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Abstract 

Many times, threatening vehicle accidents go 
unnoticed for long periods of time – sometimes 
too late to save the harmed passengers or 
involved victims in the accident. Vehicles go off-
roads in secluded areas, and are out of sight or 
reach of bystanders.  Sometimes, the victims 
are in a critical condition where they are unable 
to call for help or dial for 911. In fact, 66% of 
deaths caused by motor vehicle accidents could 
have been prevented if the patient had received 
medical treatment or assistance earlier [1]. 
      In an effort to reduce this time to alert 
authorities and receive medical aid, I have 
created a novel approach using different 
Machine Learning techniques and 
methodologies that will be able to detect 
impending vehicle crashes, using sensor data 
collected from an iOS device situated in the 
vehicle. While this project primarily focused on 
predicting mishaps with motor vehicles, this 
system can be applied to other predictive 
modeling cases, where Time-Series datasets are 
available for the situation. 
      The first component of the system was a 
Recurrent Neural Network (RNN), which was 
used with the Time-Series data to predict the 
future states of the motor vehicles’ sensor 
readings. Once the future states of the vehicle 
were predicted using this neural network, I 
assessed whether these states were indicative 
of an accident, using an Autoencoder neural 
network. Since the dataset that I used for 
training contained samples of vehicles that 
were not involved in crashes (clean data) and 
had no data regarding vehicle accidents, I chose 
to use the Autoencoder instead of the standard 
Binary Classifier. Therefore, the Autoencoder 
trained on the patterns of the clean data, and 
was able to pinpoint the vehicle accidents as 

anomalies. Finding the relevant features from 
the datasets, creating these two neural network 
models, linking the two separate models, and 
optimizing them for the given datasets are 
covered in detail in this paper.  
 

1   Related Work 

GPS Spoofing and the hacking of sensors and 

cameras on transportation vehicles have 

become a prevalent problem in our society, as 

expressed in detail by Humphreys [2]. He 

describes the large-scale operations that have 

been accomplished through GPS spoofing, such 

as the event in which Iran misguided several US 

ships and aircrafts into unknown territory, as 

well as his own attempt of successfully 

misguiding the White Rose cruise liner one 

kilometer astray without the crew noticing. In 

the case of autonomous vehicles, several 

researchers have already perfected an 

algorithm to trick current GPS navigation 

systems used in cars, deflecting vehicles 

thousands of meters from their intended 

destinations without the knowledge of the 

drivers [3].  

     Any mishap with the gadgets used in an 

autonomous vehicle has the potential to put 

many lives in danger, whether it is the 

passengers in the autonomous car, passengers 

in the other cars on the road, or even 

pedestrians. Researchers have tackled this 

problem using the Kalman Filter algorithm, so 

that even when a sensor, camera or navigation 

system of the car is hacked, the car will be able 

to tune out the exterior noise and continue 

functioning normally. By training a neural 
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network on input data from various cameras, 

sensors, and the GPS navigation system of the 

autonomous vehicle, it constructs a 

probabilistic model that is able to predict the 

next state of the vehicle based on the current 

state. When there is any external noise or 

extraneous data coming in from any of the 

hacked sensors, the algorithm will be able to 

tune out this noise and be able to continue on 

the rightful path determined by the 

probabilistic model [4]. 

      In a similar manner, I wanted to use sensor 

data to predict the next state of the vehicle 

using a probabilistic model, as well. However, 

the project detailed above mainly pertained to 

autonomous vehicles and the sensors that those 

vehicles used for navigating the roads, and I 

wanted to focus on a problem with motor 

vehicles that we currently face and which 

continues to be a problem even in the future. 

While I also use a neural network for the 

predictive model using the sensor data, I have 

added other Machine Learning components to 

the system to be able to predict whether the 

next state is indicative of a vehicle accident or 

crash. 

  

2   Data Manipulation 

2.1   Data Collection 

One of the biggest challenges of this project was 

finding the appropriate dataset for the Machine 

Learning models. I was originally planning to 

use the Waze Dataset, which provided 

continuous data regarding a subset of vehicles 

for a few months. However, the most important 

aspect of Time-Series data is that it needs to 

have consistent time-stamps that are spaced 

out with equal intervals in between each one. 

The Waze dataset, despite being a reputable 

source, provided one timestamp for each 

vehicle throughout the months and showed no 

progression for my Recurrent Neural Network 

to train on. 

      In order to work around this problem, I 

gathered our own data, by driving around the 

Charlottesville area, with an iOS device 

collecting all of the sensor data in the interior of 

the car. The iOS device tracked the same 

features with its sensors every few 

milliseconds, providing a progressive Time-

Series dataset during the car rides. We drove 

around the same areas to keep the location data 

consistent, but at different times of the day to 

introduce more variance and to mimic real-life 

scenarios. After going on approximately two car 

rides at different times of the day on two 

seperate days, we were able to collect enough 

data for my project.  

 

2.2   Feature Engineering  

The iOS tracking system collected 72 different 

features using their sensors, many of which had 

no relevance to motor vehicle accidents. From 

this group of 72 features, I picked out the 36 

features that had correlations to the project 

from the dataset. 

     From this set of 36 features, I then limited 

the dataset down to a subset of 31 features 

using a Pearson Correlation Matrix. The 

correlation matrix reported the covariance 

between the different features, and features 

which had high correlation or shared overall 

distribution patterns would be repetitive and 

add no additional value to the model. Any 

features that had more than 95% correlation 

with at least three other features in the dataset 

were removed, and I was left with a subset of 

31 features for my models. 
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Figure 1: Complete set of Features 

Since the feature pool was already small, I did 

not have to apply other dimensionality 

reduction techniques, such as Principal 

Component Analysis (PCA) and Locally Linear 

Embedding (LLE) that I had used with the 

previous Waze dataset. 

3   Recurrent Neural Network  

3.1   Background  

   As humans, our thoughts persist for a period 

of time (this period of time can vary depending 

on memory and attention span!) and then fade 

away into oblivion. We never start our thought 

process from the moment that we first opened 

our eyes as a newborn, but instead think back 

to the relevant periods of time to make an 

informed decision. Even as you read this paper, 

you are comprehending each word based on 

the previous words in this sentence. We keep 

the context for a period of time and when it 

becomes irrelevant, we move on. For example, 

if I am telling you a story about a boy named 

Charlie, and in the next phrase, mention a “He”, 

your brain will know that I am referring to 

Charlie. The moment that a new noun, Sheila, 

appears in the story, our mind gets rid of 

Charlie and associates the next pronoun with 

Sheila. Our thoughts have persistence until a 

certain point, and to some extent, we choose 

which information from the past is relevant to 

store [5]. 

    Unfortunately, traditional neural networks 
are unable to do this, and is a major 
shortcoming for use with time-series data 
where we want to use information from the 
past to inform later decisions. Recurrent Neural 
Networks (RNNs) address this problem. In 
simplest terms, they are networks with loops 
within them that allow information to persist. 
The predictive component of my model, which 
provided the future states of the vehicle, 
involved a Recurrent Neural Network. 

      In Figure 2, the Neural 
Network component, A, takes in 
the input x, and outputs a value, 
h, at time t. The loop allows for 
the information to be passed 
from one step to the next.    
 
       When unrolled (as seen in 

Figure 3), the RNN closely 

resembles a normal 

neural network. 

Essentially, an RNN can 

be viewed 

as multiple 

copies of 

the same 

network, 

with each 

iteration 

providing 

information to its successor. 

       The iterative nature of the 

RNN lends itself to be used in 

sequences or chains of events, 

and in the case of my project, a 
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sequence of time, where each 

subscript in the diagram above 

represents a timestamp [6]. 

 

3.2   Long Short Term Memory Models 

       Most of the time, traditional RNNs suffer 

from not being able to pick up on long-term 

trends and are easily skewed by the most 

recent data that it is presented with. For my 

project, I utilized a special type of RNN, known 

as Long Short Term Memory Models (LSTM) 

that are capable of learning long-term 

dependencies and patterns within the datasets. 

Like explained above, the LSTM also follows an 

iterative progression, but each repeating Neural 

Network Module has a special structure of four 

neural network layers that interact in a special 

way [6]. 

    For my project, I implemented a layered 

LSTM model to make predictions for 153 

timestamps in the future for the given vehicle 

that I had collected data on. The LSTM was able 

to predict values for all of these features in 

parallel, despite these features being 

completely unique. 

Given the array of features that I was using (as 

detailed in Figure 1), the LSTM was able to 

make a prediction for each of these features 

simultaneously for each timestamp. The last 

prediction at the 153rd timestamp (or 

approximately 2.5 minutes after the first 

timestamp) is shown in Figure 5, where each 

prediction corresponds to the same feature at 

the same index in Figure 1.  
Figure 5: The 153rd prediction of features using LSTM 

 

 

 

3.3   Optimizations  

The main problem that I was encountering was 

that the RNN was not able to update itself 

quickly enough to report predicted values that 

pertained to the most recent timestamps. It was 

predicting values that appeared most 

frequently in the dataset and values that were 

at earlier timestamps. 

     Since I had been working with the Waze 

dataset that was considerably larger than the 

current dataset, I had previously created a 

complicated model to cater to the large size of 

the dataset. This complicated model usually 

creates a tendency for the neural network to 

closely adapt to the smaller training dataset, 

and I had wrongly predicted that the model was 

overfitting to the training data (matching the 

pattern of the training dataset so closely that it 

is unable to generalize to the other data points).  

As expected, the regularization methods that I 

applied to the model to combat overfitting were 

further amplifying the problem and the model 

was still not predicting the correct values. The 

hyperparameters that I changed were very 

sensitive, so I decided that I should first 

diagnose and confirm the model’s problem 

before making any changes based on my 

intuition.  

     Essentially, I had to figure out if the model 

was overfitting or underfitting to the data set. 

The only way to do this is to plot out the 

validation set error and training set error (the 

validation set is a small subset of the training 

set). These errors are the errors that the model 

makes when training on the training set 

(training loss) and the errors that the partially 

trained model makes on a small testing set 

(validation set).  When I started doing this, I 

realized that the model was actually 

underfitting. The validation loss was much 

higher than the training set error, and the 

validation error showed no signs of decreasing 

over time (as shown in Figure 6).  
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Figure 6: An Underfitting Model Performance 

A “good-fit” model (shown in Figure 7) is one 

where the validation loss steadily decreases to 

the point of stabilization and intersects (or 

comes close to) the training loss at some point. 

The training loss should also stabilize to the 

point where it no longer decreases. 

 

Figure 7: A Good Fit Model Performance 

I used these graphs as a metric to assess how 
the model was performing, and developed my 
own methodology to find a stopping point 
within the training period to minimize the 
difference between the model’s training and 
validation loss. 
    I tried a series of different experiments to 
combat the problem of underfitting, such as 
increasing the number of training epochs, 
adding neurons to each layer, changing the 
Dropout percentage (of nodes) in each layer, 
and adding an additional layer in the Neural 

Network node, until I finally found the 
methodology that worked: reducing the 
number of LSTM layers. Usually, having too 
many layers causes the model to overfit to the 
data. However, in this case, the number of 
layers was obscuring the model from learning 
the pattern of the dataset and was making it too 
sensitive, and the model was therefore 
underfitting. I was finally able to find a good-fit 
model for the dataset.  
    Another problem that I ran into was that the 

model was reporting back NAN values for the 

training loss, and this was caused by the 

Exploding Gradient problem. Essentially, 

exploding gradients are a problem where large 

error gradients accumulate and result in very 

large updates to neural network model weights 

during training (the weights of the neural 

network are changed during a back-

propagation step). This has the effect of the 

model being unstable and unable to learn from 

the training data. The easy fix to this problem 

was introducing the idea of Gradient Clipping to 

the model, where the values of the error 

gradient are checked against a threshold value 

and then are clipped or set to that threshold 

value if the error gradient exceeds the 

threshold. This prevents the weights from 

being heavily updated, and allows for the 

updates to happen in increments. 

 

 

 

5   Autoencoder  

5.1   Background 
Autoencoders are a type of feed-forward neural 

network whose purpose is to serve as an 

identity function, where the output of the 

neural network tries to resemble the input. 

They serve as a dimensionality reduction 

technique, where it compresses the input into a 

lower-dimensionality vector, and tries to 

rebuild the output from this compressed 

representation.  
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     The Autoencoder consists of three 

components: Encoder, Code, and the Decoder. 

The Encoder, which is essentially a simple 

Neural Network, parses the input given and 

produces a Code, as well. This Code is a formula 

that the Decoder will use to parse the 

compressed version of the input to reproduce 

the original input. The Decoder is a mirror 

image of the Encoder, and resembles the 

Encoder’s structure. The goal of the 

Autoencoder as a whole is to produce an output 

that is as close to the input as possible. 

 
Figure 8: Autoencoder structure 

 

     The reconstruction error is the difference 

between the output vector of the 

Autoencoder and the compressed vector 

form of the input. Throughout the training 

process, the Autoencoder tries to minimize 

this error using backpropagation, where 

several hyperparameters of the model are 

slightly modified [7].  

 

5.2 Implementation 

One of the major challenges that I faced during 

my project was that the data that I had only 

contained information about a car that was not 

involved in any mishaps or accidents. 

Therefore, I could not create a standard Binary 

Classifier that would be able to group vehicles 

as either safe or involved in an accident.   

     In order to work around this problem, I 

utilized the capability of the Autoencoder to 

train on the patterns and trends of the clean 

data, and to ultimately learn how to precisely 

reproduce the most frequent characteristics of 

the observations of the clean data. Once the 

Autoencoder is trained and it is faced with a 

vehicle undergoing an accident, the model 

should worsen its reconstruction performance 

and would yield a high reconstruction error, 

labeling that data point as an anomaly. 

     Using a small sample set of “anomaly” data, 

where I greatly varied the values for each 

feature by at least two standard deviations, I 

was able to find the exact reconstruction error 

threshold for marking a sample as an anomaly. I 

ran the Autoencoder on a subset of the clean 

training data, and took note of the 

reconstruction error, and then ran it on the 

anomaly dataset. I was able to find a clean 

reconstruction error threshold of 0.01, that did 

not yield for any false negatives or false 

positives (high precision) among the datasets 

that I had. Essentially, a reconstruction error 

that exceeded the threshold of 0.01 would be 

marked as an anomaly, or as a car accident.  

 

6   Results 

6.1   Predicting the Next State of Vehicle 

Using the LSTM model, I was able to predict up 

to 153 future timestamps from the last given 

timestamp. Since the data given to me was 

spaced by millisecond time-intervals, the model 

was able to predict the future states up to 2.5 

minutes after the first timestamp. As shown in 

Figure 9, the validation and training losses 

indicate that the model was a perfect fit for the 

dataset.  
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Figure 9: Performance of Prediction Model 

     Fortunately, I had two separate datasets that 

were spaced out by 2 minutes – one dataset 

collected vehicle information from 08:02:25 to 

08:21:47, and the other dataset started 

collecting information at 08:23:34 until 

08:31:25 the same day. To fully test the 

capabilities of the RNN, I trained the neural 

network on the first dataset, and used its 

predictions to test its accuracy on the second 

dataset and to compensate for the two-minute 

time gap between the datasets. 

    The 153rd prediction at timestamp at 
08:26:00 was compared to the actual value in 
the second dataset and yielded a very small 
mean square error (MSE). I also graphed the 
predicted and actual values over the 08:23:34 
to the 08:24:00 timestamps. The graphs to the 
right clearly indicate that the RNN was able to 
track the general trend and provide a highly 
accurate prediction for each feature, where the 
red trend line indicates the actual values and 
blue trend line is the predicted values.  
    In order to check if the autoencoder was 
functioning, these 153 future timestamps were 
run through the autoencoder, as well, and each 
one had a reconstruction error of about 0.005 
(less than the 0.01 threshold), which correctly 
gauged that these timestamps were not 
indicative of a vehicle accident or crash.  
 

 

 

 
Figure 10: Predicted 

versus Actual Feature 

Values 
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6   Future Improvements 

One of the biggest drawbacks to this project 

was that we could not find the datasets that 

best matched our needs. In fact, I was barely 

able to get enough data from gathering it from 

an iOS device myself, which could have 

introduced some human error. However, the 

system that I created can easily be adapted to 

other datasets, and if I were to locate the 

appropriate datasets in the future, we can 

potentially have a system that can predict every 

impending car crash.  

     I also only had access to clean data, where 

there were no motor vehicle accidents. 

Acquiring this dataset would serve as a good 

testing set to make sure that the threshold 

enforced for the autoencoder to detect car 

crashes is correct and functioning.  

     While the Recurrent Neural Network model 

is highly accurate and uses state-of-the-art 

calculations and techniques for predictions, it is 

unable to make accurate long-term predictions, 

as it tends to plateau with no new data being 

fed to it. In order to enable long term 

predictions, the model needs to be deployed so 

that it can receive a constant flow of updated 

data so that it can adjust itself and make 

predictions that are suited to the current data. 

Deploying the model to enable constant data 

flow would be something useful and 

worthwhile in the future, especially if we want 

to keep using the powerful RNN model.  

7   Conclusion 

     In this project, I sought to understand the 

significance of the problem of delayed response 

to motor vehicle accidents. In an attempt to 

mitigate this problem, I tried to create a system 

that would predict whether a vehicle was 

involved in an accident in advance.  

    I created a Machine Learning algorithm 

consisting of a LSTM Recurrent Neural Network 

and Autoencoder to predict future states of the 

sensors in the vehicle and assessed whether 

these sensor values were indicative of a car 

crash.  

      While the data collection portion proved to 

be a major problem, I was able to work around 

it by collecting and creating my own dataset for 

training and testing my system. I was able to 

create a system that did perform accurately for 

these given datasets. 

     However, with more accurate datasets and 

optimized RNN structure, the system can be 

improved upon and can be more accurate in 

long-term predictions.  
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