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Abstract 

Cardiovascular disease (CVD), including atherosclerosis, is a leading global cause of 

death. Atherosclerosis, characterized by plaque accumulation in arteries, can lead to myocardial 

infarctions (MI) or strokes. Imaging techniques like computed tomography angiography (CTA) are 

crucial for diagnosing and assessing the disease. The coronary artery calcification (CAC) score 

calculated from CTA images is a prognostic tool for atherosclerosis, with high scores correlating 

with increased risks of major adverse cardiovascular events (MACE) and all-cause mortality.  

Despite the emerging efforts and existing therapies, the residual risk and the onset of coronary 

events remains high.  

Immune cells, including T cells and B cells, play complex roles in atherosclerosis and their 

precise function is dependent on the cell subtype. T cells in plaques can promote or inhibit disease 

progression, while B cells produce antibodies affecting lipid uptake and foam cell formation. Loss 

of TET2 in immune cells is linked to higher risk of CVD and hematological malignancies.  
Precision medicine sought to better stratify patients and identify biomarkers that can help 

design therapies suitable for patients’ individual profiles. Given the complex nature of the immune 

system and its role in the progression of atherosclerosis, the motivation for this work is to 

demonstrate how multi-omics can enhance our understanding of CVD and underlying genetic 

conditions, guiding the development of more precise and effective treatments 

Here, I present a study, where we investigated TET2's role in regulating B1 cell numbers 

and functions. TET2 loss increased B cell subtypes in the peritoneal cavity, bone marrow, and 

spleen. B1a cells from TET2-KO mice showed fewer unique CDR3 sequences, indicating reduced 

antigen diversity. The TRUST4 algorithm enabled accurate detection of BCR and TCR repertoires 

from bulk RNASeq data, providing insights into immune cell receptor diversity. 



 iii 
In a pilot study, I analyzed phosphorylation states of effector molecules in IL-1β and IL-6 

signaling pathways in patients with no CAC and high CAC. T cells were the primary immune cells 

activated by both cytokines. T regulatory cells showed lower phosphorylation of STAT5 in patients 

with high coronary calcification. Additionally, Subjects with high CAC showed a lower response 

to IL-1β and IL-6 stimulation, a phenomenon, to our knowledge, never reported before. The study 

provides interesting findings but is limited by sample size. Identifying specific T cell 

subpopulations responsive to IL-1β and IL-6 presents new research opportunities and potential 

therapeutic targets.  

Understanding immune cell dynamics in atherosclerosis could improve disease prognosis 

and treatment response, aligning with precision medicine's goals. Further studies are needed to 

elucidate the biological significance of these findings and their clinical applications in managing 

cardiovascular disease. 
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Chapter 1  

Introduction 

1.1 Precision Medicine 

1.1.1 Defining precision medicine 

Despite extensive global efforts to deliver novel therapies to all patients in need, the design 

of a universal therapy for everyone remains a challenge. This issue led to the creation of the medical 

notion of precision medicine, which is defined as P4 medicine - participatory, personalized, 

predictive, and preventative medicine (Hood & Friend, 2011). Precision medicine is targeted at 

individual patients, aiming to optimize drugs, therapies, and diagnostics to deliver the best results 

 

Figure 1.1 Precision medicine model is as venn diagram made up of the person(s), 
markers, exposome and behavioral health. 
Figure and caption from UC Davis Health.  
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in the treatment of various diseases. It integrates behavioral health, environmental exposures, 

personal medical profile, and assessment of known disease markers to tailor the therapy to 

individual patient’s needs, as presented in Figure 1.1. Integration of exposome (environmental 

influences), behavioral health, specific markers, and knowledge about an individual can increase 

the chances of choosing medical care that’s most likely to be effective. Stratifying patients based 

on their medical profiles, as seen in clinical trials, can help identify populations that would benefit 

the most from treatments, leading to more efficient health care. Furthermore, investigating 

unresponsive populations and researching candidate factors responsible for treatment failure can 

result in identifying new drug targets and novel insights into disease pathogenesis (Svensson et al., 

2022).  

1.1.2 Precision medicine in the clinic 

The value of personalized approaches was recognized early in the cancer field. In 2005, 

Piccart-Gebhart et al. reported that Trastuzumab and Chemotherapy improve disease-free survival, 

specifically in patients with HER2-positive breast cancer. Another mutation influencing treatment 

choices in breast cancer is BRCA1/2 (Quek & Mardekian, 2019) and EGFR in lung cancer (Chu, 

2014).  All these findings are now standard-of-care practices in oncology when choosing therapies 

for cancer patients.  

Several clinical trials have demonstrated the need to understand patient populations better.  

One example is the CANTOS trial (Libby, 2017; Ridker et al., 2018) , where Canakinumab was 

administered to patients with a history of myocardial infarctions (MI) and elevated high-sensitivity 

C-reactive protein (hs-CRP) levels to assess whether reducing inflammation could lower 

cardiovascular event incidence.  Only 25% of patients responded to the tested medication. The post-

trial stratification of patients reported variation in patients’ response to the drug based on the 
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baseline levels of inflammation markers other than hs-CRP. The re-analysis of the trial’s results 

and efforts to uncover genetic and molecular factors enabling differentiation between responsive 

and not responsive groups are hoped to reveal more detail into the biology of the disease and the 

drug’s mechanism of action and its effects on studied patients (Ridker et al., 2017, 2018).  

Currently, the efforts focus on individual’s genetic, epigenetic, proteomic, and 

demographic factors that can determine the efficacy of medical interventions (Auffray et al., 2010). 

The inclusion of additional tests, as well as reanalyzing the data from published clinical trials, 

provide deeper insights into patient populations and their diversity. The high costs of diagnostic 

tools for determining individual medical profiles limit the clinical feasibility of many approaches. 

There is an ongoing need for more affordable solutions, together with integrating large datasets 

with artificial intelligence and machine learning, to predict individual treatment needs with greater 

accuracy.  

 

 
 
Figure 1.2 The cycle of basic research  
The cycle begins at the hypotheses, experiments in the laboratory to data simulation and complex 
data analysis and finally to predictions.  

Figure adapted from (Kitano 2002) 
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1.1.3 Basic research and precision medicine 

Precision medicine focuses on delivering the most effective health care to patients in the 
clinic, but it all begins in research laboratories. As depicted in  

Figure 1.2, every finding begins with hypotheses followed by experiments in the 

laboratory, complex data analysis, integration with current knowledge on the topic, and finally, 

predictions that can be useful in the clinic. Basic science influences medicine in many forms: from 

model studies in animal models to discovering the mechanisms of the disease, analyzing large-scale 

datasets and identifying hypotheses-generating patterns (Hulsen et al., 2019), detecting genetic 

variants influencing drug metabolism and efficacy (Ahmed et al., 2016), creating computational 

models to predict disease progression (Gardiner et al., 2022), through data-driven machine-based 

  

Figure 1.3 Essential features and goals of a precision medicine system. 
Figure adapted from (Antman and Loscalzo 2016)  
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diagnostic tools (Kale Satish & Shinde Sandeep, 2023). Translational science laid the foundation 

for novel therapies and diagnostic tests in many diseases, including Alzheimer’s, Inflammatory 

bowel disease, epilepsy, pulmonary arterial hypertension, and many more (Forloni, 2020; Gardiner 

et al., 2022; Kelly & Chan, 2022; Nabbout & Kuchenbuch, 2020). 

By leveraging the newest findings in genomic, bioinformatic, molecular biology, and 

proteomics, we can tailor medical care to match patients' genetic and molecular profiles to ensure 

the most effective treatments. Figure 1.3a-b presents how collecting detailed patient data, their 

standardization and reanalysis, and the integration of novel scientific findings can benefit medical 

care. The collection and proper curation of medical information can be valuable in the future when 

validation of new discoveries is needed. With an emerging understanding of the biological basics 

of many diseases and constantly evolving research technologies, the relationship between research 

laboratories and medical clinics strengthens, offering hope for future medical interventions tailored 

to each patient’s needs.   

1.2 Introduction to multi-omics 

1.2.1 Multi-omics 

Considering the growing number of complex datasets spanning all types of hierarchical 

biological and medical data, there’s a need for systemized approaches to accelerate the analysis 

without compromising its quality. Multi-omics refers to the integrated analysis of multiple 'omes,' 

such as the genome, proteome, transcriptome, and metabolome, to provide a comprehensive view 

of biological processes. Computational biology, which includes multi-omics, leverages large-scale 

biological data to explore the relationships between molecules in different disease contexts. It 

focuses on studying biological systems as opposed to studying their individual components. 
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Computational biology utilizes advanced computational methods to answer biological questions.  

Recent advances in high-throughput technologies in genomics and proteomics have enabled 
the integration of biological data from multiple sources to uncover pathways involved in 
pathogenesis and homeostasis (Kidd et al., 2014). Efforts to uncover the dynamics of 
biological interactions and cell crosstalk can enhance our understanding of how diseases 
impact human bodies.  

Figure 1.2 illustrates the research cycle from the laboratory experiments that utilize 

biological samples and novel technologies to data analysis and the expansion of current knowledge. 

Results from these experiments can be used to create computational models that drive hypothesis 

generation and support system analysis.                                                                                                                                                                                                                                                                                                           

A deeper understanding of molecular complexities and regulatory networks offers hope for 

uncovering mechanisms of regulation and biological interaction that, after experimental 

confirmation, could be leveraged as novel potential drug targets. These insights could also form the 

 

Figure 1.4 An overview of the flow of information from DNA to protein in a eukaryote 
First, both coding and noncoding regions of DNA are transcribed into mRNA. Some regions are 
removed (introns) during initial mRNA processing. The remaining exons are then spliced together, 
and the spliced mRNA molecule (red) is prepared for export out of the nucleus through addition of an 
endcap (sphere) and a polyA tail. Once in the cytoplasm, the mRNA can be used to construct a protein. 
Figure and caption from Nature Education.  
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basis for diagnostic tools to potentially detect diseases before the onset of symptoms.  

1.2.2 The Central Dogma of Molecular Biology 

DNA encodes information that directs cell function and protein expression. Together with 

transcriptional and translational regulators, DNA dictates which genes will be expressed, and which 

proteins will be synthesized. These proteins perform essential cellular functions such as molecule 

transport, cell signaling, and maintaining cellular structure. 

Figure 1.4 presents a central dogma of molecular biology, where DNA is transcribed into 

RNA, which is then translated into proteins. Genes are coded in DNA by a set of sequences (exons) 

that will be a part of the mature mRNA (messenger RNA) and by introns which will be removed 

from the mature mRNA sequence. Transcription, the process responsible for creating mRNA, a 

molecule encoding a “recipe” for protein synthesis, begins with the binding of RNA polymerase to 

the promoter sequence present almost always at the 5’ end of the DNA. RNA splicing is the process 

responsible for connecting exons and further modification before the RNA is ready to leave the 

nucleus to be later translated into proteins. Proteins are functional molecules that participate in 

multiple cellular processes such as replication and DNA transcription, secretion of other proteins, 

cell division, metabolism, transport, and cellular and intercellular signaling.  

1.2.3 Transcriptomics 

Measuring mRNA levels is a tool to estimate the degree to which genes are expressed. The 

gene expression landscape reveals cell states in tissues, making it a powerful tool for studying 

diseases. Comparing gene expression levels between healthy and diseased tissues can identify 
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differentially expressed genes (DEGs). Further analysis of DEGs can reveal affected cell functions 

and pathways involved in the disease state. 

 Methods like qPCR and expression microarrays can be used to determine mRNA levels. 

Yet, they are usually targeted at specific gene subsets and cannot provide a full gene expression 

profile of a sample, providing a biased measurement (San Segundo-Val & Sanz-Lozano, 2016). 

With the development of high-throughput sequencing methods, it’s now possible to sequence RNA 

at low costs, at high resolution, and high capacity (Stark et al., 2019).  

Figure 1.5 depicts the flow of a sequencing experiment. The process usually begins with 

isolating RNA from the tissue of interest, followed by reverse transcription of RNA to cDNA 

(coding DNA), ligation of adapters, and PCR amplification of the cDNA. Then samples are 

sequenced using short-read instruments like Illumina or long-read technologies like PacBio or 

OxfordNanopore. The choice of short- or long-read technology depends on the study context. The 

short reads generally provide more accurate readings, while long-reads better capture repeated 

sequences, a known short-read caveat.   

The processing of sequencing reads which are the output of the sequencers begins with 

mapping to reference genome using tools like STAR (Dobin et al., 2013), bowtie (Langmead et al., 

2009) , or BWA (H. Li & Durbin, 2009). Subsequently, the reads mapped to the genes are quantified 

for each sample using tools like featureCounts (Liao et al., 2014) , and the number of reads mapped 

to a gene reflects the level at which the gene is expressed. To assess the differences in gene 

expression between samples (differential expression), read counts are analyzed using DESeq2 

(Love et al., 2014) or edgeR  (Robinson et al., 2010). After filtering and normalization to exclude 

outliers and adjust for different levels of expression between genes, a more direct comparison 

between conditions can be performed. The output of the differential expression analysis consists of 

a list of genes log2(fold change) of counts between analyzed conditions and p-value to assess the 

significance of the observed difference.  
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The list of differentially expressed genes between the conditions can be then subjected to 

pathway analysis tools like gene ontology (GO) enrichment analysis which is based on 

hypergeometric testing (Thomas et al., 2022), Metascape (Zhou et al., 2019), or Gene set 

enrichment analysis (GSEA), which uses enrichment score on a ranked list of genes (Subramanian 

et al., 2005). The output of the analysis is a set of molecular, functional, or signaling pathways 

containing the differentially expressed genes. Understanding the processes involving differentially 

expressed genes gives a broader view of the potential cellular changes induced by the analyzed 

condition. Enriched pathways can also guide research in directions not covered by the initial 

hypotheses, allowing for the exploration of alternative and novel hypotheses, highlighting the 

strength of the unbiased nature of RNASeq compared to other methods measuring mRNA levels.  

 

Figure 1.5 The flow of a sequencing experiment.  
Each sequencing experiment consists of sample collection, extraction of RNA from the sample, 
fragmenting of the RNA, reverse transcription to cDNA, adapter ligation, amplification, sequencing and 
then following bioinformatics analysis of the resulting sequencing reads.  
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1.2.4 Proteomics 

To understand cellular function and changes beyond transcription, scientists have 

developed approaches to quantify and identify proteins in various samples. Although both 

proteomics and transcriptomics are used to identify cell types in single-cell technologies, recent 

studies have shown that the correlation between RNA and protein expression is highly variable and 

rarely high for some cells, such as immune cells. This demonstrates the superiority of using protein 

expression assays for cell type annotation and measuring functional protein levels as opposed to 

mRNA (Franks et al., 2017; Y. Liu et al., 2016; Prabahar et al., 2024; Raj & Oudenaarden, 2008; 

Reimegård et al., 2021; Specht et al., 2021).  

 

Figure 1.6 The CyTOF process, from Bendall et al. (2012). 
Mass cytometry allows single-cell atomic mass spectrometry of heavy elemental (>100 Da) reporters. 
Schematic of ICP-MS-based analysis of cellular markers. An affinity product (e.g. antibody) tagged with a 
specific element binds to the cellular epitope. The cell is introduced into the ICP by droplet nebulization. 
Each cell is atomized, ionized, overly abundant ions removed, and the elemental composition of remaining 
heavy elements (reporters) is determined. Signals corresponding to each elemental tag are then correlated 
with the presence of the respective marker and analyzed using conventional cytometry platforms. (Figure 
and caption from Sean C. Bendall et al. 2012) 

https://www.ncbi.nlm.nih.gov/pubmed/22476049
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Common methods used to study proteins include Mass Spectrometry (MS), Two-

Dimensional Gel Electrophoresis (2-DE), and protein microarrays. In recent years, several single-

cell-based approaches emerged, allowing for the identification of protein landscapes at single-cell 

resolution. Flow Cytometry (FC) and Mass Cytometry, also known as Cytometry by Time-of-Flight 

(CyTOF), are two antibody-based methods. They detect surface and internal proteins by using 

antibodies tagged with either fluorophores (FC) or metals (CyTOF) to bind target proteins, 

followed by analysis of their intensities or masses on a cell-to-cell basis (Spitzer & Nolan, 2016).   

The typical CyTOF experiment begins with the staining of cells with antibodies that are 

conjugated to metal isotopes. Next, the cells are fixed to ensure intact cell structure and 

permeabilized to allow for intracellular penetration by antibodies. Then, inside the cyTOF 

experiment, samples are nebulized, ionized, and accelerated to allow for later detection and 

quantification of the metal isotopes. Then, the output .fcs files need to be processed, normalized, 

and debarcoded using tools like bead-normalization (Finck et al., 2013) and single-cell-debarcoder 

(Zunder et al., 2015). There is a substantial number of programs and libraries available for the 

analysis of cyTOF data including Flowsom (Van Gassen et al., 2015), CATALYST (Nowicka et 

al., 2019), and cyCombine (Pedersen et al., 2022).  

The process usually consists of: 

• Normalization: Adjusting the data to account for technical variations and ensuring 

comparability across samples. 

• Batch Correction: Correcting for differences that arise from processing samples in 

different batches, thus minimizing batch effects. 

• Clustering: Grouping cells with similar protein expression profiles to identify distinct cell 

populations. 

• Dimensionality Reduction: Reducing the complexity of the data while retaining essential 

information, often using techniques like t-SNE (t-distributed stochastic neighbor 
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embedding) or UMAP (Uniform Manifold Approximation and Projection). 

• Cell Type Annotation: Assigning labels to cell clusters based on known markers or 

protein expression patterns to identify cell types. 

• Quantification and Differential Analysis Between Conditions: Measuring protein levels 

across different conditions and identifying significant changes to understand the effects of 

experimental treatments or disease states. 

Assessing the differences in protein levels between different conditions gives a broad view 

of the influence of analyzed conditions on cellular state and function. It also allows for the 

assessment of the tissue state by assessing the frequencies of different cell types based on their 

surface marker expression.  Other single cell methods, like CITEseq and REAPseq, allow for 

simultaneously measuring both protein levels and mRNA levels (Peterson et al., 2017; Stoeckius 

et al., 2017). However, their inability to stain intracellular proteins, inability to sequence a full 

transcriptome, and very high cost are a limiting factor in many studies.  

1.2.5 Multi-omics in Precision Medicine 

Both transcriptomics and proteomics are used in clinical research to gain more insight into 

patients' characteristics, laying the ground for a better understanding of differences between people. 

Multi-omics data provides an invaluable asset to get a detailed inside into disease and its 

characteristics in individual patients (Sethi et al., 2023). Those data types and advanced data 

analysis approaches differ from standard clinical testing (Sohag et al., 2021). Their extensive 

utilization, including artificial intelligence, as seen in Figure 1.7, could identify patients at higher 

risk, capture the disease onset early, or inform about various genetic predispositions for the disease.  
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1.3 Cardiovascular Disease 

1.3.1 Atherosclerosis as an inflammatory disease 

Heart disease remains the leading cause of death in the United States killing 610,000 people 

every year (1 in 4 deaths)( Figure 1.8). Atherosclerosis or coronary artery disease (CAD) is a major 

form of heart disease causing 370,000 deaths in the US yearly (Pahwa & Jialal, 2024). The disease 

is caused by the accumulation of plaques inside arteries, limiting the amount of oxygen passed to 

the heart. These plaques, consisting of lipids, smooth muscle cells, and immune cells, induce an 

 

Figure 1.7 Domains of precision medicine in cardiology. 
Figure and caption from (Sethi et al., 2023) 
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inflammatory response and when ruptured can form a thrombus causing myocardial infractions 

(MI) or strokes (Bentzon et al., 2014).  

The risk of developing atherosclerosis is influenced by many genetic, environmental, and 

lifestyle factors like age, sex, high cholesterol, diet, hypertension, diabetes, obesity, physical 

inactivity, and tobacco usage.  

There are several stages of atherosclerotic plaque development (Bentzon et al., 2014). 

Plaques form when the intima (innermost layer of the artery) thickens and changes in gene 

expression and endothelial turnover occur (Figure 1.9 A). Next, accumulating low density lipids 

(LDLs) and their oxidized forms induce the innate and adaptive immune response. Endothelial cells 

begin to express genes inducing monocytes to differentiate into macrophages (adhesion molecules, 

chemoattractants, and macrophage colony-stimulating growth factors) (Figure 1.9B). LDL binds to 

proteoglycans present on the intima, and with time, endothelium starts to express more of the 

lipoprotein-binding proteins causing further retention of the LDLs in plaques. Then, extracellular 

lipid pools form inside the intima (Figure 1.9 C). Macrophages recruited to plaque sites express 

more proinflammatory cytokines and accumulate oxidized LDL due to dysregulated lipid 

metabolism, leading to foam cell formation. Note that smooth muscle cells (SMCs) and dendritic 

cells (DCs) can also accumulate lipids and form foam cells (Bentzon et al., 2014; Clarke & Bennett, 

2009; Moore & Tabas, 2011).  
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The next stage of the development of atherosclerotic plaques is a formation of a necrotic core. 

The accumulation of lipids inside the intima causes the thickening of the tissue. The invasion of 

the macrophages disrupts the intima with the presence of cell debris, causing lipid pools to grow 

into a necrotic core (Figure 1.9D). Another cause of the formation of necrotic core is apoptosis and 

necrosis of foam cells and SMCs.  The presence of lipid pools, apoptotic macrophages, and SMCs 

 

Figure 1.8 Heart disease & Stroke Statistics by American Heart Association  
Heart disease remains the leading cause of death in the United States causing 224.4 per 100 000 deaths. 
Figure and caption from American Heart Association (Tsao et al. 2023).  
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at the margin of the necrotic core becomes detectable simultaneously and suggests an impaired 

efferocytosis inside the plaques (Schrijvers et al., 2005; Tabas, 2010). Neovessels can grow into 

the lesions allowing for subsequent intra-plaque bleeding, triggering further inflammatory response 

(Kolodgie Frank D. et al., 2003; Kumamoto et al., 1995). With time, the tissue inside the plaque 

loses the properties of a normal arterial intima and becomes rich in collagen forming a fibrous cap. 

Atherosclerotic lesions can also calcify with age and those calcifications can take up the whole 

volume of the plaque  (Figure 1.9E).(Kragel et al., 1989). The autopsies of patients after thrombi 

events suggested that the thinning of the fibrous cap could be associated with plaque rupture (Burke 

Allen P. et al., 1997), indicating that high calcification may suggest greater stability.  

The presence of those plaques can obstruct the flow of blood in the arteries (Bentzon et al., 

2014). The rapture of an atherosclerotic lesion can cause thrombosis and subsequent myocardial 

infractions (MI) or strokes. The efficacy of statin treatments in patients with atherosclerosis implies 

that the inflammatory response is at least partially triggered by the lipid burden.  

While the pathogenesis of atherosclerosis remains a complex issue, treatments are needed to 

address different stages of disease development to ensure the ability to target all patients in need. 

1.3.2 Imaging of atherosclerotic plaques 

The most common way of diagnosing atherosclerosis or assessing the progression of the 

disease is imaging. Various imaging methods allow for the detection of stenosis, measuring the 

plaque burden and the extent of their calcification, and identification of necrotic core and segments 

with arterial remodeling. Two commonly used methods include Intravascular ultrasound (IVUS) 

and Computed tomography angiography (CTA) (Guimarães et al., 2024; Owen et al., 2011). Using 

a dedicated catheter with ultrasound-based technology, IVUS delivers cross-sectional images from 

the inside of the artery, providing a 360-degree view of the vessel. Yet, the application of IVUS is 
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invasive and associated with low but nonnegligible risk which is higher in patients with advanced 

disease (Hausmann et al., 1995). The complications include dissection, perforation, arrhythmia, 

thrombosis, and vasospasm. In this work, I will focus on CTA.  

Compared to IVUS, CTA assesses the vessel areas accurately and provide quality images 

of arteries to diagnose CAD (M. Kruk et al., 2014, Budoff et al., 2008; Khamis, 2016). CTA made 

its way into the clinic in 1995 and has since become a standard of care procedure in many medical 

facilities. The National Institute for Health and Care Excellence recommends using CTA as an 

 

Figure 1.9 Stages of plaque development 
 A, Adaptive intimal thickening characterized by smooth muscle cell accumulation within the intima. B, Intimal 
xanthoma corresponding to the accumulation of foam cell macrophages within the intima. Pathological intimal 
thickening in C denotes the accumulation of extracellular lipid pools in the absence of apparent necrosis. D, 
Fibroatheroma indicating the presence of a necrotic core. The necrotic core and surrounding tissue may eventually 
be calcified, which forms fibrocalcific plaque shown in E. Because some of the advanced lesion types 
(fibroatheromas and fibrocalcific plaques) evolve simultaneously in life, their interrelationships are difficult to 
resolve in autopsy studies. (Figure and caption from Bentzon et al. 2014)  
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initial test if patients present with stable chest pain with no prior history of CAD (Timmis & 

Roobottom, 2017). Figure 1.10 presents different stages of atherosclerosis and plaque burden 

detected by CTA and the associated risk. The technique requires intravenous contrast 

administration, and to obtain diastolic images, the subject needs to hold their breath for 

approximately 10 seconds.  The total duration of the procedure is about 15 minutes, and it delivers 

complete, 2 or 3-dimensional images of the heart and surrounding arteries (Budoff et al., 2006, 

2022). Furthermore, the radiation dose emitted during the examination by computed tomography 

can be as low as 1mSv, which is significantly lower than other techniques for the imaging of 

coronary arteries (Budoff et al., 2022; Hausleiter et al., 2009; Trattner et al., 2018).  

1.3.3 Coronary Artery Calcification  

Studies have shown that plaque characteristics like plaque number and extent, location, 

and composition can be used as prognostics and have been associated with clinical outcomes in 

extensive cohort studies (Armin Imhof et al., 2015; Ayoub et al., 2017, 2017; Motoyama et al., 

2015; van Werkhoven et al., 2009). Coronary artery calcification (CAC) score is a method to 

quantify the amount of calcified plaque burden in coronary arteries (Mohlenkamp et al., 2011) 

(Agatston et al., 1990). CAC is quantified based on the density of the calcified tissue multiplied by 

the lesion area and then summed across regions. This score was established in 1990 and has been 

widely used in clinics since then. CAC score value of 0 means no calcified plaque detected (low 

risk of CAD), 1-10 means calcium was detected in minimal levels (risk of CAD less than 10%), 

11-100 means mild levels of calcified plaques were detected, 101-300 means moderate levels of 

calcium were detected and corresponded to moderate risk of CVD events and score of 300 and 

higher corresponds to extensive levels of plaques and high risk of CVD events.  
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Multiple studies investigated the score's prognostic value. High CAC was also associated 

with a higher risk of MACE (Biavati et al., 2024, Budoff et al., 2023) and all-cause mortality 

(Mohlenkamp et al., 2011). Interestingly, in subjects with no CAC, hs-CRP (high-sensitivity C-

reactive protein), a marker of inflammation, was associated with an increase in coronary risk. Yet, 

based on other research, hs-CRP itself was not able to predict CAC incidence and progression in a 

larger population (Tajani et al., 2024).  

 

 

Figure 1.10 Coronary CTA approach to diagnosis and management of CAD in symptomatic  
patients with an intermediate pre-test likelihood of CAD. 
(Figure and caption from  Anatomic and Functional Assessment With CTA, n.d.) 
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1.4 Immune system in atherosclerosis 

1.4.1 T cells in atherosclerosis 

In addition to monocytes and macrophages, atherosclerosis includes a complex interplay 

of several other immune cell types: T cells, B cells, Neutrophils, Dendritic cells, and natural killer 

(NK) cells (Ali et al., 2020; Kobiyama & Ley, 2018; Saigusa et al., 2020; Tabas & Lichtman, 2017; 

Vallejo et al., 2021; van Kuijk et al., 2019; Winkels & Wolf, 2021). For this dissertation, I will 

focus on B Cells and T Cells.  

T cells are commonly identified in atherosclerotic plaques, mainly in the region of the 

fibrous cap, but they have also been found in adventitia. T cell development starts in bone marrow. 

Lymphoid progenitors migrate from bone marrow to the thymus, where they acquire markers 

typical for T cells and start to express pre-T cell receptors. Two major subtypes of T cells, CD4+ T 

cells and CD8+ T cells induce immune response upon recognizing peptides on major 

histocompatibility complex I (MHC I) on Antigen-presenting cells (APC) while CD4+ T cells 

recognize peptides on MHC II on all nucleated cells. The ability to bind to those peptides is encoded 

by the T cell receptor (TCR). The TCR binding with pro-inflammatory molecules can activate T 

cells and trigger clonal proliferation. Common disease antigens known to induce an immune 

response in T cells are LDL and its oxidized subspecies, as well as apolipoprotein B (apoB), which 

is a component of LDL (Colantonio et al., 2016).  Based on in vitro studies, it’s known that some 

of the CD4+ T cells present in plaques recognize oxidized LDL (Stemme et al., 1995).  

The pro- or anti-atherogenic properties of T cells depend on the cell subtype and the cellular 

context. For example, regulatory T cells are believed to have atheroprotective functions, but CD4+ 

CD4+ Type 1 helper cells and NK T Cells have been shown to contribute to disease progression in 

animal models. 
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Figure 1.11 Role of T helper cells and regulatory T cells in the pathogenesis of atherosclerosis. 
a | Naive CD4+	T helper (TH) cells are primed in secondary lymphoid organs. TH cells acquire the complete 
phenotype of effector T (Teff) cells or regulatory T (Treg) cells after encountering antigenic peptides from 
apolipoprotein B (ApoB) presented by antigen-presenting cells (APCs). APCs take up and process oxidized 
LDL (OxLDL), migrate to the draining lymph node and present peptides from ApoB on major 
histocompatibility complex (MHC) class II molecules. Naive T cells recognize this complex through their 
specific T cell receptors (TCRs). Co-stimulatory molecules induce T cells to express transcription factors that 
favour the differentiation into distinct TH phenotypes. Homing receptors promote T cell migration to 
atherosclerotic lesions, where they secrete effector cytokines. b,c | CD4+	T cells can act in a pro-atherogenic 
or atheroprotective manner. Atherosclerotic lesions contain TH1, TH2, TH9, TH17, TH22, Treg, type 1 regulatory 
T (Tr1) cells and follicular helper T (TFH) cells. Treg cells can convert to ‘exTreg cells’ (dashed arrows), losing 
expression of CD25 and forkhead box protein P3 (FOXP3) and acquiring properties of other TH cell 
phenotypes such as TH1, TH17 and TFH. Instability of FOXP3 expression triggers the formation of antigen-
specific, but dysfunctional, partially non-protective exTreg cells. (Figure and caption from Saigusa, Winkels, 
and Ley 2020)  
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However, in the study published in 2023 by Tomas et al., (Tomas et al., 2023) the authors  

show that the animal model findings may not translate into human populations, and iNKT cells 

(Invariant Natural Killer T cells) are not associated with the incidence of coronary events (CE) 

based on their case-control study in 416 patients.  

1.4.2 CD4+ T cells 

CD4+ T cells are characterized by the expression of CD4 surface protein can be further divided 

into T helper cells and T regulatory cells as presented in Figure 1.11.  

T helper cells relevant in the pathogenesis of atherosclerosis involve:  

• Th1 characterized by expression of T-box (T-box transcription factor TBX21), CXCR3 

(CXC-chemokine receptor 3), and CCR5 (C-C chemokine receptor type 5). Patients with 

recent CE showed an increased number of Th1 in plaques when compared to patients with 

atherosclerosis but no symptoms. Plaque Th1 produces several cytokines associated with 

atherosclerosis, like IFN𝛾 (Interferon gamma), IL-2, Il-3, and TNF (tumor necrosis factor) 

⍺. Yet, Th1 cells can also contribute to the attenuation of atherosclerosis by increasing 

VSMC (vascular smooth muscle cells) proliferation via IFN𝛾 (Amento et al., 1991; Buono 

et al., 2003, 2005; Butcher et al., 2016; Fernandez et al., 2019; Frostegård et al., 1999; Gupta 

et al., 1997; J. Li et al., 2016; Niwa et al., 2004; Orecchioni et al., 2019; Rocha et al., 2008; 

Saigusa et al., 2020; Tellides et al., 2000; Vergnes et al., 2003; Y. Wang, 2007; Whitman et 

al., 2000) 

• Th2 are characterized by expression of GATA3 transcription factor and secretion of IL-4, 

IL-5, IL-10, IL-13and IL-33. Th2 cells are present in atherosclerotic plaques. Th2 cells in 

the PBMCs have been found to associate with lower atherosclerosis burden, and IL-4 has 

been negatively correlated with the disease in humans, but the finding was not confirmed in 



 23 
murine studies, and the potential mechanism of protection remains unknown. There’s 

evidence of dual protective and atherogenic function of other cytokines produced by Th2, 

but the mechanisms and precise effects remain unknown. (Davenport & Tipping, 2003; 

Engelbertsen et al., 2013, 2014; King et al., 2007; Tracy et al., 2013).  

• Th9 produce IL-9, cytokine increased in plasma from patients with atherosclerosis 

compared to healthy population. IL-9 has been shown to influence the production of IL-

17, a pro-inflammatory cytokine associated with atherosclerosis. However, the role of Th9 

cells in the disease progression is understudied (Gregersen et al., 2013; Kaplan, 2013; Lin, 

2013; W. Zhang, Tang, et al., 2015).  

• Th17 are distinguished by the expression of ROR𝛾t (Retinoic acid receptor-related orphan 

receptor gamma t) and CCR6 (C-C chemokine receptor type 6) and secrete IL-17. IL-17 

enhances the immune response by inducing the secretion of proinflammatory molecules: 

IL-6, G-CSF, and GM-CSF. Th17 can also produce atheroprotective IL-10. Studies suggest 

that patients with unstable plaques have increased numbers of Th17 and IL-17 in plasma, 

but other studies could not confirm this finding. Studies have shown both the stabilizing 

effects of IL-17 in carotid atherosclerotic plaques and its pro-inflammatory effects on 

VSMCs in coronary artery plaques (X. Cheng et al., 2008; Eid et al., 2009; Gisterå et al., 

2013; Hashmi & Zeng, 2006; Taleb et al., 2009). 

• Th22 cells can be characterized by unique expression of IL-22, but not IFN𝛾 and IL-17. 

Higher numbers of Th22 cells in circulation correlate with acute coronary syndrome 

compared with the healthy population. Studies in mice suggest that IL-22 is involved in 

both plaque stabilization and plaque growth. (Fatkhullina et al., 2018; Lin, 2013; Rattik et 

al., 2015; Xia et al., 2012; L. Zhang et al., 2013) 

• Tfh (T follicular helper cells) expresses BCL-6 (the defining transcription factor B cell 

lymphoma 6) and, with B cells, forms and maintains germinal centers where B cells mature 
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after the activation of follicular B cells by antigen presentation on T cells. Tfh has been 

associated with atherosclerosis in mice. Studies suggest that TFH are proatherogenic. 

(Clement et al., 2015; Crotty, 2019; Gaddis et al., 2018; Nus et al., 2017; Ryu et al., 2018) 

• CD28null T cells don’t express CD28, the main receptor on CD4+ T cells. Those cells are 

cytotoxic and pro-inflammatory. They naturally occur in humans but not in mice. The 

number of CD28null T cells is higher in the blood of patients with acute coronary syndrome 

than in healthy individuals, and those cells are immune to apoptosis and can invade human 

plaques. (Dumitriu, 2012; Kovalcsik et al., 2015; Liuzzo, 2000; Téo, 2013; Weng et al., 

2009) 

 

T regulatory Cells (Treg) are another group of CD4+ T cells important in atherosclerosis. 

Classic Treg cells express FOXP3 (the transcription factor forkhead box protein P), IL-2 receptor 

subunit-⍺ (IL-2RA or CD25), CTLA4 but don’t express CD127. Data suggests that Tregs provide 

protection against atherosclerosis in both mice and humans.  Tregs can produce IL-10 and TGFβ, 

cytokines that are considered atheroprotective.  IL-10, a cytokine secreted by Tregs, and Tregs cell 

numbers are higher in patients with stable plaques and healthy individuals compared to patients 

who experienced MI. Yet, other studies suggest no significantly decreased risk of MI in patients 

with high Tregs and IL-10 levels and found no differences in Tregs frequencies in patients with 

carotid or coronary atherosclerosis. Studies showed that the lack of antigen presentation via MHC 

II worsens atherosclerosis and lowers Treg numbers. High numbers of Tregs in blood from patients 

with subclinical atherosclerosis were associated with elevated levels of LDL. This indicates that 

there are different Treg subsets; some can recognize antigens related to the disease and contribute 

to increased inflammation (Ait-Oufella, 2006; Barth, 2016; Björkbacka, 2016; Caligiuri et al., 

2003; George, 2012; Guasti, 2016; Kita et al., 2014; Mailer, 2017; Mor et al., 2006; Roncarolo & 

Gregori, 2008; Wigren, 2012, 2019). Yet, it’s been shown that Treg cells lose their phenotype and 



 25 
their protective abilities with the progression of the disease (Butcher et al., 2016; J. Li, 2016; 

Maganto-García et al., 2011). The loss of their function has been associated with unstable 

 

Figure 1.12  Overview of atheroprotective and pro-atherogenic functions of CD8+ T cells.  
The cytotoxic activity of CD8+ T cells towards atherosclerotic lesion-stabilizing cells, such as vascular 
smooth muscle cells (VSMCs) and endothelial cells (ECs), and the secretion of interferon-γ (IFNγ), tumour 
necrosis factor (TNF) and other pro-inflammatory cytokines exacerbates the inflammatory response and 
drives the progression and destabilization of atherosclerotic lesions. Regulatory CD8+ T cell subsets can have 
atheroprotective effects, with high cytotoxic activity towards antigen-presenting cells (APCs) and inhibition 
of CD4+ T cell polarization into pro-atherogenic phenotypes. b | Invariant natural killer T (iNKT) cells can 
be activated by the interaction of the T cell receptor (TCR) with CD1d molecules containing antigenic 
glycolipids present on APCs. iNKT cells can also be activated in a CD1d-independent manner by Toll-like 
receptor stimulation and by the activation of APCs, which in turn secrete cytokines that activate iNKT cells, 
such as IL-12 and IL-18. Activation of iNKT cells results in the rapid release of cytokines associated with T 
helper 1 (TH1), TH2 and TH17 cells, which activate other immune cells in the atherosclerotic lesion. iNKT 
cells can also promote atherosclerosis by the induction of apoptosis of plaque cells through the release of 
cytotoxic proteins such as perforin and granzyme B. c | γδ T cells are among the T cell subsets described in 
mouse atherosclerotic lesions. The intracellular cholesterol content in γδ T cells regulates their activation, 
proliferation and effector functions. In addition, γδ T cells are an abundant source of IL-17; therefore, these 
cells could modulate atherosclerosis via IL-17 production. However, the exact role of γδ T cells in 
atherosclerosis is unclear. (Figure and caption from Saigusa, Winkels, and Ley 2020) 
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expression of FOXP3, causing the origination of dysfunctional, antigen-specific Tregs cells called 

ex-Treg  (Bailey-Bucktrout, 2013; Komatsu, 2014; Korn, 2007).  

Another subtype of T regulatory cells is Tr1 cells, which lack the expression of FOXP3 but 

express CD49b and lymphocyte activation gene 3. They secrete IL-10, and experiments in Apoe-

deficient mice suggest Tr1 cells are atheroprotective. Their frequency is lower in patients with CVD 

compared to healthy controls (Gagliani, 2013; Mallat, 2003; Zhu, 2018).  

1.4.3 CD8+ T cells 

CD8+ T cells (Figure 1.12) are increased in the blood of patients with CAD compared to 

healthy individuals. Those T cells are also present in plaques in both human and murine models 

(Gewaltig et al., 2008, 2008; Kolbus et al., 2010; Wal et al., 1989). They are present in 

atherosclerotic plaques in higher frequencies than CD4+ T cells, and studies analyzing their TCR 

suggest their clonal expansion in the plaque (Fernandez et al., 2019; Paul, 2016).  

Similarly to CD4+ cells, studies show their dual protective and atherogenic nature. They can 

contribute to plaque inflammation and the formation of a necrotic core. Cytokines secreted by CD8+ 

T cells can have cytotoxic activity directed at VSMCs and worsen the inflammation in lesions. In 

mice, data suggest that they promote atherosclerosis by secreting IFN𝛾 and granzyme B and 

impacting peripheral monocytes, yet the evidence is conflicting (Cochain, 2015; Dimayuga, 2017; 

Kyaw, 2013; Seijkens, 2019).  

Atheroprotective properties have been attributed to CD8+ cells based on immunization 

studies, where they mediated reduced atherosclerosis after immunization with p210 in Apoe-/- 

deficient mice (Chyu, 2012). Furthermore, genetic knockout of CD8+ cells in Ldlr-
-/- mice led to the 

development of less stable plaques than in the control group, which had higher numbers of 

macrophages, reduced collagen content, and increased necrotic core area. (van Duijn et al., 2018) 
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1.4.4 NKT Cells 

Another subset of T cells that plays a significant role in atherosclerosis are Natural killer T 

cells (NKTs). They can express CD4, CD8, or both or lack expression of CD4 and CD8. NKT is 

characterized by the expression of surface markers commonly associated with NK cells like CD161 

or CD56 (Aslanian et al., 2005; Braun et al., 2010). They can be divided into invariant NKT (iNKT) 

with restricted TCR pool and type II NKT cells with more variable TCR. They are capable of 

recognizing lipids, glycolipids and phospholipid antigens presented on CD1d molecules. High 

numbers of iNKT have been associated with attenuated atherosclerosis in mice; however, human 

studies suggest an inverse correlation where higher iNKT frequency was correlated with reduced 

risk of coronary events (Major et al., 2004; Nakai, 2004; Tomas et al., 2023; Tupin et al., 2004; van 

Puijvelde et al., 2009).   

1.4.5 𝛾δ T cells 

𝛾δ T cells don’t recognize specific antigens, and very limited research has been done on 

those cells in mice (H.-Y. Cheng et al., 2013, 2013; Nielsen et al., 2017; Vu, 2014).  They can be 

found in atherosclerotic lesions (Kleindienst, 1993; Vu, 2014). Cholesterol is present inside 𝛾δ T 

cells and has been shown to regulate their effector functions and proliferation. Those T cells are a 

producer of IL-17 in mice. The exact role of those cells in the development of atherosclerosis is 

unknown.  
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1.4.6 B Cells 

B cells have a unique ability to produce antibodies capable of binding to specific antigens 

like viruses, bacteria, and toxins. Specific antigens in atherosclerosis consist of various types of 

highly immunogenic oxidation-specific epitopes (OSEs), including oxidized phospholipids 

(OxPLs) and malondialdehyde (MDA)--modified amino groups, which have been previously 

identified on the surface of apoptotic cells, microvessels and LDL (ox-LDL) (Binder et al., 2016; 

M.-K. Chang et al., 2004; Chou et al., 2008, 2009; Miller et al., 2011; Sage et al., 2019).   

B cell receptors (BCR) are immunoglobulins (antibodies) on the surface of B cells 

responsible for recognizing and binding antigens.  They consist of 3 variable genes – V(variable), 

D (diversity), and J (joining). The specific VDJ sequence formation process is called VDJ 

 

Figure 1.13. Structure and generation of B cell receptors (BCRs)/antibodies.  
(a) Schematic representation of an antibody. BCRs are composed of heavy (H) and light (L) chains, which 
can be separated into variable (V) and constant (C) regions. Heavy and light chain variable regions make 
contact with the antigen. Light chain constant regions come in two different isotypes (kappa and lambda) 
and heavy chain constant regions in five (IgM, IgD, IgG1-4, IgA1-2, and IgE; not depicted). (b) V region 
diversification mechanisms. V(D)J recombination forms the CDR3s of the naïve B cell receptors. During 
the process of affinity maturation, somatic hypermutation mediated by activation-induced deaminase 
(AID) results in the development of mutations within B cell receptors/antibodies. RAG1/2: 
Recombination-activating gene 1/2, TdT: terminal deoxynucleotidyl transferase, CDR1/2/3: 
complementarity determining region 1/2/3. (Figure and caption from Kreer et al., 2020) 
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recombination in bone marrow during their hematopoietic development. This process creates a 

large, diverse set of unique BCRs capable of recognizing a wide range of antigens (David G. Schatz 

et al., 2011). Heavy and light chain polypeptides form BCR. There are 3 complementarity-

determining regions responsible for the binding of the antigen: CDR1, CDR2, and CDR3, where 

CDR3 is the most variable of the 3 (Figure 1.13 A and B) (Kreer et al., 2020).  

Activated B cells proliferate rapidly as plasma blasts and secrete antibodies. Based on the different 

heavy chain gene usage, there are five classes of antibodies: IgA, IgD, IgE, IgG, and IgM (Falk 

Nimmerjahn et al., 2005). All those classes have different structures and properties and can be 

secreted by various types of B cells.  In mice, there are two major B cell subtypes differentiated by 

the expression of different surface markers – B1 cells and B2 cells. B2 cell subtypes can be further 

divided into marginal zone (MZ) B cells and follicular (FO) B cells. In 

mice, B1 cells consist of B1a and B1b subsets. It needs to be noted that B cell subsets are largely 

studied in mice, and there is a controversy about whether the same B cell subsets are present in 

humans.  

The main function of B1 cells is to provide rapid defense and antigen binding, and they are 

known to move between different niches. B1 cells secrete large amounts of antibodies that reside 

in the bone marrow, peritoneal cavity, and spleen. Other B1 cells can be found in serosal cavities 

(Pattarabanjird et al., 2021). B1 cells are a source of naturally occurring antibodies, which are 

expressed without infection or immunization and can bind to self-antigens and microbial 

components. Literature suggests that B1a cells are the main source of naturally occurring antibodies 

without prior stimulation (Prohaska et al., 2018), and B1b requires minimal activation for Ig 

production (Baumgarth, 2016; Choi et al., 2012). B1a and B1b cells can be distinguished by the 

expression of CD5: B1a cells are CD5+, and B1b cells are CD5- (Berland & Wortis, 2002).  

B2 cells are considered conventional B cells. They produce antibodies in a T-cell-

dependent manner to fight different kinds of pathogens. The majority of B2 cells are FO B cells. 
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They mature in BM and go to the spleen and can later travel to circulation. FO B cells together with 

Tfh they form germinal centers (GC) where they become activated via antigen stimulation 

(Pattarabanjird et al., 2021). In GC, B cells undergo maturation, class switching, and somatic 

hypermutation to produce highly specific IgG, IgA, and IgE. GC B cells express AID (single-

stranded DNA cytosine deaminase), a DNA-altering enzyme responsible for the presence of 

somatic hypermutation in the BCR region, allowing for the dynamic production of a wide spectrum 

of unique BCRs (Jeroen M. J. Tas et al., 2016).  

MZ B-2 cells are static and located in the marginal zone of the spleen. They show similar 

characteristics to B1 cells. Their primary function is to guard against blood-borne pathogens. They 

rapidly respond to antigens, producing antibodies at high capacity.  

1.4.7 B Cells in Atherosclerosis  

Antibodies were identified in atherosclerotic plaques over three decades ago (Dinah V. 

Parums et al., 1981; Göran K. Hansson et al., 1980; William Hollander et al., 1979, 1979) . It’s also 

been shown that both plasma and plaques contain antibodies specific to different OSEs (Seppo Ylä‐

Herttuala et al., 1994). Additionally, IgA and IgG have been found in the vascular wall of lesions, 

solidifying the hypotheses about the potential role of B cells in CVD progression. However, the 

presence of B cells in plaques is low compared to other peripheral blood mononuclear cells 

(PBMCs) (Holger Winkels et al., 2018; Horstmann et al., 2020; Winkels & Wolf, 2021).  

Genome-wide association studies have previously indicated the role of B cells in 

atherosclerosis (Huan et al., 2013). IgM specific to OSEs has been investigated as a potential target 

for drug development. The binding of IgM to OSEs that accumulate during atherosclerosis, such 

as malondialdehyde (MDA) and oxidized phospholipids on oxLDL, can reduce macrophage lipid 

uptake. This reduction prevents the formation of foam cells and the subsequent production of 
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inflammatory cytokines (Amir Ravandi et al., 2011; M. K. Chang, 1999; Daniel O. Griffin et al., 

2011; Horkko, 1999; Lewis, 2009) . A study by the McNamara group at UVA suggests that IgM to 

OSEs produced by B1b cells offer protection against atherosclerosis in Apoe-deficient mice fed a 

high-fat diet (Rosenfeld, 2015). Additionally, levels of plasma IgM to MDA-LDL were able to 

predict 15-year outcomes, offering a new way of assessing CVD risk (Anand Prasad et al., 2017a, 

2017b; Khamis, 2016; VJ et al., 2018). In clinical studies, MZ-like B cells  (unswitched IgM 

memory B cells) have also been negatively correlated with the risk of CVD (Meeuwsen et al., 

2017).  

Proatherogenic properties of B cells have also been investigated. Numerous studies have 

examined the association of different immunoglobulins with various CVD-related outcomes. High 

serum IgA levels have been correlated with severe atherosclerosis (Antonio Muscari et al., 1988), 

 

Figure 1.14 Roles of B Cells in Atherosclerosis and Implications of B-Cell–Targeted 
Therapies for Cardiovascular Disease 
Human B cell subsets and their role in atherosclerosis. Figure  and caption adapted from 
(Pattarabanjird et al., 2021)  
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and high serum IgG were moderately associated with incident ACVD (Khan et al., 2023). In a 

cohort of 1,496 adults aged over 50, those with high IgE levels exhibited a more than 3 fold 

increased risk of cardiovascular mortality compared to adults with low IgE levels. The mortality 

risk escalated with rising IgE serum levels, regardless of the initial baseline values (K.-B. Min & 

Min, 2019). 

The role of B cells in atherosclerosis involves a complex interplay of protective and 

proatherogenic properties. Identifying antibodies specific to oxidation-specific epitopes within 

atherosclerotic plaques highlights the potential involvement of B cells in the development and 

progression of cardiovascular diseases. Additionally, exploring IgM and IgG levels in the context 

of atherosclerosis risk provides valuable insights into the potential use of B cell-related markers as 

predictive tools for assessing cardiovascular disease outcomes or as potential drug targets. Yet, 

further investigation into B cell-mediated immune responses and their impact on atherosclerosis is 

needed to understand their clinical significance and therapeutic potential fully. 
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1.5 TET2 mutation 

Loss-of-function in TET2 gene and its molecular and physiological consequences has gained 

more interest among researchers when a study in 2017 established its connection with CVD 

(Jaiswal, 2017).  TET2 emerged as one of the DNA methylation is a crucial epigenetic modification 

that regulates various cellular processes, including differentiation and proliferation. Its 

dysregulation can lead to impaired stem cell function and cellular transformation. The ten-eleven 

translocation (TET) gene family, first identified as a chromosomal translocation partner in 

leukemia, has emerged as a key enzyme in DNA demethylation. TET genes hydroxylate 5-

methylcytosine to 5-hydroxymethylcytosine through multistep process. Somatic mutations in the 

TET2 gene have been reported in various human hematological malignancies, such as leukemia, 

myelodysplastic syndrome, malignant lymphoma, and atherosclerosis, underscoring TET2's critical 

 

Figure 1.15 Schematic model for development of hematological malignancies induced 
by TET2 mutation 
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role in hematopoiesis (Figure 1.15). 

1.5.1 Molecular function and regulation of TET2 

DNA methyltransferase (DNMT) mediated cytosine residue methylation is a crucial step 

in epigenetic regulation (Baylin et al., 2011; Walsh et al., 2006; H. Wu et al., 2014). The stretches 

of cytosine and guanine on DNA called CpG are frequently the sites of methylation. If the 

methylation happens at the promoter region of genes, the transcription gets suppressed. Irregular 

methylation of gene promoter regions has been detected in hematological malignancies in tumor 

suppressor genes (Das et al., 2004; Leone et al., 2002; Qu et al., 2013).  

TET genes hydroxylate 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), 

which is converted back to unmodified cytosine. The 5-hmC is further processed back to 

 

Figure 1.16 Pathway of cytosine demethylation mediated by ten-eleven translocation 2 
(TET2) protein 
(Figure and caption adapted from Nakajima & Kunimoto, 2014) 
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unmodified cytosine, removing the transcription suppressing mark from DNA and promoting the 

expression of genes. (Guo et al., 2011; Nakajima & Kunimoto, 2014; Tahiliani et al., 2009). 

1.5.2 TET2 and hematopoiesis 

Recent studies discovered that TET2 mutations play a significant role in hematological 

malignancy, indicating its role in homeostatic hematopoiesis. Several studies using TET2-mutant 

mice sought to discover its function in the hematopoietic processes (Ko et al., 2011, 2011; 

Kunimoto et al., 2012; Moran-Crusio et al., 2011; Quivoron, 2011; Roche‐Lestienne et al., 2011, 

2011).  In the BM of adult TET2-deficient mice lineage, negative Sca-1+ c-Kit+ hematopoietic stem 

cells (LSK) and multipotent progenitors (MPP) were significantly expanded compared to WT. 

Common myeloid progenitors (CMPs) were also higher in frequency in the TET2-mutated mice, 

and HSCs from those mice had enhanced self-renewal.  A study analyzing the consequences of the 

deletion of TET2 in mice discovered that the white blood cell (WBC) count was elevated in the 

double TET2-deficient mice compared to WT controls, solidifying the hypothesis about TET2’s 

role in controlling the hematopoietic processes  (Z. Li, 2011).   

1.5.3 TET2 in Clonal hematopoiesis of indeterminate potential mutations. 

Human hematopoietic stem and progenitor cells (HSPCs) have been estimated to 

accumulate 0.13 ± 0.02 exonic mutations per year. Therefore, by age 50, an individual is expected 

to have an average of 5 coding gene mutations in each HSPC (Evans et al., 2020; Fuster, 2017). 

Those genes often drive clonal hematopoiesis. Clonal hematopoiesis is defined as a single HSPC 

gaining selective advantage over other HSPCs (J. McClatchy et al., 2023). 
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Clonal hematopoiesis of indeterminate potential (CHIP) is a somatic mutation in 

hematopoietic stem cells occurring in people without hematological malignancies (Genovese, 

2014).  CHIP is estimated to be present in 10% of individuals aged 60 years or over. A somatic 

mutation in the myeloid malignancy-associated gene to be classified as CHIP has to have a variant 

allele frequency of  > 2%  in the peripheral blood. CHIP mutations accumulate with age (Amoros-

Perez & Fuster, 2020; Evans et al., 2020; Jaiswal, 2014; Jaiswal & Libby, 2020; Jung et al., 2020; 

Kumar, 2020; Paramo Fernandez, 2018). CHIP mutations have been associated with an elevated 

risk of cardiovascular disease, pulmonary disease, type 2 diabetes and hematological malignancies 

(Buscarlet, 2017; Jaiswal, 2014, 2017a; Sano et al., 2018).  

1.5.4 TET2 mutations in atherosclerosis 

The discovery of the association between CHIP mutations and atherosclerotic cardiovascular 

disease was published in 2017 (Jaiswal, 2017). Since then, it’s been widely studied in the context 

of inflammation, obesity, and increased disease risks. Clonal hematopoiesis induced by the loss-

of-function TET2 mutation in the hematopoietic system aggravates age- and obesity-related insulin 

resistance (Fuster et al., 2020). Individuals with TET2 CHIP mutation have a higher mortality rate 

attributed to an increased risk of CVD (Libby & Ebert, 2018). A study by the Walsh group at UVA 

investigated how TET2 loss-of-function mutation-related clonal hematopoiesis can contribute to 

heart failure and identified that IL-1β production by macrophages was increased in an NLRP3-

inflammasome-mediated manner in TET2 deficient mice (Sano et al., 2018).  Later research found 

that exogenous IL-1β  drives the expansion of TET2-KO HSCs in vitro and in vivo (J. McClatchy 

et al., 2023). The finding emphasized the role of TET2 in inflammation.   

Considering the relationship between TET2, IL-1β, and cardiovascular disease, Ken Walsh’s 

group investigated the results of the CANTOS trial and the response to Canakinumab therapy 
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among patients with CHIP. CANTOS trial subjects were found to have the prevalence and age 

dependence of CHIP mutations similar to incident coronary disease populations, and TET2 was the 

most common CHIP variant (Svensson et al., 2022). The association between subjects with CHIP 

and the occurrence of heart failure in CHIP is concordant with previous studies (Bing Yu et al., 

2021). The study found that Canakinumab-treated patients with TET2 CHIP had a lower incidence 

of major adverse cardiovascular events (MACE) compared with patients with no TET2 CHIP 

mutations treated with the mediation and to TET2 CHIP patients treated with placebo (Bing Yu et 

al., 2021).  

1.6 Motivation for this thesis 

The motivation for this work is to demonstrate how multi-omics can enhance our 

understanding of CVD and underlying genetic conditions, guiding the development of more precise 

and effective treatments 

Cardiovascular disease (CVD) affects millions worldwide annually. In the USA, death 

related to CVD occurs every 34 seconds (Figure 1.8). Despite advancements in treatment and 

diagnostics, not all patients respond equally to LDL-lowering therapies, which are crucial in 

managing atherosclerosis. Recent clinical trials and extensive research underscores the 

inflammatory nature of CVD. The CANTOS trial highlighted the significance of patient 

inflammation status in assessing risks and selecting appropriate treatments. 

The patient-to-patient differences in CVD present an opportunity to leverage multi-omics 

approaches in clinical studies and basic science and to lay the basics for potential future use in 

precision medicine.  

In Chapter 2, I and colleagues explored the effects of TET2 knockout (KO) in B cell 

subsets. The association of TET2 with increased CVD risk and the atheroprotective nature of 
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antibodies produced by B cells, we sought to understand the consequences of the loss-of-function 

mutation in this cell type. This chapter emphasizes the importance of understanding the homeostatic 

functions of genes before investigating their roles in disease. We focused on examining the 

differences in cell numbers in different niches, changes in gene expression, and the B cell receptor 

(BCR) to better understand immunoglobulin production and how alterations in the TET2 gene 

could impact BCR diversity, potentially causing immune system dysfunction. 

In Chapter 3, together with collaborators, I investigated the association between different 

immune cell types from PBMCs and their activation states with the coronary artery calcium (CAC) 

score. This research aimed to uncover differences among patients at various stages of coronary 

artery disease, helping to enhance the understanding the dynamic changes in the immune system 

during disease progression. Identifying specific immune cell subsets that play crucial roles could 

offer new drug targets and direct future research toward previously unexplored cell types. 

Additionally, further work on potential correlation of immune cell signatures from PBMCs with 

CAC score could reveal0 novel markers and allow the development of a diagnostic test based on a 

blood test.  

These chapters collectively illustrate how integrating multi-omics approaches can deepen 

our insight into cardiovascular diseases and the genetic factors contributing to them, paving the 

way for the creation of more targeted and effective therapies. 
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Chapter 2  
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Chapter 3 Loss of TET2 Increases B-1 Cell 
Number and IgM Production While Limiting 
CDR3 Diversity  

This chapter is adapted from: 

Dennis Emily*, Maria Murach*, Cassidy M.R. Blackburn, Melissa Marshall, Katherine 

Root, Tanyaporn Pattarabanjird, Justine Deroissart, et al. “Loss of TET2 Increases B-1 Cell 

Number and IgM Production While Limiting CDR3 Diversity.” 

Frontiers in Immunology 15 (2024).  

*authors contributed equally  

List of supplementary files associated with this chapter: 

- Supplement 3.1: Supplementary figures (S1-S6) and supplementary tables (S2-S3). 

- Supplement 3.2: Supplementary table S1  

3.1 Introduction 

B cells participate in both innate and adaptive immunity through the secretion of 

antibodies. B cells are broadly divided into B-1 and B-2 subtypes. B-2 cells are derived from 

hematopoietic progenitor cells in the bone marrow (BM) and function predominantly in T cell-

dependent responses for antibody production (McHeyzer-Williams & McHeyzer-Williams, 2005; 

Y. Wang et al., 2020). B-1 cells originate during early fetal life, are long-lived, and self-renew 

((Baumgarth, 2011; Holodick et al., 2014a; Montecino-Rodriguez et al., 2006; Montecino-

Rodriguez & Dorshkind, 2012). B-1 cells can be found predominantly in serosal spaces such as the 

peritoneal cavity (PerC) or the pleural cavity but can also be found in secondary lymphoid organs 

such as the spleen, lymph nodes, and the BM (Kawahara et al., 2003). B-1 cells are further subtyped 

into B1a or B-1b cells depending on the expression of CD5 (B1a are CD5+). B-1 cells produce 
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about 80% of circulating serum IgM (immunoglobulin M). A low level of IgM is produced by B-1 

cells in serosal cavities, and the majority of circulating serum IgM is produced by B-1 cells in the 

spleen and BM (Choi et al., 2012; Holodick et al., 2010, 2014b). IgM antibodies produced by B1a 

cells are thought to be naturally occurring (i.e., present at birth, in gnotobiotic mice, and without 

antigen exposure) (Baumgarth et al., 1999; Chou et al., 2009; Hooijkaas et al., 1984). These natural 

antibodies provide rapid protection from infections and maintain tissue homeostasis through 

apoptotic cell clearance (Baumgarth et al., 1999; Chou et al., 2009; Holodick et al., 2014b; 

Hooijkaas et al., 1984). However, recent evidence identified the VDJ region in B1a cells as having 

N additions (Holodick et al., 2014a; Holodick, Vizconde, et al., 2016; Prohaska et al., 2018; 

Srikakulapu et al., 2022; Upadhye et al., 2019), an event due to the action of the DNA polymerase 

TdT, which is only expressed after birth. This suggests more complexity to the regulation of the 

CDR3 in B1a cells than previously thought. 

The TET family of proteins act enzymatically as α-ketoglutarate-dependent cytosine 

dioxygenases that promote DNA demethylation by oxidizing the methyl group of 5-methylcytosine 

(5mC) to 5-hydroxymethylcytosine (5hmC) (Nakajima & Kunimoto, 2014; Pan et al., 2015; 

Rasmussen & Helin, 2016)potent epigenetic modulators. TET2 is involved in hematopoietic cell 

development and differentiation (Ko et al., 2011; Kunimoto et al., 2012; Moran-Crusio et al., 2011). 

Dysfunction in TET2 is well characterized in hematological malignancies including acute myeloid 

leukemia (AML) (L. Chen et al., 2020; Z. Li et al., 2011; Rasmussen et al., 2015; H. Zhao et al., 

2018) and myelodysplastic syndrome (MDS) (Z. Li et al., 2011; Sun et al., 2018; W. Zhang, Fu, et 

al., 2012; W. Zhang, Shao, et al., 2012, 2015). TET2 loss can affect inflammatory responses via 

altered cytokine secretion (Fuster et al., 2017; Sano et al., 2018) and other biological processes in 

myeloid cells (Cull et al., 2017; Garcia-Gomez et al., 2017; R. Li et al., 2018; Z. Li et al., 2011; 

Moran-Crusio et al., 2011; Z. Zhao et al., 2016). TET2 has also been implicated in B cell 

lymphomas (Dominguez et al., 2018; Jiao et al., 2019; Kubuki et al., 2017; C. J. Lio et al., 2019; 
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Mouly et al., 2018; Rosikiewicz et al., 2020; Schoeler et al., 2019; Z. Zhao et al., 2015). Most 

studies of TET2 in B cells primarily focused on B-2 cells and suggested reduced production of 

high-affinity IgG (Dominguez et al., 2018; Rosikiewicz et al., 2020; Schoeler et al., 2019). Only 

one study to date has briefly investigated TET2 loss in B-1 cells, and that was with a focus on 

diffuse large B cell lymphoma and chronic lymphocytic leukemia development (Mouly et al., 

2018). In contrast, our study focuses on B-1 cells in young mice without evidence of tumor, 

allowing for the identification of key homeostatic processes that may be altered by loss of TET2.  

Our novel findings characterize the impact of global loss of TET2 on B-1 cell biology at 

homeostasis, revealing that global TET2 loss leads to increased B-1 cell number, IgM production, 

and the number of replicated complementarity-determining region 3 (CDR3) sequences, which 

could impact diseases that are modulated by IgM antibodies to specific antigens.  

3.2 Results 

3.2.1 Global loss of TET2 results in increased numbers of all B cell subtypes in the 
peritoneal cavity compared to WT 

To determine the impact of the loss of TET2 on major immune cell subtypes in the 

peritoneal cavity, BM, and spleen of TET2-KO and littermate control mice, spectral flow cytometry 

was performed (Figure 3.1). B cells were defined as CD45+ CD19+; T cells were defined as CD45+ 

CD5+ CD19-; Macrophages (Macs) were defined as CD45+ CD5- CD19- F4-80+ CD11b+; and 

NK cells were defined as CD45+ CD5- CD19- NK1.1+ (Supplemental Figure 1). We found that 

there was a higher B cell frequency and number in the peritoneal cavity (Figure 3.1&D), but not in 

the BM (Figure 3.1&E) or spleen (Figure 3.1&F) of TET2-KO mice compared to controls. 

Numbers of T cells (p-value = 0.0043), and NK cells (p-value = 0.0152) from TET2-KO mice in 

the peritoneal cavity (Figure 3.1D) were also greater than controls. There were no significant 
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differences in immune cell numbers from TET2-KO mice in the bone marrow (Figure 3.1E), while 

in the spleen there was a trending increase in B cells (p-value = 0.0649) with a significant increase 

in T cells (p-value = 0.0260) and a trending increase in NK cells (p-value = 0.0649) compared to 

WT (Figure 3.1F).  

Upon examination of B cell subsets specifically, we found that in the peritoneal cavity, all 

B cell subsets were significantly increased in frequency (B1a p-value = 0.0152, B-1b p-value = 

0.0411, B-2 p-value = 0.0260) and in number (B1a p-value = 0.0022, B-1b p-value = 0.0043, B-2 

p-value = 0.0022) in TET2-KO mice compared to WT (Figure 3.1G, 1J). However, in the BM 

 
Marker Fluorophore Clone Vendor 
CD45  PerCP  30-F11 BD 
B220  APC  RA3-6B2 eBioscience 
CD19  APCefl780  1D3 eBioscience 
IgM  PECF594  R6-60.2 BD 
IgD  efl450  11-26 eBioscience 
CD8  BV510  53-6.7 BioLegend 
CD4  PECy5.5  GK1.5 SouthernBiotech 
CD44  BV785  IM7 BioLegend 
CD62L  BV570  MEL-14 BioLegend 
CD25  BB515  PC61 BD 
F4/80  PECy7  BM8 eBioscience 
CD11b PerCPCy5.5 M1/70 BD 
CD11c  AF647  N418 BioLegend 
CD138  PE  281-2 BD 
Ly6c  BV711  HK1.4 BioLegend 
NK1.1  BV480  PK136 BD 
CD5  BV605  53-7.3 BD 
CD21  FITC  4E3 eBioscience 
CD23  BUV737  B3B4 BD 
Zombie NIR Fixable Viability Dye BioLegend 

Table 3.1 The immunophenotyping panel used for flow cytometry results presented in Figure 
1. 
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(Figure 3.1H, 1K) only the B1a cell subset frequency was significantly increased in TET2-KO 

compared to WT mice (p-value = 0.0260). In the spleen (Figure 3.1I, 1L) B-1b cells but not B1a 

cells were elevated in both frequency and number (p-value = 0.0173, 0.0043, respectively). There 

was no difference in TET2-KO B-2 cell frequency in the spleen, although the total number of B-2 

cells was significantly increased (p-value = 0.0260). 

3.2.2 Peritoneal B1a cells from TET2-KO mice have lower expression of 
immunoglobulin genes compared to WT 

To identify genes differentially expressed in B cell subtypes in mice with TET2-KO 

compared to WT control, we performed RNA-sequencing (RNASeq) on sort-purified peritoneal 

B1a and B-1b cells from TET2-KO and WT mice (Figure 3.2A-B, Supplemental Figure 2). We 

utilized peritoneal B-1 cells due to their abundance in this specific niche, as well as due to the 

phenotypic changes we observed in Figure 3.1. We found that the global knockout of TET2 had a 

more significant impact on gene expression within B1a cells compared to B-1b cells. Specifically, 

we observed a downregulation in the expression of several immunoglobulin genes in B1a cells (and 

to a lesser extent in B-1b cells) from TET2-KO mice compared to their WT counterparts (Figure 

3.2C-D, Supplemental Figure 3). Consistent with this finding, Gene Set Enrichment Analysis 

(GSEA) revealed that TET2 loss markedly affects pathways linked to immunoglobulin production 

and immune response activation, primarily within B1a cells. Indeed, the expression of numerous V 

genes (from both heavy and light chains) was decreased in B1a cells from TET2-KO mice (Figure 

3.3B-C). Similarly, the expression of genes involved in the activation of molecular mediators of 

the immune response was also decreased in these cells (Supplemental Figure 3, 5). 
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Interestingly, significant enrichment in neurotransmitter and synapse-related pathways was seen in 

 

Figure 3.1. Immune subtypes in TET2-KO compared to WT mice. 
(A - L) Flow cytometry characterization of the number and frequency of immune cell types in the (A, D) 
peritoneal cavity; (B, E) bone marrow; (C, F) spleen. Deeper gating into B cell subset frequency and number 
in the (G, J) peritoneal cavity; (H, K) bone marrow; (I, L) spleen, respectively, from TET2-KO (n = 6) and WT 
(n = 6) mice. Blue and orange represent WT and TET2-KO mice, respectively. Data are representative of four 
independent experiments. Significance was determined with two-tailed Mann-Whitney U-tests (* p < 0.05, ** 
p < 0.01). 
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both B1a and B-1b cells from the TET2-KO animals compared to the control animals 

(Supplemental Figure 3B,  These GSEA results provide potential avenues for further hypothesis-

driven studies of the role of TET2 in sensory-neural control of B cells, an emerging area of potential 

significance, recently also connected to cardiovascular disease development via other immune cells 

(Giudicelli et al., 2005; Song et al., 2021; J. L. Xu & Davis, 2000). Notably, while there are too 

many differentially expressed genes (DEGs) to test all at the protein level, one of the proteins 

encoded by our DEG, Sell, also known as CD62L, was also in our flow panel, allowing us to 

determine if the change in gene expression was also accompanied by changes in the protein level. 

Indeed, consistent with the decrease in CD62L RNA, we also saw a decrease in CD62L on the 

surface B1a and B-1b cells in TET2-KO mice (Figure 3.3C-D).  

3.2.3 Global loss of TET2 results in higher expression of IgM antibody isotype in 
peritoneal B1a cells compared to WT 

Using TRUST4, a tool for analyzing the B cell receptor (BCR) using bulk RNASeq (Song 

et al., 2021) and the IMGT (Giudicelli et al., 2005) database, we were able to identify Ig isotype 

transcripts present in sequencing data and their distribution across B1a and B-1b cells from TET2-

KO and WT mice (Figure 3.4A). We found that there was a statistically significant increase in the 

 

Marker Fluorophore Clone Vendor 
IgD  FITC 11-26 eBioscience 
CD5 PE 53-7.3 eBioscience 
CD23 PE-CY7 B3B4 eBioscience 
B220 APC RA3-6B2 eBioscience 
CD19 APC-EF780 1D3 eBioscience 
DAPI Staining Solution Miltenyi Biotec 

Table 3.2 The FACS panel used for sorting B cell subsets from the peritoneal cavity presented in 
Figure 2. 
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expression of IgM in the B1a cells from TET2-KO mice, but we do not see that effect in B1-b cells 

which is in accordance with the increase expression of AIDCA, a gene involved in class-switch 

recombination (Figure 3.4B, Supplemental Figure 5). In contrast, there was not a significant change 

in the distribution of IgD, IgG, or IgA isotypes expressed by the different B-1 cells in TET2-KO 

and WT mice (Figure 3.4A). Consistent with the increase in B-1 cells that we observed in niches 

that support antibody production, such as the spleen and BM (Figure 3.1E, 1F), and the increase in 

the IgM transcript in B1a cells, the circulating plasma IgM levels were higher in the TET2-KO 

compared to WT mice (p-value = 0.0075) (Figure 3.4C). Marginal zone B-2 cells (MZB) are 

another source of IgM and we did observe an increase in MZB cell number in TET2-KO mice 

compared to controls, which could contribute to the overall increase in circulating IgM 

(Supplemental Figure 6). We observed no change in circulating IgG levels. 
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Figure 3.2. RNASeq analysis of differentially expressed genes in peritoneal B-1a and B-1b cells 
from TET2-KO and WT mice.  
(A) Schematic of experimental design. B-1a and B-1b cells from the peritoneal cavity of TET2-KO 
and WT mice were sort-purified and RNA-extracted for RNASeq. (B) Gating strategy for sort. B-1a 
cells are CD19+, IgD-lo, CD23-lo, B220-lo, CD5+ while B-1b cells are CD19+, IgD-lo, CD23-lo, 
B220-lo, CD5-. (C, D) Differentially expressed genes are visualized with volcano plots of the B-1a (C) 
and B-1b (D) cells from TET2-KO mice compared to WT. Color legend for volcano plots: Grey – NS, 
Green: log2FC > 1, Blue: p-value < 0.05 and log2FC < 1, Red: p-value < 0.05 and log2FC > 1. n: B-
1a: WT = 4, KO = 4, B-1b: WT = 4, KO = 3. All p-values are False Discovery Rate (FDR)-adjusted. 
Figure schematic made with BioRender. Panel A and B made by ED.  
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3.2.4 Global loss of TET2 results in a reduced number of unique heavy chain 
CDR3 sequences and an increased number of replicated heavy chain CDR3 
sequences in peritoneal cavity B1a cells compared to WT 

To assess differences in the heavy chain BCR repertoire in B-1 cells from TET2-KO and 

WT mice, we performed an analysis of the CDR3 sequences using our bulk RNASeq data and 

TRUST4 (Song et al., 2021). Results demonstrated that in both B1a and B-1b cells from TET2-KO 

mice, CDR3 diversity was reduced compared to WT mice (Figure 3.5A). The reduction in CDR3 

sequence diversity in the B1a cells from TET2-KO mice compared to WT was statistically 

significant (p-value = 0.02857) (Figure 3.5A), while the reduction in unique CDR3 sequences in 

TET2-KO B-1b cells compared to WT was trending (p-value = 0.05714) (Figure 3.5A). It is not 

feasible to establish the presence of clonal expansion based on bulk RNASeq data, due to the 

inability to determine the absolute number of cells and their level of expression of each Ig transcript 

at a single-cell resolution in a given B cell population. However, a high proportion of replicated 

sequences suggests the presence of clonally dividing, or self-renewing B1a cells, as they are known 

to do. Here we define replicated sequences as those whose frequency is greater than 1% of all 

sequences. 
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Figure 3.3 Pathway and Gene Set Enrichment Analysis (GSEA) of peritoneal B1a cells from 
TET2-KO mice. 
(A) Plot of enrichment scores from GSEA on differentially expressed genes in B1a cells from 
TET2-KO and WT mice. The axis represents the enrichment score (ES). Higher scores indicate 
greater enrichment of the gene set at one end of the ranked list of genes. ES measure the degree to 
which a gene set is overrepresented at the extremes of the entire ranked list. ES are colored based 
on FDR-adjusted p-values. (B) Scaled expression of genes involved in the production of molecular 
mediators of immune response and immunoglobulin production pathways. Each row corresponds 
to a gene, and each column represents a WT or TET2-KO sample. The expression was scaled for 
each gene (from -2 to 2) and is represented by the color red for high and blue for low expression 
values. (C) Scaled expression of genes differentially expressed and found on the cell surface. Each 
row corresponds to a gene, and each column represents a WT or TET2-KO sample. The expression 
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was scaled for each gene (from -2 to 2) and is represented by the color red for high and blue for 
low expression values. (D) Bar chart displaying Median Fluorescence Intensity (MFI) of CD62L 
(Sell) in peritoneal B1a cells and B-1b cells from TET2-KO and WT mice. Blue and orange 
represent WT (n = 6) and TET2-KO mice (n = 6), respectively. Significance was determined with 
two-tailed Mann-Whitney U-tests (* p < 0.05). n: B1a: WT = 4, KO = 4 for panels A-C. Panel D 
made by ED.  

In B1a cells from TET2-KO mice, we observed that 72% of the CDR3 sequences were 

replicated, compared to B1a cells from WT mice which only had 15% of the total CDR3 sequences 

replicated (Figure 3.5B, Figure 3.6A). Thirteen unique CDR3 sequences covered 72% of all CDR3s 

in B1a cells from TET2-KO mice, while 4972 CDR3 sequences made up the other 28% of the total 

number of identified CDR3s (Figure 3.5B, Figure 3.6A). In B-1b cells from TET2-KO mice, 25% 

of all CDR3 sequences are made up of 12 unique CDR3 sequences, while 11107 CDR3 sequences 

made up the rest of the 75% (Figure 3.5B, Figure 3.6B). Differences in the number of replicated 

unique CDR3 sequences were significant based on Chi-squared tests for B1a (p-value = 3.2x10-13) 

and B-1b cells (p-value = 3.1x10-6) from TET2-KO mice compared to WT (Figure 3.5B). An 

analysis of the commonality of replicated CDR3 sequences revealed that there was minimal overlap 

in the CDR3 sequence between B1a cells from TET2-KO and WT mice or in B-1b cells from 

TET2-KO and WT mice, respectively (Figure 3.5C).  Interestingly, there was a greater degree of 

commonality in the CDR3 sequence comparing B1a and B-1b cells from TET2-KO mice. We 

visualized the proportion of replicated CDR3 sequences across B-1 cell subsets in TET2-KO and 

WT mice using pie charts (Figure 3.6A-B). 
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Figure 3.4 Immunoglobulin isotype analysis in peritoneal B1a and B-1b cells from TET2-
KO and WT mice. 
(A) Bar chart showing the distribution of Ig isotypes identified by TRUST4 in B1a and B-1b cells 
from TET2-KO and WT mice. (B) Proportion of IgM expression in B1a and B-1b cells from TET2-
KO and WT mice. (C) Enzyme-linked immunosorbent assay (ELISA) of total IgM (left) and IgG 
(right) from plasma of TET2-KO (n = 26) and WT (n = 26) mice. Blue and orange represent WT 
and TET2-KO mice, respectively. Significance was calculated using Wilcoxon Rank Sum (* p < 
0.05, ** p < 0.01) for panel B. Significance was determined with two-tailed Mann-Whitney U-tests 
(* p < 0.05, p < 0.01) for panel C. n: B1a: WT = 4, KO = 4, B-1b: WT = 4, KO = 3 in panels A and 
B. Panel C made by ED.  

Consistent with our findings in Figure 3.5C, the CDR3 sequences that were most 

abundantly represented in B1a cells from WT mice were represented in B1a cells from TET2-KO 

mice at different proportions, and there were more similarities in replicated CDR3 sequences 

between B1a and B-1b cells from TET2-KO mice.  
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Figure 3.5 Heavy chain CDR3 sequence analysis reveals restricted BCR repertoire in 
peritoneal B1a and B-1b cells from TET2-KO and WT mice. 
(A) The number of unique CDR3 sequences identified by TRUST4 in B1a and B-1b cells from 
TET2-KO and WT mice. (B) Contingency tables derived to assess the association between the 
number of unique CDR3 amino acid sequences (left) and total number of CDR3 amino acid 
sequences (right) with the mutant status of the mice (i.e., WT or TET2-KO) in B1a (top) and B-
1b cells (bottom). Chi-squared test was used to assess the significance of these associations. 
Significance in panel A was calculated using Wilcoxon Rank Sum (* p < 0.05). (C) Venn diagrams 
that examine the shared repertoire of unique CDR3 sequences in the different B cell subsets. Blue 
represents CDR3 AA sequences from B1a cells from WT mice, orange from B1a cells from TET2-
KO mice, red B-1b cells from WT mice, and green B-1b cells from TET2-KO mice, respectively. 
A shared sequence was defined as one expressed at least once in each of the subsets being 
compared. The number of shared sequences is represented by the overlapping region in each Venn 
diagram. Numbers and percentages of nonshared sequences of each cell subset in every comparison 
are indicated. For panels B-C, sequences were pooled from mice from the same cell type and 
condition (n: B1a: WT = 4, KO = 4, B-1b: WT = 4, KO = 3). 
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Since antigen binding specificity is not just determined by the heavy chain CDR3, we 

performed an analysis of the light chain BCR repertoire from our bulk RNASeq data with TRUST4. 

Results demonstrated that in both B1a and B-1b cells from TET2-KO mice, CDR3 diversity was 

reduced compared to WT mice (Supplemental Figure 7). The reduction in CDR3 sequence diversity 

in the B1a cells from TET2-KO mice compared to WT was statistically significant (p-value = 

0.029) (Supplemental Figure 7A). The reduction in CDR3 sequences in B-1b cells from TET2-KO 

mice compared to WT was trending (p-value = 0.133) (Supplemental Figure 7A). Similar to what 

we observed in the heavy chain CDR3 sequences, the number of replicated light chain CDR3 

sequences was over 2-fold greater in B1a cells from TET2-KO compared to WT mice 

(Supplemental Figure 7B-D). The number of unique CDR3 sequences from the light chain 

accounted for a similar percentage of total CDR3 sequences as seen in the heavy chain results in 

B1a cells from TET2-KO mice (Supplemental Figure 7B-D). Differences in the number of 

replicated unique CDR3 sequences were significant based on Chi-squared tests for B1a (p-value = 

0.01) and B-1b cells (p-value = 0.02) from TET2-KO mice compared to WT.  

While the role of the light chain in antigen binding and specificity remains less well-known 

compared to the heavy chain, it still contributes to those function (J. L. Xu & Davis, 2000). These 

results in the light chain CDR3 provide additional support that B1a cells are more profoundly 

impacted by loss of TET2 than B-1b cells, and the diversity of antigen-specific IgMs may be 

affected as a result. 
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Figure 3.6.  Heavy chain CDR3 sequence analysis reveals differences in most abundant 
CDR3 sequences in peritoneal B1a and B-1b cells from TET2-KO and WT mice. 
(A, B) Annotated pie charts depicting the proportion of CDR3 sequences that are unique and the 
sequence and proportion of the replicated sequences in B1a (A) and B-1b (B) cells from WT (top) 
and TET2-KO mice (bottom). (C) Bar chart comparing the proportion of the top-most abundant 
CDR3 sequence in B1a cells from WT mice from of all CDR3 sequences in B1a and B-1b cells 
from TET2-KO and WT mice. (D Bar chart comparing the proportion of the second-most abundant 
CDR3 sequence in B1a cells from WT mice from of all CDR3 sequences in B1a and B-1b cells 
from TET2-KO and WT mice. Blue and orange represent WT and TET2-KO mice, respectively. 
Sequences were pooled from mice from the same cell type and condition (n: B1a: WT = 4, KO = 
4, B-1b: WT = 4, KO = 3). 
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3.2.5 VH–DH–JH usage shows differences between TET2-KO and WT BCR 

repertoires 

Analysis of specific VH–DH–JH gene region usage in B1a and B-1b cells from TET2-KO 

and WT mice revealed high usage of VH1, VH11, and VH12 in B-1 cells consistent with prior 

findings (Supplemental Figure 8) (Holodick, Zeumer, et al., 2016; Prohaska et al., 2018; Tsuji et 

al., 2020). The B1a cells from the TET2-KO mouse appeared to have greater usage of these regions. 

There were also several reductions in VH region usage in the B1a cells from the TET2-KO mice, 

but these were regions of minimal usage and of unclear significance.  

We also analyzed differences in the specific VK/L–JK/L gene regions of the light chain CDR3 

sequence in B1a and B-1b cells from TET2-KO or WT mice (Supplemental Figure 9) and similarly 

found differences in VK and JK usage predominantly in B1a compared to B-1b cells. An analysis of 

kappa and lambda ratio revealed that there is more lambda light chain utilization in B-1b cells from 

TET2-KO mice compared to WT despite not reaching significance, while showing no difference 

in kappa/lambda ratio in B1a cells (Supplemental Figure 9E). 

Circos plots (Figure 3.7), measuring the relative frequency of each V-J pairing revealed a 

greater abundance of VH1-J H1, VH11-J H1, and VH12-J H4 in B1a cells from TET2-KO mice 

compared to control, suggesting that TET2 has an important role in specific V-J recombination of 

B1a cells. These specific recombination events could be important for creating the over-

representation of the specific CDR3s in B1a cells from TET2-KO mice. The increase in VH12-J H4 

pairing in TET2-KO mice was also seen in the B-1b cells but only constituted 5% of all pairings 

compared to over 20% in the B1a cells. These data are consistent with the loss of TET2 generating 

a more pronounced effect on the BCR in B1a cells compared to B-1b cells.  
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Figure 3.7 V-J Gene Association analysis of B1a and B-1b cells from TET2-KO and WT 
mice. 
(A-H) Circos plot of V-J gene associations of CDR3 sequences identified by TRUST4 utilizing 
specific V-J gene segment pairs is displayed for B1a cells from TET2-KO (B, D) and WT mice (A, 
C) from all CDR3 sequences (A, B) and replicated CDR3 sequences (C, D). Circos plot of V-J 
gene associations of CDR3 sequences identified by TRUST4 utilizing specific V-J gene segment 
pairs is displayed for B-1b cells from TET2-KO (F, H) and WT mice (E, G) from all CDR3 
sequences (E, F) and replicated CDR3 sequences (G, H). Cables connect V and J gene segments 
that are observed together within the same CDR3 region, with the thickness of each cable indicating 
the relative frequency of each V-J pairing. (I, J) The abundance of V-J gene connections identified 
in replicated CDR3s presented as percent abundance of all CDR3 sequences in B1a (I) and B-1b 
cells (J) from TET2-KO and WT mice. Each pair of bars represents the count of V-J associations 
combined from all samples. Blue and orange represent WT and TET2-KO mice, respectively. 
Sequences were pooled from mice from the same cell type and condition (n: B1a: WT = 4, KO = 
4, B-1b: WT = 4, KO = 3). 
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3.3 Discussion 

Murine B cells can broadly be divided into B-2 cells, which are derived from BM 

precursors and include conventional follicular and marginal zone B cells, and B-1 cells, which are 

largely fetal liver-derived and persist in adults through self-renewal (Deenen & Kroese, 1993; 

Holodick, Zeumer, et al., 2016; Kreslavsky et al., 2017; Kristiansen et al., 2016; Pattarabanjird et 

al., 2022). These B cell subtypes are developmentally, functionally, and phenotypically distinct 

(Berland & Wortis, 2002; Hardy et al., 2004; Kawahara et al., 2003; Kretschmer et al., 2003; 

Prohaska et al., 2018; Stall et al., 1992; Yoshimoto, 2020). Given their self-renewal capacity, we 

hypothesized that B-1 cells may be regulated by TET2, an epigenetic modulator that has been 

implicated in the clonal expansion of hematopoietic cells leading to disorders such as 

myelodysplastic syndromes (MDS) (Z. Li et al., 2011; Sun et al., 2018; W. Zhang, Fu, et al., 2012; 

W. Zhang, Shao, et al., 2012, 2015) and acute myeloid leukemia (AML) (L. Chen et al., 2020; Z. 

Li et al., 2011; Rasmussen et al., 2015; H. Zhao et al., 2018). Indeed, the results of the present study 

identified an important role for TET2 in regulating B cell numbers in specific niches. However, 

further studies are needed to determine if this is an effect intrinsic to the loss of TET2 specifically 

in B cells. Even if these findings are secondary to TET2 loss in another cell type, they still have 

potential relevance to diseases regulated by IgMs produced by B-1 cells such as infection 

(Askenase et al., 2015; Aziz et al., 2018, 2020; Choi & Baumgarth, 2008; Haas et al., 2005; L et 

al., 2015; Viau et al., 2005), atherosclerosis (George et al., 1998; Gruber et al., 2016; Karvonen et 

al., 2003; Palinski et al., 1995; Papac-Milicevic et al., 2016; Shaw et al., 2001; VJ et al., 2018), and 

obesity-related metabolic dysfunction (Harmon et al., 2016; Ravandi et al., 2011). Several human 

genetic variants of TET2 with loss of function have been identified (Bussaglia et al., 2019; Coltro 

et al., 2020; J et al., 2020) and these could have a broad impact similar to global TET2 deletion in 



 59 
mice, resulting directly or indirectly in modulating the anti-inflammatory effects of IgM-producing 

B cells.  

 

 

Figure 3.8 Graphical abstract of key findings.  
Peritoneal B cell number is increased, circulating IgM levels are elevated, and CDR3 sequence diversity 
is reduced in mice null for TET2 compared to WT mice. Figure made with BioRender. Figure made by 
ED.  

https://www.biorender.com/
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B-1 cells have been shown to have important roles in the first line of defense against 

pathogens (Askenase et al., 2015; Aziz et al., 2018, 2020; Choi & Baumgarth, 2008; Haas et al., 

2005; L et al., 2015; Viau et al., 2005) and in mediating a reduction of inflammation  (Choi et al., 

2012; Gruber et al., 2016; Harmon et al., 2016; Holodick, Zeumer, et al., 2016; Kyaw et al., 2012; 

Upadhye et al., 2019). One of the major mechanisms mediating this effect is their production of 

IgM that can recognize pattern-associated molecular pattern (PAMPs) and danger-associated 

molecular patterns (DAMPs) such as phosphorylcholine on the cell wall of Streptococcus 

pneumoniae (Askenase et al., 2015; Grasset et al., 2015; Haas et al., 2005)and oxidation-specific 

epitopes (OSEs) on lipoproteins (Binder et al., 2016; Miller et al., 2011). OSEs on lipoproteins and 

apoptotic cells can fuel disease-associated inflammation (Binder et al., 2016; Steinberg & Witztum, 

2010) and IgM to these neoepitopes can inhibit their induction of inflammatory responses (Que et 

al., 2018; Witztum & Lichtman, 2014). Our study presents novel findings that the global loss of 

TET2 increased B-1 cell number, circulating IgM level, and BCR specificity, all factors that could 

affect the immune response against PAMPs and DAMPs.  

The first major phenotype we observed due to the global loss of TET2 was an elevation in 

the frequency and number of all B cell subtypes in the peritoneal cavity (Figure 3.1G, 1J). Yet, in 

the specialized niches that promote B cell effector function, such as antibody production, only the 

frequency of B1a cells in the BM (Figure 3.1H), and B-1b frequency and number in the spleen 

(Figure 3.1I, 1L), were higher in the TET2-KO compared to WT mice. The mechanism responsible 

for these subset and niche-specific increases in cell number remains unclear and requires further 

study to determine if proliferation, increased cell survival, or migration are responsible. As B1a 

cells self-renew like hematopoietic stem cells (HSCs) (Deenen & Kroese, 1993; Duber et al., 2009; 

Ghosn & Yang, 2015; Holodick, Vizconde, et al., 2016; Kretschmer et al., 2003; Z. Xu et al., 2004), 

and this self-renewal property is enhanced in HSCs with TET2-KO (Ko et al., 2011; Kunimoto et 

al., 2012; Z. Li et al., 2011; Pan et al., 2017; W. Zhang, Shao, et al., 2015; X. Zhang et al., 2016), 
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enhanced self-renewal of B1a cells from TET2-KO animals may explain the increase in B1a cells 

in the peritoneal cavity.  

The genes and pathways that were different in B-1 cells from TET2-KO mice compared to 

control, particularly in the B1a cells, were immunoglobulin-related and they were expressed at a 

lower level (Figure 3.2C). There was a predominance of kappa light chain genes that were less 

expressed, in addition to several VH genes, leading us to hypothesize that loss of TET2 may be 

limiting the expression of certain variable region genes, which allows for specific antigen 

recognition of foreign or neo-antigens (Casali & Schettino, 1996; Hardy & Hayakawa, 2012; 

Hayakawa et al., 1999, 2003; Holodick, Vizconde, et al., 2016). To further investigate those 

differences, we performed BCR analysis using our RNASeq data.  

Historically, BCR identification from sequencing was facilitated by well-established 

algorithms like MiXCR (Bolotin et al., 2015) or BALDR (Upadhyay et al., 2018) using V-D-J 

enriched or single-cell RNASeq data. However, the associated costs and impracticality of research 

studies focusing on low-frequency cell populations were limiting factors for broader application. 

The introduction of the TRUST4 algorithm by Song et al. (Song et al., 2021) enabled the accurate 

detection of BCR and TCR repertoire from bulk RNASeq data. This innovation diminished the 

financial burden of data generation and allowed for the re-utilization of previously generated data, 

limiting redundancy and resources required for BCR/TCR analysis and providing opportunities for 

potential clinical applications. While the results are not at single-cell resolution, they offer valuable 

insight into the diversity of immune cell receptor repertoire and specificity. To date, a limited 

number of studies have performed an analogous analysis in bulk RNASeq data (K. J. Liu et al., 

2023; Song et al., 2022; Y. Zhang & Lee, 2022).  

The constant region of the BCR determines the effector function of the antibody. There 

were no differences in the transcript expression levels of antibody isotypes IgG, IgD, and IgA 

(Figure 3.4A). However, there was a statistically significant increase in transcript expression of 
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IgM, the main isotype produced by B-1 cells (Holodick et al., 2014b; Kyaw et al., 2011, 2012; 

Upadhye et al., 2019), in the B1a cells from TET2-KO compared to WT mice suggesting that TET2 

may inhibit factors responsible for encoding the constant region downstream of the V region on 

chromosome 14 that determines antibody isotype or TET2 may limit isotype switching in B1a cells 

(Figure 3.4B). These data are consistent with no changes observed in the circulating IgG level while 

there was an increase in circulating IgM in the TET2-KO mice compared to the control. We could 

not conclude if the increase in total IgM was due to increased IgM secretion on a per-cell basis or 

due to the increase in overall cell number (Figure 3.4C). However, increased IgM levels could also 

be due to the increase in B-1 numbers in the spleen and bone marrow. Additionally, there was an 

increase in MZB cell number in the spleens from TET2-KO mice compared to WT, another 

potential source of IgM from TET2-KO and WT mice (Supplementary Figure 6).  

While much more has been documented about the role of the heavy chain variable region, 

specifically the CDR3 of the BCR, less is known about the purpose of the light chain regarding its 

role in binding antigens (Andrews et al., 2013; Aoki-Ota et al., 2012; Hardy & Hayakawa, 2012; 

Jaffe et al., 2022; Kretschmer et al., 2002; Tornberg & B1a, 1995; J. L. Xu & Davis, 2000; Yang 

et al., 2015). A study by Lio et al. revealed that double knockout of TET2 and TET3 in the early B 

cell stage impaired rearrangement at the Igκ locus (C.-W. Lio et al., 2016). Our findings support 

previous research by detecting the lower expression of many Igκ genes, and indeed, while not 

reaching significance, overall kappa immunoglobulin usage is reduced in B-1b cells, but 

surprisingly not B1a cells from TET2-KO mice compared to WT (Supplemental Figure 9E). There 

was also a significant reduction in the number of unique CDR3 sequences in B1a cells and a 

trending reduction in B-1b cells from TET2-KO mice compared to WT (Figure 3.2, Supplemental 

Figure 8). Consistent with the reduced variety of CDR3 sequences, there is a higher number of 

replicated sequences in the light chain observed in the B1a cells from the TET2-KO mice compared 

to WT, and the effect was also observed in B-1b cells to a lesser extent (Supplemental Figure 8). 
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These data suggest that the BCR repertoire in the light chains of B1a cells is more sensitive to loss 

of TET2 than in B-1b cells.  

B1a cells from TET2-KO mice had significantly fewer unique CDR3 sequences with 72% 

of the total CDR3 sequences representing replicates, suggesting that loss of TET2 impacts the 

diversity of antigen specificity in B-1 cells, particularly B1a cells (Figure 3.5B). The more marked 

lack of antigen diversity in the B1a cells from TET2-KO mice is consistent with B1a cells 

predominantly originating from the fetal liver and persisting through self-renewal, and a role for 

TET2 in promoting expansion of rapidly self-renewing cells. While our study isolated B cells from 

the global TET2-KO and WT mice, it must be considered that the effects of loss of TET2 in other 

cells, such as cytokine-secreting macrophages, could be playing a role in influencing the selection 

of the B cell repertoire. Additionally, the presence of IgM itself can influence the selection of the 

B cell repertoire (Nguyen & Baumgarth, 2016). In an analysis of VH–DH–JH gene regions of the 

heavy chain, our data suggest that the restricted associations of VH–DH–JH gene regions in the B1a 

cells from TET2-KO mice could be responsible for the reduction in the number of unique CDR3 

sequences. A study by Wong et al. identified a pathway whereby B1a cells can bypass the need for 

a pre-BCR and generate a mature, albeit somewhat self-reactive, BCR directly (Wong et al., 2019). 

The VH12/VK4 pairing is typical for binding phosphatidylcholine, a lipid present in many bacteria 

membranes, and while VH12 frequency of use is increased in B1a cells from TET2-KO mice, VK4 

frequency of use is lower in B1a cells from TET2-KO mice compared to WT (Supplemental Figure 

8-9) (Wong et al., 2019). It should be noted that both VH11 and JH1 are associated with early fetal 

characteristics, which supports the potential enhancement of self-renewal that loss of TET2 

regulation may foster (Kristiansen et al., 2016; Prohaska et al., 2018; Yang et al., 2015; Yoshimoto, 

2020). Our CDR3 and VDJ association data from the heavy chain provide further evidence in 

addition to the light chain data that B1a cells are more profoundly impacted by global loss of TET2 

compared to B-1b cells. The reason for this remains to be determined but may be due to the 
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expression of CD5 by B1a cells, given that studies have shown many of the malignant B cell 

samples with loss of TET2 express CD5 (Alayed et al., 2013; Ito et al., 2019; Pan et al., 2017), but 

this connection requires further study.  

Taken together, our data reveals that loss of TET2 influences IgM level and BCR 

repertoire, particularly in B1a cells, which are key producers of natural IgM. Alteration to the 

antigen-specificity or abundance of B1a-produced IgM may have consequences in the response to 

PAMPs and DAMPs and in regulating antigen-driven inflammation. Our data demonstrating that 

loss of TET2 increased B-1 cell subset numbers in antibody-producing niches and reduced CDR3 

diversity suggests that TET2 may regulate the pool of antigen-specific IgM produced by B-1 cells 

(Figure 3.8) and underscores the need for further study of the impact and mechanisms whereby 

TET2 regulates B-1 cells, especially in the context of infection and diseases involving chronic 

inflammation. 

3.4 Methods 

3.4.1  Mice 

All animal protocols were approved by the Animal Care and Use Committee at the University of 

Virginia. TET2-KO mice (24) were provided by Dr. Kenneth Walsh (University of Virginia). The 

model was generated by Ko et al. and targeted the endogenous TET2 locus to create a conditional 

allele that enabled the deletion of exons 8, 9, and 10, the catalytic region of TET2 (Ko et al., 2011). 

Mice were maintained on a 12-h light/dark schedule in a specific pathogen-free animal facility and 

given food (standard chow diet, Tekland 7012) and water ad libitum. The number of mice included 

in each study is indicated in the figures or the associated legends. 
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3.4.2 Sample Preparations for Flow Cytometry and Live Cell Sorting 

Bone marrow, spleen, and peritoneal cavity cells were processed for flow cytometry as previously 

described  (Rosenfeld et al., 2015). Briefly, following sacrifice by CO2 overdose, peritoneal cells 

were harvested by flushing the peritoneal cavity with 10 mL FACS buffer (PBS containing 1% 

BSA, 0.05% NaN3). The spleen and one femur and tibia were removed. Spleens and flushed bone 

marrow were filtered through a 70 μm cell strainer. Red blood cells were lysed from single-cell 

suspensions of bone marrow and spleen using a lysis buffer containing 155 mM NH4Cl, 10 mM 

KHCO3, and 0.1 mM EDTA. Cell surface Fc receptors were blocked using anti-CD16/32 (clone:93, 

4 eBioscience), then cells were stained with fluorescently conjugated antibodies against cell surface 

markers. Cells were stained with fixable Live/Dead Zombie NIR (Life Technologies) for dead cell 

discrimination, then fixed in 2% PFA in PBS. For FAC sorting, cells were resuspended in modified 

FACS buffer (PBS with 1% BSA) and 4’,6-Diamidino-2-Phenylindole (DAPI) live/dead stain then 

immediately taken to the University of Virginia Flow Cytometry Core for sorting. B1a and B-1b 

cells were sorted to better than 99% purity from their parent gate. Clone and fluorophore 

information for the flow cytometry antibodies used in murine experiments to immunophenotype or 

FAC-sort B cell subsets are given in Table 1 and Table 2 respectively. All flow cytometry was 

conducted at the University of Virginia Flow Cytometry Core Facility. Immunophenotyping was 

performed on an Aurora Borealis 5-laser (Cytek) cytometer. FAC-sorting was performed on an 

Influx Cell Sorter (Becton Dickinson). Data analysis and flow plots were generated using OMIQ 

software (Dotmatics). Representative flow plots were chosen based on the samples whose 

population frequencies were closest to the mean for that group. Gates on flow plots were set using 

fluorescence minus one (FMO) controls. 
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3.4.3 ELISA for quantification of total IgM in mice 

Total IgM in mouse plasma was measured using colorimetric ELISA as described previously 

(Rosenfeld et al., 2015). Briefly, EIA/RIA high-binding microplates were coated with goat anti-

mouse IgM, capture antibody (Southern Biotech, 1020-01). Mouse IgM standards (Southern 

Biotech, 0101-01), or plasma samples were detected with alkaline phosphatase-conjugated goat 

anti-mouse IgM secondary antibody (Southern Biotech, 1020-04;) and pNPP substrate (Southern 

Biotech 0201-01). Absorbance measurements were analyzed with a SpectraMAX 190 microplate 

reader (Molecular Devices) at 405 nm. The standard curve was determined using a 4-parameter 

function and concentration measurements were extrapolated using Softmax Pro 3.1.2 software. 

Only samples with CV<15% and within the standard curve were included in the analysis. 

3.4.4 Sample Preparation for Bulk RNA Sequencing 

Peritoneal B1a, B-1b, and B-2 cells obtained from TET2-KO and TET2-WT C57BL/6 mice were 

sort-purified directly into RLT Plus Buffer (Qiagen). RNA and DNA were extracted using the 

Qiagen AllPrep kit. The purified RNAs were stored at −80 °C before being sent to Novogene for 

sequencing. Total RNA was stored in RNase-free water to directly synthesize first strand, followed 

by the whole-length LD-PCR amplification. The amplified ds-cDNA(double-stranded DNA) is 

purified with AMPure XP beads and quantified with Qubit. The cDNA samples were sheared by 

the Covaris system, and then the sheared fragments were end-repaired, A-tailed, and ligated to 

sequencing adaptors. A size selection of about 200 bp was performed before the PCR enrichment. 

Library concentration was first quantified using a Qubit 2.0 fluorometer (Life Technologies), and 

then diluted to 2 ng/µl before checking insert size on an Agilent 2100 and quantifying to greater 
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accuracy by qPCR. Ultra-low input bulk RNA sequencing was performed on the NovaSeq 6000 

PE150 (Illumina).  

3.4.5 DEG and Pathway Analysis 

The quality trimming was performed using fastp (S. Chen, 2023) with default settings. Mapping to 

the GRCm39 genome was performed with STAR (Dobin et al., 2013), followed by featureCounts 

(Liao et al., 2014) to count reads mapped to genes. DESeq2 (Love et al., 2014) was used for 

differential analysis, followed by pathway analysis using clusterProfiler  (T. Wu et al., 2021) with 

the Gene Ontology (GO) (Ashburner et al., 2000) database.  

3.4.6 BCR Analysis  

For BCR analysis, quality trimming was performed using fastp (S. Chen, 2023) and TRUST4 (K. 

Peng et al., 2023) was subsequently used to identify BCR repertoire in paired sequencing reads 

using the international ImMunoGeneTics (IMGT) information system database as a reference. 

Results were analyzed using R and circus plots were made using circos Bioconductor package (Gu 

et al., 2014). The code developed for these analyses will be available on the following Github page: 

https://github.com/mariamurach/TET2 and https://github.com/mariamurach/bcr_R upon 

publication.  

3.4.7 Statistics 

In Figure 3.1, Figure 3.2D, and Figure 3.4C, comparisons were conducted between the TET2-KO 

and WT strains using Prism 10.0 with unpaired, two-tailed Mann-Whitney U-tests. Values shown 

https://github.com/mariamurach/TET2
https://github.com/mariamurach/bcr_R
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are mean±SD. In Figure 3.3B and Figure 3.4A Wilcoxon Rank Sum and Signed Rank Tests were 

used to determine the significance of differences in proportions of unique CDR3 sequences, 

isotypes, and usages of specific V, D, and J chains between TET2-KO and WT groups. In Figure 

3.5B, chi-squared test was performed to assess the significance of the association between the 

number of unique CDR3 amino acid sequences in B1a and B-1b cells from TET2-KO and WT 

mice. 
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List of supplementary files associated with this chapter: 

- Supplement 4.1: Supplementary figures (S1-S6) and supplementary tables (S2-S3). 

- Supplement 4.2: Supplementary table S1  

4.1 Introduction 

Atherosclerosis is characterized by the accumulation of lipid-laden plaques within the 

intimal layer of arteries and underlies diverse disease processes such as coronary artery disease 

(CAD), peripheral artery disease, and cerebrovascular disease. Rupture or erosion of unstable 

atherosclerotic plaques can lead to thrombus formation causing myocardial infarction (MI) and 

stroke, collectively the most common causes of death worldwide (Herrington et al., 2016; M. E. 

Kruk et al., 2018). In light of this substantial morbidity and mortality, coronary artery imaging can 

be a powerful tool to identify those at elevated risk for clinical events and help guide therapy. 

Coronary artery calcification (CAC), as a marker of total coronary plaque burden, has emerged as 
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a robust predictor of future coronary heart disease (CHD) events in asymptomatic individuals. 

Cohort studies have shown an increase in subsequent CHD event rate across strata of increasing 

baseline Agatston CAC scores (Detrano et al., 2008; Mohlenkamp et al., 2011). Compared against 

participants with a CAC score of zero, those with CAC scores >300 have approximately a 10-fold 

increased event rate (Tsao et al., 2023). Despite decades of advancement in the assessment and 

treatment of subjects with CAD, CHD remains the leading cause of death in the western world, 

attesting to the need for further investigation into the pathogenesis of atherosclerosis (Pahwa & 

Island, 2023). 

PATIENT CHARACTERISTICS 
Measurement No CAC High CAC p-value 
Total 13 11  
Age (yrs) 63 (11) 66 (10) 0.535 
Female 8 (0.62) 8 (0.73) 0.444 
White 12 (0.92) 9 (0.82) 0.435 
Diabetes 2 (0.15) 2 (0.18) 0.637 
Dyslipidemia 7 (0.54) 7 (0.64) 0.473 
Hypertension 6 (0.46) 8 (0.73) 0.185 
History of Smoking 6 (0.46) 6 (0.55) 0.500 
Renal Insufficiency 0 (0) 0 (0) 1.000 
Statins 3 (0.23) 6 (0.55) 0.122 
Non-statin Lipid Lowering Drugs 0 (0) 1 (0.09) 0.458 
BMI (kg/m2) 27 (3) 33 (8) 0.042 
SBP (mmHg) 125 (22) 128 (20) 0.724 
A1C (%) 6 (2) 6.0 (0.7) 0.073 
hsCRP (mg/L) 2 (2) 2 (2) 0.507 
eGFR (mL/min/1.73m2) 84 (15) 92 (15) 0.221 
WBC (k/uL) 7 (2) 6 (2) 1.000 
Hemoglobin (k/uL) 14 (1) 13.5 (0.5) 0.356 
Platelets (k/uL) 258 (44) 257 (61) 0.552 
Total Cholesterol (mg/dL) 210 (53) 187 (62) 0.343 
Triglycerides (mg/dL) 125 (58) 108 (47) 0.441 
HDL Cholesterol (mg/dL) 51 (7) 50 (15) 0.835 
LDL Cholesterol (mg/dL) 138 (50) 118 (54) 0.372 
Coronary Artery Calcification Score 0 (0) 551 (284) 4 x 10-7 
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Segment Involvement Score 0.2(0.6) 8 (2) 4 x 10-7 
Segment Stenosis Score 0.2(0.6) 13 (5) 4 x 10-7 

Table 4.1 Clinical characteristics for subject cohort. 
Categorical variables are expressed as absolute count with frequency in parentheses while 
continuous variables are expressed as mean with standard deviation in parentheses. BMI: body 
mass index, SBP: systolic blood pressure, A1C: hemoglobin A1C, hsCRP: high sensitivity C 
reactive protein, eGFR: estimated glomerular filtration rate, WBC: white blood cells, HDL: high-
density lipoprotein, LDL: low-density lipoprotein. 

 

 
The development of atherosclerosis is a complex and multifactorial process involving 

vessel damage, lipid accumulation, and inflammation. While specific treatments have been 

developed to target many of these causes, inflammation remains a key mediator unaddressed by 

current targeted therapies. In atherosclerosis, cholesterol accumulation in macrophages can activate 

the NLRP3 inflammasome, resulting in IL-1β secretion (Curtiss & Tobias, 2009; Duewell et al., 

2010). This secreted IL-1 can induce expression of IL-6, which elicits an acute phase response 

(Loppnow & Libby, 1990). At a cellular level, IL-1β induces phosphorylation of the transcription 

factor NF-κB and kinases p38 and ERK while IL-6 induces phosphorylation of the transcription 

factors STAT1, STAT3, and STAT5 (Kang & Kishimoto, 2021; Virtue et al., 2012). These 

activated transcription factors can subsequently promote inflammatory gene expression, which can 

drive atherosclerosis progression (Huber et al., 1999). Given the plausible causative mechanism for 

IL-1β, the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS) trial was 

conducted, demonstrating that IL-1β inhibition with canakinumab reduced composite 

cardiovascular endpoints by 15% in subjects with previous MI and elevated C-reactive protein 

(Ridker et al., 2017). Furthermore, subjects who achieved greater reduction in IL-6 after the first 

dose of canakinumab had an enhanced reduction in major adverse cardiovascular event (MACE) 

rate compared to those who did not (Ridker et al., 2018).  Additionally, in the phase 2 RESCUE 

trial, the IL-6 inhibitor ziltivekimab demonstrated reductions in inflammatory biomarkers linked to 
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MACE in subjects with advanced chronic kidney disease, a population traditionally at excessively 

high risk for atherosclerotic events (Ridker et al., 2021). 

 

Figure 4.1 Mass cytometry identifies major immune cell populations within PBMCs from the 
patient cohort 
A: Experimental paradigm for study. B: CyTOF antibody panel used for analysis. C: UMAP analysis of 
WBCs, showing expression of characteristic surface markers and annotation for cell identity. Panel A 
made by JMP, panel B made by JC. 
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Collectively, a clear connection between IL-1β, IL-6, and atherosclerosis has been 

established; however, the specific changes in immune cell populations and immune cell signaling 

in subjects referred for coronary imaging remain unknown. Here we present our pilot study, where 

in our small 24 subject cohort, we utilized mass cytometry by time of flight (CyTOF) to identify 

and characterize cell populations specifically reactive to the pro-inflammatory cytokines IL-1β and 

IL-6 in subjects with no detectable CAC and subjects with advanced calcific atherosclerotic disease 

(Bandura et al., 2009; Bendall et al., 2011). 

4.2 Results  

4.2.1 IL-1β and IL-6 induce phosphorylation of effector molecules in distinct 
immune cell populations  

Cytometry by time of flight (CyTOF) was performed on PBMCs from subjects undergoing 

clinically indicated coronary computed tomography angiography (cCTA) at the University of 

Virginia.  A subset of this cohort composed of 13 individuals without detectable coronary artery 

calcification (CAC) as defined as a CAC score = 0 and 11 individuals with advanced coronary 

artery calcification as defined as a CAC score ≥ 300 was used for this study. Demographics and 

baseline characteristics among individuals with no CAC and individuals with advanced CAC were 

similar (Table 4.1) with the exception that subjects with advanced CAC had a greater BMI (33 vs 

27 kg/m2, p=0.042) compared to subjects without CAC (Table 4.1) Subjects with advanced CAC 

had higher CAC scores (551 vs 0, p= 4 x 10-7), segment involvement scores (13 vs 0.2, p= 4 x 10-

7), and segment stenosis scores (8 vs 0.2, p= 4 x 10-7) compared to subjects without CAC (Table 

4.1).  

Carefully thawed cryopreserved PMBCs from these subjects were stimulated, fixed, 

barcoded, stained, and analyzed via cytometry by time of flight (CyTOF) with a 31-antibody panel 
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(Figure 4.1A-1B). PBMCs were stimulated with either IL-1β or IL-6 for 15 minutes as previous 

work by our lab has established that this incubation time confers maximal activation of several 

 

Figure 4.2 IL-1β and IL-6 induce phosphorylation of transcription factors in human T cells 
A: Signal induction of the specified transcription factor or kinase within the indicated immune cell subset 
following IL-1β stimulation of PBMCs. Paired T test with FDR correction was used to determine if there 
was a statistically significant difference between the unstimulated and stimulated condition (n=24). 
*p<0.05, **p<0.01 B:  Signal induction of the specified transcription factor or kinase within the indicated 
immune cell subset following IL-6 stimulation of PBMCs. Paired T test with FDR correction was used to 
determine if there was a statistically significant difference between the unstimulated and stimulated 
condition (n=24). *p<0.05, **p<0.01, ****p<0.0001  

 

 

A)

B)
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downstream effectors of IL-1β signaling (Kothari et al., 2021). Additionally, the 15-minute 

stimulation with IL-6 results in maximal activation of p-STAT1 and p-STAT3 and robust activation 

of p-STAT5 (Supplemental Figure 4). UMAP and SPADE analysis were employed on gated white 

blood cells (Figure 4.1C, Supplemental Figures 5A) and were sufficient to resolve populations 

of T cells, B cells,  monocytes, dendritic cells (DCs), and NK cells (Figure 4.1C-1D, 

Supplemental Figure 5A). Gating on these specific cell types, we quantified the differences in 

median expression of downstream effector molecules between the unstimulated and stimulated 

condition for each immune subtype. IL-1β induced phosphorylation of ERK relative to vehicle 

treatment alone in B cells (Figure 4.2A). There were no other statistically significant differences 

in effector molecule activation, following IL-1β  stimulation. However, monocytes and dendritic 

cells displayed a tendential increase in both NF-kB and p38 with IL-1β  stimulation.  IL-6, on the 

other hand, induced phosphorylation of STAT1 in myeloid cells and T cells, phosphorylation of 

STAT3 in all immune subtypes, and phosphorylation of STAT5 in T cells exclusively (Figure 

4.2B). Moreover, T cells exhibited the most pronounced induction in STAT1, STAT3, and STAT5 

following IL-6 stimulation relative to all other immune cell subtypes (Figure 4.2B). 

Given CAC is a key index of CVD event risk, subjects were subsequently stratified into 

either no CAC or high CAC groups, and immune cell response to IL-1β  and IL-6 stimulation was 

examined. No statistically significant changes were detected. Yet, high CAC was associated with 

a trending decrease in phosphorylation of NF-kB and p38 in monocytes and DCs following IL-1β  

stimulation (Figure 4.3A). Additionally, NK cells from high CAC patients tended to display a 

decrease in NF-kB induction with IL-1β  stimulation compared to NK cells from no CAC patients. 

On the other hand, high CAC was associated with a trending increase in the activation of STAT3 

in monocytes and dendritic cells following IL-6 stimulation (Figure 4.3B). Additionally, T cells 

from patients with high CAC displayed a trending decrease in the phosphorylation of STAT1, 

STAT3, and STAT5 with IL-6 stimulation compared to T cells from patients with no CAC.   
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Figure 4.3 CAC burden is not associated with differences in hallmark immune response to IL-1β and 
IL-6 stimulation 
A: CAC-stratified signal induction of the specified transcription factor or kinase within the indicated immune 
cell subset following IL-1β stimulation of PBMCs. Statistical significance between high CAC and no CAC 
was determined by one sample T test with FDR correction (n=11-13). B: CAC-stratified signal induction of 
the specified transcription factor or kinase within the indicated immune cell subset following IL-6 stimulation 
of PBMCs. Statistical significance between high CAC and no CAC was determined by one sample T test with 
FDR correction (n=11-13). 
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4.2.2 Circulating T cell subset frequencies are unaffected by exogenous cytokine 

stimulation 

Given the pronounced response of T cells to inflammatory cytokines, we aimed to identify 

the particular T cell subsets mediating this response. As such, T cells were manually gated from 

the total WBC population (Supplemental Figure 2) and then underwent supervised Leiden 

clustering, yielding 12 distinct T cell subpopulations (Figure 4.4A). Clusters were then annotated 

by surface marker expression (Figure 4.4B). Clustering was sufficient to identify 3 subsets of CD4+ 

naïve T cells (clusters 1, 4, and 12), 4 subsets of CD4+ effector memory T cells (clusters 2, 6, 7, 

and 9), 2 subsets of CD8+ naïve T cells (clusters 5 and 8), 1 subset of CD8+ effector T cells (cluster 

3), and 2 subsets of double-negative T cells (clusters 10 and 11).  Follicular T (Tfh) cells (cluster 

2: CD4+ , CD45RO+, CD127+, CCR7+) and CD4+ CXCR4+ naive T cells (cluster 1: CD4+ , 

CD45RO-, CXCR4+) represented the two largest T cell clusters (Figure 4.4C). Stimulation with 

either IL-1β and IL-6 did not alter cell cluster frequency, confirming stability of the surface proteins 

used for clustering. 
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Figure 4.4 Leiden clustering of T cells reveals distinct T cell subpopulations 
A: UMAP generated from Leiden clustering of T cells with annotations corresponding to cluster identity. B: 
Heatmap of surface marker expression in each of the clusters. C: Cluster frequency in each of the stimulation 
conditions. Paired T test with FDR correction was used to determine if there was a statistically significant difference 
between the unstimulated and stimulated condition (n=24). 
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4.2.3 Specific T cell subpopulations respond to IL-1β and IL-6 stimulation 

In contrast, following IL-1β stimulation, there was an increase in phosphorylation of NF-

κB in Th17 cells (cluster 6: CD4+ CD45RO+CCR6+CD161+CD26+) by percent phosphorylation 

(Figure 4.4A) and mean expression (Supplemental Table 3). Though not statistically significant, 

there was a trending increase in the phosphorylation of NF-κB in T regulatory (Treg) cells (cluster 

9: CD4+ CD45RO+CD25+CD127low/−) and CD8lowCD161high T cells (cluster 10: CD4-

CD8lowCD161high) (Figure 4.5A).  There were no differences in the phosphorylation of ERK, p38, 

STAT1, STAT3, or STAT5 following IL-1β stimulation (Figure 4.5A, Supplemental Table 3).  

IL-6 stimulation, on the other hand, caused robust phosphorylation of STATs in several T 

cell subsets. Unlike IL-1β, IL-6 induced phosphorylation of STAT3 in all T cell subsets with 

follicular T (Tfh) cells and Th17 cells, showing the most pronounced response (Figure 4.5B, 

Supplemental Table 3). Furthermore, following IL-6 stimulation, there was an increase in the 

phosphorylation of STAT1 in all cell types except CD8+ CCR7- naïve T cells (cluster 5: 

CD8+CD45RO-CCR7-) and CD8lowCD161high T cells (cluster 10: CD4-CD8lowCD161high) and an 

increase in the phosphorylation of STAT3 in all cell types besides CD8+ effector  memory T cells 

(cluster 3: CD8+CD45RO+), and CD8+ CCR7- naïve T cells, CD8lowCD161high T cells, CD4- CD8- 

T cells (cluster 11: CD4-CD8-). Notably, different T cell subsets exhibited differences in IL-6-
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Figure 4.5 Unique T cells subsets respond to IL-1β and IL-6 stimulation  
A: Signal induction of the specified transcription factor or kinase within the indicated T cell cluster 
following IL-1β stimulation of PBMCs. Paired T test with FDR correction was used to determine if 
there was a statistically significant difference between the unstimulated and stimulated condition 
(n=24). **p<0.01 B:  Signal induction of the specified transcription factor or kinase within the indicated 
T cell cluster following IL-6 stimulation of PBMCs. Paired T test with FDR correction was used to 
determine if there was a statistically significant difference between the unstimulated and stimulated 
condition (n=24). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 

A)

B)



 81 
mediated phosphorylation of STAT1, STAT3, and STAT5. For both STAT3 and STAT5, CD4+ 

CXCR4+ Naïve T cells and CD4+ CD25+ Naïve T cells (cluster 4: CD4+ , CD45RO-, CD25+) 

demonstrated the most robust response (Figure 4.5B, Supplemental Table 3). There were no 

differences in the phosphorylation of ERK, NF-κB, or p38 following IL-6 stimulation 

(Supplemental Table 3).  

 

Figure 4.6 CAC burden is not associated with differences in T cell cluster frequency 
T cell cluster frequency for subjects with no CAC and subjects with high CAC. Statical 
significance between high CAC and no CAC was determined by one sample T test with FDR 
correction (n=11-13).  
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4.2.4 Correlation of CAC burden with T cell subtype frequency and cytokine-

stimulated responses 

To better characterize the alterations in T cell frequency and physiology based on CAC 

status, subjects were subsequently stratified into either no CAC or high CAC groups, and 

differences in cell cluster frequency and cytokine response were determined. Though no 

statistically significant differences in the cluster frequency were observed between subjects with 

high or no CAC, there was a trend toward an increase in the frequency of effector memory T cell 

subsets and a trend toward a decrease in the frequency of naïve T cell subsets (Figure 4.5). 

Specifically, there were trends toward decreases in the cluster frequencies of CD4+ CXCR4+ naïve 

T cells, CD4+ CD25+ naïve T cells, and CD4+ CXCR4- naïve T cells and trends toward increases 

in the cluster frequencies of Tfh cells, CD4+ effector memory T cells, and CD8+ effector memory 

T cells (Figure 4.5). Though not statistically significant, high CAC burden was trending towards 

an association with an attenuated response to both IL-1β and IL-6 in numerous T cell subsets 

(Figure 4.6A-B, Supplemental Table 4). Following IL-1β stimulation, there appeared to be a 

decrease in the phosphorylation of NF-κB in Th17 cells and CD8lowCD161high T cells from subjects 

with high CAC compared to subjects without CAC (Figure 4.6A). Furthermore, following IL-6 

stimulation, high CAC was associated with a trend toward a decrease in the phosphorylation of 

STAT1 in Tfh, cells, CD4+ effector memory T cells,  and CD4+ CXCR4- naïve T cells, a trend 

toward a decrease in the phosphorylation of STAT3 in  CD4+ CD25+ naïve T cells, T regulatory 

cells, and CD4+ CXCR4- naïve T cells, a trend toward a decrease in the phosphorylation of STAT5 

in CD4+ CXCR4+ naïve T cells,  T regulatory cells, and CD4+ CXCR4- naïve T cells (Figure 4.6B). 

Given the attenuated response of T cells from high CAC patients, we characterized the 

possible role of immune checkpoint PD-1. Though PD-1 expression was not significantly 
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differentially expressed in T cell subset based on CAC status, CD8+ CCR7- naive T cells from high 

CAC patients tended to display increased PD-1 expression compared to CD8+ CCR7- naive T cells 

from no CAC patients (Supplemental Figure 7). Interestingly, in high CAC patients, higher PD-1 

expression on CD8+ CCR7- naive T cells was tendentially associated with reduced expression of 

 

Figure 4.7 CAC burden is not associated with differences in T cell response to IL-1β and IL-6 stimulation 
A: Signal induction of the specified transcription factor or kinase within the indicated T cell cluster after IL-1β 
stimulation of PBMCs from subjects with no CAC and subjects with high CAC. Statical significance between high 
CAC and no CAC was determined by one sample T test with FDR correction (n=11-13). B:  Signal induction of the 
specified transcription factor or kinase within the indicated T cell cluster after IL-6 stimulation of PBMCs from 
subjects with no CAC and subjects with high CAC. Statical significance between high CAC and no CAC was 
determined by one sample T test with FDR correction (n=11-13). 
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pSTAT1 and pSTAT5 in response to IL-6 and pERK after IL-1β  stimulation. Additionally, higher 

PD1 expression in a number of different T cells subsets was trending towards an association with 

reduced expression of several effectors of both IL-1β and IL-6 after stimulation (Supplemental 

Table 7). 

Due to the high proportion of females in this cohort, a secondary analysis examining the 

significance of biological sex was performed. Interestingly, males had a trending increase in IL-1β 

-mediated NF-kB and p38 phosphorylation and a trending decrease in IL-6 mediated STAT1, 

STAT3, and STAT5 phosphorylation across CAC strata (Supplemental Figure 6A-6B, 

Supplemental Tables 8-9).  

4.3 Discussion  

Over the last several decades, an ever-growing body of evidence has accumulated, 

supporting the role of IL-1β and IL-6 in the development of atherosclerosis and its 

complications.(30-32) In murine models, IL-1 and specifically, the IL-1β isoform promote 

atherogenesis while genetic ablation of the IL-1 receptor is atheroprotective (Chi et al., 2004; 

Elhage et al., 1998; Kirii et al., 2003; Merhi-Soussi et al., 2005; Vromman et al., 2019). 

Analogously, exogenous IL-6 is atherogenic and destabilizes atherosclerotic plaques in 

hypercholesterolemic mice (Akita et al., 2017; Huber et al., 1999; Schuett et al., 2012; K. Zhang, 

Huang, et al., 2012). Clinically, disruption of IL-1β signaling has garnered considerable interest for 

treating cardiovascular disease (CVD). The CANTOS trial found that IL-1β blockade decreased 

recurrence of adverse cardiovascular events in subjects with stable atherosclerotic disease and 

elevated CRP. Furthermore, inhibition of the NLRP3 inflammasome, which is responsible for the 

production of mature IL-1β, has been associated with reduced incidence of atherothrombotic events 

in subjects with stable CAD and reduced incidence of ischemic events in subjects with recent acute 
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myocardial infarction (Nidorf et al., 2013; Tardif et al., 2019). In accordance, IL-6 has found 

numerous clinical uses since its emergence as a biomarker for cardiovascular risk in the mid 1990s. 

In genome wide association studies (GWAS), activating variants in the IL-6R have been implicated 

in CAD while variants connected to reduced IL-6 signaling are associated with decreased CAD risk 

and increased longevity (C et al., 2012; Cai et al., 2018; IRGCERF et al., 2012; Rosa et al., 2019; 

Theriault et al., 2019). Additionally, elevated plasma IL-6 levels predict worse outcomes in stable 

heart disease, acute coronary ischemia, and heart failure (Groot et al., 2019; Held et al., 2017; 

Markousis-Mavrogenis et al., 2019). Furthermore, in carotid atherosclerosis, IL-6 levels predict 

carotid plaque severity, vulnerability, and progression (Kamtchum-Tatuene et al., 2022).  

In order to query response to inflammatory cytokine stimulation, our study examined 

differences in the phosphorylation state of effector molecules of IL-1β or IL-6 signaling (Kang & 

Kishimoto, 2021; Virtue et al., 2012). The transcription factor NF-κB and the kinases ERK and p38 

were selected as they have been implicated as key components in interleukin 1 receptor (IL-1R)-

mediated immune cell activation (Dinarello, 2009; Lee et al., 2019; Towne et al., 2004). On the 

other hand, the transcription factors STAT1, STAT3, and STAT5 were chosen for their role in IL-

6 mediated immune cell activation (Haan et al., 2005; Tormo et al., 2012; Twohig et al., 2019; 

Zegeye et al., 2018). Previous work by our lab has identified human immune cell subpopulations 

in T cells, myeloid cells, and NK cells responsive to IL-1β stimulation and found that T cells were 

the most responsive population to IL-1β stimulation in a cohort of healthy controls (Kothari et al., 

2021).  In the present study, IL-1β also induced p-NF-κB in T cells, in addition to myeloid cells 

and NK cells (Fig 2A).  Notably, T cells were clearly the predominant immune cell activated in 

response to IL-6 as evidenced by increased phosphorylation of all three STATs (Fig. 2B), although 

STAT3 was also activated in myeloid cells. Given the predominant role of T cells in the activation 

by both of these cytokines, and unique roles of various T cell subtypes in atherosclerosis (Saigusa 

et al., 2020), we focused our analysis on specific T cell subtypes. 
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Given the small number of participants and the pilot nature of the study, we were able to 

observe mostly trends in association of the activation stratus of immune cells with the CAC score. 

While our study is not powered to detect differences between subjects with no CAC and subjects 

with high CAC, several interesting trends emerged. Subjects with high CAC tended to have 

expanded effector memory T cell clusters relative to naïve T cell clusters. Consistent with these 

findings, in humans, effector memory T cells have been associated with increased CAC, increased 

common carotid artery intimal media thickness, and IL-6 levels (Ammirati et al., 2012; Olson et 

al., 2013).  Notably, these previous studies recruited between 313 to 912 participants. Thus, the 

differences in sample size and therefore power may underpin the discrepancy in statistical 

significance between our and previous findings. In concordance with prior work (Kothari et al., 

2021), CD4+ effector memory T cells were robustly activated by IL-1β. Namely, Th17 cells 

demonstrated a pronounced induction of p-NF-κB. Interestingly, in mice, increased effector 

memory cells and an elevated Th17/ regulatory T cell ratio have been observed in murine genetic 

models of atherosclerosis (Ammirati et al., 2012; Xie et al., 2010).  Moreover, in late stages of 

murine atherosclerosis, there was an attenuated Th17 response as evidenced by lower Th17-related 

transcripts within the atherosclerotic plaques and lower Th17 cytokines within the serum (Xie et 

al., 2010, 2010). These results are consistent with our own, which found that high CAC tended to 

be associated with attenuated IL-1β-induced phosphorylation of NF-κB in Th17 cells. Unlike IL-

1β, IL-6 induced a widespread phosphorylation of STAT1, STAT3, and STAT5 throughout most 

T cell subpopulations. Additionally, in our study, subjects with high CAC tended to have an 

attenuated response to IL-1β and IL-6 stimulation compared to subjects with no CAC. This 

surprising result is intriguing and may be potentially explained by desensitization of the interleukin 

1 receptor (IL-1R) and interleukin 6 receptor (IL-6R) due to chronic stimulation. In humans, serum 

levels of both IL-1β and IL-6 are known to be increased in subjects with coronary artery disease 

compared to control individuals (Parisi et al., 2020; Wainstein et al., 2017). Furthermore, in vitro, 
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IL-1β pretreatment attenuates subsequent phosphorylation of NF-κB in response to IL-1β while IL-

6 pretreatment attenuates subsequent phosphorylation of STAT3 in response to IL-6 (Fischer et al., 

2004; McKean et al., 1994). The feasibility of this hypothesis is further supported by findings in 

breast cancer. Analogously, subjects with breast cancer display attenuated IL-6 induced 

phosphorylation of STAT1 and STAT3 in CD4 naïve T cells compared to control subjects, which 

coincides with decreased expression of IL-6R⍺ and gp130 on the CD4 naïve T cells from subjects 

with breast cancer (L. Wang et al., 2017). Furthermore, in advanced atherosclerotic lesions, T cells 

exhibit an exhausted phenotype by surface marker expression and transcriptomics (Fernandez et 

al., 2019). Based on these intriguing findings, a larger sample size needs to be analyzed in the future 

with a CyTOF panel composed of exhaustion markers, interleukin receptors, and additional 

downstream effector molecules.   

The identification of these novel T cell subpopulations responsible for immune cytokine 

response spurs myriad avenues for further investigation. Firstly, humanized mouse models 

adoptively transferred with these human T cell subpopulations with knockdown of the IL-1 or IL-

6 receptors could be used to determine if human T cells activated by these cytokines drive vascular 

inflammation.  These findings may be helpful in better tailoring immunotherapy against deleterious 

T cell subpopulations. Towards clinical applications, CyTOF of circulating immune cells may 

predict prognosis and/or response to immunotherapy. As IL-6 has been associated with both 

prognosis and response to treatment, changes in immune cell response to this cytokine may be more 

biologically informative and serve as a better predictor of both prognosis and treatment response 

than traditional inflammatory biomarkers.  

Despite these advances in our understanding, there are limitations to the present study. 

Firstly, the sample size is modest. As such, findings will need to be corroborated in a larger cohort, 

allowing for multivariate analysis. Secondly, though we are capable of identifying cell types 

responsive to inflammatory cytokine stimulation, the biological significance of these populations 
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remains unknown. Therefore, further mechanistic studies are warranted to better characterize these 

populations.  

Nevertheless, CyTOF represents a powerful tool to identify and characterize novel human 

immune cell populations in cohorts of subjects undergoing coronary artery imaging. Follow-on 

studies in a larger cohort with a more robust CyTOF panel informed by the data herein will move 

us closer to understanding functional differences in human immune cells in the context of CVD.   

4.4 Materials and Methods 

4.4.1 Subject Population 

Subjects referred to the University of Virginia for clinically indicated combined coronary 

computed tomography angiography (CTA) and CAC scoring were consented to participate in this 

study (IRB #: 210006). Peripheral blood was collected for peripheral blood mononuclear cell 

(PBMC) isolation and carefully cryopreserved for future use. Additionally, peripheral blood 

samples were obtained from healthy individuals and used as internal controls for standardization 

of CyTOF experiments (IRB#: 16017). The study was approved by the Human Institutional Review 

Board, and all participants provided written informed consent before enrollment. 

4.4.2 Coronary Artery Disease Measurements 

CAC scores were obtained as part of clinically indicated coronary CTAs among all enrolled 

subjects. All scans were performed on a 3rd generation 192-detector dual source platform 

(SOMATOM Force, Siemens Healthcare GmbH). Subjects underwent non-contrast 

electrocardiogram-gated CT from the carina to below the heart using a high pitch spiral technique 
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(triggered at 65% of the electrocardiographic R-R interval) with a slice thickness of 3.0 mm. All 

scans were analyzed using semi-automated software (syngo.via VB60A_HF05, Siemens 

Healthcare GmbH) with calcium scores calculated using the Agatston method (Agatston et al., 

1990).  

The segment involvement score (SIS) and the segment stenosis score (SSS) were calculated 

as previously described (Ayoub et al., 2017; J. K. Min et al., 2007). Briefly, SIS was calculated as 

the summation of the absolute number of coronary segments exhibiting plaque with a maximum 

score of 16. To calculate the SSS, each coronary segment was graded based on extent of lumen 

occlusion (i.e., scores ranged from 0 to 3). These grades were then summed for all 16 individual 

segments to yield a total SSS, which ranged from 0 to 48.   

4.4.3 PBMC Isolation 

PBMCs were isolated as previously described (Kothari et al., 2021). Briefly, blood from 

participants was collected into BD K2 EDTA vacutainer tubes (CAT#: 367855, FisherScientific), 

incubated at room temperature for one hour, and centrifuged to remove platelet rich plasma. 

PBMCs were separated via Ficoll-Paque density-gradient centrifugation (CAT#: 17144003, 

Cytiva) and SepMate-50 (CAT#: 85460, StemCell). PBMCs were cryopreserved in freezing 

solution (90% FBS, 10% DMSO) using a Mr. Frosty freezing container (CAT#: 5100-0001, 

Thermo Scientific) and stored in liquid nitrogen until use. 

4.4.4 PBMC Stimulation, Barcoding, and CyTOF Staining 

Cells were thawed in complete thaw media (RPMI, 5% FBS, 1 mM sodium pyruvate and 

1% Pen-Strep) supplemented with DNase and then washed once with complete thaw media. Cells 
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were then incubated for 5 minutes in cisplatin solution (CAT#: 201194, Fluidigm). Cisplatin 

solution was quenched with complete thaw media and centrifuged. Samples were aliquoted into 

three separate groups on a 96-well plate, allowed to rest for 1 hour, and then stained with PFA-

labile metal-conjugated antibodies. Samples were then incubated with either media, IL-1β, or IL-6 

solution for 15 minutes. Following stimulation, cells were immediately fixed with 1.6% PFA for 

10 minutes. Samples were then resuspended in Maxpar Cell Staining Buffer (CAT#: 201068, 

Maxpar) and stored overnight at 4 °C. Samples were washed twice with 1x Maxpar Barcode Perm 

Buffer (CAT#: 201057, Maxpar) prior to barcoding with palladium-based 20-Plex Pd Barcoding 

Kit (CAT#: 201060, Fluidigm). Barcoded cells were pooled and blocked with Fc receptor blocking 

solution (CAT#: 422302, Biolegend) and stained with metal-conjugated antibody solution against 

cell surface markers for 30 minutes (Supplementary Table 1). Cells were washed with a cell 

staining buffer and then permeabilized with 100% methanol for 10 minutes on ice. Samples were 

washed twice with PBS and subsequently cell staining buffer.  Samples were then incubated with 

metal-conjugated antibody solution against intracellular markers (Supplementary Table 1). Cells 

were washed once with cell staining buffer before being resuspended in Maxpar Fix and Perm 

Buffer (CAT#: 201067, Maxpar) supplemented with iridium DNA intercalator (CAT#: 201192A, 

Fluidigm). Cells were incubated overnight at 4 °C. The sample was then washed once with cell 

staining buffer and twice with Maxpar Cell Acquisition Solution (CAT#: 201237, Maxpar). 

Samples were filtered with 40 μm membrane strainer (CAT#: 22363547, Fisherbrand), and EQ 

Four Element Calibration Beads (CAT#: 201078, Fluidigm) were added before acquisition on a 

Helios mass cytometer (Fluidigm). 
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4.4.5 CyTOF data pre-processing and sub-population gating 

Data obtained from Helios were exported in .fcs files. Data was normalized and debarcoded 

with the the Nolan lab MATLAB normalizer (http://github.com/nolanlab/bead-

normalization/releases) and Zunder’s lab debarcoder (https://github.com/zunderlab/single-cell-

debarcoder), respectively (Finck et al., 2013; Fread et al., 2017). Data was uploaded to OMIQ for 

further processing. Data underwent quality control gating to obtain CD45+ WBC populations as 

outlined in Supplemental Figure 1. B cells, T Cells, NK cells, and myeloid cell populations were 

subsequently gated from the CD45+ WBC as outlined in Supplemental Figure 2. Gated populations 

were then exported as .fcs files for downstream analysis.  

4.4.6 SPADE trees  

For spanning-tree progression analysis for density-normalized events (SPADE) analysis, 

all .fcs files were imported to “SPADE3” program in MATLAB and clustered using following 

surface markers: CD3, CD4, CD8, CD11C, CD14, CD16, CD20, CD56, CD123 and HLA-DR.(22-

24)  Default settings were used with cluster number set to 200. 

4.4.7 Statistics 

All analysis was performed using R. Summary data were expressed as mean ± SEM unless 

otherwise specified. Box and whisker plots denote median (line), interquartile range (box), and 1.5 

times interquartile range (whiskers). For continuous data with one variable, Shapiro Wilk test was 

performed to assess the normality of the data. Non-normally distributed data was analyzed for 

statistical significance by the Mann-Whitney U test while normally distributed data was analyzed 

by Welch’s t-test. Categorical variables were analyzed for statistical significance via Fischer Exact 

http://github.com/nolanlab/bead-normalization/releases
http://github.com/nolanlab/bead-normalization/releases
https://github.com/zunderlab/single-cell-debarcoder
https://github.com/zunderlab/single-cell-debarcoder
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Test. Comparisons between groups were made using paired sample T test for comparisons of 

median expression between conditions (Figure 2) and one sample T test for comparisons ofmedians 

between no CAC and high CAC groups (Figure 3) with alpha set to 0.05. All P values were 

subsequently corrected for multiple testing by calculating the False Discovery Rate (FDR) using 

the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995). Cell types (Figure 2) were 

analyzed using Analysis of Variance (ANOVA) test and subsequently adjusted for multiple testing 

using FDR correction. 
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Chapter 5  

Synthesis 

 Despite extensive global efforts to deliver novel therapies to all patients in need, 

designing a universal therapy remains a significant challenge. This issue led to the creation of 

precision medicine, defined as P4 medicine - participatory, personalized, predictive, and 

preventative (Hood & Friend, 2011). As described in Chapter 1.1, precision medicine targets 

individual patients, aiming to optimize drugs, therapies, and diagnostics to achieve the best 

outcomes in treating various diseases. Stratifying patients based on their medical profiles, as seen 

in clinical trials, helps identify populations that would benefit most from treatments, leading to 

more efficient healthcare. Clinical trials, such as the CANTOS trial (Libby, 2017; Ridker et al., 

2018), highlight the need for understanding patient populations.  

Precision medicine in the clinic is rooted in research laboratories. Scientific discoveries 

start with hypotheses, followed by experiments, data analysis, and integration with current 

knowledge to inform clinical practice, as highlighted in Chapter 1.1. Advances in genomics, 

bioinformatics, molecular biology, and proteomics enable personalized medical care by matching 

treatments to patients' genetic and molecular profiles. As our understanding of diseases deepens 

and research technologies evolve, the connection between research labs and clinics strengthens, 

offering hope for future patient-specific medical interventions. 

In Chapter  1.2, I explained how multi-omics combine multiple 'omes,' such as genomics, 

proteomics, transcriptomics, and metabolomics, to offer a comprehensive view of biological 

processes. Transcriptomics and proteomics are crucial, with transcriptomics measuring mRNA 

levels to assess gene expression and proteomics identifying proteins to understand cellular 
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functions. Utilizing multi-omics data enhances precision medicine, providing deeper insights into 

patient-specific characteristics and enabling more personalized treatment approaches. 

Cardiovascular disease is a worldwide issue taking estimated 17.9 million lives each year 

accounting for around 32% deaths (Cardiovascular Diseases (CVDs), WHO.). It is the leading 

cause of death in the United States, with atherosclerosis or coronary artery disease (CAD) causing 

370,000 deaths annually (Pahwa & Jialal, 2024). In Chapter 1.3, I focused on atherosclerosis, 

characterized by plaque accumulation in arteries, reduces oxygen supply to the heart and triggers 

inflammatory responses. Plaques, composed of lipids, smooth muscle cells, and immune cells, can 

rupture, forming thrombi that lead to myocardial infarctions (MI) or strokes (Bentzon et al., 2014). 

Factors influencing atherosclerosis include genetics, environment, and lifestyle. Imaging 

techniques like intravascular ultrasound (IVUS) and computed tomography angiography (CTA) are 

vital for diagnosing and assessing atherosclerosis. The coronary artery calcification (CAC) score 

quantifies calcified plaque burden from CTA and serves as a prognostic tool for CAD, with scores 

ranging from 0 (no risk) to over 300 (high risk) (Agatston et al., 1990). High CAC scores correlate 

with increased risks of major adverse cardiovascular events (MACE) and all-cause mortality  

(Biavati et al., 2024, Budoff et al., 2023). Understanding the inflammatory nature of 

atherosclerosis, the importance of advanced imaging, and the prognostic value of CAC scores is 

crucial in managing cardiovascular disease effectively. 

Atherosclerosis involves various immune cells, including T cells, B cells, neutrophils, 

dendritic cells, and NK cells, playing complex roles in disease progression, as presented in  Chapter 

1.4. T cells are present in atherosclerotic plaques and can either promote or inhibit atherosclerosis 

depending on their type and context. Antibodies produced by B cells interact with oxidation-

specific epitopes in plaques, affecting lipid uptake and foam cell formation. Their role in the disease 

can be protective or proatherogenic depending on the subtype and cellular context. The 
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involvement of B cells in atherosclerosis suggests potential markers and therapeutic targets, but 

further research is essential to fully understand their clinical significance. 

The discovery of loss-of-function mutations in the TET2 gene has profound implications 

for cardiovascular disease (CVD) and hematological malignancies such as leukemia and 

myelodysplastic syndrome (Jaiswal, 2017). In Chapter 1.5 I explained how TET2 is essential for 

DNA demethylation, and its dysfunction leads to abnormal stem cell behavior and clonal 

expansion. By age 50, individuals accumulate approximately five coding mutations per 

hematopoietic stem cell (HSC), driving clonal hematopoiesis of indeterminate potential (CHIP). 

CHIP mutations, especially in TET2, are significantly linked to increased risks for CVD, as well 

as diabetes and cancer. TET2 mutations induce IL-1β production, heightening inflammation, which 

can worsen cardiovascular conditions. The CANTOS trial revealed that patients with TET2 CHIP 

mutations had a reduced incidence of major adverse cardiovascular events when treated with 

Canakinumab, highlighting the role of TET2 in atherosclerosis and inflammation (Svensson et al., 

2022; Bing Yu et al., 2021). 

In chapter 2, I presented our study where we investigated TET2's role in regulating B-1 

cell numbers and functions. We hypothesized that B-1 cells might be regulated by TET2, an 

epigenetic modulator implicated in the clonal expansion of hematopoietic cells leading to disorders 

such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) (Z. Li et al., 2011; 

Sun et al., 2018; W. Zhang, Fu, et al., 2012; W. Zhang, Shao, et al., 2012, 2015). Our findings 

revealed a significant role for TET2 in regulating B cell numbers in specific niches. The global loss 

of TET2 led to increased frequency and number of all B cell subtypes in the peritoneal cavity and 

elevated numbers of B1a cells in the bone marrow and B1b cells in the spleen. The mechanisms 

for these changes require further study to determine whether they result from increased 

proliferation, cell survival, or migration and if the effect is intrinsic to B cells. Enhanced self-

renewal observed in B1a cells from TET2-KO animals might explain the increase in B1a cells in 
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the peritoneal cavity (Ko et al., 2011; Kunimoto et al., 2012; Z. Li et al., 2011; Pan et al., 2017; W. 

Zhang, Shao, et al., 2015; X. Zhang et al., 2016). 

To investigate these differences further, we performed a BCR analysis using RNASeq data. 

The introduction of the TRUST4 algorithm by Song et al. enabled the accurate detection of BCR 

and TCR repertoire from bulk RNASeq data, providing valuable insights into the diversity of 

immune cell receptor repertoires and specificities ( Song et al., 2021;K. J. Liu et al., 2023; Song et 

al., 2022; Y. Zhang & Lee, 2022). B1a cells from TET2-KO mice displayed fewer unique CDR3 

sequences, indicating reduced antigen diversity. This reduced diversity, combined with a higher 

number of replicated sequences, suggests that TET2 influences the BCR repertoire's diversity and 

potential specificity, particularly in B1a cells. The genes and pathways differentially expressed in 

B1 cells from TET2-KO mice, particularly in B1a cells, were immunoglobulin-related and 

expressed at lower levels.  

The constant region of the BCR determines the antibody's effector function. While there 

were no differences in the transcript expression levels of antibody isotypes IgG, IgD, and IgA, there 

was a significant increase in transcript expression of IgM, the main isotype produced by B-1 cells, 

in B1a cells from TET2-KO compared to WT mice (Holodick et al., 2014b; Kyaw et al., 2011, 

2012; Upadhye et al., 2019). This suggests that TET2 may inhibit factors responsible for encoding 

the constant region downstream of the V region on chromosome 14 or limit isotype switching in 

B1a cells. These data align with observations of increased circulating IgM in TET2-KO mice 

compared to controls. We could not conclude if the increase in total IgM was due to increased IgM 

secretion per cell or an increase in overall cell numbers. There was also an increase in marginal 

zone B cell numbers in the spleens from TET2-KO mice compared to WT, representing another 

potential IgM source. 

The key finding from our study is that TET2 mutation influences IgM levels and BCR 

repertoire, particularly in B1a cells, which are key producers of natural IgM. Alteration to the 
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antigen specificity or abundance of B1a-produced IgM may impact responses to PAMPs and 

DAMPs and regulate antigen-driven inflammation. These findings are important for precision 

medicine, as understanding TET2's role in regulating B1 cells and IgM production can lead to 

targeted therapies for chronic inflammatory conditions, such as cardiovascular diseases (CVD) and 

autoimmune disorders. This aligns with precision medicine's goals to tailor healthcare to individual 

patients by integrating genetic and molecular data, offering a comprehensive understanding of 

disease mechanisms to move towards personalized healthcare interventions. 

In Chapter 4, I introduced our pilot study in a small cohort of patients with No CAC and 

High CAC. We examined the differences between those in phosphorylation states of effector 

molecules involved in IL-1β and IL-6 signaling pathways, focusing on NF-κB, ERK, and p38 for 

IL-1β, and STAT1, STAT3, and STAT5 for IL-6. (Dinarello, 2009; Lee et al., 2019; Towne et al., 

2004; Haan et al., 2005; Tormo et al., 2012; Twohig et al., 2019; Zegeye et al., 2018). Multiple 

studies highlighted the role of IL-1β and IL-6 in the development of atherosclerosis and its 

complications. In murine models, IL-1, specifically the IL-1β isoform, promotes atherogenesis, 

while genetic ablation of the IL-1 receptor is atheroprotective (Chi et al., 2004; Elhage et al., 1998; 

Kirii et al., 2003; Merhi-Soussi et al., 2005; Vromman et al., 2019). Similarly, exogenous IL-6 is 

atherogenic and destabilizes atherosclerotic plaques in hypercholesterolemic mice (Akita et al., 

2017; Huber et al., 1999; Schuett et al., 2012; K. Zhang, Huang, et al., 2012). Clinically, disruption 

of IL-1β signaling has been investigated for its potential in treating cardiovascular disease (CVD). 

The CANTOS trial found that IL-1β blockade decreased the recurrence of adverse cardiovascular 

events in subjects with stable atherosclerotic disease and elevated CRP (Nidorf et al., 2013; Tardif 

et al., 2019). Genome-wide association studies have linked activating variants in the IL-6R with 

CAD, while variants connected to reduced IL-6 signaling are associated with decreased CAD risk 

and increased longevity (C et al., 2012; Cai et al., 2018; IRGCERF et al., 2012; Rosa et al., 2019; 

Theriault et al., 2019). Elevated plasma IL-6 levels predict worse outcomes in stable heart disease, 
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acute coronary ischemia, heart failure, plaque severity, vulnerability, and progression in carotid 

atherosclerosis (Groot et al., 2019; Held et al., 2017; Markousis-Mavrogenis et al., 2019; 

Kamtchum-Tatuene et al., 2022). 

Our findings showed that T cells were the primary immune cells activated by both 

cytokines, with significant phosphorylation of NF-κB in T cells, myeloid cells, and NK cells upon 

IL-1β stimulation, and STAT phosphorylation in response to IL-6, predominantly in T cells 

(Kothari et al., 2021).  Trends identified in our work suggest that subjects with high CAC had more 

effector memory T cells, consistent with studies linking these cells to increased CAC and IL-6 

levels (Ammirati et al., 2012; Olson et al., 2013).  IL-1β-induced NF-κB phosphorylation was 

attenuated in Th17 cells in subjects with high CAC, aligning with murine models showing  reduced 

Th17 transcript levels in plaques and lower Th17 cytokines presence in serum (Xie et al., 2010).  

In our study, subjects with high CAC showed a lower response to IL-1β and IL-6 

stimulation compared to those with no CAC. To our knowledge, this result, which has never been 

reported before, may be explained by the desensitization of the interleukin 1 receptor (IL-1R) and 

interleukin 6 receptor (IL-6R) from chronic stimulation. Yet, follow-up studies need to be 

performed to support this hypothesis.  Serum levels of IL-1β and IL-6 are higher in individuals with 

coronary artery disease than in controls (Parisi et al., 2020; Wainstein et al., 2017). In vitro, IL-1β 

pretreatment reduces subsequent NF-κB phosphorylation in response to IL-1β, and IL-6 

pretreatment decreases STAT3 phosphorylation in response to IL-6 (Fischer et al., 2004; McKean 

et al., 1994). This hypothesis is supported by breast cancer studies, where subjects show reduced 

IL-6-induced phosphorylation of STAT1 and STAT3 in CD4 naïve T cells, along with decreased 

IL-6Rα and gp130 expression (L. Wang et al., 2017). Additionally, T cells in advanced 

atherosclerotic lesions exhibit an exhausted phenotype based on surface markers and 

transcriptomics (Fernandez et al., 2019). 
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While providing interesting findings and trends, generating novel hypotheses, and opening 

avenues for new experiments, the biggest caveat of this work is the lack of robust sample size. The 

study served as an unbiased exploration of the phosphorylation patterns in immune cells after 

stimulation with pro-inflammatory cytokines. The findings should be evaluated in a bigger cohort 

to confirm the decreasing directionality of phosphorylation of the antigens upon stimulation with 

IL-1β and IL-6, a result contrasting with published data.  

In conclusion, the identification of specific T cell subpopulations responsive to IL-1β and 

IL-6 presents new research opportunities and potential therapeutic targets. Understanding immune 

cell dynamics in atherosclerosis could improve disease prognosis and treatment response, aligning 

with values represented by precision medicine. Further mechanistic studies and larger sample sizes 

are needed to elucidate the biological significance of these findings and their clinical applications 

in managing cardiovascular disease. 

The research presented in this dissertation emphasizes the role of immune cell dynamics 

and genetic mutations in the development and progression of cardiovascular diseases, particularly 

atherosclerosis. By elucidating the mechanisms behind TET2 mutations and their impact on B cell 

subsets and exploring the activation status of immune cells in patients with different degrees of 

coronary artery calcification, our findings contribute to a more comprehensive understanding of 

how the immune system may contribute to the disease. This work highlights the importance of 

involving individual genetic and molecular profiles in tailoring medical interventions, following 

the principles of precision medicine. Integrating multi-omics data and advanced imaging 

techniques will be crucial in developing more effective, personalized interventions for patients with 

cardiovascular diseases. Future research should focus on validating these findings in larger cohorts 

and exploring the potential for targeted therapies that address the specific immune and genetic 

factors contributing to disease, ultimately improving patient outcomes and advancing the goals of 

precision healthcare. 
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Chapter 6  

Future directions 

 

Figure 6.1 Schematic presenting ideas for future experiments to further explore the role and function 
of TET2 mutation in B Cells  
5.1.1 Experiment involving B cell specific TET2 KO (BKO) and control mice. 5.1.2 Experiment involving 
TET2 BKO, PCSK9 treated TET2 BKO, control mice.  5.1.3 Experiment involving aged TET2 BKO, PCSK9 
treated TET2 BKO, control mice. A Harvest of cells from spleen, peritoneal cavity, bone marrow and PBMCs 
from circulation. B FACS-sorting of B1a, B1b and B2 cells and scRNASeq with VDJ enrichment. C ELISA 
to assess specificity of circulating IgM to common atherosclerosis antigens 
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6.1 Loss of TET2 in B cells  

The main finding from our study about loss of TET2 is that the TET2 mutation led to 

increased frequency and number of all B cell subtypes in the peritoneal cavity and elevated numbers 

of B1a cells in the bone marrow and B-1b cells in the spleen. The mutant mice had decreased CDR3 

diversity, especially in B1a cells.  

As explained in Chapter 1.4, TET2 is essential for DNA demethylation, and its dysfunction leads 

to abnormal stem cell behavior and clonal expansion. The results I presented in this dissertation 

improve our understanding of the role TET2 has in regulation of B cell subsets proliferation and 

diversity and generated new hypotheses and questions.  

6.1.1 Is the TET2 loss related change in B cell numbers and reduced CDR3 
diversity in B1a cells an effect intrinsic to B cells or is it a consequence of the 
interplay with other cell types?  

Too answer the first question I would collaborate with experimental biologists to ensure 

the proper scientific rigor, to use a mouse mutant with a B-cell specific TET2 knockout (TET2 

BKO) mouse (CD19cre/+ TET2fl/fl) and controls (CD19cre/+ TET2+/+) (as depicted in Figure 6.1). I 

would analyze the flow cytometry results to assess the differences in the B1a, B1b, B2 cell numbers 

from peritoneal cavity, bone marrow and spleen and in circulation. If there is an increase in B1a, 

B1b or B2 cell numbers in PerC, spleen, and bone marrow, that would indicate that the change is 

related to the mutation in B cells and not an effect of an interaction with other cells.  

We would sequence FACS-sorted B1a, B1b, B2 cells using single cell RNAseq with VDJ-

enrichment using 10x Genomix platform. The reason I choose scRNASeq and not bulk RNASeq is 

that with single cell technologies I would be able to assign a CDR3 to cell thus I would be able to 
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assess if the cells are clonal. With bulk RNASeq, the analysis of diversity is based on changes in 

CDR3 proportions rather than analysis of actual cells and their respective CDR3. 

I would analyze the sequencing results, focusing on the differentially expressed genes and 

enriched pathways. I would compare the DE genes and enriched pathways to the results from this 

dissertation to see which changes were retained. The presence of the same DE genes in this 

dissertation and in the result of this scRNASeq experiment would suggest that the change in the 

gene expression would be induced by the mutation in B cells and no other cells.   

Yet, the question if the effect on the cell numbers and CDR3 diversity is direct or is it 

caused by e.g. changes in cytokines production that subsequently influence other immune cells will 

remain unanswered. To assess the changes in other cells, I would collaborate with an immunologist 

to do a flow cytometry experiment to analyze the frequencies of other immune cells (T Cells, 

Monocytes, Macrophages, NK cells) and the expression of different effector molecules to see if the 

TET2 mutation in B cells affected their phenotype. 

6.1.2 How does the change in B cell numbers and the related diversity of CDR3 
influence atherosclerosis and atherosclerotic burden?  

To answer this question, I would collaborate with experimental biologists to ensure the 

proper scientific rigor, and use PCSK-9 -AAV (Goettsch et al., 2016) in our TET2 BKO and control 

mice to induce atherosclerosis. Then, atherosclerotic burden would be estimated (e.g., enface 

staining as described in Srikakulapu et al., 2017).  I would proceed with the cell sorting, flow 

cytometry and sequencing as described 6.1.1.  

If the changes in B cell numbers and reduced B1a cell CDR3 diversity are confirmed in the 

mouse model, and the atherosclerosis burden is significantly higher in TET2 BKO group, it would 

suggest that the mutation in B cells influences the increase in atherosclerotic burden. 

As explained in Chapter 1.4.7, many IgMs were identified to be specific to common atherosclerosis 
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related antigens and thus presenting atheroprotective effects (Binder et al., 2016; M.-K. Chang et 

al., 2004; Chou et al., 2008, 2009; Miller et al., 2011; Sage et al., 2019).  I would collaborate with 

experimental biologists to perform ELISA’s to measure the differences in IgM in plasma and to 

assess their specificity to atherosclerosis related antigens. Then, with proper literature research, I 

would try to identify (if possible) and correlate the specific CDR3 sequences of known antigens 

from scRNASeq to the changes in secreted antibodies to investigate whether the changes in 

antibodies secretion are reflective of the reduced CDR3 repertoire. If the level of secreted 

antibodies is decreased in the BKO TET2 mutant group and correlated with a decrease in 

corresponding CDR3 sequences, it would suggest that the change in atherosclerotic burden could 

be related to decrease in CDR3 diversity and in the secretion of Igs.  

6.1.3 Is the same effect of TET2 mutation in B cells seen in CHIP mutation mouse 
models?  

To assess the changes induced by TET2 in a CHIP mutation model, I would collaborate 

with experimental biologists to ensure the proper scientific rigor, and induce TET2 KO in B cells 

in 18-24 month old mice. CHIP mutations are somatic mutations which accumulate with age, thus 

the induction of the mutation in aged mice would simulate the CHIP onset. Together with help from 

experimental biologists, I would analyze 3 groups: aged mice, aged mice with induced TET2 

mutation in B cells, and aged mice with induced TET2 mutation in B cells treated with PCSK-9-

AAV (as depicted in figure Figure 6.1). I would follow the experiment flow from 5.1.1 and 5.1.2.  

If the same changes that were seen in BKO TET2 in young mice are seen in mice with the mutation 

induced at an older age with the increase of B cell numbers and evidence of clonal proliferation 

together with the increase of atherosclerotic burden, it would suggest that the B-cell specific TET2 

mutation induced at an older age has proatherogenic effects. I would assess the changes in amount 

of circulatory IgM specific to antigens related to atherosclerosis. If the amount of atheroprotective 
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IgM was decreased in the CHIP BKO TET2 mutation group compared to the control (PCSK-9 

treated mice without the TET2 knockout), it would indicate that, at least partially, the increase in 

atherosclerotic burden is related to the changes in secreted antibodies. 

6.1.4 Analysis of scRNASeq from TET2 KO and WT cells 

To answer the questions mentioned in this Chapter, I will use scRNASeq data from mutant 

and wild type mice.  

I would first use CellRanger to demultiplex, align, filter and count sequencing reads. Next, 

in Seurat, I would perform cell-based quality control where I would discard outliers, normalize 

expression for each cell and for each gene using SCTransform function. Then, cells would be 

clustered using Leiden algorithm (Traag et al., 2019). To annotate the cells I would use ScType 

(Ianevski et al., 2022). ScType allows for a fully automated and fast annotation of scRNASeq data 

with cell types from its database, which also contains immune cells.  ScType’s cell and marker 

database is based on two other curated databases: CellMarker (Hu et al., 2023) and PanglaoDB 

(Franzén et al., 2019). The process of annotation of cells by ScType requires the calculation of cell-

type specificity score to quantify how uniquely a particular marker can characterize specific cell-

type from a given tissue. High score corresponds to marker that is highly specific, while low score 

depicts low specificity. The score formula:  

 

Where M is a pool of all cell-type specific markers from a given tissue t,  S is a cell-type specificity 

score for a given marker.  |Mi | t is a number of cell types in tissue t where the ith marker is present, 
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and min( |Mi | t ) and max( |Mi | t ) are the minimum and maximum numbers of cell types which 

have the marker enlisted as cell-specific in the ScType database. Next, from all cells and markers 

from a specific cluster (p) ScType calculates z-score across all cells. Then, expression of genes 

with positive and negative value is transformed using both the Z-score and cell-type specificity 

score (S) to create a transformed expression matrix. Subsequent cell-type specific marker-

enrichment score is calculated as the normalized sum of all the individual genes supporting a cell 

type for each cell separately, creating a matrix where columns are specific cells and rows are unique 

cell-types. Then, by summing up the values for each cell-type for all cells belonging to cluster p. 

Cell type with the highest score is used for the describe the cluster p.   

Once the clusters are assigned to specific cell types, I would perform a differential 

expression analysis using MAST (Finak et al., 2015). Briefly, MAST uses a hurdle model, capable 

of handling multiple zero values in an expression matrix. It utilizes a two-part generalized linear 

regression model. One component models the discrete expression rate of each gene across cells, 

while the second component models the conditional continues expression level. From the results 

of the differential gene expression analysis, I would compare the differentially expressed genes 

from TET2 KO cells and WT cells to the DEG list from our TET2 study in a global TET2 KO and 

WT mice to look for any gene differences suggesting the BCR-restriction and other identified 

changes could be non-B cell specific. Additionally, MAST allows for the GSEA pathway 

enrichment analysis. I would compare the DEG list produced by MACS for each B-1a, B-1b and 

B2 cell type separately and explored the enriched pathways. If any pathways enriched would relate 

to immunoglobulin production or regulation of immune response and would contain Ig heavy or 

light genes, that would suggest the CDR3 restriction is present in a B-cell specific TET2 KO model 

as well.   

Next, I would integrate the CellChat tool in our scRNASeq analysis. CellChat is a 

computational framework that infers and analyzes cell-cell communication networks from single-
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cell transcriptomic data (Jin et al., 2021). By applying CellChat to our scRNAseq data, we can 

identify and quantify the interactions between B cells and other immune cell populations in TET2-

KO and wild-type (WT) cells. This analysis will enable us to uncover the signaling pathways and 

molecular mechanisms through which TET2 influences B cell proliferation, survival, and migration 

and inform us about any changes in cell-to-cell communications induced by the lack of TET2 

expression in B cells, which could further elucidate whether the effect is induced by interactions 

with other cells.  Additionally, it would help identify key ligands, receptors, and signaling 

molecules involved in these interactions, providing insights into how TET2 loss may alter the 

immune microenvironment. CellChat uses a curated database of known ligand-receptor pairs to 

determine their simultaneous changes in expression. It calculates the probability of each ligand-

receptor interaction occurring between different cell types, and constructs a cell-cell 

communication network. This network shows which cell types are likely communicating with each 

other through specific ligand-receptor pairs. Then, through pathway analysis to determine the 

affected signaling pathways and the analysis of network properties like centrality and connectivity 

I would be able to further explore the potential mechanisms affected by the loss-of TET2 and their 

molecular consequences in B cells and other interacting cells. This would further elucidate whether 

the effect of reduced BCR repertoire being intrinsic to B cells.  

Monocle is a robust computational tool designed to analyze single-cell RNA sequencing 

data to uncover cellular trajectories and understand cell differentiation processes (Trapnell et al., 

2014). It reconstructs developmental lineages by ordering cells in pseudotime, an abstract measure 

of progress through a biological process. The tool identifies differentially expressed genes across 

the dataset and uses these genes to infer a trajectory through a technique called reverse graph 

embedding, which organizes cells along a continuum of cell states. Monocle constructs a minimum 

spanning tree (MST) that connects all cells, representing the inferred lineage. The MST's branches 

correspond to different cell fates, while the position of each cell on the tree indicates its pseudotime. 
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Monocle also facilitates the identification of genes whose expression changes dynamically along 

the trajectory, providing insights into key regulatory genes driving cell differentiation. In the 

context of the TET2 project, Monocle can be used to analyze scRNAseq data from TET2-KO and 

WT B cells, enabling the reconstruction of B cell developmental trajectories and the identification 

of gene expression changes associated with TET2 loss. This approach will help elucidate the impact 

of TET2 mutations on B cell maturation and function, shedding light on the molecular mechanisms 

underlying the observed phenotypic changes. By leveraging Monocle's capabilities we can gain a 

deeper understanding of how TET2 influences B cell lineage commitment and changes in the 

proportions of cells at each developmental stage which would help us further understand the 

mechanism behind the changes induced by the loss-of TET2. Furthermore, the exploration of the 

BCR sequence at every stage of the trajectory could explain the process of the development of 

potential clones.   

Next, to understand the potential changes in BCR of BKO cells and to compare them to 

the changes induced by the total body knockout of TET2 gene, I would use TRUST4 to perform 

the analysis of BCR. First, I would use the same gene annotation and genomic reference as well as 

VDJ gene annotation I used for the study of global TET2 KO. I would then explore the changes in 

Ig isotype frequencies, the number of CDR3 sequences among the cells and the changes in the 

frequency of clonal cells and non-replicated cells. Additionally, as the activation of B cells leads to 

somatic hypermutation I would cluster B cells to identify the BCRs from the same lineage. Since 

the data has a single-cell resolution, that could also indicate the path of the introduction of different 

mutations into the BCR clones. By comparing SHM rates between TET2 knockout (KO) and wild-

type (WT) B cells, we can elucidate how TET2 loss affects B cell maturation and antigen 

recognition. Additionally, clonal analysis through BCR clustering will help identify any clonal 

expansions, shedding light on the dysregulation associated with TET2 loss. Clustering also allows 

for the calculation of the clustering entropy, where lower entropy in the TET2 loss group would 



 108 
indicate a less diverse BCR repertoire that could impact immune responses in the affected cells. If 

the magnitude of potential BCR restriction is similar to the one in total body TET2 KO, that would 

suggest the change is in fact intrinsic to B cells.  

To further explore the differences in the BCR if the analyzed groups, I would use the 

IMGT/HighV-QUEST tool for analyzing B-cell receptor (BCR) sequences. IMGT/HighV-QUEST 

provides detailed insights into V(D)J recombination, including somatic hypermutation (SHM) 

rates, CDR3 hydrophobicity, and N addition profiles. By comparing these parameters between 

TET2 knockout (KO) and wild-type (WT) B cells, we can assess how TET2 loss impacts B cell 

maturation and diversity. CDR3 hydrophobicity analysis will shed light on changes in antigen-

binding properties, since hydrophobicity is related to the charge of a CDR3 sequence and the 

stability of antigen binding. Additionally, examining N additions in the junctional regions will 

provide insights into the generation of BCR diversity and potential alterations in the immune 

repertoire. The number of N additions in the junctions between V, D and J genes informes about 

how far away from germline the BCR mutated. These comprehensive analyses, when integrated 

with scRNAseq data, will highlight critical pathways and molecular mechanisms disrupted by 

TET2 mutations.  

All proposed analyses would enhance our understanding on transcriptomic changes induced by the 

loss of TET2 in B cells, its contribution to BCR formation, and the potential interactions with other 

cells contributing to the alterations.  

6.1.5 Implications for precision medicine 

The study's results underscore the potential for integrating genetic information into 

precision medicine. The impact of TET2 mutations on B cell subsets and CDR3 diversity suggests 

that patients with these mutations may benefit from personalized therapies aimed at correcting 
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specific immune dysregulations by novel methods like immunization to induce the production of 

decreased antibodies (Pattarabanjird et al., 2021).  By identifying individuals with TET2 mutations 

and understanding their unique immune profiles, healthcare providers can design targeted 

interventions that address the underlying mechanisms of their disease. This approach not only 

enhances treatment efficacy but also opens avenues for novel therapeutic strategies in managing 

atherosclerosis and other related conditions, aligning with the principles of precision medicine. 

6.2 CTA 

The study presented in Chapter 3 shows that identifying specific T cell subpopulations 

responsive to IL-1β and IL-6 presents new research opportunities.  

The main finding of the study is the attenuated phosphorylation of effector molecules in T 

cells following the stimulation with IL-6 and IL-1β in patients with High CAC compared to No 

CAC group. Importantly, the study was underpowered to detect significant differences between the 

analyzed groups. The main objective of the follow-up research should be to confirm the findings 

in larger cohorts.  

Yet, the trends identified in our work generated new questions and hypotheses.  

6.2.1 What are the phosphorylation patterns in T cells following different 
stimulation conditions when patients with intermediate CAC scores are 
included?  

To answer this question, I analyzed the data from 45 patients with CAC scores varying  

between 0 and 1300. When analyzing all T cells, the most prominent difference was seen 

in the median expression of pSTAT5 (Figure 6.2). Surprisingly, the expression of pSTAT5, in 

accordance with previous research (Tormo et al., 2012; X. Wang et al., 2021), was increased in the 
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Moderate and Increased CAC groups. The High CAC group presented a lower expression of 

pSTAT5, as elucidated in our study in Chapter 3. However, the correlation between the CAC score 

and the expression of pSTAT5 in T Cells remained not statistically significant. To further explore 

the relationship between CAC score and phosphorylated effector molecules in T Cells, I excluded 

the subjects with No CAC due to high variance and spread-out distribution of the expression of 

pSTAT5 and other analyzed molecules. The variance could be explained by the cohort design itself, 

as patients presenting to the clinic had to have medically justified indications for referral for a 

computed tomography angiography (CTA) scan. As we cannot correct for other potential 

underlying issues influencing the state of the immune system, I excluded the No CAC group from 

further analysis to focus on exploring the disease progression and its consequences in the 

expression of phosphorylated effector molecules in patients with reported CAC. Additionally, it 

has been previously reported that in a PROMISE study, 16% of patients with a CAC score of 0 

were diagnosed with CAD within 2 years after the scan, highlighting a potential weakness of the 

CAC score’s prognostic value in patients without detectable coronary artery calcification (Budoff 

et al., 2017). As there were only 4 patients with CAC score of 500 or higher, I also excluded them 

from the future analysis.  
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Figure 6.2  Exclusion of No CAC patients results in better associations between the phosphorylation levels of proteins and 
CAC status 
A. pSTAT5 phosphorylation levels in T cells of all patients (left), and patients with CAC > 0 and CAC < 500. B. Linear regression 
results correlating the phosphorylation of antigens in different T cell clusters in vehicle, IL-6 stimulated, IL-1β stimulated 
conditions. P value was corrected for multiple testing using FDR (p.value.adj) C. Median expression of pERK in CD4+ CXCR4- 
Naive T Cells cluster after IL-1β stimulation in all patients (top) and patients with CAC > 0 and CAC < 500. P value depicted is 
adjusted for multiple testing using FDR correction. Left panel presents a box plot of median expression of pERK in patients patient 
groups: No CAC, Moderate CAC (1-100), Increased CAC (101-300), High CAC (> 300). Right panel presents a regression plot 
between CAC score and Median expression of pERK with regression line presented in red. D. Median expression of pERK in CD4+ 

CXCR4- Naive T Cells cluster in vehicle in all patients (top) and patients with CAC > 0 and CAC < 500. P value depicted is adjusted 
for multiple testing using FDR correction. Left panel presents a box plot of median expression of pERK in patients patient groups: 
No CAC, Moderate CAC (1-100), Increased CAC (101-300), High CAC (> 300). Right panel presents a regression plot between 
CAC score and Median expression of pERK with regression line presented in red.  
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After the cohort adjustments, the pSTAT5 expression in all T cells followed a negative correlation 

trend with the increase of CAC score, which is concordant with our previous findings.  

I used a linear regression model to examine the expression of phosphorylated ERK, NF-Κβ, p38 , 

and STAT1, STAT2 STAT3 in different T cell subsets against CAC score. I observed a significant 

negative correlation of  CAC score and the expression of pERK in CD4+ CXCR- Naïve T cell cluster 

after IL-1β stimulation and in cells treated with vehicle (Figure 6.2 B-D). Additionally, the 

frequency of the same T cell subsets was significantly negatively correlated with CAC score 

(Figure 6.3).  

 

Figure 6.3 Frequency of CD4+
 CXCR4- Naive T Cells negatively correlates with CAC score 

in patients with CAC >0 and CAC < 500 
A. Linear regression results correlating the logit-transformed frequency of T cell clusters with logit 
with CAC score. P value was adjusted for multiple testing using FDR correction. B. Frequency of 
CD4+ CXCR4- Naive T Cells cluster in all patients (top) and patients with CAC > 0 and CAC < 
500 (bottom). P value depicted is adjusted for multiple testing using FDR correction. Left panel 
presents a box plot of the T cell subset in patients patient groups: No CAC, Moderate CAC (1-100), 
Increased CAC (101-300), High CAC (> 300). Right panel presents a regression plot between CAC 
score and frequency of T cell cluster with regression line presented in red. 
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As depicted in Figure 4.4, CD4+ CXCR- Naïve T cell cluster expresses both CD56 and CD161, 

common markers of NKT Cells (L. Peng et al., 2016). Yet, there is limited research regarding NK 

T cells and their impact on atherosclerosis, except for their iNKT subset. iNKT cells are defined 

by the expression of CD1d, a non-canonical MHC. However, our panel does not include the CD1d 

marker, and we cannot differentiate between potential NKT subsets. Yet, the finding, without the 

differentiation of NKT cell subsets, seems to follow the discoveries of recent case-control study, 

that presented a negative correlation between iNKT cell expression with incident CE, suggesting 

their atheroprotective function (Tomas et al., 2023). Yet, studies in mice indicate an atherogenic 

function of iNKTs in the progression of atherosclerotic disease (Major et al., 2004; Nakai, 2004; 

Tomas et al., 2023; Tupin et al., 2004; van Puijvelde et al., 2009). Future experiments should focus 

on the differentiation between different NKT subsets in our cohort, perhaps by examining PBMCs 

with a flow cytometry panel involving necessary NK T cell markers to assess their frequencies and 

their correlation with CAC.  

6.2.2 Is there a correlation between the expression of phosphorylated effector 
molecules in immune cells with different measures of CAD progression?  

Clinical research established other CAD risk scores calculated from CTA imaging. 

Comprehensive atherosclerotic risk score (CTA risk score) integrates maximal stenosis severity, 

also included in CAC, with additional parameters estimating the plaque extent, location, and 

composition. Previous research indicated CTA score was able to more accurately predict the 

incidence of coronary events compared to CAC score (van et al., 2019). CTA risk score was 

recently calculated for patients in our cohort based on their CTA scans. It provides an opportunity 
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to explore alternative endpoints and their correlation with the expression of phosphorylated effector 

molecules in immune cells.  

Another potential measure of atherosclerosis relevant for our work is perivascular fat 

attenuation index (FAI). FAI quantifies spatial changes in perivascular fat composition induced by 

coronary inflammation rather than the extension of atherosclerotic plaques (Oikonomou et al., 

2021). A recent study utilized an AI model that integrated FAI with coronary plaque metrics, and 

clinical risk factors (Chan et al., 2024). The model trained on the USA cohort was able to correlate 

and predict cardiac mortality and CE in the UK population with high accuracy. Correlating the AI-

risk score, which involves information about perivascular inflammation, with our data on immune 

cell activation in our CTA cohort could provide additional insights into the disease dynamic going 

beyond the calcification of the plaques, underlying the role of inflammation and the immune system 

state in different stages of the disease.  



 115 

Chapter 7  

Abbreviations 

5hmC 5-hydroxymethylcytosine 
5mC 5-methylcytosine 
ACVD atherosclerotic cardiovascular disease 
ACS acute coronary syndrome 
AHR aryl hydrocarbon receptor 
APC antigen-presenting cells 
apoeB apolipoprotein B 
BCL-6 B cell lymphoma 6 
BCR B cell receptors 
BKO B-cell specific knockout 
BM bone marrow 
CAC coronary artery calcification 
CAD coronary artery disease 
CDR3 complementarity-determining region 3 
CE cholesterol ester 
CHIP clonal hematopoiesis of indeterminate potential 
CHD coronary heart disease 
CMP common myeloid progenitors 
CpG 5'—C—phosphate—G—3'  
CRP C-reactive protein 
CTA computed tomography angiography 
CTLA4 cytotoxic T-lymphocyte-associated protein 4 
cyTOF cytometry by Time-of-Flight 
CVD cardiovascular diseases 
cDNA complementary DNA 
DCs dendritic cells 
DAMPs damage-associated molecular patterns 
DEGs differentially expressed genes 
DNA deoxyribonucleic acid 
DNMT DNA methyltransferase 
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EC endothelial cell 
ERK extracellular signal-regulated kinase 
FC flow cytometry 
FOXP3 the transcription factor forkhead box protein P 
G-CSF granulocyte colony-stimulating factor 
GATA3 GATA-binding factor 3 
GO gene ontology 
GM-CSF granulocyte–macrophage colony-stimulating factor 
GSEA gene set enrichment analysis 
GWAS genome wide association studies 
hs-CRP high-sensitivity C-reactive protein 
HSC hematopoietic stem cell 
HSPC hematopoietic stem/progenitor cell 
IFNγ interferon-γ 
Ig immunoglobulin 
IgM immunoglobulin M 
IL-10 interleukin-10 
IL-13 interleukin-13 
IL-17 interleukin-17 
IL-2 interleukin-2 
IL-2RA interleukin-2 receptor alpha 
IL-22 interleukin-22 
IL-33 interleukin-33 
IL-3 interleukin-3 
IL-4 interleukin-4 
IL-5 interleukin-5 
IL-9 interleukin-9 
iNKT invariant natural killer T cells 
IVUS intravascular ultrasound 
LAG3 lymphocyte activation gene 3 protein 
LDL low-density lipoprotein 
LSK Lineage- Sca-1+c-Kit+ 
MACE major adverse cardiac events 
Macs macrophages 
MDA malondialdehyde-modified amino groups 
MHC I major histocompatibility complex I 
MI myocardial infarction 
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mRNA messenger RNA 
MPP multipotent progenitor 
NK natural killer cells 
NLRP3 NOD-, LRR- and pyrin domain-containing protein 3 
OSEs oxidation-specific epitopes 
ox-LDL oxidized low-density lipoprotein 
OxPL oxidized phospholipid 
PAMPs pathogen-associated molecular patterns 
PBMCs peripheral blood mononuclear cells 
PerC peritoneal cavity 
PL phospholipid 
qPCR quantitative polymerase chain reaction 
RNA ribonucleic acid 
RNASeq RNA-sequencing 
RORγt nuclear receptor RORγt 
scRNASeq single-cell RNA sequencing 
SMCs smooth muscle cells 
SPADE spanning-tree progression of density normalized events 
STAT signal transducer and activator of transcription 
T-bet T-box transcription factor TBX21 
T-box T-box transcription factor TBX21 
TCR T-cell receptor 
TET ten-eleven translocation 
TET2 ten-eleven translocation 2 
TFH T follicular helper cells 
TGFβ transforming growth factor-β 
TNF tumor necrosis factor 
TNF⍺ tumor necrosis factor alpha 
UMAP uniform manifold approximation and projection 
VCAM1 vascular cell adhesion molecule 1 
VSMC vascular smooth muscle cell 
WBC white blood cell 
WT wild-type 
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