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Analyzing the Adverse Effects that Recommender Systems Have on Humans 

Overview: 

 The rise of the internet over the 21st century has led to enormous amounts of data being 

generated by users and their interactions with other users and websites. Researchers and 

corporations have been trying to harvest this data to create useful or profitable models such as 

recommender systems. As the name suggests, these models attempt to learn the user’s 

preferences on various things such as products to purchase on Amazon  or videos to watch next 

on YouTube. By analyzing literature and studies performed on people who interact with these 

recommender systems, this paper argues that they do more harm than good.  

Positionality:  

 As a computer science student at the University of Virginia, I’ve learned about the 

underlying math and computer science that powers models such as Alpha-Fold and Chat-GPT. I 

also have firsthand experience in research related to the field of machine learning. This 

experience let me understand at a deeper level where the state of the industry is right now, and 

where it is likely to head in the next few years. Having seen the rapid improvement in 

capabilities of state-of-the-art hardware and software, ethics is often not prioritized in the 

development of new applications using these technologies. Even though I have the privilege of 

being able to observe these trends due to my schooling experience, I still think it’s difficult to 

understand how these models work, so it would be unfair to expect most people to. That’s why 

extra care must be taken to consider the impact these large models may have on society. As a 

person of color and the child of two immigrants, I hope that researchers ensure that all social 

groups are considered when decisions are made, especially those that are historically under-

represented. The rate of improvement is only increasing, so more deliberate effort must be 

applied to ensure all stakeholder interests are being considered. 

Problematization: 

This paper addresses the adverse effects of recommender systems on users and even 

society as a by-product. The main system that will be discussed is Twitter’s “tweet” timeline 

recommender system. Twitter is a monetized social media app where users are able to create 

“tweets” which are accessible to other users. Since millions of tweets are created every minute, 

the Twitter recommendation system selects which of these are most relevant to the user and 

displays it in the users’ home page, also known as the timeline. This system was chosen because 

the owner of Twitter has open-sourced the code for it, making it easier to review.  

 

Guiding Question or Main Argument:  

This paper argues that Twitter’s tweet recommender has harmful effects on its users such 

as providing bad recommendations as a result of conflict of interests, spreading misinformation, 

and a lack of privacy/transparency with how user data is collected and stored. 

Projected Outcomes: 
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This paper aims to summarize knowledge about the flaws of Twitter’s tweet 

recommender system from various technical papers and studies published. The findings will 

educate the reader that knowledge can potentially mitigate any harmful effects these systems 

may have. Twitter is one of the most used social media websites/apps so this paper can help 

many people. 

Technical Project Description: 

 Recommender systems (RS) learn to predict what a user is interested in buying or 

watching using reinforcement learning. By collecting data about the user such as 

purchase/browsing history as well as feedback from other recommendations, RS will learn user 

preferences over time. RS also leverage similarities among users and products, which is known 

as collaborative filtering. For example, if both user A and B love watching cat videos and user B 

watches a cat documentary, then user A will then be recommended that documentary.  

RS use reinforcement learning models to assign a score to each product which represents 

how likely a user is to interact with it. The more data and feedback the model has from the user, 

the more accurate this score becomes. The only issue with this approach is the availability of 

reliable data.  

User data is very noisy because the user isn’t explicitly being told that they are generating 

data to train a model. Instead, websites often infer the feelings/preferences through their actions. 

These data labels, “positive” or “negative” are not the ground truth. Someone could watch five 

minutes of a video and then quit because they didn’t like it. From the models perspective, it is 

hard to tell whether they liked or didn’t like this video since they interacted with it. 

Working under professor Hongning Wang, I have helped in formulating techniques to 

train models with noisy labels. I implemented a special layer in a neural network which adapts to 

the user who generates the noisy labels and adjusts how the model updates its internal parameters 

accordingly. Using this approach, the model was around 14% better than without it. 

Preliminary Literature Review & Findings: 

There are three main findings from the research that I conducted: the first is that 

content/media RS such as twitter are designed to keep the user “hooked” onto the app or website, 

rather than actually recommend content the user would benefit from (Seaver, 2019). This results 

from a conflict of interest between the user wanting personal recommendations and the company 

wanting the user to keep scrolling to generate more money. With constant bombardment of new 

tweets that may desirable for us to consume, our brains gravitate towards scrolling on Twitter 

forever in search of those tweets instead of working on our responsibilities (Evitts, 2022).  

 The second finding is that RS are biased because they don’t consider that by giving 

recommendations, they are actively influencing the user’s preference (Evans, 2022). They also 

are not particularly good at recommending things when they don’t have much data (Zhu, 2021), 

so it’s easy to reach a scenario where the user is being recommended things they never actually 

needed.  
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The last finding is related to privacy and transparency. Since RS rely on data, 

websites/apps gather user data, sometimes without the user’s consent. There is a tradeoff 

between privacy and effectiveness because the more personally identifiable information the RS 

has, the better recommendations it can make (Friedman, 2015). However, in case of a data 

breach, users are at the mercy of the perpetrators.  

Researchers are trying to improve RS from a technical standpoint which helps with the 

bias, but there is still an ethical component which only companies can change. 

STS Project Proposal: 

Science, Technology, and Society or STS is a multi-disciplinary area of study which 

focuses on how scientific and technological advances impact individuals and the overarching 

society said advances takes place in. Society’s natural stratification means that individuals in 

different groups are impacted differently by the same technology. Designers need to carefully 

consider all types of people when creating their product or service. My paper considers ethical 

and technical considerations that engineers of RS have to make and how these affect the end user 

and society as a whole. 

I approach this STS piece from a ethics and values standpoint. Specifically, my paper 

investigates the privacy, trustworthiness, and fairness of RS. One of the primary authors I will be 

referencing is Saad Tariq who is a scholar at the KTH Royal Institute of Technology in Sweden. 

His work examines the hidden side effects of recommender systems which is in line with my 

topic. Since his arguments line up with mine, I have found several useful resources from his 

citations and findings that I can explore further. 

 I also will be referencing several technical authors including Alex Beutal, Charles Evans, 

and Miriam Fernandez. These authors have written papers discussing current problems with RS 

and designed solutions towards these problems while noting their limitations. This is important 

for my work because it’s the most rigorous way to show that current RS are indeed flawed as 

well as how we can potentially alleviate these problems with more research in that area. 

Value sensitive design is a methodology to designing technology that considers the 

values and ethics of the users and stakeholders who will be affected by the technology. In 

particular, I will be using Friedman’s 2006 work on stakeholder analysis and model for informed 

consent online. RS have three different stakeholders: end users, advertisers, and the companies 

using them. The end users want things they would be interested in the most, while companies 

want them to keep using their product to increase profits which they get from advertisers. This 

work will focus on the former two. 

When it comes to recommender systems, stakeholder analysis and informed consent 

online can be used to address ethical considerations related to privacy, transparency, and 

autonomy. Informed consent online can be used to ensure that users have control over their 

personal data and that their privacy is protected. Stakeholder analysis can be used to design 

systems that are transparent and explainable, providing users with clear information about how 
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recommendations are generated and allowing users to understand and question the decisions 

made by the system. 

My research method will be a conceptual and technical investigation based on literature 

review and personal interviews. Literature review can help find gaps in existing research and 

potential areas for further investigation, as well as providing a solid foundation for the topic. In 

particular, Twitter released a white paper detailing their recommender system design. Interviews 

with end users and corporate representatives would provide valuable insight into the values of 

the stakeholders for this topic. This investigation would support my value sensitive design 

approach to discussing RS and can help me analyze the impacts it has on society. 

Barriers & Boons 

Although I have some tangential experience working with RS, I don’t have rigorous 

experience designing one that is actually used in production. My understanding is limited, and I 

have to rely on reading literature of state-of-the-art RS and this prospectus is my interpretation of 

those papers. I have a time and money limitation here because I have other responsibilities and 

debts to pay off which I could spend to better understand RS. Thankfully, many technical papers 

are available thanks to UVA and ArXiv and Twitter’s owner decided to release the RS white 

paper. 
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https://doi.org/10.1093/joc/jqz038
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https://dl.motamem.org/microsoft-attention-spans-research-report.pdf
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