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Chapter 1

Introduction

During the last two decades, the communication industry has experienced

extraordinary growth. The prediction of a world where instantly transmitting

a variety of data types to almost any device, anywhere in the world has been

materializing before our eyes. This situation challenges regulators as well as service

providers and has motivated increasing research in four fronts [15]: (i) develop-

ment of new communication technologies, (ii) development of new services and

applications, (iii) improved resource efficiency through market-based mechanisms,

and (iv) understanding of economic and financial implications.

This work focuses on the advances on improved resource efficiency through

market-based mechanisms, a topic in which the Federal Communications Com-

mission (FCC) has put a great emphasis. In this matter, the communication

community has naturally shifted its attention towards the field of mechanism

design in order to find suitable market-based mechanisms. Mechanism design is a

field in game theory used by economists in order to provide the right incentives

on consumers to achieve a desired resource configuration (or set of consumption

bundles). The FCC has a well known history with the field of mechanism design.

Since the year 1994 the FCC has been using auctions to preform primary spectrum

allocations where communication business receive long-term spectrum usage rights.

For example, between 1994 and 2005 the FCC ran more than 70 auctions to allocate
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spectrum bands 1.

By the year 2000 early signs of spectrum shortage motivated the FCC to

update their guidance on spectrum management policies. Since then, the FCC has

promoted secondary markets, where current spectrum holders benefit from trading

their spectrum rights with secondary users in order to improve efficiency in the

use of spectrum. According to the FCC [9]:

“... An effective way to make unused spectrum held by existing licensees

available to others may be through secondary markets. An effectively

functioning system of secondary markets would encourage licensees to be

more spectrum efficient by freely trading their rights to unused spectrum

capacity, ... We also believe that secondary market transactions could

contribute to increasing the amount of spectrum available to prospective

users, uses, and new wireless technologies by making more effective use

of spectrum that is currently assigned to existing licensee ”.

The last decade not only witnessed unprecedented growth in the demand for

wireless bandwidth; similarly, the communication physical backbone infrastructure

has also been pushed to its limits, validating the use of secondary markets into

these technologies. Secondary markets introduce new dynamics that stem from the

variety of simultaneous users accessing network resources. These new dynamics in

turn introduce new difficulties as discussed later. The type of markets proposed

by the FCC increase the complexity of the network management, since resources

are now shared by a set of sophisticated and selfish users under some market rules.

Section 1.0.1 explains how these conditions influence the design of new network

protocols and the increasingly important role mechanism design should play in

them.

This thesis uses the theory common to the field of mechanism design to solve

problems of resource allocation in communication networks considering technologi-

cal implications and difficulties that arise in the presence of sophisticated rational

users and technological considerations. To do so, this thesis presents different

1see http://wireless.fcc.gov/auctions



5

problems that pose a variety of difficulties and develops algorithms with some

theoretical properties desired in both the theory of communication networks and

the theory of mechanism design that overcome some of these difficulties.

1.0.1 Mechanism Design in Communication Networks

Communication networks’ resources are generally shared by several users. How

to effectively share these resources has been a topic of research for the last decades.

While economists have long studied the means to achieve several properties in

the allocation of resources, engineers in the communications community have

designed network protocols focusing on technological challenges and some economic

considerations have been often overlooked. For example, network users are usually

assumed to behave according to well defined protocols that guarantee an effective use

of resources. However for modern communication networks, generally constituted

by heterogeneous and profit maximizing users, it is not clear why we should rely

on such an assumption.

It is not evident that rational, profit maximizing, network users will cooperate

to maximize the overall network performance at the expense of their individual

benefits. In Jain’s words: “Network capacity can be enhanced by sophisticated

information-theoretic and network coding methods, but those will not be enough

without incentivizing cooperation between increasingly sophisticated and selfish

users” [16].

In the field of communication networks, it has been a common practice to study

the optimal use of resources as convex optimization problems. Users are assumed to

willingly follow predefined rules, which in turn guarantee the implementation of an

“optimal” configuration of the resources [21, 23]. These works, however, are prone

to manipulation by strategic and sophisticated users, hence the need to consider

incentives in the design of algorithms related to the allocation of network resources.

In light of this, network theorists have looked onto the field of mechanism design

for the right incentives to achieve a desired resource configuration.
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Despite the advances in the field of mechanism design, off the shelf results

are not always directly applicable to the field of communication networks. Many

advances in mechanism design theory assume each consumer is only affected by his

own consumption bundle [1, 2, 16, 17, 20]. Usually utility of consumer i is modeled

by a concave function Ui(xi) where xi is the consumption bundle of consumer

i. In contrast with this model, some communication problems are subject to

externalities in the sense that the utility of one user does not only depend on his

own resource consumption bundle but on his competitors as well. Such externalities

are usually negative (i.e. the utility of any user is eroded by the consumption of

his competitors). Furthermore the way such externalities are considered drastically

change depending upon technological considerations. For example, chapter 3 of

this thesis introduces an uplink access problem using Code Division Multiple Access

(CDMA) technology, where all users associated with an access point (AP) share the

same bandwidth and the rate of each user is increasingly eroded as the power of

other users increases (in a continuous fashion). In contrast, chapter 4 introduces a

Frequency Division Multiple Access (FDMA) system where spectrum is partitioned

into channels and later assigned to several potential users. In this problem, the

use of one channel by any user precludes its use by a subset of other users; note

these externalities are binary instead of continuous.

Before bringing forward the contributions of this work, it is important to

introduce some basic concepts of the theory of mechanism design in the following

section.

1.0.2 A Brief Introduction to the Theory of Mechanism Design

Mechanism design is a field of game theory in which rules (mechanisms) are

designed in order to induce a desired equilibrium outcome resulting from the inter-

action of rational agents with private information. In general, the designer wants to

induce an outcome that holds certain properties related to the private information

of these agents. For example, in the context of communication networks, such a
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desired outcome can be the efficient configuration or allocation of a resource (power,

bandwidth, etc.) to set of rational users. Because such efficient configuration

depends upon the private information of users, the resource manager can not find

the desired outcome directly. Instead he designs a set of rules, such that the desired

outcome is achieved by the strategic interaction of these rational agents.

For example, consider a set of transmitter-receiver (tx-rx) pairs with a quasilin-

ear utility (i.e. willingness to pay) for any network configuration and spectrum

bandwidth allocation. Under a given network configuration and bandwidth allo-

cation, different transmitter-receiver pairs may experience different utility, and

this information is not necessarily known by other parties. A benevolent resource

manager may implement a mechanism design in which he asks each tx-rx pair to

reveal its preferences and implement the outcome that maximizes the aggregate

utility. However this mechanism is naive because it does not consider strategic

players who may lie to increase their individual utilities at the expense of others.

To avoid this situation the designer needs to enforce some payment rules. When

these rules define a form of competition among agents, such as network users, the

mechanism is called an auction [22], which is the type of mechanism considered in

this work.

The mechanism design approach is composed of two elements, the environment

and the mechanism [25].

The environment (N , {ti}i∈N ,X ) is composed of:

• A set of agents or participants, N = {1, . . . , N}

• A set of possible outcomes X .

• Each agent i ∈ {1, . . . , N} has a type ti, which is related to i’s preferences

and beliefs.

The mechanism ({Si}i∈N , x(·), {pi(·)}i∈N ) consists of rules that govern:
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• What the participants are allowed to do ({Si}i∈N ). This is also known as

the strategy space of the agents.

• How participants’ actions determine the outcome. That is, a function x(·) :

S1 × · · ·× SN → X .

• How participants’ actions determine their payments. That is, a set of func-

tions {pi(·) : S1 × · · ·× SN → R+}i∈N .

A very common assumption, adopted in this work, is that utilities are quasilinear

and private in the sense that for any outcome x ∈ X and payment pn ∈ R, profit

of agent n ∈ N is of the form πn(x, pn, tn) = un(x) − pn where un(x) ∈ R is the

intrinsic utility agent n ∈ N derives from outcome x ∈ X . Note that un() pertains

to n’s private information tn.

Fig.1.1 shows how mechanism design works. In this figure each agent n ∈

{1, . . . , N}, has a privately known type tn and performs an action sn. The re-

source manager applies some rules (known as mechanism) that map each possi-

ble action profile (s1, . . . , sN) to an output x(s1, . . . , sN) and a set of payments

{pi(s1, . . . , sN)}i∈N . This field is called mechanism design because it studies how

to design these set of rules looking forward to achieve certain properties which

are discussed later in this chapter. Agents are assumed to be profit maximizers.

That is, if Tn is the set of possible types for agent n ∈ N , he will use a strategy

σi(·) : Ti → Si, in order to maximize his own profit πn.

A simple illustration helps clarify this point. Consider a set N = {1, 2} of

wireless network operators (rational agents) that compete to receive one channel

(resource). The set possible outcomes is X = {[1, 0], [0, 1]}, where outcome [1, 0]

represents network 1 receiving the channel and [0, 1] network 2. Private information

{tn : n ∈ N} is the valuation each network attains when receiving the channel, say

v1 = 10 for network 1 and v2 = 5 for network 2 (or what is the same u1([1, 0]) = 10,
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Figure 1.1: Mechanism design elements (Environment and Mechanism)

u2([0, 1]) = 5, u1([0, 1]) = u2([1, 0]) = 0). The auctioneer wants to allocate the

channel efficiently but ignores the utility functions of both competitors.

In this simple scenario the auctioneer can implement a second price auction.

In this auction each network is asked to report its private valuation. Each bidder

n ∈ N can report any non-negative value, hence Sn = R+. Let σn() denote the

strategy of network n’s operator and let sn = σn(vn) be his reported valuation.

In the second price auction the channel is allocated to the bidder with highest

reported valuation as follows:

x(s1, s2) =






[1, 0] if s1 > s2

[0, 1] otherwise

The winner is assessed a payment equal to his competitors reported valuation.

That is let m �= n, then:

pn(s1, s2) =






sm if sm < sn

0 otherwise

It is a well known result that for this auction, being truthful (i.e. setting

sn = vn) is a dominant strategy, that is, let m �= n, then:

πn(x(sn, sm), pn(sn, sm), tn) ≤ πn(x(vn, sm), pn(vn, sm), tn)
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for all n ∈ N , and sn, sm ∈ R+. Furthermore note that when users are truthful,

the auctioneer implements the efficient allocation. In light of this we say that the

auctioneer implements the efficient allocation in dominant strategies.

The resource manager (auctioneer) may have different objectives in his design.

Consider for example the case where the auctioneer is a public entity that looks

after the use of some public resources. In this case efficiency is a primary objective.

On the other hand, consider the case of a private entity who wants to accrue

revenue from auctioning idle resources. In this case revenue may probably get a

primary role over efficiency. This thesis focuses on efficiency.

Some characteristics that are usually mentioned in a mechanism design are:

• Direct Mechanism: We say a mechanism is direct if bidders are directly asked

to reveal their private information, that is Sn = Tn for all n ∈ N .

• Incentive Compatibility: We say a mechanism is incentive compatible (IC)

if each agent n ∈ N has incentives to reveal the information required by

the auctioneer (in a direct mechanism this means to make sn = tn). Note

that incentive compatibility may be achieved in different degrees (Nash

Equilibrium / Dominant strategies).

• Individual Rationality: We say a mechanism is individually rational if all

agents are willing to participate. That is, the profit an agent can expect from

participation is non-negative.

• Revenue Maximizing: We say that a mechanism is Revenue Maximizing

if it maximizes the expected revenue of the mechanism designer (resource

manager).

• Efficiency: We say that a mechanism is efficient if the outcome (resource

allocation in our problems) maximizes the aggregate social surplus.

If a mechanism is incentive compatible in dominant strategies and it is efficient,

this mechanism is said to truthfully implement the efficient outcome in dominant

strategies.
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These properties are always desired. Unfortunately, designing a mechanism

that is simultaneously IC, revenue maximizing, and efficient has proven impossible

[12, 33].

1.0.3 Contributions of this Thesis

This thesis presents three problems related to the allocation of communication

resources. For each of these problems we propose an auction that is Incentive

Compatible in Dominant Strategies. Note this is stronger than the more common

condition of Nash Equilibria. That is, in the auction designs we propose, being

truthful is in the best interest of each bidder, even if his competitors are not

truthful.

Chapter 2 introduces the problem of a wired-network manager that wants to

efficiently allocate network capacity amongst a set of potential users with private

information about their utilities. The network exhibits a congestion externality

in the sense that the utility a given user derives from using a given link in the

network is decreasing in the aggregate intensity with which other users make use

of that same link. Although the well known VCG mechanism can be used in this

context, several drawbacks have been documented by theorists in both auction

design and communication networks ([3,30,35]), which have been mainly related to

confidentiality issues and the need for sophisticated computational infrastructure.

Iterative auction designs have been proposed in order to overcome these problems.

However, iterative auctions in literature do not account for congestion externalities.

Chapter 2 proposes an iterative auction, which to the best of my knowledge, is

the first strategy-proof iterative auction that implements the efficient allocation of

capacity in a network subject to congestion externalities.

Wireless communication resources are also subject to negative externalities. In

fact, due to the flexibility provided by different wireless access schemes, there exist

a rich variety of considerations when modeling these externalities. The increasing

use of wireless devices and applications has prompted the search for mechanisms
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to dynamically and efficiently reallocate relatively underutilized licensed spectrum.

Such mechanisms would enable a secondary market in which unlicensed users can

obtain the resources they need, and licensed users are incentivized to offer resources

that are not utilized. This secondary market poses special challenges especially

because such allocations need to consider technical issues (e.g. interference) as well

as transparency and economic efficiency. This market is unique in that spectrum

can be reused; the same spectrum can be simultaneously employed by various users

without precluding each other’s use. Chapters 3 and 4 address wireless spectrum

allocation under different technological considerations. Chapter 3 addresses the

allocation of some residual power in a set of APs for the case of uplink using Code

Division Multiple Access (CDMA). Chapter 4 introduces the problem of designing

a mechanism to deal with spectrum allocation when using Frequency Division

Multiple Access (FDMA).

Chapter 3 considers the problem of a primary UL-network where a set of APs

can tolerate some additional interference without compromising the service of some

intrinsically associated users. The network manager wants to efficiently allocate

these levels of interference (usually known as interference temperature) to a set of

secondary users with private information about their utilities. As stated before, the

design depends upon the access method. In Chapter 3 we assume Code Division

Multiple Access, Direct Sequence Spread Spectrum (CDMA-DSSS) in which each

user is assigned a code that allows him to share the same bandwidth with several

other users. Of course, users are subject to externalities; the rate any user achieves

with any AP will be eroded by the power of his competitors at such AP. In this

problem, VCG also provides many desired properties, yet concerns related to

confidentiality and computational complexity arise. Iterative auctions have been

proposed to overcome these issues [5, 14,31]. However, these auction designs can

only guarantee efficiency under restrictive conditions, where either, specific utility

functions are required, or power of secondary users is assumed negligible compared

to that of the primary users. Chapter 3 proposes an auction design that to the
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best of our knowledge is the first truthful, iterative auction that achieves efficiency

in dominant strategies without very restrictive assumptions.

Chapter 4 addresses spectrum sharing in Frequency Division Multiple Access

(FMDA), that is, when the spectrum has been partitioned into channels of semi-

exclusive use. It studies the problem of a channel broker who has a set of channels

he wants to allocate to a set of secondary users. In this context, a single channel

can be allocated to several users as long as the interference between them is kept

between acceptable levels. These types of restrictions are considered by means of a

conflict graph that implicitly define feasible channel allocations. This problem was

initially introduced by Zhou [37], and has been studied by several authors since then

[4,19,34,38]. These works have proposed incentive compatible auctions that assume

fixed marginal utility from bidders and which are proved to be implementable

in polynomial time. Chapter 4 of this thesis introduces Truthful Multichannel

Auction (TMCA), a channel auction that to the best of my knowledge is the first

one-shot channel auction that is incentive compatible in dominant strategies and

implementable in polynomial time when marginal utilities of bidders are not fixed,

which is a more realistic assumption.
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Chapter 2

Inertial Capacity-Auction

2.1 Preliminaries

2.1.1 Introduction

In this chapter, we consider the problem faced by a network manager whose goal

is to efficiently allocate network capacity amongst a finite set of non-cooperative

users that have private information regarding their utility. The network exhibits a

congestion externality in the sense that the utility a given user derives from using

a given link in the network is decreasing in the aggregate intensity with which

other users make use of that same link. The network is operated with fixed routing

tables, and users autonomously determine their desired flow rates.

For this problem we propose the Inertial Capacity Auction (ICA), an iterative

auction in which, network users are incentivized to repeatedly update their use of

the network, according to some predefined rules. This updates, in turn, guarantee

the efficient allocation of network capacity.

2.1.2 Basic Framework

Consider a network (V , E) where V = {1, ..., V } represents the index set of

vertices and E = {1, ..., E} the index set of links. Let λ̄e > 0 denote the capacity

of link e ∈ E and let λ̄ = [λ̄1, . . . , λ̄E] denote the joint capacity of the network.

This network is managed by a benevolent manager who aims at optimizing the net
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aggregate utility of a set of users M ={1, ...,M}. Each user m ∈ M is associated

with an origin-destination pair (om, dm) ∈ V × V and has a fixed routing policy

such that its use of link e ∈ E per flow unit is Am,e ∈ [0, 1].

Let rm denote the flow of user m ∈ M, and r = [r1, ..., rM ] denote the joint

flow profile. The aggregate flow on link e ∈ E is

λe(r) =
�

m∈M

Am,erm

Let Um() : R+ → R+ be a strictly concave function, privately known by user

m ∈ M, such that Um(rm) dictates the intrinsic utility of user m ∈ M given flow

rm ∈ R+. We assume congestion externalities are additive so that m’s quasilinear

utility (i.e. willingness to pay), given joint profile r = [r1, ..., rM ], is of the form:

Um(rm)− rm

�

e∈E

Am,ece(λe(r)) (2.1)

where ce(·) is an increasing, concave and twice continuously differentiable

function describing the per-unit congestion disutility affecting users of link e ∈ E .

It follows that the aggregate utility of all users is:

�

m∈M

[Um(rm)− rm

�

e∈E

Am,ece(λe(r))] =
�

m∈M

Um(rm)−
�

e∈E

λe(r)ce(λe(r))

The benevolent network manager wants to implement the efficient flow profile, that

is, the joint flow profile r ∈ RM

+ that solves the following optimization problem:

max
r∈RM

+

�
m∈M

Um(rm)−
�
e∈E

λe(r)ce(λe(r))

s.t.

λe(r) ≤ λ̄e e ∈ E

(2.2)

Since intrinsic utility functions {Um : m ∈ M} are private information, only known

by the respective users, the network manager can not find the desired outcome

directly. In this chapter we propose Inertial Capacity Auction (ICA), an auction
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mechanism by which the network manager can implement the efficient configuration

in dominant strategies. In order to provide some intuition in the rules proposed in

ICA, let us make some important observations.

From strict concavity and differentiability, sufficient conditions for optimality

of a joint flow profile r = [r1, . . . , rM ] are:

U �
m
(rm)−

�
e∈E

Am,e[ce(λe(r)) + λe(r)c�e(λe(r)) + µe] ≤ 0 for all m ∈ M

with equality if rm > 0

(2.2.a)

and

µe(λ̄e − λe(r)) = 0 for all e ∈ E (2.2.b)

where µe ≥ 0 for all e ∈ E and rm ≥ 0 for all m ∈ M. Furthermore, strict concavity

implies the efficient flow profile is unique.

Assume the hypothetical situation in which the network manager knows the

efficient joint flow profile, say r
∗ ∈ RM

+ and shadow prices {µe ≥ 0 : e ∈ E}. In

this case, the network manager can set a game in which users are guaranteed a per

flow-unit cost on link e ∈ E of pe = µe + λe(r∗)c�e(λe(r∗)) + ce(λe(r∗)), no matter

the resultant flow configuration. Then user m ∈ M faces the following problem:

max
rm∈R+

[Um(rm)− rm

�

e∈E

Am,e(µe + λe(r
∗)c�

e
(λe(r

∗)) + ce(λe(r
∗)))]

If users are rational, they will respond with the efficient flow profile. To see this,

note that by concavity, user m ∈ M will set his flow to rm ∈ R+ such that

U
�
m
(rm)−

�

e∈E

Am,e[µe + λe(r
∗)c�

e
(λe(r

∗)) + ce(λe(r
∗))] ≤ 0 (2.3)
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with equality if rm > 0. Note that because of the strict concavity of Um, condition

in Eq. (2.3) uniquely defines rm. Furthermore, this condition resembles condition

in Eq. (2.2.a).

The auction design we propose in the following sections runs in discrete time

steps (or rounds) indexed by t ∈ {0, 1, 2, ...}. At each round a price for unit flow on

each link e ∈ E is set, and secondary users are asked to update their flows following

a predefined rule (or strategy) that involves some of their private information; users

that follow this rule are called truthful. Given the private information involved,

users may not be truthful and respond to this request following their own strategy.

However, the maximum benefit any user can attain by not being truthful can be

made as small as desired, no matter the strategy followed by his competitors. In

other words, being truthful is an �-dominant strategy. Furthermore, when all users

are truthful, the socially efficient configuration is implemented. In the context of

mechanism design theory, ICA is said to truthfully implement the socially efficient

outcome in �-dominant strategies.

2.2 Literature Review

In this section, we review the relevant literature by using a simple illustrative

example wherein a single, congestible link with unit capacity is shared by two

users. Each user m ∈ {1, 2} can determine his own flow on the link, say rm ≥ 0,

and has privately known intrinsic utility Um(rm) = ln(1 + rm). At this point we do

not account for externalities as these are not considered in the earliest pieces of

literature we review.

There is a vast amount of literature on congestion pricing as a means to

optimizing network flows ([20, 21, 23]). In most of these works, the network

manager sets congestion prices, and network users respond by adjusting their

flows accordingly. Typically, prices are adjusted so as to reflect excess demand

for limited resources and users react to these prices by adjusting their desired

flow rates. However under incomplete information assumptions, strategic users
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can manipulate congestion prices to their individual advantage by not truthfully

reporting their optimal flow rates. In turn, this strategic behavior distorts the

intended optimality of the network configuration (see for example the works of

Jang and Hajek [35]).

Consider, for example, the simple iterative pricing mechanism proposed by

Kelly [21], which is sometimes referred to as the Kelly mechanism. Let rt1 and

rt2 denote the flow rates at time t > 0. The Kelly mechanism assumes users are

price-takers. That is, it assumes that at each time t ∈ {0, 1, 2, ...}, flows rt1 and rt2

are updated in response to current prices disregarding possible changes in such

prices [21, 35]. The Kelly mechanism induces the efficient flow configuration in the

limit (i.e. rt
m
→ r∗

m
= 0.5, m ∈ {1, 2}) at a price (per unit of flow) of µ∗ = 2

3 . Note

that, in this case, profit of user 1 is Π∗
1 = ln(1 + r∗1)− µ∗r∗1.

Unfortunately this mechanism is not strategy-proof. If user 1 deviates from

the price taking behavior, and updates rt1 as if his utility function were �U1(r1) =

0.8 ln(1 + r1), the Kelly mechanism would lead to a final allocation (r̃1, r̃2) = (13 ,
2
3)

with a price of �µ = 0.6. In this case, user 1’s profit is �Π1 = ln(1 + �r1)− �µ�r1, which

exceeds the profit associated with a price taking behavior, namely Π∗
1. Intuitively,

user 1 is able to induce lower prices at the expense of reduced flow rate, yielding

an overall positive effect in net profit.

The theory of mechanism design provides guidance on incentive structures that

eliminate the adverse effects of strategic behavior. For example, the celebrated

Vickrey-Clarke-Groves (VCG) mechanism [8,13,32] is a direct mechanism that is

strategy proof and implements the socially efficient outcome (flow configuration

in our case). In VCG, users report their intrinsic utility functions, the efficient

capacity allocation (based upon the reported utility functions) is implemented and

each user is charged the “opportunity cost” that his participation generates to his

competitors. The opportunity cost incurred by a user corresponds to the difference

in his competitors’ aggregate utility when he does not participate and when he

does.
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In our example, assuming users are truthful, VCG implements flows (r∗1, r
∗
2) =

(0.5, 0.5) since these maximize the social utility U1(r1) + U2(r2). Note that if user

m had not participated, user j �= m would have been allocated a flow of rj = 1,

instead of r∗
j
= 0.5. Hence, m’s payment, which correspond to the opportunity cost

m’s participation introduces to his competitor j, is Pm = Uj(1)− Uj(r∗j ) = 0.288

where j ∈ {1, 2} and j �= m. Hence, user m’s profit is Π∗
m

= Um(r∗m) − Pm =

Um(r∗k) + Um(r∗j )− Um(1) = 0.118.

Consider now the case where user m ∈ {1, 2} does not report his utility function

truthfully (for example by reporting �Um(rm) = 0.8 ln(1 + rm)). In this case, the

VCG mechanism would implement some allocation (�r1, �r2) with a net profit for

m of �Πm = Um(�rm) + Uj(�rj)− Uj(1) which by optimality of (r∗1, r
∗
2) is not greater

than Π∗
m
.

Despite its desirable properties, mainly incentive compatibility and efficiency,

the VCG mechanism has many practical drawbacks [3, 27, 30]. Probably the

main drawback of VCG is that users are required to fully reveal their utility

structure, which conveys highly sensitive information. A second drawback pertains

to computational burden, because finding the optimal network flow (given the

utility functions reported by users) may require a non-negligible computational

infrastructure.

Theorists have long expressed some concerns about direct mechanisms (also

known as direct-revelation mechanisms) such as VCG. In a direct mechanism,

bidders are asked to fully reveal their private information which places high

demands on information revelation. In light of this concern, theorists have looked

onto the design of iterative mechanisms. In Parkes’s words [27]: “ Direct revelation

mechanisms are often too expensive for agents because they place very high demands

on information revelation. An iterative mechanism can sometimes implement the

same outcome as a direct-revelation mechanism but with less information revelation

and agent computation”.

In an effort to combine the efficiency and incentive compatibility properties of
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VCG with the iterative nature of the Kelly mechanism, which helps circumvent the

main drawbacks of VCG, Yang and Hajek introduced the VCG-Kelly mechanism

[35]. As with the VCG, the VCG-Kelly mechanism also implements the socially

efficient outcome albeit in a weaker form of implementation (Nash equilibrium

implementation). A closely related work is presented by Jain and Walrand [17]. It

is worth noting that not Yang and Hayek [35] nor Jain and Walrand [17] take into

consideration congestion externalities.

In a separate and more general approach, Ausubel has recently proposed rel-

atively simple iterative auction designs that circumvent many of the practical

difficulties associated with the VCG mechanism [1,2]. Ausubel’s designs propose

an ingenious payment rule by which the efficient allocation of commodities (possi-

bly, heterogeneous and discrete) are truthfully implemented in Nash equilibrium.

Ausubel’s auction designs parallel a primal-dual algorithm where the dual solution

yields the market clearing prices (for details, see the works of Bikhchandani and

Ostroy [6]). In these designs, at every iteration, users are asked to report their

desired demand for the available commodities, given a set of prices. Thus, users

only need to partially reveal their utility structures (in contrast to the VCG mech-

anism). Ausubel’s designs also have low computational requirements. Prices are

updated from one round to the next according to relatively simple rules reflecting

excess demand. Thus, there is no need to solve large-scale optimization problems.

Ausubel’s auction design can be applied to network flows optimization, however

it may fail to clear demand when there are congestion externalities. To illustrate

this point, consider again the problem of the link with unit capacity and two

users with intrinsic utilities Um(rm) = ln(1 + rm) for m ∈ {1, 2}. This time

assume an additive externality as described in section 2.1.2 where congestion cost

is c(λ) = 2
3λ

2, so that net utility of user m ∈ {1, 2} is ln(1 + rm)− rm
2
3(r1 + r2)2 .

A discrete-time implementation of Ausubel’s design could be as follows. Let µt

denote the price for unit flow on the link and rt
m

∈ R+ denote the flow of user



22

m ∈ {1, 2} at time t ∈ {0, 1, 2, ...}. We say user k updates his rate truthfully if:

r
t+1
m

= argmax
r∈R+

[Um(r)− r(c(λt) + µ
t)]

where λt = rt1 + rt2. At each time t > 0 prices are updated as follows:

µ
t+1 = [µt + ρt(r

t+1
1 + r

t+1
2 − 1)]+

where ρt =
1

t+1 and [x]+ = max{x, 0}.

Assuming users update their flow truthfully, this implementation induces the

cyclical behavior in Figure 2.1.
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Figure 2.1: Flow demand of user 1

Note that Eq. 2.3 suggests that an externality price of λtc�(λt) may be assessed

with the goal of inducing an efficient flow allocation. In this case we say that users

update truthfully if:

r
t+1
m

= argmax
r∈R+

[Um(r)− r(c(λt) + µ
t + λ

t
c
�(λt))]

Unfortunately the use of this externality price does not guarantee flow convergence.

When implementing this externality price in or example above and assuming
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truthful users, the outcome is essentially the same as in Fig. 2.1.

In this chapter, we propose Inertial Capacity Auction (ICA), an iterative

auction design that implements (in �-dominant strategies) the socially efficient flow

allocation in a network prone to congestion externalities. Our design is relatively

simple. At each time period, users set demand as a response to previous prices

and congestion conditions. However, flows are not immediately updated to such

demand; they are updated towards demand with an increasing inertia that prevents

abrupt changes in the network flow configuration. This feature introduces an

element of inertia that ultimately allows for market clearing. To the best of our

knowledge, ours is the first strategy-proof iterative mechanism that implements

the efficient allocation of capacity in a network subject to congestion externalities.

This chapter is organized as follows; in Section 2.3, we propose ICA, Section

2.4, introduces some basic assumptions, and Sections 2.5 and 2.6 prove that ICA

truthfully implements the efficient flow configuration in �-Dominant strategies.

Finally, Section 2.7 presents some conclusions and important remarks.

2.3 Inertial Capacity Auction (ICA)

In this section we formally introduce the Inertial Capacity Auction (ICA) for

the efficient flow configuration in a capacity-constrained network. This auction runs

in discrete time steps (or iterations) indexed by t ∈ {1, 2, ...}. At each iteration

the network manager reveals a congestion control price µt

e
and an externality price

ζt
e
for each link e ∈ E . Congestion control prices {µt

e
}t≥0 will guarantee that the

aggregate flow on link e ∈ E is less than or equal to its capacity λ̄e. Externality

prices {ζt
e
}t≥0 will help each users internalize the effect his individual flow has on

his competitors.

The per flow-unit price on link e ∈ E at time t ≥ 0, is the sum of the control price

µt

e
∈ R+ and a externality price ζt

e
. Additionally, users of link e ∈ E suffer a per

flow-unit cost of ct
e
= ce(λe(rt)). Hence the total (per flow-unit) cost experienced
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on link e ∈ E after time t is (ct
e
+ ζt

e
+ µt

e
). Given this costs, each user m ∈ M

calculates his new flow demand dt+1
m

∈ R+ following a predefined rule (see Eq. 2.4),

however flows are not immediately set to such demand, instead they are updated

towards demand with an increasing inertia that prevents abrupt changes in the

actual flow rt
m
.

Note that for any time t ∈ {1, 2, ...} we discriminate betweenm’s demand dt
m
and

flow rt
m
. Similarly, joint demand profile at time t > 0 is denoted by dt = [dt1, . . . , d

t

M
]

while joint flow profile is denoted by r
t = [rt1, . . . , r

t

M
]. The relation between these

two profiles is introduced below. In response to flow profile updates, the network

manager updates the control prices profile µt = [µt

1, . . . , µ
t

E
] and externality prices

profile ζt = {ζt1, . . . , ζtE}, which in turn triggers new demand and flow profiles. The

process is repeated until the stationarity criteria ||dt+1 − r
t||+ ||µt − µt−1|| ≤ η

is achieved for some small η > 0. The following pseudo-code formally introduces

Inertial Capacity Auction.

We assume r0
m
= d0

m
= 0, ζ0

e
= 0 and µ0

e
= µ̄ for all m ∈ M and e ∈ E , where

µ̄ is a price large enough to guarantee null demand from all users m ∈ M (more

details on µ̄ in section 2.4). At each iteration t > 0 the following 4 steps are

executed

1. Demands Update: Given prices and congestion levels at the beginning of

iteration t, each user m ∈ M calculates his flow demand dt
m
∈ R+ as follows:

d
t

m
= argmax

d≥0
[Um(d)− dp

t

m
] (2.4)

where pt
m

is the total (per flow-unit) cost experienced by user m ∈ M at

the beginning of iteration t (i.e. pt
m
=

�
e∈E

Am,e(ct−1
e

+ ζt−1
e

+ µt−1
e

)). In what

follows we shall refer to the demand in Eq.2.4 as the truthful demand of user

m at time t.
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2. Flows Update: Flows are updated as follows

r
t

m
= r

t−1
m

+ αt(d
t

m
− r

t−1
m

) (2.5)

for each m ∈ M where αt ∈ (0, 1) and αt → 0+ (more details on αt in section

2.3.1).

3. Prices Update: Once flows are updated, congestion control prices are updated

as follows:

µ
t

e
= [µt−1

e
+ ρ(λt

e
− λ̄e)]

+ (2.6)

where ρ > 0 and λt

e
= λe(rt). Externality prices are updated according to:

ζ
t

e
= λe(r

t)c�
e
(λe(r

t)) (2.7)

4. Stopping Rule: If �dt − r
t−1� + �µt − µt−1� < η for some small η > 0

the auction terminates and each user m ∈ M is assessed a payment of

P t

m
+
�

e∈E c
t

e
λe,−m(rt) in return for the flow rt

m
where

P t

m
= P t−1

m
−

�
e∈E

(ct−1
e

+ ζt−1
e

+ µt−1
e

)(dt−m,e
− d

t−1
−m,e)

dt−m,e
=

�
�∈M\{m} A�,ed

t

�

λe,−m(rt) =
�

�∈M\{m} A�,er
t

�

(2.8)

and P 0
m
= 0.

Let us now make some important remarks about this iterative auction:

• When users update their flow rate as in Eq.(2.5) using their truthful demand

we say that they update truthfully. Clearly, since Um() is private information,

only available to user m ∈ M, any secondary user may deviate from this

behavior and not update his flow rate truthfully. However in Theorem 2.3 we
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Figure 2.2: Flow demand of user 1 using ICA

state the incentives of each secondary user to do so, no matter the behavior

of his competitors.

• In step 2 when updating his respective flow rate, each user indirectly reveals

some demand which he claims is his truthful demand.

• When applying the algorithm described above to the problem used in the

Literature Review, of a single link with unit capacity and two users (see

Section 2.2) flow of user 1 is as shown in Fig. 2.2, user 2 has virtually the

same behavior. Note that flows converge to (r1, r2) = (0.31, 0.31), the efficient

flow configuration.

2.3.1 About the Increasing Demand Inertia αt

Note that ρ

αt
→ ∞ which implies that the time-scale in which the flow assign-

ment is updated is slower than that with which resource prices are updated. We

posit the following additional conditions on the schedule {αt : t > 0}:

• αt ∈ (0, 1)
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• αt → 0+ with αt+1 > αt for t ≥ 0.

•
�
t≥0

αt → ∞.

•
�
t≥0

(αt)γ < ∞ for any γ > 1.

Since αt → 0, flows are increasingly less responsive to demand. However since
�

αt → ∞ any user can always make sure its flow approximates any desired value.

This inertia allows users internalize the effects of the aggregate flow levels on their

individual utility, avoiding the cycles observed when using iterative auctions that

do not account for externalities.

2.3.2 About the Externality Price ζt
e

The externality price will help each user internalize the effect of his individual

flow on the marginal utility of his competitors. To see this, note that

c
t

e
+ ζ

t

e
= ce(λe(r

t)) + λe(r
t)c�

e
(λe(r

t))

Furthermore, being truthful (see Eq.2.4) implies

U
�
m
(dt+1

m
)− (µt

e
+ ζ

t

e
+ c

t

e
) ≤ 0 (2.9)

with equality if dt+1
m

> 0. Hence, if dt → r
∗, rt → r

∗ and µ → µ∗ for some r∗ ∈ RM

+

and µ∗ ∈ RE

+, the limit configuration, r∗, holds efficiency conditions in Eq.(2.2.a)

2.3.3 About Payment Rule

In this subsection we give some intuition about the purpose of the payment

rule of ICA. In step 4 of the pseudocode above, we stated that if the auction closes

at time T , user m ∈ M is assessed a payment of P T

m
+
�

e∈E c
T

e
λe,−m(rT ). Let us

start by considering the term P T

m
which is described in detail in Eq.(2.8) and which

we shall refer to as the cumulative payment of user m ∈ M.
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Note that P T

m
can be interpreted as a cumulative payment where at any iteration

t ≤ T , user m pays the change in his competitors demand for capacity on each

link e ∈ E (i.e. d
t−1
−m,e − dt−m,e

) at price [µt−1
e

+ ζt−1
e

+ ct−1
e

]. As we shall formally

prove later, this payment approximates the change in aggregate intrinsic utility

of m�s competitors if their flow rates change from {dt
�
}��=m to {dt−1

�
}� �=m. That

is, payment at time t ≤ T approximates (
�
��=m

U�(d
t−1
�

) −
�
��=m

U�(dt�)), hence the

aggregate payment from t = 1 to t = T approximates (
�
��=m

U�(d0�) −
�
��=m

U�(dT� )).

We already know that d0
�
= 0, therefore if at iteration T the demand profile d

T

has converged to r
T ∈ RM

+ , the total payment of user m ∈ M is

P
T

m
+
�

e∈E

c
T

e
λe,−m(r

T ) ≈
�

��=m

U�(0)−
�

� �=m

[U�(r
T

�
)− r

T

�

�

e∈E

Am,ece(λe(r
T ))]

Note that this payment will resemble the negative of the utility of m’s competi-

tors (i.e. −
�
��=m

[U�(rT� )− rT
�

�
e∈E A�,ece(λe(rT ))]) plus a constant

�
��=m

U�(0).

This payment will align k’s profit with the manager’s objective of implementing

the socially efficient flow profile as defined in Eq.(2.2). That is, each user will

maximize his profit when the efficient flow configuration is implemented, which in

turn is guaranteed by updating flow profiles truthfully. These results are formally

stated and proved in sections 2.5 and 2.6.

2.4 Assumptions

The standing assumptions for the analysis of the Inertial Capacity Auction are

as follows.

Assumption 1: For each user m ∈ M, Um() is increasing, strongly concave

and twice continuously differentiable.

Assumption 2: For each link e ∈ E , ce is convex, strictly increasing and twice

continuously differentiable
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Assumption 3: There exists a “choking” price µ̄ > 0 such that for any p ≥ µ̄,

dm = 0 for all m ∈ M where

dm = argmax
d∈R+

[Um(d)− pd]

Assumption 4: Each user m ∈ M has a maximum demand, r̄m > 0 such

that r̄m > r∗
m
, where r

∗ = [r∗1, ..., r
∗
M
] is the solution of the optimization problem in

(Eq. 2.2). This in turn implies the existence of a maximum demand for each link

e ∈ E, say d̄e > 0.

2.5 Price and Flow profile Convergence

2.5.1 Convergence of Control Price Profile µt

In this section, we analyze the stability of the proposed mechanism assuming

that all users update their demand truthfully, that is rt
m
= rt−1

m
+ αt(dtm − rt−1

m
)

where dt
m
is as in Eq.(2.4).

The following Lemma is a preliminary result which will be useful to prove

convergence of prices µt

e
for all e ∈ E .

Lemma 2.1 (Boundedness of λt

e
). lim supt→∞ λt

e
≤ λ̄e, for each e ∈ E .

Proof : For the formal proof we refer the reader to the appendix. In what

follows, we provide a sketch of the proof. Suppose λt

e
→ ∞ or λt

e
→ λ∗

e
> λ̄e, this

implies µt

e
→ ∞, which in turn implies dt

m
→ 0 for all m ∈ M with Am,e > 0,

therefore λt

e
→ 0, a contradiction. Now assume λt

e
oscillates in the limit (i.e.

lim supt→∞ λt

e
> lim inft→∞ λt

e
) with lim supt→∞ λt

e
> λ̄e. This implies the exis-

tence of an interval [X1, X2] with λ̄e < X1 < X2 which is up-crossed infinitely

often. Because of increasing inertia in the flow assignment process, prices are to

increase without bound, i.e. µt

e
→ +∞, as λt

e
approaches X2 (from X1), which is

contradiction to Assumption 3 (“choking” prices). �
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Theorem 2.1: (Price Convergence) µt

e
→ µ∗

e
≥ 0, for each e ∈ E .

Proof : Suppose the sequence {µt

e
: t > 0} does not converge. Therefore,

either µt

e
→ ∞ or it oscillates with lim inf µt

e
< lim supµt

e
. The former is easily

discarded since large prices will result in null demand (dt
m

= 0 for all m ∈ M

with Am,e > 0) leading to λt

e
→ 0 which in turn implies µt

e
→ 0 which is a

contradiction. Now assume that lim inf µt

e
< lim supµt

e
, this price oscillation is

only possible if the aggregate flow on link e ∈ E , λt

e
, oscillates around λ̄e with

lim inf λt

e
< λ̄e < lim supλt

e
, which contradicts Lemma 2.1.�

The following Corollaries are preliminary results to the proof of convergence of

the flow profile to the efficient flow configuration (Theorem 2.2).

Corollary 2.1: (Complementary Slackness). µt

e
(λ̄e − λt

e
) → 0 for each

e ∈ E

Proof: If µt

e
converges to zero (i.e. µt

e
→ µ∗

e
= 0), Lemma 1.1 directly implies

µt

e
(λ̄e − λt

e
) → 0. If it converges to a positive value (i.e. µt

e
→ µ∗

e
> 0) then the

price adjustment rule in Eq.( 2.6) implies λt

e
→ λ̄e, hence the result. �

Note that by construction µt

e
≥ 0 for all e ∈ E and rm ≥ 0 for all m ∈ M.

Furthermore Corollary 2.1 guarantees that in the limit, condition in Eq. (2.2.b) is

held. The following 2 corollaries are preliminary results to the proof of Theorem

2.2 in which we show that condition in Eq.(2.2.a) is also held.Hence the limit

configuration is the efficient one.

Corollary 2.2:
�
t>0

αt|µt

e
− µ∗

e
| for all e ∈ E .

Proof: See appendix. �

Corollary 2.3: 0 ≤
�
t>0

(µt+1
e

− µt

e
)(λt+1

e
− λ̄e) < ∞, e ∈ E .

Proof: See appendix. �

In order to give some clues on the importance of these corollaries let us describe

briefly some of the findings we will cover in detail in the following subsection.

In subsection 2.5.2 we study the dynamics of the flow profile r
t by considering
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a function that approximates the social surplus for large values of t. We study

the change in that approximate social surplus as the effect of updating flows

and control prices. The effect of prices update at iteration t will be of the form

(µt+1
e

− µt

e
)(λt+1

e
− λ̄e). Corollary 3 builds upon Corollary 2 and states that the

aggregate effect of this updates throughout the auction is bounded.

2.5.2 Convergence of Flow profile r
t
and Efficiency of the Limit

Configuration

Having established that prices converge, we analyze the convergence of individual

flows to the efficient configuration. Consider the function Ψ : RM

+ ×RE

+ → R defined

as follows:

Ψ(r,µ) =
�

m∈M

Um(rm)−
�

e∈E

λe(r)ce(λe(r)) +
�

e∈E

(λ̄e − λe(r))µe

In light of Corollary 1 (Complementary slackness), Ψ(rt,µt) is a good approximation

of social surplus for large values of t > 0.

The following proposition states that our algorithm is steepest ascend in the

approximate social surplus, in the sense that the direction of relative demand

(dt+1 − r
t) is close to the direction of the gradient ∇rΨ(rt,µt).

Proposition 2.1 There exist some M > 0 such that (dt+1− r
t).∇rΨ(rt,µt) ≥

M�dt+1 − r
t�2 ≥ 0

Proof : It will suffice to prove that for each m ∈ M there exists some Km > 0

such that

(dt+1
m

− r
t

m
)
∂Ψ

∂rm
(rt,µt) ≥ Km(d

t+1
m

− r
t

m
)2

Note that ∂Ψ
∂rm

(rt,µt) = U �
m
(rt

m
)−pt+1

m
and according to demand rule in Eq.(2.4)

U �
m
(dt+1

m
) ≤ pt+1

m
with equality if dt+1

m
> 0. We now consider two cases:

• Consider the case dt+1
m

= 0: In this case we have that pt+1
m

≥ U �
m
(0) ≥ U �

m
(rt

m
)

hence pt+1
m

− U �
m
(rt

m
) ≥ U �

m
(0)− U �

m
(rt

m
), therefore
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(dt+1
m

− rt
m
) ∂Ψ
∂rm

(rt,µt) = (−rt
m
)(U �

m
(rt

m
)− pt+1

m
)

≥ rt
m
(U �

m
(0)− U �

m
(rt

m
))

≥ Km(rtm)
2

where the last inequality comes from Assumption 1.

• Consider now the case dt+1
m

> 0: In this case we have pt+1
m

= U �
m
(dt+1

m
) and

(dt+1
m

− rt
m
) ∂Ψ
∂rm

(rt,µt) = (dt+1
m

− rt
m
)(U �

m
(rt

m
)− U �

m
(dt

m
))

≥ Km(dt+1
m

− rt
m
)2

where again, the last inequality comes from Assumption 1. �

In what follows we use the result of Proposition 2.1 to prove the convergence of

the social surplus approximation Ψ(rt,µt) to some level �Ψ ∈ R. Before that let us

make some important observations.

Note that Assumption 4 (bounded demand) altogether with flow adjustment

rule in Eq.(2.5) implies the existence of a compact set D⊂RM such that rt,dt∈D for

all t ≥ 0. Assumptions 1 and 2 imply ∇rΨ is Lipschitz continuous in D , therefore

there exist some L > 0 such that:

|∇rΨ(r,µ)−∇rΨ(�r,µ)| ≤ L||r− �r||

for all r,�r∈D, µ ∈ RE

+. This in turn implies:

|Ψ(�r,µ)−Ψ(r,µ)− (�r− r) ·∇rΨ(r,µ)| ≤ L

2
��r− r�2 (2.10)

for all r,�r∈D, µ ∈ RE

+. Proof of Eq.(2.10) can be found in many convex

optimization textbooks, hence it is omitted in this work. The following proposition

uses this property to prove convergence of the approximate social surplus Ψ(rt,µt).
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Proposition 2.2: (Approximate Surplus Convergence). Ψ(rt,µt) →

�Ψ ∈ R

Proof : Let λt = [λt

1, . . . ,λ
t

E
], from Eq. (2.10) and Proposition 2.1, it follows

that:

Ψ(rt+1,µt+1)−Ψ(rt,µt) = Ψ(rt+1,µt+1)−Ψ(rt+1,µt) +Ψ(rt+1,µt)−Ψ(rt,µt)

≥ (µt+1 − µt)(λ̄ − λ
t+1

) + (rt+1 − r
t) ·∇rΨ(rt,µt)

−L

2 �r
t+1 − r

t�2

≥ (µt+1 − µt)(λ̄ − λ
t+1

) + αt(dt+1 − r
t) ·∇rΨ(rt,µt)

−L

2α
2
t
�dt+1 − r

t�2

≥ −(µt+1 − µt)(λt+1 − λ̄)− L

2α
2
t
�r̄�2

where r̄ = [r̄1, ..., r̄M ] is the vector of maximum demand (Assumption 4). From

Corollary 2.3 it follows that Ψ(rt,µt) does not go to −∞ neither it oscillates. Thus

boundedness (above) of Ψ(rt,µt) implies convergence.�

We are now ready to prove main result of this section, efficiency of the limit

flow configuration.

Theorem 2.2 r
t → r

∗ ∈ RM

+ where r∗ is the unique solution of problem in Eq.

(2.2).

Proof : In the proof of Theorem 2.2 we already showed that

Ψ(rt+1,µt+1)−Ψ(rt,µt) ≥ (µt+1 − µt)(λ̄ − λ
t+1

) + αt(dt+1 − r
t) ·∇rΨ(rt,µt)

−L

2α
2
t
�dt+1 − r

t�2

From Proposition 2.2 and Corollary 2.3 it follows that

�
t>0

αt(dt+1 − r
t) ·∇rΨ(rt,µt) ≤ �Ψ−Ψ(r0,µ0)−

�
t>0

(µt+1 − µt)(λ̄ − λ
t+1

)

+L

2α
2
t
�r̄�2

< ∞
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Hence, (dt+1 − r
t) · ∇rΨ(rt,µt) → 0. Which in light of Theorem 1 (price

convergence) and truthful demand becomes (dt+1 − r
t) ·∇rΨ(rt,µ∗) → 0. Finally

Proposition 2.1 gives us �dt+1 − r
t� → 0. This, altogether with truthful demand

(see Eq.2.4) implies that for t → ∞

U
�
m
(rt

m
)− (µ∗

e
+ ce(λe(r

t)) + λe(r
t)c�

e
(λe(r

t))) ≤ 0

for all m ∈ M with equality if rt
m
> 0, which resembles condition in Eq.(2.2.a).

Since condition in Eq.(2.2.b) is guaranteed in Corollary 2.1, the limit flow con-

figuration, say r
∗ is the efficient one (i.e. the solution to problem in Eq.2.2).

�

2.6 Incentive Compatibility

In this section we revisit the assumption that all users update their flow rate

truthfully (i.e. according to Eq.2.4 and 2.5) based upon which the convergence

and efficiency of the resulting flows has been established.

Note that the network manager (auctioneer) can impose an activity rule requir-

ing that flow demands of each user m ∈ M must be consistent with some function

�Um() ∈ U, where U is the set of strongly concave functions from R+ to R. In other

words, for each m ∈ M there must exist some �Um() ∈ U such that

d
t

m
= argmax

d≥0
[�Um(d)− dp

t

m
] (2.11)

for all t > 0. Note that the auctioneer can enforce this rule by simply checking

that larger prices correspond to lower demands (i.e. for any t, t� > 0 and m ∈ M

it must hold that pt
m
< pt

�
m
implies dt

m
≥ dt

�
m
with equality only if dt

m
= dt

�
m
= 0).

Since µ0
e
= µ̄, an additional sensible activity rule is to require d1

m
= 0 for all

m ∈ M.

Any user violating any of these activity rules will be penalized with a large
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payment and removed from the auction. This penalization will guarantee that all

users will update in a way that is consistent with some utility function from the

space U. In what follows we shall consider a strategy by user m ∈ M in which

he behaves as if his utility function were �Um ∈ U. Let us start by characterizing

payments when such strategies are followed.

Recall that if the auction ends at iteration t > 0 payment of user m ∈ M is

P t

m
+

�
e∈E c

t

e
λe,−m(rt). As noted in Section 2.3.3 the term P t

m
has a cumulative

nature, hence we call it cumulative payment. The following Lemma describes

the resulting cumulative payments to be assessed on users when they adjust their

flow rates according to intrinsic utility functions {�Um ∈ U : m ∈ M}. Let

�Pm = limt→∞P t

m
denote this payment for user m ∈ M. The characterization

of these payments will be used later to show that for all users, it is a dominant

strategy to adjust flow rates truthfully. That is, when �Um() is set equal to the

actual utility function Um().

Lemma 2.2: If users employ utility functions {�Um ∈ U : m ∈ M} to calculate

demands as in Eq. (2.11), then flows and prices converge (i.e.rt → �r ∈ RM

+ ,

µt → �µ ∈ RE

+) and the cumulative payment of user m ∈ M converges to

�Pm =
�

�∈M\{m}

�U�(0)−
�

�∈M\{m}

�U�(�r�) + �δm(ρ)

where �δm(ρ) : R+ �→ R is a mapping such that
����δm(ρ)

��� → 0+ as ρ → 0+.

Proof : The formal proof is given in the appendix. Here we provide a sketch.

Prices and flows convergence are immediate by Theorems 2.1 and 2.2 when

bidders calculate demands as in Eq.(2.11) according to intrinsic utility functions

{�Um : m ∈ M}. The cumulative payment characterization however, is not that

trivial.

At iteration t > 0, bidder m ∈ M pays the change in his competitors demand

for capacity on link e ∈ E (i.e. (dt−1
−m,e − dt−m,e

)) at price pt
e
. Following a similar

analysis as in Section 2.3.3 it follows that in the limit, user m ∈ M is assessed a
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total payment that approximates the aggregate change in the intrinsic utility of his

competitors as measured by {�U� : � ∈ M\ {m}}. That is, the aggregate payment

of user m ∈ M approximates (
�
��=m

�U�(d1�) −
�
��=m

�U�(dT� )). The term �δm(ρ) is an

approximation error that emerges as a result of having discrete changes in prices

and demands. Since an infinitesimal ρ > 0 yields infinitesimal changes in prices

and demands, the approximation error is determined by the magnitude of ρ > 0.

Note that we use �r, �δ(ρ) and �Pm to highlight the fact that the resultant flows,

approximation error and payments will depend on the functions {�Um : m ∈ M}

used. �

At this point we are interested in the overall outcome of the auction, mainly

we want to characterize the final joint flow profile and payments. We are specially

interested in the effects of removing users from the auction.

Let �M be the set of users that are active at the end of the auction (i.e. those

that followed the activity rules until the final iteration) and let �U� be the strongly

concave function that characterizes the demand history of user � ∈ �M. By the same

arguments used in Theorems 2.1 and 2.2 the final allocation, say �r = [�r1, . . . , �rM ],

does not depend on the initial conditions, it will be the efficient allocation for

those users that are active at the end of the auction (note that this efficiency is

relative to the functions {�Um() : m ∈ �M}). Formally, the limit flow profile �r, is

the solution to the following problem :

max
r∈RM

+




�

m∈�M

�Um(rm)−
�

e∈E

λe(r)ce(r)





s.t. λe(r) ≤ λ̄e e ∈ E (2.12)

where clearly �r� = 0 for all � /∈ �M. From Lemma 2.2 it can be noticed that

the payment of user m ∈ M is designed to align m’s incentives with those of the

benevolent network manager (maximize the aggregate utility of the users). Since
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this benevolent manager does not care about utility of users that have been removed

from the auction, payment of active users should not consider such competitors

either, hence a simple modification on the payment rule is required. Payment of

user m ∈ �M if the auction terminates at iteration t > 0, should be redefined as

P t

m
+
�

e∈E c
t

e
λe,−m(rt) where

P t

m
= P t−1

m
−

�
e∈E

pt
e
(dt−m,e

− d
t−1
−m,e)

dt−m,e
=

�
�∈ �M\{m} A�,ed

t

�

λe,−m(rt) =
�

�∈ �M\{m} A�,er
t

�

for t > 0 and P 0
m
= 0. Following a similar analysis as in Lemma 2.2 it is easy to

see that cumulative payment of user m ∈ �M will be:

�Pm =
�

�∈�M\{m}

�U�(0)−
�

�∈�M\{m}

�U�(�r�) + �δm(ρ) (2.13)

Note that properties of the overall results (allocation and payments) are not

altered by the participation of users that were removed from the auction. Hence

efficiency of the limit flow profile and the characterization of payments in Lemma

2.2 hold true as if only users �M ⊆ M were active since the beginning of the

auction.

Theorem 2.3: In the Inertial Capacity Auction being truthful is an �-Dominant

strategy in the sense that, the maximum benefit any user m ∈ M can achieve by

not being truthful, is �(ρ) where �(ρ) → 0 as ρ → 0+

Proof : Again let �M be the set of users that are active at the end of the auction

and let �Um be the strongly concave function that characterizes the demand history

of user m ∈ �M. The resultant allocation �r has already been described in Eq.(2.12).

By the characterization of �Pm in Eq.(2.13) the net profit of user m (which we
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denote by �Vm) is:

�Vm = Um(�rm)− �rm
�

e∈E Am,ece(�r)− limt→∞[P t

m
+
�

e∈E c
t

e
λe,−m(rt)]

= Um(�rm)−
�
e∈E

λe(�r)ce(λe(�r))− �Pm

= Um(�rm) +
�

�∈�M\{m}
�U�(�r�)−

�
e∈E

λe(�r)ce(λe(�r))−
�

�∈�M\{m}
�U�(0)− �δm(ρ)

Now consider the case in which user m ∈ �M reports his demand truthfully (setting

�Um = Um) while all other users � �= m do so according to Eq. (2.11). Abusing

notation, let us denote by �r ∈ RM

+ the limiting flow profile and by �Pm the cumulative

payment of user m. Here again by arguments similar to those used in Theorems

2.1 and 2.2 it can be shown that �r is the solution to

max
r∈RM

+



Um(rm) +
�

�∈�M\{m}

�U�(r�)−
�

e∈E

λe(r)ce(r)





s.t. λe(r) ≤ λ̄e e ∈ E

Similar as in Eq.(2.13), the cumulative payment of user m is:

�Pm =
�

�∈�M\{m}

�U�(0)−
�

�∈�M\{m}

�U�(�r�) + �δm(ρ)

Hence net profit of m is:

V ∗
m

= Um(�rm)−
�
e∈E

λe(�r)ce(λe(�r))− �Pm

Um(�rm) +
�

�∈M\{m}
�U�(�r�)−

�
e∈E

λe(�r)ce(λe(�r))−
�

�∈M\{m}
�U�(0)− �δm(ρ)

By optimality of �r we have

�Vm − V
∗
m
≤ −�δm(ρ) + �δm(ρ) ≤ |�δm(ρ)|+ |�δm(ρ)|

Finally, by selecting ρ small enough we can guarantee |�δm(ρ)|+ |�δm(ρ)| ≤ ε.
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We have proved that the maximum benefit user m ∈ M can attain by using

some function �Um ∈ U such that �Um �= Um goes to zero as ρ → 0+. Using some

strategy that can not be described by some function �Um ∈ U will be revealed by

checking the activity rule, in which case a large penalty will be charged, hence being

truthful is an �-Dominant strategy in the sense that for any user, the maximum

benefit he can attain by not being truthful is �(ρ) where �(ρ) → 0 as ρ → 0+

�

2.7 Conclusion

In this chapter, we have introduced Inertial Capacity Auction, an iterative auc-

tion design for the efficient flow assignment in a network with capacity constraints

and congestion externalities. The mechanism is shown to truthfully implement in

�-Dominant strategies, the socially efficient flow configuration. In contrast to previ-

ous flow allocation mechanisms, the Inertial Capacity Auction implements a novel

concept of flow inertial flow updates, which ultimately allows users internalize the

effects of their collective actions and guarantees convergence even in the presence

of congestion externalities.
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2.8 Appendix of Inertial Capacity Auction

2.8.1 Proof of Lemma 2.1

Suppose lim supλt

e
> λ̄e. So either {λt

e
: t ≥ 0} goes to infinity (i.e. λt

e
→ ∞),

converges to a level greater than capacity (i.e. λt

e
→ λ∗

e
> λ̄e) or it oscillates

with lim supλt

e
> λ̄e. The first two options are easily discarded since both imply

µt

e
→ ∞, therefore dt

k
= 0 for all k ∈ K with Ak,e > 0 and large enough t, leading

to λt

e
→ 0, a contradiction. Therefore we focus on discarding the latter option of

oscillating flow level λt

e
with lim supλt

e
> λ̄e, by contradiction:

1. Assume that λt

e
oscillates with lim supλt

e
> λ̄e. Therefore there exist some

flow levels X1, X2 on link e ∈ E with λ̄e < X1 < X2 < lim supλt

e
such that

X1 and X2 are up-crossed and down-crossed infinitely often.

2. Let T be an up-crossing of X2 and Y (T ) be the last up-crossing of X1

before T . That is, T is some t > 0 such that λT−1
e

< X2 ≤ λT

e
and

Y (T ) = sup
t≤T

{λt−1
e

< X1 ≤ λt

e
}. Note that for any T and t ∈ [Y (T ), T − 1] we

have:

• X2 > λt

e
≥ X1 > λ̄e, therefore

• µt+1 − µt = ρ(λt

e
− λ̄e)

3. Now we prove that the time it takes to go from Y (T ) to T is (unboundedly)

increasing in T. This implies that the price increase from Y (T ) to T also

grows (unboundedly) with T . Formally we have:

X2 −X1 ≤ λT

e
− λ

Y (T )−1
e

≤
T�

t=Y (T )

�λt

e
− λt−1

e
�

≤
T�

t=Y (T )

αtd̄e

≤ (∆T + 1)αY (T )d̄e
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where ∆T = T − Y (T ) and d̄e is as defined in Assumption 4. The former

implies X2−X1
αY (T )

≤ (∆T + 1)d̄e. Which in turn implies ∆T → ∞ as T → ∞

(the time to go from X1 to X2 increases unboundedly with T).

Now notice that:

µ
T−1
e

= µ
Y (T )
e

+
T−2�

t=Y (T )

(µt+1
e

− µ
t

e
)

= µ
Y (T )
e

+
T−2�

t=Y (T )

ρ(λt

e
− λ̄e)

≥ µ
Y (T )
e

+
T−2�

t=Y (T )

ρ(X1 − λ̄e)

≥ µ
Y (T )
e

+∆Tρ(X1 − λ̄e)

where the second and third lines come from the properties itemized on 2).

Therefore the price at T − 1 increases (unboundedly) with T. i.e. µT−1
e

→ ∞

as T → ∞.

4. Suppose we select an up-crossing T → ∞ therefore µT−1
e

→ ∞, assumption

3 (choking prices) implies dT
k
= 0 for all k ∈ K with Ak,e > 0. Which in turn

implies λT

e
= λT−1

e
(1− αT ) < λT−1

e
. This contradicts the hypothesis that T

is an up-crossing of X2 (i.e. that λT−1
e

< X2 < λT

e
).

2.8.2 Proof of Corollary 2.2

Let us write the price update as follows

µ
t+1
e

= µ
t

e
+ ρt(λ

t+1
e

− λ̄e)

where

ρt =






ρ µt

e
+ ρ(λt+1

e
− λ̄e) > 0

µt
e

λ̄e−λ
t+1
e

µt

e
+ ρ(λt+1

e
− λ̄e) ≤ 0
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Now let T (t) = inf{T ≥ t | |µτ

e
− µ∗

e
| < 1

t
for all τ ≥ T}. We can write

|µt

e
− µ

∗
e
| = |µ∗

e
− µ

T (t)
e

+ µ
T (t)
e

− µ
t

e
|

=

������
µ
∗
e
− µ

T (t)
e

+
T (t)−1�

�=t

ρt(λ
�+1
e

− λ̄e)

������

=
1

αt

������
αt(µ

∗
e
− µ

T

e
(t)) + αt

T (t)−1�

�=t

ρt(λ
�+1
e

− λ̄e)

������

Since |µt

e
− µ∗

e
| → 0 it follows that

������
αt(µ

∗
e
− µ

T

e
(t)) + αt

T (t)−1�

�=t

ρt(λ
�+1
e

− λ̄e)

������
≤ L(αt)

γ

for some L > 0 and γ > 1. Thus

�
t>0

αt|µt

e
− µ∗

e
| =

�
t>0

�����αt(µ∗
e
− µT

e
(t)) + αt

T (t)−1�
�=t

ρt(λ�+1
e

− λ̄e)

�����

≤
�
t>0

L(αt)γ < ∞

2.8.3 Proof of Corollary 2.3

Note from the price update rule (Eq. 2.6) that if λt+1
e

−λ̄e > 0 then µt+1
e

−µt

e
> 0,

similarly if λt+1
e

− λ̄e ≤ 0 then µt+1
e

− µt

e
≤ 0. Hence, (µt+1

e
− µt

e
)(λt+1

e
− λ̄e) ≥ 0

for all t > 0. By Abel’s Lemma and Corollaries 1 and 2 we have:

�
t>0

(µt+1
e

− µt

e
)(λt+1

e
− λ̄e) =

�
t>0

[(µt+1
e

− µ∗
e
)− (µt

e
− µ∗

e
)](λt+1

e
− λ̄e)

= lim
t→∞

[(µt

e
− µ∗

e
)(λt+1

e
− λ̄e)]−

�
t>0

(µt

e
− µ∗

e
)(λt+1

e
− λt

e
)

=
�
t>0

(µt

e
− µ∗

e
)(λt

e
− λt+1

e
)

≤ d̄e
�
t>0

αt|µt

e
− µ∗

e
| < ∞
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2.8.4 Proof of Lemma 2.2

For all m ∈ M let us define Wm : R+ �→ R+ as follows

Wm(p) = max
r∈R+

[�Um(r)− rpm]

To highlight the fact that users demand according to �Um (instead of Um), we

use �dt
m
, �rt

m
and �P t

m
(instead of dt

m
, rt

m
and P t

m
). Let �pm(t) be a linear interpolation

of �pmt (i.e. �pm(t) = �pm�t� + t−�t�
�t�−�t�(�pm

�t� − �pm�t�) where �x� and �x� represent

the floor and ceiling functions respectively) and �d−m(t) its associated aggregate

demand vector for users M\ {m}, that is �d−m(t) =
�

�∈M\{m}

�d�(t) where

�d�(t) = argmax
r∈R+

[�U�(r)− r�p�(t)]

By Envelope Theorem it follows that ∇W�(�p�(t)) = −�d�(t).

After T > 0 rounds, it holds that

�P T

m
= −

T−1�

t=0

�

��=k

�pt+1
�

(�dt+1
�

− �dt
�
)

k ∈ K. By convergence, we can approximate �P T

k
with Riemann-Stieltjes integral

in the following sense:

�P T

m
= −

�

��=m

�
T

1

�p�(t)∂ �d�(t) + ��T
k
(ρ)

This approximation certainly introduces some error which we account in ��T
k
(ρ),

note however that as ρ → 0, changes in prices and demands become infinitesimal,

improving the approximation such that for any T > 0 we have ��T
k
(ρ) → 0 as ρ → 0 .
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Using integration by parts it follows that

−
�

T

1 �p�(t)∂ �d�(t) = − �p�(t)�d�(t)
���
T

1
+
�

T

1
�d�(t)∂�p�(t)

= − �p�(t)�d�(t)
���
T

1
−

�
T

1 ∇W�(�p�(t))∂�p�(t)

= {�p�(t)�d�(t)−W�(�p�(t))}
���
T

1

= −�U�(�dT� ) + �U�(�d1�)

where the second line follows from envelope theorem. Note that if the auction

closes at time T > 0, the total payment can be expressed as:

�P T

m
+

�
e∈E

cT
e
λe,−m(�rT ) = −

�
�∈M\{m}

�U�(�dT� ) +
�

�∈M\{m}
�U�(�d1�) +

�
e∈E

cT
e
λe,−m(�rT ) + �T

m
(ρ)

Finally, rt
m
→ �rm implies dt

m
→ �rm. Thus:

lim
T→∞

[ �P T
m +

�
e∈E

cTe λe,−m(�rT )] = −
�

�∈M\{m}
�U�(�r�) +

�
�∈M\{m}

�U�(�d1� ) +
�
e∈E

λe,−m(�r)ce(λe(�r)) + δm(ρ)

where

δm(ρ) = lim
T→∞

�
T

m
(ρ)

which finalizes the proof of this Lemma.
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Chapter 3

Uplink-Temperature Inertial Auction

3.1 Preliminaries

3.1.1 Introduction

Consider a wireless network composed of several access points (APs) and

intrinsically associated users with some service quality requirements. In what

follows, we shall refer to these users as primary users. Additionally consider a

set of potential (secondary) users that coexist with the primary users but are not

intrinsically associated with the APs.

In this chapter, we study the problem of a benevolent network manager that

wants to efficiently service the secondary users without compromising the service

quality of his primary users. To guarantee the service quality of primary users,

the network manager sets a cap on the maximum interference secondary users can

generate at each AP. This cap is known as AP temperature. For this problem, we

propose Iterative Temperature Auction (ITA) , an iterative auction by which the

network manager can allocate the temperature of the different access points to

efficiently service secondary users.

In the previous chapter (Chapter 2), we studied the efficient allocation of network

capacity. In a similar way, this chapter studies the efficient use of constrained

resources, namely, constrained interference power at the APs. However, structural
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differences in these problems hinder the application of the Iterative Capacity

Auction (ICA), introduced in Chapter 2, to the problem at hand:

• In Chapter 2, the “network-capacity consumption” of each user can be

described by a single parameter , rm. In contrast, the “temperature con-

sumption” of each user is vectorial (with as many components as APs).

• In the problem described in Chapter 2, each user has an intrinsic utility,

derived from his individual flow rate. Externalities were assumed additive

to this intrinsic utility and were assumed to be marginally symmetric (See

Eq.2.1). In contrast, because of the wireless nature of the problem Chapter

3, externalities here are heavily intertwined in the utility functions.

• The differences mentioned above are reflected in the auction designs pro-

posed. For example, the ICA (in Chapter 2) uses homogeneous prices for

externalities, which are associated with congestion. In contrast, the ICA uses

discriminative (i.e. user specific) prices for externalities, which are associated

with interference power. Furthermore, since externalities depend on the

functional form of the utilities, the auctioneer needs to directly request some

extra information, that cannot be extracted from the power profile updates.

3.1.2 Basic Framework

Assume the access point association and power profiles are fixed for the primary

users. Configuration of the uplink access of the secondary users is to be assessed,

constrained by some restrictions on the quality of the primary users. The system

access method is CDMA DSSS, in which each user is assigned a code that allows

several users to share the same bandwidth.

Formally, let A = {1, 2, ..., A} and M = {1, 2, ...,M} be the index sets of access

points and secondary users respectively. Note that M will denote the number of

secondary users, and A the number of APs.
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To guarantee the service quality of the primary users, the interference generated

by the secondary users at the AP a ∈ A must be no greater than a threshold P̄a.

This cap is known as the interference temperature of the AP. Note that the set

of primary users is not indexed; all information we require to assess the power

profile of secondary users is the temperature on each AP. For simplicity, we assume

all APs have unitary and mutually exclusive bandwidth. The results are easily

extended to the case of different bandwidths.

Let �pm,a be the transmission power of the signal from user m ∈ M to AP

a ∈ A, and hm,a the associated gain. Thus pm,a = |hm,a|2 �pm,a is the power user

m ∈ M generates at the AP a ∈ A. Let pm = [pm,1, pm,2, ..., pm,A] denote user

m’s power profile. Note that in contrast with most literature, our power profile

refers to the power at the receiver (not at the transmitter), this will certainly ease

the notation that follows. Due to the economic implications of our analysis, it is

convenient to think of P̄a as a power level to be consumed by secondary users and

pm as the power-consumption profile of m ∈ M .

Let p = [p1,p2, ...,pM ] denote the joint power profile of all users. The aggregate

power of secondary users at the AP a ∈ A, is denoted by Pa(p) =
�

m∈M
pm,a. The

rate achieved by secondary user m ∈ M will be a function of the joint power profile

p, as follows:

rm(p) =
�

a∈A

log2



1 +
pm,a

Na +G(Ia +
�
i �=m

pi,a)



 (3.1)

where: (i) G < 1 is the system gain, which is given by the coding of the CDMA

DSSS system, (ii) Na is the noise power at the AP a ∈ A, and (iii) Ia is the power

received from the primary users [11].

Let Um(rm) be m’s quasilinear utility (willingness to pay), when achieving

aggregate rate rm ≥ 0. We assume Um : R+ → R+ is strictly increasing and

concave. Concavity of Um() is a very reasonable assumption. If user m ∈ M is

given a small rate rm ≥ 0 he will accommodate the information that provides
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the maximum utility per data rate (information with the highest priority); as the

data rate increases he can start to accommodate information that provides lower

marginal utility (information with lower priority). Therefore, it is reasonable to

consider a concave utility function in order to capture this decreasing marginal

utility.

The social surplus achieved by a joint power profile p ∈ RMA

+ is
�

m∈M
Um(rm(p)).

A joint power profile is said to be (socially) efficient if it maximizes the social

surplus. That is, if it solves the following maximization problem:

argmax
p∈P

[
�

m∈M

Um(rm(p))] (3.2)

where P is the set of feasible power profiles, i.e. P = {p ∈RMA

+ : Pa(p) ≤

P̄a, ∀a ∈ A}.

In what follows we assume concavity of the social surplus
�

m∈M
Um(rm(p)).

Hence, sufficient conditions for efficiency of p ∈P are:

U �
m
(rm(p))

∂rm
pm,a

(p)−
�
i �=m

U �
i
(ri(p))

∂ri
pm,a

(p)− µa ≤ 0

for all m ∈ M, a ∈ A with equality if pm,a > 0

(3.3.a)

and

µa(
�

m∈M
pm,a − P̄a) = 0 for all a ∈ A (3.3.b)

for some µa ≥ 0 with a ∈ A.

Let us highlight some insights of the problem we described above. The temper-

ature of each AP is a divisible and heterogeneous commodity. Divisible, because

users can use fractions of the available temperatures. Heterogeneous, because the

benefit a secondary user attains from ”consuming some of level of temperature”,

changes from one AP to another.

The power allocation problem, described above, needs to account for negative
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externalities with some level of complexity. The higher the power of one user at

a given access point, the higher his data rate. However, this will also erode the

data rate of other users affiliated to the same A.P. In comparison with the flow

adjustment problem, in Chapter 2, externalities here are not homogeneous nor

additive to the intrinsic utility. This characteristics, will change the definition of

the externality price, and the way payments are collected. We will also need some

information feedback from users, not only their profile update.

Our objective is to design an iterative auction that drives the system to the

efficient configuration. The main difficulty in this design is that secondary users

are rational bidders with private information. That is, they are willing to maximize

their individual utility, even at the expense of the social surplus. Hence, the need

to align individual incentives with the social objective.

In order to provide some intuition in the auction design we introduce later, let

us make some important observations. Suppose the auctioneer (primary network)

knows the efficient joint power profile p
∗ ∈ RMA

+ , shadow prices {µa ≥ 0 : a ∈ A}

and marginal utilities {U �
m
(rm(p∗))}. In this case, each access point a ∈ A can

calculate the following discriminative prices for each user m ∈ M

ζa,m =
�

i �=m

�
U

�
i
(ri(p

∗))
∂ri

∂pm,a

(p∗)

�

=
�

i �=m

U
�
i
(ri(p

∗))




Gp∗

i,a

[p∗
i,a

+Na +G(Ia +
�
j �=i

p∗
j,a
)][Na +G(Ia +

�
j �=i

p∗
j,a
)]



 log2 e

Now, assume m’s competitors have power profiles fixed at their efficient levels,

{p∗
i
∈ RA

+ : i ∈ M\{m}}. Let p∗
−m

represent the efficient profile ofm’s competitors,

and rm(pm,p
∗
−m

) be the rate m would achieve with power profile pm.

If each AP a ∈ A, imposes fixed prices µa and ζa,m, to user m ∈ M; then, user

m faces the following problem:

max
pm∈RA

+

[Um(rm(pm,p
∗
−m

))−
�

a∈A

pm,a(µa + ζm,a)]
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By concavity, user m will set his power profile to some pm ∈ RA

+, such that

U
�
m
(rm(pm,p

∗
−m

))
∂rm

pm,a

(pm,p
∗
−m

)− ζm,a − µa ≤ 0

for all a ∈ A with equality if pm,a > 0. Which resembles condition in Eq. (3.3.a),

and uniquely defines p
∗
m
. The analysis above inspires the Inertial Temperature

Auction, which is formally introduced in Section 3.3.

The Inertial Temperature Auction runs in discrete time steps (or rounds)

indexed by t ∈ {0, 1, 2, ...}. At each round, each secondary user m ∈ M is given

some discriminative prices at each AP, and is asked to update his power profile

following a predefined rule (similar to the one above). Users that follow this rule,

are called truthful. Note that users may not be truthful, and respond to this

request following their own strategy. However, the maximum benefit any user can

attain by not being truthful, can be made as small as desired. In other words,

being truthful is an �-dominant strategy. Furthermore, when all users are truthful

the socially efficient power profile is implemented. In the context of mechanism

design theory, we say that ITA truthfully implements the socially efficient power

profile, in �-dominant strategies.

3.2 Literature Review

In order to implement the socially efficient power configuration, the primary

network manager can use the VCG mechanism. However this mechanism has many

drawbacks, already mentioned in Section 2.2. The main drawbacks of VCG are

related to the complete revelation of the utility-structures and the demands for

sophisticated computation infrastructure [3, 30]. In order to circumvent many of

these difficulties, several iterative auction designs have been proposed.

Ausubel proposes an auction for heterogeneous divisible resources that im-

plements the efficient resource configuration in Nash equilibrium [2]. However,

Ausubel’s auction does not account for externalities. To explore the results of
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naively applying Ausubel’s auction in our problem, consider the following example.

Two secondary users, with utilities Um(rm) = 2rm for m ∈ {1, 2}, want to establish

an up-link connection with an AP that has an available temperature of T = 10,.

Interference from primary users is I = 5, system gain is G = 1/1024 and noise

power is N = 1. In the Annex, Section 3.8.1, we prove that the objective function

in hand is concave. A discrete time implementation of Ausubel’s design, can be

as follows: Let µt be the price for power received at the AP, and pt
m

the power

received from secondary user m ∈ {1, 2} at time t > 0. Assuming truthful users,

at each iteration t > 0, each user m ∈ {1, 2} updates his power profile as follows

p
t

m
= argmax

d∈R+

[Um(rm(d, p
t−1
i

))− dµ
t−1] (3.4)

where rm(d, p
t−1
i

) denotes the data rate user m achieves with power d, if the

power of his competitor i �= m remains unchanged. In turn, the AP manager

updates the price as follows:

µ
t = [µt−1 + ρt




�

m∈{1,2}

p
t

m
− T



]+

where ρt =
1

t+1 and [x]+ = max{0, x}.

However, this implementation of Ausubel’s design, induces the cyclical behavior

in Fig. 3.1. By the arguments introduced in Section 3.1.2, discriminative prices

ζt
m
, as described in Eq.(3.5), will align truthful power updates with the efficiency.

ζ
t

m
= U

�
i
(ri(p

t

i
, p

t

m
))

�
Gpt

i

[pt
i
+N +G(I + pt

m
)][N +G(I + pt

m
)]

�
log2 e (3.5)

In this case we say that user m ∈ {1, 2} is truthful if he updates his power

profile according to:

p
t

m
= argmax

d∈R+

[Um(rm(d, p
t−1
i

))− d(µt−1 + ζ
t−1
m

)]
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with this additional prices ({ζm}m∈{1,2}), we say that truthful updates are

aligned with efficiency because convergence of the joint power profile implies

efficiency conditions in Eq. (3.3.a). Unfortunately when these prices are introduced,

convergence is not achieved and results are virtually the same as those in Fig. 3.1.

Several authors have studied auction designs specifically designed for the efficient

use of wireless resources [5, 7, 14, 29, 31, 36].

Boche and Naik [7] make a general approach to the design and implementation

of mechanisms for the allocation of resources in interference coupled wireless

systems. Their work focuses on the conditions for implementation of different

system configurations in Nash equilibrium and dominant strategies. This work

reveals some inherent difficulties in the strategy proof (i.e. truthful) implementation

of socially efficient configurations and characterizes Pareto optimal bounds for

different constraints in the power configuration (namely total power and individual

power constraint).

Bae et al. [5], use the Ausubel’s auction to sell a temperature T of a primary

receiver to several transmitters receivers (tx-rx) pairs. They assume interference

from the unique primary user is much larger than the interference from any

secondary user and modify Ausubel’s auction to achieve a core-selecting auction

(not necessarily efficient). Our problem can be easily transformed in the framework
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stated by Bae et al. if we consider the AP to be the receiver of the primary user

and having collocated receivers for the tx-rx pairs. However our mechanism allows

for multiple APs and we do not assume the power from any secondary user to

be negligible compared to the primary users’. In fact note that such approach

may not be practical for the dynamic use of spectrum by technologies having

complementary busy hours as is the case of cellular telephony and digital video

broadcast [29].

Yu et al. [36], propose a pricing scheme for power control in a framework

where one access point tries to maximize its revenue by selling a residual power to

secondary users. However utility of secondary users is assumed to be of the type

Um = αmrm and users are assumed to be price takers.

Huang et al. [14], study auction mechanisms for sharing spectrum with sec-

ondary users given a maximum interference temperature. In this work only one

measuring point is considered and efficiency is attained for what the authors

call large systems (where available bandwidth, temperature and the number of

secondary suers go to infinity), furthermore this configuration is achieved in Nash

equilibrium and with some restrictions in the functional form of secondary users’

utilities.

Mohammadian and Abolhassani [31], consider a scenario with several primary

users with different receivers (hence considering interference temperature at several

sites, in contrast with Huang et al.[14]). This work defines an oligopoly market

that clears in a Nash Equilibrium. However efficiency is not guaranteed and a

specific utility functional form is assumed.

In what follows we introduce the Inertial Temperature Auction (ITA), an

iterative auction design that implements (in �-dominant strategies) the socially

efficient joint power profile.

This chapter is organized as follows; in Section 3.3 we propose ITA, Section 3.4

introduces some basic assumptions, Sections 3.5 and 3.6 prove that ITA truthfully

implements the efficient joint power profile in �-Dominant strategies. Finally section
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3.7 presents some conclusions and important remarks.

3.3 Inertial Temperature Auction

The Inertial Temperature Auction runs in discrete time rounds t = {1, 2, ...}

where each AP (a ∈ A) reveals a common control price µt

a
and a discriminatory

externality price ζt
a,m

for each secondary user m ∈ M. For any AP a ∈ A,

control prices {µt

a
}t≥0 will guarantee that the aggregate power from secondary

users is below the threshold temperature P̄a. For any user m ∈ M, externality

prices {ζt
a,m

}a∈A,t≥0 will help m internalize the externality effect imposed on his

competitors. Given such prices, each user m ∈ M calculates his demand profile

d
t

m
= [dt

m,1, ..., d
t

m,A
] following a predefined rule (see Eq. 3.6), however the power

profile is not updated to current demand, it is updated towards demand with an

increasing inertia that prevents abrupt changes in the joint power profile (details

will be given later). Note that we used d
t

m
to denote demand profile of user

m ∈ M at time t ≥ 0, while his power profile is denoted by p
t

m
= [pt

m,1, ..., p
t

m,A
].

Joint power profile is denoted by p
t = [pt

1, ...,p
t

M
] and joint demand profile by

d
t = [dt

1, ...,d
t

M
] . Each AP will in turn update prices following some simple rules

(see Eq.3.8 and Eq.3.9). The process is repeated until a stationarity criteria is

achieved. Let µt = [µt

1, ..., µ
t

A
], the auction finishes when the stationarity criteria,

|dt − p
t−1|+ |µt − µt−1| < η is achieved for some small η > 0. The following

pseudocode, formally introduces the Inertial Temperature Auction:

1. General information. Users are informed about the gain of the system (i.e.

G) and the interference from primary users at each AP (i.e. {Ia}a∈A)

2. Initialization. Prices and allocations are initialized as follows: p0
m,a

= d0
m,a

=

0, ζ0
a,m

= 0 and µ0
a
= µ̄ for all a ∈ A and m ∈ M, where µ̄ is a price large

enough to guarantee null demand from each user to each AP (µ̄ is formally

introduced in Section 3.4).
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3. Iterate. For t > 0, power profiles and prices are updated:

(a) Each access point (a ∈ A) reveals the aggregate power from secondary

users (P t−1
a

=
�

m∈M
pt−1
m,a

), common price (µt−1
a

), and discriminatory prices

({ζt−1
a,m

}m∈M) from the previous iteration.

(b) Each secondary user m ∈ M finds his demand profile as follows

d
t

m
= arg max

dm∈RA
+

[Um(rm(dm,p
t−1
−m

))− dm·(µt−1 + ζt−1
m

)] (3.6)

where ζt−1
m

= [ζt−1
1,m , ..., ζ

t−1
A,m

] and rm(dm,p
t−1
−m) denotes the data rate user

m ∈ M will achieve with power profile dm if the power profile of his

competitors M\{m} remains unchanged. In what follows we shall refer

to the demand defined in Eq. 3.6 as the truthful demand.

(c) Users update their power profile as follows:

p
t

m
= p

t−1
m

+ αt(d
t

m
− p

t−1
m

) (3.7)

for each m ∈ M, where αt ∈ (0, 1) and αt → 0+ (more details on αt in

Section 3.3.3).

(d) After power profiles have been updated each secondary user m ∈ M

reports U �
i
(ri(pt)). In response to this report and the power profile

updates, each access point a ∈ A updates his control and externality

prices as follows:

µ
t

a
= [µt−1

a
+ ρ(P t

a
− P̄a)]

+ (3.8)

where ρ > 0, and

ζ
t

a,m
=

�

i �=m




U �
i
(ri(pt))Gpt

i,a

[pt
i,a

+Na +G(Ia +
�
j �=i

pt
j,a
)][Na +G(Ia +

�
j �=i

pt
j,a
)]



 log2 e

(3.9)
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(e) The auctioneer checks the stopping rule |dt − p
t−1|+ |µt − µt−1| < η.

If the condition does not hold, iterate again (steps a) through e)), if it

does, the auction ends and user m ∈ M is assessed a payment of τ t
m

defined by

τ
t

m
= τ

t−1
m

−
�

i �=m

[ri(p
t)− ri(p

t−1)]U �
i
(ri(p

t)) (3.10)

with τ 0
m
= 0 for all m ∈ M. Note that this payment can be collected

throughout the iterations. In subsection 3.3.4 we propose a device for

collecting this payment in an iterative and distributed fashion. However

the auctioneer may use a centralized entity or any other device he finds

convenient.

3.3.1 Notes about the auction design

We would like to highlight the following facts of the algorithm:

• In step 3.a, each discriminatory price need only be revealed to the respective

secondary user.

• In step 3.b when user m ∈ M calculates his truthful demand as stated in (Eq.

3.6) he does not need to know the previous power profile of his competitors,

having the aggregate power of all APs (i.e. {P t−1
a

}a∈A) will be enough.

• Note that users don’t report their demand directly to APs however this will

be indirectly revealed by the change in the power profile.

• Users that update their power profile according to Equations (3.6) and (3.7)

and truthfully report U �
m
(pt) are said to be truthful. Note that given the

private nature of the utility function Um(), users may deviate from this

desired behavior. However in Section 3.6 we prove that it is in the best

interest of each user to follow these rules, no matter the strategies followed

by his competitors.
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• When applying the ITA to the problem of studied in the literature review

(Section 3.2), the received power of user 1 at the AP is as shown in Fig.

3.2. The power for user 2 is virtually the same. Note that the efficient

configuration in which each user receives half of the available temperature

(T = 10) is achieved.
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Figure 3.2

3.3.2 About externality price

The externality price (ζt
a,m

) will help user m ∈ M internalize the effect of

pm,a on his competitors utility given joint profile p
t. We now provide an intuitive

explanation of ζt
a,m

, the formal proof of these arguments is given in the following

sections. Note that

ζ
t

a,m
= −

�

i �=m

�
U

�
i
(ri(p

t))
∂ri

∂pm,a

(pt)

�
(3.11)

Furthermore truthful demand implies

U
�
m
(rm(d

t+1
m

,p
t

−m
))

∂rm

∂pm,a

(dt+1
m

,p
t

−m
)− (µt

a
+ ζ

t

m,a
) ≤ 0 (3.12)

with equality if dt+1
m,a

> 0
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Hence if dt → p
∗, pt → p

∗ and µt → µ∗ for some p
∗ ∈ RMA

+ , µ∗ ∈ RA

+, the

limit configuration (p∗) will hold efficiency condition in Eq. 3.3.a.

3.3.3 About inertia

We state the following conditions on the schedule {αt}t≥0

• αt ∈ (0, 1)

• αt → 0+ with αt+1 > αt for t ≥ 0.

•
�

t≥0 αt → ∞

•
�

t≥0(αt)γ < ∞ for any γ > 1

Note that since αt → 0+ power adjustment is increasingly less responsive to

demand. However since
�

t≥0 αt → ∞ any user can make sure its power profile

approximates any desired value. In other words, users do have control on their

power profile, however this control is increasingly more difficult as the auction

progresses. This inertia in the change of the joint power profile allows users to

internalize the effect of collective updates, preventing the erratic behavior we found

applying other mechanisms that are not designed to deal with externalities (see

Fig. 3.1).

3.3.4 About payment rule

When introducing the payment rule (See Eq. 3.10) it is not clear how this

payments are to be implemented. We leave this as an open problem to the

auctioneer (i.e. the primary network administrator). However we would like to

highlight that this aggregate payment can be implemented in an iterative and

distributed schedule where the administrator of AP a ∈ A charges user m ∈ M

after iteration t > 0 a payment of ∆τ t
m,a

= −
�
i �=m

(rt
i,a

− r
t−1
i,a

)U �
i
(rt

i
) where (rt

i,a
is

the rate user m achieves at AP a at time t, i.e.:
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r
t

i,a
= log2



1 +
pt
i,a

Na +G(Ia +
�
j �=i

pt
j,a
)





and (rt
i,a

− r
t−1
i,a

) is the change in rate of m at AP a after iteration t. the

administrator of AP a ∈ A

Let us give some intuition about the payment rule in Eq. 3.10), at iteration t

user m will pay ∆τ t
m,a

= −
�
i �=m

(rt
i
− r

t−1
i

)U �
i
(rt

i
), which approximates the negative

change in utility for m’s competitors after iteration t > 0, hence the aggregate

payment τm will approximate the negative of the change in his competitors utility

since the beginning of the auction until the end. Hence if the joint power profile

converges (i.e. p
t → p for some p ∈RMA

+ ), which we prove in Theorem 2.2, the

aggregate payment of m will be:

τm ≈ −
�

i �=m

�
Ui(ri(p

∗))− Ui(ri(p
0))

�

Therefore profit of user m can be calculated as a function of the limit joint

power profile (p∗) as follows

Vm(p
∗) ≈ Um(rm(p

∗))− τm

≈
�

j∈M

Uj(rj(p
∗))−

�

i �=m

Ui(rj(p
0))

Note that the term
�
i �=m

Ui(rj(p0)) is a constant in what refers to the strategy of

user m. Therefore m’s final profit will be a function of the final power profile (p∗),

furthermore his profit is the social surplus up to a constant. Hence it is in the best

interest of m, to achieve the final configuration that maximizes the social surplus

(i.e. the socially efficient configuration).

In the following sections we prove the three main properties of our auction

design. In Theorem 3.1 we prove the convergence of control prices µt

a
for all

a ∈ A under the assumption of truthful power update. In Theorem 3.2 (also
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under the assumption of truthful power updates) we prove that the joint power

profile p
t converges to the unique efficient profile (the solution of problem in Eq.

3.2). Finally, in Theorem 3.3 we prove that it is in the best interest of users

m ∈ M to update truthfully, independent of the behavior of his competitors. Note

that the rationality behind most of these results has been already outlined in the

(“intuitive”) introduction of the externality price and payment rule. For the formal

prove we require the following set of assumptions.

3.4 Assumptions

The standing assumptions for the analysis of the proposed auction design are

as follows:

Assumption 1: For each user m ∈ M, Um(rm) is twice continuously differ-

entiable and strongly concave in rm.

Assumption 2: The social surplus
�

m∈M
Um(rm(p)) is strictly concave in p.

Assumption 3: There exist some µ̄ > 0 such for any AP with a (per power-

unit) price larger than µ̄, the power demand of all secondary users is always zero.

We should refer to µ̄ as the ”choking” price. 1

Assumption 4: Each user m ∈ M has a maximum power demand at each

AP a ∈ A, say d̄m,a > 0, such that if p
∗ is the solution to problem in Eq. 3.2 then

d∗
m,a

< p̄m,a. Note this also implies that the norm of any joint demand and power

profile is bounded. i.e. there exist some d̄ such that |pt| < d̄ and |dt| < d̄ for all

t ≥ 0.

1For a formal description of Assumption 3, let pm,−a ∈ RA−1
+ represent the power of user

m ∈ M at all APs but a ∈ A and p−m ∈ R(M−1)A
+ the power profile of m’s competitors. Also

let rm(d,pm,−a,p−m) the rate of user m when pm,a = d and the rest of the joint power profile is
as described by pm,−a and p−m . Assumption 3 states that

arg max
d∈R+

[Um(rm(d,pm,−a,p−m))− dµa] = 0

for all a ∈ A, pm,−a ∈ RA−1
+ , p−m ∈ R(M−1)A

+ , and µa > µ̄
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3.5 Convergence of Prices and Joint Power Profile

In this section we study the stability and efficiency of the proposed mechanism

assuming that all users update their demand truthfully, that is pt

m
= p

t−1
m

+αt(dt

m
−

p
t−1
m

) where d
t

m
is as stated in Eq. 3.6 for all m ∈ M.

Lemma 3.1 (Boundedness of secondary power P t

a
=

�
pt
m,a

m∈M
). lim supt→∞ P t

a
≤

P̄a, a ∈ A.

Proof : For the formal proof we refer the reader to the appendix. In what

follows, we provide a sketch of the proof. Suppose P t

a
→ ∞ or P t

a
→ P ∗

a
> P̄a, this

implies µt

a
→ ∞, which in turn implies dt

m,a
→ 0 for all m ∈ M, therefore P t

a
→ 0,

a contradiction. Now assume P t

a
oscillates in the limit (i.e. lim supt→∞ P t

a
>

lim inft→∞ P t

a
) with lim supt→∞ P t

a
> P̄a. This implies the existence of an interval

[X1, X2] with P̄a < X1 < X2 which is up-crossed infinitely often. Because of

increasing inertia in the power adjustment, control price increases without bound,

i.e. µt

a
→ +∞, as P t

a
approaches X2 (from X1), which is contradiction with

Assumption 3 (“choking” prices). �

Theorem 3.1: (Price Convergence) µt

a
→ µ∗

a
≥ 0 for all a ∈ A.

Proof : Suppose the sequence {µt

a
: t > 0} does not converge. Therefore,

either µt

a
→ ∞ or it oscillates with lim inf µt

a
< lim supµt

a
. The former is easily

discarded since large prices will result in null demand (dt
m,a

= 0 for all a ∈ A)

leading to P t

a
→ 0 which in turn implies µt

a
→ 0 which is a contradiction. Now

assume that lim inf µt

a
< lim supµt

a
, this price oscillation is only possible if the

aggregate secondary power of AP a ∈ A, i.e. P t

a
, oscillates around P̄a with

lim inf P t

a
< P̄a < lim supP t

a
, which contradicts Lemma 1. �

The following 3 corollaries are preliminary results to the proof of Theorem 3.2

in which we show that the limit power configuration is the efficient one.

Corollary 1 guarantees that in the limit, efficiency condition in Eq. 3.3.b is

held.



62

Corollary 3.1: (Complementary Slackness). µt

a
(P̄a − P t

a
) → 0, a ∈ A

Proof: If µt

a
→ µ∗

a
= 0, Lemma 1 implies µt

a
(P̄a − P t

a
) → 0. If µt

a
→ µ∗

a
> 0

then price adjustment rule (Eq. 3.8) implies P t

a
→ P̄a. �

Corollary 3.2:
�
t>0

αt|µt

a
− µ∗

a
| < ∞, a ∈ A.

Proof: See appendix. �

Corollary 3.3: 0 ≤
�
t>0

(µt+1
a

− µt

a
)(P t+1

a
− P̄a) < ∞, a ∈ A.

Proof: See appendix. �

In order to give some clues on the importance of Corollary 3.3 let us describe

briefly some of the findings we will cover in detail in the following subsection.

In subsection 3.5.1 we study the dynamics of the joint power-profile updates by

considering a function that approximates the social surplus for large values of t.

We study the change in that approximate social surplus as the effect of power

profile and control prices updates. The effect of prices update at iteration t will be

of the form (µt+1
a

− µt

a
)(P t+1

a
− P̄a). Corollary 3.3 builds upon Corollary 3.2 and

states that the aggregate effect of this updates throughout the auction is bounded.

3.5.1 Power profile convergence and efficiency

Having established that prices convergence, in this section we analyze the

convergence of the joint power profile, pt, to the socially efficient configuration.

Consider the function Ψ : RMA

+ × RA

+ → R defined as follows:

Ψ(p,µ) =
�

m∈M

Um(rm(p)) +
�

a∈A

µa(P̄a −
�

m∈M

pm,a)

In light of Corollary 1 (Complementary slackness), Ψ(pt,µt) is a good approxima-

tion of social surplus for large values of t > 0.

We now prove that our algorithm is steepest ascent in the sense that power

profiles are updated towards a direction close to the steepest ascent direction.

Formally we have that (dt+1 − p
t).∇pΨ(pt,µt) ≥ 0.
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Proposition 3.1 (Steepest ascent property). There exist some M > 0

such that (dt+1 − p
t).∇pΨ(pt,µt) ≥ M �dt+1 − p

t�2 ≥ 0

Proof: It will suffice to prove that there exist some Mm > 0 such that

(dt+1
m

− p
t

m
) ·∇pmΨ(pt, µt) ≥ Mm �dt+1

m
− p

t

m
�2 for all m ∈ M. In what follows

we consider any user m ∈ M and divide the index set A into two sets A+ = {a ∈

A : dt+1
m,a

> 0} and A0 = A\A+. Note that truthful update (Eq. 3.6) implies:

ζt
m,a

+ µt

a
= U �

m
(rm(dt+1

m
,pt

−m
)) ∂rm

∂pm,a
(dt+1

m
,pt

−m
) ≥ 0 for all a ∈ A+

ζt
m,a

+ µt

a
≥ U �

m
(rm(dt+1

m
,pt

−m
)) ∂rm

∂pm,a
(dt+1

m
,pt

−m
) ≥ 0 for all a ∈ A0

Using Eq.3.11 we have:

(dt+1
m

− p
t

m
) ·∇pmΨ(pt, µt)

=
�
a∈A

(dt+1
m,a

− pt
m,a

)[U �
m
(rm(pt)) ∂rm

∂pm,a
(pt)− (ζt

m,a
+ µt

a
)]

=
�

a∈A+

(dt+1
m,a

− pt
m,a

)[U �
m
(rm(pt)) ∂rm

∂pm,a
(pt)− U �

m
(rm(dt+1

m
,pt

−m
)) ∂rm

∂pm,a
(dt+1

m
,pt

−m
)]

+
�

a∈A0

(−pt
m,a

)[U �
m
(rm(pt)) ∂rm

∂pm,a
(pt)− (ζt

m,a
+ µt

a
)]

≥
�
a∈A

(dt+1
m,a

− pt
m,a

)[U �
m
(rm(pt)) ∂rm

∂pm,a
(pt)− U �

m
(rm(dt+1

m
,pt

−m
)) ∂rm

∂pm,a
(dt+1

m
,pt

−m
)]

= (dt+1
m

− p
t

m
) · (∇pmUm(rm(pt))−∇pmUm(rm(dt+1

m
,pt

−m
)))

≥ Mm �dt+1
m

− p
t

m
�2

where the last inequality follows from Assumption 1.�

Note that Assumption 4 (bounded demand) altogether with power adjustment

rule (Eq. 3.7) implies the existence of a compact set D⊂RMA such that pt,dt∈D

for all t ≥ 0. Assumption 1 and 2 implies ∇pΨ is Lipschitz continuous in D ,

therefore there exist some L > 0 such that:

|∇pΨ(p,µ)−∇pΨ(p̃,µ)| ≤ L||p− p̃||
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for all p, p̃∈D, µ ∈ RA

+. This in turn implies:

|Ψ(p̃,µ)−Ψ(p,µ)− (p̃− p) ·∇pΨ(p,µ)| ≤ L

2
�p̃− p�2 (3.13)

for all p, p̃∈D, µ ∈ RA

+.

The following proposition uses this result and Proposition 3.1 to state the

convergence of the social surplus approximation Ψ(pt,µt) to some level Ψ̃ ∈ R.

Proposition 3.2 (Approx. Surplus Convergence). Ψ(pt,µt) → Ψ̃ ∈ R

Proof : Let P t = [P t

1, . . . , P
t

A
] and P̄ = [P̄1, . . . , P̄A], from Eq. 3.13 and

Proposition 1, it follows that:

Ψ(pt+1,µt+1)−Ψ(pt, µt) = Ψ(pt+1,µt+1)−Ψ(pt+1,µt) +Ψ(pt+1,µt)−Ψ(pt,µt)

≥ (µt+1 − µt) · (P̄ − P
t+1

) + (pt+1 − p
t) ·∇pΨ(pt, µt)

−L

2 �p
t+1 − p

t�2

≥ (µt+1 − µt) · (P̄ − P
t+1

) + αt(dt+1 − p
t) ·∇pΨ(pt,µt)

−L

2α
2
t
�dt+1 − p

t�2

= −(µt+1 − µt) · (P t+1 − P̄ )− Ld̄2

2 α2
t

where d̄ > 0 is the bound on the norm of joint demand and power profiles (see

Assumption 4). From Corollary 3.3 it follows that Ψ(pt,µt) does not go to −∞

neither it oscillates. Thus boundedness (above) of Ψ(pt,µt) implies convergence.�

Proposition 3.3 (Limit Stationarity). �dt+1 − p
t� → 0

Proof : Similar as in the proof of Proposition 2 we have

Ψ(pt+1,µt+1)−Ψ(pt, µt) ≥ (µt+1 − µt) · (P̄ − P
t+1

) + αt(dt+1 − p
t) ·∇pΨ(pt,µt)

−α2
t

Ld̄2

2
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where again d̄ > 0 is the bound on the norm of joint demand and power profiles

(see Assumption 4). From proposition 3.2 and Corollary 3.3 it follows that

�
t>0

αt(dt+1 − p
t) ·∇pΨ(pt,µt) ≤ Ψ̃−Ψ(p0,µ0)−

�
t>0

(µt+1 − µt)(P̄ − P
t+1

)

+
�
t>0

Ld̄2

2 α2
t

< ∞

Hence, (dt+1 − p
t) ·∇pΨ(pt,µt) → 0. Which in light of Theorem 3.1 (price

convergence) becomes (dt+1 − p
t) ·∇pΨ(pt,µ∗) → 0. Finally Proposition 3.1 gives

us �dt+1 − p
t� → 0.

Theorem 3.2. p
t → p

∗ ∈ RMA

+ where p∗ is the unique solution of problem in

(Eq. 3.2).

Proof : Note that limit stationarity in addition to truthful demand (see Eq.3.12)

implies that for t → ∞:

U
�
m
(rm(p

t))
∂rm

∂pm,a

(pt)− (µ∗
a
+ ζ

t

m,a
) ≤ 0 for all m ∈ M, a ∈ A

with equality if pt
m,a

= 0 which resembles efficiency condition in (Eq. 3.3.a).

This altogether with Corollary 3.1 implies that any limit configuration is efficient,

furthermore, strict concavity of the social surplus (Assumption 2) implies uniqueness

of the efficient configuration. Hence p
t→ p

∗ where p
∗ is the unique solution of

problem in (Eq. 3.2).�

3.6 Incentive Compatibility

Convergence and Efficiency results (Theorems 3.1 and 3.2) relay on the as-

sumption that users are truthful, that is, at each iteration t > 0 each user m ∈ M

updates his power profile as stated in Equations (3.6) and (3.7) and truthfully
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reports U �
m
(pt). In this section we prove that it is in the best interest each user to

be truthful no matter the behavior of his competitors.

First note that the auctioneer can impose an activity rule stating that power

profiles of user m ∈ M must be consistent with some strongly concave utility

function �Uk() ∈ U where U is the set of strongly concave functions from R+ to R.

That is, k’s power profile must be updated as follows:

p
t

m
= p

t−1
m

+ αt(�dt

m
− p

t−1
m

) where

�dt

m
= arg max

dm∈RA
+

[�Um(rm(dm,p
t−1
−m

))− dm·(µt−1 + ζt−1
m

)] (3.14)

for some function �Um ∈ U.

Note that at time t > 0 user m ∈ M directly reports U �
m
(rm(pt)) and indirectly

(through the profile update) reports U �
m
(rm(dt,pt−1)). The auctioneer can then

enforce the activity rule above by checking that U �
m
() is strictly decreasing for all

m ∈ M. Also since µ0
a
= µ̄ for all a ∈ A it is reasonable to impose an additional

activity rule stating that d1
m
= 0 ∈ RA

+. Any user violating this activity rules will

be penalized with a large payment and removed from the auction. This penalization

will guarantee that all users will update in a way that is consistent with some

utility function from the space U.

In what follows we shall consider a strategy by user m ∈ M in which he

behaves as if his utility function were Ũm ∈ U. To keep notation consistent we

use �dt
m,a

(instead of dt
m,a

) to denote power demand of user m ∈ M at AP a ∈ A

and �τ t
m

(instead of τ t
m
) to denote the cumulative payment of user m ∈ M at time

t > 0. The following Lemma describes the resulting payments to be assessed on

users. The characterization of these payments will be used later to show that it

is an �−dominant strategy to update power profile truthfully (i.e. according to

Equations 3.6 and 3.7).

Lemma 3.2: When users employ utility functions {�Um ∈ U}m∈M, to calculate

demands as in Eq.(3.14) then power profiles and prices converge (i.e. �pt → �p ∈
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RMA

+ , �µt → �µ ∈ RA

+) and

lim
t→∞

�τ t
m
=

�

i∈M\{m}

�Ui(0)−
�

i∈M\{m}

�Ui(ri(�p)) + δ̃m(ρ)

where �δm(ρ) : R+ �→ R is a mapping such that
����δm(ρ)

��� → 0+ as ρ → 0+.

Proof :

The formal proof is given in the appendix. Here we provide a sketch. Prices and

joint power profile convergence are immediate by Theorems 3.1 and 3.2 when users

behave as dictated by intrinsic utility functions (or strategies) {�Um}m∈M.

The payment rule defined in Eq.(3.10) can be interpreted as if at time t > 0,

user m ∈ M were charged −
�
i �=m

[ri(pt)− ri(pt−1)]�U �
i
(ri(pt)) which approximates

the negative change in utility of his competitors from iteration t− 1 to iteration t.

Hence in the limit, user m ∈ M is assessed a total payment that approximates the

change in aggregate utility of all other users (as measured by {Ũi : i �= m}). The

term �δm(ρ) is an approximation error that emerges as a result of having discrete

changes in prices and power profiles. Since an infinitesimal ρ > 0 yields infinitesimal

changes in prices and power profiles, the approximation error is determined by the

magnitude of ρ > 0. �

Note that setting payments to the negative utility of his competitors will

certainly help each user m ∈ M internalize the effect he may have in the social

surplus. As proved in the following theorem, this will set the incentives to behave

truthfully.

At this point we are interested in the overall outcome (joint power profile and

payments) of the auction. Note that the final (joint) power profile will be the

efficient one for the active users (i.e. those that have not been removed from the

auction) independently of the the initial one. Note from Lemma 3.2 that payments

are designed to align each user incentives with those of the auctioneer (maximize

the social surplus). Since the social planner does not care about utility of users

removed from the auction, these users should not be considered in the payment of
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the active ones. Hence a small modification in the payment rule is required. Let

�M be the set of users that followed the activity rules until the final iteration, say

T > 0. The cumulative payment of user m ∈ �M after iteration t > 0, τ t
m
should

be redefined as follows

τ
t

m
= τ

t−1
m

−
�

i∈�M\{m}

[ri(p
t)− ri(p

t−1)]U �
i
(ri(p

t))

for all t ≥ 1 and τ 0
m
= 0. Note that we are using the same rule stated initially (see

Eq.(3.10)) but considering only those users in �M. Following a similar analysis as

in Lemma 3.2 it follows that payment of user m ∈ �M is:

lim
t→∞

�τ t
m
=

�

i∈�M\{m}

�Ui(0)−
�

i∈�M\{m}

�Ui(ri(�p)) + δ̃m(ρ)

Note that efficiency and the characterization of payments in Lemma 3.2 hold as if

only users �M ⊆ M had participated in the auction.

Theorem 3.3: Being truthful is an �−Dominant Strategy in the sense that for

any user, the maximum benefit he can attain by not being truthful is �(ρ) where

�(ρ) → 0 as ρ → 0+.

Proof : Let �Ui ∈ U be the strongly concave function that characterizes behavior

of user i ∈ �M. To avoid unnecessary notation, in what follows M should be

interpreted as the cardinality of �M. By arguments similar to those in Theorems

3.1 and 3.2 it follows that the limiting allocation, say �p ∈ RMA

+ is the solution to

the optimization problem:

max
p∈RMA

+

�

i∈�M

�Ui(ri(p))

s.t.

�

i∈�M
pi,a ≤ P̄a a ∈ A
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Using Lemma 3.2, the overall payment of user m ∈ �M is

lim
t→∞

�τ t
m
=

�
i∈M\{m}

�Ui(0)− �δm(ρ)−
�

i∈M\{m}
�Ui(ri(�p))

Hence the overall profit of user m ∈ M is:

�Vm = Um(rm(�p))− limt→∞ �τ t
m

= Um(rm(�p)) +
�

i∈M\{m}
�Ui(ri(�p))−

�
i∈M\{m}

�Ui(0)− �δm(ρ)

Now assume m reports and updates truthfully (i.e. using Um instead of �Um) while

all other users i ∈ �M \ {m} report and update according to some �Ui ∈ U. Abusing

notation, let us denote by �p ∈ RMA

+ , the limit joint power profile. Again, by

Theorems 3.1 and 3.2 it follows that �p is the solution to

max
p∈RMA

+

Um(rm(p)) +
�

i∈�M\{m}

�Ui(ri(p))

s.t.

�

i∈�M\{m}
pi,a ≤ P̄a a ∈ A

and the overall profit of m is:

V ∗
m

= Um(rm(�p))− limt→∞ �τ t
m

= Um(rm(�p)) +
�

i∈M\{m}
�Um(rm(�p))−

�
i∈M\{m}

�Ui(0)− �δm(ρ)

By optimality of �p we have

�Vm − V
∗
m
≤ −�δm(ρ) + �δm(ρ) ≤ |�δm(ρ)|+ |�δm(ρ)|

Finally, by selecting ρ small enough we can guarantee |�δm(ρ)|+ |�δm(ρ)| is as small

as desired.

We have proved that the maximum benefit user m ∈ M can attain by using

some function �Um ∈ U such that �Um �= Um goes to zero as ρ → 0+. Using some
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strategy that can not be described by some function �Um ∈ U will be revealed by

checking the activity rule, in which case a large penalty will be charged, hence being

truthful is an �-Dominant strategy in the sense that for any user, the maximum

benefit he can attain by not being truthful is �(ρ) where �(ρ) → 0 as ρ → 0+

�

3.7 Conclusion

This chapter introduces Inertial Temperature Auction (ITA), a dynamic auction

design that allows a primary network provide uplink access to secondary users,

subject to restrictions in the service quality of the primary users. We account

for several access points, with heterogeneous (residual) capacity or temperature.

ITA achieves power control (in order to guarantee quality of the primary users)

by means of control prices, one per access point; these prices are updated as a

function of the excessive power from secondary users. ITA also uses a discriminative

externality price that allows secondary users internalize the effect they have in the

social surplus. These prices guide secondary users towards the efficient configura-

tion. A very distinctive characteristic of the Inertial Temperature Auction is the

inertia in the power profile updates, which provides the means for coordination

and eliminates cycles and erratic behaviors observed when using other designs that

do not consider externalities. More importantly all of the features mentioned are

achieved in �-dominant strategies, that is, each rational user has the incentives

to behave as requested by the algorithm, independently of the behavior of his

competitors.
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3.8 Appendix of Inertial Temperature Auction

3.8.1 Proof of concavity

In this section we study the problem of two secondary users that want to

establish an uplink connection with an access point. These users have utility

functions Um(rm) = qrm where m ∈ {1, 2} . Assume system gain is G, noise power

is N , and power from primary users is I. We prove that a sufficient condition for

concavity of the objective function OF (p1, p2) =
�

m∈{1,2}
Um(rm(p1, p2)), were pm is

the power received from secondary user m ∈ {1, 2} at the AP, is as follows:

1/
√
2

N + T +G(I + T )
>

√
2G

N +GI

Note that we have omitted the AP subscripts since we only have one. It can be

proved that

∂2OF (p1, p2)

∂p1∂p2
= − qG

ln(2)

�
1

(N +G(I + p1) + p2)2
+

1

(N +G(I + p2) + p1)2

�

∂2OF (p1, p2)

∂pm∂pm
=

q

ln(2)

�
G2

(N +G(I + pm))2
− G2

(N +G(I + pm) + pj)2

− 1

(N +G(I + pj) + pm)2

�

for m ∈ {1, 2} and j �= m. Since G < 1 and pm ≤ T for m ∈ {1, 2} we have

1/2

(N +G(I + pj) + pm)2
≥ 1/2

(N +G(I + T ) + T )2

>
2G

(N +GI)2

>
G2

(N +GI)2

≥ G2

(N +G(I + pm))2
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It follows that ∂2OF (p1,p2)
∂pm∂pm

< 0 for m ∈ {1, 2}. Furthermore
���∂

2OF (p1,p2)
∂pm∂pm

��� >

q/2
ln(2)(N+G(I+T )+T )2 , hence

����
∂2OF (p1, p2)

∂p1∂p2

���� =
qG

ln(2)

�
1

(N +G(I + p1) + p2)2
+

1

(N +G(I + p2) + p1)2

�

≤ q

ln(2)

�
2G

(N +GI)2

�

<
q

ln(2)

1/2

(N + T +G(I + T ))2

<

����
∂2OF (p1, p2)

∂pm∂pm

����

It follows that matrix of the objective function is diagonally dominant and

negative definite, hence concavity of the objective function.

3.8.2 Proof of Lemma 3.1

Suppose lim supP t

a
> P̄a. So either P t

a
grows unboundedly (i.e. P t

a
→ ∞) or it

converges to a level greater than temperature threshold P̄a (i.e. P t

a
→ P ∗

a
> P̄a) or it

oscillates with lim supP t

a
> P̄a. The first two options are easily discarded since both

imply µt

a
→ ∞, hence Assumption 3 implies P t

a
→ 0, a contradiction. Therefore

we focus on discarding the latter option of oscillating P t

a
with lim supP t

a
> P̄a, by

contradiction:

1. Assume that P t

a
oscillates with lim supP t

a
> P̄a. Therefore there exist some

secondary power levels X1, X2 on AP a ∈ A with P̄a < X1 < X2 < lim supP t

a

such that X1 and X2 are up-crossed and down-crossed infinitely often.

2. Let T be an up-crossing of X2 and Y (T ) be the last up-crossing of X1

before T . That is, T is some t > 0 such that P T−1
a

< X2 ≤ P T

a
and

Y (T ) = sup
t≤T

{P t−1
a

< X1 ≤ P t

a
}. Note that for any T and t ∈ [Y (T ), T − 1]

we have:

• X2 > P t

a
≥ X1 > P̄a, therefore

• µt+1
a

− µt

a
= ρ(P t

a
− P̄a)
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3. Now we prove that the time it takes to go from Y (T ) to T is (unboundedly)

increasing in T. This implies that the price increase from Y (T ) to T also

grows (unboundedly) with T . Formally we have:

X2 −X1 ≤ P T

a
− P

Y (T )−1
a

≤
T�

t=Y (T )

�P t

a
− P t−1

a
�

≤
T�

t=Y (T )

αtd̄

≤ (∆T + 1)αY (T )d̄

where ∆T = T − Y (T ) and d̄ is as defined in Assumption 4. The former

implies X2−X1
αY (T )

< d̄(∆T + 1). Which in turn implies ∆T → ∞ as T → ∞

(the time to go from X1 to X2 increases unboundedly with T ).

Now notice that:

µ
T−1
a

= µ
Y (T )
a

+
T−2�

t=Y (T )

(µt+1
a

− µ
t

a
)

= µ
Y (T )
a

+
T−2�

t=Y (T )

ρ(P t

a
− P̄a)

≥ µ
Y (T )
a

+
T−2�

t=Y (T )

ρ(X1 − P̄a)

≥ µ
Y (T )
a

+∆Tρ(X1 − P̄a)

where the second and third lines come from the properties itemized on 2).

Therefore the price at T − 1 increases (unboundedly) with T. i.e. µT−1
a

→ ∞

as T → ∞.

4. Suppose we select an up-crossing T → ∞ therefore µT−1
a

→ ∞, assumption

3 (choking prices) implies dT
m,a

= 0 for all m ∈ M which in turn implies

P T

a
= P T−1

a
(1− αT ) < P T−1

a
. This contradicts the hypothesis that T is an

up-crossing of X2 (i.e. that P T−1
a

< X2 < P T

a
).
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3.8.3 Proof of Corollary 3.2

Let us write the price update as follows

µ
t+1
a

= µ
t

a
+ ρt(P

t+1
a

− P̄a)

where

ρt =






ρ µt

a
+ ρ(P t+1

a
− P̄a) > 0

µt
a

P̄a−P
t+1
a

µt

a
+ ρ(P t+1

a
− P̄a) ≤ 0

Now let T (t) = inf{T ≥ t | |µτ

e
− µ∗

e
| < 1

t
for all τ ≥ T}. We can write

|µt

a
− µ

∗
a
| = |µ∗

a
− µ

T (t)
a

+ µ
T (t)
a

− µ
t

a
|

=

������
µ
∗
a
− µ

T (t)
a

+
T (t)−1�

�=t

ρt(P
�+1
a

− P̄a)

������

=
1

αt

������
αt(µ

∗
a
− µ

T (t)
a

) + αt

T (t)−1�

�=t

ρt(P
�+1
a

− P̄a)

������

Since |µt

a
−µ∗

a
| → 0 it follows that there exists some L > 0 and γ > 1 such that

������
αt(µ

∗
a
− µ

T (t)
a

) + αt

T (t)−1�

�=t

ρt(P
�+1
a

− P̄a)

������
≤ L(αt)

γ

Thus

�
t>0

αt|µt

a
− µ∗

a
| ≤

�
t>0

�����µ
∗
a
− µ

T (t)
a +

T (t)−1�
�=t

ρt(P �+1
a

− P̄a)

�����

≤
�
t>0

L(αt)γ < ∞

3.8.4 Proof of Corollary 3.3

Note from the price update rule (Eq. 3.8) that if P t+1
a

−P̄a > 0 then µt+1
a

−µt

a
>

0, similarly if P t+1
a

− P̄a ≤ 0 then µt+1
a

−µt

a
≤ 0. Hence, (µt+1

a
−µt

a
)(P t+1

a
− P̄a) ≥ 0
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for all t > 0. By Abel’s Lemma and Corollaries 1 and 2 we have:

�
t>0

(µt+1
a

− µt

a
)(P t+1

a
− P̄a) =

�
t>0

[(µt+1
a

− µ∗
a
)− (µt

a
− µ∗

a
)](P t+1

a
− P̄a)

= lim
t→∞

[(µt

a
− µ∗

a
)(P t+1

a
− P̄a)]−

�
t>0

(µt

a
− µ∗

a
)(P t+1

a
− P t

a
)

=
�
t>0

(µt

a
− µ∗

a
)(P t

a
− P t+1

a
)

≤ d̄
�
t>0

αt|µt

a
− µ∗

a
| < ∞

3.8.5 Proof of Lemma 3.2

Although this proof has the same intuition that the one in Section 2.6 the way

we proceed here is simpler. Note that we have used a high level payment rule which

implementation has already been discussed, this will certainly help us provide a

very simple and descriptive proof.

To keep notation consistent, we use �pt (instead of pt) to denote the power

profile at time t ∈ {0, 1, . . .}. We will need a continuous time approximation of

the discrete time power profile. For this let �p(t) be a linear interpolation of �pt (i.e.

�p(t) = �p�t� + t−�t�
�t�−�t�(�p

�t� − �p�t�) where �x� and �x� represent the floor and ceiling

functions respectively).

After T > 0 rounds, it holds that

�τT
m
= −

T−1�

t=0

�

i �=m

[ri(�pt+1)− ri(�pt)]U �
i
(ri(�pt+1))

for all m ∈ M. By convergence, we can approximate �τT
m
with Riemann-Stieltjes

integral in the following sense:

�τT
m
= −

�

i �=m

T�

t=1

U
�
i
(ri(�p(t)))∂ri(�p(t)) + ��T

m
(ρ)

where the term ��T
m
(ρ) accounts for the error induced by the approximation. Note

however that as ρ → 0, changes in prices and demands become infinitesimal,

improving the approximation such that ��T
m
(ρ) → 0 as ρ → 0 for all T > 0.
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Using the gradient theorem we have that:

�τT
m
= −

�

i �=m

[Ui(ri(�pT ))− Ui(ri(�p1))] + ��T
m
(ρ)

Finally, since �pT → �p and �p1 = 0

lim
T→∞

�τT
m
= −

�

i �=m

[Ui(ri(�p))− Ui(0)] + �δm(ρ)

where

δm(ρ) = lim
T→∞

�
T

m
(ρ)

which finalizes the proof of this Lemma.
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Chapter 4

Truthful Multichannel Auction

4.1 Introduction

Increasing demand for mobile broadband applications has created the need

for new dynamic and efficient methods that reallocate the available spectrum in

the short run. In light of this need, the FCC is currently working on laying the

groundwork for voluntary “incentive auctions” that would provide the means for

efficient spectrum re-allocation in the short run (see www.fcc.gov/topic/incentive-

auctions). Auction-based mechanisms have been successfully used to allocate

licenses for long-term commercial exploitation of the spectrum (see [10]). In this long

term context, auction designs had to take into account inherent complementarities

or synergies that could exist across licenses over adjacent geographic areas. However,

the challenges posed by short term re-allocation are significantly different. For

example, when the spectrum is partitioned into channels, each of these channels can

be allocated to several networks when the potential for cross interference among

them is minimal. This interference can be controlled by imposing constraints on

the allocations so that total interference is kept between given acceptable levels.

To illustrate this, consider the situation depicted in Figure 4.1a associated with

the use of a single channel. Here, there is one large network (Network 2) operating

contiguously with two small networks (Networks 1 and 3). Given the geographical

layout of the networks, if the channel is allocated to network 2, then it can not be
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(a) Layout of Networks

(b) Conflict Graph

Figure 4.1: Figure 4.1a shows a layout of networks that coexist in the same
geographical area and Figure 4.1b shows its respective conflict graph.

allocated to networks 1 or 3; however, the channel can be allocated to networks 1

and 3 simultaneously as long as it is not allocated to network 2. This particularity

of allocating a single channel to multiple users (network operators in this case) is

commonly referred to as re-usability.

A compact representation of this type of constraints is obtained by means of

a conflict graph G(N , E) where N is a set of nodes and E ⊆ N × N a set of

undirected edges. Each node v ∈ N represents a network operator and each edge

(u, v) ∈ E represents a conflict among networks u and v. In this case we say that

networks u and v are neighbors or conflict with each other. Figure 4.1b shows the

conflict graph for the situation described above.

In this chapter, we propose Truthful Multichannel Auction (TMCA), an auction

design where the spectrum owner is the auctioneer and the network operators

are bidders; in the example above, we would have three bidders. TMCA is a

sealed-bid multiple channel auction design with minimal computational demands

that considers reusability and is shown to be incentive compatible in dominant

strategies and individually rational. We further show expected revenue with this
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auction can be maximized by imposing a reserve price reminiscent of the standard

optimal monopoly pricing rule.

4.1.1 Literature Review

Several authors have proposed auction formats for channel allocation considering

private information and allocation constraints defined by means of a conflict graph,

[19,29,34,37,38]. Zhou et al. proposed Veritas [37], a spectrum auction design that

is shown to be incentive compatible and implementable in polynomial time under

the assumption of constant marginal valuations. Zhou and Zheng proposed Trust

[38], a double auction version of Veritas, that only allows bids for a single channel.

Xu et al. extended the work of Zhou and Zheng by enabling bids for multiple

channels [34]. Kash et al. proposed Satya [19], a truthful auction algorithm that

allocates the right of contention for spectrum to users that can have either exclusive

or sharing rights.

In all of the works mentioned above, bidders are assumed to have a constant

marginal valuation for all channels. However, in reality, users are likely to have

valuations that are marginally decreasing in the number of units allocated to them.

A network, for example, may be interested in receiving two channels, one for high

priority tasks and a second one for low priority tasks. If the network receives one

channel (no matter which) then such channel is used for high priority tasks. If the

network receives one additional channel, this second channel will be used for low

priority tasks. Thus, the user’s willingness to pay should decrease in the number

of received channels.

To the best of our knowledge TMCA is the first auction design that is incentive

compatible, individually rational and can be implemented in polynomial time,

even when the marginal valuation of channels is not fixed. We also characterize a

revenue maximizing TMCA design in which a reserve price per unit is determined.

This chapter is organized as follows: In section 4.2, we introduce a general

auction framework considering reuse and explain how the VCG mechanism can be
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applied in this context. In section 4.3, we introduce TMCA and prove its properties

(Incentive Compatibility, Individual Rationality and Polynomial Time). In section

4.4, we present some numerical experiments evaluating the computational time

and efficiency of TMCA. We then conclude by presenting some conclusions and

important remarks.

4.2 Mathematical Framework

In this section we introduce a generic model for “one shot” sealed bid multi-

channel auctions with multi-channel demand subject to interference constraints

that are modeled by a conflict graph.

Let N = {1, · · · , N} be the set of bidders (network operators). An auctioneer

(spectrum owner) is to allocate a set K = {1, · · · , K} of channels among bidders

in N subject to the restrictions imposed by a conflict graph G(N , E). Note that

N and K are the cardinality of the sets of bidders and channels respectively. An

alternative way to present the information in the conflict graph G(N , E) is by

means of a conflict matrix (CM ∈ {0, 1}N×N) defined as follows:

CM(u, v) =






1 if (u, v) ∈ E

0 otherwise

Hence, users u, v ∈ N are in conflict iff CM(u, v) = 1. Let a ∈ {0, 1}N×K

denote a channel allocation as follows:

an,k =






1 if channel k ∈ K is allocated to bidder n ∈ N

0 otherwise

Definition: We say allocation a is feasible iff

am,k + an,k < 2,
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for all k ∈ K and m,n ∈ N such that CM(m,n) = 1. In what follows we shall

denote by A the set of feasible allocations.

Each bidder has private information regarding his valuation of the channels.

We assume that the valuation any user has for any set of channels he revceives

only depends on the number of channels in the set. In other words, bidders are

indifferent amongst channels. For example assume bidder 1 receives only one

channel, so he is indifferent to that being channel 1 or channel K. Let vn,k > 0

be the marginal valuation of bidder n for the k th channel he receives. Let

vn = [vn,1, . . . , vn,K ] denote the valuation vector of bidder n ∈ N . As argued in

the introduction, our auction is the first to consider users with valuations that are

marginally not increasing in the number of channels receive. That is, we assume

vn,k is not increasing in k for all n ∈ N . Note that n’s utility given allocation

a ∈ A is:

Un(a,vn) =
|Kn(a)|�

k=1

vn,k (4.1)

where Kn(a) = {k ∈ K : an,k = 1} is the set of channels allocated to n ∈ N and

|Kn(a)| its cardinality.

In a one-shot auction, each bidder is asked to report his valuation vector

vn = [vn,1, . . . , vn,K ]. In response the auctioneer finds a feasible allocation a ∈ A

and calculates payments pn for each n ∈ N .

Let bn = (bn,1, ..., bn,K) be the bid of bidder n ∈ N (what n claims to be

his valuation vn). A one-shot auction design is completely described by the

choice of an allocation and a payment rule. An allocation rule is a function

a() : RN×K → A, such that a(b1, . . . ,bN) dictates the resultant allocation given

bids {bn : n ∈ N}. Payment rule for bidder n ∈ N is a function pn() : RN×K → R

such that pn(b1, . . . ,bN) dictates payment of bidder n ∈ N .

Before introducing the TMCA design let us review how the well known VCG

mechanism would be applied in this reusable channel setting. To fully describe

VCG it will suffice to define the allocation and payment rules. In VCG the channel

allocation rule (say a∗() : RN×K → A) maximizes the social surplus given bids
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{bn : n ∈ N}, that is:

a
∗(b1, . . . ,bN) ∈ argmax

a∈A

�
�

n∈N

Un(a,bn)

�

Payment of bidder n ∈ N (say p∗
n
() : RN×K → R) is the change imposed by n’s

participation on his competitors’ utility. Let b−n denote the bid of n’s competitors

and a(bn,b−n) be the resultant allocation when bidder n bids bn and his competi-

tors bid as stated in b−n. Note that a∗(0,b−n) is the resultant VCG allocation

had bidder n not participated in the auction. Hence the cost n inflicts on his

competitors is:

p
∗
n
(bn,b−n) =

�

m �=n

Um(a
∗(0,b−n),bm)

−
�

m �=n

Um(a
∗(bn,b−n),bm)

It is well-known that the VCG mechanism has the following properties:

• Incentive Compatible: For each bidder n ∈ N it is a dominant strategy to

bid truthfully, i.e. to make bn = vn.

• Individually Rational: The net profit any user achieves by participating

is never less than zero. This property is also known as the participation

condition.

• Efficient: Its final outcome is socially efficient.

In VCG, bidding truthfully is a dominant strategy, and it guarantees the imple-

mentation of the socially efficient outcome (channel allocation in this case). Hence

we say that VCG implements the socially efficient outcome in dominant strategies

(see [24]). To implement VCG, however, the auctioneer needs to find the optimal

channel allocation for several subsets of bidders in N . Paralleling our reusable

channel allocation problem with the chromatic number problem proves that this is
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an NP-complete problem (see Annex 4.6.1). Several authors argue this auction

design is only of interest from a theoretical standpoint, [37], [29], [38] and [34].

From a practical standpoint, spectrum re-allocation in the short-run needs to be

quick.

A second price approach is not trivial due to reusability. In order to highlight

how re-usablility may affect the properties of the second price auction, consider the

one channel problem depicted in Figure 4.1b with associated valuations v1,1 = 10,

v2,1 = 12 and v3,1 = 5. Now consider the following options assuming truthful

bidding:

• Consider a second price auction where the channel is allocated to the user

with highest valuation, bidder 2 in this case. This is evidently not because

the channel could be allocated to users 1 and 3 yielding a social welfare of 15

(instead of 12).

• Consider that the auctioneer modifies the allocation rule so that the channel

is allocated to users 1 and 3. Note that even in this trivial example, it

is not clear what the payments should be. A first intuition from second

price auctions could be to charge each winner 12 (the highest offer from the

non-winners). However, this would lead to negative profit for both winners.

Splitting the payment of 12 will not work either because bidder 3 will end up

with a negative profit. More elaborative rules like distributing the payment

of 12 proportionally to their bids will generate incentives for non-truthful

bidding. In the example above, bidder one could have bid 8 instead of 10,

still receiving the channel and paying a lower fraction of the total payment.

In what follows, we propose Truthful Multichannel Auction (TMCA), an auction

design that can be implemented in polynomial time while ensuring that many of

the desirable properties of the VCG mechanism still hold true.
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4.3 Truthful Multi Channel Auction (TMCA)

In this section we introduce TMCA, a “one-shot” sealed bid auction for the

allocation of reusable channels. Later, we prove TMCA is incentive compatible,

individually rational and can be executed in polynomial time.

A first feature of this auction design is an activity rule that imposes non-

increasing bids (i.e. bn,k ≥ bn,k+1 ∀ n ∈ N , k ≤ K). This activity rule is imposed

by the auctioneer, however this is a very reasonable requirement according to

our assumption of marginally non-increasing valuations. In order to formally

define the allocation and payment rules in TMCA, let us introduce the concept

of the inverse residual supply curve for bidder n ∈ N which we shall denote by

sn = [sn,1, · · · , sn,K ]. Let Nn be the set of neighbors of n, that is Nn = {m ∈

N : CM(m,n) = 1} and let Bn be a set containing all of their bid elements, i.e.

Bn = {bm,k : m ∈ Nn, k ≤ K}. The curve sn is a vector containing the K largest

elements of Bn in increasing order, that is:

sn,k = Bn(K − k + 1)

where k ≤ K and Bn(k) denotes the kth largest element in Bn. If Bn = ∅ then

sn = 0.

Let us illustrate this through an example. Consider the case of two channels,

three bidders and a conflict graph as shown in Fig. 4.1b. Assume bids b1 = [10, 0],

b2 = [9, 7], b3 = [8, 0] and . To find s1, notice that bidder 2 is the unique neighbor

of bidder 1, thus 9 and 7 are the largest and second largest bid elements among

neighbors of bidder 1. Therefore s1,1 = 7, and s1,2 = 9. In a similar way, we can

find s2 = [8, 10] and s3 = [7, 9].

In TMCA sn,k will be: (i) the threshold that bidder n has to exceed in bn,k to

obtain a kth channel and (ii) his payment for such a channel. Note that sn,k

is non-decreasing and bn,k is non-increasing in k, Consequently (bn,k − sn,k) is

non-increasing in k. Consider a bidder with bid bn and residual supply sn as shown
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in Figure 4.2. In this case bn,k > sn,k for k ≤ 5 and bn,k ≤ sn,k for k > 5. Hence

bidder n will receive 5 channels and his payment will be pn =
5�

k=1
sn,k.

0 1 2 3 4 5 6 ... ... K
0
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25

Number of channels allocated
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e 
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bn,2 bn,3 bn,4
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bn,6

sn,1
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sn,3

sn,4

sn,5

Figure 4.2: Example of non-increasing valuation and non-decreasing supply curve

We still have to define an allocation rule, say aTMCA : RNK

+ → A, such that

given bids {bn : n ∈ N}, allocation a = aTMCA(b1, . . . ,bN) is consistent with all

residual supply curves in the sense that:

K�

k=1

an,k =
K�

k=1

1{bn,k>sn,k} (4.2)

For all n ∈ N , where 1{bn,k>sn,k} = 1 if bn,k > sn,k or 0 otherwise.

We propose an allocation, aTMCA : RNK

+ → A, that is performed in two

phases. In the first phase we find a preallocation â ∈ A for which
�

K

k=1 ân,k ≥
�

K

k=1 1{bn,k>sn,k} for all n ∈ N . This phase is followed by an adjustment phase in

which we arbitrarily deallocate channels until finding a final allocation a for which

condition in Eq. 4.2 holds.
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• Preallocation: This phase makes iterative channel allocations considering

all of the bid elements (i.e. all of the bn,k with n ∈ N and k ≤ K) in a

greedy fashion, giving higher priority to higher bid elements. It runs in

iterations indexed by � ∈ [1, . . . , N ×K]. Let E� be the set of bid elements

that have not been considered at iteration �. Naturally E1 contains all bid

elements. That is, E1 = {bn,k : n ∈ N , k ≤ K}. At each iteration � > 0, each

bidder n ∈ N has a set of available channels, An,�, which are available in the

sense that they can be allocated to n without interfering with any current

allocation. Because we start with a null allocation (â = 0), all channels are

initially available to all bidders, which means An,1 = K for all n ∈ N . We

start by finding the largest bid element in E1, say bn∗,k∗ . In this case bidder

n∗ has the largest bid element and he receives the first available channel in

An∗,1, say k̂. Note that in the next iteration channel k̂ is not available for

n∗ or his neighbors. Thus the sets of available channels has to be updated

as follows: Am,2 = Am,1 \ k̂ for m ∈ {n∗,Nn∗}. For other bidders the set

of available channels remains unchanged. Similarly bid bn∗,k∗ does not need

to be considered anymore, hence E2 = E1 \ bn∗,k∗ . The process is repeated

until � = N ×K. This preallocation is formally described in the following

pseudocode:

1. Initialize:

E1 = {bn,k : n ∈ N , k ≤ K}

An,1 = K n ∈ N

â = 0;
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2. Iterate: For � = 1, . . . , N ×K:

(n∗, k∗) = argmax{bn,k : bn,k ∈ E�}

k̂ = min{k : k ∈ An∗,�}

â
n∗,k̂ = 1;

E�+1 = E� \ bn∗,k∗

Am,�+1 = Am,� \ k̂ ∀m ∈ {n∗,Nn∗}

where k̂ = ∅ whenever An∗ = ∅. In Appendix 4.6.2 we prove that the resultant

allocation â, is such that for any n ∈ N and k� ≤ K if bn,k� > sn,k� then
�

K

k=1 ân,k ≥ k�. Note this is equivalent to saying that for all n ∈ N :

�

k∈K

ân,k ≥
�

k≤K

1{bn,k>sn,k}

• Adjustment: Note that in the preallocation â, bidder n ∈ N may have

received more than
�

k≤K
1{bn,k>sn,k} channels. The adjustment phase takes

all of these “over-allocated” bidders and arbitrarily de-allocates as many

channels as necessary to find an allocation a such that:

�

k∈K

an,k =
�

k≤K

1{bn,k>sn,k}

for all n ∈ N

The preallocation phase is equivalent to sorting the NK bid elements and

finding the first available channel for each of the respective bidders; thus, its

complexity is O(N2log(N)) (assuming N > K). The adjustment phase requires

NK comparisons and possible deallocations; thus its complexity is O(N2). Notice

that the allocation in TMCA is polynomial, but it is not guaranteed to be optimal.

In section 4.4 we study the trade-off between efficiency and complexity for TMCA

vs. VCG using numerical experiments.
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The two phases above define the mapping aTMCA : RNK

+ → A. Let as now

define the payment rule pTMCA

n
: RNK

+ → R. In TMCA, bidder n ∈ N is assessed

a payment of:

pn(b1, . . . ,bN) =
|Kn(a)|�

k=1

sn,k

where a = aTMCA(b1, . . . ,bN ) is the resultant channel allocation, Kn(a) is the

set of channels allocated to bidder n, and |Kn(a)| its cardinality.

Now we proceed to prove that TMCA is incentive compatible (IC) and individ-

ually rational (IR).

4.3.1 Properties of TMCA

Note that if bidder n ∈ N receives one channel his utility is vn,1, and his

payment is sn,1, representing a profit of (vn,1 − sn,1). Similarly, the profit from the

kth channel received is (vn,k − sn,k). Note also that residual supply curve sn does

not depend on n’s bid, but only on his competitors’ bids. Given n’s competitors

bids (hence residual supply sn), profit of bidder n ∈ N , will be a function of his

bid bn, and valuation vn, as follows:

πn(bn,vn) =
�

k≤K

(vn,k − sn,k)1{bn,k>sn,k}

Theorem 1: TMCA is incentive compatible in dominant strategies.

Proof

We need to prove that given any set of bids from n’s competitors, say {bm : m �= n},

it is a dominant strategy for n ∈ N to bid truthfully. Note that bids of n’s

competitors will completely define vector sn and mapping πn(·, ·). Hence, it will

suffice to show that:

vn ∈ argmax
bn

{πn(bn,vn)}
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By contradiction, assume there exists some bn �= vn such that

πn(vn,vn) < πn(bn,vn)

or what is the same

�

k≤K

(vn,k − sn,k)1{vn,k>sn,k} <
�

k≤K

(vn,k − sn,k)1{bn,k>sn,k}

Note that all terms in the sum on the left are positive. Hence, there must exist

some k̂ ≤ K such that (v
n,k̂

− s
n,k̂

) > 0 that is in the right hand side sum but not

in the left had side sum. That is 1{bn,k̂>sn,k̂} = 1 and 1{vn,k̂>sn,k̂} = 0. However note

that 1{vi,k̂>si,k̂} = 0 implies (v
i,k̂

− s
i,k̂
) ≤ 0, a contradiction to (v

n,k̂
− s

n,k̂
) > 0.

�

Theorem 2 TMCA is Individually Rational

Proof

Note that after having truthfully participated in the TMCA, profit of bidder n ∈ N

is:
�

k∈K

(bn,k − sn,k)1{bn,k>sn,k} ≥ 0 �

Note that the properties highlighted in Theorems 1 and 2 are also held in VCG.

However TMCA can be performed in polynomial time. This of course, is done at

the expense of social efficiency. In section 4.4, we compare efficiency and computing

time for TMCA and VCG through simulations. Before that let us explore the use

of a reserve price, a common practice usually intended to increase the revenue of

the seller (at the expense of efficiency).

4.3.2 TMCA Optimal Reserve Price

In this section, we look for an optimal reserve price that maximizes the expected

seller’s revenue. Maximizing seller’s revenue (also known as optimal mechanism
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design) was initially proposed by Myerson [26] and Riley and Samuelson [28].

Existing theory about optimal mechanism design has not considered re-usability;

thus, it does not necessarily apply to our problem. Similarly, literature that

considers re-usability has focused on efficiency and has not studied reserve prices.

In this section we study optimal mechanism design, considering reusability and

assuming valuations of bidder n ∈ N are of the form:

vn,k =






vn for k ≤ d

0 for k > d

(4.3)

for some d ∈ {1, . . . , K} and vn > 0. We also assume valuations {vn : n ∈ N}

are i.i.d random variables with CDF F and bounded, positive, non-atomic pdf f

with support [0, b̄]. Note that setting a reserve price will change the residual supply

curves {sn : n ∈ N}. Let b0
n,k

denotes the reserve price the seller imposes on bidder

n ∈ N for the kth channel he receives. According to our previous analysis we shall

assume b0
n,k

is non-decreasing in k for all n ∈ N . Note that given reserve prices

{b0
n,k

: n ≤ N, k ≤ K}, residual prices should be redefined as sn,k = max(ŝn,k, b0n,k)

for all n ≤ N and k ≤ K, where ŝn = [ŝn,k, . . . , ŝn,K ] is the supply curve for bidder

n in the absence of reserve prices (i.e. as defined in section 4.3).

Note that Theorems 1 and 2 prove Incentive Compatibility and Individual

Rationality for a generic bidder n ∈ N given any supply curve sn. Hence these

results hold true if we modify the supply curve to consider reserve prices. Given

incentive compatibility, bids are

bn,k =






vn for k ≤ d

0 for k > d

(4.4)

Although the auctioneer does not know the valuations a priori, we assume he

knows their common pdf f . The following theorem describes the reserve prices

that maximize his expected revenue.
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Figure 4.3: pn,k for all possible values of b0
n,k

and ŝn,k

Theorem 3: In TMCA, the seller maximizes expected revenue by setting a

uniform reserve price, b0 ∈ (0, b̄), which is implicitly defined by

b0 =
1

f(b0)
1−F (b0)

Proof Let pn,k be the price charged to bidder n for the kth channel he receives.

Note that

pn,k(ŝn,k, bn,k, b
0
n,k

) =






ŝn,k if bn,k > ŝn,k > b0
n,k

b0
n,k

if bn,k > b0
n,k

> ŝn,k

0 Otherwise

(4.5)

Figure 4.3 shows pn,k for all possible values of ŝn,k and bn,k. The red area

corresponds to bn,k > ŝn,k > b0
n,k

in which pn,k = ŝn,k. The blue area corresponds

to bn,k > b0
n,k

> ŝn,k in which pn,k = b0
n,k

. For all other possibilities pn,k = 0.

Revenue of the auctioneer is the sum of the payments of all bidders:

R =
N�

n=1

d�

k=1

pn,k

Note that we are interested in pn,k for k ≤ d in which case bn,k = vn. This is
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due to the rationality of bidders. Furthermore, given reserve prices ({b0
n,k

: n ∈

N , k ≤ K}), pn,k is a random variable that depends only on the values of vn,k

and ŝn,k.

We want to maximize the expected value of the auctioneer’s revenue R. Let

us start by showing that there exists a reserve price, b0
n,k

∈ [0, b̄], that maximizes

E[pn,k]. Later we prove that such value can not be 0 or b̄. Furthermore this value

does not depend on n or k, for simplicity we call it b0. The fact that such value is

interior implies the necessary condition stated in the theorem.

Notice that vn and ŝn,k are two independent random variables. Thus, their

joint probability density function can be stated as:

fs,v(s
�
, v

�) = fs(s
�)f(v�)

Where fs and is the density function of ŝn,k and f is the density function of vn.

Let ηn be the number of neighbors of n (or conflict degree of n in the conflict

graph). In order to find the expected value of pn,k as a function of b0
n,k

, consider

the following two cases:

1. ŝn,k = 0:

In this case pn,k = b0
n,k

if b0
n,k

< vn or 0 otherwise. Hence:

E[pn,k|ŝn,k = 0] = Pr(vn > b
0
n,k

)b0
n,k

= (1− F (b0
n,k

))b0
n,k

2. ŝn,k > 0:

In this case ηn − 1 ≥ �(K − k)/d�. Note that the probability of having

ŝn,k ∈ (s�, s� + δs), with δs → 0, is the probability of having:

• �(K − k)/d� neighbors with bj > s� + δs

• One neighbor with bj ∈ (s�, s� + δs) and
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• ηn − �(K − k)/d� − 1 neighbors with bj < s�

Thus, the density function of ŝn,k is:

fs(s
�) = ηn

�
ηn − 1

�(K − k)/d�

�
f(s�)(1− F (s�))�(K−k)/d�(F (s�))ηn−�(K−k)/d�−1

(4.6)

Now, using equation (4.5) we get:

E[pn,k|ŝn,k > 0] (4.7)

=

�
b̄

0

�
b̄

0

fs,v(x, y)pn,k(x, y)dxdy

= b
0
n,k

�
b̄

b0n,k

�
b0n,k

0

fs(x)f(y)dxdy

+

�
b̄

b0n,k

�
y

b0n,k

xfs(x)f(y)dxdy

= b
0
n,k

(1− F (b0
n,k

))Fs(b
0
n,k

)

+

�
b̄

b0n,k

�
y

b0n,k

xfs(x)f(y)dxdy

Our objective is to maximize E[pn,k] for all n ∈ N , k ≤ d. Note that boundedness of

f implies boundedness of E[pn,k] for all n ∈ N , k ≤ d. Therefore, by compactness,

there exist an optimal b0
n,k

in [0, b̄].

We proceed to find ∂

∂b0n,k
E[pn,k] for both cases, ŝn,k = 0 and ŝn,k > 0:

1. For sn,k = 0 we have:

∂

∂b0
n,k

E[pn,k|ŝn,k = 0] = 1− F (b0
n,k

)− b
0
n,k

f(b0
n,k

)
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2. For sn,k > 0 we can approach both terms in Eq. 4.7 separately as follows:

∂

∂b0
n,k

(b0
n,k

(1− F (b0
n,k

))Fs(b
0
n,k

)) (4.8)

= (1− F (b0
n,k

))Fs(b
0
n,k

)

+ b
0
n,k

[(1− F (b0
n,k

))fs(b
0
n,k

)− f(b0
n,k

)Fs(b
0
n,k

)]

and

∂

∂b0
n,k

��
b̄

b0n,k

�
y

b0n,k

xfs(x)f(y)dxdy

�
(4.9)

=

�
b̄

b0n,k

∂

∂b0
n,k

��
y

b0n,k

xfs(x)f(y)dx

�
dy

−
�

b0n,k

b0n,k

xfs(x)f(b
0
n,k

)dx

=

�
b̄

b0n,k

∂

∂b0
n,k

��
y

b0n,k

xfs(x)f(y)dx

�
dy

= −
�

b̄

b0n,k

b
0
n,k

fs(b
0
n,k

)f(y)dy

= −b
0
n,k

fs(b
0
n,k

)(1− F (b0
n,k

))

Notice we applied Leibniz’s rule twice in (4.9). It follows from Eq. (4.7),

(4.8), and (4.9) that:

∂

∂b0
n,k

E[pn,k|ŝn,k > 0] (4.10)

= Fs(b
0
n,k

)(1− F (b0
n,k

)− b
0
n,k

f(b0
n,k

))

Note that the optimal reserve price can not be 0. For the case ŝn,k > 0 a reserve

price of b0
n,k

= 0 has no effect, for the case ŝn,k = 0 we have:

∂E[pn,k]

∂b0
n,k

�����
b0n,k↓0

= 1 > 0
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Furthermore, notice that E[pn,k]|b0n,k=b̄
= 0. Thus, the optimal price has to reside

in (0, b̄).

Because the solution is interior, a necessary condition for optimality is ∂

∂b0n,k
E[pn,k] =

0, which in both cases implies 1− F (b0
n,k

)− b0
n,k

f(b0
n,k

) = 0. This proves that the

optimal (interior) reserve price will be as stated in the theorem, where we used b0

(instead of b0
n,k

) to highlight the fact that it does not depend on n ∈ N nor k ≤ d. �

In the following section, we compare TMCA with VCG by way of numerical

experiments. We also verify the result of Theorem 3 assuming valuations uniformly

distributed in (0,1). For this case, note that Theorem 3 suggests a reserve price

b0 = 0.5 in order to maximize revenue of the auctioneer.

4.4 Numerical Experiments and Analysis

We consider an ad-hoc topology testbed, which has been widely used by other

authors dealing with this problem. In this testbed bidders are randomly located

in a 1x1 square. If the distance between two of them is less than some critical

distance (0.1 is commonly used), these bidders conflict with each other. Note this

will generate completely random topologies. We study performance of TMCA vs.

VCG in this testbed with N ∈ {4, 6, 8, 10} bidders and K ∈ {2, 4} channels.For

each configuration of N , K and b0, experiments were run for 200 times; graphs

and tables show the average results.

The first numerical experiment illustrates the result of Theorem 3. Fig. 4.4

shows revenue of the auctioneer when auctioning 4 channels, assuming bids as

described in Eq. 4.4 with valuations uniformly distributed in (0,1). Not surprisingly,

revenue is proportional to the number of bidders N and to the number of demanded

channels d. According to Theorem 3, if bids are uniform in (0, 1) the auctioneer

maximizes revenue by setting a reserve price of b0 = 0.5. Note that results in Fig.

4.4 support this result.
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Figure 4.4: Revenue of auctioneer for different values of b0. From top to bottom we
show results for d = 2, d = 3 and d = 4. Each subfigure considers N ∈ {4, 6, 8, 10}

bidders.

The following experiments compare TMCA and VCG. We are especially inter-

ested in measuring speed and social welfare. We do not compare TMCA to other

mechanisms mentioned above because none of them support variable marginal

valuations. We study two type of networks: (i)Networks with low density of users

(using a critical distance of 0.1) and (ii) Networks with low density of users (using

a critical distance of 0,3). Networks with high density of users could have been

studied by simply increasing the number of users N . However increasing N beyond

10 resulted computationally too demanding for VCG.

4.4.1 Low Density Mesh

Tables 4.1 and 4.2 compare the computational time of TMCA vs. VCG for

K = 2 and K = 4 channels respectively. Figure 4.5 summarizes the results with

reserve prices b0 = 0 and b0 = 0.5. Experiments were run using Intel Xeon X5550

@2.67GHz, CPU MHz: 2667, Cache Size: 8192K. CPU time was measured using



97

TMCA VCG
b0 \N 2 4 6 8 2 4 6 8
0 0.005 0.005 0.006 0.008 0.049 0.115 0.296 0.486
0.1 0.002 0.004 0.006 0.007 0.047 0.144 0.280 0.486
0.2 0.002 0.004 0.005 0.007 0.047 0.142 0.269 0.481
0.3 0.002 0.003 0.005 0.006 0.048 0.136 0.270 0.488
0.4 0.001 0.003 0.005 0.005 0.048 0.138 0.281 0.483
0.5 0.001 0.002 0.004 0.004 0.048 0.140 0.275 0.477
0.6 0.002 0.002 0.003 0.004 0.047 0.137 0.281 0.467
0.7 0.001 0.002 0.003 0.004 0.048 0.140 0.279 0.487
0.8 0.001 0.001 0.001 0.003 0.047 0.140 0.273 0.491
0.9 0.001 0.001 0.001 0.001 0.046 0.139 0.272 0.493

Table 4.1: CPU time of TMCA and VCG for K = 2 channels

TMCA VCG
b0 \N 2 4 6 8 2 4 6 8
0 0.005 0.008 0.013 0.016 0.052 0.180 0.543 1.227
0.1 0.004 0.007 0.012 0.016 0.086 0.274 0.646 1.089
0.2 0.004 0.007 0.011 0.015 0.090 0.257 0.640 1.386
0.3 0.004 0.007 0.010 0.014 0.094 0.266 0.676 1.243
0.4 0.003 0.005 0.009 0.012 0.097 0.290 0.707 1.341
0.5 0.003 0.005 0.007 0.011 0.099 0.295 0.701 1.477
0.6 0.003 0.004 0.007 0.008 0.101 0.306 0.727 1.246
0.7 0.002 0.004 0.005 0.007 0.096 0.298 0.672 1.252
0.8 0.002 0.002 0.003 0.004 0.085 0.302 0.647 1.236
0.9 0.001 0.002 0.002 0.003 0.086 0.288 0.664 1.222

Table 4.2: CPU time of TMCA and VCG for K = 4 channels

the cputime Matlab built-in function.

Notice how computing time for VCG grows exponentially as the number of

nodes increases. This makes TMCA a more desirable mechanism when time plays

an important role. We already know that such benefit will have a toll in social

surplus. Tables 4.3 and 4.5 show social surplus and revenue of the auctioneer for

TMCA and VCG when K = 2 channels. Similarly, Tables 4.4 and 4.6 do the same

for K = 4 channels. These tables are summarized in Fig. 4.6.

Notice that results in efficiency and revenue are virtually the same in VCG and

TMCA. The maximum efficiency loss revealed in our experiments was of 0.89%

(for N = 10 users and a reserve price of b0 = 0.2).Yet, TMCA showed reductions
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Figure 4.5: Exponential vs polynomial CPU time

TMCA VCG
b0 \N 4 6 8 10 4 6 8 10
0 3.793 5.415 7.440 9.279 3.793 5.415 7.445 9.279
0.1 3.822 5.658 7.379 8.877 3.822 5.658 7.392 8.907
0.2 3.865 5.845 7.022 8.878 3.865 5.845 7.046 8.958
0.3 3.648 5.139 6.600 8.718 3.648 5.139 6.627 8.738
0.4 3.284 4.944 6.431 7.703 3.284 4.944 6.442 7.716
0.5 3.035 4.130 5.713 7.336 3.035 4.130 5.713 7.336
0.6 2.325 3.970 5.365 6.335 2.325 3.970 5.365 6.375
0.7 1.779 2.984 4.222 4.969 1.779 2.984 4.222 5.004
0.8 1.506 2.148 3.073 3.375 1.506 2.148 3.073 3.375
0.9 0.628 0.993 1.306 1.872 0.628 0.993 1.306 1.872

Table 4.3: Social Surplus of TMCA and VCG for K = 2 channels

in CPU time of the order of 102.

There seems to be a tendency of increasing inefficiency, hence we study scenarios

with higher density of users by using a critical distance of 0.3 instead of 0.1

Tables 4.7 and 4.8 compare the computational time of TMCA vs. VCG for

K = 2 and K = 4 respectively. Figure 4.7 summarizes the results with reserve

prices b0 = 0 and b0 = 0.5.
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TMCA VCG
b0 \N 4 6 8 10 4 6 8 10
0 7.398 11.588 15.424 18.559 7.398 11.604 15.448 18.578
0.1 7.520 11.364 14.910 17.904 7.535 11.375 14.931 18.016
0.2 7.427 11.472 14.802 18.246 7.427 11.472 14.851 18.269
0.3 7.284 10.705 13.888 16.435 7.284 10.705 13.915 16.542
0.4 6.623 10.105 12.921 15.860 6.633 10.105 12.933 15.930
0.5 5.967 8.842 11.912 14.693 5.967 8.842 11.911 14.715
0.6 5.463 7.416 10.368 12.990 5.463 7.416 10.368 12.990
0.7 4.216 6.211 7.957 9.355 4.216 6.211 7.957 9.372
0.8 2.782 4.110 5.702 7.615 2.782 4.110 5.702 7.632
0.9 1.367 2.035 2.995 3.628 1.367 2.035 2.995 3.628

Table 4.4: Social Surplus of TMCA and VCG for K = 4 channels

TMCA VCG
b0 \N 4 6 8 10 4 6 8 10
0 0.081 0.286 0.446 0.778 0.081 0.286 0.441 0.765
0.1 0.767 1.287 1.618 2.096 0.767 1.275 1.616 2.065
0.2 1.286 2.032 2.579 3.199 1.286 2.032 2.575 3.194
0.3 1.652 2.398 3.186 4.187 1.652 2.398 3.210 4.141
0.4 1.887 2.853 3.707 4.548 1.887 2.853 3.712 4.545
0.5 1.992 2.916 3.965 4.939 1.992 2.716 3.865 4.928
0.6 1.776 2.982 4.027 4.790 1.776 2.981 4.027 4.826
0.7 1.456 2.455 3.472 4.113 1.456 2.455 3.472 4.137
0.8 1.344 1.904 2.736 2.992 1.344 1.904 2.736 2.992
0.9 0.594 0.936 1.242 1.782 0.594 0.936 1.242 1.782

Table 4.5: Auctioneer’s Revenue in TMCA and VCG for K = 2 channels

TMCA VCG
b0 \N 4 6 8 10 4 6 8 10
0 0.247 0.467 0.595 1.311 0.247 0.458 0.584 1.246
0.1 1.562 2.380 3.296 4.208 1.533 2.363 3.246 4.096
0.2 2.579 3.877 5.212 6.437 2.579 3.877 5.193 6.413
0.3 3.374 5.006 6.518 7.861 3.374 5.006 6.538 7.849
0.4 3.807 5.729 7.387 9.236 3.809 5.722 7.395 9.214
0.5 4.024 5.958 7.826 9.835 4.024 5.958 7.816 9.850
0.6 4.047 5.618 7.731 9.703 4.047 5.617 7.731 9.703
0.7 3.473 5.168 6.553 7.716 3.473 5.166 6.553 7.727
0.8 2.480 3.648 5.072 6.785 2.480 3.648 5.072 6.800
0.9 1.296 1.926 2.844 3.438 1.296 1.926 2.844 3.438

Table 4.6: Auctioneer’s Revenue in TMCA and VCG for K = 4 channels
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Figure 4.6: Social Benefit and Seller’s Revenue (K=4)

TMCA VCG
b0 \N 2 4 6 8 2 4 6 8
0.1 0.002 0.005 0.007 0.009 0.049 0.161 0.421 1.050
0.2 0.002 0.004 0.007 0.008 0.049 0.165 0.402 0.800
0.3 0.002 0.004 0.006 0.009 0.053 0.165 0.377 0.908
0.4 0.002 0.004 0.005 0.008 0.053 0.168 0.387 0.902
0.5 0.002 0.003 0.005 0.007 0.049 0.165 0.372 0.733
0.6 0.002 0.003 0.004 0.006 0.044 0.162 0.353 0.721
0.7 0.001 0.002 0.004 0.005 0.044 0.151 0.349 0.615
0.8 0.001 0.002 0.003 0.004 0.047 0.157 0.335 0.612
0.9 0.001 0.001 0.002 0.002 0.045 0.148 0.323 0.519

Table 4.7: CPU time of TMCA and VCG for K = 2 channels

As expected computing time for VCG grows exponentially as the number

of nodes increases. Tables 4.9 and 4.11 show social surplus and revenue of the

auctioneer for TMCA and VCG when K = 2 channels. Similarly, Tables 4.10 and

4.12 do the same for K = 4 channels. These tables are summarized in Fig. 4.8.

Fig. 4.8 shows the social benefit and revenue of TMCA and Pivot for K = 4,

N ∈ {4, 6, 8, 10} and different values of b0. Notice that the results are virtually

the same for both mechanisms. Still, for small reserve prices, TMCA obtains a

slightly higher revenue but a slightly lower social benefit. However this loss in social
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TMCA VCG
b0 \N 2 4 6 8 2 4 6 8
0 0.005 0.010 0.016 0.018 0.057 0.374 4.150 35.107
0.1 0.004 0.010 0.014 0.018 0.093 0.389 3.381 36.820
0.2 0.004 0.009 0.014 0.016 0.097 0.385 2.720 37.481
0.3 0.004 0.008 0.013 0.017 0.099 0.405 3.387 24.595
0.4 0.004 0.008 0.011 0.015 0.103 0.414 1.601 18.088
0.5 0.004 0.006 0.010 0.013 0.104 0.437 1.647 16.031
0.6 0.003 0.006 0.009 0.012 0.104 0.379 1.963 5.343
0.7 0.002 0.005 0.007 0.009 0.099 0.332 1.152 2.308
0.8 0.002 0.004 0.005 0.008 0.097 0.327 0.794 2.329
0.9 0.001 0.002 0.004 0.005 0.096 0.340 0.741 1.157

Table 4.8: CPU time of TMCA and VCG for K = 4 channels

TMCA VCG
b0 \N 4 6 8 10 4 6 8 10
0 3.337 4.482 5.125 5.716 3.385 4.629 5.391 6.354
0.1 3.173 4.386 5.159 5.962 3.207 4.493 5.410 6.506
0.2 3.030 4.280 5.450 5.727 3.043 4.417 5.655 6.196
0.3 3.071 4.487 5.126 5.745 3.114 4.594 5.430 6.217
0.4 2.910 3.908 4.774 5.754 2.925 3.954 5.066 6.097
0.5 2.660 4.143 4.866 5.491 2.673 4.268 4.944 5.777
0.6 2.236 3.357 4.320 4.861 2.248 3.357 4.395 5.113
0.7 2.124 2.973 3.764 4.356 2.124 3.024 3.779 4.498
0.8 1.532 2.131 2.786 2.693 1.532 2.147 2.802 2.763
0.9 0.662 1.194 1.691 1.913 0.662 1.212 1.691 1.931

Table 4.9: Social Surplus of TMCA and VCG for K = 2 channels (high density of
users)

efficiency is small for practical scenarios as we have shown, in our experiments the

maximum efficiency loss was of 10% (When b0 = 0 and N = 10). Reduction in

CPU time however is of the order of 103.

4.5 Conclusion

In this chapter, we studied auction mechanisms as promising tools to enable a

dynamic and efficient re-allocation of spectrum channels in the short run. Although

the VCG mechanism can be used for this channel reallocation, it is overly demanding

from a computational standpoint. To solve this problem, we proposed TMCA,
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Figure 4.7: Exponential vs polynomial CPU time

TMCA VCG
b0 \N 4 6 8 10 4 6 8 10
0 6.427 8.719 10.806 12.094 6.551 8.997 11.466 13.212
0.1 6.873 8.653 10.602 12.245 6.901 8.975 11.337 13.347
0.2 6.643 8.494 10.570 11.950 6.719 8.844 11.206 13.098
0.3 6.229 8.363 10.383 12.081 6.266 8.705 11.098 13.165
0.4 6.034 8.643 10.275 11.480 6.105 8.781 10.781 12.389
0.5 5.672 7.719 9.540 11.163 5.694 7.881 9.982 11.979
0.6 5.001 7.258 8.488 10.502 5.015 7.341 8.843 11.082
0.7 4.004 5.910 7.666 8.723 4.004 6.039 7.757 9.011
0.8 3.160 3.883 5.821 7.136 3.160 3.916 5.920 7.286
0.9 1.306 2.612 2.908 3.671 1.306 2.612 2.908 3.671

Table 4.10: Social Surplus of TMCA and VCG for K = 4 channels (high density
of users)

a sealed-bid auction design that is incentive compatible in dominant strategies,

individually rational and can be implemented in polynomial time. TMCA reduces

the expected computational time at the expense of efficiency. For scenarios with
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TMCA VCG
b0 \N 4 6 8 10 4 6 8 10
0 0.643 1.116 2.000 2.658 0.577 0.934 1.584 2.206
0.1 0.963 1.674 2.167 3.003 0.887 1.608 2.125 2.676
0.2 1.253 1.974 2.760 3.230 1.248 1.950 2.584 3.012
0.3 1.577 2.357 2.996 3.658 1.564 2.327 2.996 3.583
0.4 1.786 2.376 3.056 3.780 1.763 2.356 3.114 3.817
0.5 1.829 2.824 3.424 3.947 1.830 2.903 3.413 4.088
0.6 1.724 2.554 3.315 3.813 1.736 2.552 3.345 3.948
0.7 1.736 2.460 3.153 3.640 1.728 2.490 3.148 3.742
0.8 1.361 1.889 2.510 2.390 1.361 1.902 2.523 2.452
0.9 0.630 1.134 1.602 1.819 0.630 1.152 1.602 1.836

Table 4.11: Auctioneer’s Revenue in TMCA and VCG for K = 2 channels (high
density of users)

TMCA VCG
b0 \N 4 6 8 10 4 6 8 10
0 1.377 2.715 4.049 5.513 1.062 2.147 3.344 4.367
0.1 1.889 3.315 4.491 5.922 1.787 3.036 4.060 5.122
0.2 2.543 3.837 5.212 6.498 2.527 3.707 5.049 6.057
0.3 3.084 4.630 5.899 7.087 3.106 4.537 5.770 7.029
0.4 3.496 5.182 6.469 7.463 3.504 5.121 6.638 7.637
0.5 3.825 5.286 6.697 8.001 3.823 5.354 6.877 8.305
0.6 3.776 5.468 6.550 8.002 3.773 5.503 6.742 8.368
0.7 3.292 4.814 6.330 7.263 3.292 4.917 6.370 7.484
0.8 2.816 3.444 5.177 6.347 2.816 3.476 5.262 6.475
0.9 1.242 2.466 2.754 3.492 1.242 2.466 2.754 3.492

Table 4.12: Auctioneer’s Revenue in TMCA and VCG for K = 4 channels (high
density of users)

low density of bidders this efficiency loss showed negligible while reductions in

CPU time were of the order of 102. For scenarios with high density of bidders,

efficiency loss remained small (less than 10%) while reduction in CPU time was of

the order of 103. We also characterized a revenue maximizing TMCA design in

which a reserve price per unit is determined. In contrast to former auction designs,

TMCA simultaneously achieves incentive compatibility in dominan strategies,

individual rationality, and implementability in polynomial time when marginal

channel valuations are not fixed.
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Figure 4.8: Social Benefit and Seller’s Revenue (K=4) (high density of users)

4.6 Appendix

4.6.1 Appendix: NP-Completeness of channel allocation

In this subsection we prove that given valuations {vn : n ∈ N} finding the

socially efficient allocation is an NP-complete problem. Consider the Chromatic

Number Problem (CNP) where given a natural K > 0 and a graph G(N , E) where

N is the set of nodes and E the set of edges, we want to know if it is possible to

find a coloring of the graph using K or less colors such that no neighbor nodes

receive the same color. Notice that we can solve the chromatic number problem by

finding an optimal allocation a∗(v̂1, . . . , v̂N) if we define v̂n,k as follows:

v̂n,k =






1 if k = 1

0 otherwise

for all n ∈ N . The solution to the chromatic number instance is affirmative iff

each node receives one channel. Therefore the CNP is polynomially reducible to

the optimal allocation problem. Since the former is NP-complete (see [18]), so is
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the latter.

4.6.2 Appendix: Preallocation Phase and Feasibility

In this section, we prove that the preallocation phase of TMCA delivers a

matrix â such that for any n ∈ N and k� ≤ K if bn,k� > sn,k� then
�

K

k=1 ân,k ≥ k�.

1. Suppose bn,k� > sn,k� and
�

K

k=1 ân,k < k� for some n ∈ N and k� ≤ K.

2. It follows that n received at most k� − 1 channels, therefore his neighbors

received at least K − (k� − 1) channels. Thus Bn has at least (K − k� + 1)

elements greater than bn,k� .

3. Thus sn,k� = Bn(K − k� + 1) > bn,k� , which contradicts the hypothesis in 1.

�
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4.7 Conclusions

In this dissertation, we studied challenges faced by modern communication

networks and the increasingly important role of mechanism design in order to

overcome these challenges.

Modern communication networks are generally constituted by heterogeneous

and profit maximizing users. If network users are required to follow predefined

rules, these rules must be aligned with each user’s individual objective.

The field of mechanism design offers the basic groundwork to align individual

actions with more general objectives. The design of network algorithms with these

considerations, however, is not an easy task. We have introduced “tailor-made”

solutions to three different problems. In these problems, the network manager

wanted to efficiently allocate network resources to a set of rational users with

private information regarding their utility.

Chapter 2 studied the problem of efficient flow assignment in a wired network

with capacity constraints. The network is prone to congestion externalities, which

are function of the aggregate use of the links in the network. For this problem

we propose Inertial Capacity Auction (ICA), an iterative auction design that

implements the socially efficient flow assignment in �−dominant strategies.

Chapter 3 introduced the problem of a wireless up-link network where secondary

users are serviced under restrictions imposed by the service quality of the primary

users. The wireless nature of this problem poses heavily intertwined externalities

that hinder the application the ICA. For this problem, we proposed Inertial

Temperature Auction, an iterative auction design, that implements the socially

efficient power profiles of secondary users �−dominant strategies.

Despite their structural differences, ICA and ITA are similar in nature. For

example, both use externality prices and cumulative payments that allow each

user to internalize the effect of his individual actions on his competitors’ utility.

Externality prices, however, are homogeneous in the ICA and heterogeneous in
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the ITA. This difference stems from the particularities of the wired and wireless

systems.

A novel concept used in ICA and ITA is the inertia in the updates of users’

profiles. This inertia helps users internalize the effects of the aggregate actions,

which finally, guarantees convergence and prevents cycles in the joint profiles.

Chapter 4 addressed spectrum sharing when the spectrum has been partitioned

into channels of semi-exclusive use. Here, channels can be reused under restrictions

imposed by a conflict graph. For this problem we proposed Truthful Multichannel

Auction, a one-shot auction design that is proved to be incentive compatible in

dominant strategies and implementable in polynomial time.

There are several channel auctions that consider channel allocations, restricted

by a conflict graph. However, to the best of our knowledge, TMCA is the first

incentive compatible channel auction that can be implemented in polynomial time

when the marginal channel valuations are not fixed.

The variety and sophistication of users sharing network resources represent

considerable challenges to the administrators of modern networks. The field

of mechanism design provides tools that are promising to solve many of these

challenges. However, network algorithms based on the theory of mechanism design

need to be “tailor made”, bearing in mind not only the priorities of the design

(e.g. efficiency, revenue of the network manager, etc.), but also the technical issues

related to the resource sharing technology (eg. FDMA, CDMA, etc.).
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