
1

Predicting Motor Vehicle Accidents using Machine Learning Techniques

A Technical Research Paper Submitted to the Department of Engineering and Society

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia – Charlottesville, Virginia

In the Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

By

Akanksha Alok

Spring, 2020

On my honor as a University student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Signed:_____ ____ Date________04/14/2020____________

Akanksha Alok

Approved: _______ ________________ Date______04/16/2020_____________

Yuan Tian, Assistant Professor of Computer Science

2

Predicting Motor Vehicle Accidents using Machine Learning

Techniques

Akanksha Alok, Yuan Tian

University of Virginia
aa8dp@virginia.edu, yt2e@virginia.edu

Abstract

Many times, threatening vehicle accidents go
unnoticed for long periods of time – sometimes
too late to save the harmed passengers or
involved victims in the accident. Vehicles go off-
roads in secluded areas, and are out of sight or
reach of bystanders. Sometimes, the victims
are in a critical condition where they are unable
to call for help or dial for 911. In fact, 66% of
deaths caused by motor vehicle accidents could
have been prevented if the patient had received
medical treatment or assistance earlier [1].
 In an effort to reduce this time to alert
authorities and receive medical aid, I have
created a novel approach using different
Machine Learning techniques and
methodologies that will be able to detect
impending vehicle crashes, using sensor data
collected from an iOS device situated in the
vehicle. While this project primarily focused on
predicting mishaps with motor vehicles, this
system can be applied to other predictive
modeling cases, where Time-Series datasets are
available for the situation.
 The first component of the system was a
Recurrent Neural Network (RNN), which was
used with the Time-Series data to predict the
future states of the motor vehicles’ sensor
readings. Once the future states of the vehicle
were predicted using this neural network, I
assessed whether these states were indicative
of an accident, using an Autoencoder neural
network. Since the dataset that I used for
training contained samples of vehicles that
were not involved in crashes (clean data) and
had no data regarding vehicle accidents, I chose
to use the Autoencoder instead of the standard
Binary Classifier. Therefore, the Autoencoder
trained on the patterns of the clean data, and
was able to pinpoint the vehicle accidents as

anomalies. Finding the relevant features from
the datasets, creating these two neural network
models, linking the two separate models, and
optimizing them for the given datasets are
covered in detail in this paper.

1 Related Work

GPS Spoofing and the hacking of sensors and

cameras on transportation vehicles have

become a prevalent problem in our society, as

expressed in detail by Humphreys [2]. He

describes the large-scale operations that have

been accomplished through GPS spoofing, such

as the event in which Iran misguided several US

ships and aircrafts into unknown territory, as

well as his own attempt of successfully

misguiding the White Rose cruise liner one

kilometer astray without the crew noticing. In

the case of autonomous vehicles, several

researchers have already perfected an

algorithm to trick current GPS navigation

systems used in cars, deflecting vehicles

thousands of meters from their intended

destinations without the knowledge of the

drivers [3].

 Any mishap with the gadgets used in an

autonomous vehicle has the potential to put

many lives in danger, whether it is the

passengers in the autonomous car, passengers

in the other cars on the road, or even

pedestrians. Researchers have tackled this

problem using the Kalman Filter algorithm, so

that even when a sensor, camera or navigation

system of the car is hacked, the car will be able

to tune out the exterior noise and continue

functioning normally. By training a neural

3

network on input data from various cameras,

sensors, and the GPS navigation system of the

autonomous vehicle, it constructs a

probabilistic model that is able to predict the

next state of the vehicle based on the current

state. When there is any external noise or

extraneous data coming in from any of the

hacked sensors, the algorithm will be able to

tune out this noise and be able to continue on

the rightful path determined by the

probabilistic model [4].

 In a similar manner, I wanted to use sensor

data to predict the next state of the vehicle

using a probabilistic model, as well. However,

the project detailed above mainly pertained to

autonomous vehicles and the sensors that those

vehicles used for navigating the roads, and I

wanted to focus on a problem with motor

vehicles that we currently face and which

continues to be a problem even in the future.

While I also use a neural network for the

predictive model using the sensor data, I have

added other Machine Learning components to

the system to be able to predict whether the

next state is indicative of a vehicle accident or

crash.

2 Data Manipulation

2.1 Data Collection

One of the biggest challenges of this project was

finding the appropriate dataset for the Machine

Learning models. I was originally planning to

use the Waze Dataset, which provided

continuous data regarding a subset of vehicles

for a few months. However, the most important

aspect of Time-Series data is that it needs to

have consistent time-stamps that are spaced

out with equal intervals in between each one.

The Waze dataset, despite being a reputable

source, provided one timestamp for each

vehicle throughout the months and showed no

progression for my Recurrent Neural Network

to train on.

 In order to work around this problem, I

gathered our own data, by driving around the

Charlottesville area, with an iOS device

collecting all of the sensor data in the interior of

the car. The iOS device tracked the same

features with its sensors every few

milliseconds, providing a progressive Time-

Series dataset during the car rides. We drove

around the same areas to keep the location data

consistent, but at different times of the day to

introduce more variance and to mimic real-life

scenarios. After going on approximately two car

rides at different times of the day on two

seperate days, we were able to collect enough

data for my project.

2.2 Feature Engineering

The iOS tracking system collected 72 different

features using their sensors, many of which had

no relevance to motor vehicle accidents. From

this group of 72 features, I picked out the 36

features that had correlations to the project

from the dataset.

 From this set of 36 features, I then limited

the dataset down to a subset of 31 features

using a Pearson Correlation Matrix. The

correlation matrix reported the covariance

between the different features, and features

which had high correlation or shared overall

distribution patterns would be repetitive and

add no additional value to the model. Any

features that had more than 95% correlation

with at least three other features in the dataset

were removed, and I was left with a subset of

31 features for my models.

4

Figure 1: Complete set of Features

Since the feature pool was already small, I did

not have to apply other dimensionality

reduction techniques, such as Principal

Component Analysis (PCA) and Locally Linear

Embedding (LLE) that I had used with the

previous Waze dataset.

3 Recurrent Neural Network

3.1 Background

 As humans, our thoughts persist for a period

of time (this period of time can vary depending

on memory and attention span!) and then fade

away into oblivion. We never start our thought

process from the moment that we first opened

our eyes as a newborn, but instead think back

to the relevant periods of time to make an

informed decision. Even as you read this paper,

you are comprehending each word based on

the previous words in this sentence. We keep

the context for a period of time and when it

becomes irrelevant, we move on. For example,

if I am telling you a story about a boy named

Charlie, and in the next phrase, mention a “He”,

your brain will know that I am referring to

Charlie. The moment that a new noun, Sheila,

appears in the story, our mind gets rid of

Charlie and associates the next pronoun with

Sheila. Our thoughts have persistence until a

certain point, and to some extent, we choose

which information from the past is relevant to

store [5].

 Unfortunately, traditional neural networks
are unable to do this, and is a major
shortcoming for use with time-series data
where we want to use information from the
past to inform later decisions. Recurrent Neural
Networks (RNNs) address this problem. In
simplest terms, they are networks with loops
within them that allow information to persist.
The predictive component of my model, which
provided the future states of the vehicle,
involved a Recurrent Neural Network.

 In Figure 2, the Neural
Network component, A, takes in
the input x, and outputs a value,
h, at time t. The loop allows for
the information to be passed
from one step to the next.

 When unrolled (as seen in

Figure 3), the RNN closely

resembles a normal

neural network.

Essentially, an RNN can

be viewed

as multiple

copies of

the same

network,

with each

iteration

providing

information to its successor.

 The iterative nature of the

RNN lends itself to be used in

sequences or chains of events,

and in the case of my project, a

5

sequence of time, where each

subscript in the diagram above

represents a timestamp [6].

3.2 Long Short Term Memory Models

 Most of the time, traditional RNNs suffer

from not being able to pick up on long-term

trends and are easily skewed by the most

recent data that it is presented with. For my

project, I utilized a special type of RNN, known

as Long Short Term Memory Models (LSTM)

that are capable of learning long-term

dependencies and patterns within the datasets.

Like explained above, the LSTM also follows an

iterative progression, but each repeating Neural

Network Module has a special structure of four

neural network layers that interact in a special

way [6].

 For my project, I implemented a layered

LSTM model to make predictions for 153

timestamps in the future for the given vehicle

that I had collected data on. The LSTM was able

to predict values for all of these features in

parallel, despite these features being

completely unique.

Given the array of features that I was using (as

detailed in Figure 1), the LSTM was able to

make a prediction for each of these features

simultaneously for each timestamp. The last

prediction at the 153rd timestamp (or

approximately 2.5 minutes after the first

timestamp) is shown in Figure 5, where each

prediction corresponds to the same feature at

the same index in Figure 1.
Figure 5: The 153rd prediction of features using LSTM

3.3 Optimizations

The main problem that I was encountering was

that the RNN was not able to update itself

quickly enough to report predicted values that

pertained to the most recent timestamps. It was

predicting values that appeared most

frequently in the dataset and values that were

at earlier timestamps.

 Since I had been working with the Waze

dataset that was considerably larger than the

current dataset, I had previously created a

complicated model to cater to the large size of

the dataset. This complicated model usually

creates a tendency for the neural network to

closely adapt to the smaller training dataset,

and I had wrongly predicted that the model was

overfitting to the training data (matching the

pattern of the training dataset so closely that it

is unable to generalize to the other data points).

As expected, the regularization methods that I

applied to the model to combat overfitting were

further amplifying the problem and the model

was still not predicting the correct values. The

hyperparameters that I changed were very

sensitive, so I decided that I should first

diagnose and confirm the model’s problem

before making any changes based on my

intuition.

 Essentially, I had to figure out if the model

was overfitting or underfitting to the data set.

The only way to do this is to plot out the

validation set error and training set error (the

validation set is a small subset of the training

set). These errors are the errors that the model

makes when training on the training set

(training loss) and the errors that the partially

trained model makes on a small testing set

(validation set). When I started doing this, I

realized that the model was actually

underfitting. The validation loss was much

higher than the training set error, and the

validation error showed no signs of decreasing

over time (as shown in Figure 6).

6

Figure 6: An Underfitting Model Performance

A “good-fit” model (shown in Figure 7) is one

where the validation loss steadily decreases to

the point of stabilization and intersects (or

comes close to) the training loss at some point.

The training loss should also stabilize to the

point where it no longer decreases.

Figure 7: A Good Fit Model Performance

I used these graphs as a metric to assess how
the model was performing, and developed my
own methodology to find a stopping point
within the training period to minimize the
difference between the model’s training and
validation loss.
 I tried a series of different experiments to
combat the problem of underfitting, such as
increasing the number of training epochs,
adding neurons to each layer, changing the
Dropout percentage (of nodes) in each layer,
and adding an additional layer in the Neural

Network node, until I finally found the
methodology that worked: reducing the
number of LSTM layers. Usually, having too
many layers causes the model to overfit to the
data. However, in this case, the number of
layers was obscuring the model from learning
the pattern of the dataset and was making it too
sensitive, and the model was therefore
underfitting. I was finally able to find a good-fit
model for the dataset.
 Another problem that I ran into was that the

model was reporting back NAN values for the

training loss, and this was caused by the

Exploding Gradient problem. Essentially,

exploding gradients are a problem where large

error gradients accumulate and result in very

large updates to neural network model weights

during training (the weights of the neural

network are changed during a back-

propagation step). This has the effect of the

model being unstable and unable to learn from

the training data. The easy fix to this problem

was introducing the idea of Gradient Clipping to

the model, where the values of the error

gradient are checked against a threshold value

and then are clipped or set to that threshold

value if the error gradient exceeds the

threshold. This prevents the weights from

being heavily updated, and allows for the

updates to happen in increments.

5 Autoencoder

5.1 Background
Autoencoders are a type of feed-forward neural

network whose purpose is to serve as an

identity function, where the output of the

neural network tries to resemble the input.

They serve as a dimensionality reduction

technique, where it compresses the input into a

lower-dimensionality vector, and tries to

rebuild the output from this compressed

representation.

7

 The Autoencoder consists of three

components: Encoder, Code, and the Decoder.

The Encoder, which is essentially a simple

Neural Network, parses the input given and

produces a Code, as well. This Code is a formula

that the Decoder will use to parse the

compressed version of the input to reproduce

the original input. The Decoder is a mirror

image of the Encoder, and resembles the

Encoder’s structure. The goal of the

Autoencoder as a whole is to produce an output

that is as close to the input as possible.

Figure 8: Autoencoder structure

 The reconstruction error is the difference

between the output vector of the

Autoencoder and the compressed vector

form of the input. Throughout the training

process, the Autoencoder tries to minimize

this error using backpropagation, where

several hyperparameters of the model are

slightly modified [7].

5.2 Implementation

One of the major challenges that I faced during

my project was that the data that I had only

contained information about a car that was not

involved in any mishaps or accidents.

Therefore, I could not create a standard Binary

Classifier that would be able to group vehicles

as either safe or involved in an accident.

 In order to work around this problem, I

utilized the capability of the Autoencoder to

train on the patterns and trends of the clean

data, and to ultimately learn how to precisely

reproduce the most frequent characteristics of

the observations of the clean data. Once the

Autoencoder is trained and it is faced with a

vehicle undergoing an accident, the model

should worsen its reconstruction performance

and would yield a high reconstruction error,

labeling that data point as an anomaly.

 Using a small sample set of “anomaly” data,

where I greatly varied the values for each

feature by at least two standard deviations, I

was able to find the exact reconstruction error

threshold for marking a sample as an anomaly. I

ran the Autoencoder on a subset of the clean

training data, and took note of the

reconstruction error, and then ran it on the

anomaly dataset. I was able to find a clean

reconstruction error threshold of 0.01, that did

not yield for any false negatives or false

positives (high precision) among the datasets

that I had. Essentially, a reconstruction error

that exceeded the threshold of 0.01 would be

marked as an anomaly, or as a car accident.

6 Results

6.1 Predicting the Next State of Vehicle

Using the LSTM model, I was able to predict up

to 153 future timestamps from the last given

timestamp. Since the data given to me was

spaced by millisecond time-intervals, the model

was able to predict the future states up to 2.5

minutes after the first timestamp. As shown in

Figure 9, the validation and training losses

indicate that the model was a perfect fit for the

dataset.

8

Figure 9: Performance of Prediction Model

 Fortunately, I had two separate datasets that

were spaced out by 2 minutes – one dataset

collected vehicle information from 08:02:25 to

08:21:47, and the other dataset started

collecting information at 08:23:34 until

08:31:25 the same day. To fully test the

capabilities of the RNN, I trained the neural

network on the first dataset, and used its

predictions to test its accuracy on the second

dataset and to compensate for the two-minute

time gap between the datasets.

 The 153rd prediction at timestamp at
08:26:00 was compared to the actual value in
the second dataset and yielded a very small
mean square error (MSE). I also graphed the
predicted and actual values over the 08:23:34
to the 08:24:00 timestamps. The graphs to the
right clearly indicate that the RNN was able to
track the general trend and provide a highly
accurate prediction for each feature, where the
red trend line indicates the actual values and
blue trend line is the predicted values.
 In order to check if the autoencoder was
functioning, these 153 future timestamps were
run through the autoencoder, as well, and each
one had a reconstruction error of about 0.005
(less than the 0.01 threshold), which correctly
gauged that these timestamps were not
indicative of a vehicle accident or crash.

Figure 10: Predicted

versus Actual Feature

Values

9

6 Future Improvements

One of the biggest drawbacks to this project

was that we could not find the datasets that

best matched our needs. In fact, I was barely

able to get enough data from gathering it from

an iOS device myself, which could have

introduced some human error. However, the

system that I created can easily be adapted to

other datasets, and if I were to locate the

appropriate datasets in the future, we can

potentially have a system that can predict every

impending car crash.

 I also only had access to clean data, where

there were no motor vehicle accidents.

Acquiring this dataset would serve as a good

testing set to make sure that the threshold

enforced for the autoencoder to detect car

crashes is correct and functioning.

 While the Recurrent Neural Network model

is highly accurate and uses state-of-the-art

calculations and techniques for predictions, it is

unable to make accurate long-term predictions,

as it tends to plateau with no new data being

fed to it. In order to enable long term

predictions, the model needs to be deployed so

that it can receive a constant flow of updated

data so that it can adjust itself and make

predictions that are suited to the current data.

Deploying the model to enable constant data

flow would be something useful and

worthwhile in the future, especially if we want

to keep using the powerful RNN model.

7 Conclusion

 In this project, I sought to understand the

significance of the problem of delayed response

to motor vehicle accidents. In an attempt to

mitigate this problem, I tried to create a system

that would predict whether a vehicle was

involved in an accident in advance.

 I created a Machine Learning algorithm

consisting of a LSTM Recurrent Neural Network

and Autoencoder to predict future states of the

sensors in the vehicle and assessed whether

these sensor values were indicative of a car

crash.

 While the data collection portion proved to

be a major problem, I was able to work around

it by collecting and creating my own dataset for

training and testing my system. I was able to

create a system that did perform accurately for

these given datasets.

 However, with more accurate datasets and

optimized RNN structure, the system can be

improved upon and can be more accurate in

long-term predictions.

8 Acknowledgements

I would like to acknowledge the support I

received from Professor Yuan Tian. It is in large

part due to her dedication and guidance that I

was able to complete this project. Thank you.

References

[1] CDC. (2016, December 5). Cdc winnable

battles progress report. Centers for Disease

Control and Prevention.

https://www.cdc.gov/winnablebattles/rep

ort/index.html

[2] Humphreys, M. L. P. and T. E. (2016, July

29). Protecting gps from spoofers is critical

to the future of navigation. Retrieved March

30, 2019, from IEEE Spectrum: Technology,

Engineering, and Science News website:

https://spectrum.ieee.org/telecom/securit

y/protecting-gps-from-spoofers-is-critical-

to-the-future-of-navigation

[3] Zeng, K. C., Shu, Y., Liu, S., Dou, Y., & Yang, Y.

(2017). A practical gps location spoofing

attack in road navigation scenario.

Proceedings of the 18th International

Workshop on Mobile Computing Systems

and Applications - HotMobile ’17, 85–90.

https://doi.org/10.1145/3032970.303298

3

10

[4] Li, K., Hu, B., Chang, L., & Li, Y. (2015).

Robust square-root cubature Kalman filter

based on Huber’s M-estimation

methodology. Proceedings of the Institution

of Mechanical Engineers, Part G: Journal of

Aerospace Engineering, 229(7), 1236–

1245.

https://doi.org/10.1177/09544100145486

98

[5] Britz, D. (2015, September 17). Recurrent

neural networks tutorial, part 1 –

introduction to rnns. WildML.

http://www.wildml.com/2015/09/recurre

nt-neural-networks-tutorial-part-1-

introduction-to-rnns/

[6] Understanding LSTM Networks—Colah’s

blog. (n.d.). Retrieved April 2, 2020, from

https://colah.github.io/posts/2015-08-

Understanding-LSTMs/

[7] Unsupervised feature learning and deep

learning tutorial. (n.d.). Retrieved April 2,

2020, from

http://ufldl.stanford.edu/tutorial/unsuper

vised/Autoencoders/

