to the time seen by the emulated target system as emulation time and the time seen

by the host fabric as host time. We develop a technique called FreezeTime to facilitate coarse-grain

architectural virtualization. The FreezeTime technique preserves emulation time, synchronized

throughout the system, which we achieve by stalling the remaining architecture modules during

the runtime of a virtualized module. The stall mechanism has to store the modules state, halt the

execution over many clock cycles, then fetch back the state and resume execution. The mechanism

requires a shared memory space and additional control logic, such as halting the clock driving the

model logic (for example, using a gated clock enable buffer) or inserting auxiliary control logic

that prevents updating register values.

The FreezeTime mechanism adds to the toolbox of time modeling. Most commonly, time is mod-

elled using (a) frequency scaling, that allows modeling the baseline bandwidth or throughput, in

conjunction with (b) delay elements that model latency, which are often approximated to fixed pa-

rameters, runtime variable values, or more elaborate timing models [11, 90]. While helpful, with

these two techniques the logic model still adheres to the system clock and time has to pass unin-

terrupted. With (c) FreezeTime the user has an additional technique that brings the flexibility to

model more behavior, using auxiliary clock cycles, without affecting emulated time correctness. In

the following, we describe how the FreezeTime mechanism can be implemented in an emulation

framework.

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 68

5.2.1 Target System Mapping for Virtualized Emulation

Figure 5.1: FreezeTime top-level diagram with physical to virtual mapping.

To facilitate system-level emulation, we first spatially partition the emulated system by grouping

the identical instances into blocks and then connecting the blocks through dedicated interconnects.

Each block can then implement its respective instances through virtualization (in time). This con-

cept is demonstrated by an example SoC system in Fig. 5.1. The target system SoC consists of

several CPU and accelerator (marked as xPU) instances, memory controller, and peripherals. To

emulate it, we use a logical system in which the CPU cores and accelerators are virtualized within

their respective blocks. We illustrate the virtualized CPU cores across two physical CPU blocks

to demonstrate flexibility and balancing between physical and virtual resources. The DRAM is

represented by a soft FPGA-based DRAM model in which the memory capacity is virtualized due

to FPGA resource constraints. Following the spatial partitioning, we virtualize the contents of the

emulation blocks independently, employing a system-wide method for communicating data ac-

cesses and synchronization. This communication and synchronization method requires a generic

template for virtual instances.

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 69

Figure 5.2: Architecture partitioning in FreezeTime where emulation blocks group duplicate in-

stances and virtualize them using a template.

5.2.2 Generic Template for Virtual Instances

The internal composition of an emulation block is shown in Fig. 5.2, where several virtual in-

stances are mapped to a common physical emulation instance using time-domain multiplexing.

In order to account for modeling both logic, memory, and interconnect, each physical instance is

broken down into five main components: 1) the logical emulation and its associated state, 2) the

memory emulation and its associated state, 3) the interconnect emulation, 4) a state backup in ex-

ternal memory, and 5) a synchronizer for maintaining synchronization across all emulation blocks.

Most emulation blocks will only contain the components related to the virtualized functionality.

For example, an AXI interconnect emulation block may only contain an interconnect emulation

component and a synchronizer. On the other hand, a CPU block with a large L2 cache may contain

all five components. Fig. 5.3 depicts how the above-mentioned components are realized in the

virtual and physical form.

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 70

Logic Emulation

The role of the logic component is to emulate the computation behavior of virtualized instances,

such as CPU cores or accelerators. A subset of instances is implemented on the FPGA and used

to execute the operations of all virtual instances. For virtualization, upon a call for execution,

operations are queued for emulation on the first available physical resource, as shown in Fig. 5.3

(a). Execution begins with the complete fetching of the operands, resolving any pending data

dependency. During execution, if an operation is emulated following the first batch, the module

issues and maintains a stall signal until the result is returned and stored. The stall signal freezes

the time and activity of the remaining system, preserving system-level time and activity in sync, as

shown in Fig. 5.3 (c).

At any given time, the register values define the state of the computation instances in the system.

Preventing the update of the register values saves and preserves the instance state during a stall

and halts execution. This can be achieved by delaying the clock edge event or by inserting MUX

gates to control the register value update. The loaded state allows resuming runtime upon stall

termination. A possible hazard is when data is being burst from outside, such as during an interrupt,

in which case it is falsely ignored. Since the FreezeTime approach is to stall all the systems but the

virtualized instance to be emulated, the data transmission will be stalled at the source. Resuming

execution after a stall relies on the state correctly saved throughout the system.

Memory Emulation

The role of the memory emulation component is to virtualize aspects of a memory hierarchy that

are unfeasible to map on an FPGA, such as latency and capacity. We achieve this by controlling

the memory operation timing as observed from the system. For example, to emulate a large SRAM

or DRAM flavor using the board memory resources (BRAM, DRAM, Flash), the board memory

latency can be masked by freezing system time. A general mechanism to emulate memory aspects

is to dedicate a small amount of memory local to the FPGA with custom delay and bandwidth and

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 71

(a) Idle

----/stall= 0 ,_/ __ ..,. •• Compute
'------/ Operation

Enqueue

Fetch
Operand

Execute

Store results in
shared memory

Compute

Emulation
Instance
Running

Yes

State
preserve

Halt
Execution

(c)

No

Yes

Yes

Yes

Stall= 1

Load and
Resume

No

■-
Yes

-

(.)
■-

�

Idle (b)

Read/Write
Operation

�___, Stall = 0

I /

Synchronize
Stall= 1

/
• local and board

_ . memory

Memory

(d)

Read/Write
Operation

14-------,,_

No

Yes

Preserve
State

Figure 5.3: Virtual (a and b) and physical (c and d) flowchart of FreezeTime components. Compute

(a and c), and memory (b and d) constructs are shown with gray and green backgrounds, while the

virtual and physical mapping are separated with purple and blue borders, respectively.

use a data synchronization mechanism to expand the emulated capacity to board memory resources.

The implementation is similar to a standard cache. If the memory operation data/location is not

locally cached, the data synchronization mechanism will sync it with the board memory while

issuing a stall signal, as shown in Fig. 5.3 (b). A good example of the above-explained data

synchronization mechanism is implemented in PiMulator [90].

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 72

Stalling the physical memory model preserves the model state, ensuring that the custom delays

observed by the system are consistent. The stall signal does not affect the physical board memory

controller.

Interconnect Emulation

The interconnect emulates interfaces between the compute and memory components. This com-

ponent is assumed stateless and is emulated as part of the compute and memory block interfaces.

More advanced communication elements, such as an NoC router, are emulated with computing

blocks.

State Backup

The state backup is the primary mechanism for preserving virtual instance states and complete

memory contents. This is implemented using an FPGA board memory resource and is shared

across multiple emulation blocks. The emulation framework can use the backup memory to store

the internal register values of virtual compute instances and load them each time the instance is

emulated. For memory emulation, the framework can use this resource to hold the virtual memory

data, as shown in Fig. 5.3 (d). Since the backup memory is shared across the many emulation

blocks, instances can be virtualized on any available supporting physical modules.

Synchronizer

The role of the synchronizers is to maintain the emulation time and state in sync across virtual

instances and other physical emulation blocks. The synchronizer components collect the stall

signals from virtualized instances and pass the logical value to the remaining system blocks via a

dedicated channel (not shown in Fig. 5.3). Similarly, it receives the synchronization stall signal

at the emulation instances and passes the signal to be used by the FreezeTime mechanism. The

synchronizer accumulates the stalls issued during virtual instance computation and virtual memory

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 73

data sync and issues the stall signals at the physical resources modeling the memory and compute,

respectively.

We further augment the synchronization technique to facilitate scaling architecture virtualization

from several to many virtualized instances. For this, we equip each emulation instance synchro-

nizer with a timer that keeps track of a given instance’s execution point. By comparing the timer

values of virtualized instances and the rest of the system, we confirm synchronization and can

repeat the virtualization over vast virtual architectures.

5.2.3 Sync-by-stall

A key component of the FreezeTime mechanism is the ability to preserve time synchronization

by stalling the emulated system. When emulating an architecture with a mix of physical, virtual

active, and virtual queued-for-execution instances, the state and time stamp of the latter will deviate

and require synchronization. By stalling the system, we allow the virtual queued-for-execution

instances to ”catch up” with the system time and state. Stalling can be implemented by generating

dynamically stalled clock signals and using them to drive system components. On FPGAs, the

recommended practice is to use a Gated Clock Enable Buffer (BUFGCE) since the generated clock

signals map to clock tree resources. Alternatively, the stall mechanism can be implemented as part

of the design logic. Many compute modules, such as processors, already include stall mechanisms

that facilitate debug, interrupt, or hibernate capabilities and can be utilized for FreezeTime. Stalling

system time and state augment an emulation framework with the time-multiplexing capability.

Architectural time-multiplexing facilitates the emulation of numerous virtual instances on a subset

of physically synthesized modules, thus enabling the emulation of larger systems.

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 74

Figure 5.4: Target system to be emulated and b) Logic model that freezes the processor during L2

cache miss state, hiding the auxiliary data sync time, effectively virtualizing large SRAM capacity.

5.3 Experimental Results and Discussion

5.3.1 Experimental Setup

To evaluate the efficacy of FreezeTime, we consider the hypothetical case of a single processor

coupled to a large SRAM memory (too large to fit on an FPGA), with a read and write latency of

1 clock cycle, shown in Fig. 5.4(a). While this may be an overly simple example, it serves as a

representative case in which more complex system configurations can be inferred. We accomplish

this task by modifying an SoC generated with the LiteX framework [18] running on a Xilinx

VC707 FPGA (Virtex-7). The framework modifications consist of state machines that monitor

and respond to L2 cache to LiteDRAM memory controller bus activity by issuing processor stall

signals.

Stalling the processor system allows for auxiliary clock cycles for synchronizing data between

L2 and board DRAM memory. Meanwhile, the software on the processor perceives the memory

system as a large SRAM. We use the default Linux-capable VexRiscV processor [16] combined

with the onboard DDR3 memory via the standard LiteDRAM controller (with accompanying L2

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 75

cache), as shown in Fig. 5.4(b). By “hiding” the LiteDRAM controller bus latency, we emulate the

behavior of a hypothetical 1 GB SRAM memory. To achieve this, we generate a stall signal based

on the LiteDRAM controller bus activity and feed the signal into the processor stall mechanism.

5.3.2 Freezing Time Demonstration

processor_system active

processor
virtual_accelerator_1
virtual_accelerator_2

active frozen

physical_accelerator
idle

(a)

(b)

Figure 5.5: Architectural virtualization with time multiplexing: (a) Waveform of stalled VexRiscV

CPU using a gated clock enable buffer. (b) Runtime mapping of virtual compute instances to a

physical module preserving time in sync.

The challenge is to freeze, then unfreeze, on command, a large portion of an emulated architecture

without loss of handshaking or bus data. We ensure that the expected behavior occurs, first in

simulation and then by observing signals of interest on hardware using a Xilinx Integrated Logic

Analyzer (ILA). A waveform containing several signals of the simulated testbench is shown in

Fig. 5.5 (a). All system peripherals are driven by the global system clock signal sys clk, except for

the processor system. The sys clk is passed via a clock gate (BUFGCE instance), enabled by the

gclk enable signal, to generate the gated clock signal sys gceclk, which drives the processor sys-

tem. As expected, we observe that the processor iBus and dBus are active during sys gceclk==1

and stalled during sys gceclk==0. We further validate correct operation by observing that the pro-

cessor stalls do not miss incoming bus data or signals and can resume execution once the processor

is no longer stalled. We then further verify the correct behavior with complete program execu-

tion, such as BIOS and Linux boot, in simulation and on hardware with random and bus-generated

stalls.

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 76

Similarly, in Fig. 5.5 (b), a time-multiplexed system is depicted, comprising a processor and two

identical accelerator instances, both of which are supported by a single physical accelerator mod-

ule. In the event that both virtual accelerator units are busy, the FreezeTime mechanism must

be employed. The operand data of virtual accelerator 2 is stored in memory and queued for

execution while virtual accelerator 1 and the processor execute as expected. Once the task on

virtual accelerator 1 is complete, the physical accelerator becomes available, and the task on vir-

tual accelerator 2 resumes, while activity and time on all remaining system modules are frozen.

5.3.3 Benchmark and Run Environments

For comparing FreezeTime against traditional simulation methods, we consider booting an operat-

ing system as a representative benchmark. Booting an operating system can stress various parts of

the complete system, including the memory subsystem. These reasons make booting an operating

system an ideal test case to verify the correct memory modeling in our evaluation system.

To perform this benchmark, we boot the ubiquitous Linux kernel on an FPGA, including our

evaluation system, with and without FreezeTime implementation. We verify the correct behavior

with complete program execution, such as BIOS and Linux boot, in simulation and on hardware

with random and bus-generated stalls. Given the nature of the FPGA, we measure the boot time by

counting fabric cycles between two triggers generated by the kernel debug printouts to the attached

serial port. Linux Boot time is typically measured with respect to the login prompt; however, we

instead define the measurement between the initial boot-loader hand-off message and the execution

of the init process. While this is a non-standard approach, the init process message is associated

with the final system time timestamp during the boot process, thus providing a consistent measure

of simulation time across the various platforms benchmarked in this chapter.

In addition to running in FreezeTime, we also boot Linux on a FireSim [10] single-node simulation

instance. We configure a system consisting of a Rocket Chip [91], a large L2 cache, and a timing

model for the DDR4 memory. This system does not use FreezeTime; however, it is useful for

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 77

evaluation as it resembles a hybrid emulation system.

We also benchmark against two traditional software simulators: gem5 [61] and Verilator [92].

The gem5 simulator is a state-of-the-art architectural simulator that uses a functional timing (FT)

model approach to simulate both the processor and memory system. The gem5 target system

consists of a standard single 64-bit RISC-V core interfacing with a large L2 cache and a simplified

DDR3 memory model. The stock Linux image for gem5 included additional features necessary

for a software simulation that increased the total boot time. We adjusted the measured host and

simulation duration to exclude the extra latency. Verilator, on the other hand, is a logic simulator

that accurately and faithfully simulates the synthesizable Verilog hardware description. For the

Verilator simulation, we use the LiteX framework to generate an exact Verilog implementation of

the target system consisting of a VexRISCV processor coupled with a large SRAM. Benchmarking

against gem5 and Verilator gives us an indication of evaluation performance (host time duration)

and accuracy, indicated by consistency in simulation time duration.

In all cases, the system clock frequency was set to 150 MHz. Both gem5 and Verilator runs were

performed on a machine with two 8-core Intel Xeon Silver 4208 2.1GHz processors and 256GB

DDR4 memory running Ubuntu 18.04.5 LTS. The additional resource utilization of FreezeTime

for this example setup was under 2% LUTs/FFs since we only use a gated clock enable buffer,

control state machines, and observability counters.

In addition, we also run different memory access patterns using Hopscotch [41] benchmark suite.

Hopscotch is a benchmark suite that comprises of data-intensive kernels which are designed to

issue various types of traffic such as read-only, write-only, and mixed traffic, each with different

access patterns. These access patterns may include sequential, random, strided, tiled, or even a

combination of these. This diverse range of access patterns makes Hopscotch an ideal tool for

identifying the performance bottlenecks of a system. With Hopscotch, users can easily pinpoint

the areas where the system is struggling and improve its overall performance. We run selected

bandwidth Hopscotch kernels inside Linux on the same logic system on the Xilinx VC707 FPGA,

with and without FreezeTime, and observe the impact on the measured bandwidth utilization.

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 78

5.3.4 Results and Interpretation

Figure 5.6: Experimental results showing host and simulation time for Linux boot for different

evaluation approaches. With FreezeTime, we achieve fast runtime and observe a similar simulation

time as Verilator RTL simulation.

We summarize the measured Linux boot results in Fig. 5.6, showing both the host time duration for

the different platforms and their respective simulation time duration, and the measured Hopscotch

bandwidth utilization in Fig 5.7. We expect the total simulation time to be consistent, given that the

target systems and workload are the same. Therefore, the measured simulation times serve as an

indirect accuracy assessment. The Verilator RTL is the most accurate since it faithfully simulates

the exact target system.

The first observation is that using time multiplexing for architectural virtualization re-introduces

additional latency. The results show a ≈ 53% increase in host time between the LiteX system

and FreezeTime. However, the added latency is still in the realm of FPGA emulation, with the

host time duration much below Verilator RTL simulation (170×), software simulation (40×), and

FPGA-accelerated simulation (20×). The latency penalty will increase linearly with the amount of

architectural virtualization. For memory capacity, the penalty is fixed per each cache-miss RD/WR

operation. For compute instance virtualization, the penalty will depend on the ratio of physical to

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 79

Figure 5.7: Experimental results showing higher measured memory bandwidth utilization when

running selected hopscotch bandwidth kernels on the FreezeTime versus the LiteX and system.

virtual and the ratio of computing time to total duration.

Second, we observe that the FreezeTime and Verilator RTL simulation’s total simulation times are

consistent, demonstrating that the FreezeTime technique is cycle-accurate. In the experiments, we

compared the waveforms and ensured that the system stalls entirely hide the auxiliary clock cycles.

Last, for bandwidth utilization, as can be seen in Fig. 5.7, we observe a consistently higher mea-

sured bandwidth utilization for the FreezeTime system. In the conventional system, the VexRiscV

processor issuing memory commands interfaces with a DDR3 memory via a tiny L2 cache and

LiteDRAM memory controller. During cache misses, the memory access latency causes a penalty

on the overall bandwidth utilization. With FreezeTime, the processor system, including the timer,

is frozen during these DDR3 memory access intervals. Therefore the measured bandwidth utiliza-

tion is equivalent to the hypothetical case of a processor coupled with a large SRAM memory. Not

only does the modeled SRAM size become effectively equal to the DDR3 capacity, but the mea-

sured results represent the processor core performance unaffected by host platform or logic model

limitations. In this example the user can thus emulate and quickly evaluate processor performance

for low operation intensity.

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 80

5.4 Related Work and Adoption Opportunities

Here we describe several state-of-the-art emulation frameworks for modeling next-generation high-

performance computing systems and explain how FreezeTime technique can enhance their capabil-

ities. LiME [11] employs a hard processor system and reconfigurable accelerator interfacing with

the DRAM memory to emulate HPC systems. The FPGA board resources limit the target system

processor topology, accelerator count, memory capacity, and other modeled aspects. In addition to

using frequency scaling and runtime configurable delays to model the target system frequency and

different memory flavors, the FreezeTime technique can expand emulation capability by virtual-

izing accelerator instances and expanding the memory hierarchy. Similarly, MEG-HMC [19] and

MEG-HBM [12] employ soft RISC-V cores, an adaptable memory controller, near memory accel-

erator logic, and the HMC/HBM memory to emulate HPC systems featuring HMC/HBM. Here,

in addition to spatial limitations, only the memory flavor of the host FPGA board can be emulated

in the target system. By adopting the FreezeTime mechanism, we can reshape the host physical

memory to render aspects of other, different memory flavors using auxiliary state machines and the

sync-by-stall mechanism. FireSim [10] employs FPGA-accelerated simulation models for Rock-

et/Boom cores, memory, and network peripherals to emulate the activity of nodes in a network.

Scaling to vast sizes is achieved by partitioning the network over multiple FPGA boards in the

cloud. Conversely, with the FreezeTime mechanism, a single FPGA board can host numerous

virtualized nodes and network components.

Several works similarly make use of time multiplexing for architectural virtualization. HAsim [93]

presents a fine-grained time-multiplexing scheme to model a multicore processor and an on-chip

network. In contrast, FreezeTime adopts a coarse, module-level, and operation-level time-multiplexing

approach interfacing with a global synchronization mechanism that spans a heterogeneous comput-

ing system and memory hierarchy. ProtoFlex [94] employs “transplanting,” a hybrid simulation-

emulation technique where the FPGA emulates only the common-case logic while the rare, com-

plex behaviors are performed in software simulation. RAMP Gold [22] simulates multicore sys-

tems using a functional-timing model efficiently mapped on FPGA. The FreezeTime mechanism

Chapter 5. FreezeTime: System Emulation through Architectural Virtualization 81

facilitates synchronization between the software-simulated and FPGA-emulated regions of a hy-

brid system and provides additional flexibility to functional-timing units.

Unlike the frameworks mentioned above that employ a miniaturized, abstracted version of the tar-

get design, industrial emulation tools such as Cadence Palladium, Siemens Veloce, and Synopsys

ZeBu [70] are developed with the purpose of hardware verification prior to fabrication. FreezeTime

can help virtualize instances to fit extensive and complex designs on FPGA resources.

Chapter 6

PiMulator: Fast and Flexible

Processing-in-Memory Emulation

PiMulator leverages the memory emulation model presented in chapter 4 together with the system-

level emulation features and FreezeTime mechanism from chapter 5 and augments the infrastruc-

ture with support for PiM kernel logic throughout the memory data hierarchy.

6.1 Proposed FPGA-based Emulation Model

In this section, we describe the proposed memory and PiM emulation model shown in Figure 6.1.

Similar to the emulation model described in chapter 4, the model implements memory and PiM

logic structures such as interface, command decoder, controls, data bus and organization, and PiM

processing units, emulating associated behaviors such as memory state and latencies on the FPGA

fabric. Moreover, we harness FPGA board memory resources (i.e., DRAM, HBM) to expand

the emulated memory capacity using a data synchronization engine (DSync). We implement the

PiMulator model in System Verilog, allowing for future low-level modifications over the RTL and

enabling higher performance than high-level languages. The following subsections describe each

82

Chapter 6. PiMulator: Fast and Flexible Processing-in-Memory Emulation 83

Memory + PiM Channel Model

Trace
Capture

Command
Decoder +
RAS/CAS

Chip 0

Chip NChip N

dq_out
Concat &

Mux

dq_in
Slice &
Demux

stall

Timing & State

bg3ba3
Timing FSM

bg0ba1
Timing FSMbg0ba0

Timing FSM

bg3ba3
Timing FSM

bg0ba1
Timing FSMbg0ba0

Timing FSM

Timing & State

bg3ba3
Timing FSM

bg0ba1
Timing FSMbg0ba0

Timing FSM

Data Sync Engine

bg3ba3
DSync FSM

bg0ba1
DSync FSMbg0ba0

DSync FSM

bg3ba3
DSync FSM

bg0ba1
DSync FSMbg0ba0

DSync FSM

Data Sync Engine

bg3ba3
DSync FSM

bg0ba1
DSync FSMbg0ba0

DSync FSM

dq_in_M

dq_in_C

DSync AXI Ctrl

act

Addr

dq_out_C

A
X

I

stats

dq_out_M Tristate

dq_out_C

dq_in_C

bg/ba

U
lt

ra
R

A
M

 C
ac

h
e

A
X

I I
n

te
rc

o
n

n
ec

t

So
ft

 M
em

o
ry

 C
o

n
tr

o
lle

r
So

ft
 M

em
o

ry
 C

o
n

tr
o

lle
r

dq

Rank PU

Bank Group 4 BgPUBank Group 4 BgPU

Bank Group 3 BgPUBank Group 3 BgPU

Bank Group 2 BgPUBank Group 2 BgPU

Bank Group 1Bank Group 1

Bank 1
 Rs BPU Rs BPU

Bank 1
 Rs BPU

Bank 2
 Rs BPU Rs BPU

Bank 2
 Rs BPU

Bank 3
 Rs BPU Rs BPU

Bank 3
 Rs BPU

Bank 4
 Rs BPU Rs BPU

Bank 4
 Rs BPU

BgPUBank Group 1

Bank 1
 Rs BPU

Bank 2
 Rs BPU

Bank 3
 Rs BPU

Bank 4
 Rs BPU

BgPU

Chip PU

Bank Group 4 BgPU

Bank Group 3 BgPU

Bank Group 2 BgPU

Bank Group 1

Bank 1
 Rs BPU

Bank 2
 Rs BPU

Bank 3
 Rs BPU

Bank 4
 Rs BPU

BgPU

Chip PU

Bank Group 4 BgPU

Bank Group 3 BgPU

Bank Group 2 BgPU

Bank Group 1Bank Group 1 BgPU

Chip PU

act

bg/ba

Addr

ck_c/t

act

bg/ba

Addr

ck_c/t

H
B

M
2

H
B

M
2

H
B

M
2

H
B

M
2

D
D

R
4

D
D

R
4

D
D

R
4

D
D

R
4

H
B

M
2

H
B

M
2

D
D

R
4

D
D

R
4

Figure 6.1: Memory and PiM emulation model block diagram consisting of memory components

(blue), PiM processing units (red), auxiliary structures (brown), and peripherals.

of the PiM components in detail.

6.1.1 Bank array model for memory and PiM

We present two distinct bank array shapes, as illustrated in Figure 6.2. Each array is implemented

utilizing a true dual-port RAM module, where one port is dedicated to the DIMM interface bus

and the other exclusively caters to the PiM kernels. The first array shape, characterized by a width

of DEV ICE WIDTH , is tailored for conventional memory operations, such as burst read and

write of a single row-column word per clock cycle. Addressing is achieved by concatenating the

row and column indices. This configuration restricts the PiM kernels to accessing only a single

word of data at a time, which is suitable for architectures with PiM kernels external to the bank.

In contrast, the second array shape facilitates access to the entire row buffer, rendering it compatible

with a wide range of PiM architectures in which the logic is either integrated within the array,

aligned with the row buffer, or situated in proximity to the array. To implement this configuration,

we change the array width to DEV ICE WIDTH ∗ COLS. We then configure the MEM port

Chapter 6. PiMulator: Fast and Flexible Processing-in-Memory Emulation 84

Bank Array

W
 =

 D
EV

IC
E_

W
ID

TH

D = ROWS * COLS

Bank Array

W
 =

 D
EV

IC
E_

W
ID

TH
 *

C
O

LS

D = ROWS

PiM

MEM

PiM

MEM

a)

b)

Figure 6.2: Comparative Bank Array Shapes for Memory and Processing-in-Memory (PiM) Data

Storage Architectures. (a) Depicts the array shape tailored for standard memory operations and

PiM outside the Bank, while (b) illustrates the array shape that enables access to the entire row

buffer, making it suitable for various high-bandwidth PiM architectures.

Chapter 6. PiMulator: Fast and Flexible Processing-in-Memory Emulation 85

PiM kernel template

 data_in

 CMD_in

 addr_out

 data_out

PiM logic
pipeline

PiM FSM

registers

 CMD_out

Figure 6.3: PiM kernel minimal logic template.

to solely affect a single-word portion of the interface, while the PiM port can leverage the full

interface data.

6.1.2 Templates for PiM logic

PiM modules that can easily be customized with any logic are included inside the bank, bank

group, chip modules, and at the rank level. They are connected to the local data bus and can access

data from the bank module rows that the parent module encompasses. After executing the logic,

the results are written back to the bank module rows. The control signals are passed from the

top PiMulator module. We opted for such a distributed PiM model to facilitate emulation of PiM

architectures of different topologies such as [36, 39, 95].

6.1.3 Top PiMulator Module

The top module implements the DIMM interface, including the data and strobe tri-state logic,

and the AXI interfaces to the board memory resources. Moreover, it instantiates and wires all

the modules described above. The configuration parameters are passed top-down, resulting in a

Chapter 6. PiMulator: Fast and Flexible Processing-in-Memory Emulation 86

modular, parameterizable model for memory and processing in memory emulation on FPGAs.

The model supports hardware signal observability and real-time statistics collection such as the

number of memory and PiM operations, bank state dynamics, DSync hit rate, etc. The model can

be interfaced with a processor system or PCIe DMA via a memory controller. We verified the

operation of multiple model configurations under possible usage scenarios such as sequential and

random burst read/write and bank interleaving and ensured correct behavior.

6.1.4 Integration with LiteX

We wrap the top PiMulator System Verilog module in LiteX [18] and interface it with the Lite-

DRAM memory controller and VexRISC-V processor system by defining a target script. More-

over, we implement the platform definition for the Xilinx Alveo U280 FPGA board and test oper-

ation using the provided utilities and standalone applications. The LiteX framework provides nu-

merous open-source IPs, supports several soft cores and 60+ FPGA boards from different vendors.

Moreover, it provides utilities for development, build, SoC generation, communication, application

compilation, and deployment. We believe these features benefit the PiMulator framework in terms

of future full-system and full-stack development and facilitate user adoption.

6.1.5 Strategies adopted to provide increased usability

We opted to implement the memory and PiM logic in SystemVerilog, a low abstraction HDL that

preserves complete hardware control for hardware modeling. Nevertheless, for increased usability,

the framework provides a rebust and parameterized memory model, PiM kernel templates, FizZim

GUI approach for maintaining the FSMs and automated system generation with LiteX.

Chapter 6. PiMulator: Fast and Flexible Processing-in-Memory Emulation 87

Bank 0

Su
b

ar
ra

y
0

Su
b

ar
ra

y
1

Su
b

ar
ra

y
2

Su
b

ar
ra

y
3

RowClone LISA

Bank 0

Su
b

ar
ra

y
0

Su
b

ar
ra

y
1

Su
b

ar
ra

y
2

Su
b

ar
ra

y
3

Ambit st.1

Bank 0

Su
b

ar
ra

y
0

Su
b

ar
ra

y
1

Su
b

ar
ra

y
2

Su
b

ar
ra

y
3

Ambit st.2a

Bank 0

Su
b

ar
ra

y
0

Su
b

ar
ra

y
1

Su
b

ar
ra

y
2

Su
b

ar
ra

y
3

Ambit st.2b

Bank 0

Su
b

ar
ra

y
0

Su
b

ar
ra

y
1

Su
b

ar
ra

y
2

Su
b

ar
ra

y
3

Figure 6.4: Bitwise PiM operations for RowClone, LISA, and Ambit AND/OR.

6.2 Strategies for Emulating Bitwise-PiM and Generic PiM

In this section we describe how we can leverage the model entities described above to emulate

bitwise-PiM architectures.

6.2.1 Emulating RowClone

RowClone [33] describes two methods of cloning data locally in memory. In Fast Parallel Mode

(FPM), data is read from a source row into the row buffer and then written back to a destination

row within the same subarray with the help of a second Activate command. In Pipelined Serial

Mode (PSM), data is copied from a source row in a bank to a destination row in a different bank

via the shared global bus in a pipelined manner. To emulate RowClone-FMP, we augment the

DSync tag table to support linking multiple memory rows to one local row, while also accounting

Chapter 6. PiMulator: Fast and Flexible Processing-in-Memory Emulation 88

for subarray membership. Additionally, we model the bank state and timing associated with the

second activate command by dedicating an extra ReActivating state, also shown in Figure 4.4.

Likewise, for RowClone-PSM, we configure the DIMM interface and memory bus to allow data

flow between banks.

6.2.2 Emulating LISA

LISA [34] further improves RowClone-FPM by enabling fast inter-subarray data cloning with

the help of isolation transistors that link the bit lines of neighboring subarrays. Emulating LISA

involves modeling neighbor subarray membership on top of the approach to emulate RowClone-

FPM, effectively emulating a line network between the subarrays. The same approach can be used

to emulate other inter-subarray network topologies, furthering design space exploration.

6.2.3 Emulating Ambit

Ambit [35] describes a DRAM subarray design that facilitates bulk AND-OR-NOT operations.

First, it utilizes RowClone-FPM to copy the operand data to dedicated subarray rows. Next, for

AND-OR operations, a triple-row activation is triggered that computes a bitwise majority function.

Similarly, a dedicated word line connected to the negated logical value inside the sense amplifier

is activated for NOT operation. Finally, it returns back the result with a last RowClone-FPM

operation. We model the dedicated Ambit subarray rows and the logic operations inside the Bank

Processing Unit module using LUTRAM and LUTs while timing is modeled with three repeated

activations. We explore several Ambit subarray designs and test these strategies for emulating

state, timing, sub-array, data flow, and bitwise-PiM with long test vectors.

Chapter 6. PiMulator: Fast and Flexible Processing-in-Memory Emulation 89

6.2.4 Emulating Fulcrum

Fulcrum [36] proposes a more complex and general PiM architecture that places an AddressLess

Processing Unit (ALPU) at each pair of two subarrays. Additionally, operand data is passed be-

tween the subarrays and the ALPU via Walkers. The ALPU consists of an ALU, an instruction

buffer, a control unit, register and connection busses. To emulate Fulcrum into PiMulator, we have

to expand the bank model to enable parallel access to multiple subarrays. Next, we have to instan-

tiate the necessary number of walkers and ALPU instances into the bank PiM template. While this

architecture is of high interest to the authors and has motivated the development of several features

such as subarray membership and shared PiM kernels, the actual emulation implementation is left

as future work.

6.2.5 Emulating Sieve

Sieve [40] constitutes a bit-serial Processing-in-Memory (PiM) architecture designed to execute

k-mer matching at the bank subarray level. Its primary components include a matcher circuit

per sense amplifier, which ensures parallel execution of query and reference k-mers, along with a

pipelined column finder circuit for pinpointing the corresponding column of the reference k-mer.

We implement functional modeling of Sieve within the PiMulator framework using SystemVerilog.

The process is part of a broader effort to integrate Sieve with the host system fully and evaluate

variations of the Sieve architecture with relevant workloads. PiMulator hosts the Sieve logic within

the PiM templates, facilitating direct and seamless access to active rows. Through the true dual-port

bank array design implementation in PiMulator, the framework allows the host and the Sieve kernel

independent access to the banks, simplifying the model implementation. The framework emulates

the additional Sieve logic latencies and commands by modifying the state machine timing model

and extending the command decoder table with Sieve logic controls.

The emulation of Sieve reveals a Block RAM (BRAM) memory usage of a mere 0.78% on a sub-

array featuring 64×8192 bit cells. This low BRAM usage suggests PiMulator’s scalability across

Chapter 6. PiMulator: Fast and Flexible Processing-in-Memory Emulation 90

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
1 0 0

r _ r a n d _ i n d
w _ r a n d _ i n d

r w _ s c a t t e r _ g a t h e r
r w _ s c a t t e r

r w _ g a t h e r
r _ s t r i d e _ 3 2

w _ s t r i d e _ 3 2
r _ s t r i d e _ 1 6

w _ s t r i d e _ 1 6
r _ s t r i d e _ 8

w _ s t r i d e _ 8
r _ s t r i d e _ 4

w _ s t r i d e _ 4
r _ s t r i d e _ 2

w _ s t r i d e _ 2
r w _ s e q _ c o p y

r w _ s e q _ i n c
w _ s e q _ f i l l

w _ s e q _ m e m s e t
r _ s e q _ i n d

r _ s e q _ r e d u c e1 0 0

1 0 1

1 0 2

1 0 3

 C P U S i m u l a t i o n F P G A E m u l a t i o n

Ru
nti

me
 [s

] H i t r a t e [%] S p e e d u p

Figure 6.5: Runtimes for CPU Simulation and FPGA Emulation of a DDR4 memory system

stressed for 1s of real target time with different access patterns; ratio between the two runtimes

and the corresponding DSync hitrate.

multiple subarrays, banks, and chips. This modeling exercise has resulted in valuable architectural

insights and innovative design concepts that can inform the development of future bit-serial PiM

architectures.

6.3 Evaluation

At this time, we evaluate PiMulator runtime under different memory access patterns using the

Hopscotch [41] benchmark suite and compare it with simulation runtime. Hopscotch consists of

data-intensive kernels that issue read-only, write-only, and mixed traffic with different access pat-

terns (e.g., sequential, random, strided, tiled, and a combination of these), making it easier to

pinpoint the performance bottlenecks of a system. For simulation, we first run the benchmark

workloads for an allowed runtime of 1s in gem5 [61] under a target system consisting of a 3GHz

X86 CPU, 64kB L1 cache, and 8GB DDR4 2400 16x4 memory. We extract the memory access

traces and convert them into DRAMsim3 [42] trace format. Finally, we measure execution time

for each workload traces in DRAMsim3 on a machine with two 8 core Intel Xeon Silver 4208

Chapter 6. PiMulator: Fast and Flexible Processing-in-Memory Emulation 91

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5
0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Me
mo

ry
Ca

pa
city

 | P
iM

 Th
rou

gh
pu

t

D e d i c a t e d A m b i t A r e a R a t i o

 C a p a c i t y
 T h r o u g h p u t

Figure 6.6: Pareto curve for Ambit design space exploration.

2.1GHz processors and 256GB DDR4 memory running Ubuntu 18.04.5 LTS. This runtime accu-

rately measures CPU memory simulation time. For emulation, we feed the memory access traces

into an 8GB DDR4 2400 16x4 PiMulator memory model and capture the total number of clock

cycles. The total FPGA runtime is evaluated with the clock frequency of 250MHz, extendable up

to 333MHz. The measured results are presented in Figure 6.5. As expected, all kernels complete

significantly faster in emulation, registering a speedup of 28× (weighted average over the number

of memory accesses). The results also indicate that emulation speed is very high for kernels with

high data locality and can be increased by using better fitting DSync replacement policy algorithms

that achieve higher hit rates.

We also evaluate a theoretical Ambit+LISA [34,35] array configuration consisting of variable-sized

inter-connected subarrays with several configurations for the dedicated PiM rows, in which all

subarrays can compute at once. We stress the model with large input vectors on which repeatedly

compute AND, OR, NOT, XOR and NAND at the subarrays, and measure throughput for each

configuration. The results obtained are shown in Figure 6.6. As expected, throughput increases

with the number of dedicated Ambit rows. Moreover, as the number of dedicated Ambit rows

Chapter 6. PiMulator: Fast and Flexible Processing-in-Memory Emulation 92

starts to dominate the memory space, the throughput increase slows due to the need to clone the

operands from neighboring subarrays. This showcases how PiMulator can be used to emulate and

evaluate multiple variations of a PiM architecture.

We synthesize the memory + PiM model with only a minimal PiM configuration on an Alveo U280

FPGA board and achieve 100% BRAM and under 1% FF and LUT utilization. It is also possible

to expand the memory model local rows to make use of Ultra-RAM resources, thus accommodat-

ing an even larger number of rows on the FPGA. Alternatively, the Utra-RAM resources can be

harnessed in a cache block, adding locality and diminishing the penalty during a miss by further

speeding up part of the HBM2/DDR4 memory accesses. The remaining FPGA resources are nec-

essary to be used to emulate larger PiM units and the remaining full system components such as

CPU, caches, bus, controllers, peripherals, accelerators, and observability modules.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis offers a comprehensive exploration of Processing-in-Memory (PiM) architectures and

their emulation. The central objective was to propose a robust, high-fidelity framework to model

and assess upcoming memory and PiM architectures. To this end, we presented an in-depth the-

oretical discussion about DRAM memory and PiM architectures, specifically those pertinent to

FPGA emulation. We scrutinized various modeling approaches, emphasizing their benefits and

shortcomings, ultimately guiding this work’s design process.

The MEMulator memory model, a primary component of this thesis, incorporates all significant

components and behaviors of a memory device. The framework features a full-system target and

logic layer integration and facilitates system-level modeling, evaluation, and co-design, while the

layered approach allows for efficient separation of concerns. Furthermore, we demonstrated time

modeling strategies such as frequency, throughput, latency, and event synchronization, making

MEMulator a comprehensive tool for emulating large, complex, high-performance systems on

high-end FPGA boards.

Another significant element of this work is the introduction of FreezeTime, a coarse-grain module-

93

Chapter 7. Conclusion and Future Work 94

level stall mechanism that freezes simulation time to enable synchronization and cycle-accurate

emulation of computer architectures. The power of FreezeTime is its potential to enhance the

emulation capabilities of existing emulation platforms, providing near-emulation speed and high

accuracy. We demonstrated the viability of this concept by integrating FreezeTime into the open-

source LiteX framework, which supports a diverse set of FPGA boards.

This work then introduced PiMulator, a flexible open-source emulation framework for PiM. PiM-

ulator provides a fast, adaptable, and high-fidelity platform for PiM architecture prototyping and

evaluation. Notably, it facilitates the emulation of complex architectures under heavy workloads.

Our framework exhibits an average speedup of 28x, making it an efficient tool for design space

exploration.

This work combines the MEMulator, FreezeTime, and PiMulator into a comprehensive framework

for computer system emulation, design space exploration, and evaluation. This integration has

resulted in a robust, full-system emulation framework. This open-source, FPGA synthesizable

model can generate all system components, from the CPU to memory and peripherals, on the

FPGA using only soft cores - a unique feature among existing emulation frameworks.

Finally, we conducted a series of benchmarks on systems with different CPU and memory config-

urations, validating the speed and accuracy of our emulation framework. Our comparison studies

of FPGA-based emulation, FPGA-accelerated simulation, and simulation with gem5 and Verilator

further underlined the robustness of our approach. Overall, this work provides a comprehensive,

efficient, and robust platform for researchers to evaluate their design in a fast and accurate manner,

propelling the PiM architectural research forward. The code base and related dcumentation has

been made open source and is available at https://github.com/hplp/MEMulator and

https://github.com/hplp/PiMulator.

https://github.com/hplp/MEMulator
https://github.com/hplp/PiMulator

Chapter 7. Conclusion and Future Work 95

7.2 Future Work and Directions

Though we’ve laid the groundwork with key placeholders and essential components of the frame-

work, there is always room for growth. This involves improving existing attributes, fixing bugs,

adding new features, or aligning with emerging standards. The development and upkeep of the

framework is truly a life-long mission. The following subsections present our immediate and long-

term plans for future work. We hope these enhancements will positively impact both the academic

and research communities.

7.2.1 Memory model enhancements

As memory standards continue to advance, the memory emulation model must keep pace and

incorporate support for emerging features. Our model is primarily based on the DDR4 memory

standard, with a few supplementary functionalities supporting more recent standards. Despite

this, there are already opportunities for improvement. The model could gain from more robust

parameterization, such as incorporating a diverse range of memory channels, ranks, chip wiring

configurations, ECC algorithms, RAS/CAS controls, addressing schemes, and timing behavior.

These proposed enhancements should then be evaluated against RTL behavioral and software sim-

ulations with respect to performance and accuracy. Architects can learn insightful lessons by

running memory micro-benchmarks, such as Hopscotch, alongside standard user workloads and

benchmarks like Linux boot, SPEC CPU2017, and AI/ML training/inference workloads. More-

over, we suggest running multiple system-level simulations versus emulation tests, analyzing the

entire memory system, and comparing emulation, FPGA-accelerated, and computer simulation

results.

Lastly, an encompassing study on the whole memory hierarchy—spanning from virtual memory,

caches, cache coherency, memory controller, addressing schemes, to memory types—should be

undertaken. This would allow the extraction of performance data for latency and bandwidth under

various execution types (SISD, SIMD) and diverse workloads of interest. Such capability would

Chapter 7. Conclusion and Future Work 96

particularly benefit architects seeking to optimize the entire memory architecture for performance,

power, quality of service, and cost-effectiveness.

7.2.2 Models for Comprehensive PiM Taxonomy Support

This thesis outlines various PiM architectures that position PiM kernels anywhere from the sub-

arrays to the row buffer, bank, rank, interface, etc. These architectures could leverage diverse

memory technologies and involve different types of compute (analog or hardened digital circuit,

processor, reconfigurable logic). While we have experimented with emulating innovative and cost-

efficient PiM architectures like bitwise and bit-serial, providing comprehensive support for all

types of architectures remains a key objective.

To better understand the platform’s limitations and motivate the development of new features, we

should strive to emulate most of the PiM taxonomy space. An ideal starting point would be im-

plementing the most prevalent real and academic PiM architectures. The selection of architectures

should also consider popular applications such as AI/ML, database operations, and bioinformatics.

The future task, therefore, involves developing models of popular PiM architectures using PiMu-

lator, accommodating their variations, and running high-demand applications. The ultimate goal

is to explore different memory types (HBM, DDR, GDDR, LPDDR), identify and implement any

missing features, and ensure full support for the whole PiM taxonomy.

7.2.3 Full-system Integration Enhancements

Embedding the memory+PiM model into a full-scale system presents significant challenges and

demands considerable time. However, it remains a cornerstone in our projected work. The existing

deployment does not yet consistently deliver reliable functionality, with several key elements still

under development or inadequately tested, often underperforming with new configurations.

We have initiated integrating the memory model into the LiteX framework using a soft-PHY, with

Chapter 7. Conclusion and Future Work 97

support for both single and multiple channels. This feature is slated for a stable release in the near

future. Concurrently, the FreezeTime solution, responsible for implementing the time-scaling and

stall broadcast system, requires further enhancements to improve its automation, system genera-

tion, and reliability.

An additional aspect requiring meticulous planning and execution is the implementation of system-

level observability and statistical data collection. This feature will help measure performance

throughout the system and offer essential insights, facilitate the identification and understanding

of issues/bottlenecks, and enrich the framework’s benefits.

Finally, we aim to develop a dynamic, self-partitioning addressing scheme that seamlessly bridges

the Data Synchronization Engine with the UltraRAM and FPGA board memory resources. This

feature will support the emulation of large memory capacity with reduced cache miss penalty.

7.2.4 Firmware and Software Stack

Make the programmer’s life easy is one of the core CRISP center missions. Achieving this goal

requires more than logical layer infrastructure; it requires comprehensive system, firmware, and

software support for PiM architectures. Note that of the many PiM architectures proposed over the

years, only the real-world PiM architectures offer firmware and library support.

This research direction could greatly expedite the adoption of PiM architectures. The ultimate ob-

jective is the creation of a flexible firmware and software SDK that accommodates a comprehensive

PiM taxonomy and facilitates effortless application development and efficient runtime on the PiM

/ memory-centric compute paradigm. The solution would include memory controller support for

PiM commands, cache coherence mechanisms, security and data integrity protections, standalone

libraries or OS drivers, compiler support, and libraries for higher level software development.

This endeavor promotes interdisciplinary collaboration among computer architects, embedded and

operating systems researchers, as well as compiler and software engineers. The resulting advance-

ments could significantly streamline the adoption of PiM architectures, thereby stimulating further

Chapter 7. Conclusion and Future Work 98

interest in this domain.

7.2.5 Fostering Community Engagement

The evolution and progress of our framework will largely be guided by its users. Their discerning

eyes help identify potential issues, while their collaborative efforts contribute to developing solu-

tions and new features. We owe a debt of gratitude to all those who have contributed so far and

openly welcome further feedback and insights.

We cordially invite you to join the vibrant PiMulator community, where your work with PiM and

research can find a supportive and resourceful base. Engaging with us, you will not just be a user

but an integral part of a dynamic community that is collectively shaping the future of memory and

PiM emulation. Join, contribute, and let us innovate together in this exciting journey of discovery

and growth. Thank you!

Appendix A

DRAM Memory Timings

A.1 DRAM Memory Timings

99

Chapter 7. Conclusion and Future Work 100

tCK clock period

AL additive latency

CL CAS latency- Column address strobe latency

CWL CAS write latency

tRCD RAS to CAS delay

tRP Precharge time

tRAS Active to Precharge delay

tRFC Delay between the refresh command and the next valid command

tRFC2 Delay of partial refresh

tRFC4 Delay of partial refresh

tREFI Time interval between consecutive refresh cycles

tRPRE Minimum pulse width of read preamble

tWPRE Time between when the data strobe goes from non-valid to valid

tRRD S ACTIVATE to ACTIVATE command delay to different bank group

tRRD L ACTIVATE to ACTIVATE command delay to same bank group

tWTR S Delay from start of internal write transaction to internal read command for different

bank group

tWTR L Delay from start of internal write transaction to internal read command for same bank

group

tFAW Four activate window is a rolling time frame in which a maximum of four bank

activation can be engaged

tWR Write to precharge delay

tRTP Read to precharge delay

tCCD S CAS n to CAS n command delay for different bank group

tCCD L CAS n to CAS n command delay for same bank group

tCKE CKE (clock enable) minimum pulse width

Table A.1: Description of Memory timings.

Appendix B

List of Publications

B.1 In progress

• “MEMulator: Comprehensive Memory System Emulation” targeting a journal. In this paper

we will demonstrate full system emulation on FPGA, using soft IPs for the CPU, memory

controller and the memory model. We will demonstrate support for emulation of many

different memory flavors, evaluate runtime using the hopscotch [41], SPEC CPU2017 [96]

and ML benchmarks and compare results with computer simulation using gem5 [61] and

FPGA-accelerated simulation using FASED [21]. We will also conduct and present a case

study for RowHammer [38], highlighting the model’s ability to model components and data

layout.

• “PiMulator+: System Support for Processing-in-Memory Emulation“ targeting an architec-

ture conference or journal. In this paper we expand PiMulator and MEMulator with support

for increasingly advanced PiM architectures such as Fulcrum [36], and system support for

PiM at the memory controller, ISA, CPU, compiler and OS.

101

List of Publications 102

B.2 Journals/Letters

1. X. Guo, V. Verma, P. Guerrero, S. Mosanu, M. Stan, “Back to the Future: Digital Circuit

Design in the FinFET Era,” Journal of Low Power Electronics (JOLPE), Vol. 13, No. 3, pp.

338-355, September 2017. (Invited Paper)

B.3 Conferences

1. Sergiu Mosanu, Joshua Fixelle, Mohammad Nazmus Sakib, Kevin Skadron, and Mircea

Stan. “FreezeTime: Towards System Emulation through Architectural Virtualization.” In

2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

- Reconfigurable Architectures Workshop (RAW). IEEE, 2023.

2. Sergiu Mosanu, Mohammad Nazmus Sakib, Tommy Tracy II, Ersin Cukurtas, Alif Ahmed,

Preslav Ivanov, Samira Khan, Kevin Skadron and Mircea Stan. “PiMulator: a Fast and

Flexible Processing-in-Memory Emulation Platform.” In 2022 Design, Automation & Test

in Europe Conference & Exhibition (DATE). IEEE, 2022.

3. Yimin Gao, Sergiu Mosanu, Mohammad Nazmus Sakib, Vaibhav Verma, Xinfei Guo, and

Mircea Stan. “LiteAIR5: A System-Level Framework for the Design and Modeling of AI-

Extended RISC-V Cores.” In 2023 36th IEEE International System-on-Chip Conference

(SOCC).

4. Elisa Pantoja, Rahul Sreekumar, Sergiu Mosanu, Tommy Tracy, and Mircea Stan. “Virtu-

alized Controller for Computational RFID-based IoT Sensors.” In 2023 IEEE International

Conference on RFID (RFID), pp. 54-59. IEEE, 2023.

5. Xiangdong Wei, Mohamed El-Hadedy, Sergiu Mosanu, Zhengping Zhu, Wen-Mei Hwu,

and Xinfei Guo. “RECO-HCON: A High-Throughput Reconfigurable Compact ASCON

Processor for Trusted IoT.” In 2022 IEEE 35th International System-on-Chip Conference

(SOCC), pp. 1-6. IEEE, 2022. Best Paper Award

List of Publications 103

6. Xinfei Guo, Mohamed El-Hadedy, Sergiu Mosanu, Xiangdong Wei, Kevin Skadron, and

Mircea R. Stan. “Agile-AES: Implementation of configurable AES primitive with agile de-

sign approach.” Integration 85 (2022): 87-96.

7. Mohammad Nazmus Sakib, Hamed Vakili, Samiran Ganguly, Sergiu Mosanu, Avik W.

Ghosh, and Mircea Stan. “Magnetic skyrmion-based programmable hardware.” In Spintron-

ics XIII, vol. 11470, p. 114703D. International Society for Optics and Photonics, 2020.

8. Mohamed El-Hadedy, Martin Margala, Sergiu Mosanu, Danilo Gligoroski, Jinjun Xiong,

and Wen-Mei Hwu. “MICRO-GAGE: A Low-power Compact GAGE Hash Function Pro-

cessor for IoT Applications.” In 2020 27th IEEE International Conference on Electronics,

Circuits and Systems (ICECS), pp. 1-4. IEEE, 2020.

9. Mohamed El-Hadedy, Martin Margala, Sergiu Mosanu, Danilo Gligorosk, and Wen-Mei

Hwu. “PRO-GAGE: A High Performance Compact GAGE Hash Function Processor for

Small Space Technology.” In 2021 IEEE Space Computing Conference (SCC), pp. 9-16.

IEEE, 2021.

B.4 Workshops, Posters, Presentations and Demos

1. Khyati Kiyawat, Sergiu Mosanu, Mircea Stan and Kevin Skadron. “Open-Source Processing-

in-Memory Architecture Design through FPGA Emulation: A Case Study Modeling Sieve.”

Presented at the workshop on Open-Source Computer Architecture Research (OSCAR), co-

located with the International Symposium on Computer Architecture (ISCA) 2023.

2. Sergiu Mosanu, Joshua Fixelle, Kevin Skadron, and Mircea Stan. “FreezeTime: Towards

System Emulation through Architectural Virtualization.” In Proceedings of the 2023 ACM/SIGDA

International Symposium on Field Programmable Gate Arrays (FPGA). ACM/SIGDA, 2023.

3. Sergiu Mosanu, Preslav Ivanov, Tommy Tracy II, Ersin Cukurtas, Samira Khan, Kevin

Skadron and Mircea Stan. “PiMulator: a Processing-in-Memory Emulation Framework.”

List of Publications 104

DAC Young Fellow 2020.

4. Sergiu Mosanu, Xinfei Guo, Mohamed El-Hadedy, Lorena Anghel, and Mircea Stan. “Flexi-

AES: A Highly-Parameterizable Cipher for a Wide Range of Design Constraints.” Poster,

demo, 1-page paper in proceedings of 2019 IEEE 27th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), pp. 338-338. IEEE, 2019.

5. Sergiu Mosanu and Mircea Stan. “AES and SHA Cryptography Library for Chisel.” Presen-

tation at Chisel Community Conference 2018, recording available at https://youtu.

be/VNM88i74Ky0.

6. Sergiu Mosanu, Kevin Skadron, and Mircea Stan. “Burrows-Wheeler Short Read Aligner

on AWS EC2 F1 Instances.” Workshop on Accelerator Architecture in Computational Biol-

ogy and Bioinformatics HPCA-AACBB 2018 Presentation, see https://aacbb-workshop.

github.io/slides/2018/aacbb-serg-presi.pdf.

7. Sergiu Mosanu, Arijit Banerjee and Mircea Stan. “Modeling and Design of an SLC 3D

NAND Flash CLB for 3D CPLDs and FPGAs.” Flash Memory Summit 2015.

B.5 SRC TECHCON

• Sergiu Mosanu, Tom Tracy, Ersin Cukurtas, Preslav Ivanov, Robert West, Samira Khan,

Kevin Skadron and Mircea R. Stan. “PiMulator – a Processing in Memory FPGA Emulation

Framework.” TECHCON 2020

• Sergiu Mosanu, Xinfei Guo, Mohamed Aly, Lorena Anghel, Kevin Skadron and Mircea

R. Stan. “Flexi-AES: A Highly-Parameterizable Cipher for a Wide Range of Design Con-

straints.” TECHCON 2019.

• Sergiu Mosanu, Samira Khan, Kevin Skadron and Mircea R. Stan. “Near-Storage Comput-

ing for Face Detection and Face Recognition.” TECHCON 2018.

https://youtu.be/VNM88i74Ky0
https://youtu.be/VNM88i74Ky0
https://aacbb-workshop.github.io/slides/2018/aacbb-serg-presi.pdf
https://aacbb-workshop.github.io/slides/2018/aacbb-serg-presi.pdf

List of Publications 105

B.6 Awards

• Co-Instructor for CS 3330 – Computer Architecture, with Prof. Charles Reiss, University of

Virginia, Spring 2023

• SOCC 2022 Best Paper Award for the paper titled “RECO-HCON: A High-Throughput

Reconfigurable Compact ASCON Processor for Trusted IoT”, September 2022

• School of Engineering and Applied Science Teaching Intern Fellowship, co-teaching

ECE4550-0001, Field Programmable Gate Arrays (FPGAs) Design, ECE 4550-003 ASIC/-

SoC Design, and ECE6502-004 Advanced Digital Design, with Prof. Mircea Stan, Univer-

sity of Virginia, Spring 2018

• Outstanding Teaching Assistant Award, Charles L. Brown Department of Electrical and

Computer Engineering, University of Virginia, May 2017

Glossary

Acronyms and Abbreviations

ACAP Adaptive Compute Acceleration Platform

AES Advanced Encryption Standard

AI Artificial Intelligence

AIE AI Engine

AMBA Advanced Microcontroller Bus Architecture

APU Application Processing Unit

ASIC Application-Specific Integrated Circuit

AXI Advanced eXtensible Interface

AWS Amazon Web Services

BIOS Basic Input/Output System

BRAM Block RAM

BUFGCE Global Clock Buffer with Clock Enable

CAS Column Address Strobe

CHISEL Constructing Hardware in a Scala Embedded Language

CLK Clock Signal

CMD Command Decoder Module

CPU Central Processing Unit

CRISP Center for Research on Intelligent Storage and Processing-in-Memory

CXL Compute Express Link

106

Glossary 107

DDR Double Data Rate

DIMM Dual In-line Memory Module

DRAM Dynamic Random-Access Memory

DSP Digital Signal Processing

DSync Data Synchronization Engine

ECE Electrical and Computer Engineering

FF Flip-Flop

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GCC GNU Compiler Collection

GDDR Graphics Double Data Rate

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HDL Hardware Description Language

HLS High-Level Synthesis

HMC Hybrid Memory Cube

HPC High-Performance Computing

HPLP High-Performance Low-Power research lab at University of Virginia

I/O Input/Output

I2C Inter-Integrated Circuit

IC Integrated Circuit

ILA Integrated Logic Analyzer

IoT Internet of Things

IP Intellectual Property

ISA Instruction Set Architecture

JEDEC Joint Electron Device Engineering Council

JTAG Joint Test Action Group

Glossary 108

LPDDR Low-Power Double Data Rate

LUT LookUp Table

LUTRAM LookUp Table RAM

MEM Memory Emulation Model

MIG Memory Interface Generator

ML Machine Learning

MUX Multiplexer

NoC Network on Chip

NVMM Non-Volatile Main Memory

OoO Out-of-Order execution

OS Operating System

PE Processing Element

PCIe Peripheral Component Interconnect Express

PCM Phase Change Memory

PHY Physical layer

PiM, PIM Processing-in-Memory

PL Programmable logic

PLL Phase-Locked Loop

PnM Processing-near-Memory

PS Processing System

PuM Processing-using-memory

RAM Random-Access Memory

RAS Row Address Strobe

RISC Reduced Instruction Set Computing

RISC-V Reduced Instruction Set Computer Fifth Generation

RPU Real-time Processing Unit

RRAM Resistive Random-Access Memory

Glossary 109

RTL Register Transfer Level

SDRAM Synchronous Dynamic Random-Access Memory

SoC System on Chip

SPI Serial Peripheral Interface

SRAM Static Random-Access Memory

STT-RAM Spin-Transfer Torque Random-Access Memory

STT-MRAM Spin-Transfer Torque Magnetic Random-Access Memory

TPU Tensor Processing Unit

TSV Through-Silicon Via

UART Universal Asynchronous Receiver/Transmitter

URAM UltraRAM

UVA University of Virginia

Bibliography

[1] D. J. Campello, “Optimizing Main Memory Usage in Modern Computing Systems to Im-

prove Overall System Performance,” FIU Electronic Theses and Dissertations, vol. 2568,

2016, https://digitalcommons.fiu.edu/etd/2568.

[2] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A modern primer on process-

ing in memory,” in Emerging Computing: From Devices to Systems: Looking Beyond Moore

and Von Neumann. Springer, 2022, pp. 171–243.

[3] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,

N. Boden, A. Borchers et al., “In-datacenter performance analysis of a tensor processing

unit,” in Proceedings of the 44th annual international symposium on computer architecture,

2017, pp. 1–12.

[4] M. Velten, R. Schöne, T. Ilsche, and D. Hackenberg, “Memory Performance of AMD EPYC

Rome and Intel Cascade Lake SP Server Processors,” in Proceedings of the 2022 ACM/SPEC

on International Conference on Performance Engineering, 2022, pp. 165–175.

[5] D. D. Sharma, “Compute Express Link®: An open industry-standard interconnect enabling

heterogeneous data-centric computing,” in 2022 IEEE Symposium on High-Performance In-

terconnects (HOTI). IEEE, 2022, pp. 5–12.

[6] Lisa Su, “AMD Keynote,” CES 2023, https://www.youtube.com/watch?v=

OMxU4BDIm4M&t=5380s, 2023.

110

https://www.youtube.com/watch?v=OMxU4BDIm4M&t=5380s
https://www.youtube.com/watch?v=OMxU4BDIm4M&t=5380s

Bibliography 111

[7] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx adaptive compute acceleration

platform: VersalTM architecture,” in Proceedings of the 2019 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, 2019, pp. 84–93.

[8] S. Li, “Scalable and Accurate Memory System Simulation,” Ph.D. dissertation, University of

Maryland, College Park, 2019.

[9] H. Angepat, D. Chiou, E. S. Chung, and J. C. Hoe, “FPGA-accelerated simulation of com-

puter systems,” Synthesis Lectures on Computer Architecture, vol. 9, no. 2, pp. 1–80, 2014.

[10] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton, E. Amaro,

C. Schmidt, A. Chopra et al., “FireSim: FPGA-accelerated cycle-exact scale-out system sim-

ulation in the public cloud,” in 2018 ACM/IEEE 45th Annual International Symposium on

Computer Architecture (ISCA). IEEE, 2018, pp. 29–42.

[11] A. K. Jain, S. Lloyd, and M. Gokhale, “Microscope on Memory: MPSoC-Enabled Com-

puter Memory System Assessments,” in 2018 IEEE 26th Annual International Symposium

on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2018, pp. 173–180.

[12] J. Zhang, Y. Zha, N. Beckwith, B. Liu, and J. Li, “MEG: A RISCV-based System Emulation

Infrastructure for Near-data Processing Using FPGAs and High-bandwidth Memory,” ACM

Transactions on Reconfigurable Technology and Systems (TRETS), vol. 13, no. 4, pp. 1–24,

2020.

[13] F. Wen, M. Qin, P. Gratz, and N. Reddy, “An FPGA-based Hybrid Memory Emulation Sys-

tem,” in 2021 31st International Conference on Field-Programmable Logic and Applications

(FPL). IEEE, 2021, pp. 190–196.

[14] A. Olgun, J. G. Luna, K. Kanellopoulos, B. Salami, H. Hassan, O. Ergin, and O. Mutlu,

“PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-DRAM,”

arXiv preprint arXiv:2111.00082, 2021.

Bibliography 112

[15] G. Martin and G. Smith, “High-Level Synthesis: Past, Present, and Future,” IEEE Design &

Test of Computers, vol. 26, no. 4, pp. 18–25, July 2009.

[16] C. Papon and SpinalHDL, “VexRISC-V: An FPGA-friendly 32-bit RISC-V CPU

implementation.” [Online]. Available: https://github.com/SpinalHDL/VexRiscv

[17] S. Bourdeauducq, “Migen (Milkymist generator) - A Python toolbox for building complex

digital hardware.” [Online]. Available: https://github.com/m-labs/migen

[18] F. Kermarrec, S. Bourdeauducq, H. Badier, and J.-C. Le Lann, “LiteX: an open-source SoC

builder and library based on Migen Python DSL,” in OSDA 2019, colocated with DATE 2019

Design Automation and Test in Europe, 2019.

[19] J. Zhang, Y. Liu, G. Jain, Y. Zha, J. Ta, and J. Li, “MEG: A RISCV-based System Simula-

tion Infrastructure for Exploring Memory Optimization Using FPGAs and Hybrid Memory

Cube,” in 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM). IEEE, 2019, pp. 145–153.

[20] A. Akram and L. Sawalha, “A Survey of Computer Architecture Simulation Techniques and

Tools,” IEEE Access, vol. 7, pp. 78 120–78 145, 2019.

[21] D. Biancolin, S. Karandikar, D. Kim, J. Koenig, A. Waterman, J. Bachrach, and K. Asanovic,

“FASED: FPGA-accelerated simulation and evaluation of DRAM,” in Proceedings of the

2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2019, pp.

330–339.

[22] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu, C. Kozyrakis, J. C. Hoe, D. Chiou, and

K. Asanovic, “RAMP: Research accelerator for multiple processors,” IEEE micro, vol. 27,

no. 2, pp. 46–57, 2007.

[23] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the obvious,” ACM

SIGARCH computer architecture news, vol. 23, no. 1, pp. 20–24, 1995.

https://github.com/SpinalHDL/VexRiscv
https://github.com/m-labs/migen

Bibliography 113

[24] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A modern primer on process-

ing in memory,” arXiv preprint arXiv:2012.03112, 2020.

[25] T. Finkbeiner, G. Hush, T. Larsen, P. Lea, J. Leidel, and T. Manning, “In-memory Intelli-

gence,” IEEE Micro, vol. 37, no. 4, pp. 30–38, 2017.

[26] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim, A. Ku-

usela, A. Knies, P. Ranganathan et al., “Google workloads for consumer devices: Mitigating

data movement bottlenecks,” in Proceedings of the Twenty-Third International Conference

on Architectural Support for Programming Languages and Operating Systems, 2018, pp.

316–331.

[27] H. A. D. Nguyen, J. Yu, M. A. Lebdeh, M. Taouil, S. Hamdioui, and F. Catthoor, “A classifi-

cation of memory-centric computing,” ACM Journal on Emerging Technologies in Computing

Systems (JETC), vol. 16, no. 2, pp. 1–26, 2020.

[28] P. Gu, “List of Process-in-memory (PIM) and Near-data-processing (NDP) papers,” 2020.

[Online]. Available: https://github.com/miglopst/PIM NDP papers

[29] H. S. Stone, “A logic-in-memory computer,” IEEE Transactions on Computers, vol. 100,

no. 1, pp. 73–78, 1970.

[30] S. Xu, X. Chen, Y. Wang, Y. Han, X. Qian, and X. Li, “PIMSim: A flexible and detailed

processing-in-memory simulator,” IEEE Computer Architecture Letters, vol. 18, no. 1, pp.

6–9, 2018.

[31] C. Yu, S. Liu, and S. Khan, “MultiPIM: A Detailed and Configurable Multi-Stack Processing-

In-Memory Simulator,” IEEE Computer Architecture Letters, vol. 20, no. 1, pp. 54–57, 2021.

[32] K. Asanovic, D. A. Patterson, and C. Celio, “The Berkeley Out-of-Order Machine (BOOM):

An Industry-Competitive, Synthesizable, Parameterized RISC-V Processor,” University of

California at Berkeley Berkeley United States, Tech. Rep., 2015.

https://github.com/miglopst/PIM_NDP_papers

Bibliography 114

[33] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,

O. Mutlu, P. B. Gibbons, M. A. Kozuch et al., “RowClone: Fast and energy-efficient in-

DRAM bulk data copy and initialization,” in Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture, 2013, pp. 185–197.

[34] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-cost

inter-linked subarrays (LISA): Enabling fast inter-subarray data movement in DRAM,” in

2016 IEEE International Symposium on High Performance Computer Architecture (HPCA).

IEEE, 2016, pp. 568–580.

[35] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu,

P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory accelerator for bulk bitwise opera-

tions using commodity DRAM technology,” in 2017 50th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). IEEE, 2017, pp. 273–287.

[36] M. Lenjani, P. Gonzalez, E. Sadredini, S. Li, Y. Xie, A. Akel, S. Eilert, M. R. Stan, and

K. Skadron, “Fulcrum: a simplified control and access mechanism toward flexible and prac-

tical in-situ accelerators,” in 2020 IEEE International Symposium on High Performance Com-

puter Architecture (HPCA). IEEE, 2020, pp. 556–569.

[37] S. Rai, A. Devic, and A. Sivasubramaniam, “Scaling (-In-) Memory Computing with BLIMP

(Bank Level In-Memory Processing),” 2020.

[38] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 39, no. 8, pp. 1555–1571, 2019.

[39] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa: A DRAM-based

reconfigurable in-situ accelerator,” in 2017 50th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO). IEEE, 2017, pp. 288–301.

[40] L. Wu, R. Sharifi, M. Lenjani, K. Skadron, and A. Venkat, “Sieve: Scalable In-situ DRAM-

based Accelerator Designs for Massively Parallel k-mer Matching,” in 2021 ACM/IEEE 48th

Annual International Symposium on Computer Architecture (ISCA), 2021, pp. 251–264.

Bibliography 115

[41] A. Ahmed and K. Skadron, “Hopscotch: A micro-benchmark suite for memory performance

evaluation,” in Proceedings of the International Symposium on Memory Systems, 2019, pp.

167–172.

[42] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: a cycle-accurate,

thermal-capable DRAM simulator,” IEEE Computer Architecture Letters, vol. 19, no. 2, pp.

106–109, 2020.

[43] B. Keeth and R. J. Baker, DRAM circuit design: a tutorial. IEEE, 2001.

[44] V. Seshadri and O. Mutlu, “In-DRAM bulk bitwise execution engine,” arXiv preprint

arXiv:1905.09822, 2019.

[45] Graham Allan, “DDR4 Bank Groups in Embedded Applications,” Synopsys technical bul-

letin, https://www.synopsys.com/designware-ip/technical-bulletin/ddr4-bank-groups.html.

[46] H.-K. Liu, D. Chen, H. Jin, X.-F. Liao, B. He, K. Hu, and Y. Zhang, “A Survey of Non-

Volatile Main Memory Technologies: State-of-the-Arts, Practices, and Future Directions,”

Journal of Computer Science and Technology, vol. 36, no. 1, pp. 4–32, 2021.

[47] P. Siegl, R. Buchty, and M. Berekovic, “Data-centric computing frontiers: A survey on

processing-in-memory,” in Proceedings of the Second International Symposium on Memory

Systems, 2016, pp. 295–308.

[48] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Corporaal, and A.-

J. Boonstra, “A review of near-memory computing architectures: Opportunities and chal-

lenges,” in 2018 21st Euromicro Conference on Digital System Design (DSD). IEEE, 2018,

pp. 608–617.

[49] ——, “Near-memory computing: Past, present, and future,” Microprocessors and

Microsystems, vol. 71, p. 102868, 2019. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0141933119300389

https://www.synopsys.com/designware-ip/technical-bulletin/ddr4-bank-groups.html
https://www.sciencedirect.com/science/article/pii/S0141933119300389
https://www.sciencedirect.com/science/article/pii/S0141933119300389

Bibliography 116

[50] J. Gómez-Luna, I. El Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira, and O. Mutlu, “Bench-

marking memory-centric computing systems: Analysis of real processing-in-memory hard-

ware,” in 2021 12th International Green and Sustainable Computing Conference (IGSC).

IEEE, 2021, pp. 1–7.

[51] O. Mutlu and J. Gómez-Luna, “Onur Mutlu Lectures, PIM Course: Real-world PIM,” 2023.

[Online]. Available: https://www.youtube.com/@OnurMutluLectures/videos

[52] S. Newsroom, “Samsung Develops Industry’s First High Bandwidth Memory with AI

Processing Power,” 2021. [Online]. Available: https://news.samsung.com/global/samsung-

develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

[53] Y.-C. Kwon, S. H. Lee, J. Lee, S.-H. Kwon, J. M. Ryu, J.-P. Son, O. Seongil, H.-S. Yu, H. Lee,

S. Y. Kim, Y. Cho, J. G. Kim, J. Choi, H.-S. Shin, J. Kim, B. Phuah, H. Kim, M. J. Song,

A. Choi, D. Kim, S. Kim, E.-B. Kim, D. Wang, S. Kang, Y. Ro, S. Seo, J. Song, J. Youn,

K. Sohn, and N. S. Kim, “25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2

with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Ma-

chine Learning Applications,” in 2021 IEEE International Solid- State Circuits Conference

(ISSCC), vol. 64, 2021, pp. 350–352.

[54] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee, K. Lim, H. Shin,

J. Kim, O. Seongil, A. Iyer, D. Wang, K. Sohn, and N. S. Kim, “Hardware Architecture and

Software Stack for PIM Based on Commercial DRAM Technology : Industrial Product,” in

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA),

2021, pp. 43–56.

[55] J. H. Kim, S.-h. Kang, S. Lee, H. Kim, W. Song, Y. Ro, S. Lee, D. Wang, H. Shin, B. Phuah,

J. Choi, J. So, Y. Cho, J. Song, J. Choi, J. Cho, K. Sohn, Y. Sohn, K. Park, and N. S. Kim,

“Aquabolt-XL: Samsung HBM2-PIM with in-memory processing for ML accelerators and

beyond,” in 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–26.

https://www.youtube.com/@OnurMutluLectures/videos
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power
https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

Bibliography 117

[56] E. S. Y. L. Kanga Kong, Jaehwan Kevin Kim, “SK hynix Develops PIM, Next-Generation

AI Accelerator,” 2022. [Online]. Available: https://news.skhynix.com/sk-hynix-develops-

pim-next-generation-ai-accelerator/

[57] S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park, K. Kang, J. Kim, J. Jeon,

N. Kim, Y. Kwon, K. Vladimir, W. Shin, J. Won, M. Lee, H. Joo, H. Choi, J. Lee, D. Ko,

Y. Jun, K. Cho, I. Kim, C. Song, C. Jeong, D. Kwon, J. Jang, I. Park, J. Chun, and J. Cho, “A

1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS

MAC Operation and Various Activation Functions for Deep-Learning Applications,” in 2022

IEEE International Solid- State Circuits Conference (ISSCC), vol. 65, 2022, pp. 1–3.

[58] D. Kwon, S. Lee, K. Kim, S. Oh, J. Park, G.-M. Hong, D. Ka, K. Hwang, J. Park, K. Kang,

J. Kim, J. Jeon, N. Kim, Y. Kwon, V. Kornijcuk, W. Shin, J. Won, M. Lee, H. Joo, H. Choi,

G. Kim, B. An, J. Lee, D. Ko, Y. Jun, I. Kim, C. Song, I. Kim, C. Park, S. Kim, C. Jeong,

E. Lim, D. Kim, J. Jang, I. Park, J. Chun, and J. Cho, “A 1ynm 1.25V 8Gb 16Gb/s/Pin

GDDR6-Based Accelerator-in-Memory Supporting 1TFLOPS MAC Operation and Various

Activation Functions for Deep Learning Application,” IEEE Journal of Solid-State Circuits,

vol. 58, no. 1, pp. 291–302, 2023.

[59] S. Newsroom, “Samsung Brings In-Memory Processing Power to Wider Range of

Applications,” 2021. [Online]. Available: https://news.samsung.com/global/samsung-brings-

in-memory-processing-power-to-wider-range-of-applications

[60] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han, Y. Cho, J. H. Kim, Y. Kwon,

K. Kim, J. Jung, I. Yun, S. J. Park, H. Park, J. Song, J. Cho, K. Sohn, N. S. Kim, and H.-H. S.

Lee, “Near-Memory Processing in Action: Accelerating Personalized Recommendation With

AxDIMM,” IEEE Micro, vol. 42, no. 1, pp. 116–127, 2022.

[61] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.

Hower, T. Krishna, S. Sardashti et al., “The gem5 simulator,” ACM SIGARCH computer

architecture news, vol. 39, no. 2, pp. 1–7, 2011.

https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/
https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications

Bibliography 118

[62] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt, “The

M5 simulator: Modeling networked systems,” Ieee micro, vol. 26, no. 4, pp. 52–60, 2006.

[63] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E.

Moore, M. D. Hill, and D. A. Wood, “Multifacet’s general execution-driven multiprocessor

simulator (GEMS) toolset,” ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp.

92–99, 2005.

[64] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. Andreozzi, A. Arme-

jach, N. Asmussen, B. Beckmann, S. Bharadwaj, G. Black, G. Bloom, B. R. Bruce, D. R.

Carvalho, J. Castrillon, L. Chen, N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin,

M. Fariborz, A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass,

A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera,

M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth,

H. Khaleghzadeh, Y. Kodama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli, M. Moreto,

T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L. E. Olson, M. Orr, B. Pham, P. Pri-

eto, T. Reddy, A. Roelke, M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair,

T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas, W. Wang, Z. Wang,

N. Wehn, C. Weis, D. A. Wood, H. Yoon, and Éder F. Zulian, “The gem5 Simulator: Version

20.0+,” 2020.

[65] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible DRAM simulator,” IEEE

Computer architecture letters, vol. 15, no. 1, pp. 45–49, 2015.

[66] Q. Zheng, X. Li, Y. Guan, Z. Wang, Y. Cai, Y. Chen, G. Sun, and R. Huang, “PIMulator-

NN: An Event-Driven, Cross-Level Simulation Framework for Processing-In-Memory-Based

Neural Network Accelerators,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 41, no. 12, pp. 5464–5475, 2022.

Bibliography 119

[67] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy evaluation of gem5 simulator sys-

tem,” in 7th International workshop on reconfigurable and communication-centric systems-

on-chip (ReCoSoC). IEEE, 2012, pp. 1–7.

[68] T. Nowatzki, J. Menon, C.-H. Ho, and K. Sankaralingam, “Architectural simulators consid-

ered harmful,” IEEE Micro, vol. 35, no. 6, pp. 4–12, 2015.

[69] Z. Tan, A. Waterman, R. Avizienis, Y. Lee, H. Cook, D. Patterson, and K. Asanović, “RAMP

gold: an FPGA-based architecture simulator for multiprocessors,” in Proceedings of the 47th

Design Automation Conference, 2010, pp. 463–468.

[70] L. Rizzatti, “Hardware emulation: three decades of evolution. Part III,” Verification Horizons,

pp. 15–18, 2015.

[71] Micron, “DDR SDRAM Verilog Simulation Models,” https://www.micron.com/products/

dram.

[72] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The Terasys massively paral-

lel PIM array,” Computer, vol. 28, no. 4, pp. 23–31, 1995.

[73] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas,

“FlexRAM: Toward an advanced intelligent memory system,” in Proceedings 1999 IEEE

International Conference on Computer Design: VLSI in Computers and Processors (Cat.

No. 99CB37040). IEEE, 1999, pp. 192–201.

[74] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston, R. Risen,

J. Cook, P. Rosenfeld, E. Cooper-Balis et al., “The structural simulation toolkit,” ACM SIG-

METRICS Performance Evaluation Review, vol. 38, no. 4, pp. 37–42, 2011.

[75] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchitectural simulation of

thousand-core systems,” ACM SIGARCH Computer architecture news, vol. 41, no. 3, pp.

475–486, 2013.

https://www.micron.com/products/dram
https://www.micron.com/products/dram

Bibliography 120

[76] A. Barreteau, “System-Level Modeling and Simulation with Intel® CoFluent™ Studio,” in

Complex Systems Design & Management: Proceedings of the Sixth International Conference

on Complex Systems Design & Management, CSD&M 2015. Springer, 2016, pp. 305–306.

[77] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Jacob, “DRAMsim: a

memory system simulator,” ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp.

100–107, 2005.

[78] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle Accurate Memory Sys-

tem Simulator,” IEEE computer architecture letters, vol. 10, no. 1, pp. 16–19, 2011.

[79] A. K. Jain, S. Lloyd, and M. Gokhale, “Performance Assessment of Emerging Memories

Through FPGA Emulation,” IEEE Micro, vol. 39, no. 1, pp. 8–16, 2018.

[80] K. Asanović and D. A. Patterson, “Instruction sets should be free: The case for RISC-V,”

EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2014-146,

2014.

[81] T. Petazzoni and F. Electrons, “Buildroot: a nice, simple and efficient embedded Linux build

system,” in Embedded Linux System Conference, vol. 2012, 2012.

[82] C. Papon and SpinalHDL, “NaxRISC-V: OoO Superscalar 64-bit RISC-V CPU

implementation targeting FPGAs.” [Online]. Available: https://github.com/SpinalHDL/

NaxRiscv

[83] C. Papon, “Spinal Hardware Description Language.” [Online]. Available: https:

//github.com/SpinalHDL/SpinalHDL

[84] F. Kermarrec et al., “A small footprint and configurable DRAM core powered by Migen &

LiteX.” [Online]. Available: https://github.com/enjoy-digital/litedram

[85] J. S. S. T. Association et al., “JEDEC Standard: DDR4 SDRAM,” JESD79-4, Sep, 2012.

https://github.com/SpinalHDL/NaxRiscv
https://github.com/SpinalHDL/NaxRiscv
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL
https://github.com/enjoy-digital/litedram

Bibliography 121

[86] P. Zimmer, M. Zimmer, and B. Zimmer, “FizZim–an open-source FSM design environment,”

Enterprise Information Systems, vol. 9, no. 5-6, pp. 528–555, 2014.

[87] D. A. Patterson and J. L. Hennessy, Computer Organization and Design RISC-V Edition:

The Hardware Software Interface, 1st ed. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 2017.

[88] W. N. Hung and R. Sun, “Challenges in large FPGA-based logic emulation systems,” in

Proceedings of the 2018 International Symposium on Physical Design, 2018, pp. 26–33.

[89] A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P.-Y. Droz, “Ramp blue: A

message-passing manycore system in fpgas,” in 2007 International Conference on Field Pro-

grammable Logic and Applications. IEEE, 2007, pp. 54–61.

[90] S. Mosanu, M. N. Sakib, T. Tracy, E. Cukurtas, A. Ahmed, P. Ivanov, S. Khan, K. Skadron,

and M. Stan, “PiMulator: A fast and flexible processing-in-memory emulation platform,” in

2022 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2022,

pp. 1473–1478.

[91] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,

D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The rocket chip generator,” EECS Department,

University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, vol. 4, 2016.

[92] W. Snyder, “Verilator Manual.” [Online]. Available: https://github.com/verilator/verilator

[93] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, “HAsim: FPGA-based high-

detail multicore simulation using time-division multiplexing,” in 2011 IEEE 17th Interna-

tional Symposium on High Performance Computer Architecture. IEEE, 2011, pp. 406–417.

[94] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe, K. Mai, and B. Falsafi, “ProtoFlex:

Towards scalable, full-system multiprocessor simulations using FPGAs,” ACM Transactions

on Reconfigurable Technology and Systems (TRETS), vol. 2, no. 2, pp. 1–32, 2009.

https://github.com/verilator/verilator

Bibliography 122

[95] F. Devaux, “The true processing in memory accelerator,” in 2019 IEEE Hot Chips 31 Sympo-

sium (HCS). IEEE Computer Society, 2019, pp. 1–24.

[96] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-generation compute

benchmark,” in Companion of the 2018 ACM/SPEC International Conference on Perfor-

mance Engineering, 2018, pp. 41–42.

	Introduction and Motivation
	Thesis Statement
	Elaboration

	Advancing Memory Modeling
	Prototyping Memory Architectures
	Modeling Memory Systems, Co-design
	Breaking the Simulation Wall
	Enablers of FPGA-based Architecture Emulation

	Architectural Virtualization with FreezeTime
	Challenges with Design Mapping on FPGA
	Remedy - Synchronized Architectural Virtualization

	Modeling Processing-in-Memory Architectures
	Drivers of PiM Architecture Research
	Interest in PiM Architecture Research
	Challenges in Evaluating PiM Architectures
	FPGA-based PiM Architecture Emulation

	Contributions

	Insights into Memory and PiM
	Background on Memory and PiM
	Memory Hierarchy
	DRAM Memory Cell and Subarray Operation
	DRAM Bank Structure
	DIMM Module, Chip, Bank Groups Structure and Operation
	DRAM Bank State and Timing
	RowHammer and Physical Effects
	Emerging Memory Technologies

	Real-World Processing-in-Memory Architectures
	UPMEM PiM Architecture
	Samsung HBM-PiM
	SK Hynix Accelerator-in-Memory (AiM)
	Samsung AxDIMM

	Modeling Methods
	Related Simulation Frameworks
	The gem5 Simulator
	PIMSim
	MultiPIM
	PIMulator-NN

	Challenges in Computer Architecture Simulation
	Enhancing Simulation Performance with Emulation
	FireSim
	LiME
	MEG-HMC and MEG-HBM
	PiDRAM
	RAMP-Gold
	Industrial Tools for Emulation and Prototyping

	PiM Prototyping Framework Attributes
	Fidelity
	Target vs Model Speed
	Underlying Memory Model
	Design Space Exploration
	Full System Evaluation
	Affordability and Adoptability

	Resulting Platform Organization
	Target System
	Logic Model
	Host FPGA

	MEMulator: System-level Memory Emulation
	System Emulation with Soft Modules, including Memory
	Technology Stack
	Target System
	Target System Logic Model
	Host FPGA Platform
	Host CPU Options
	Design Flow
	LiteX Integration

	Memory Emulation Model Implementation Details
	Interface, Command Decoding and Controls
	Bank State and Timing
	Modeling ACTIVATE Timing
	Memory hierarchy: Rank, Chip, Bank Group, Bank and Subarray
	Data Synchronization Engine

	Time Modeling at System Level
	Time Scaling Frequency
	Virtual Time Modeling
	Target System Time Emulation

	Modeling Different Memory Types
	Scope of MEMulator

	FreezeTime: System Emulation through Architectural Virtualization
	Using FPGAs to Emulate Large Systems
	Spatial Scaling across Multiple FPGAs
	Time Domain Multiplexing

	FreezeTime Mechanism and Implementation
	Target System Mapping for Virtualized Emulation
	Generic Template for Virtual Instances
	Sync-by-stall

	Experimental Results and Discussion
	Experimental Setup
	Freezing Time Demonstration
	Benchmark and Run Environments
	Results and Interpretation

	Related Work and Adoption Opportunities

	PiMulator: Fast and Flexible Processing-in-Memory Emulation
	Proposed FPGA-based Emulation Model
	Bank array model for memory and PiM
	Templates for PiM logic
	Top PiMulator Module
	Integration with LiteX
	Strategies adopted to provide increased usability

	Strategies for Emulating Bitwise-PiM and Generic PiM
	Emulating RowClone
	Emulating LISA
	Emulating Ambit
	Emulating Fulcrum
	Emulating Sieve

	Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work and Directions
	Memory model enhancements
	Models for Comprehensive PiM Taxonomy Support
	Full-system Integration Enhancements
	Firmware and Software Stack
	Fostering Community Engagement

	DRAM Memory Timings
	DRAM Memory Timings

	List of Publications
	In progress
	Journals/Letters
	Conferences
	Workshops, Posters, Presentations and Demos
	SRC TECHCON
	Awards

	Glossary
	Bibliography

