

Utilizing Multi-threading in Order to Optimize Processing

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Chi Min Jung
May, 2020

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines
for Thesis-Related Assignments

Signature __ Date __________
Chi Min Jung

Approved __ Date __________

Henning Mortveit, Department of Systems and Information Engineering

Utilizing Multi-threading in order to Optimize

Processing

Ryan Jung and Henning S. Mortveit
Network Systems Science and Advanced Computing;
Department of Engineering Science and Environment;

Charlottesville Virginia, United States
University of Virginia

cj9de, hsm2v (at) virginia.edu

Abstract - In the world today, in all different
fields data is enormously abundant. So much
so that it is nearly impossible to be able to
process and make use of it by the mere lay-
man. Enter the computer, a machine able to
perform thousands of calculations of one per-
son. However even the mighty computer has
to spend time to process this data. Eventually,
with enough data and processes, a computer
will no longer be able to instantaneously pro-
duce results. The solution is to enable paral-
lelism, or in layman’s terms do multiple things
at the same time. This technical report cov-
ers the threaded implementation of the regu-
lar expression (or NFA) constrained router of
Jakob et al. This was a previously built router
using regular expression, was modified to be
able to run parallel instances, so that multiple
requests could be handled at once. Instead of
processing requests one at a time, the

1 Introduction

The algorithm used in this software involved taking
an existing NFA and a graph to produce an auxil-
iary graph. Using this, an adaptation of Dijkstra’s
algorithm is used to traverse the graph. Dijkstra’s
algorithm is an algorithm used to find the shortest
path between 2 points. It does this by essentially go-
ing through every possible path and keeping track of
whatever is the shortest. The modification made was
that edges of the vertexes have the same edge label
that follow with the NFA. This allows for not only
traversal with only a specific set of nodes, but allows
also for a number of patterns that the program can

map out. [1].
This is performed by utilizing state machines with
states that define each mode of transportation. Each
state only transitions when a different mode of trans-
portation is encountered and cannot return to the
previous state. For example if the NFA was defined
as walking-car-bike, and the algorithm encounters a
node with a car transportation label, from that point
on, that particular path can only follow edges with
either the same labels or the label that comes next in
the NFA. The software is set up as a router, in which
it takes in a text file of requests, each line contain-
ing the start and end nodes. Other files that define
the NFA and the graph are also included. After the
router processes the requests, it produces a text file
that contain the nodes that produce the shortest path
per request.

2 Design

The basis of the design takes from the original imple-
mentation. Quite simply, the focus is on the critical
portion of the code base where:

The NFA is created ,The trip requests are processed,
The program outputs all the processed request to a
text file

Taking this, these implementations are stored in a
callable method that can be stored in a thread. An
additional method needed to be built that takes in the
multiple thread requests and splits them up among
however many threads the user decides to run. Along-
side these changes, many legacy features were re-
moved to help make the program more lightweight
and simpler to understand. An option to allocate a

1

certain number of cores was also added for testing
purposes. The idea behind these changes is by al-
lowing for threading and paralleling operations, the
program can handle more requests more quickly and
efficiently, making full use of a machine’s capabilities.

Once these ideas were firmly set out, the critical sec-
tions of the code are as follows.

whi l e (! t r i p l i s t . empty ()){
Trip Request t r i p r e q u e s t
= t r i p l i s t . back () ;
f l o a t d i s t anc e = 0 . 0 ;
plan . path . c l a e r () ;
double t ime e l apsed ;
route r . f indpath (Algorithm)

algor ithm ,
t r i p r e q u e s t , plan
t ime e lapsed ,
t r i p r e q u e s t . nfaID) ;

mtx1 . l o ck () ;
o u t f i l e << t r i p r e q u e s t . id << ’\ t ’

<< t r i p r e q u e s t . source << ’\ t ’
<< t r i p r e q u e s t . d e s t i n a t i o n
<< ’\ t ’ ;

o u t f i l e << plan << endl ;
mtx1 . unlock () ;
bool e r r o r = f a l s e ;
.
.
.
t r i p l i s t . pop back

}

Figure 2: Critical components of code

Compared to the original code base, it is quite simi-
lar, with much of the components being adapted from
the original. Major differences include the addition
of locks around file output to ensure thread safety.

A custom ”Thread Request” method was also created
in to work in conjunction with the Thread method.
The function of this is to split up a single request
across an appropriate number of threads (can be user
generated or defaulted to the number of cores exist-
ing on the machine) so that the work can be split up
among them.

vector<Trip Request> temp ;
vector<vector<Trip Request> > b i g l i s t ;
whi l e (! r e q u e s t v e c t o r . empty ())
{

i f (count >= v e c s i z e)

{
count = 0 ;
b i g l i s t . push back (temp) ;
temp . c l e a r () ;

}
e l s e
{

temp . push back (r e q u e s t v e c t o r . back ()) ;
r e q u e s t v e c t o r . pop back () ;
count++;

}
}
i f (! temp . empty ())
{

b i g l i s t . push back (temp) ;
temp . c l e a r () ;

}
re turn b i g l i s t

Figure 3: Thread Request

3 Scaling Studies

Outline of work:

Construct e.g. a Python tool that takes as argu-
ment the node file of a network, and an integer
N , and that produces a complete trip request
file containing N random trips. They will all
have travel mode 0 which corresponds to au-
tomobile. It will likely be useful to have trip
request files with 1,000, 10,000, and 100,000, re-
quests. For testing, use the smaller request files;
for the serious scaling studies, use the larger
one.

Create a timing framework that can time and
report the execution of the router. It may be
helpful to separately time initialization code
such as construction of networks.

Create a timing diagram giving time needed for
computation as a function of the number of re-
quested compute threads. Conclusions? Linear
scaling? If not, why not? What happens if you
request more threads than there are available
cores? For each timing run, there may be fluc-
tuations due to other computations running on
your computer/Rivanna. It will likely be useful
to at least conduct two runs per setting.

2

4 Results

Figure 4: Data

Interestingly, the results show that across the board
utilizing only 2 cores would produce the best results.
All these tests were performed on a local machine and
the only explanation that could be thought of is that
the OS is utilizing the other cores for other overhead
operation which could cause a slowdown. Further
testing on Rivanna with dedicated nodes and cores
performing the tests seems like it would be necessary.
This was not the expected result where it was initially
hypothesized that the relationship between average
time and core count would be logarithmic. Still us-
ing multiple cores is almost always faster than using
one core (save for the test of 1000 trip requests). Thus
the goal of applying and implementing the multi-
threading capabilities was not only useful, but suc-
ceeded in solving the problem. Although the 100,000
requests sounds like a huge amount, it is merely s
small piece of the total amount of requests that will
have to be processed. As this continues to scale, it is
safe to conclude that the same trends will follow and
therefore be able to save much needed time.

References

[1] Chris Barret, Rico Jacob, and Madhav Marathe
Formal Language Constrained Path Problems So-
ciety for Industrial and Applied Mathematics,
2000

3

A RE Router User Documen-
tation

./new_main -g <graph> -c <coords> -N <NFAFILE> -s <cores> -t <time> -f <pairs>

-c <coords>: coordinates (vertex) file

-g <graph>: pairs from file

-N <NFAFile>:graph (edge) file

-s <cores>: specifiying how many cores (and consequently threads) are used

-t <time>: time of departure

plans.txt: output file returning request path traversal

./trip_maker.py: prompts user for a number and creates that many trip requests

./super_script.sh:runs program with newly created pairs file from trip_maker.py with 4 cores

./testing_frame: prompts user for number of requests and number of cores.

Runs 100 trials and returns the average time and all trial times to a .csv file

./data_collect.py: runs 3 tests of 1000, 10,000, and 100,000 requests. Returns 3

.csv files with results

A.1 Input Files

The router uses the following input files:

Network node file: The text file with specifications of node id and travel options

Network link file: The text file that puts together the nodes

Trip Request file: The text file that puts out specific travel routes

4

