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ABSTRACT 

Traumatic brain injuries (TBI) are a significant public health burden occurring in automotive 

crashes, accidents, sports, and in military training and combat. There is a significant interest in 

understanding the tolerance of the human brain to external mechanical loads with the ultimate objective of 

mitigation and prevention of TBI. Early TBI research focused on understanding the injury mechanisms in 

animals, and the latest research focus has been on collecting exposure data in humans that routinely 

experience head impacts to quantify injury risks. Both research approaches have major limitations when 

studied in isolation, but when integrated they may provide a complete picture on TBI mechanisms and risk. 

One of the biggest challenges to forming a more comprehensive understanding of TBI risk is the 

applicability of animal brain injury data to humans. Therefore, the objective of this dissertation was to 

integrate human and animal brain injury data to establish a unique brain injury dataset that will be used to 

develop tissue-level brain injury risk functions. Finite element (FE) simulations were used to bridge the 

interspecies gap between human and non-human primate (NHP) injury data, assuming the equivalence of 

tissue-level metrics across primates.  

To achieve the goals, advanced multi-scale FE models of the human and NHP (macaque and 

baboon) brains were developed by explicitly incorporating mesoscopic anatomical details (axonal tracts) 

using a novel embedding method. Mechanical behaviors of the brain tissue were modeled with a hyper-

viscoelastic constitutive model, calibrated with available multi-modal testing data of in vitro brain tissue 

and extensively validated for in situ and in vivo intracranial deformations under various loading conditions. 

The numerical methods, anatomical features (axonal tractography), and constitutive models in these FE 

models were harmonized to facilitate the study of tissue-level responses across models of different species. 

Utilizing these computational tools, this dissertation presents two new methods to derive brain 

injury risk functions by integrating NHP and human brain injury data. First, a cross-species scaling method 

was formulated to correlate animal exposure data to humans, specifically to find the equivalent 

biomechanical impact conditions that result in similar tissue-level mechanical responses for different 
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species. Recognizing the resonance of the brain deformation under rotational motion, a new brain injury 

scaling method was developed based on scaling the natural frequency of the brain. The results of this work 

indicate that previously described biomechanical scaling methods, often based on the relative mass of each 

species, were poor predictors of the equivalent biomechanical impact conditions between NHP and human. 

The physically-bounded frequency-based scaling method improved the accuracy of scaling the equivalent 

loading conditions and provided insight to account for the interspecies differences in brain physical 

morphology, anatomy and tissue properties.  

Second, a methodology for integrating interspecies injury data to derive human brain injury risk 

functions was developed through the harmonized brain FE models of the human, macaque and baboon. The 

efficacy of the tissue-level injury metrics for predicting injury was evaluated computationally by simulation 

of an integrated dataset of sub-injurious human volunteer sled tests, laboratory reconstructed head impacts 

from professional football, and in vivo NHP tests. The current analysis lends some favor to Von Mises 

stress and maximum principal strain over other existing tissue-level metrics as good predictors of injury, 

while no evidence was shown that the global axonal strain was a better predictor of injury than the global 

principal strain. Associated injury risk functions for mild and severe TBI were proposed through integrated 

data. Efficacy of the proposed injury risk functions was first verified by an independent test dataset and 

eventually applied to automotive crash scenarios to ensure the proper usage of the risk functions.  

The main contributions of this dissertation were the new methods for developing tissue-level brain 

injury risk functions using injury data of multiple species. The findings and the developed methods could 

be of critical importance in guiding the technical innovation of more effective safety countermeasures, 

thereby, reducing the incidences, consequences, and societal burden of TBI.  
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CHAPTER 1 : INTRODUCTION 

1.1 Statement of Problem 

Despite the significant scientific emphasis on reducing their societal cost, traumatic brain 

injuries (TBI) remain a significant public health issue. The Centers for Disease Control and 

Prevention (CDC) estimates that TBI accounts for approximately 2.5 million emergency 

department (ED) visits, 282,000 hospitalizations, and 56,000 deaths annually in the United States 

(CDC, 2015). Nearly one-third of all injury-related deaths in the United States included a TBI as 

a cause of death (Faul and Coronado, 2015). From 2006 to 2013, the rate of TBI-related ED visits 

increased by 54.7%, although this trend might reflect the increased awareness of TBI among the 

general public (Taylor et al., 2017). Nevertheless, the public health and economic burden of TBI 

is substantial, which warrants continued injury prevention efforts and public awareness.  

Currently, major injury prevention efforts have focused on improving motor vehicle safety 

and safe play in sports to target a large proportion of the population (CDC, 2015), and there is a 

significant interest in designing better protective head equipment and safety countermeasures. 

What is not well known are the quantitative thresholds of the external loads that lead to cognitive 

and physical dysfunction. Consequently, the current testing protocols and standards to assess a 

product may not reflect its protective performance in the field. On the other hand, the design of 

protective equipment may undergo changes through trial and error without adequate understanding 

of the rule of thumb for good protection; thus, this hampers technical innovation for injury 

prevention. Understanding the mechanism and the biomechanical tolerances of TBI is the 

cornerstone of the design and development of effective countermeasures.  
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The biomechanical understanding of TBI is, unfortunately, still at the initial stages. 

Fundamental questions and challenges associated with TBI research remain unanswered. From the 

biomechanical perspective, how does the tissue in the brain respond when an external load is 

applied to the head? How does the intracranial tissue response relate to the TBI? How does the 

risk of TBI injury vary with external head motion? Data from animal experiments have been used 

to define the probability of injury concerning the level of physical impact, but how do scientists 

relate the animal-derived relationship between loading conditions and neurological responses to 

humans? The focus of this dissertation was to answer some of these questions. 

1.2 Motivation 

For biomechanical engineers who seek answers to the lingering questions associated with 

TBI, the tissue-level metrics of the brain are considered the critical components to link external 

mechanical loads to subsequent development of pathological consequences. However, the 

relationship between tissue-level metrics and injury has not been thoroughly studied, mainly due 

to the lack of a uniformly well-characterized in vivo injury data.  

A complete set of in vivo injury data should include both external loads (e.g., head 

kinematics) and clinical outcomes. Typically, the existing sources of injury data come from animal 

tests, human volunteer tests, field measurements, and reconstructed field impacts. Human data 

generally are gathered at the low-severity end (e.g., sub-injurious volunteer tests, and sports-

related impacts) and do not permit evaluation of injury metrics and injury risk for more severe TBI 

(e.g., DAI). Animal data have the advantages of a broader range of injury severities, well-

controlled loading conditions, and accessibility to pathophysiological mechanisms. The 

mechanical response associated with trauma characterized in these animal studies is difficult to 

translate to humans considering the differences in brain morphology and physiology across species 
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(Panzer et al., 2014). In general, each dataset has inherent limitations, and currently, no single type 

of test data is sufficient to develop a robust correlation between tissue-level metrics and TBI.  

Therefore, new methods are required to address the potential issues with current tissue-

level metrics and overcome the present challenges associated with the integration of injury data.  

1.2.1 Limitations of Existing FE-Derived Tissue-Level Metrics 

Because of a lack of noninvasive accessibility to the brain tissue in the head, tissue-level 

injury metrics are difficult to develop with in vivo or in vitro models.  Finite element (FE) modeling 

is a powerful tool for studying the internal biomechanical responses of human or animal brain to 

external loadings. However, the biofidelity of current brain FE models was only partially validated 

for tissue responses (brain deformation) using experimental data that was not “totally suited” or 

“designed” for model evaluation (Yang et al., 2006). Several tissue-level metrics (e.g., Kleiven, 

2007; Deck and Willinger, 2008; Takhounts et al., 2003) have been developed based on 

homogeneous FE models (region-dependent but homogeneous in the region) with isotropic 

material models even though the brain is widely considered to be heterogeneous and anisotropic 

(Chatelin et al., 2010). Acknowledging that the (axonal) tract-oriented strains cannot be easily 

correlated to the tissue strain without considering the axonal orientations (Cloots et al., 2013), 

recent attempts to incorporate white matter anisotropy in brain FE models have been made based 

on diffusion-weighted magnetic resonance imaging (DWI) information. Most of these studies have 

implicitly incorporated fiber tractography to inform anisotropic, fiber-reinforced constitutive 

models (Giordano and Kleiven, 2014, Zhao and Ji, 2018, Ganpule et al., 2017, Wright et al., 2013). 

However, this approach over-simplifies the heterogeneity of the brain parenchyma and requires 

the use of weighted-average fiber orientation for each element, which may not be aligned with the 

actual direction of the axonal fiber bundles (Zhao and Ji, 2018).  
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Since the reliability of inferences drawn from these models depends on the model 

biofidelity and the accuracy of the mesoscopic fiber architecture, improved FE models are required 

to evaluate whether certain tissue-level metric (e.g., axonal strain) is a better predictor of TBI. 

1.2.2 Challenges of Correlating Animal Brain Data to The Human Brain 

Because of the limited availability of human injury data, animal injury data is being used 

for the development of human brain injury risk functions. The challenges of the application of 

animal brain injury data in human TBI studies can be identified in the following three aspects. 

1. The similarity of material and cellular properties.  

Regardless of the underlying ambiguities in the behavioral and physiological differences, 

the challenge in establishing a link between the human and the animal starts at the tissue level. The 

notion of seeking a correlation between tissue responses and injury outcomes through animal data 

assume interspecies equivalence for brain tissue. In other words, the equal tissue-level stimulus 

would cause similar severities of injury for both animal and human. The necessary but not 

sufficient condition for that requirement is that the brain tissue of both species is similar in 

mechanical properties and has a similar cellular composition. While the most commonly used 

animal models to study brain injury, such as mice (Sauerbeck et al., 2018), rats (Davidsson et al., 

2011; Marmarou et al., 1994) and porcine models (Browne et al., 2011; Coats et al. 2016) do not 

have similar cellular compositions with the human brain (Figure 1-1). Non-human primates 

(Gennarelli et al., 1982; Ommaya and Hirsch, 1971; Ono et al., 1980) are considered as a more 

representative human surrogate because human and non-human primates have similar cellular 

compositions, mechanical properties (Estes and McElhaney, 1970), and brain anatomy.  
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Brain anatomy images (not to scale) were adapted from the University of Wisconsin and Michigan State 

Comparative Mammalian Brain Collections (www.brainmuseum.org).  

Figure 1-1. Neuronal density (number of neuron cells per microgram), based on data from (Herculano-

Houzel and Dos Santos, 2018). 

 

2. Scaling.  

Simplified scaling methods (e.g., mass scaling method, Ommaya et al., 1967) based on 

dimensional analysis have guided the interpretation of animal data in the context of humans. They 

were explicitly theorized to find the equivalent biomechanical impact conditions that result in 

similar tissue-level mechanical responses (shear strain) for different species, but the existing 

scaling methods have not been validated and fail to account for the anatomical and morphological 

complexity of the brains of different species. 

 

  

http://www.brainmuseum.org/
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3. FE model resolution.  

Brain FE models have shown potential for addressing the limitation of scaling methods by 

establishing dimensionless tissue-level equivalence from the animal to the human (Antona-

Makoshi, 2016). Compared to human models, current animal brain FE models are not as advanced 

and are not suited for the investigations of specific injury mechanisms or the development of 

tissue-level injury risk functions (see Chapter 2). The model inconsistency observed in the 

literature (Giudice et al., 2018) also undermines the direct comparison between different models 

for tissue responses. 

1.2.3 Need for Interspecies Data Integration 

Numerous brain injury risk functions derived from different data sources have indicated 

considerable variability in the literature (Sanchez et al., 2017). These discrepancies may be caused 

by issues including but not limited to, the bias and possible errors involving the data sources 

themselves, the limitation of small sample size, the scaling techniques used to involve animal data, 

and the low predictability of the metrics. A unified methodology for the integration of the data 

from different sources would potentially address many of these issues. 
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1.3 Objectives and Outline 

The goal of this study was to investigate methods to integrate human and animal brain 

injury data and develop tissue-level injury risk functions for predicting human brain injury. The 

integration of non-human primate (NHP) and human injury data were explored for the 

demonstration of concept, partially because the similarity between primates likely fulfills the 

requirements for the tissue-level equivalence. This work will focus on using computational 

methods to understand brain injury and brain tissue responses in closed-head impact scenarios. 

The goal will be accomplished through the following specific aims:  

1) Develop advanced computational tools for assessing tissue-level brain injury metrics 

for both human and non-human primate models; 

2) Develop methods to correlate biomechanical responses of the animal model with the 

human model by scaling the exposure data (head kinematics); 

3) Integrate interspecies injury data, assess the correlation between tissue-level metrics 

and injury outcomes, develop and evaluate injury risk functions for predicting brain injury. 

As outlined in Figure 1-2, following an overview of the background research in the 

literature, eight chapters are presented to achieve these aims. The results from this work will 

advance the collective understanding of TBI injury mechanisms. The significance of this work will 

contribute to addressing two persistent questions associated with TBI research: How do 

researchers derive human injury tolerance based on animal experiments? What are the quantitative 

thresholds of mechanical stimuli that lead to injury (or dysfunction) in the brain? In a practical 

sense, the resulting injury risk functions would motivate and guide the technical innovation for 

brain injury mitigation and prevention. 
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Figure 1-2. Overview of this dissertation 
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CHAPTER 2 : BACKGROUND 

This chapter presents background research relevant to this dissertation. Topics include 

information on human brain anatomy, existing TBI mechanisms, injury criteria, and computational 

brain models. Each subsection contributes to the biomechanical understanding of brain injury.  

2.1 Human Neuroanatomy: from Macro to Micro 

The brain, which is contained within the cranium, is the center of the nervous system and 

the most complex organ in the human body. Knowledge of the anatomy of the brain would help to 

understand the biomechanical response and injury mechanism of the brain. A brief biomechanical 

background of the structure and composition of the brain is discussed in this section.  

At the macroscale, the brain is divided into five parts (Figure 2-1), as follows: cerebrum, 

the basal ganglia, the diencephalon, the brainstem, and the cerebellum (Nolte, 2002). They are 

constrained and stabilized in the skull through three meninges/membranes, which are the dura 

mater, the arachnoid mater, and the pia mater from the outermost layer inward. There are several 

places where the inner dural layer separates from its external counterpart and protrudes into the 

cranial cavity. The primary dural extensions are the falx cerebri between the two cerebral 

hemispheres, and the tentorium cerebelli between the cerebral hemispheres and the cerebellum. 

The spaces between meninges and the brain are filled with a clear cerebrospinal fluid (CSF) that 

is produced within the ventricles. From the perspective of biomechanics, the brain is protected 

from injury by meninges and CSF, which provide complex boundary conditions for the brain 

tissues and influence the mechanical responses of the brain as a whole in the skull. 
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Figure 2-1. Mid-sagittal view of the brain (basal ganglia and diencephalon are blocked by the ventricle 

in this view). 

At the mesoscale (~1 mm), the brain’s structure is not always evident. At this scale, the 

organization of the structural connections (connectome) in the brain can be observed through 

advanced imaging techniques. Different brain regions are connected to each other through axons 

at the cellular level to form an enormously complicated network system (Figure 2-2). This 

structural connection serves as a critical constraint on brain functionality and provides fundamental 

insight into the understanding of the pathophysiology underlying the different brain injury.  

 
Figure 2-2. Mesoscale axonal fiber architecture in three views. Each tube is a nerve tract consisting of 

bundles of axons (Yeh et al., 2018). 
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At the microscale, nervous tissue is primarily composed of neurons and glial cells (Figure 

2-3). Neurons are the information-processing and signaling elements, while glial cells play a 

variety of supporting roles. There are around 100 billion neurons in the human nervous system and 

a similar number of glial cells (von Bartheld et al., 2016). The brain at the macroscale is easily 

divisible into gray matter and white matter. This distinction is a result of the underlying 

microstructural architecture: White matter is mainly composed of myelinated axons, the myelin 

sheath gives white matter the whitish appearance, while in gray matter there is a preponderance of 

unmyelinated cell bodies and dendrites. 

 
Figure 2-3. Neurons and glial cells. 

2.2 Injury Mechanism 

Because of the complexity of brain anatomy, TBI is a multiplex injury with a broad 

spectrum of symptoms and dysfunctions. Controversy regarding the mechanisms of TBI exists, 

and injuries with different damage patterns may be caused by different or multiple mechanisms. 

Unlike an open head injury when an object penetrates the skull and brain, over 90% of common 

brain injuries are closed-head injuries without skull penetration (Santiago et al., 2012), including 
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concussion, contusion, intracranial hemorrhage, diffuse axonal injury, and brainstem injuries. 

These injuries can be diffuse (also called multifocal), meaning they affect tissues throughout the 

brain; or focal, meaning the damage is localized in one area. Amongst the closed-head injuries, 

diffuse-type TBIs are the most frequent, and they account for 81% of all brain injuries, according 

to the National Automotive Sampling System Crashworthiness Data System (NASS CDS) 

database (Takahashi and Yanaoka, 2017). Diffuse-type injuries were the focus of this dissertation. 

The mechanisms that can cause these types of injuries were discussed as follows.  

Brain injury or dysfunction is believed to be caused by shear deformation in the brain due 

to the rapid rotation of the head (Holbourn, 1943). While few experiments were able to confirm 

Holbourn’s hypothesis directly, numerous animal and human studies support the claim that both 

brain deformation (Alshareef et al., 2018; Meaney et al., 1995) and TBI (Gennarelli et al., 1972; 

Ommaya and Gennarelli, 1974) were more easily induced by the rotational head motion than the 

translational head motion. One important anatomic phenomenon of TBI was the findings of 

disrupted white matter tracts and normal gray matter in autopsy (Strich, 1956). This type of injury 

was later called Diffuse Axonal Injury (DAI). DAI is thought to be caused by mechanical 

disruption of axonal cytoskeletons resulting in axonal swelling, retraction bulb, axonal 

degeneration, and downstream deafferentation. Histopathology studies on animal models 

(Gennarelli et al., 1982; Ibrahim et al., 2010) also found proteolysis, swelling, and other 

microscopic changes to the neuronal structure in injured subjects. Similar abnormalities of axons 

were recreated in vitro through tissue deformation in experimental conditions (Nakadate et al., 

2017; Tang-Schomer et al., 2010), indicating a possible correlation between strain and injury.  

The concussion injury is a complex pathophysiological process affecting the brain induced 

by biomechanical forces. Currently, a concussion is diagnosed when the patient appears to be 
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confused or has transient brain dysfunction, but the loss of consciousness or amnesia is not required. 

Pathological findings in standard imaging are not expected. A concussion is a milder form of DAI 

(Browne et al., 2011), with mainly physiological disruption of brain function. However, current 

imaging techniques cannot detect the extent of minor axon injury.  

Subarachnoid hemorrhage (SAH) and intraventricular hemorrhage (IVH) might also be 

caused by the same shearing mechanism that underlies severe DAI (Mata-Mbemba et al., 2018, 

2015). Myriad other hypothesized injury mechanisms also exist to explain blast-induced TBI 

associated with small deformation from fast events. Notable examples of these mechanisms are 

cavitation in brain tissue (Panzer et al., 2012; Salzar et al., 2017), the systemic response of the 

whole body to blast exposure (Cernak, 2010), and the secondary injury caused by blood-brain 

barrier disruption (Hay et al., 2015). However, these examples are based on different scenarios, 

and their applicability to blunt trauma is yet to be confirmed. 

2.3 Injury Metrics and Brain Injury Tolerance 

Based on an understanding of injury mechanisms, various injury metrics or criteria were 

utilized to predict TBI and characterize the human biomechanical tolerance to TBI (Gabler et al., 

2016; Sanchez et al., 2017). Considering the variability in the population, the tolerance is generally 

expressed as a risk function (statistical modeling of the occurrence of injury) of an injury metric(s) 

in response to external mechanical load. These injury metrics for the brain can be categorized into 

two types, kinematics-based (Gadd, 1966; Versace, 1971), and tissue-level injury metrics (Sahoo 

et al., 2016; Zhang et al., 2004). Ideally, both the kinematics-based and tissue-level injury metrics 

should be developed based on their capability of predicting brain injury. However, the current 

kinematics-based injury metrics were developed based on their correlation to tissue-level metrics 
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(e.g., strain) because of limited injury data (Gabler et al., 2018a; Takhounts et al., 2013), with the 

underlying assumption that corresponding tissue-level metrics are good predictors of brain injury.  

As summarized in Table 2-1, numerous tissue-level metrics have been derived from FE 

simulations of reconstructed real-world events. Notable examples of tissue-level injury metrics 

include maximum principal strain (MPS) (Kleiven, 2007; Viano et al., 2005), Von Mises stress 

(VMS) (Ueno et al., 1995) and the cumulative strain damage measure (CSDM) (Bandak and 

Eppinger, 1994; Takhounts et al., 2003). Recognizing the mechanism of axonal injury, recent 

studies suggested a new metric: tract-oriented strain (TOS, also called ‘axonal strain’ or ‘axonal 

elongation’ in the literature) (Giordano and Kleiven, 2014a; Sahoo et al., 2016; Sullivan et al., 

2015). However, the correlation between the current tissue-level metrics and brain injury has yet 

to be validated or invalidated with reliable experimental TBI data.  

Table 2-1. Summary of FE-derived tissue-level injury metrics in the literature. 

Reference Metric* Injury Description Data Source 

(Ward et al., 1980) PRS Severe brain injury  Animal tests 

(Trosseille et al., 1992) Strain 
Irreversible brain 

injury  
Accident reconstruction 

(Ueno et al., 1995) VMS Contusion Animal tests 

(Kang et al., 1997) VMS Severe brain injury Accident reconstruction 

(Takhounts et al., 2003) CSDM Concussion Animal tests 

(King et al., 2003) SR Concussion Football reconstruction 

(Zhang et al., 2004) PRS, Shear Stress Concussion Football reconstruction 

(Viano et al., 2005) MPS, SR Concussion Accident reconstruction 

(Kleiven, 2007) PRS, MPS Concussion 
Football and Accident 

Reconstruction 

(Yao et al., 2008) PRS, VMS, Shear Stress Mild TBI Accident reconstruction 

(Deck and Willinger, 2008) 
VMS, MPS, VM Strain, CSF 

PRS 
DAI 

Football and Accident 

Reconstruction 

(Giordano and Kleiven, 

2014a) 
Axonal Strain Concussion 

Football and Accident 

Reconstruction 

(Sullivan et al., 2015) TOS, SR, S×SR DAI Animal tests 

(Sahoo et al., 2016) Axonal Strain DAI 
Football and Accident 

Reconstruction 

*PRS: pressure, SR: strain rate, S×SR: the product of strain and strain rate, VM Strain: Von Mises Strain. 
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In vitro models (e.g., dissociated cells and organotypic tissue slices) would also be useful 

in developing tissue-level metrics and provide insights into understanding the cellular mechanism 

of brain injury. Numerous in vitro models have been developed to understand the mechanical 

stimuli of impact and the following responses of tissue and cells (Cater et al., 2006; Elkin and 

Morrison, 2007; Nakadate et al., 2017). Representative in vitro studies and tissue-level tolerance 

in the literature are provided in Table 2-2. 

 Table 2-2. Summary of in vitro tissue-level injury metrics in the literature. 

Reference Injury Description 
Strain 

(Strain Rate 1/s) 
Data 

(Gray and Ritchie, 

1954) 
Structural failure 0.33 (10) 

A single myelinated fiber dissected from 

frog motor nerve 

(Galbraith et al., 

1993) 
Structural failure 0.25 – 0.30 (10) An isolated squid giant axon 

(Bain and Meaney, 

2000) 

Electrophysiological 

impairment 
0.18 (30-60) Optic nerve of guinea pig 

(Geddes et al., 2003) 
Significant membrane 

permeability 
0.3 (10) Cortical neuronal cultures of rats 

(Morrison et al., 

2003) 
Cell death 0.2 (5-50) 

Organotypic slice culture of rat 

hippocampus 

(LaPlaca et al., 2005) Cell death 
0.25-0.5 (20-30), 

shear strain 
Neuronal and astrocyte cell culture 

(Elkin and Morrison, 

2007) 
Cell death 0.1-0.2 (0.1-50) Organotypic slice culture of rat cortex 

(Tang-Schomer et al., 

2010) 

Undulation,8% length 

increase 
0.75 (44) Isolated axon culture 

(Nakadate et al., 

2017) 
Axonal swellings and bulbs 0.15 (50), 0.20 (30) Cultured neurons 

 

The correlations between deformation (e.g., strain, axonal elongation) and the onset of 

damage (i.e., the degree of electrophysiological impairment, morphological damage, and cell death 

of neurons) have been established (Morrison et al., 2003), but researchers have not reached an 

agreement on strain rate (Cater et al., 2006; Elkin and Morrison, 2007). Axonal tolerance to 

deformation has also been studied (Bain and Meaney, 2000; Nakadate et al., 2017), but slice 

cultures that contain intact white-matter tracts have yet to be tested with in vitro models of injury. 

Another unanswered question concerns the threshold of damage needed to cause brain dysfunction 

or injury, although one may correlate strains at the tissue level to different levels of axonal damage 
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at the microscopic level. Furthermore, the application of those in vitro injury thresholds in 

computational models would also be challenging. For instance, strains at the element level (~100 

mm) are not equivalent to strains at the microscopic level (~106 mm) (Giudice et al., 2018). 

2.4 FE Models 

To investigate the relationship between mechanical loads, brain tissue responses, and the 

resulting brain injury, numerous human and animal brain FE models have been developed and 

extensively used to study brain injury. A summary of state-of-the-art human brain FE models is 

provided in Table 2-3. Although these computational models can provide an accurate 

representation of the macroscale brain anatomy based on computed tomography (CT) and 

magnetic resonance imaging (MRI) scans, these models vary in numerical methods (element type, 

mesh size, element formulation, hourglass control methods, etc.) and material models. Many 

models used in TBI research are still based on isotropic material, although recent studies have 

attempted to incorporate white matter anisotropy into the model. Most of them have been validated 

using the same experimental data (Hardy et al., 2007, 2001), while producing discordant tissue-

level responses (e.g., strain) under identical loading conditions (Giordano and Kleiven, 2016; 

Miller et al., 2017; Zhao and Ji, 2018). Compared with human models, animal brain FE models 

(as summarized in Table 2-4) usually are less advanced with only primary macroscale anatomical 

features modeled. Most current animal brain FE models are not validated for intracranial 

deformation since there is currently no well-characterized experimental dataset. In all surveyed 

animal models used in traumatic brain injury research, brain tissue was modeled as isotropic 

material using a linear viscoelastic model. In general, the number of elements (3,000-250,000) was 

fewer than that in the surveyed human models (13,000-2,100,000).  
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Table 2-3. Summary of state-of-the-art human brain finite element models. 

Model Reference 
Elements Material Models 

Geometry 
Number Resolution Type Anisotropy Viscoelasticity Hyperelasticity 

WSUBIM 
(Zhang et 

al., 2001) 
314,000 1.8 mm 

Hex. 

Quad. 
No Yes No 

50th 

percentile 
male 

KTH 

(Kleiven 

and von 
Holst, 

2002) 

21,000 5.8 mm 
Hex. 

Quad. 
No1 No2 Yes 

Visible 

Human 

Database 

UCD 

(Horgan 
and 

Gilchrist, 

2003) 

28,000 5.5 mm 
Hex. 

Quad. 
No Yes No 

Visible 
Human 

Database 

(Male) 

THUMS 
(Kimpara 

et al., 

2006) 
50,000 3.8 mm 

Hex. 

Quad. 
No Yes No 

50th 

percentile 

male 

SUFEHM 
(Deck and 

Willinger, 

2008) 
13,000 7.7 mm 

Hex. 

Quad. 
No3 Yes Yes 

Human 
adult male 

SIMon 
(Takhounts 

et al., 

2008) 
46,000 3.2 mm 

Hex. 

Quad. 
No Yes No 

50th 

percentile 

male 

KTH-V 
(Ho et al., 

2009) 
2,000,000 0.9 mm 

Voxs. 

Quad. 
Yes Yes Yes -- 

DSSM 
(McAllister 

et al., 

2012) 
-- -- 

Hex. 

Quad. 
No Yes Yes 

Subject-
specific 

(male) 

GHBMC 
(Mao et al., 

2013) 
270,000 2.5 mm 

Hex. 

Quad. 
No Yes No 

50th 
percentile 

male 

Singapore 
(Yang et 

al., 2014) 
1,170,000 1.6 mm 

Tet. 

Tri. 
No Yes No 

50th 
percentile 

Chinese 

male 

DHIM 
(Ji et al., 

2015) 
115,000 3.3 mm 

Hex. 

Quad. 
No4 Yes Yes 

Subject-

specific 

(male) 

WFUABM 
(Miller et 
al., 2016) 

2,100,000 1 mm 
Vox. 

Quad. 
No Yes No 

ICBM 

brain 

template 

Imperial  
(Ghajari et 

al., 2017) 
1,250,000 1.8 mm 

VoxS. 

Quald. 
No Yes Yes 

34-year-

old male 

JHU 
(Ganpule 

et al., 

2017) 
-- -- Meshless Yes Yes Yes 

Subject-

specific 

Toyota 
(Atsumi et 

al., 2018) 
62,000 3.0 mm 

Hex. 

Quad. 
Yes Yes Yes 

TURBO 
SQUID 

human 

brain 

YEAHM 
(Fernandes 

et al., 

2018) 
-- -- Tet. Tri. No Yes Yes 

65-year-
old male 

PSU 
(Garimella 

and Kraft, 

2017) 
153,000 2.1 mm 

Hex. 

Truss 
Yes Yes Yes 

Subject-

specific 

(male) 
1Updated to include white matter anisotropy (Giordano and Kleiven, 2014b) 
2Updated to include viscoelasticity (Kleiven, 2006) 
3Updated to include white matter anisotropy (Sahoo et al., 2014) 
4Updated to include white matter anisotropy (Zhao and Ji, 2018) 

Hex., hexahedral; Quad., quadrilateral; Pent., pentahedral; Tet., tetrahedral; Tri., triangular; Vox., voxel; VoxS., 

smoothed voxels 
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Table 2-4. Summary of state-of-the-art animal brain finite element models. 

Species Reference 
Elements Material Models 

Geometry 
Number Resolution Type Anisotropy Viscoelasticity Hyperelasticity 

Macaque 
(Ng et al., 

2017) 
-- -- 

Hex. 

Quad. 
No Yes No 

Brain 

Atlas & 
CT 

Macaque 
(Antona-

Makoshi, 
2016) 

77,000 1.8 mm 
Hex. 

Quad. 
No Yes No 

brain 

Atlas & 
CT 

Pig 
(Coats et al., 

2012) 
30,000 2 mm Hex.  No Yes No CT 

Pig 
(Jean et al., 

2014) 
37,000 -- Tet. No Yes No CT 

Sheep 
(Anderson et 

al., 2003) 
3,000 -- Hex.  No Yes No MRI & CT 

Ferret 
(Panzer, 

2012) 
24,000 0.56 mm Hex.  No Yes No CT 

Rat 
(Antona-

Makoshi, 

2016) 
145,000 0.35 mms Hex.  No Yes No 

Brain 

Atlas & 

CT 

Rat 
(Ren et al., 

2014) 
180,000 0.25 mm Hex.  No Yes No MRI & CT 

Rat 
(Mao et al., 

2006) 
250,000 

0.1-0.3 

mm 
Hex.  No Yes No Brain Atlas 

Mouse 
(Jean et al., 

2014) 
91,778 -- Tet.  No Yes No CT 

Hex., hexahedral; Quad., quadrilateral; Pent., pentahedral; Tet., tetrahedral; Tri., triangular. 

Overall, the substantial model inconsistency in the current brain FE models of the human 

and animals precludes effective comparisons in the simulation results and significantly hampers 

the collective efforts in the investigation of TBI. Efforts to improve human and animal brain 

models in this dissertation are presented in the following three chapters. 
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CHAPTER 3 : EXPLICIT METHOD TO MODEL AXONAL FIBER TRACTS  

Many brain finite element models lack mesoscopic (~1 mm) white matter structures, which 

may limit their capability in predicting TBI and assessing tissue-based injury metrics such as 

axonal strain. To address these limitations and to improve existing FE models, this chapter 

investigated a novel embedded method to incorporate axonal fiber tracts of white matter explicitly 

into existing isotropic brain FE models. The axon-based model will be a useful tool for 

understanding the mechanisms of TBI, evaluating tissue-based injury metrics, and developing 

injury mitigation systems. This chapter was published previously (Wu et al., 2019. Explicit 

Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model. Annals of 

Biomedical Engineering, DOI: 10.1007/s10439-019-02239-8) and was adapted for this 

dissertation with permission from the publisher. 

3.1 Introduction 

Computational models are crucial to understanding the mechanisms of TBI at the tissue 

level, because of their ability to link external head impact conditions to the mesoscopic and even 

microscopic (cellular level) responses of brain tissue that leads to injury. While the microstructure 

of the brain white matter (WM) is heterogeneous and anisotropic, most current computational brain 

models (Mao et al., 2013; Miller et al., 2016; Takhounts et al., 2008) have adopted an isotropic 

representation of the material. More importantly, the lack of mesoscopic WM structures may limit 

their capability in predicting TBI because the damage to axons is believed to be one of the critical 

mechanisms of TBI (Meaney and Smith, 2011). The significance of WM anisotropy on brain tissue 

responses has been recently studied (Sahoo et al., 2014; Wright et al., 2013; Zhao and Ji, 2018) 

and it is believed that the incorporation of WM anisotropy is necessary for the development of 

more precise injury metrics (Giordano and Kleiven, 2014a; Sahoo et al., 2016). 
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The axonal fiber architecture of human WM can be characterized in vivo through diffusion-

weighted magnetic resonance imaging (DWI) and subsequent deterministic tractography analyses 

by exploiting the Brownian motion of water molecules in tissues (Jones et al., 2013). Recent 

attempts to incorporate WM anisotropy in brain FE models (Table 3-1) have been made based on 

tractography information. The majority of these studies have implicitly incorporated fiber 

tractography to inform anisotropic, fiber-reinforced constitutive models (Chatelin et al., 2013; 

Ganpule et al., 2017; Giordano and Kleiven, 2014b; Wright et al., 2013; Zhao and Ji, 2018). 

However, this approach over-simplifies the brain parenchyma heterogeneity and requires the use 

of weighted-average fiber orientation for each element, which may not be aligned with the actual 

orientation of the axonal fiber bundles (Zhao and Ji, 2018). Garimella and Kraft (Garimella and 

Kraft, 2017) discussed the limitations associated with this technique in detail and instead suggested 

that axonal fibers be explicitly modeled as embedded elements. This method allows for the 

incorporation of multiple fiber orientations for a single element and takes advantage of the full 

axonal fiber tractography. However, the embedding method introduces new challenges associated 

with, but not limited to, mechanical characterization of axonal fibers and interaction between fibers 

and the ground substance. Also, deterministic tractography can be an erroneous process due to 

differences in reconstruction methods and tracking algorithms (Maier-Hein et al., 2017). While 

most studies (Table 3-1) obtain WM tracts from a single subject, a population-based atlas is 

preferred for increasing the validity of the fiber tractography and modeling representative 

topological interconnectivity in the general population (Yeh et al., 2018).  
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Table 3-1. 3-D anisotropic brain FE models. 

Studies Anisotropy Modeling Method  
Tractography 

Source 
Number of 

Solid Elements  

(Sahoo et al., 2016) Anisotropic Constitutive Model 12 volunteers 13,000 
(Giordano and Kleiven, 2014b) Anisotropic Constitutive Model 1 volunteer 21,000 

(Ganpule et al., 2017) Anisotropic Constitutive Model Subject-specific - 
(Garimella and Kraft, 2017) Embedded Elements Subject-specific 150,000 

(Zhao and Ji, 2018) Anisotropic Constitutive Model Subject-specific 53,378 

 

The first objective of this chapter was to develop a methodology to incorporate axonal 

fibers into an existing isotropic FE human brain model. The Global Human Body Models 

Consortium (GHBMC) owned 50th percentile male (M50) brain model (Mao et al., 2013) was 

used to demonstrate the applicability of this methodology. The second objective was to improve 

the biofidelity and prediction capability of the original model. From a broad perspective, this study 

provides a novel and generalized framework for incorporating mesoscopic anatomical details in 

multi-scale FE models. 

3.2 Methods 

3.2.1 Baseline Model 

The GHBMC M50 v4.3 brain model (Mao et al., 2013) has been used extensively in TBI 

research (Gabler et al., 2018a, 2018c, 2016; Sanchez et al., 2018, 2017). The geometry of the 

model was based on CT and MRI scans of an adult male representing the 50th percentile height 

and weight of the population. The brain model has 82,083 hexahedral elements in total and 

includes anatomical representation of the cerebrum, cerebellum, brainstem, corpus callosum, 

ventricles, thalamus, bridging veins, CSF, and membranes (falx, tentorium, pia, arachnoid, dura). 

Brain model responses, including pressure and relative brain-skull motion, were previously 

validated (Mao et al., 2013). In this study, the GHBMC baseline model was modified to include 

axonal WM fiber 1-D elements, and new constitutive material models were applied to the ground 
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substance and fiber components. Finally, the brain deformation response was validated under a 

battery of impact cases. The updated model is hereafter referred to as the ‘axon-based’ model. 

3.2.2 Fiber Tractography Model and Embedded Element Method 

A combination of open-source medical imaging tools and in-house scripts were utilized to 

embed the baseline model with axonal tract elements. Figure 3-1 shows a schematic of the process, 

which involves 5 steps: 1) a FE mesh of fiber networks is created based on a population-based 

tractography template; 2) the axon tract mesh is morphed from the geometry of the tractography 

template to the geometry of the baseline brain FE model; 3) the morphed fiber mesh is 

mathematically embedded into solid elements of the baseline model; 4) the brain elements (cable) 

are categorized based on the fractional anisotropy (FA) values of the tracts; 5) mechanical 

properties of both the axon tract elements and the isotropic solid element are assigned based on 

multi-modal tissue data in the literature. Each step of this process is explained in detail below. 

The deterministic whole-brain fiber tractography process was performed using a freely 

available, pre-processed, group-averaged (N = 842; M: 372 F; 470; Ages: 20-40 yr) tractography 

dataset (HCP-842 tractography template) consisting of DWI data from the Human Connectome 

Project (Yeh et al., 2018). Data were accessed under the WU-Minn HCP open access agreement 

and were initially acquired using a multi-shell diffusion scheme (b-values: 1000, 2000, and 3000 

sec/mm2; diffusion sampling directions: 90, 90, and 90; in-plane resolution and the slice thickness: 

1.25 mm). The tractography reconstruction was conducted using DSI Studio (http://dsi-

studio.labsolver.org) in the standard MNI atlas space. After 5,000 randomized seeding attempts, 

the resulting tractography included in the model had 3,446 fiber tracts with a maximum length of 

297.0 mm, a minimum length of 29.3 mm and a mean length of 78.6 ± 38.24 mm. An in-house 

script was used to convert the axonal tractography data obtained from DSI Studio into a FE mesh 

http://dsi-studio.labsolver.org/
http://dsi-studio.labsolver.org/
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using a network of 1-D cable (tension-only) elements. The axonal fiber tractography FE mesh had 

a total of 104,866 cable elements with an element size of around 2.5 mm. The elements were then 

categorized into ten groups based on their FA values (Figure 3-2). FA is a widely used metric of 

diffusion anisotropy and ranges from 0, representing an isotropic movement of water molecules 

(e.g., CSF), to 1, highly anisotropic movement of water molecules (e.g., fiber bundles). 

 

Figure 3-1. Procedural flowchart adopted to embed axonal fibers in the baseline brain FE model. (A) 

Diffusion MRI template; (B) Reconstructed axonal fiber tractography; (C) Fiber tractography FE model; 

(D) Morphing process; (E) Embedding fibers into the baseline model. 
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Figure 3-2. FA distribution for the cable fiber elements. 

Matching the tractography mesh with the brain FE model is a challenging procedure 

because they are originally in different spatial orientations and are associated with brains that have 

different shapes and sizes. Here, a morphing technique was adopted to align the fiber FE model 

with the baseline model, based on a technique by Park et al. (Park et al., 2017). First, the geometry 

of the template MNI brain and CSF surface was aligned and scaled to the target geometry of the 

baseline model using iterative closest point approximation. Next, the MNI surface nodes served as 

landmarks and were mapped to the baseline model brain surface using an iterative registration 

method (Burr’s elastic registration) to match the external geometry of the two surfaces. The same 

transformation in this step is then applied to the tractography mesh using a thin-plate spline method 

with radial basis function to interpolate and smooth to match the axonal tracts to the internal 

geometry of the baseline model brain. The results of the morphing can be visually checked in 

Figure 3-3. The mean distance between the MNI surface nodes and the baseline model surface 

after registration was less than 0.1 mm. 
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Figure 3-3. Morphing results demonstrating the morphed MNI surface and morphed fiber tractography 

model. The baseline model dura surface is shown in black. 

Once the tractography mesh was in the same anatomical space as the volumetric baseline 

model brain, they were constrained as embedded elements using the 

*CONSTRAINED_BEAM_IN_SOLID Keyword in LS-DYNA (v971 R9.2.0, LSTC, Livermore, 

CA). This technique has been applied previously to model rebar-reinforced concrete composites 

(Bermejo et al., 2017) and ensures that the axonal fibers and volumetric ground substance are 

continuous and have the same accelerations and velocities. Steps were taken to ensure this method 

would satisfy the structural conditions of equilibrium, energy balance, and compatibility. 

3.2.3 Constitutive Model  

The brain tissue response was decomposed into an isotropic ground substance and an 

anisotropic component governed by the myelinated axons. The isotropic ground substance was 

assumed to have material properties the same as gray matter (GM). Therefore, the distinguishing 

feature between WM and GM was the presence of the myelinated axons. Both the ground 

substance and fiber materials were modeled as hyper-viscoelastic and implemented in LS-DYNA 

as user-defined materials. For the ground substance material, the isotropic hyper-elastic strain 

energy density function is based on the Holzapfel-Gasser-Ogden (HGO) model (Gasser et al., 

2006): 
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𝑊 =
𝐺

2
(𝐼1 − 3) + 𝐾 (

𝐽2 − 1
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−
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2
ln(𝐽)) +

𝑘1
2𝑘2

(𝑒𝑘2�̃�𝑎
2

− 1) [3-1] 

�̃�𝑎 =
1

3
(𝐼1 − 3) [3-2] 

𝐼1 is the first invariant of the isochoric right Cauchy-Green deformation tensor and 𝐽 =

det 𝐹 is the volume change ratio. 𝐺 is the shear modulus, K is the bulk modulus, 𝑘1 is a stress-like 

parameter, and 𝑘2 is a dimensionless parameter. 

While the strain energy density function for the axonal fiber was formulated as Equation 

[3-3], which is also based on the HGO model (Gasser et al., 2006). 

𝑊 =
𝑘1
2𝑘2

(𝑒𝑘2𝐸𝑎
2
− 1) [3-3] 

𝐸𝑎 = 𝜅(𝐼1 − 3) + (1 − 3κ)(𝐼4𝑎 − 1) [3-4] 

The Green-Lagrange strain-like quantity 𝐸𝑎 is a function of 𝐼4𝑎 = �̃�：𝑛0𝑎⨂𝑛0𝑎 (where �̃� 

is the isochoric part of the right Cauchy–Green strain tensor and 𝑛0𝑎 is the unit vector of fiber 

direction in the undeformed configuration) and 𝜅 . The dimensionless structure parameter 𝜅 

accounts for the orientation distribution of the axons in a voxel-scale fiber bundle and can be 

related with FA through Equation [3-5] by assuming similarity between mechanical and diffusion 

anisotropy (Giordano and Kleiven, 2014b; Wright et al., 2013). At the lower limit, 𝜅 = 0 (FA = 1), 

axons are perfectly aligned and at the upper limit, 𝜅 = 1/3 (FA = 0), axons are randomly oriented 

and isotopically distributed. 

𝜅 =
1

2

−6 + 4FA2 + 2√3FA2 − 2FA4

−9 + 6FA2
 [3-5] 
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The temporal response of the deviatoric stress component was modeled using a quasi-linear 

viscoelastic (QLV) mathematical framework (Fung, 2013), and the volumetric behavior was 

assumed to be independent of time. 

𝜎𝑑(𝑡) = ∫ [𝐺∞ +∑𝐺𝑖𝑒
−𝛽𝑖(𝑡−𝜏)

4

𝑖=1

]
𝑡

0

𝜕𝜎𝑒
𝑑

𝜕𝜏
𝑑𝜏 [3-6] 

In which 𝜎𝑒
𝑑  is the instantaneous, deviatoric elastic response. A Prony series with four 

time-constants was chosen to model the relaxation behavior. 𝐺∞ and 𝐺𝑖 are the linear coefficients 

of the reduced relaxation coefficients, and 𝛽𝑖 are the relaxation time constants. 

3.2.4 Parameters Calibration: Matrix 

A single set of coefficients for the ground substance material model was first calibrated 

using available human GM tissue material testing data (Jin et al., 2013). These data were obtained 

from experiments conducted at a set of constant strain rates (0.5/s, 10/s, 30/s) under various loading 

modes including simple shear, compression, tension in terms of engineering stress and engineering 

strain. The explicit constitutive relations were derived analytically and formulated in terms of 

Cauchy stress and deformation gradient (F) during calibration. The calibration process was 

performed through a generalized reduced gradient nonlinear optimization to minimize the sum of 

squared error (SSE) between the experimental data and model predicted stress. The instantaneous 

and viscoelastic coefficients were optimized simultaneously.  

3.2.5 Parameters Calibration: Fiber 

The fiber properties were calibrated based on the composite response of the axonal fibers 

and the ground substance material, i.e., the mechanical properties of white matter. Since the 

stiffness of white matter in the model will be region dependent due to the heterogeneity of fiber 

architecture, the effective shear stiffness of the model at the corona radiata region was used as a 



28 
 

benchmark. The calibration of fiber parameters was conducted using a single element inverse FE 

approach, as detailed below. The same set of coefficients identified for the ground substance were 

used to model the relaxation behavior of the fibers. 

Despite the differences in loading conditions, regions tested, and testing techniques from 

the literature (Braun et al., 2014; Budday et al., 2015; Clayton et al., 2012; Jin et al., 2013; Johnson 

et al., 2013; Johnson and Telzer, 2018; Kruse et al., 2008; Pervin and Chen, 2009; Prange and 

Margulies, 2002; Velardi et al., 2006; Zhang et al., 2011), the stiffness of the white matter ranged 

from 0 – 2.2 times stiffer than the gray matter stiffness, and in most of the studies this ratio is 

around 0.3 (Figure 3-4). The stiffness ratio was defined as (𝜎𝑊𝑀 − 𝜎𝐺𝑀)/𝜎𝐺𝑀, in which 𝜎𝑊𝑀 and 

𝜎𝐺𝑀 are stress measured at the same strain level for white matter and gray matter respectively. 

 
Figure 3-4. Stiffness ratio between the white matter and the gray matter in the literature. (a) Magnetic 

resonance elastography studies; (b) Mechanical tissue testing.  

Unlike the continuum models of fiber-reinforced materials, the fiber contribution in the 

embedded model is not only determined by the constitutive model of the fiber but is also affected 

by the fiber architecture, including the numbers of fibers embedded, fiber distributions, and degree 

of anisotropy in the fibers. So, to identify the coefficients of the constitutive model for the fiber, 

those features of fiber architecture need to be determined first. Since not all the factors listed above 
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are explicitly accessible, we attempted to quantify their effects through a simplified model, a single 

solid element embedded with a fiber. Figure 3-5 illustrates the process of simplification and 

summarizes the calibration procedure in three steps： 

a) Identify the basic structural parameters for the simplified model. The simplified model 

was built to replicate the same volume ratio between the fibers and the ground substance in the 

brain model, which was globally estimated to be 0.456 by dividing the volume of cable elements 

by the volume of white matter solid elements in the brain model. The degree of fiber dispersion 

(κ) in the simplified model was to match with those in the corona radiata region (mean FA = 0.5) 

because corona radiata was the common region tested in the literature to characterize the white 

matter material properties.  

b) Initiate calibration based on the uniaxial tension loading condition. Since the fiber can 

only sustain tension, the fiber contribution was expected to be the largest under the tensile tests in 

which the fiber orientation was aligned with the stretch direction. In other words, the stiffness ratio 

should be at the upper bound of the range in the literature [0 – 2.2]. 

c) Estimate fiber properties based on the simple shear loading condition. Simulations with 

fiber (WM) and without fiber (GM) were then conducted respectively under the same simple shear 

loading condition, as shear is the primary loading scenario for brain tissue under impacts. The 

stiffness ratio under this condition should match the common ratio (0.3) found in the literature.  

3.2.6 Initial Model Validation Data 

Experiments from two separate studies were simulated to assess the biofidelity of the axon-

based and baseline model brain deformations. The first study was a series of cadaveric impact tests 

conducted by Hardy et al. (2001, 2007) to measure relative brain-skull displacements under high-
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rate impacts using embedded radiopaque, neutral density targets (NDT). Although not designed 

for model validation, these experiments have been widely used to validate brain FE models (Mao 

et al., 2013; Miller et al., 2017, 2016; Sahoo et al., 2014; Zhao and Ji, 2018). Recently, Alshareef 

et al. (2017) introduced a novel method for quantifying 3-D human brain deformation using 

sonomicrometry (SONO). These tests were conducted specifically to obtain validation targets for 

brain FE models. The axon-based and baseline models were simulated using a subset of 12 loading 

cases from a single cadaver (male; 53 years old; height of 173 cm). The loading cases (n=17) are 

summarized in Figure 3-6 and represent an array of loading severities, impact durations, and 

impact directions. The simulation performed in this chapter is only the first step to evaluate the 

biofidelity of the baseline and axon-based FE model. A comprehensive evaluation study will be 

presented in the next chapter. 
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Figure 3-5. Calibration procedure used to identify material coefficients for the axonal fiber constitutive 

model. 
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Figure 3-6. Summary of experimental test conditions. 

3.2.7 Data Analysis 

All simulations in this dissertation were performed using LS-DYNA (v971 R9.2.0, double 

precision; LSTC, Livermore, CA). Six-degree-of-freedom (DOF) head kinematics were applied to 

the rigid dura through the center of gravity of the head in both brain models. For each validation 

case, the predicted displacement-time histories of the relevant nodes were compared with the 

experimental measurements. Model biofidelity was quantified using the CORrelation and Analysis 

objective rating system (CORA) (Gehre et al., 2009). For each validation case, an overall score 

was computed by averaging the individual signal scores. 

In this study, further investigation of strain-based metrics was performed using the SONO 

loading cases. The element-wise MPS for the solid brain tissue and the element-wise maximum 

axonal strain (MAS, the tensile strain sustained by axonal fiber tracts) were calculated.  

Finally, to study the effect of the anisotropy on the tissue response, the element-wise MPS 

response of the baseline model was compared with those from its isotropic derivative model that 

only included the ground substance material (referred as GS-based model). 
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3.3 Results 

3.3.1 Calibration Results 

The optimized constitutive model for the ground substance material compared with 

experimental corridors are shown in Figure 3-7 (a). To verify the response of the calibrated 

constitutive model, hypothetical shear oscillation tests were analytically computed and the stress 

output from the constitutive model was compared to frequency sweep data available in the 

literature (Arbogast and Margulies, 1997; Bilston et al., 2001; Brands et al., 1999; Garo et al., 2007; 

Hrapko et al., 2006; Lippert et al., 2004; Nicolle et al., 2004; Peters et al., 1997; Shen et al., 2006; 

Thibault and Margulies, 1998). These results are shown in Figure 3-7 (b). This figure also 

demonstrates the differences between the calibrated model and the baseline model materials. The 

suitable coefficient was found, as illustrated in Figure 3-8, the element with fiber is around 0.3 

times stiffer than the one without fiber at 30% strain with a strain rate of 30/s. The simulation 

results also correlate well with the experimental results (Jin et al., 2013) for the corona radiata at 

the same loading conditions. 
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Figure 3-7. Constitutive model and experimental tissue tests results. (a) Constant strain rate mechanical 

tests; (b) Complex shear modulus and tan delta of brain tissue from shear oscillation tests in the 

literature between 0.01 and 10,000 Hz.  
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Figure 3-8. Stress responses of the gray matter (GM) and white matter (WM) for the single element tests 

under simple shear, compared with the experimental study (Jin et al., 2013). 

Table 3-2 summarizes the detailed material properties employed in the axon-based model. 

The thickness of the falx, tentorium, and pia was modified based on recently published 

experimental data (Golman et al., 2013; Jin et al., 2006). Material properties of other brain regions 

remained identical to the unmodified baseline model.  

Table 3-2. Material properties used in the axon-based model. 

Anatomical 
component 

Material model 
Instantaneous material 
coefficients 

Viscoelastic 
coefficients 

Experimental 
references 

Brain tissue 
(ground 
substance) 

HGO 
Hyperelastic+ 
Quasilinear 
Viscoelastic 

𝐺 = 27.5 kPa 
𝐾 = 2.19 GPa 
𝑘1 = 203 kPa 
𝑘2 → 0 

𝐺1 = 0.8087 

𝐺2 =  0.1005 

𝐺3 = 0.047 
𝐺4 = 0.0133 

𝐺∞ = 0.0305 

𝜏1 = 0.01 ms 
𝜏2 = 0.23 ms 
𝜏3 = 5 ms 
𝜏3 = 200 ms 

(Jin et al., 2013; 
Nicolle et al., 2004) 

Axonal fibers 

HGO 
Hyperelastic+ 
Quasilinear 
Viscoelastic 

𝑘1 = 900 kPa 
𝑘2 → 0 
𝜅 is a function of FA  

(Budday et al., 
2017; Jin et al., 
2013) 

Pia Elastic 
𝐸 = 12.5 MPa 
Thickness= 0.10 mm 

- (Jin et al., 2013) 

Falx Elastic 
𝐸 =31.5 MPa 
Thickness= 0.45 mm 

- 
(Golman et al., 
2013) 

Tentorium Elastic 
𝐸 =31.5 MPa 
Thickness= 0.36 mm 

- 
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3.3.2 Nodal Displacements and CORA Score 

All the FE models in this study were stable and terminated normally. The simulation with 

the axon-based model requires approximately 2.4 times more computational cost than that of the 

baseline model. For the NDT impacts, the axon-based and baseline models had overall CORA 

scores of 0.450 and 0.430, respectively, based on the average of the five tests (Figure 3-9, 

individual plots reported in the Appendix, Figure A1 – Figure A5). These performed as well as 

other state-of-the-art FE models for this particular experimental dataset. For the SONO cases, the 

performance of the axon-based and baseline models will be discussed in detail in the next chapter. 

Overall, the axon-based model reported a higher CORA score for 16 out of 17 total NDT and 

SONO cases (the only exception is the C383-T4 case).  

 
Figure 3-9. Comparison of validation performance of the axon-based model with other brain models. 

CORA scores for THUMS, SIMon, and ABM were adapted from (Miller et al., 2017), CORA scores for 

WHIM (HGO) were adapted from (Zhao and Ji, 2018). 

3.3.3 Strain Results 

Although the axon-based and baseline models demonstrated similar CORA scores, the 

strain responses in the two models were significantly different, especially in more severe loading 

conditions. For the SONO simulations, the MPS predicted by the baseline model, the MPS 
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predicted by the axon-based model, and the MAS predicted by the axon-based model are illustrated 

in Figure 3-10 as cumulative distributions across all brain tissue elements. In the most severe 

loading case (SONO 846M-Z4, 𝜔𝑝 = 40 𝑟𝑎𝑑/𝑠, 𝛼𝑝 = 5.1 𝑘𝑟𝑎𝑑/𝑠), the maximum MPS of all 

elements predicted by the baseline model is more than 90%, while the axon-based model reported 

a maximum MPS of 56%.  

3.3.4 Effects of Anisotropy 

The element-wise MPS response of the axon-based model was compared with those from 

the isotropic GS-based model using linear regression. This result is illustrated in Figure 3-11 (a) 

showing the element-wise MPS under the most severe SONO loading case (SONO 846M-Z4, 

𝜔𝑝 = 40 𝑟𝑎𝑑/𝑠, 𝛼𝑝 = 5.1 𝑘𝑟𝑎𝑑/𝑠). Globally, the effects of anisotropy on strain responses were 

not significant. However, the inclusion of anisotropy does lead to some local differences in the 

strain pattern for the inner WM region (Figure 3-11 (b)), which were mainly composed of highly 

aligned axonal fibers.  
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Figure 3-10. Comparison of strain results of the FE models in SONO simulations. The cumulative 

distributions show the percentage of elements above specific peak strain values. 
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Figure 3-11. Effect of anisotropy on strain results for the SONO 846M-Z case. (a) Comparison of strain 

results of solid elements for the whole brain; (b) Comparison of strain distributions. 

3.4 Discussion 

Advanced brain FE models are fundamental for investigating TBI. With increasing interest 

in understanding injury mechanisms at the mesoscale, the biofidelity of the brain models needs to 

be improved in both anatomical representation and predicting biomechanical responses. In this 

study, we developed a novel framework based on an embedded element method for incorporating 

axonal fiber tracts into the existing isotropic brain FE models. We demonstrated the applicability 

of this framework on an existing brain model without extra efforts on mesh refinements.  
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3.4.1 Brain Material Properties  

Most of the current brain models (Ganpule et al., 2017; Garimella and Kraft, 2017; 

Giordano and Kleiven, 2014b; Wright et al., 2013; Zhao and Ji, 2018) utilize material properties 

that have been calibrated using experimental brain tissue mechanical data obtained from a single 

loading mode, which might not fully capture the various aspects of the complex response of human 

brain tissue. Moreover, significant disparities in testing protocols and results reported in the 

literature complicate the selection of a single experimental dataset that accurately represents the 

mechanical behavior of the brain (Chatelin et al., 2010). It has been shown that, because of the 

vast variations in material properties, the resulting constitutive models will lead to significant 

disparities in strain-based injury metrics (Zhao et al., 2018). These disparities could be partly 

attributed to the viscoelasticity and frequency dependence of brain tissue as different studies have 

characterized brain tissue at different rates of deformation. To address these limitations, we have 

simultaneously identified a single parameter set for shear, compression, and tension at a series of 

constant strain rates, and verified the same parameter set with shear oscillation tests across a broad 

range of frequencies (0.01 to 10,000 Hz). 

3.4.2 Constitutive Model for Axonal Fibers 

One challenge inherent to explicitly modeling axonal fiber tracts is isolating the material 

properties of axonal fibers since the mechanical properties of axons, and WM directional-

dependence are ambiguous in the literature (Ning et al., 2006). Even if reliable axon material 

property data is available, it would be challenging to incorporate it into the model because the 

stiffness contribution from the axonal fibers depends on structural features (such as cross-sectional 

area, element size, etc.), as well as the underlying ground substance constitutive model. Therefore, 
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instead of calibrating the axonal fiber constitutive material model directly, the fiber properties were 

calibrated based on the stiffness differences between the WM and GM in this study. 

Individual axons in the axonal fiber tracts are not perfectly aligned but dispersed around 

some referential, preferred direction. In the axon-based model, these fibers were represented as 

‘cable’ elements. Depending on the dispersion, the cables should have different mechanical 

properties. To account for the dispersion of the axons, most studies assume a probability 

distribution of the axons and perform a pre-integration of the distribution to achieve improved 

computational efficiency. The best-known model of this kind is the Holzapfel-Gasser-Ogden 

(HGO) model, which has been widely used for modeling anisotropic brain tissue (Ganpule et al., 

2017; Giordano and Kleiven, 2014b; Zhao and Ji, 2018). As recognized by Holzapfel and Ogden 

(Holzapfel and Ogden, 2015), the limiting issue of using the HGO model in fiber-reinforced 

anisotropic materials is the tension-compression switch criterion. This switch criterion is required 

because fibers do not support compression. Also, compressive axonal strains should not be 

included when using strain-based metrics to relate brain deformation to injury. The switch used by 

previous studies (Ganpule et al., 2017; Giordano and Kleiven, 2014b) was based on an averaged 

structure invariant: 𝐸𝑎 (denoted as ‘axonal strain’ in those studies). That is to say: 

{
𝑤𝑓𝑖𝑏𝑒𝑟 =

𝑘1
2𝑘2

(𝑒𝑘2𝐸𝑎
2
− 1)

𝑤𝑓𝑖𝑏𝑒𝑟 = 0
     

𝐸𝑎 > 0
𝐸𝑎 ≤ 0

 [3-7] 

𝐸𝑎 = 𝜅(𝐼1 − 3) + (1 − 3κ)(𝐼4𝑎 − 1) [3-8] 

However, this switch can give erroneous results, as deformation states may exist for which 

the axon family is extended according to the averaged structure invariant (𝐸𝑎 > 0), but the fiber 

in the corresponding preferred direction is under compression (λ < 0). This is apparent in Figure 
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3-12, which illustrates the dependence of 𝐸𝑎 on λ for several values of κ. As shown, 𝐸𝑎 > 0 does 

not necessarily require stretch λ > 1. In the current application, the effects of using different 

switches on the mechanical responses of brain tissue might not be significant (because the effect 

of anisotropy is small). However, using 𝐸𝑎, instead of the strain in the main fiber direction, as an 

injury metric (Giordano et al. 2016) might lead to erroneous results, because 𝐸𝑎  cannot 

differentiate compressive and tensile strains.  

 
Figure 3-12. The plot of the function Ea for different dispersion values. Note that Ea > 0 exists under 

compressive loading. 

I further noticed this criterion was not the original proposal of Gasser et al. (2006) as per 

Equation [3-10].  

𝑤𝑓𝑖𝑏𝑒𝑟 =
𝑘1
2𝑘2

(𝑒𝑘2𝐸𝑎
2
− 1) [3-9] 

{
𝐸𝑎 = 𝜅(𝐼1 − 3) + (1 − 3κ)(𝐼4𝑎 − 1)

𝐸𝑎 = 𝜅(𝐼1 − 3)
     

𝐼4𝑎 > 1
𝐼4𝑎 ≤ 1

 [3-10] 

However, this original criterion was also criticized for resulting in non-physical stress 

discontinuities (Latorre and Montáns, 2016). To our knowledge, there is no simple correction for 

this issue from a constitutive perspective (Holzapfel and Ogden, 2017). In this study, since the 

fibers and ground substance were explicitly modeled, and the nonlinear behavior of the fibers was 
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decoupled from the ground substance, the exclusion of the compressive strain and stress for these 

1-D elements was straightforward and did not cause any stress discontinuities. 

3.4.3 Embedded Elements Method 

The embedding between the fibers and the ground substance was assumed to be no-slip, 

and the initial structure of the fiber is non-undulated. The no-slip assumption may be appropriate, 

as brain tissues can remain intact under large deformation (up to 50% strain) (Prange and 

Margulies, 2002). Axonal undulation is present in some intracranial nervous tissue as a 

physiological adaptation, such as the optic nerve, the root of the trigeminal nerve and cranial nerves 

VI-XII (Nilsson et al., 2012). Axon tracts in most other WM regions were fully coupled to the 

surrounding tissue, at least in porcine brain tissue (Dave Meaney, personal communication, 

October 13, 2017).  

The embedded elements method was developed before its application in modeling soft 

tissue (Fish, 1992). In general, two issues should be considered when implementing embedded 

elements on a fiber-reinforced composite: the interpenetration of the contacting fibers and volume 

redundancy (Tabatabaei and Lomov, 2015). In this study, the first issue was irrelevant, because 

physically the fibers cannot come into contact with each other unless the surrounding tissues were 

damaged. TBI injuries typically present without visible physical damage or gross tissue disruption 

(Gennarelli et al., 1972). However, the volume redundancy issue needed special consideration to 

correct the resulting mass and stiffness redundancy. In the embedded element method, the ground 

substance occupies the full volume of the brain, including the volume under the fiber 

reinforcement. The addition of reinforcing axonal fibers that have finite cross-sectional area leads 

to mass and stiffness redundancies. To resolve this volume redundancy, I artificially decreased the 

mass density of the fibers to be negligible. To address the stiffness redundancy, the constitutive 
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contribution of the ground substance material was subtracted from the constitutive contribution of 

the axonal fibers (Tabatabaei and Lomov, 2015). 

3.4.4 Effects of Anisotropy 

In this study, we found the effects of anisotropy on strain responses were not substantial. 

Previous studies have also noted minimal effects of anisotropy on strain outcomes (Wright et al., 

2013; Zhao and Ji, 2018). However, varying conclusions exist depending on how the fiber-

reinforcement term was defined. In fact, the relative stiffness contribution of the fibers defined in 

constitutive model approaches varies in the literature. For example, Sahoo et al. (2014) concluded 

that the inclusion of DTI parameters (anisotropy) to the brain FE model had a significant influence 

on local brain deformation. This was expected since the contribution ratio between the fiber and 

ground substance terms in their constitutive model was relatively large; the fiber term contributes 

up to 70% of the overall stiffness under 1.5 stretch at the corona radiata region. Cloots et al. (2013), 

Giordano et al. (2014), and Zhao and Ji (2018) reported conflicting findings on the significance of 

anisotropy despite using fiber material properties based on the same experimental study (Ning et 

al., 2006). Nevertheless, a direct comparison with these previous studies was not feasible, because 

they modeled the axon contribution through a fiber reinforcement term in the strain energy 

function (not a physical fiber in the model). In this study, the fiber contribution was not solely 

determined by the constitutive model but was also related to the physical fiber architecture (e.g., 

distribution, cross-section area, numbers of cable elements).  

Although the effects of anisotropy on mechanical responses were subtle, the fact that the 

MAS was significantly different from the MPS in values and distribution revealed the potential 

importance of incorporating anisotropic axonal fibers into brain FE models. For the SONO 

simulations using the axon-based model, the MAS was significantly lower than the MPS, and large 
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strains were occurring either in non-fiber directions or non-fiber regions (e.g., cerebral cortex). If 

axonal damage were indeed an injury mechanism of TBI, the differences between the MPS and 

the MAS could result in different injury risk outcomes. Several studies have explored the 

correlation between axonal strain and TBI. Sahoo et al. (2016) showed that axonal strain was the 

most appropriate parameter for predicting DAI, based on 109 reconstructed pedestrian accident 

cases. Giordano and Kleiven (2014a) found that strain in the axonal direction was a better injury 

predictor than MPS for a data set of 58 mild TBI reconstructions. Nevertheless, whether the axonal 

strain in an FE model is a better injury predictor requires further investigation.  

3.4.5 Limitations 

This study assumed correlations between the mechanical properties of nervous tissue and 

its underlying microstructure. The regional dependence or mechanical heterogeneity was typically 

found in biomechanical tests (Jin et al., 2013), indentation tests (Budday et al., 2015), and in-vivo 

magnetic resonance elastography (Johnson et al., 2013). Fiber-rich regions like the brainstem and 

corona radiata were generally stiffer than fiber-deficient regions such as the cortex and thalamus. 

However, the authors acknowledge the contrary evidence in the literature on the mechanical 

anisotropy of WM. Velardi et al. (2006) found a significantly stiffer response in the fiber direction 

than perpendicular to it under uniaxial tests. Prange and Margulies (2002), Arbogast and Margulies 

(1997), Feng et al. (2013), and Jin et al. (2013) found significant anisotropy in shear but their 

conclusions were contradictory, and the directional dependence did not correlate well with 

expected fiber orientation. Pervin and Chen (2009), Nicolle et al. (2004), and Budday et al. (2017) 

revealed no statistically significant dependencies on fiber orientation. The contradictory 

experimental results could be due to the complexity of the microstructure in the brain, as more 

than 80% of the white matter voxels in the HCP-842 template had more than one fiber orientation, 
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even at 2.5-mm3 resolution (Yeh et al., 2018), and extracting specimens that exhibit distinct fiber 

direction would be difficult. Understanding the directional and regional dependence of brain 

mechanical properties both in vitro and in vivo is still a topic of ongoing research and inconclusive. 

Another limitation is the fundamental ambiguities inherent in tract reconstruction 

techniques. The group-averaged whole-brain fiber tractography was obtained from DWI and 

subsequent deterministic tractography analyses. Group-averaged tractography would potentially 

reduce random errors associated with individual fiber tracking process, but there would still be an 

error between the tractography and the true fiber architecture. It has been shown recently that 

invalid bundles occur systematically across different research groups using different tract 

reconstruction methods when evaluated with ground truth bundles (Maier-Hein et al., 2017). The 

encouraging finding reported in the evaluation study is that the deterministic fiber tracking method 

used to obtain the current tractography template (HCP-842) has achieved the highest valid 

connection among 96 methods, at 92%. There were also limitations associated with the CORA 

objective rating system and its widespread use for validating brain FE models, particularly for 

brain deformation with nodal displacement-time histories (Zhao and Ji, 2018). For example, the 

axon-based and baseline models yielded very similar nodal responses for the cadaveric impacts, 

and these were reflected in the CORA scores. However, they differed significantly in strain 

outputs, and these differences were not reflected in the CORA score. This discrepancy is vital as 

most injury metrics (e.g., MPS and CSDM) are strain-based metrics.  

3.4.6 Summary 

In summary, this chapter developed an anisotropic and heterogeneous brain model by 

explicitly incorporating axonal fibers as embedded cable elements into the previously validated 

brain model. The initial evaluation demonstrated good biofidelity, a more comprehensive 
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evaluation of the newly developed human model using the latest biomechanical data is provided 

in Chapter 4. The novel method presented to incorporate FE meshes of highly complex 

tractography into the brain model provides advantages over the traditional (implicit) method that 

oversimplified the fiber network. The framework presented can also be generalized to include 

other mesoscopic anatomical details in finite element models without additional mesh generation. 
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CHAPTER 4 : EVALUATION OF HUMAN BRAIN FINITE ELEMENT MODEL 

In Chapter 3, a method for modeling axonal fiber tracts in the brain FE model was 

developed. The human brain FE models were partially evaluated with legacy brain deformation 

data. Recently, the advancement of experimental methods enhanced our understanding of brain 

deformation under rotational loads and thus enables a more comprehensive evaluation of the 

biofidelity of computation models. The objective of this chapter was to extensively evaluate both 

the baseline human model and newly developed axon-based human model for brain deformation 

under a variety of loading conditions.  

4.1 Introduction 

FE models of the human brain and head are powerful tools for studying brain injury and 

have been increasingly used over the past few decades (Gabler et al., 2016; Giordano and Kleiven, 

2014a; Ji et al., 2015; Sahoo et al., 2016; Sanchez et al., 2018; Takhounts et al., 2008). Although 

these computational models can accurately capture macroscopic brain anatomy for the general 

population, the sophisticated material properties of the brain tissue (Zhao et al., 2018) and various 

numerical modeling techniques (Giudice et al., 2018) may result in considerable variability in the 

performances and injury prediction. Therefore, the biofidelity of these models needs to be 

evaluated with experimental data before applying them in the TBI studies.  

Early FE models were evaluated with impact-induced cadaver intracranial pressure 

(Nahum et al., 1977; Trosseille et al., 1992). Later analysis has revealed that this type of evaluation 

was insufficient and probably unnecessary (Zhao et al., 2015). Due to the nearly incompressible 

nature of brain tissue, the intracranial pressure responses were essentially hydrostatic for most 

blunt impacts relevant to real-world events (with a duration longer than 2 ms) and not affected by 
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other assigned material properties in the computational models. Therefore, efforts shifted towards 

studying brain deformation (or relative motion between the brain and skull) when the head was in 

motion. In-plane brain motion was measured using high-speed biplanar X-ray and neutral density 

targets (NDTs) for 17 human cadaver subjects (Hardy et al., 2007, 2001) while the re-pressurized 

head and neck complexes were subjected to frontal and occipital impacts. For decades, this set of 

two-dimensional brain displacement data was widely used for the development and validation of 

human brain FE models, although they were not “totally suited” or “designed” for model 

evaluation (Yang et al., 2006). Previous validation studies have demonstrated that even the state-

of-the-art brain FE models performed poorly to reproduce the experimental NDT measurements 

(Giordano and Kleiven, 2016; Miller et al., 2017). Recently, Alshareef et al. (2018) measured the 

3-D in-situ brain deformation (displacement) under rotational loading of the head utilizing 

sonomicrometry. These tests were conducted in a well-controlled pure rotational boundary 

condition with high repeatability to obtain validation targets for brain FE models, which provides 

significant advantages over previous experiments and enable comprehensive evaluation for the 

computational models. Established validation protocols (Giordano and Kleiven, 2016; Miller et al., 

2017) to assess the biofidelity of FE models should also be re-investigated to compare with the 

new 3-D brain deformation data.  

Given that brain FE models usually utilize strain measures such as MPS and CSDM to 

estimate brain injury (Gabler et al., 2016; Takhounts et al., 2013), evaluation against 

experimentally observed tissue strains in the whole brain are much-needed. However, the 

resolution of the neural targets implanted in the cadaver brain was too sparse to provide strain data 

with good quality (Zhou et al., 2018). To date, well-characterized strain response of the brain was 

only available at low-severity impacts measured using tagged MRI for human volunteers (Chan et 
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al., 2018; Feng et al., 2010; Knutsen et al., 2014; Sabet et al., 2008). Nevertheless, FE models 

should be able to predict biomechanical responses under a wide range of loading conditions; in 

vivo human data measured at non-injurious impacts can be used in conjunction with cadaveric in 

situ data to evaluate computational models. 

The objective of this study was two-fold. The first goal is to evaluate the baseline model 

and the axon-based model using the most recent biomechanical brain deformation data under a 

wide range of loading conditions. Second, we further investigated the questions inherent in model 

evaluation studies, including effects of brain sizes, brain shapes, and choices of receiver locations 

on evaluation results, the biofidelity for specific brain regions, and suitable evaluation protocol in 

utilizing newly collected experimental data. The findings would guide the continual development 

of FE models and the future direction of collecting experimental data for model evaluation, and 

thus would facilitate developing the next generation of brain computational models. 

4.2 Methods 

4.2.1 Nodal Displacement Evaluation 

FE Models were first evaluated with in situ brain displacement of six postmortem human 

surrogates under rotational loading (Alshareef et al., 2018). Each specimen was implanted with 24 

neutrally-dense sonomicrometry crystals to track motion in the whole brain. Each specimen was 

tested at least 12 times with four different combinations of pulse magnitude and duration in 3 

different rotational directions. The experimental conditions and specimen information are 

summarized in Table 4-1.  
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Table 4-1. Experimental conditions and specimen information.  

Subject 846 896 900 902 903 904 

Sex Male Female Female Female Female Male 

Age 53 57 66 61 80 67 

Receiver 

Location 
 

 

 

 

 

 

 

 

 

 

 

 

Brain 

Mass 

(kg) 

1.265 1.205 1.340 1.295 1.110 1.490 

Brain 

Volume 

(cm3)* 

1442 1435 1558 1481 1298 1692 

Test 

Matrix 

12 test conditions, consisting of three directions (X, coronal; Y, sagittal; Z, axial) and four 

pulses characterizing using peak angular velocity and durations (20 rad/s and 30 ms, 20 rad/s 

and 60 ms, 40 rad/s and 30 ms, 40 rad/s 60 ms). These test conditions were hereafter referred 

to as ‘X:20-60’, ‘X:20-30’, ‘X:40-60’, ‘X:40-30’, ‘Y:20-60’, ‘Y:20-30’, ‘Y:40-60’, ‘Y:40-

30’, ‘Z:20-60’, ‘Z:20-30’, ‘Z:40-60’, ‘Z:40-30’. 

* Intracranial volume calculated based on CT. 

For each specimen, subject-specific brain FE models were respectively derived from the 

standard baseline model, and the axon-based model (representing the 50TH percentile male) based 

on CT scans using the same morphing technique described in Chapter 3 (Park et al., 2017). The 

subject-specific brain FE models would match the external geometry of the brain with the 

experimental specimen (Figure 4-1). The nodal representation of the corresponding crystal 

receiver in the subject-specific brain FE models was chosen by finding the nearest node. 
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Figure 4-1. Subject-specific brain FE models for evaluation (subject 903). 

4.2.2 Objective Rating System 

CORA (CORrelation Analysis) objective rating system (Gehre et al., 2009) was previously 

recommended (Giordano and Kleiven, 2016; Miller et al., 2017) as a quantitative method to 

compare the predicted 2-D displacement-time histories to the experimental measurements. In this 

study, the predicted displacement-time histories of the relevant nodes were compared with the 

experimental measurements in three Cartesian components for each evaluation case. The in situ 

tests performed were uniaxial rotation with primary deformation in a certain plane, while CORA 

was unable to differentiate the differences in the magnitudes of the three components. Therefore, 

a weighted averaging was applied to obtain a single representative objective rating for each 3-D 

signal (Davis et al., 2016). The weighted CORA (WCORA) score was calculated by weighting the 

component CORA scores (𝐶𝑂𝑅𝐴𝑥,𝑦,𝑧) by the peak-to-peak displacement values of motion in the 

three axes (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) from the same signal as per Equation [4-1]. For each validation case, an 
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overall score was computed by averaging the individual signal scores (mWCORA). However, it 

may be necessary to discriminate between signals of varying magnitude to provide a clearer picture 

of model behavior. This is particularly important for signals of low magnitude which can register 

artificially low scores. So, a second overall score (wWCORA) for each case was provided, per 

Equation [4-2] , by weighting the individual signals with peak-to-peak displacement (𝑝𝑝) defined 

as the maximum point-to-point displacement during the trajectory of each receiver. 

𝑊𝐶𝑂𝑅𝐴 =
𝑑𝑥 × 𝐶𝑂𝑅𝐴𝑥 + 𝑑𝑦 × 𝐶𝑂𝑅𝐴𝑦 + 𝑑𝑧 × 𝐶𝑂𝑅𝐴𝑧

𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧
 [4-1] 

𝑤𝑊𝐶𝑂𝑅𝐴 =
∑ (𝑊𝐶𝑂𝑅𝐴𝑖 × 𝑝𝑝𝑖)
𝑛
𝑖=1

∑ (𝑝𝑝𝑖)
𝑛
𝑖=1

,     𝑛: number of receivers [4-2] 

4.2.3 Effect of Brain Anthropometry 

In addition to the subject-specific evaluation analysis, different evaluation methods were 

explored. Given that the sizes of the cadaver brain in these experiments (Table 4-1) were quite 

different from one another and from the FE model representing the 50th percentile male 

(volume:1569 cm3), it was motivation to investigate the effect of brain size and shape on brain 

deformations. Historically, cadaver head (not brain) width and length dimensions are the only 

anthropometric measurements provided from the legacy experimental study (Hardy et al., 2007, 

2001); the sizes of the brain were often unknown, and corresponding NDT locations in FE models 

were difficult to determine. Based on previous evaluation studies, one method would utilize the 

absolute coordinates of the NDT position provided in the experimental study in reference to the 

center of gravity (CG) of each cadaver head to identify the corresponding node in the standard 

brain FE model (referred to as the ‘absolute’ method). Another method would use the relative 

coordinates based on the maximum length (x), width (y), and height (z) of the head to identify the 

corresponding node (referred to as the ‘relative’ method). The results using those alternative 
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evaluation methods were compared to the standard morphing method. The analysis was performed 

using the original axon-based model for the representative case (subject 903). The representative 

specimen was chosen because her anthropometric measurements had the most substantial 

differences when compared to that of the brain FE model (Figure 4-1). 

4.2.4 Strain Evaluation 

In addition to the nodal displacement evaluation, the strain responses of FE Models were 

further evaluated with human brain deformation during mild angular acceleration (approximately 

200 rad/s2) measured in vivo by tagged magnetic resonance imaging (Chan et al., 2018). The 

multislice in-plane Lagrangian strain fields were measured for 34 healthy human volunteers under 

axial rotation (Figure 4-2). The resolution of the strain fields was based on 1.5 by 1.5 mm2 voxel 

with 8 mm thick slices. Head kinematics and strain maps were provided for a representative subject 

which was chosen based on the criterion that the area fraction at the 3% threshold of the peak strain 

was closest to the mean value across all subjects. FE simulation was performed for both the 

baseline model and axon-based model to compare with the representative subject. The maximum 

Lagrangian shear strain maps were visually evaluated, and cumulative strain results were 

compared with experimental results using the same 3% threshold.  
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Figure 4-2. In vivo test conditions and data acquisitions. (a) Head axial rotation device showing the 

rotation direction (arrow) for tagged MRI acquisitions (Chan et al., 2018); (b) T1-weighted image 

showing axial tagged image planes of 8 mm thickness; (c) FE section planes to match the image planes. 

 

4.3 Results 

4.3.1 Subject-Specific Displacement Evaluation 

Exemplar triaxial nodal displacements for the baseline model and axon-based model are 

shown in Figure 4-3, and are compared to the experimental displacements for corresponding 

crystal receivers. Figure 4-4 compares the biofidelity of the baseline model and the axon-based 

model per CORA scores. Overall, the axon-based model reported a higher mWCORA score (0.590 

± 0.048) for all the subjects than the baseline model (0.534 ± 0.049). The wWCORA scores were 

slightly higher than the mWCORA scores by 0.032 ± 0.022, as given in Table A1 (Appendix A), 

but captured similar discrepancies between the performance of these two FE models. 
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Figure 4-3. Example relative brain-skull displacements comparisons. 

4.3.2 Different Displacement Evaluation Methods 

Figure 4-5 shows different WCORA scores and different nodal displacement for example 

receiver locations by reason of different evaluation methods. Nodal displacements calculated using 

different evaluation methods were inconsistent. It was difficult to ascertain which method was 

more ‘biofidelic’ considering that they had similar mWCORA scores. 
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Figure 4-4. Performance of the axon-based and baseline models quantified by mWCORA scores. 

 
Figure 4-5. Effect of different methods on nodal displacement evaluation for specimen 903; mWCORA 

scores (left) and example nodal displacement curves for Z:40-60 (right). 
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4.3.3 Strain Evaluation 

For low-severity impact, the two FE models produced similar patterns of shear strains. 

Figure 4-6 compares the estimated shear strain patterns with those measured by tagged MRI in the 

experiment at peak deformation. Similar patterns and magnitudes of shear strains were observed 

for the cerebrum region between the simulation and experiments, and the cortical gray matter 

consistently experienced the highest shear strains. The inferior region of the brain (cerebellum and 

brainstem) showed stiffer responses compared with the in vivo human subject, but the magnitude 

of tissue deformation was much smaller than those in the cerebrum.  

The whole brain, cortical gray matter, and deep gray matter in both FE models experienced 

similar fractions of strain with the experimental measurements, while the white matter experienced 

a higher amount of deformation in both FE models (Figure 4-7). The inconsistency in the whiter 

matter strain was likely due to the lack of consideration of the subject-specific internal anatomy of 

the brain (e.g., the size of the ventricles). Considering that the noise inherent to the tagged imaging 

and image analysis methods (the precision of the strain measurement was estimated to be around 

1% strain, Chan et al., 2018), the strain prediction from both the baseline and the axon-based model 

could be deemed as a good match to the experimental data. However, it was difficult to ascertain 

which model was more “biofidelic,” despite some observed differences. 
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Figure 4-6. The peak experimentally measured in-plane Lagrangian shear strains (MRI) on axial planes 

in comparison with maximum Lagrangian shear strain estimated by using the baseline model and the 

axon-based model. 
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Figure 4-7. Comparison of strain fractions measured by MRI and FE simulations. Strain fraction was 

computed for a threshold of 3% absolute strain in the whole brain and tissue types of interest. 

 

4.4 Discussion 

A comprehensive evaluation study was performed on two state-of-the-art brain FE models. 

The simulation results were compared with experimental data, which contained a total 1652 nodal 

displacement curves of 139 receiver positions at high-severity impacts and 12 axial strain maps at 

low-severity impacts. Based on the evaluation results, the axon-based model consistently showed 

a better correlation with the experimental measurements than the baseline model between different 

specimens.  

4.4.1 Experimental Dataset 

The head kinematics of the evaluation data in this chapter were purely rotational with well-

controlled boundary conditions, whereas previous validation/evaluation studies (Giordano and 

Kleiven, 2016; Miller et al., 2017; Zhao and Ji, 2018) utilized data from a series of impacts 

performed by Hardy et al. (2001, 2007) with resulting linear and rotational head kinematics. The 
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performance of FE models evaluated with Hardy’s data was always inconsistent regarding 

different cases, in particular, different models performed better under different experimental 

conditions, with no single model consistently performing best, as illustrated in Figure 3-9 (Chapter 

3). This inconsistency was likely due to the inconsistencies of the experimental data themselves. 

The neck was constrained in the Hardy studies while the head was impacted. A constrained 

boundary condition at the neck could potentially influence the deformation of the inferior regions 

of the brain caused by pulling through the cervical spine and spinal cord (Alshareef et al., 2018). 

This is evident as the NDTs markers in the inferior regions of the brain experienced unusually 

large displacement (Figure 4-8). However, this boundary condition is difficult to reconstruct 

without the correct modeling of the craniocervical junction and thus has never been considered in 

previous validation studies. In this evaluation study, the boundary condition of the head was 

straightforward and easy to reconstruct through simulation. 

Another common limitation of existing evaluation studies was the lack of precise 

representation of the brain morphology of experimental subjects and the accurate location of the 

markers. As illustrated in Figure 4-5, this factor would contribute to the responses of individual 

markers/receivers, but systematically the subject-specific model didn’t predict more biofidelic 

responses than the standard male 50th model per CORA. The benefit of the subject-specific model 

was not shown, likely due to the lack of consideration for other variabilities in the human brain 

such as the anatomy of the brain and the material properties. The morphing techniques adopted to 

generate the subject-specific model can only account for the external shape of the brain. 

Converting image voxels of the brain directly into hexahedral mesh elements (Miller et al., 2016) 

would potentially capture the internal anatomy of the individual brain, while the effect of detailed 

anatomy on biomechanical responses remains to be investigated. 
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Figure 4-8. Comparison of the peak-to-peak deformation between NDT tests (Hardy et al., 2007, 2001) 

and sonomicrometry tests (Alshareef et al., 2018) under sagittal rotational motions at similar loading 

severity. 

4.4.2 Regional Performance 

 Historically, NDTs were sparsely measured and did not have sufficient spatial resolution 

to evaluate the biofidelity of the model per region. The evaluation data collected in the recent study 

(Alshareef et al., 2018) enable us to investigate the regional performance of the FE models for the 

first time. 

Both the in vivo test (Figure 4-6) and in situ tests (Figure 4-9 (a)) showed that there was a 

spatial dependence of brain deformation, with receivers in the inferior brain regions, including the 

cerebellum and brainstem, experiencing low deformations. Both FE models were able to capture 

this spatial pattern of deformation. Interestingly, the spatial distribution of the WCORA scores 
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indicated poor biofidelity in the inferior region of the brain, as illustrated in Figure 4-9 (b) using 

the axon-based model results, although not shown, a similar pattern was observed for the GHBMC 

model. Both the relative error (Figure 4-9 (c)) and absolute error (Figure 4-9 (d)) of the peak-to-

peak displacement between the axon-based model and the in situ subjects did not reflect this trend. 

CORA, as a biofidelity rating metric, accounts for both the shape and phase of the signal in addition 

to the magnitudes, the lower CORA scores were likely caused by the differences in shape and 

phase of the displacement curves between simulation and experiment. At the current stage of TBI 

research, magnitudes (e.g., peak strain) are still the quantity of most concerned, and the regional 

differences in model biofidelity might be overemphasized by CORA. 

 
Figure 4-9. Spatial responses of the in situ experiment and the axon-based model under coronal rotation 

(40 rad/s,30 ms). (a) Experimental peak-to-peak displacement (pp); (b) WCORA scores per receiver for 

the axon-based model; (c) Relative error of peak-to-peak displacement (negative value means smaller 

deformation for the model); (d) Absolute error of peak-to-peak displacement. 
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Another uncertainty introduced into the biofidelity of the inferior region is the tentorium, 

whose mechanical properties were least understood in the brain along with other membranes. The 

falx and tentorium material properties for many existing FE models were derived from dura mater 

experimental tests (Galford and McElhaney, 1970) with an elastic modulus of 31.5 MPa. A recent 

study (Golman et al. 2013) reported a mean quasi-static modulus of 36 MPa under uniaxial tension 

tests with falx and tentorium specimens from post mortem human subjects, while the response was 

apparently not linear with dynamic modulus as high as 138 MPa on average. The thickness of the 

membrane would also affect its mechanical responses; a significant difference between the falx 

(0.45 mm) and tentorium (0.36) was found (Golman et al. 2013). Previous sensitivity studies have 

shown the importance of the tentorium, as well as other membranes, in affecting brain deformation 

(Hernandez et al., 2019; Ho et al., 2017; Lu et al., 2019). To improve the biofidelity of the brain 

FE model, the mechanical characterization and modeling of the membranes requires effort in the 

future.  

4.4.3 Correlation between Displacement and Global Strain  

The previous study suggested using strain responses, rather than displacement, to evaluate 

FE simulation results (Sullivan et al., 2015; Zhao and Ji, 2018). Without considering the quality 

of potential in situ strain data, the correlation between the maximum peak-to-peak displacement 

of the receiver locations and global strain measurement (maximum principal strain) is high 

(R2=0.89), at least for simulation results. The relative lower correlation (Figure 4-10 (b)) between 

the experimental peak-to-peak displacement and MPS reflect the inherent biofidelity issue of the 

model (Figure 4-10 (c)). In this sense, the model evaluation study shows no preference for using 

strain responses or displacement responses. However, considering the low data quality of in situ 

experimental strain measurement (Zhou et al., 2018) and mesh-dependent strain output in current 
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brain FE models (Giudice et al., 2018), validation using nodal displacement-time histories instead 

of using experimental strain measurement is still a more robust approach for current FE models. 

 
Figure 4-10. Correlation between the experiments and axon-based model simulations. (a) Correlation 

between computational maximum peak-to-peak displacement and MPS (95th) predicted by the axon model 

in each loading case. (b) Correlation between experimental maximum peak-to-peak displacement and 

MPS (95th) predicted by the axon model in each loading case. (c) Correlation of maximum peak-to-peak 

displacement between model prediction and experimental measurements in each loading cases. 

4.4.4 Summary 

In summary, the updated model demonstrated better biofidelity over the baseline model 

when simulating the latest human brain deformation data. These evaluations are a more demanding 

and much-needed verification process for the next generation of numerical models. Subject-

specific assessment, with accurate geometry representation, did not improve the correlation 

between simulation and experiments. Future efforts should be focused on modeling precise internal 

anatomical details and enhancing the understanding of membranes, whose mechanical responses 

were rarely characterized, while expecting to have significant influences. The improved model 

will help advance the understanding of injury mechanisms and facilitate research in predicting and 

mitigating TBI.   
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CHAPTER 5 : NON-HUMAN PRIMATE FINITE ELEMENT MODELS 

As a surrogate for humans, the most commonly used NHP models to study brain injury are 

the macaque (Macaca mulatta) and baboon (Papio anubis). As discussed in Chapter 2, the 

development of existing animal brain FE models is not as advanced as the existing human FE 

models, and only a few NHP FE models were available (Antona-Makoshi, 2016; Ng et al., 2017), 

which significantly hampers the application of animal data in the TBI study. To fill this gap and 

refine to a level commensurate with the state-of-the-art human brain FE models, the macaque and 

baboon FE models were developed and modified in a manner specifically intended to facilitate the 

study in this dissertation. 

5.1 Introduction 

To date, numerous human and animal brain injury models have been developed (Table 2-3 

and Table 2-4). However, even human brain injury models “validated” against the same set of 

experiments produce (Hardy et al., 2007, 2001) predicted significantly discordant tissue-level 

responses under identical impact conditions (Miller et al., 2017). The technical gap between animal 

brain FE models and human models are even wider because of the paucity of NHP biomechanical 

data. The model inconsistency precludes effective comparisons among the simulation results for 

different models and brings uncertainties when applying animal-based findings to humans. 

A critical contributor to such model inconsistency is the various numerical methods used 

by different developers, particularly, the choice of FE solver, FE mesh type, element size, element 

formulation, and hourglass control formulation. Order-of-magnitude differences in brain response 

would result from changing the characteristics of the numerical method, of which mesh type and 

mesh size were the most influential factor (Giudice et al., 2018). For modeling brain tissue, which 
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is nearly incompressible while can sustain large deformation, hexahedral elements are the 

commonly preferred mesh type (Table 2-3 and Table 2-4) because of their stability and capacity 

to compute accurate solutions. The desired mesh size, however, was not known and should be 

determined according to mesh convergence behavior. Mesh convergence studies (Giudice et al., 

2018; Panzer et al., 2013; Zhao and Ji, 2019) of brain FE models were rarely performed or reported, 

notably lacking in terms of strain, which is most relevant to brain injury. Giudice et al. (2018) 

showed that a mesh resolution smaller than 1 mm was necessary to get within 10% of error for 

global MPS, while Zhao and Ji (2019) demonstrated that convergence on global MPS was 

approached using an average brain element size of 1.8 mm (similar mesh resolution to GHBMC). 

The desired mesh sizes for convergence might vary depending on other numerical characteristics, 

material models and loading conditions. Nevertheless, very small mesh size was required for 

human brain models to converge to a mesh-size independent strain value for injurious impacts, 

which is not feasible given the computational cost necessary. 

Another important factor to the model response is the material model. Due to the complex 

nature of brain tissue, there is no consensus on what type of material constitutive model to adopt 

for characterizing brain tissue, (de Rooij and Kuhl, 2016) or what material coefficients to use for 

a given material model. Shear moduli reported in the literature vary by order of magnitude 

(Chatelin et al., 2010; Panzer, 2012), partially due to the tissue’s viscoelastic behavior and the 

broad range of loading conditions in the literature. These variations in measured brain material 

properties could cause substantial disparities in predicted brain strains (Zhao et al., 2018). 

The objective of this chapter is to improve the NHP brain model to a level corresponding 

to the state-of-the-art human brain FE models. Numerical methods and material model were 

investigated and determined based on the best knowledge. Mesoscale anatomical details (axonal 
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tractography) featured with embedded 1-D elements were incorporated into the model to improve 

the biofidelity and facilitate the continual research on tissue-level injury metrics. 

5.2 Macaque Model 

A previously developed rhesus macaque (Macaca mulatta) brain FE model was extensively 

modified to harmonize with the discretization method (e.g., mesh type, number of elements), 

anatomical features (axonal tract information), and brain tissue constitutive models used in the 

human brain model, as detailed in the following subsections.  

5.2.1 Baseline Model 

The baseline monkey brain model was extracted from a model of the head and neck 

complex, which was previously developed (Antona-Makoshi, 2016; Antona-Makoshi et al., 2013, 

2012) by combining a rhesus monkey brain digital atlas in stereotactic coordinates, and an original 

set of CT scans and MRI from a Japanese macaque subject (Macaca fuscata). The brain model has 

21,750 hexahedral elements of approximately 3 mm in total and includes macroscopic anatomical 

representation of the cerebrum, cerebellum, brainstem, corpus callosum, CSF, and membranes 

(falx, tentorium, pia, dura). The brain tissue was only calibrated with experimental data of 

compressive relaxation (Galford and McElhaney, 1970). The original model was generated based 

on a rhesus macaque and could also be applied to other macaque species (including Macaque 

Fascicularis, and Macaque Fuscata), because the brains of these species were sufficiently similar 

in anatomy and morphology to justify using the same brain template (Bowden and Dubach, 2000). 

5.2.2 Mesh Consideration 

Mesh size is an essential consideration in all FE applications and is intrinsically related to 

the accuracy of the FE solution in several ways. Therefore, mesh size should be an important 
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consideration when comparing results from different brain FE models. Ideally, FE simulations of 

two similar problems should give the same solutions if mesh size is ‘equivalent’. However, the 

vast differences in brain size and external loading conditions between human and NHP brain 

models raise new questions. How should the mesh size of those models be compared? In other 

words, will the human FE model and NHP FE model with the same mesh size provide the same 

results? This was investigated using the sphere model representing a simplified skull-brain model. 

Three sphere models discretized with hexahedral elements surrounded by a rigid outer shell 

were created. The identical solid material for all three models was based on elastic, homogeneous, 

isotropic material with reasonable properties (ρ = 1.04 gm/cm3, G = 1 kPa, υ ≈ 0.5) to mimic 

brain tissue responses under certain loading rate. The models were subjected to uniaxial rotational 

motion with ideally sinusoid angular acceleration at the outer shell. The magnitudes of the loadings 

for each model were determined per dimensional analysis. The standard under integrated 

formulations were used for all elements. All simulations were conducted with the same viscous 

hourglass control (IHQ = 3, in LS Dyna). Information regarding the dimensions, loading 

conditions, element count, and quality are found in Figure 5-1.  

The MPS responses were illustrated in Figure 5-2. MPS distributions of the spheres with 

similar mesh density (a and c) are substantially different, while the spheres with the same number 

of elements (a and b) give equal strain distributions. Consequently, to reduce the influence of 

element size on the solutions of FE simulations, the human FE model and the NHP FE models 

should have a similar number of elements. The mesh-independent solutions also corroborate the 

difficulties of mesh convergence in modeling head impact. 
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Figure 5-1. Mesh design and loading conditions for three sphere models. 

 
 Figure 5-2. Maximum principal strain distributions at the center cross-section planes along the rotation 

direction for these three sphere models (symmetric to the center point). 

 

5.2.3 Modeling Axonal Tractography 

The same methodology developed in Chapter 3 was used to incorporate axonal fiber tract 

networks explicitly as 1-D cable elements into the macaque FE model, as highlighted in Figure 

5-3. The axonal fiber tractography for the rhesus macaque brain was derived from a group-

averaged diffusion tensor imaging (DTI) brain template, UWRMAC-DTI271. (Adluru et al., 

2012). The template was generated from 271 rhesus monkeys, collected as part of a unique brain 

imaging genetics study. It is the largest number of animals ever used to create a computational 

brain template, which enables the generation of a template that has high image quality and accounts 

for variability in the species. Deterministic tractography was executed in an open-source diffusion 
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MRI toolkit (Camino) based on the FACT algorithm (Mori et al., 1999). The construction of the 

fibers was stopped either in correspondence of voxels with fractional anisotropy lower than 0.1 or 

when the curve direction changed more than 60 degrees in 1 mm. 

 
Figure 5-3. Modeling axonal tractography in non-human primate finite element model. (a) Diffusion 

tensor imaging; (b) Fractional anisotropy map; (c) Reconstructed axonal tractography; (d) Axonal tracts 

in 1-D cable elements; (e) Reconstructed 3-D brain surface of atlas brain; (f) Dura surface of the brain 

finite element model; (g) Finite element model embedded with axonal tracts.  

5.2.4 Material Model 

Mechanical characterization of NHP brain tissue models requires the development of 

constitutive laws calibrated with adequate experimental data to accurately relate tissue deformation 

to tissue stress. However, relevant experimental data is very limited in the literature. A brief 

overview of existing NHP tissue is summarized in this section. The emphasis is on comparing the 

properties of human and NHP brain tissue. 

Estes and McElhaney (1970) found the response of the rhesus monkey was slightly stiffer 

than the responses of human brain tissue at comparable compression strain rates of 0.08, 0.8, 8, 
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and 40 s-1. The significance of these differences is minor when the amount of variation for each 

type of tissue is considered (Figure 5-4). Dynamic characterization of both human and rhesus 

monkey brain was also investigated by experimental tests, as summarized in Table 5-1. Galford 

and McElhaney (1970) have reported on the creep, relaxation and free vibration characteristics of 

human and rhesus monkey brain. Significant differences have only been found for creep 

compliance curves for the human and rhesus monkey brain, but the discrepancy may be caused by 

the fact that the human brain specimens were tested at a significantly later time after death. The 

viscosity and bulk modulii of the human and rhesus monkey brain were later investigated by 

McElhaney et al. (1973), and no significant differences were found between the human and rhesus 

monkey brain. The dynamic shear properties of the human brain in vitro and of rhesus monkey 

brain, both in vivo and in vitro, were determined by Fallenstein et al. (1969) and Wang and 

Wineman (1972a, 1972b), but a direct comparison between human and rhesus monkey was not 

available because of the differences in loading conditions. 

 
Figure 5-4. Compressive stress-strain relations for human and rhesus monkey brain tissue at a strain rate 

of 40 /s. 
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Table 5-1. Summary of mechanical properties of human and rhesus monkey brain tissue in the literature. 

Test 
Mechanical 

Properties 
Human Rhesus Monkey Findings Reference 

Creep  
Creep compliance 

J(t) = 𝐶1 + 𝐶2ln (𝑡) 
𝐶1 = 2.4 kPa 

𝐶2 = 0.18 kPa 

𝐶1 = 2.9 kPa 

𝐶2 = 0.18 kPa 

Significant 

difference  

 

(Galford and 

McElhaney, 1970) 

Relaxation  
Instantaneous 

modulus  
𝐸0 = 6.6 kPa 𝐸0 = 10.3 kPa 

No significant 

difference  

(Galford and 

McElhaney, 1970) 

Free vibration 
Dynamic modulus 

𝐸∗ = 𝐸1 + 𝑖𝐸2 

𝐸1 = 66.7 kPa 

𝐸2 =26.2 kPa 

𝜔𝑓 = 34 Hz 

𝐸1 = 91.0 kPa 

𝐸2 =53.8 kPa 

𝜔𝑓 = 34 Hz 

Monkey brain is 

slightly stiffer 

and more 

viscous than the 

human brain 

(Galford and 

McElhaney, 1970) 

Capillary 

rheometer 
Viscosity 4 × 10−3 Pa ∙ s 5 × 10−3 Pa ∙ s 

No significant 

differences 

(McElhaney et al., 

1973) 

Capillary 

rheometer  
Kinematic viscosity 43 Pa ∙ s 51 Pa ∙ s 

(McElhaney et al., 

1973) 

Bulk modulus Bulk modulus 2.1 GPa 2.07 GPa 
(McElhaney et al., 

1973) 

 

According to the above survey, the same hyper-viscoelastic constitutive model and brain 

material properties used in human brain modeling were applied, assuming the mechanical 

properties of primate and human brain tissue are similar.  

5.3 Baboon Model 

The newly improved macaque brain model was morphed to generate the baboon (Papio 

anubis) brain model using a morphing technique developed in Park et al. (2018) since brain 

anatomy is similar across these two species (Figure 5-5 (a)). First, the surface of the macaque brain 

was aligned and scaled to the target reconstructed surface of a group-averaged baboon brain 

medical image template (Love et al., 2016) using iterative closest point approximation (Besl and 

McKay 1992). Next, the macaque surface nodes were used as landmarks to map the macaque 

model to the baboon surface using Burr’s elastic iterative registration method (Bryan et al. 2010) 

to match the external geometry of the two surfaces (Figure 5-5 (b)). The same transformation in 

this step was then applied to the macaque brain FE model, a thin-plate spline method with a radial 

basis function (Rohr et al. 2001) was used to interpolate and smooth the FE model to match the 
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geometry of the baboon brain. The results of the morphing are shown in Figure 5-5 (c), and the 

baboon brain FE model derived from the macaque brain model was able to represent the 

morphology of the template baboon brain sufficiently.  

 
Figure 5-5. Morphing process and results. (a) An initial comparison between the macaque FE brain and 

the baboon atlas; (b) The morphing procedure; (c) Comparison between the morphed FE brain and the 

baboon atlas. 

5.4 Brain Injury Simulation 

To demonstrate the ability of the model and numerical stability, the newly developed 

baboon model was utilized to simulate experimental uniaxial coronal, sagittal and axial rotation. 

The loading pulse to the brain model was based on one of the cases initially performed by 
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(Gennarelli et al., 1982) and documented in Mendis (1992), as shown in Figure 5-6. The loading 

pulse caused severe disability for a baboon subject (brain mass: 160g) with prolonged traumatic 

coma ( > 6 hours) and neuropathological evidence of DAI. 

 
Figure 5-6. Loading pulse of the brain injury simulation, original case ID was B010 in Mendis (1992). 

5.5 Results 

5.5.1 Summary of Models 

As illustrated in Figure 5-7, the newly developed brain FE models in this dissertation were 

summarized and compared with the axon-based human model. Three models were commensurate 

with each other in terms of macroscale and mesoscale anatomical details, the number of elements 

(5% difference), and mesh quality. 
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Figure 5-7. Brain FE models developed in this dissertation. They were modeled with similar numbers of 

hexahedral elements, mesoscopic details (axonal tracts), and same hyper-viscoelastic constitutive model. 

 

5.5.2 Results of Simulations 

Figure 5-8 shows the strain distributions in a certain plane for the baboon brain injury 

simulation at each rotation direction. The strain metrics, including MPS, MAS, and CSDM for 

interested regions were summarized in Figure 5-9. Although no experimental data were available 

to verify the absolute value of these metrics, the influence of the direction of head motion on 

regional responses tells an interesting story. The sagittal rotation induced a large amount of strain 

at parietal lobe on the cortex of the brain (not visible in the cross-section view) without the 

widespread deformation in the deep brain region. While the axial rotation induced a large amount 

of strain in deep gray or white matter region. In addition to large deformation in the central brain 

regions, the coronal rotation produced higher strain in the brainstem and cerebellum than the other 

head motion did. 

https://www.sciencedirect.com/topics/neuroscience/parietal-lobe
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Figure 5-8. Maximum principal strain (MPS) distributions for the simulation of one NHP test to 

investigate the direction-dependent responses. For sagittal rotation, the plane with a maximum 

deformation response is not shown. 

 

 
Figure 5-9. Comparison of the strain measurements between head rotational motions in each region of 

the brain. 

5.6 Discussion 

This chapter focused on developing NHP computational tools to facilitate the study in this 

dissertation. The macaque and baboon FE models were developed and modified in a manner to 

specifically harmonize with the state-of-the-art human brain FE models. 

The most significant limitation of these NHP models is the absence of evaluation or 

validation due to the lack of biomechanical data. These basic constituents govern the response of 



78 
 

a computational brain model: model geometry, boundary conditions, numerical methods, and 

tissue material properties. Great efforts were made to reduce the influences of differences in 

numerical implementations (Giudice et al., 2018) and constitutive models (Zhao et al., 2018), and 

ensure the biofidelity of FE models without the demanding biomechanical data. 

FE model simulation accuracy depends on mesh size, and in general, a more refined mesh 

(smaller mesh size) leads to a more accurate representation of the physics of the problem. A recent 

study (Giudice et al. 2018) showed that the human brain FE model results did not converge to a 

mesh-size independent value by a mesh resolution of 1 mm. There are currently no FE human 

brain models with element sizes smaller than 1 mm (Table 2-3). Conversely, mesh size should also 

be considered when comparing results from different models, especially when converged results 

cannot be reached. The existing NHP models and human models differ in terms of size and mass, 

and the loading conditions of NHP relevant to injury were also different from those of human. 

Mesh size, in a way, is also dimensional. Simple scaling arguments indicate that a similar number 

of elements (without large disparity in other numeric methods) should be maintained between NHP 

and human models to produce comparable strain and deformation results. 

Utilizing the loading pulse of experimental baboon tests, the newly developed baboon 

model was applied to simulate uniaxial head rotation at three anatomical directions. Direction-

dependent strain responses were observed for the different interested regions. In the central brain 

region, the higher strain was found in coronal and axial plane acceleration, while sagittal plane 

acceleration produces less deformation in the deep brain region. This corroborates the findings by 

Gennarelli et al. (1987), who assessed the influence of the direction of head motion on the amount 

and distribution of demonstrable axonal damage within the brain for comparable acceleration 

levels, and reported 56% (5/9) sagittal rotation had no evidence of axonal damage, 90% (9/10) 
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axial head rotation had evidence of corpus callosum/central brain axonal damage, whereas 89% 

(8/9) coronal rotation had axonal injury in the brainstem as well as in the central brain. Geometric 

constraints of the internal structure, such as falx, were believed to be responsible for these 

differences (Margulies, 1987; Mendis, 1992). All the subjects were injured in Gennarelli et al. 

(1987), so it is difficult to conclude which direction is more susceptible to injury. Another 

experimental head injury study with lateral impact using monkeys found tolerance to lateral head 

impacts was higher than sagittal impact tolerance (Sakai et al., 1982). In accordance with Sakai et 

al.’s findings, the injury simulation in this study did report lower global MPS, MAS, and CSDM 

for the coronal rotation. 

In summary, two NHP brain FE models were developed in this chapter, considering the 

best knowledge of material properties and suitable numerical methods. Mesoscale axonal 

tractography was incorporated into these models to improve their capabilities of investigating 

novel tissue-level injury metrics. The newly developed model was used to study the direction-

depend tissue responses and correlate well with the experimental injury findings. Experiments to 

characterize brain deformation for the animal were, in general, demanding, for model evaluation 

and for enhancing the understanding of the link between deformation and clinic outcomes. 
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CHAPTER 6 : INVESTIGATION OF CROSS-SPECIES SCALING METHODS 

Scaling methods are typically used to correlate animal exposure data to humans, 

specifically to find the equivalent biomechanical impact conditions that result in similar tissue-

level mechanical responses for different species, but the existing scaling methods have not been 

validated and fail to account for the anatomical and morphological complexity of the brains for 

different species. In this chapter, the relationship between head impact condition and brain tissue 

deformation was investigated using advanced computational models developed in previous 

chapters. The objective was to evaluate existing scaling methods in predicting similar 

biomechanical responses in the different species and to improve how animal data is scaled to 

humans. The traditional mass-based scaling method, inertia-based scaling, an optimization-based 

method, and a novel frequency-based scaling method were investigated using finite element 

models of brains. The performances of scaling methods were then assessed by comparing the brain 

strain results of different species using both idealized and real-world head impact pulses. The 

findings of this study enable better interpretation of mechanical-trauma responses obtained from 

animal data to the human, thus effectively advancing the development of human injury criteria and 

eventually mitigating the cost and burden of TBI. 

6.1 Introduction 

Despite decades of research conducted to understand the mechanisms of TBI in the human 

brain, there are still no universally accepted biomechanical brain injury criteria or thresholds, due 

in part to the uncertainty in scaling methods between animal models and humans. Animal models 

are valuable surrogates for humans and are critical for advancing the field’s knowledge of TBI 

(Abel et al., 1978; Gennarelli et al., 1982; Olszko et al., 2018; Ommaya and Hirsch, 1971; Ono et 

al., 1980). They allow for the rigorous investigation of the biomechanical thresholds and the 
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pathophysiological mechanisms of TBI using controlled and highly efficient protocols (Shultz et 

al., 2017). However, the mechanical response associated with trauma characterized in these animal 

studies is difficult to translate to humans considering the differences in brain morphology and 

physiology across species (Panzer et al., 2014). Motivated by the goal of developing more effective 

helmets and automotive countermeasures for TBI, animal data has been used to help inform 

kinematic-based injury criteria, which predict brain injury using the kinematic responses of the 

head during impact (Takhounts et al., 2013). To accurately correlate animal data to human data, 

the equivalent human head impact kinematics that result in similar brain deformation to that of 

animals need to be determined, assuming comparable tissue deformation responses result in the 

comparable clinical outcome (Antona-Makoshi, 2016; Panzer et al., 2014). 

To relate the mechanical trauma impact conditions in animal models to humans, it is 

imperative to establish a physics-based link between the intensity of the external loadings and the 

intensity of the internal tissue-level responses (e.g., brain deformation) across species. This 

physics-based link can be based on cadaveric models, physical models, or finite element models 

(FE). For example, Margulies et al. (1990) previously used physical skull models of different 

species filled with viscoelastic gel to provide a unique insight into the relationship between the 

kinematics of head motion and the associated deformation in heads of various morphologies. 

Considering the difficulty in measuring deformation with high spatial resolution under a broad 

range of loading conditions, brain FE models are a suitable research tool to allow strain field 

measurements with the desired temporal and spatial fidelity (Gabler et al., 2018c; Jean et al., 2014).  

While a link between human and animal loading conditions can be established using FE 

simulations, computational simulations of animal tests are not always available since kinematics 

time history was not well documented for legacy animal data (Abel et al., 1978; Gennarelli et al., 
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1982; Olszko et al., 2018; Ommaya and Hirsch, 1971; Ono et al., 1980) and corresponding animal 

FE models usually are not as advanced as existing human FE models (Antona-Makoshi, 2016). 

Analytical relationships between human and animal data, through kinematic scaling methods, 

provide a more accessible and generalized solution. Historically, the first scaling method for TBI 

was developed based on brain mass to scale NHP experimental data to develop human concussion 

thresholds (Ommaya et al., 1967). According to the mass scaling model, the level of rotational 

acceleration required to produce injury in brains with different sizes is inversely proportional to 

the 2/3 power of the ratio of the brain masses (hereafter referred to as ‘mass scaling’). The method 

assumes the mechanical responses of the brain to be elastic, homogeneous, isotropic, and more 

importantly, geometrically similar across species. However, it is well known that the mechanical 

responses of brain tissue are nonlinear, viscoelastic, heterogeneous and anisotropic (Chatelin et al., 

2010). Despite its limitations, the mass scaling method is widely used to relate the results of head 

rotation experiments on animals to humans (Browne et al., 2011; Cullen et al., 2016; Eppinger et 

al., 1999; Takhounts et al., 2013).  

To my knowledge, few studies have attempted to address the challenges of scaling animal 

TBI data to humans using alternative scaling formulations. Margulies and Thibault (1989) 

developed an analytical model and an empirical scaling relationship between the NHP and human 

based on a cylindrical model. They found that the head angular acceleration was inversely 

proportional to the brain mass, but the power of this relationship was dependent on the frequency 

of the loading conditions, this dependence hampered the general application of this method as the 

frequency of real-world loadings is unusual unknown. Ibrahim et al. (2010) proposed that the 

scaling relationship between infant and juvenile piglets must include differences in brain mass, 

material properties, and tissue vulnerability (strain threshold required to produce injury in the 
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tissue). Scaling methods developed for blast-induced TBI are available in the literature (Jean et al., 

2014; Panzer et al., 2014; Wood et al., 2018), but these are derived based on a different injury 

mechanism than blunt trauma. Consequently, these scaling procedures have not been evaluated or 

validated considering the differences across species in material characteristics of brain tissue and 

complex brain morphologies.  

The objectives of this study were to investigate and evaluate scaling methods for TBI using 

finite element (FE) models of brains from multiple primate species (human, macaque, and 

baboon). Four scaling methods, the traditional mass-based scaling method, inertia-based scaling, 

an optimization-based method, and a novel frequency-based scaling method, were assessed using 

the strain response surfaces, which were generated from a parametric study based-on idealized 

kinematics pulse over a range of uniaxial rotational impact conditions for different brain FE 

models. The proposed scaling method was further explored and evaluated under three-dimensional 

real-world head impact scenarios to ensure that the scaling method is effective and generally 

applicable. 

6.2 Methods 

6.2.1 Brain FE Models 

Three FE models representing human, macaque and baboon brains detailed in previous 

Chapters were used (Figure 5-7). As mentioned, they were developed or modified to harmonize 

the numerical methods, anatomical features (axonal tractography), and constitutive models to 

reduce the influences of differences from numerical implementations and constitutive models.  
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6.2.2 Parametric Study: Strain Response Surfaces Generation 

A series of idealized rotational pulses were applied to the FE models about each anatomical 

axis of the head to study the relationship between head kinematics and maximum brain 

deformation, in a manner similar to Gabler et al., (2018). Consistent head anatomical coordinate 

systems were defined for the three FE models. The x-axis was defined along the intersection of 

the Frankfort and mid-sagittal planes in the posterior-to-anterior direction (corresponding to 

coronal rotation). The y-axis was defined along the line joining the two superior edges of the 

auditory meatus in the left-to-right direction (corresponding to sagittal rotation). The z-axis laid in 

the mid-sagittal plane perpendicular to the Frankfort plane and in the superior-to-inferior direction 

(corresponding to axial rotation). Rotations were applied in positive directions. Translational 

kinematics were not investigated in this study since previous work has shown a weak correlation 

between linear acceleration and brain strain (Gabler et al., 2016). A sinusoidal pulse shape was 

chosen for this parametric study, and each loading case was uniquely defined by two kinematic 

parameters: angular velocity (𝜔0 ) and angular acceleration (𝛼0 ) (Figure 6-1). The ranges of 

acceleration and velocity magnitudes for each species were informed by existing experimental data 

(Mendis, 1992; Ommaya and Hirsch, 1971; Sanchez et al., 2018) (Figure 6-2).  

 
Figure 6-1. Sinusoidal loading pulses for simulations in the parametric study.  
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Figure 6-2. Design space for simulations.  

6.2.3 Data Analysis 

All FE simulations were performed using LS-Dyna (v971 R9.2.0, double precision; LSTC, 

Livermore, CA). The rotational head kinematics were applied to the rigid dura through the head 

center of gravity. The tissue deformation was quantified using strain-based metrics: MPS and 

MAS. MPS and MAS are respectively defined as the maximum value of the maximum principal 

strain occurring in all solid elements of the brain model and the maximum axial strain occurring 

in all axonal fiber elements of the brain, over the entire time history of the impact event. The 95th 

percentile peak MPS and MAS response (ranked by element) were used to avoid potential non-

physical deformation measurements that may have been related with the 100th percentile value 

(Panzer et al., 2012). Relationships between the strain metrics (MPS and MAS) and applied head 

kinematics were depicted in angular acceleration-angular velocity space using deformation-based 

response surfaces (contour plots) (Gabler et al. 2018). 

6.2.4 Scaling Methods 

Four scaling methods were investigated to determine the equivalent kinematics for 

different species based on the brain deformation response surfaces. Depending on the mechanism 

of TBI, the equivalent kinematics can be defined as loading conditions resulting in the same 

maximum brain strain of the whole brain (MPS), or the same maximum tensile strain of the white 
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matter tracts (MAS). MAS was investigated because the axonal strain is the critical mechanism of 

TBI (Meaney and Smith, 2011). 

First, the traditional mass scaling method (Eppinger et al., 1999; Ommaya et al., 1967) was 

applied to the head kinematics based on the brain mass for each species in the following manner:  

Angular velocity: 𝜔ℎ = 𝜆𝜔,𝑚𝑎𝑠𝑠𝜔𝑎 = (
𝑚𝑎

𝑚ℎ
)1/3𝜔𝑎 [6-1] 

Angular acceleration: 𝛼ℎ = 𝜆𝛼,𝑚𝑎𝑠𝑠𝛼𝑎 = (
𝑚𝑎

𝑚ℎ
)2/3𝛼𝑎 [6-2] 

Time: 𝑡ℎ = 𝜆𝑡,𝑚𝑎𝑠𝑠𝑡𝑎 = (
𝑚𝑎

𝑚ℎ
)−1/3𝑡𝑎 [6-3] 

In which 𝑚  are the brain masses, ω  are the angular velocities, and α  are the angular 

accelerations with subscripts ℎ and 𝑎 denote the human and animal respectively. The mass scaling 

method is not directionally dependent, so the same set of scaling factors (𝜆𝜔,𝑚𝑎𝑠𝑠 and 𝜆𝛼,𝑚𝑎𝑠𝑠) 

were employed for rotational kinematics in all three anatomical directions (coronal, sagittal, and 

axial). 

Secondly, considering that the inclusion of cerebral moments of inertia in rotational head 

injury metrics might improve prediction of diffuse axonal injury for piglets (Atlan et al., 2018), 

the second method was to utilize the brain moment of inertia for each species instead of brain mass 

to scale the head kinematics, as formulated in Equation [6-4] – [6-6], following the principles of 

dimensional analysis.  

Angular velocity: 𝜔ℎ = 𝜆𝜔,𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝜔𝑎 = (
𝐼𝑎

𝐼ℎ
)1/5𝜔𝑎 [6-4] 

Angular acceleration: 𝛼ℎ = 𝜆𝛼,𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝛼𝑎 = (
𝐼𝑎

𝐼ℎ
)2/5𝛼𝑎 [6-5] 

Time: 𝑡ℎ = 𝜆𝑡,𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑡𝑎 = (
𝐼𝑎

𝐼ℎ
)−1/5𝑡𝑎 [6-6] 
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The third scaling method was inspired by previous studies that showed that simple 

mechanical models could be used to predict the relationship between rotational head motion and 

brain deformation (Gabler et al., 2018c). Single-degree-of-freedom (sDOF) mechanical systems 

with base excitation were developed for characterizing both the animal brain responses and the 

human brain responses. For each loading direction, 5 parameters were identified to fit the sDOF 

model to the MPS or MAS responses of each brain model: the natural frequencies of the three 

species (𝑓𝑖) and the two common dimensionless parameters: damping ratio (𝜁) and strain regressor 

coefficient (𝛽). An optimized set of coefficients (𝑓𝑖, 𝜁 and 𝛽) were determined independently for 

each anatomical direction using a nonlinear, least-squares solver (lsqcurvefit; Matlab) to minimize 

the sum-squared error (SSE) between FE-measured and sDOF-predicted MPS (or MAS). It can be 

shown (details in Appendix B) that the response of a pair of sDOF systems (equal in 𝜁 and 𝛽), with 

different natural frequencies, can be scaled based on the ratio of natural frequency in the following 

manner (Equation [6-7] – [6-9]). This scaling method is hereafter referred to as ‘frequency scaling’, 

and it considers directional dependence since there are independent scale factors for each loading 

direction. Furthermore, this scaling method indicates that a brain with higher natural frequency 

(often smaller brains) will require higher angular velocity and acceleration than a brain with a 

lower natural frequency (often larger brains) for the equivalent biomechanical responses. 

Angular velocity: 𝜔ℎ = 𝜆𝜔,𝑓𝑟𝑒𝑞𝜔𝑎 =
𝑓ℎ

𝑓𝑎
𝜔𝑎 [6-7] 

Angular acceleration: 𝛼ℎ = 𝜆𝛼,𝑓𝑟𝑒𝑞𝛼𝑎 = (
𝑓ℎ

𝑓𝑎
)2𝛼𝑎 [6-8] 

Time: 𝑡ℎ = 𝜆𝑡,𝑓𝑟𝑒𝑞𝑡𝑎 =
𝑓𝑎

𝑓ℎ
𝑡𝑎 [6-9] 

The last scaling method used in this study was not based on physics-based dimensional 

analysis but was based on determining an optimal set of scaling factors for angular velocity and 
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angular accelerations (𝜆𝜔,𝑜𝑝𝑡 and 𝜆𝛼,𝑜𝑝𝑡), using an unconstrained optimization solver (fminsearch; 

Matlab). The optimal set of scaling factors, for each loading direction, resulted in minimum SSE 

between the scaled animal responses surfaces and the target human responses surfaces. This 

scaling method was referred to as ‘optimal scaling’, and was used as a reference for the best 

possible scaled responses for the dataset generated in this study because it was not constrained by 

physics principles.  

6.2.5 Extension to Three-Dimensional Time-Histories 

While only single, uniaxial pulses with a sinusoidal shape were considered in the above 

parametric study to develop the frequency-based and optimal scaling methods, real-world impacts 

often result in complex, three-dimensional, and multi-impact head motions. The scaling factors 

obtained from the frequency scaling method are directionally dependent (e.g. 𝜆𝜔,𝑥,𝑓𝑟𝑒𝑞 ≠

𝜆𝜔,𝑦,𝑓𝑟𝑒𝑞 ≠ 𝜆𝜔,𝑧,𝑓𝑟𝑒𝑞), which raised new challenges when they were applied to three-dimensional 

data.  

Three methods were further investigated to employ direction-dependent scaling factors to 

three-dimensional (3D) rotational data. Taking 3D angular velocity time histories as an example, 

these methods were detailed as follows (these methods can be seamlessly applied to angular 

acceleration). 

First, the scaling factors derived from different uniaxial loadings (𝜆𝜔,𝑖 and 𝜆𝑡,𝑖, 𝑖 = 𝑥, 𝑦, 𝑧) 

were respectively applied to scale the corresponding Cartesian components (𝜔𝑎,𝑖 and 𝑡𝑎,𝑖) of the 

complex time-history pulses of rotational kinematics (Equation [6-10] – [6-11]) (referred to as 

‘triaxial method’).  
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Angular velocity: 𝜔ℎ,𝑖 = 𝜆𝜔,𝑖𝜔𝑎,𝑖 , 𝑖 = 𝑥, 𝑦, 𝑧. [6-10] 

Time: 𝑡ℎ,𝑖 =
𝑡𝑎,𝑖

𝜆𝜔,𝑖
= 𝜆𝑡,𝑖𝑡𝑎,𝑖, 𝑖 = 𝑥, 𝑦, 𝑧. [6-11] 

Secondly, an average scaling factor of the uniaxial scaling factors (𝜆𝜔,𝑚 =
𝜆𝜔,𝑥+𝜆𝜔,𝑦+𝜆𝜔,𝑧

3
) 

was found and applied to uniformly scale the Cartesian components of the complex time-history 

pulses of rotational kinematics (referred to as the ‘average method’). 

Angular velocity: 𝜔ℎ,𝑖 = 𝜆𝜔,𝑚𝜔𝑎,𝑖, 𝑖 = 𝑥, 𝑦, 𝑧. [6-12] 

Time: 𝑡ℎ,𝑖 =
𝑡𝑎,𝑖

𝜆𝜔,𝑚
= 𝜆𝑡,𝑚𝑡𝑎,𝑖, 𝑖 = 𝑥, 𝑦, 𝑧. [6-13] 

Lastly, the time-dependent scaling factor (𝜆𝜔,𝑟(𝑡)) was applied to uniformly scale the 

Cartesian components of the rotational kinematics in the following manner (Equation [6-14], 

[6-15]). At any point in time, the scaling factor 𝜆𝜔,𝑟 was determined by the input angular velocity 

(𝜔𝑖 ,  𝑖 = 𝑥, 𝑦, 𝑧 ), and the direction-dependent scaling factors (𝜆𝜔,𝑖 ), given by the following 

expression (Equation [6-16] ). The equation is similar to the standard equation of the ellipsoid in 

the Cartesian coordinates, thus referred to as ‘ellipsoidal method’ (Figure 6-4).  

Angular velocity: 𝜔ℎ,𝑖(𝑡ℎ) = 𝜆𝜔,𝑟(𝑡𝑎) ∙ 𝜔𝑎,𝑖(𝑡𝑎), 𝑖 = 𝑥, 𝑦, 𝑧. [6-14] 

Time: 𝑡ℎ = ∫ (𝛥𝑡𝑎/𝜆𝜔,𝑟(𝜏))𝑑𝜏
𝑡𝑎

0
= ∫ (𝛥𝑡𝑎 · 𝜆𝑡,𝑟(𝜏))𝑑𝜏

𝑡𝑎

0
 

𝜆𝑡,𝑟(𝜏) = 1/𝜆𝜔,𝑟(𝜏), 𝛥𝑡𝑎 is the time step of the kinematics data. 

[6-15] 

(
𝜆𝜔,𝑟𝜔𝑥

𝜆𝜔,𝑥
)2 + (

𝜆𝜔,𝑟𝜔𝑦

𝜆𝜔,𝑦
)2 + (

𝜆𝜔,𝑟𝜔𝑧

𝜆𝜔,𝑧
)2 = 1 [6-16] 
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a) An example of human loading pulses which only have axial (z) angular velocity before 10 ms 

and coronal angular velocity after 35 ms. b) The time history of scaling factors for this example 

on the assumed ellipsoidal surfaces. Corresponding to the pulses, for the first 10 ms, the scaling 

factor is equal to the scaling factor for uniaxial axial rotation (north pole), then the curve of the 

scaling factor moves to the south and then the west, and near the end the scaling factor is equal to 

the scaling factor for uniaxial coronal rotation. c) Scaled loading pulses. 

Figure 6-3. Schematic diagram to apply frequency scaling in 3D scenarios using the ellipsoidal method.  

 

6.2.6 Application Assessment  

The four scaling methods were first applied directly to scale the animal response surfaces 

and compared with the human response surfaces to assess the goodness of fit (for frequency and 

optimal scaling) and accuracy of prediction (for mass-based and inertia-based scaling). Simple 

linear regression using ordinary least squares was used to quantify the accuracy between the scaled 

animal strain response surfaces and the human strain response surfaces. 

The applicability of newly proposed frequency scaling, which had scaling factors based on 

the anatomical direction of loadings, were further assessed in correlating human real-world head 

impact conditions to the equivelent macaque condtitions using a combination of 14 football 

reconstructions, sled, crash, and pendulum tests (Gabler et al., 2016; Sanchez et al., 2018). The 

range and distribution of component peak kinematic values of those tests are illustrated in Figure 

6-4. The mass scaling method was also assessed for 3D application as a reference method. This 
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scaling study focused on scaling rotational kinematics. Linear kinematics were expected to induce 

negotiable strain in the brain (Gabler et al., 2016), and were scaled based on mass (Eppinger et al., 

1999) in any situations no matter what scaling methods were used for rotational motion. These 

pulses were first applied to the human model to predict target strain responses. Then, simulations 

using the macaque model were conducted for the equivalent loading scenarios defined separately 

based on the frequency scaling or the mass scaling method. The 95th percentile peak MPS outputs 

for human and macaque were compared and qualified using linear regression analysis. 

 
Figure 6-4. Realistic loading pulses from experimental data. (a) Scatter plots to show the distribution of 

component peak angular velocities and component peak angular accelerations for coronal, sagittal, and 

axial directions. (b) Box plots to show the minimum, first quartile, median, third quartile, and the 

maximum value of the same dataset. 
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6.3 Results 

6.3.1 MPS/MAS Response Contours 

A total 18 of MPS/MAS response surfaces of uniaxial rotations (Figure 6-5 and Figure 6-6) 

for three anatomical directions (coronal, sagittal, axial) and three species (human, macaque, 

baboon) were generated in this study. Each response surface shows the contour lines representing 

constant levels of MPS/MAS for the applied peak loading angular velocities and angular 

accelerations. 

 

Figure 6-5. MPS (95th) response surfaces of uniaxial rotations for the human, baboon, and macaque. 
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Figure 6-6. MAS (95th) response surfaces of uniaxial rotations for the human, baboon, and macaque. 

6.3.2 Scaling Factors 

The inertia, mass, and natural frequency information for the three brain models are 

provided in Table 6-1, the directionally dependent natural frequencies were estimated by fitting 

the FE response surfaces with the sDOF models. Other resulting parameters (𝛽, 𝜁) of the sDOF 

models and the goodness of fit were included in Appendix B. The sDOF models fit the MPS and 

MAS responses well for the coronal and sagittal rotations (R2 > 0.950) but had slightly lower 

correlations for the axial rotations (R2 ≈ 0.9).  
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Table 6-1. Inertia, mass, and natural frequency information for the brain models of three primate species. 

Parameters Macaque Baboon Human 

Mass (g) 80 156 1243 

Moment of Inertia 

(Kg.mm2) 

I𝑥 25.3 73.8 2715.2 

I𝑦 32.2 96.0 2489.7 

I𝑧 20.8 66.9 2039.7 

Natural Frequency 

(MPS) (Hz) 

𝑓𝑥 194.1 148.0 56.6 
𝑓𝑦 155.2 116.3 49.8 
𝑓𝑧 219.2 167.2 74.9 

Natural Frequency 

(MAS) (Hz) 

𝑓𝑥 213.9 162.9 62.4 
𝑓𝑦 131.4 100.0 41.9 
𝑓𝑧 194.7 149.4 68.6 

 

Table 6-2 summarizes the scaling factors obtained using the four scaling methods. For both 

angular velocity and angular acceleration, the frequency-based scaling factors and optimal scaling 

factors are similar, with an average difference of 8% ± 7%. Conversely, the mass-based scaling 

factors are significantly different from the optimal scaling factors with an average difference as 

significant as 24% ±14%. The inertia-based scaling factors, while direction-dependent, are similar 

to the mass-based scaling factors, with the largest difference being less than 9%. 

Table 6-2. Animal-human scaling factors under uniaxial rotations. 

Species Methods Parameters 
MPS (95th) MAS (95th) 

X Y Z X Y Z 

Macaque 

Mass 
1/𝜆𝜔 2.495 

1/𝜆𝛼 6.227 

Inertia 
1/𝜆𝜔 2.547 2.386 2.501 2.547 2.386 2.501 

1/𝜆𝛼 6.487 5.692 6.255 6.487 5.692 6.255 

Freq. 
1/𝜆𝜔 3.425 3.117 2.929 3.428 3.134 2.837 

1/𝜆𝛼 11.732 9.714 8.580 11.753 9.819 8.048 

Optimal 
1/𝜆𝜔 3.124 3.065 2.464 3.0232 3.012 2.299 

1/𝜆𝛼 11.920 10.025 10.870 10.129 9.990 9.845 

Baboon 

Mass 
1/𝜆𝜔 1.997 

1/𝜆𝛼 3.989 

Inertia 
1/𝜆𝜔 2.057 1.918 1.981 2.057 1.918 1.981 

1/𝜆𝛼 4.230 3.677 3.924 4.230 3.677 3.924 

Freq. 
1/𝜆𝜔 2.613 2.338 2.233 2.610 2.385 2.177 

1/𝜆𝛼 6.826 5.469 4.986 6.813 5.691 4.740 

Optimal 
1/𝜆𝜔 2.519 2.260 2.258 2.435 2.249 2.054 

1/𝜆𝛼 7.203 5.337 5.409 7.406 5.569 4.763 
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6.3.3 Assessment of Scaling for Uniaxial Motions 

As an example, the comparison between the scaled baboon response surfaces and human 

response surfaces is illustrated in Figure 6-7 and Figure 6-8 for the sagittal rotation direction. All 

the scaled animal response surfaces are reported in Appendix B. For the frequency scaling, the 

scaling factors obtained based on MAS were similar to the scaling factors obtained based on MPS 

(difference < 6%). Therefore, only the results using MPS-based scaling factors were assessed in 

the following analysis. 

 
Figure 6-7. Exemplary scaled baboon MPS (95th) response surfaces under uniaxial sagittal rotations. 
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Figure 6-8. Exemplary scaled baboon MAS (95th) response surfaces under uniaxial sagittal rotations. 

Using linear regression analysis, substantial differences between the mass-scaled animal 

responses and human responses (slopes: 0.680 to 0.844, and 𝑅2: 0.838 to 0.952), and between 

animal responses and human responses (slopes: 0.697 to 0.847, and 𝑅2: 0.838 to 0.943) were 

found, compared with frequency-scaled animal responses (slopes: 0.987 to 1.012, and 𝑅2 : 0.896 

to 0.985) and optimal-scaled animal responses (slopes: 0.946 to 1.007, and 𝑅2 : 0.964 to 0.991), 

as shown in Figure 6-9. Performances of frequency scaling and optimal scaling were similar for 

coronal and sagittal rotations, while the optimal-scaled animal responses correlated better with 

human responses, compared to frequency scaling (𝑅2 : 0.962 versus 0.896). 
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Figure 6-9. Scatter plots showing correlations between MPS (95th) from human responses and scaled 

macaque responses using (a) mass scaling, (b) inertia scaling, (c) frequency scaling, and (d) optimal 

scaling. 

6.3.4 Application in Real-World Impact Scenarios  

The assessment using 14 real-world head impacts also revealed better correlations between 

frequency-scaled animal strain results and human strain results (slopes: 0.914-0.966, and 𝑅2 : 

0.928-0.946) when compared to mass-scaled animal results (slopes: 0.707, and 𝑅2 : 0.768) (Figure 

6-10). Amongst the three methods for 3D extension based on frequency scaling, the averaging 
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method (Figure 6-10 (c)) and ellipsoidal method (Figure 6-10 (d)) demonstrated similar 

performance, which were marginally better than the triaxial method (Figure 6-10 (b)).  

 
Figure 6-10. Scatter plots showing correlations between MPS (95th) from human responses and scaled 

macaque responses using (a) mass scaling, (b) triaxial frequency scaling, (c) average frequency scaling, 

and (d) ellipsoidal frequency scaling. 

6.4 Discussion 

Animal studies have resulted in meaningful advances in the understanding of TBI. 

However, the applicability of animal brain injury results to humans remains uncertain due to the 

limitations that exist in traditional scaling methods. Here, we used advanced computational models 

to help derive and evaluate cross-species scaling laws for brain trauma. The tissue deformation 

response surfaces of three species (human, baboon, macaque), represented by MPS or MAS, was 

correlated with head kinematics for a broad range of external loading conditions. Traditional mass-

based scaling was not able to capture similar brain tissue response to equivalent rotational 
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kinematic inputs across species. In this study, we showed that the mechanical trauma relationship 

of animals could be scaled according to a novel frequency method derived from fitting sDOF 

mechanical models to FE model results.  

6.4.1 Comments on Response Surfaces 

Contour surface response patterns observed in the mechanical models showed a remarkable 

similarity to a previous simulation study (Gabler et al., 2018) and an experimentally derived 

rotational brain injury tolerance proposed in the literature (Margulies and Thibault, 1992). Surface 

response patterns across different brains were also similar, which indicated that they could be 

accurately modeled using the same damping ratio (𝜁) and regressor (𝛽). The biggest differences 

between the animal contours and human contours were observed in axial rotation, which yielded 

difficulties in scaling the responses for that direction. Although the parametric study was 

conducted using positive rotation pulses, response surfaces under coronal and axial rotations in 

negative directions were expected to be identical due to the geometric symmetry of the brain 

models. As shown in Gabler et al. (2018), the strain response in the sagittal rotation was also 

independent of the negative or position direction, although geometric symmetry did not hold. The 

response surfaces also suggest that both the NHP and human tolerance to rotational acceleration 

was, in general, lower in the axial plane than in the sagittal and coronal. This is consistent with a 

recent experimental study by Alshareef et al. (2018), where the maximum peak-to-peak brain 

deformation observed in coronal, sagittal, and axial dynamic rotations were 11, 12, and 23 mm 

respectively. 

6.4.2 Physical Meaning of Frequency Scaling 

For the uniaxial study, in the scenario with the largest discrepancy of scaling factors 

between mass scaling and frequency scaling (coronal), the equivalent angular velocity and angular 
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acceleration scaled by mass scaling from NHP data were 27% and 47% larger, respectively, than 

those of the frequency scaling method. Although there is no direct experimental data to verify 

these results, the current findings agree with previous analytical results (Margulies, 1987). As 

shown in Figure 6-11, the frequency-scaled tolerance of the baboon matches well with the human 

threshold reported by Margulies (1987), in which they used physical models as an empirical 

scaling technique to find the load associated with the same critical strains. In stark contrast to the 

proposed frequency method, the threshold scaled using mass scaling laws underestimates the brain 

vulnerability for a human. Relevant experimental studies are required to provide insight into these 

scaling relationships. 

 
Note that the velocity for the tolerances derived by Margulies (1987) was very high, this might 

be due to the incorrectly assumed recording frequency for those animal data as found by Mendis 

(1992), refer to Margulies and Thibault (1992) for comparison with the corrected tolerance. This 

will not affect the scaling techniques.  

Figure 6-11. Comparisons of DAI tolerances for human using different scaling methods. (a) The unscaled 

baboon tolerance adapted from Margulies (1987); (b) Scaled baboon tolerances using frequency (the 

dashed line) and mass scaling (the dash-dotted line) respectively, compared with human tolerance (the 

solid blue line) derived by Margulies (1987). 
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Both the optimal scaling method and frequency scaling method yielded a good fit of the 

strain results, especially for the sagittal and coronal rotations. The differences between the 

frequency-based scaling factors and optimal scaling factors were within 10%. The advantage of 

the frequency scaling method over the optimal scaling is its robustness, which was demonstrated 

by fitting the model using randomly sampled subsets of the dataset (details in the Appendix B). In 

that situation, the variation of scaling factors using the frequency method was much smaller than 

those using optimization. The optimal scaling method is a numerical fit and only captures the 

phenomena in the range of the fitted data and not the underlying deformation-based physics of the 

injury. It tends to lead to nonsensical predictions when extrapolated beyond the range of fitted data 

and a more significant error when the sample size is not large enough. Also, the optimal scaling 

factors were not applicable in situations when scaling time-history data is required, because the 

scaling factors of physical quantities are not compatible with each other (e.g., 𝜆𝛼 ≠ (𝜆𝜔)
2, so 𝜆𝑡 

cannot be derived from 𝜆𝛼 and 𝜆𝜔 based on dimensional analysis). An alternative method for the 

optimal scaling was to perform the optimization with physical constraints ( 𝜆𝛼 = (𝜆𝜔)
2 ). In that 

case, the optimal scaling factors were similar to the frequency-scaling factors, even for the axial 

rotation conditions (within 5%), suggesting that the frequency scaling approach approximately 

represented the best fit obtainable from physically-bounded (linear) scaling laws. 

Previous animal-to-human scaling laws for TBI on the brain have been derived using mass 

scaling techniques (Eppinger et al. 1999). These are limited since they do not consider the physical 

mechanisms that determine brain response to impact, the nonlinear and viscoelastic material 

properties of the brain tissue, and significant morphological and anatomical differences. The 

proposed frequency scaling method can address some of these limitations through the analogy 

between the simple mechanical systems and the relationship between head kinematics and 
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intracranial deformation observed in FE simulations. In the sDOF system, the deformation 

resulting from loading is governed by the natural frequency (𝜔𝑛 = √𝑘/𝑚 ) which contains 

parameters such as length, stiffness, and mass. The effects of different material parameters (e.g., 

the constitutive model) and structural parameters (e.g., the morphology of the brain) of various 

brains were taken into account by the parameter fitting (e.g., stiffness and damping) of the sDOF 

model.  

Although the natural frequency of brains was estimated computationally in this study, the 

skull-brain dynamics will be better understood through experiments in the future. The findings of 

existing experimental studies on the modal behavior of the brain were not conclusive, the reported 

natural frequency for the human brain ranges from 15 Hz to 50 Hz at low-severity impacts (Laksari 

et al., 2015; Zou et al., 2007). The analysis performed here may facilitate future investigations 

along this line of research.  

6.4.3 Application of Frequency Scaling for Three-Dimensional Kinematics 

The assessment for application in human real-world head impact conditions suggested that 

the scaling factors, although obtained using simulations under only single, uniaxial pulses with a 

sinusoidal shape, could be applied to complex, multi-directional loading conditions. This finding 

agrees with previous work, in which the global strain-based responses were reasonably insensitive 

to pulse shape (Gabler et al. 2018). However, as noted by Yoganandan et al. (2008), regional strain 

response in the brain could be dependent on the profile of the acceleration-deceleration pulse. 

As shown in Table 6-2, the scaling factors obtained from frequency scaling methods were 

directionally dependent, which introduced new challenges when applied to three-dimensional data. 

For the three application methods investigated in this study, differences in performance were not 
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significant. This was likely due to the small differences in uniaxial scaling factors. The triaxial 

method was unable to preserve the time-history of angle (e.g., 𝑡𝑎𝑥 ≠ 𝑡𝑎𝑦 ≠ 𝑡𝑎𝑧) and the features 

of the rotational angle, since the time scaling factors for different Cartesian components were 

different, and the relative phases between x, y, and z changed after scaling. The averaging method 

was able to preserve the angle but was not compatible with the uniaxial scaling factors, thus this 

method was expected to compromise the accuracy for uniaxial loadings or loadings dominated by 

uniaxial rotations. The ellipsoidal method was the only method amongst them able to 

approximately preserve the angle and overall motion, while still remain compatible with the 

direction-dependent scaling factors of uniaxial loading.  

6.4.4 Limitations 

A critical assumption in this study was that comparable strain metrics result in an equal 

clinical outcome. As proof of concept, the current study was performed using two non-human 

primate species. The human brain is ‘a scaled-up primate brain’ in its cellular composition 

(Azevedo et al., 2009), but the interspecies differences in structural pathology, pathophysiology, 

and behavioral pathology are still unknown. Furthermore, whether this assumption applies to other 

animal species used as human surrogates (e.g., rodents, ferrets, pigs; Shultz et al. 2017) requires 

further investigation. It is possible that this assumption is not appropriate for rodents as several 

studies have noted the limited similarity to humans in genomic and proteomic responses, injury 

time course, and grey and white matter distribution (Duhaime, 2006; Seok et al., 2013).  

A limitation of this study was the absence of validation data for the intracranial deformation 

response of the NHP brain models, due to the lack of experimental data. The current study assumed 

similarity in material properties between primate and human brains and the brain tissue material 

properties of the NHP models were not thoroughly investigated. Although existing experimental 
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data on the mechanical properties of primate brain tissue exists, previous studies have indicated 

mechanical similarity between human and NHP brain material properties (Estes and McElhaney, 

1970; Galford and McElhaney, 1970). However, contradictory findings have also been reported, 

probably because the human brain specimens were tested at a significantly later time after death 

than the NHP (Galford and McElhaney 1970). Brain deformation response was also sensitive to 

numerical implementation (Giudice et al. 2018). Therefore, a similar number of elements (Figure 

5-1) and mesh type were adopted across different brain models to mitigate the possible effects of 

mesh architecture. Although similar white matter patterns were observed between the macaque 

and baboon (Figure 5-5 (a)), it is possible that errors in MAS were introduced by morphing the 

macaque axonal tracts networks to represent the baboon. A tractography atlas of the baboon brain 

is not currently available in the literature, but it was expected that the anisotropic effects on the 

MPS would be minimal (Wu et al. 2019).  

Furthermore, only global measures of brain strain were used to quantify the tissue 

deformation. Additional work is needed to determine whether metrics based on regional tissue 

strain improve the prediction of these brain injury types. Additionally, metrics such as strain rate, 

and the product of strain and strain rate may improve correlation with brain injury, but there is a 

lack of supporting experimental data to include the effects of strain rates on injury vulnerability 

(Cater et al., 2006). Using dimensional metrics (e.g., strain rate) as tissue-level injury metrics 

would also introduce new challenges for interpreting tissue-level metrics across species. 

6.4.5 Summary 

In conclusion, rotation-induced brain strain does not scale solely with brain mass across 

species. Instead, an appropriate scaling variable must consider the mass of the brain, as well as 

viscoelastic properties of brain tissue and the morphological features. Therefore, a novel frequency 
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scaling method was proposed based on the analogy between the FE results and a simple mechanical 

system. This scaling method enables the interpretation of mechanical-trauma responses obtained 

from animal data to the human, thus effectively allowing the development of human injury criteria 

and injury risk functions based on a plethora of animal tests available in the literature. This is a 

critical step in the design and development of effective countermeasures and the understanding of 

TBI. In Chapter 8, the scaling method developed in this chapter was utilized to develop tissue-

level injury risk and scale kinematics-based metrics. 
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CHAPTER 7 : BRAIN INJURY DATA AGGREGATION 

In vivo biomechanical data with known head kinematics and clinic outcomes are vital to 

an improved understanding of TBI mechanism. Beginning in the 1960s, many experimental studies 

have been performed to investigate brain injury. This chapter started with a critical review of 

existing injury data in the literature. The pros and cons for each experimental work were discussed 

in an attempt to find the proper dataset for the development of injury risk functions. Finally, a 

selected database of in vivo biomechanical brain injury data was collected for this dissertation and 

details are provided in this chapter.  

7.1 Literature Review on Brain Injury Data 

Brain injury data can be divided roughly into three main categories: sub-injurious 

experiments with volunteers, reconstruction or measurement of real-world events, and experiments 

with animals. A variety of TBIs were produced in these tests, including concussion, contusion, 

diffuse axonal injury (DAI), intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), 

subdural hemorrhage (SDH), epidural hemorrhage (EDH), and brainstem injury. Legacy 

volunteers and non-human primate biomechanical data were extremely valuable and were unlikely 

to be repeated, which calls for a combination of novel research methodologies with experimental 

data obtained in the past. 

7.1.1 Volunteer Data 

A large number of sub-injurious sled tests with young male military volunteers were 

performed at the US Naval Biodynamic Laboratory (NBDL) between 1968 and 1978 (Ewing and 

Thomas, 1972). The volunteers were restrained in a seated posture on a sled buck that could be 

mounted in different orientations (front-facing rearward, oblique, and pure lateral acceleration) 
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with respect to the direction of sled motion. 355 cases of these experiments conducted on 22 

volunteers with frontal, oblique and pure lateral sled configurations have been recently re-

evaluated and applied to examine the predictive capability of several existing head and brain injury 

risk functions (Sanchez et al., 2017). While such data and approaches have been proven invaluable 

for evaluating the ability of injury risk functions to predict non-injury response correctly, the sub-

injurious data cannot achieve the severities necessary for comprehensive validation of injury risk 

functions or the development of new injury risk functions. 

7.1.2 Real-world Data 

Injury risk functions can be developed based on data from real-world events in which the 

participants are at risk of suffering brain injuries. For example, sensors worn by athletes have been 

used (Duma et al., 2005; King et al., 2015, 2016) to capture head kinematics during both 

concussive and sub-concussive hits, and the acquired data have been used to propose concussion 

injury risk functions (Rowson et al., 2012a). Unlike the volunteer data, which were directly 

measured with sensors tightly-coupled to the head in a laboratory setting, the limitation associated 

with the data acquisition led to questionable fidelity (O’Connor et al., 2017). For example, the 

accuracy of the head kinematics depends on a good helmet fit if helmeted devices were used 

(Joodaki et al., 2019). The kinematics of the hits sustained by professional football players have 

also been reconstructed experimentally (Pellman et al., 2003) and evaluated using video analysis 

(Sanchez et al., 2018). Questions exist in the fidelity of the indirectly measured kinematics through 

laboratory reconstruction, partially due to concerns within the biofidelity of the Hybrid III 

anthropometric test devices. The main limitation of football data is that it provides information on 

injuries representative only of the mild forms of brain injuries.  
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Data from motorsports accidents (Mellor, 2000; Somers et al., 2011; Weerappuli et al., 

2002), motorcycle accident (COST, 2001), and pedestrian accidents (Deck and Willinger, 2008; 

Longhitano et al., 2005; Munsch et al., 2009; Peng et al., 2013) have also been reconstructed, 

usually through simulation, and used to develop injury criteria (Deck and Willinger, 2008; Laituri 

et al., 2016; Sahoo et al., 2016). The main limitation of these data is the questionable fidelity of 

the head kinematics, as the crash scenarios were complex, and the data were extrapolated from 

limited boundary information (e.g., the three-dimensional crash pulse of the vehicle from 

electronic data recorders). 

7.1.3 Non-Human Primate Data 

Five series of experiments performed by different groups from the 1960s to the 1980s using 

a large number of NHP specimens are summarized in Table 7-1. A more detailed discussion of 

these experiments is provided as follows with the intention of understanding the inherent 

limitations and ensuring their appropriate utilization in TBI studies.  

Table 7-1. Summary of experiments on NHP to study TBI 

Group NIH Penn JARI UMTRI NBDL 

Species S, R, C S, R, B J, R, L, B R, L R 

Ref. 

(Letcher et al., 1973; 
Ommaya et al., 1973, 1967; 

Ommaya and Gennarelli, 

1974) 

(Gennarelli et al., 

1982; Thibault and 
Gennarelli, 1990) 

(Kanda et al., 1981; 
Kikuchi, 1982; Ono et al., 

1980; Sakai et al., 1982; 

Sekino et al., 1981) 

(Nusholtz et al., 

1986; Stalnaker et 
al., 1973) 

(Olszko et al., 

2018) 

Types 
Sled, impactor, 

inertial loading 

Non-impact 

rotation 
Padded impactor 

Padded and 

rigid impactor 
Sled 

Typical 

injuries 
Concussion 

DAI 

SDH 

SDH, 

contusion, SAH, 

brainstem 

Brainstem, 

fracture, 

hematoma, 

concussion 

Brainstem 

Head 

motion 

source 

High-rate film Sensor 
Sensors mounted to 

the skull 

Sensors 

mounted to the 

skull 

High-rate 

film/sensor 

S: squirrel monkey (Saimiri sciureus), R: rhesus macaque (Macaca mulatta), C: Chimpanzee (Pan satryrus), Baboon 

(Papio nubis), J: Japanese macaque (Macaca fuscata), L: Long-tailed macaque/crab-eating macaque/cynomolgus 

(Macaca fascicularis).  

The first large series of experiments were performed by the US National Institutes of 

Health (NIH) on three non-human primate species (squirrel monkey, rhesus monkey, and 
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chimpanzee) to define tolerance thresholds for the onset of cerebral concussion. The injury was 

either produced by direct impact to the occipital zone of the head or caused by impact to the sled 

carrying the seated animal. The head kinematics were calculated from the analysis of high-speed 

movies and only peak angular kinematics were reported. Recognizing the complexity of injuries 

produced in the impactor and sled tests, squirrel monkeys were tested with controlled inertial 

loading, the isolated effects of translation and rotation on injuries were first evaluated by 

eliminating the effects of hard contact. While focal SDH and SAH were observed in the translated 

group, only the animals in the rotated group exhibited neurological evidence of cerebral 

concussion defined as the sudden onset of unconsciousness (Ommaya and Gennarelli, 1974). This 

finding motivated the following-up research on rotation-induced TBI. 

Under the auspice of the US NIH, the second large series of experiments were conducted 

at the University of Pennsylvania (Penn). Three different test devices were successively utilized 

to deliver controlled non-impact biphasic rotational accelerations-decelerations to the head of more 

than one hundred specimens of different NHP species. Tests involved sagittal, lateral, oblique and 

axial acceleration. The experiments predominantly produced cerebral concussion, SDH, and DAI 

injury. Although the head motion was controlled, questions exist as to the accuracy of the recorded 

time-history kinematics. Subsequent inspection revealed that the original time scale of the angular 

acceleration curves was incorrectly documented, which resulted in the extremely high angular 

velocities seen in the literature (Gennarelli et al., 1987; Margulies and Thibault, 1992). The 

acceleration traces could be corrected to yield reasonable angular velocity and displacement 

(Mendis, 1992). The subjects were sacrificed hours to days after the test was completed, which 

hampers the understanding of the acute pathophysiological response after TBI. 
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The third large series of experiments were conducted at the Japan Automobile Research 

Institute (JARI) under the auspice of the Japanese government. Three different apparatus and a 

variety of loading conditions were utilized to deliver a total of 193 head impacts to the frontal, 

lateral or occipital part of the head of 89 specimens (mostly macaques). The experiments produced 

a wide range of brain injuries ranging from concussion-like symptoms, contusion, SAH, SDH and 

brainstem injuries. A subset of the JARI data comprised of mild head padded impacts has been re-

analyzed to investigate concussive injury mechanisms utilizing simulations of the impacts with a 

head-neck macaque FE model (Antona-Makoshi et al., 2013). Most of the subjects were repeatedly 

impacted several times before autopsy which resulted in the ambiguities of the injury diagnosis.  

The fourth large series of experiments was conducted by the University of Michigan 

Transportation Research Institute (UMTRI) using a pneumatic impacting device to deliver padded 

and rigid impacts on the heads of two different species of macaque. The tests performed by 

Nusholtz et al. (1986) produced predominately brainstem and spinal cord injuries, while the tests 

conducted by Stalnaker et al. (1973) led to a large variation of injury types including concussion, 

skull fracture, contusion, and hematoma. Both the JARI and UMTRI experiments measured 3-D 

head kinematics by accelerometers mounted to the skull. This invasive method would potentially 

provide more accurate head motion, but it precluded precise injury diagnosis. A subset of this data 

series (Stalnaker et al., 1973) have been scaled to humans and applied to develop the BrIC injury 

risk curves for AIS4+ injuries (Takhounts et al., 2013).  

The fifth large series of experiments were conducted by the NBDL between 1973 and 1989 

and has been recently processed and reported (Olszko et al., 2018). A total of 240 sled test were 

performed with 94 macaque specimens. The specimens were seated with the whole body below 

the neck restrained to a buck mounted on the sled and subjected to high accelerations in the frontal 
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or the rear directions. The existing analysis on these NBDL experiments was conducted using sled 

accelerations, while head kinematics data (measured during the experiments) have yet to be 

analyzed and made accessible to the scientific community. Predominantly, brainstem injuries due 

to cranio-vertebral junction dislocations were reported due to the torso of each NHP being fully 

restrained during the sled impact, which makes this data representative of only the upper-end 

tolerance limits for NHP brain injury.  

7.1.4 Other Animal Data  

Other animal models for studying TBI found in the literature include rodents, ferrets, pigs, 

and sheep, as surveyed and reviewed in Johnson et al. (2015) and Xiong et al. (2013). However, 

the efforts have focused on modeling cerebral contusion. Few clinically relevant models of diffuse 

injury have been developed. As a continuation of the TBI research on NHP, a porcine model of 

rotational acceleration brain injury has been developed by Penn (Browne et al., 2011; Cullen et al., 

2016; Meaney et al., 1995) and other groups (Fievisohn, 2015) using young or adult miniature 

swine. Recently, an animal model called CHIMERA (Closed-Head Impact Model of Engineered 

Rotational Acceleration) was developed to primarily produce DAI using mice, rats or ferrets 

(Namjoshi et al., 2017; Sauerbeck et al., 2018). Although these animal models of TBI can provide 

insight and guidance to studies of human TBI, ultimately, the findings from animal model studies 

must be translated to make preventing human TBI possible. This translational challenge requires 

significant efforts and collaboration in the future. 

7.2 Assembled Database 

7.2.1 Data Summary 

In this work, a comprehensive injury dataset (including sub-injurious cases) was collected 

to evaluate injury metrics and develop injury risk functions. The injury dataset consists of sub-
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injurious volunteer tests, laboratory reconstruction data of professional football, and NHP tests 

(Figure 7-1). For each head impact scenario in the primary database (Table 7-2), six-degree-of-

freedom (6DOF) time-history head kinematic data is either experimentally reconstructed from 

real-world impacts (football), or directly measured from sensors attached to the head (human 

volunteer tests and animal tests). The gross clinic outcome from the impact was well documented 

based on diagnosis or pathology. The secondary database (Table 7-2), in which only peak 

magnitudes of the kinematics were available, was less effective in estimating brain injury tolerance 

but might be useful for evaluating developed injury tolerance. 

Table 7-2. Summary of injury data collected for this dissertation 

Data Source 

(Reference) 

Sample Size 

(n=300) 
Surrogate 

Impact Category 

(Direction) 

Severity (Sample 

Size) 

P
ri

m
ar

y
  

NBDL volunteer  

(Ewing et al.1972) 
50 

Human 

(male) 

Sled  

(oblique, lateral & 

frontal) 

Sub-injurious (50) 

Pellman football reconstruction  

(Pellman et al. 2004, Sanchez et al. 

2018) 

53 
HYBRID III, 

50TH 

Real-world impact 

(complex) 

Sub-injurious (33), 

mild (20)  

McCarthy football reconstruction 

(Internal*) 
36 

HYBRID III, 

50TH 

Real-world impact 

(complex) 

Sub-injurious (17), 

mild (19)  

Penn non-impact rotational tests  

(Thibault & Gennarelli. 1990) 
56 Baboon 

Rotation 

(axial & coronal) 
Severe (56) 

UMTRI blunt Impact  

(Stalnaker et al. 1977) 
17 Macaque 

Impactor tests 

(lateral and occipital) 

Sub-injurious (4), 

mild (8), 

Severe (5) 

JARI blunt Impact  

(Kikuchi et al. 1982) 
5 Macaque 

Impactor tests  

(lateral) 
Sub-injurious (5) 

S
ec

o
n

d
ar

y
 NIH whiplash  

(Ommaya, 1971) 
38 Macaque 

Sled 

(rear) 

Sub-injurious (22), 

mild (16) 

NIH blunt Impact 

(Ommaya, 1971) 
45 Macaque 

Impactor tests 

(occipital) 

Sub-injurious (28), 

mild (17) 

*Funk et al., 2019. Personal Communication. 
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Figure 7-1. Examples of biomechanical injury data included in this dissertation. 

 

7.2.2 Injury Diagnosis and Classification 

To determine and to quantify individual injuries, the degrees of injury severity in the 

dataset are classified as ‘no injury,’ ‘mild TBI,’ and ‘severe TBI.’ A concussion is considered as a 

mild TBI (mTBI), while severe TBI (sTBI) includes DAI and ICH. The diagnosis of concussion 

for individual human data is from the data sources (Pellman et al., 2003; Ewing et al., 1972). The 

injury severity of the animal data is classified by considering both the documented symptoms and 

the pathology results, as shown in Table 6-3, in which corresponding injury severities in terms of 

the Abbreviated Injury Scale (AIS) coding system is also summarized. The AIS, widely accepted 

as a gold standard for traumatic injury classification and severity scaling, classifies individual 

injuries on a 6-point scale (1=minor and 6=maximal) (Gennarelli and Wodzin, 2006), but the injury 

report for the legacy data in the current dataset was not sufficient so that the injuries can be 

measured using a 6-levels classification system. 

Typical focal injuries (e.g., contusion, SDH, and EDH) and brainstem/spinal cord injuries 

are not included, and cases with those injuries were discarded because the current FE models were 

not suitable for predicting those types of injuries. The procedure for injury classification adopted 

in this dissertation is illustrated in Figure 7-2. 
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Table 7-3. Injury classification system for animal data used in this study. 

Severity Level* Injuries Symptoms** Pathology AIS98 AIS2005 

No Injury - - - 0 0 

Mild TBI Concussion 
Coma, 

other symptoms 
- 2-3 1-3 

Severe TBI DAI, ICH Coma Axonal damage, hematoma 4-5 4-5 

*Note: The is different from the AIS system. The AIS classifies individual injuries as follows: AIS 1 – Minor, AIS 2 

– Moderate, AIS 3 – Serious, AIS 4 – Severe, AIS 5 – Critical, AIS 6 – Maximal (currently untreatable).  

**Coma is the necessary symptom for severe TBI, while not necessary for mild TBI. 

*** Critical revisions were made for AIS in 1998 (AIS98) and 2005 (AIS2005). 

 

 

Figure 7-2. Schematic diagram of injury classification. 

7.2.3 Head Kinematics 

Head kinematics of human cases were previously processed in a standardized manner 

(Sanchez et al., 2018, 2017), and newly collected data were prepared by following the same 

procedure. Head kinematic data of animal tests was digitalized from referred publications or 

internal test reports. The kinematics traces were processed to account for certain notable errors 

Collected 
Injury Data 

Classification (AIS2005) 
No Injury (AIS 0) 
Mild TBI (AIS 1-3) 
Severe TBI (AIS 4-5) 

Symptoms Concussion 

No Injury 

No 

Yes Human 

Symptoms Pathology DAI 

ICH 

Yes 

No 
No 

Yes 

No Injury 

NHP 

Concussion 

Pathology 

No 

Discarded types of injuries: 
contusion, SDH, EDH, 
brainstem and spinal cord 
injury. 
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incurred during recording and revealed in the literature (Mendis, 1992). After correction, all the 

included NHP kinematics traces yielded reasonable head motion, which corroborates the 

documented information (e.g., films and photos) and physical constraints of the test device. 

The resultant head peak rotational kinematics sustained by the subjects in the compiled 

database covers a broad range of acceleration and velocity magnitudes for both the human (64.5 – 

12,475.0 rad/s2, 3.3 – 63.8 rad/s) and the NHP (1,566.0 – 476,765.1 rad/s2, 31.0 – 594.0 rad/s), as 

illustrated in Figure 7-3. Unlike the controlled animal tests, in which the tests were designed and 

performed under certain dominant direction. The human data, in particular, the football 

reconstruction data has more complex head kinematics. The distribution of direction-dependent 

rotational kinematics for the human data is shown in Figure 7-4. The football reconstruction data 

from two separate sources had a similar distribution of kinematics and clearly high-level rotational 

motion in the coronal direction. 

 
Figure 7-3. Resultant peak angular velocities and peak angular accelerations in the compiled human 

(left) and NHP (right) database.  
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Figure 7-4. Directional distribution of angular velocities (a) and peak angular accelerations (b) in the 

compiled human database.  

7.2.4 Data Integration 

In this dissertation, the underlying assumption is that tissue-level responses can be 

aggregated together independent of loading conditions and (primate) species. Using the advanced 

FE models developed in Chapters 3 – 5 and by applying the head kinematics directly to the rigid 

dura through the center of gravity of the head, tissue-level metrics were predicted for each test. As 

an example, the distributions of MPS (95th) in the primary database categorized by their injury 

severities and sources are shown in Figure 7-5. In average, the three sets of mTBI cases from 

different sources had similar MPS values (p= 0.463), when comparing different groups using one-

way analysis of variance (ANOVA). This similarity partially confirms the validity of the 

underlying assumption.  
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Figure 7-5. Distributions of maximum principal strain in the primary database.  

 

7.3 Summary 

In this chapter, sixty years of brain injury investigations using in vivo model were taken 

together. The main observation is the huge disparities in relation to test protocols, loading 

conditions, and the resulting types of injuries. Thus, when selecting the existing experimental 

results to study specific types of brain injuries, it has to be oriented towards the objectives. A 

dataset of 300 cases, with a diverse spectrum of clinical outcomes spanning from no injury to 

severe diffuse injuries, was collected and prepared for simulation. Despite the seeming huge 

disparities in head kinematics, injury data from different sources from the tissue-level perspective 

seem to corroborate with each other. Integration of this dataset and utility of this dataset in 

understanding injury tolerance was explored in the next chapter.  
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CHAPTER 8 : EVALUATION OF INJURY METRICS AND DEVELOPMENT OF 

INJURY RISK FUNCTIONS 

In this chapter, tissue-level responses predicted by the newly developed computational 

models were analyzed for their correlation with injury outcomes using the database established in 

Chapter 7. The efficacy of existing tissue-level injury metrics for predicting brain injury were 

evaluated through statistical analysis. To delineate actual injury causation and establish a 

meaningful injury metric, the uncertainty of model/metric selection linked with small sample sizes 

as well as the frequently misunderstood statistical ideas were discussed before arriving a tentative 

conclusion based on the state of knowledge of injury mechanism. New brain injury tolerance levels 

in the form of injury risk functions were established using a subset of the compiled database and 

validated for efficiency through the independent dataset.  

8.1 Introduction 

Numerous brain injury tolerance curves and injury risk functions (IRFs) have been 

proposed over the years (Gurdjian et al., 1966; Ono et al., 1980; Rowson et al., 2012a; Rowson 

and Duma, 2013b; Takhounts et al., 2013). However, the efficacy of these brain IRFs depends on 

the capability of the associated injury metrics to predict brain injury. Historically, these injury 

metrics have been derived using a mathematical combination of either the external head kinematics 

(kinematics-based metrics) or measurements of internal responses at the tissue-level, such as stress 

or strain (tissue-level metrics) from FE models. The earliest kinematics-based metrics were based 

on the linear acceleration of the head (Elliot J Pellman et al., 2003; Versace, 1971), but recent 

injury criteria have shifted towards using rotational head kinematics (Gabler et al., 2018a, 2018b; 

Rowson et al., 2012a; Takhounts et al., 2013) or a combination of linear and rotational kinematics 
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(Rowson and Duma, 2013b). This is due to the recognition that rotational head kinematics are the 

primary cause for brain deformation given the incompressibility of brain tissue (Holbourn, 1943). 

However, because of the limited quantity of injury data, many of these kinematics-based metrics 

(Gabler et al., 2018b, 2018a; Takhounts et al., 2013) were developed with the underlying 

assumption that the corresponding tissue-level responses (strain in particular) are accurate 

predictors of brain injury (Gabler et al., 2016).  

Many tissue-level metrics have been derived from finite element (FE) simulations of 

reconstructed real-world events. Most notable candidates are the maximum principal strain 

(Takhounts et al., 2013), tract-oriented strain (Giordano and Kleiven, 2014a), Von Mises Stress 

(Kleiven, 2007), strain rate (Sullivan et al., 2015), and pressure (Zhang et al., 2004). However, the 

accuracy of these tissue-level metrics has yet to be determined with reliable experimental TBI data.  

Recently, Sanchez et al. (2018) evaluated fourteen existing head and brain IRFs with 

respect to laboratory-controlled human volunteer response data (Sanchez et al. 2018) and found 

that several injury risk curves substantially overpredicted the likelihood of mTBI. Given the 

various brain injury metrics and IRFs that have been proposed, it is not always clear which metric 

(s) should be used to characterize human brain injury tolerance, and there is no consensus on 

human brain injury tolerance. The objective of this study was to estimate human tolerances of 

mTBI and sTBI based on comprehensive statistical analysis. The capability of existing tissue-level 

and kinematics-based brain injury metrics was first assessed for predicting TBI. Based on their 

correlation with injury, a set of favorable tissue-level metrics were used to develop injury risk 

functions for mTBI and sTBI. 
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8.2 Method 

8.2.1 Injury Data 

The injury database collected and used in this study was introduced in Chapter 7. The 

primary dataset (including NBDL volunteer data, Pellman and McCarthy football reconstruction 

data, UMTRI, UPenn, and JARI NHP data, n=217) was used to evaluate injury metrics. Most of 

the data in the primary dataset were used as a training set (n=181) to build IRFs. The McCarthy 

football reconstruction data in the primary dataset (n=36) and the secondary dataset (n=83) were 

used as an independent test set left aside for evaluation purposes, as those data have never been 

used in developing injury risk functions. 

8.2.2 Injury Metrics Evaluation 

A range of tissue-level strain injury metrics (Table 8-1) widely used in the literature was 

assessed using the injury data. These metrics included the most widely used tissue-level injury 

metrics proposed in the literature and can be categorized into dimensionless metrics and 

dimensional metrics. For all the tissue-level injury metrics using peak values (all metrics except 

for CSDM25 and CSDM15), the 95th percentile values were used to avoid any numerical 

instabilities (Panzer et al., 2012). These tissue-level metrics were derived by simulating the head 

impacts in each of the experiments included in the database using the computational models 

developed in Chapters 3 – 5.  

In addition to the tissue-level metrics, a battery of kinematics-based injury metrics 

commonly used for predicting human brain injury in the literature was assessed, as summarized in 

Table 8-2. The assessed metrics included head kinematic metrics: peak resultant linear acceleration 

(𝑎𝑚𝑎𝑥 ), peak resultant angular velocity (𝜔𝑚𝑎𝑥), and peak resultant angular acceleration (𝛼𝑚𝑎𝑥); 

the most frequently used metrics: Head Injury Criterion (HIC), Combined Probability of 
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Concussion (CP), Brain Injury Criteria (BrIC), and the most recently proposed metrics: 

Convolution of Impulse Response for Brain Injury Criterion (CIBIC), Universal Brain Injury 

Criteria (UBrIC), and Diffuse Axonal Multi-Axial General Evaluation (DAMAGE). The 

constraints and critical values for these injury metrics were adapted from the corresponding 

studies. A brief description of each metric is provided in Appendix D. 

Table 8-1. Tissue-level injury metrics assessed in this study. 

Metrics Description References Dimensional 

MPS95 maximum principal strain Gabler et al., (2016) 

No 
CSDM25 cumulative strain damage measure (25%) Takhounts et al., (2013)  

CSDM15 cumulative strain damage measure (15%) Sahoo et al., (2016)  

MAS95 axonal strain Giordano and Klevien, 2014b 

PRS95 absolute pressure Zhang et al., (2004)  

Yes 

VMS95  Von Mises stress Kleiven, (2007)  

MPSSR95 
the strain rate of the maximum principal 

strain 
Kleiven, (2007) 

MPS×SR95 the product of MPSSR and MPS Kleiven, (2007) 

MASSR95 
the strain rate of the maximum axonal 

strain 
Sullivan et al., (2015)  

MAS×SR95 the product of MASSR and MAS Sullivan et al., (2015) 

 

Table 8-2. Kinematics-based injury metrics assessed in this study. 

Metrics Underlying Kinematics References IRCs* 

𝐚𝐦𝐚𝐱 LA Pellman et al., (2003)  

𝛚𝐦𝐚𝐱 AV Rowson et al., (2012)  

𝛂𝐦𝐚𝐱 AA Rowson et al., (2012) Yes 

HIC LAd NHTSA, (1995)  

CP LA, AA Rowson and Duma, (2013)  

BrIC AVc Takhounts et al., (2013)  

CIBIC AA c,d Takahashi and Yanaoka,(2017)  

UBrIC(M),(C)** AV c ,AA c Gabler et al., (2018a) No 

DAMAGE AV c,d ,AA c,d Gabler et al., (2019)  

LA: linear acceleration; AV: Angular velocity; AA: Angular acceleration; c: Indicates that the metric is 

directionally dependent. d: Indicates that the metric requires time history information. 

*Indicates whether IRCs were available, for details on these IRCs, please refer to the appendix E.  

** M: MPS-based UBrIC, C: CSDM-based UBrIC. 

Since the injury metrics investigated here includes both dimensional and dimensionless 

metrics, the evaluation processes were two-fold: 
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First, the evaluation was performed separately for human data and animal data to reduce 

the influence of size and mass. The human data were used to evaluate the capability of the metrics 

to distinguish between no injury and mTBI, while the animal data were used to evaluate the 

capability of the metrics to distinguish between mTBI and sTBI. Kinematics-based metrics were 

not evaluated with animal data, except for ωmax and αmax, as most of them are designed only for 

predicting human brain injury with specific critical values. Most of the animal data in the database 

also lack translational motion and thus were unable to access the metrics associated with linear 

acceleration (e.g., amax and CP).  

Second, both dimensional and dimensionless tissue-level metrics were accessed using all 

the data in the primary database, as integrating data for different tissue metrics requires a 

fundamental understanding and consideration of the biomechanical principles, as detailed in the 

following section. 

8.2.3 Data Integration Strategy 

The central idea of integrating injury data across species based on an underlying 

assumption that tissue damage (and microscale damage) is the causation of TBI, and the threshold 

of tissue damage should be not affected by the brain size but can be affected by loading conditions 

(e.g., strain rate effect). In other words, tissue-level metrics derived from brain FE models of 

different species should be combined without scaling. However, basic kinematics-based metrics 

should be scaled to obtain a similar tissue-level response, and ωmax and αmax were scaled based 

on frequency scaling (Chapter 6) using individual brain mass. Kinematics-based metrics, including 

BrIC, CIBIC, UBrIC, and DAMAGE, were designed to predict strain responses. Theoretically, 

they were dimensionless. But a large disparity in the metric values was observed between animal 

and human as a result of the differences between the underlying human FE models and the models 
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used here (both human and animal brain models). Those metrics were not directly scaled, but the 

underlying kinematics (ω and α) were scaled using frequency scaling, and the scaled kinematics 

were used to calculate the injury metrics.  

Assuming the tissue-level metrics were also not the causation of TBI, some tissue-level 

metrics can be scaled based on the principles of dimensional analysis. Dimensionless tissue-level 

metrics, including MPS, MAS, CSDM15/25, can still be directly compared with each without the 

influence of size or loading conditions. So those data for different species could be directly 

combined. The pressure response mechanism and the dimensional relationship was derived 

analogously to the well-established hydrostatic pressure (Zhao et al., 2015). Brain pressure 

responses are uniquely determined by linear acceleration (a, magnitude and directionality), brain 

mass (𝑚) and the effective brain-skull contact area (A) effected by brain shape (𝜆𝑃𝑅𝑆 =
λ𝑚

𝜆𝐴
𝜆𝑎). 

The ratio of the pressure of different sizes is close to 1 (thus pressure does not need scaling between 

species) , this is similar to the findings in the literature (Panzer et al., 2014). Strain rate associated 

metrics, including MPSSR, MPS×SR, MASSR, MAS×SR are driven by the loading conditions, 

consequently, those metrics from animal tests could be scaled based on dimensional analysis. 

Frequency scaling using individual brain mass information was used to compare and combine with 

those resulting from the human cases. VMS has the same units as that of pressure and does not 

need scaling if the material follows the linear stress-strain behavior. However, VMS is strain rate 

dependent due to the viscoelastic behavior of brain tissue, no existing scaling technique was able 

to account for the effect of strain rate according to my knowledge. The VMS results of the animal 

results were scaled to match with the human results through phenomenological relationship to 

alleviate the effect of loading rate (Figure 8-1). Taken together, both the unscaled and scaled values 

of the tissue-level metrics were considered in the metric selection process. 
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Figure 8-1. Comparison between the VMS results of the human and animal simulation. 

8.2.4 Metrics Selection 

To evaluate injury metrics, logistic regression (Equation [8-1]) was employed to correlate 

binary injury data (injury/no injury or mTBI/sTBI) with continuous metrics (𝑥). Stukel tests 

(Stukel, 1988) were performed to determine whether or not the relationship between the clinical 

outcome and the injury metrics were statistically significant. The Stukel test evaluated whether a 

generalized logistic model is a better fit to the data than a standard logistic model. Two additional 

parameters (𝑧𝑎 and 𝑧𝑏) were added in the generalized logistic model to allow the tails of the logistic 

regression model to be either heavier or lighter than the standard logistic regression model. This 

significance test determines whether the two parameters in the modified generalized logistic model 

are equal to zero. If 𝑧𝑎 = 0 and 𝑧𝑏 = 0 (P > 0.1), the generalized logistic model of interest is not 

a significantly better fit to the data, while the standard logistic model based on the associated metric 

is regarded as a good fit to the data. 

𝑃𝑖𝑛𝑗 =
𝑒𝑎+𝑏𝑥

1 + 𝑒𝑎+𝑏𝑥
 [8-1] 
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For model/metric selection, Akaike information criterion (AIC) (Akaike, 1974) has been 

widely used (Petitjean et al., 2012; Yoganandan et al., 2016). It has been shown that choosing a 

model that has the lowest AIC value is asymptotically equivalent to choosing the model with the 

lowest expected information loss (Wagenmakers and Farrell, 2004). The AIC is defined as 

𝐴𝐼𝐶 = −2 log(𝐿) + 2𝑉 [8-2] 

Where L is the maximum likelihood for the candidate model, V is the number of 

independent variables (Note that V= 1 in this study). However, it was difficult to intuit how much 

statistical importance should be given to a difference in the AIC values. Selecting a single model 

may lead to a false sense of confidence, especially when the sample size is small. The weight of 

evidence in favor of the good models was evaluated using Akaike weights (Equation [8-3]). The 

rule of thumb (Posada and Buckley, 2004) was that a 95% confidence set of models could be 

established for the best model by summing the Akaike weights from largest to smallest until the 

sum is just 0.95 (Akaike weights for all models combined should add up to 1). 

𝑤𝑖(𝐴𝐼𝐶) =
exp (−0.5∆𝑖(𝐴𝐼𝐶))

∑ exp (−0.5∆𝑖(𝐴𝐼𝐶))
𝐾
𝑖=1

 [8-3] 

∆𝑖(𝐴𝐼𝐶) = 𝐴𝐼𝐶𝑖 −min 𝐴𝐼𝐶 [8-4] 

8.2.5 Development of Tissue-Level Injury Risk Functions 

Tissue-level IRFs for mild TBI and severe TBI were developed using a combination of 

human and NHP data from the primary database. The development of IRFs was guided by the 

International Organization for Standardization (ISO) procedure (ISO/TS 18506:2014) to construct 

IRFs for the evaluation of road user protection in crash tests (Petitjean and Trosseille, 2011). IRFs 

were also developed using survival analysis if applicable, assuming a Weibull distribution per 

Equation [8-5]. A Weibull distribution was selected to ensure zero risks of injury given zero 
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stimuli. All the statistical analysis mentioned above was conducted using the R-studio software, 

version 1.1.456 (R Studio, Inc.) 

𝑃𝑖𝑛𝑗 = 1 − 𝑒
(−𝑒

(
1
𝑏
∗ln(𝑥)−

𝑎
𝑏
)
)
  [8-5] 

Where a and b are coefficients corresponding to the scale (1/b) and shape (𝑒𝑎) parameters 

in the Weibull distribution. 

8.2.6 First-Step Evaluation using Sub-Injurious Data. 

In addition to the above analysis, the accuracy of each generated risk function was 

evaluated by comparing the expected number of injuries predicted by injury risk functions relative 

to the true diagnosis of the NBDL volunteer data (Sanchez et al., 2017). For each of these 

volunteers, the most severe sled run (based on injury risk) was identified for each of 16 volunteers 

(subject-specific identifiers were only available for 16 subjects out of 22). For each risk function, 

the highest injury probability measurements for each of the 16 volunteers were collected and 

summed to obtain the expected number of injuries (Sanchez et al., 2017). 

8.2.7 Evaluation of Injury Risk Functions using Independent Experimental Data 

Both the McCarthy football reconstruction data and the NIH NHP data have never been 

used to develop injury risk functions, which makes them an ideal test set to evaluate the proposed 

IRCs. The predicted injury probability based on the newly developed mTBI IRFs and some of the 

existing IRFs (NHTSA, 1995; Rowson et al., 2012a; Rowson and Duma, 2013b; Takhounts et al., 

2013) were compared with the real injury results. All risk functions based on the HIC, ωmax, αmax, 

and CP were from the literature (Table A7 in Appendix E) unless indicated otherwise. 

 The receiver operating characteristic curves (ROC) curve was used to assess how well the 

metric discriminates, or separates individuals with or without injury, while the predictive 
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capability of the IRFs was evaluated by comparing the expected values with the true number of 

injuries. ROC curves are frequently summarized in a single value, the area under the ROC curve 

(AUC). A major advantage of ROC curves is that they depict the performance of the classifiers 

over the complete range of threshold values. As the ROC curve is threshold-independent, so is the 

resulting AUC. In other words, shifting or scaling the risk function along the predictor axis would 

not change the AUC values. Predicted risk probabilities are important for IRFs; therefore, the 

expected values were used in conjunction with AUC to evaluate the performance of the IRFs. 

While it was straightforward to use the McCarthy football cases to evaluate IRFs, 

calculating the risk of cases in the secondary database (NIH data, Ommaya, 1971) requires further 

approximation because of the lack of the time-history head kinematics data required for simulation. 

In those experiments, mTBI was produced either by direct impact to the occipital zone of the head 

or by experimental whiplash sled tests; thus, the primary rotational motion was assumed to be in 

the sagittal plane. Since the global strain-based responses were reasonably insensitive to pulse 

shape (Gabler et al., 2018c), the MPS values of those tests were estimated using the uniaxial 

sagittal response surface generated from Chapter 6 (Figure 6-5). For metrics that do not require 

the full time-history head kinematics (e.g., BrIC), metric values were scaled to humans using the 

frequency scaling. 

8.3 Results 

8.3.1 Metrics Evaluation Using Separate Dataset 

As shown in Table 8-3, significance test results clearly show that metrics associated with 

pressure and linear acceleration (PRS95, amax, HIC) result in a poor fit to the data using logistic 

regression. In general, strain metrics (MPS95, MAS95) were deemed a good predictor of both 

mTBI and sTBI based on the current dataset. The correlation between CSDM and injury depended 
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on the choice of critical strain threshold and injury severity. The current analysis was unable to 

delineate the effect of strain rate as metrics associated with strain rate (MPSSR95, MPS×SR95, 

MASSR95, MAS×SR95) correlated well with human injury data when the range of strain rate was 

small (0.5 – 65 1/s) but did not represent NHP data when the range of strain rate was large (29 – 

447 1/s). MPS95 and VMS95 were the only two metrics that fall within the 95% confidence set of 

selected models for both human and NHP data. No evidence in the current database showed that 

the global axonal strain (MAS95) correlates better with injury than the global principal strain 

(MPS95).  

Table 8-3. Significance tests for logistic regression models using different injury metrics. 

Metrics Category 

Human Data 
 (No Injurys:139, TBI:39) 

NHP Data 
(mTBI:17, sTBI:61) 

Stukel (P*) 
AIC Weight** 

Stukel (P) 
AIC Weights 

𝒛𝒂 𝒛𝒃 𝒛𝒂&𝒛𝒃 𝒛𝒂 𝒛𝒃 𝒛𝒂&𝒛𝒃 
MPS95 

Tissue 

0.72 0.95 0.87 92.2 4.8% 0.42 0.86 0.72 20.4 16.7% 
CSDM25 0.41 0.03 0.07 102.2 0.0% 0.78 0.76 0.92 19.7 23.2% 
CSDM15 0.52 0.63 0.81 95.2 1.1% 0.04 0.12 0.03 24.5 2.1% 
MAS95 0.63 0.98 0.80 94.2 1.8% 0.58 0.73 0.81 22.9 4.7% 
PRS95 0.02 0.01 0.03 128.1 0.0% 0.20 0.31 0.26 76.8 0.0% 
VMS95 0.72 0.30 0.52 90.2 13.6% 0.47 0.92 0.77 18.1 52.4% 

MPSSR95 0.85 0.38 0.60 89.4 20.2% 0.16 0.31 0.22 39.3 0.0% 
MPS×SR95 0.53 0.19 0.42 91.6 6.6% 0.61 0.33 0.55 26.4 0.9% 
MASSR95 0.54 0.79 0.51 88.6 29.2% 0.03 0.25 0.05 56.2 0.0% 

MAS×SR95 0.99 0.37 0.42 90.5 11.5% 0.14 0.05 0.05 39.3 0.0% 

𝐚𝐦𝐚𝐱 

Kinematics 

0.92 0.16 0.37 109.0 0.0% -- -- -- -- -- 

𝛚𝐦𝐚𝐱 0.43 0.09 0.17 128.3 0.0% 0.00 0.90 0.00 46.8 0.0% 

𝛂𝐦𝐚𝐱 0.61 0.51 0.71 91.0 9.1% 0.00 0.46 0.00 76.0 0.0% 

HIC 0.07 0.01 0.01 108.2 0.0% -- -- -- -- -- 

CP 0.73 0.43 0.69 94.7 1.4% -- -- -- -- -- 

BrIC 0.63 0.09 0.22 117.6 0.0% -- -- -- -- -- 

CIBIC 0.56 0.44 0.62 100.0 0.1% -- -- -- -- -- 

UBrIC(M) 0.49 0.89 0.78 109.2 0.0% -- -- -- -- -- 

UBrIC(C) 0.24 0.39 0.34 107.0 0.0% -- -- -- -- -- 

DAMAGE 0.91 0.66 0.90 97.0 0.4% -- -- -- -- -- 

*A low power score (P<0.2) indicate a poor fit to the data. 

** Blue highlights indicate the 95% confidence set of models. 

Figure 8-2 illustrates the Δ(AIC) values of various injury metrics using different datasets. 

The fact that different data sets suggest the use of different metrics leads us to the issue of model 
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selection uncertainty inherent in the statistical analysis on a small dataset. So, it was more 

reasonable to select a set of favorable metrics instead of a single metric. 

 
Figure 8-2. Δ(AIC) values of various injury metrics using different datasets. 

8.3.2 Metrics Evaluation Using an Integrated Database 

Injury metrics were further evaluated using the integrated database. The results of the 

significance test are summarized in Table 8-4, indicating the following metrics resulting in a good 

fit of the data: MPS95, MAS95, VMS95 (scaled), MPS×SR95 (scaled). None of the kinematics-

based metrics fit the integrated database well. Note that the values of the dimensional metrics in 

the animal data were usually higher than those in human data because of the size effect, and most 

of the animal subjects coincidentally sustained more severe injuries. So multiple models/metrics 

had perfect or quasi-perfect separation.  
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Table 8-4. Significance tests for different models using the compiled dataset. 

Metrics 

Scaling 
Method 

mTBI sTBI 

Stukel (P*) 
AIC Weight 

Stukel (P) 
AIC Weights 

𝒛𝒂 𝒛𝒃 𝒛𝒂&𝒛𝒃 𝒛𝒂 𝒛𝒃 𝒛𝒂&𝒛𝒃 
MPS95 

Unscaled 

0.60 0.40 0.61 114.2 0.49% 0.37 0.23 0.32 45.5 0.00% 
CSDM25 0.11 0.01 0.01 123.3 0.01% 0.21 0.53 0.37 46.2 0.00% 
CSDM15 0.11 0.12 0.08 131.6 0.00% 0.10 0.00 0.00 81.7 0.00% 
MAS95 0.49 0.35 0.51 115.6 0.24% 0.47 0.83 0.75 43.8 0.00% 
PRS95 0.01 0.00 0.00 187.9 0.00% 0.00 0.00 0.00 96.3 0.00% 
VMS95 0.89 0.15 0.35 108.2* 9.76% 0.52 0.98 0.81 22.3* 96.00% 

MPSSR95 0.06 0.00 0.00 163.5 0.00% 0.05 0.22 0.07 40.4 0.01% 
MPS×SR95 0.00 0.00 0.00 135.3* 0.00% 0.14 0.07 0.07 28.7 3.91% 
MASSR95 0.10 0.00 0.00 169.6 0.00% 0.00 0.00 0.00 61.9 0.00% 

MAS×SR95 0.00 0.00 0.00 144.0* 0.00% 0.00 0.00 0.00 46.2 0.00% 

VMS95 Scaled 0.71 0.53 0.77 108.1* 10.26% 0.63 0.59 0.77 39.4* 0.02% 

MPSSR95 
Frequency 

Scaled 

0.91 0.30 0.58 105.9 30.84% 0.10 0.44 0.19 45.8 0.00% 
MPS×SR95 0.87 0.40 0.69 107.7* 12.54% 0.75 0.59 0.82 37.3 0.05% 
MASSR95 0.77 0.45 0.72 111.6 1.78% 0.01 0.05 0.01 66.5 0.00% 

MAS×SR95 0.74 0.54 0.78 105.7* 34.08% 0.17 0.04 0.04 49.8 0.00% 

𝛚𝐦𝐚𝐱 

Frequency 
Scaled 

0.45 0.11 0.21 158.8 0.00% 0.08 0.26 0.11 54.9 0.00% 
𝛂𝐦𝐚𝐱 0.01 0.00 0.00 135.7 0.00% 0.00 0.04 0.00 64.9 0.00% 
BrIC 0.43 0.18 0.30 151.2 0.00% 0.07 0.40 0.14 73.4 0.00% 

CIBIC 0.87 0.62 0.87 137.4 0.00% 0.45 0.11 0.20 49.5 0.00% 
UBrIC(M) 1.00 0.93 1.00 144.0 0.00% 0.24 0.11 0.14 66.0 0.00% 
UBrIC(C) 0.64 0.46 0.68 138.5 0.00% 0.30 0.14 0.20 55.7 0.00% 
DAMAGE 0.64 0.97 0.89 131.4 0.00% 0.38 0.06 0.11 42.9 0.00% 

*Perfect or quasi-perfect separation.  

Since both the animal and human data have several mild injury cases, to see if a metric is 

actually a reflection of injury, the values of the metrics from the human and animal mTBI groups 

were compared and analyzed for differences using an independent t-test, as shown in Figure 8-3. 

The averages of animal metrics were significantly different from that of the human metrics, except 

for those of strain-based tissue-level metrics (MPS95, MAS95, CSDM15, and CSDM25) and 

VMS95. Significant discrepancy indicates the violation of the fundamental assumption that tissue-

level metrics were equivalent. Interpretation of the results based on the scaled tissue-level variable 

values was manifold and dependent on the scaling approaches. A rational basis for scaling tissue-

level metrics is still lacking from the biomechanical perspective. So, the AIC values from scaled 

tissue-level metrics were not used to select the models. 
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Figure 8-3. Distribution of metric values for mild brain injury cases in the human and animal dataset. 
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8.3.3 Injury Risk Curves 

Based on the above analysis, a set of tissue-level metrics, including MPS95, MAS95, and 

VMS95 (unscaled) were selected to develop IRFs assuming Weibull distribution in the survival 

analysis. As illustrated in Figure 8-4, two alternative distributions, log-logistic distribution, and 

log-normal distribution were considered and plotted with nonparametric maximum likelihood 

estimation (NPMLE). Regardless of the form of the injury risk function, the underlying data 

samples used to develop the injury risk function have a profound effect on the final fit.  

 
Figure 8-4. Comparison of risk curves based on different distribution assumption. 

Figure 8-5 shows exemplary mTBI IRF based on MPS95 using survival analysis and data 

integration method 3. The influential cases were identified using the dfbeta statistics, but these 

cases did not significantly change the IRF. These cases were kept in the construction of the IRF 

(Figure 8-5 (b)). The distribution assumption was checked graphically using a Q-Q plot ("Q" stands 

for quantile). The percentiles of the distribution are plotted against the corresponding percentiles 
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of the biomechanical sample. The points seem to fall about a straight line; thus the chosen 

distribution is appropriate (Figure 8-5 (c)). Another way is to graphically plot the cumulative risk 

calculated with the survival analysis with a given distribution against the cumulative risk 

calculated with an NPMLE. The cumulative risks lie close to one another, indicating that the 

chosen distribution is appropriate (Figure 8-5 (d)). These analyses were performed for all IRFs, 

and detailed results are provided in Appendix E.  

 
Figure 8-5. Mild brain injury risk curves based on MPS95. (a) Injury risk curves and 95% confidence 

interval; (b) Effects of overly influential observations; (c) Q-Q plot to check distribution assumption; (d) 

Model fit verified with non-parametric method (NPMLE). 
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8.3.4 Evaluation of Injury Risk Functions Using Sub-Injurious Data 

Using responses of the sub-injurious volunteer tests, the MPS95 and MAS95 predict a 

similar number of mTBI injuries (1.407 and 1.234 respectively), while VMS95 estimates a smaller 

number of mTBI injuries (0.571). All these predictions were reasonable and consistent with the 

diagnosis in the volunteer data.  

8.3.5 Evaluation of Injury Risk Functions Using Independent Data 

The newly developed IRFs were evaluated with the pre-reserved independent data, and 

their performances were compared with the performance of existing IRFs (HIC, ωmax, αmax, and 

CP) from the literature (NHTSA, 1995; Rowson et al., 2012a; Rowson and Duma, 2013b; 

Takhounts et al., 2013). MAS95 results are not shown as they are almost identical to those of the 

MPS95. ROC curves were drawn using the injury risk probabilities from each injury risk function 

(Figure 8-6). The AUC of each predictor was also computed for all ROC curves to compare the 

predictive capability of the different injury risk functions. As expected, all injury risk probabilities 

were statistically better than random guessing. Both the VMS and MPS injury risk functions 

showed better performance than existing risk functions considering both the AUC (Figure 8-6) and 

expected values (Figure 8-7). 
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Figure 8-6. ROC curves and their respective area under the curves (AUC) using various injury risk 

metrics for the McCarthy football data (a) and NIH NHP data (b). 

 
Figure 8-7. Expected number of mild brain injuries predicted using each of the injury risk functions for 

the McCarthy (a) and NIH dataset (b). 

8.4 Discussion 

A variety of in vivo injury data collected in the past sixty years was taken together to assess 

the correlation between various injury metrics and injury outcomes. Based on the analysis, tissue-

level metrics including VMS95, MPS95, and MAS95 were selected to develop the human risk 

functions of mTBI and sTBI. Better predictability was found by using the newly developed IRFs 

compared with existing IRFs when evaluated with independent injury data. The findings of this 

analysis partially confirm the popular hypothesis that deformation is the causation of brain injury.  
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8.4.1 Comments on Statistic Analysis 

Logistical regression was used to assess the correlation between various injury metrics and 

clinical outcomes. The results indicated that most of the assessed injury metrics strongly correlated 

with injuries. However, the current injury dataset utilized in this study was unable to determine 

which metric was the best predictor of injury. Although AIC analysis lends some favor to VMS 

over MPS, these two quantities are strongly related (Figure 8-1), in a nearly homogeneous range 

of loading conditions, switching from VMS to MPS is simply a nonlinear rescaling of the predictor 

axis. From this point of view, the choice between these potential predictors is equivalent to a choice 

of the functional form for the statistical model. Because statistical methods offer little help with 

the choice of model, they cannot be expected to adequately choose between strongly related 

predictors (McMurry and Poplin, 2015). It has been demonstrated that with small sample sizes the 

AIC cannot reliably select the best model (McMurry and Poplin, 2015). But the difficulties 

associated with these small sample troubles are not a shortcoming of the AIC. Other model fit 

metrics can be expected to have the same trouble. Hosmer et al. (1997) demonstrated that none of 

the overall goodness-of-fit tests were especially powerful for small to moderate sample sizes n < 

500. Even if the sample size was 500, the power of the Stukel score test, which was the highest 

among all tests considered, was considered as ‘moderate’. Thus, the choice of injury metric should 

have a strong biomechanical basis in addition to an overall goodness-of-fit.  

8.4.2 Injury Mechanism 

From a biomechanical perspective, an injury was assumed to be related to tissue 

damage/failure, probably at a micro scale. Because the brain is a viscoelastic biological tissue 

(Chatelin et al., 2010), it was reasonable to hypothesize that its injury/failure response was 

dependent on both the magnitude and rate of applied strain. Strain rate and the product of the strain 
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and strain rate were proposed as injury metrics (Sullivan et al., 2015). These metrics certainly 

overemphasized the effect of strain rate. Some in vitro experiments of brain tissue found strain rate 

effect was insignificant (Cater et al., 2006) for the death or swelling of the cell, and other studies 

found that the strain rate did not affect the cellular response until a certain strain level (10%) was 

reached (Elkin and Morrison, 2007; Morrison et al., 2003; Nakadate et al., 2017). While these 

metrics might correlate well with the injury in a relatively homogeneous loading range when strain 

rate effect is small, the metrics values between species suggested they are not the tissue-level 

causation of the injury, as these metrics varied by orders of magnitude for brains from different 

species that sustained an injury of similar severity. The merit of stress form is the inclusion of both 

strain and strain rate effect in a way compatible with the biomechanics of the tissue. Whether 

failure criteria should be expressed in terms of stresses or in terms of strains is probably the longest 

standing issue in mechanics. While in biomechanics, the preferred criterion in the literature is 

strain (Gabler et al., 2018a; Giordano et al., 2014; Sahoo et al., 2016), probably because strain was 

more accessible from direct measurement in experimental tests while stress was derived from 

strain and influenced by pre-stress. For stress-based criteria, a commonly used form is that of the 

Von Mises criterion, which was also used in predicting brain damage (Afshari et al., 2017; De et 

al., 2007; Ueno et al., 1995). But the Von Mises criterion is widely believed to be applicable only 

to ductile metal, and it is in serious error for predicting biological tissue damage (Korenczuk et al., 

2017). The performance of maximum shear stress and maximum principal deviatoric stress was 

expected to be similar to that of VMS in predicting brain injury because of the linear correlation 

between them and VMS in the current injury data (𝑅2 > 0.999). The current study was unable to 

delineate whether or not the marginally better correlation with injury implies that stress is the 

mechanism. More experimental evidence is required to answer this question. 
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One significant finding of this work was that the performance of axonal strain in predicting 

injury was nearly equivalent to the performance of the principal strain of the ground substances. 

Tract-oriented strain (Sullivan et al., 2015) or axonal strain (Giordano and Kleiven, 2014a; Sahoo 

et al., 2016) have been suggested to be a better predictor of injury. Despite the uncertainty 

introduced by statistical analysis using small dataset, other reasons would also lead to this 

inconsistency. As discussed in Chapter 2, the traditional method for incorporating the tractography 

information oversimplified the complex fiber network in the brain, and the strain measurement at 

the fiber direction was a tedious and error-prone process. The underlying fiber architecture is so 

complex and broadly distributed that the macroscale properties of brain tissue appear to be 

isotropic (Budday et al., 2017, 2015). In addition to the disparities in the biofidelity of the based 

FE models, the current analysis was also based on the injury data with better fidelity. The analysis 

in the aforementioned studies was using computational reconstruction of field incidence where 

limited information about head kinematics was known (Chapter 7).  

It should also be noted that the use of a stress or strain criterion is dependent upon the 

objectives of a given study. Considering that almost all the existing kinematics-based injury 

metrics were developed based on their correlation with the principal strain responses, the principal 

strain would still be the popular choice by balancing the simplicity and performance until new 

experimental data and evidence are present to prove otherwise. 

8.4.3 Comments on Kinematic-Based Metrics 

Kinematics-based metrics have been evaluated for predicting injury in the literature. While 

the formulation of the metrics can be diverse, the performance was mainly determined by the basic 

underlying kinematics (a, α, ω). Consistent with the current findings, linear acceleration (a) alone 

was generally not recommended as the best predictor of brain injury (Gabler et al., 2016; Ommaya 
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and Gennarelli, 1974; Takhounts et al., 2013). In the literature, maximum resultant angular 

acceleration (αmax) was found among the best kinematic-based predictors of injury using head 

impact data from automotive crashes (Laituri et al., 2016), football, boxing, and martial arts 

(Hernandez et al., 2015).This finding was consistent with our analysis of human data, but 

contradicts the analysis of animal data. Some metrics may perform better for specific types of data. 

A possible explanation is the resonance behavior of brain tissue. Using the mechanical models, 

Gabler et al. (2018) demonstrated that maximum brain deformation magnitude was governed by 

the frequency of the input pulse relative to the natural frequency of the brain. When the frequency 

of head kinematics was lower than the natural frequency, deformation was mainly driven by 

angular acceleration, but when the frequency of head kinematics was lower than the natural 

frequency, deformation was mainly driven by angular velocity. 

Figure 8-8 illustrates the distribution of the head kinematics relative to the FE-derived 

natural frequency. Most of the human cases were lower than the natural frequency of the brain, 

while the animal data was more broadly distributed. This finding may suggest the preference of 

using certain kinematics as injury predictor in certain applications. For example, the leading 

candidate, BrIC (depends solely on angular velocity), for the US New Car Assessment Program 

(USNCAP), might not be the appropriate metric as the nature of crash-relative events was a low-

frequency impact. It is also worth pointing out that the frequency of the football data was 

previously found to be higher than the FE-derived natural frequency based on the GHBMC model 

(𝑓𝑛: 22 – 28 Hz) (Gabler et al., 2018c), but the GHBMC model had an erroneous time constant and 

lower dynamic stiffness than the experimental measurements (Figure 3-7 in Chapter 3). The 

resonance behavior of the brain in the skull was rarely studied through experiment, and the 
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calculated natural frequency ranges from less than 20 Hz (Laksari et al., 2015) to more than 50 Hz 

(Zou et al., 2007) during low-severity impacts.  

 
Figure 8-8. Distribution of resultant head kinematics with respect to FE-derived natural frequencies 

(shaded corridors) of the brain for human (a) and NHP (b).  

8.4.4 Comparison of IRFs 

Although tissue-level IRFs are also available in the literature (Sahoo et al., 2016; 

Takhounts et al., 2013), they cannot be directly compared with the current study. This was because 

the strain and stress results in different FE models are not equivalent (Giudice et al., 2018) due to 

disparities inherent in the FE models from different groups. Most previous studies have proposed 

IRFs based on a single kinematics-based measure, such as linear acceleration (amax), angular 

velocity (ωmax, BrIC), and angular acceleration (αmax). As discussed above, these are unlikely to 

fully characterize the human tolerance under a broader range of loading conditions. Consequently, 

direct comparisons between the tissue-level IRFs developed in this study with those previously 

established in the literature was difficult and might not be appropriate. 

To transfer the tissue-level metrics to the kinematics-based frame, the human brain 

response surfaces of uniaxial rotation (Figure 6-5 in Chapter 6) were utilized to identify the 

thresholds of angular kinematics that produced the MPS95 values for the 50% risk of mTBI (0.26) 
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and sTBI (0.37). Those thresholds were shown in Figure 8-9, along with the tolerances of 50% 

risk found in the literature (Löwenhielm, 1975; Margulies and Thibault, 1992; Ommaya and Hirsch, 

1971; Patton et al., 2012; Elliot J Pellman et al., 2003; Rowson et al., 2012a).  

 
Figure 8-9. Comparison between developed IRFs and proposed mTBI (a) and sTBI (b) tolerances in the 

literature. 

Although the thresholds were based on ideal sinusoidal pulses, the global strain responses 

were fairly independent of the shape of the loading curves (Figure A21 in Appendix E). Most of 

the recent injury tolerances, as expected, were reasonably consistent with the current thresholds. 

Note that some of the data used to develop the tissue-level injury risk functions were previously 

used to develop these kinematics-based tolerances (Margulies and Thibault, 1992; Elliot J Pellman 

et al., 2003), although some corrections were made recently (Sanchez et al., 2018). 

8.4.5 Different Methods of Utilizing Animal Data 

Multiple methods of obtaining animal tissue responses and their effects on the development 

of injury risk functions were investigated, as given in Figure 8-10. The first two methods were 

scaling the head kinematics of the NHP data by mass scaling (Method 1, Takhounts et al., 2013) 

or frequency scaling (Method 2, Chapter 6) to humans and applying the scaled kinematics to 
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human brain FE models to predict corresponding tissue metrics. The primary method used in this 

chapter to obtain the tissue-level metrics for the animal tests was through computational 

reconstruction of the NHP tests using the NHP brain model (Method 3). 

 
Figure 8-10. Several methods investigated for the development of tissue-level injury risk functions. 

The last two methods (frequency scaling and NHP FE models) resulted in very consistent 

MPS95 IRFs (Figure 8-11). Note that the mTBI IRFs did not vary much when different methods 

were used because the mTBI IRFs were mainly determined by the human injury data. Large 

discrepancies between method 1 (mass scaling) and the other two methods were observed for the 

sTBI IRFs (50% probability of injury: 0.444 vs. 0.384 and 0.397). This finding demonstrated 

frequency scaling is a reasonable method to develop strain-based tissue-level injury risk functions 

based on the human FE model, while traditional mass scaling method would result in a large error.  

Previously, for the lack of integration method and injury data to characterize the full 

spectrum of injury severity, only IRF for severe injury can be developed based on animal data. 

The risk curves for HIC (NHTSA, 1995) were used to derive IRFs of other injury severity level 

(Takhounts et al. 2013), based on the assumption that severity ratios of the metric (e.g., BrIC) 

would be similar to those derived for HIC (NHTSA, 1995) at a 50% probability of injury. Figure 

8-12 shows the mTBI IRF scaled from the sTBI IRF based the HIC scaling relationships, the scaled 

mTBI IRF was more conservative compared with the IRF developed based on the integrated injury 
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data, which indicates that the assumption was not fulfilled and highlights the demand for data 

integration to develop IRFs for a spectrum of injury severity.  

 
Figure 8-11. Mild and severe brain injury risk curves based on MPS95 using three different methods. 

 

Figure 8-12. Mild brain injury risk curves scaled (the dotted blue line) from severe brain injury risk 

curves (the solid red line) based on the HIC (NHTSA, 1995) at a 50% probability of injury. 

8.4.6 Bias and Limitation in the Dataset  

There were several limitations related to diagnosing injury in the subjects included in the 

database. Historically, the clinical and theoretical definitions of mTBI have varied (Petchprapai et 

al. 2007), and these subsequent revisions may have introduced changes in coding the severity of 

equivalent traumatic brain injuries. The volunteer and NHP tests were conducted when the 

concussion was defined by a loss of consciousness, and the definition of concussion has changed 

since then. Modern definitions have a wider range of symptoms and do not require the loss of 
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consciousness. The medical reports for the human volunteers indicated that symptoms were mild 

and transient. However, little effort was made at the time of the tests to distinguish symptoms as 

being a musculoskeletal or a neurological issue (Sanchez et al., 2017). The diagnoses for the 

professional football players were more consistent with the contemporary definition of concussion, 

were established after play and verified with follow-up medical testing and treatment of the 

players. However, there were still some variations in symptoms compared with current concussion 

diagnosis techniques (Pellman et al., 2004). Although the injuries produced in the animal models 

were expected to be more accurate based on pathology and autopsy, the invasive methods adopted 

to measure head kinematics brought up ambiguities in injury diagnosis. Cognitive dysfunction in 

the animal was also difficult to detect, and the diagnosis of mild TBI or no injury could be 

erroneous. Fortunately, the mTBI IRFs developed in this study were dominated by human data. 

The error introduced by the uncertainty due to the mTBI diagnosis in the animal data was 

negligible for the IRF development but could affect the inference drawn from the mTBI overlap 

between the animal and human tissue-level metrics (including MPS95, MAS95, CSDM15, 

CSDM25, VMS95). Uncertainty was also introduced to this inference by the small sample size 

(NHP: 8, human: 39), future studies to acquire mTBI injury data from both human and animal 

subjects would improve the finding made in this work. 

As recognized previously (Sanchez et al., 2017; Sanchez et al., 2018), selection bias was 

also a concern with the current dataset. The human subjects used in this analysis were military 

personnel (NBDL) and professional football players and are not necessarily representative of the 

general population. Furthermore, the hits collected for the football reconstruction are not 

representative of the head impact exposure during professional football games. This 

overrepresentation of concussive events may result in IRFs that over-predict the risk of injury in 
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the football game (Broglio et al., 2010; Funk et al., 2007, 2012). It is important to keep in mind 

that the goal of this study was to estimate the human biomechanical tolerance for mTBI and 

improve head protection, regardless of the application. The selection bias towards significant head 

impacts was not expected to have a significant effect on the estimation of human tolerance but 

ensuring the appropriateness of the IRFs to evaluate the real injury risk for certain applications is 

critical. Evaluating IRFs with real-world crash data would provide more insights into the efficiency 

of developed IRFs and associated injury metrics. 

Only global measures of brain tissue-level metrics were considered in this study since there 

is currently a lack of experimental datasets (pathology data) to develop a regional-specific 

tolerance for the brain. The proposed tissue-level IRFs for this dissertation were intended for 

diffuse-type injuries, which are the most common brain injury types sustained in automotive and 

sport-related head impact environments (Takahashi and Yanaoka, 2017; Antona-Makoshi et al., 

2018). However, it is essential to acknowledge the existence of other brain injury mechanisms for 

other types of injury, such as contusion, brainstem injury. Because of the lack of biomechanical 

data to characterize the brain-skull interface and craniocervical junction, the current FE models 

are not suitable for predicting those types of injuries. 

8.4.7 Summary 

In this study, a database of brain injury was used to evaluate a variety of injury metrics and 

to estimate human tolerance to TBI. The correlation between TBI and most of the assessed injury 

metrics were statistically significant, but the choices of injury metrics were inconclusive and 

limited by a small dataset. Future efforts should be focused on collecting more brain injury data. 

Human brain tolerances for TBI were estimated and presented in the form of injury risk functions 
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based on various injury tissue-level metrics: MPS95, MAS95, and VMS95. The core findings and 

results from the current investigation include: 

1. Consistent with the deformation-based injury mechanism, a strong correlation between strain 

or stress with the injury was found. For similar injury severity, principal strain and Von Mises 

stress obtained from the brain of different species were comparable, indicating they are good 

tissue-level predictors (or even the causation) of brain injury.  

2. Axonal deformation, which might still be the microscale injury mechanism, did not show better 

predictability of brain injury than the tissue deformation (principal strain), which indicates the 

tissue strain without taking the heterogeneities at the cellular level into account is sufficient for 

the current application. 

3. The inclusion of the strain rate effect on tissue-level injury metric marginally improved the 

goodness of fit of the model to the human data, but existing metrics associated with strain rate 

(MPSSR, MPS× SR95, MASSR, MAS×SR95) might not be a good formulation of coupling 

strain rate effect, as they were incompatible for the brains of different sizes.  

4. Although the choice of tissue-level metric is only tentative, the associated IRFs developed in 

this study do show better efficiency for predicting injury using independent test dataset. 

5. The most significant contribution of this work is presenting an overarching framework for the 

development of IRF using interspecies data integration. The frequency scaling developed in 

Chapter 6 was also demonstrated to be a practical approach for developing IRFs with sufficient 

accuracy when advanced animal FE models were inaccessible. 

 These newly developed risk functions characterize the biomechanical tolerance for TBI; 

their application in real-world seniors is further pursued in Chapter 9. 
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CHAPTER 9 : EVALUATION OF THE FIELD RELEVANCE OF INJURY RISK 

FUNCTIONS 

Injury risk functions of TBI developed using biomechanical data are the cornerstone of the 

design and development of effective countermeasures and safety testing standards. While the risk 

functions represent the tolerance of the human brain to the specific injury regardless of the 

scenarios for application, automotive or sports, they were commonly evaluated by comparing the 

predicted injury risk with real-world epidemiological injury data. To ensure the proper usage of 

the risk functions, the newly proposed tissue-level injury risk functions were applied to automotive 

safety and evaluated with real-world accident analysis.  

9.1 Introduction 

Historically, existing brain injury criteria and tolerances, such as the HIC (Versace, 1971) 

and SI (Gadd, 1966), have been valuable in reducing field injury incidence, notwithstanding 

that they deviated from what is now thought to be the causation of injury. Shortly after the 

implementation of the standards, that adopted those criteria, the fatality rates of motor vehicle 

occupants and football athletes were reduced by 81% (Kahane, 2015) and 74% (Mertz et al., 1996) 

respectively. Whenever a new metrics or risk function was proposed, its field relevance was a topic 

of interest.  

Studies have assessed IRFs by comparing the predicted injury risk to real-world injury rates 

obtained from sports epidemiology studies (Funk et al., 2012) and motor vehicle accident 

databases such as the National Automotive Sampling System (NASS-CDS) (Laituri et al., 2015; 

Mueller et al., 2015). Results from these epidemiological studies did not correlate well with 

predicted injury probabilities. The critical missing link between the biomechanical tolerances and 
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the true injury risk probabilities is the unbiased exposure data. Alternative IRFs were developed 

or corrected using unbiased real-world data (Funk et al., 2007; Laituri et al., 2016), and these injury 

risk functions were more aggressive (lower risk for the same predictor value) than the IRFs derived 

from biomechanical data. Questions exist about not only the validity of the criterion and associated 

IRF but also concerning the limited information and the crude approximation about real-world 

impacts.  

A myriad of innovative wearable devices in the field of sports biomechanics was 

introduced to measure real-time head kinematics of players; notable applications included an 

instrumented helmet (Rowson et al., 2009), mouthguard (King et al., 2015), and ear patches (King 

et al., 2016). Data collected from these types of systems would have the potential to provide 

estimates of player exposure and eventually close the gap between biomechanical tolerance and 

real-world injury risk in the future, but the currently available devices still have limited utility due 

to the low fidelity of the data (Joodaki et al., 2019; O’Connor et al., 2017).  

The automotive crash is probably a more complex real-world scenario; real-time head 

kinematics were not accessible and generally predicted through laboratory or computational 

reconstruction of the field crash event. The most notable dataset of this kind was the crash tests 

conducted by NHTSA and the Insurance Institute for Highway Safety (IIHS) using 

Anthropomorphic Test Devices (ATD). The fidelity of the ATD used to measure the head motion 

in the crash tests is one of the lingering uncertainties that would result in a discrepancy between 

crash tests and real-world crashes. For example, the widely used Hybrid III ATD had limited 

biofidelity for the head and neck complex in sports-related impact tests (Schnebel et al., 2007). 

Although the ATDs were developed by the automotive industry for use in crash testing (Parent et 

al., 2017), the influence of their biofidelity on injury risk prediction is unknown. 
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The goal of this chapter is to identify the missing link between the predicted injury risk 

based on biomechanical tolerance and the observed field injury rates in a two-fold investigation: 

First, the proposed IRFs were applied to automotive crash tests and compared with real-world 

accident analysis. To ensure the general accessibility of the newly developed tissue-level injury 

risk functions, injury risk functions based on kinematics-based metrics were first developed. 

Second, to explore the influence of the biofidelity of ATDs on injury prediction, frontal and 

oblique sled test data using Hybrid III and THOR were analyzed and compared with responses of 

the post mortem human subjects (PMHS).  

9.2 Method 

9.2.1 The Link between Tissue Metrics and Kinematics-Based Metrics 

FE-derived tissue-level metrics provide the most accurate but most time-consuming 

method for predicting brain response. In the present state-of-the-art, the newly developed tissue-

level IRFs are also model-dependent and cannot be generalized because of the underlying 

inconsistency between FE models. These disadvantages preclude the practical application of the 

IRFs and the general accessibility to the scientific community. Kinematics-based metrics can be 

used as an alternative method to characterize injury tolerances, and recent advancements have 

demonstrated the good correlation between these kinematics-based metrics (e.g., DAMAGE, 

UBrIC, CIBIC) with brain strain responses. The kinematics-based metrics selected for the 

demonstration were DAMAGE and UBrIC (MPS) due to their effectiveness of modeling strain 

responses. Over 200 human head impacts from the primary injury databases and from published 

automotive crash tests were simulated and used to establish the correlation between kinematics-

based metrics and strain metrics (MPS95) based on a linear regression model (Figure 9-1). Then, 
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the risk curves for kinematics-based metrics can be obtained from tissue-level risk curves based 

on the correlation. 

 
Figure 9-1. Linear regression model between MPS95 and DAMAGE (a), between MPS95 and UBrIC (b). 

9.2.2 Evaluation of Injury Risk Functions Using Automotive Field Data 

To evaluate the efficiency of risk functions with the observed field injury probabilities, 

crash test data were utilized to estimate the risk of brain injury and compared with the field injury 

probability in corresponding crash scenarios. Injury risk functions assessed in this study include 

the newly developed MPS95, MAS95, VMS95 IRFs, the derived DAMAGE, UBrIC IRFs (based 

on MPS95 IRF), and injury risk functions (HIC, MPS-based BrIC, and CSDM-based BrIC) 

proposed by NTHSA (NHTSA, 1995; Takhounts et al., 2013).  

Crash Tests 

Six-degree-of-freedom (6DOF) head kinematic data from a total of 149 crash tests were 

used in this study (Table 9-1). These crash tests were performed by NHTSA and IIHS. Kinematics-

based injury metrics were derived from head kinematics measured by ATDs, and tissue injury 

metrics were obtained from computational reconstruction using the axon-based human model 

subjected to the measured head kinematics.  
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Table 9-1. Summary of NHTSA and IIHS vehicle databases. 

Occupant Location 
Impact 
Direction 

Details Delta-V (km/h) Surrogate# 

Driver 
(114) 

Frontal (76) 

Full Engagement (38) 56.3 ± 0.30 HYBRID-III 

Small Overlap (20) 64.4 ± 0.00 HYBRID-III 

Moderate Overlap (18) 64.2 ± 1.03 HYBRID-III 

Side (38) 

Left-Side (28) 60.5 ± 3.53 EUROSID-2RE 

Left-Side (5) 29.9 ± 1.81 EUROSID-2RE 

Left-Side (5) 32.2 ± 0.04 SID-IIS, F05TH 

Front Passenger (34) Frontal (34) 
Full Engagement (21) 56.1 ± 0.36 HYBRID-III 

Full Engagement (13) 56.2 ± 0.28 HYBRID-III, F05TH 
#50TH Male surrogate unless specified otherwise, head kinematic responses from the small female tests 

(F05TH) were previously scaled to a 50th percentile male using mass scaling (Gabler et al., 2016).  

Field Data Analysis 

Cases of real-world crashes were obtained from the National Automotive Sampling System 

Crashworthiness Data System (NASS-CDS). Cases eligible for NASS-CDS were police-reported 

incidents involving a harmful event on a public traffic way. Field researchers inspect the scene and 

the vehicle, perform interviews, and review medical records to obtain information regarding crash 

circumstances, vehicle and occupant characteristics, and the nature and severity of injuries coded 

subject to the AIS. Each NASS-CDS case was assigned a weighting factor based on the probability 

of the case being sampled, and the weighting factors are used to scale the sampled cases to generate 

a national estimate.  

To be commensurate with the collected crash tests and yield enough cases for analysis, 

cases that satisfy the following inclusion criteria in the NASS-CDS database were selected. 

• Crash and vehicle model year 2001–2015. 

• Passenger cars (including SUV and Wagons, excluding minivan and truck). 

• Crash impact directions and Delta-V. 

• Seat position: driver or front passenger (not enough samples for backseat passengers). 

• Non-ejected and belted occupant. 
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• Age 16 or higher. 

• Occupants with known injury status or fatality. 

Commensurate Crash Scenarios 

After obtaining the 11,183 NASS cases meeting the above criteria, injuries sustained were 

categorized into mTBI and sTBI based on the AIS codes, mTBI were documented as a concussion, 

while sTBI were documented as DAI and ICH. A table with the injury category assigned to each 

seven-digit AIS code is provided in Appendix G (Antona-Makoshi et al., 2018). The remaining 

assessments were based on crash configurations and injury severity. Corresponding to the crash 

tests, four crash configurations were identified based on seat locations, impact directions, and 

Delta-V: 

• The driver, frontal impact, high speed (50 – 70 km/h) 

• The driver, near side impact, low speed (25 – 35 km/h) 

• The driver, near side impact, high speed (50 – 70 km/h) 

• The passenger, frontal impact, high speed (50 – 70 km/h) 

For the first configuration (driver, frontal impact, high speed), driver side small overlap, 

driver side moderate overlap, and full engagement crashed were identified based on the Collision 

Deformation Classification (CDC) and photographs of vehicle damage (example in Appendix G). 

A broader bin of high-speed crashes (40 – 80 km/h) was assigned to yield more crashes for 

analysis. Vehicles with damage originating from the right side of the vehicle, or narrow center 

damage (pole) were excluded because of their dissimilarity to corresponding crash tests.  

The real-world mTBI injury rate was calculated as the (or weighted) number of occupants 

with a certain injury divided by the (or weighted) number of occupants with known injury status 

https://www.sciencedirect.com/topics/medicine-and-dentistry/fatality
https://www.sciencedirect.com/topics/medicine-and-dentistry/vermiform-appendix
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(Antona-Makoshi et al., 2018). Each NASS-CDS case contains a weighting factor that was used 

by the NHTSA to extrapolate the individual cases to the national numbers. For complex events 

like car crashes, unbiased exposure data are not available, and the inclusion of the weighting factor 

can be controversial (Prasad et al., 2014). Therefore, the incident rates with and without weighting 

were provided. The analysis was performed separately for different crash configuration.  

9.2.3 Influence of the Biofidelity of Anthropometric Test Dummy 

Comparing the predicted injury risk sustained in the crash tests with the injury rates found 

in the NASS CDS database relies on the biofidelity of ATDs. To evaluate the biofidelity of ATDs 

in reproducing head kinematics, previously published head kinematics of the ATD and PMHS 

tests were collected and utilized in the current study.The impact tests were conducted under Gold 

Standard 2 and 3 (GS2 and GS3) conditions (Acosta et al., 2016). The GS2 test condition was a 

full frontal 30 km/h impact using a custom 3 kN force-limited shoulder belt. The GS3 test condition 

was a 30 km/h, 30-degree nearside oblique frontal impact using the same custom 3 kN force-

limited shoulder belt. The test conditions approximated those of a belted occupant in an actual 

full frontal or near-side oblique crash. In all tests, a reverse acceleration sled was used to produce 

the 9 g acceleration pulse used for each test. Hybrid-III ATD, THOR Metric ATD (Parent et al., 

2013), and PMHSs were positioned in similar postures and tested in controlled ‘paired’ conditions. 

All PMHSs were male and approximated 50th percentile stature and mass. The dataset is 

summarized in Table 9-2.  
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Table 9-2. Summary of the sled test database. 

Test Conditions Test ID Surrogate Body Mass (kg) Stature (cm) 

GS 2 

S0300 – S0301 HYBRID-III 78 175 

S0302 PMHS 68 177 

S0303 PMHS 68 173 

S0028 PMHS 68 178 

S0029 PMHS 70 179 

GS 3 

S0305 – S0307 HYBRID-III 78 175 

S0309 – S0312 THOR   

S0314 PMHS 76 172 

S0315 PMHS 64 177 

9.3 Results 

9.3.1 Field Injury Risk 

Table 9-3 contains the resulting NASS analysis for the four test configurations stratified 

by seat location, impact direction and impact speed. The data indicate the driver was more 

vulnerable in a side impact than in a frontal impact. The large difference between weighted and 

unweighted injury rates in certain configurations implies that these cases might not be 

representative of the population. Table 9-4 contains the data for the three high-speed frontal crash 

modes: small overlap, moderate overlap, and full engagement. The table indicates that the sample 

sizes were too small to draw any conclusion about the vulnerability of these frontal modes.  

Table 9-3. Head injury in various types of crash configurations in the NASS dataset. 

Configuration 
Cases involved 

Cases injured  

(mTBI) 

Cases injured 

(sTBI) 

Injury rates*  

(%) 

Number Weights Number Weights Number Weights mTBI sTBI 

Driver, Front, High 313 33,384 38 2,219 3 225 6.6 (12) 0.67 (0.96) 

Driver, Side, Low 275 64,369 57 5,924 12 203 9.2 (21) 0.32 (4.3) 

Driver, Side, High 40 2831 13 937 6 571 33 (33) 20.2 (15) 

Passenger, Front, 

High 
73 4,870 9 485 0 0 9.9 (12.3) 0 (0) 

*Unweighted injury rates in the parentheses. 
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Table 9-4. Head injury in various high-speed frontal crash modes in the NASS dataset. 

Configurations 
Cases involved 

Cases injured  

(mTBI) 

Cases injured 

(sTBI) 

Injury rates*  

(%) 

Number Weights Number Weights Number Weights mTBI sTBI 

Small Overlap 34 3,947 4 99 2 38 2.5 (12) 0.97 (5.9) 

Moderate Overlap 144 17,504 16 2,344 1 42 13 (11) 0.24 (0.69) 

Full Engagement 479 63,352 44 3,065 3 300 4.8 (9.2) 0.47 (0.63) 

*Unweighted injury rates in the parentheses. 

9.3.2 Crash Tests 

Figure 9-2 shows the distribution of the predicted injury probabilities in the crash tests 

relative to the NASS Dataset for the first configurations (driver, frontal impact, high speed). The 

results for other configurations are provided in Figure A23 – A25 (in Appendix G). Clearly, the 

variation of estimated injury probabilities was high. For each configuration, the median value was 

chosen to represent the distribution of injury probabilities, as the predicted probabilities were not 

following normal distributions. Finally, the median injury probabilities were compared with the 

corresponding weighted NASS-based head injury rate (Figure 9-3), and unweighted NASS-based 

head injury rate (Figure A26 in Appendix G). Mixed results were presented for the newly 

developed injury risk functions, but in general, the predicted mTBI injury risk in the crash tests 

were higher than those observed in the NASS database, while the predicted sTBI injury risk in the 

crash tests was similar to those observed in the NASS database, except for the third configuration 

(driver, side impact, high speed), which yielded a very small sample size (n = 40) based on the 

NASS database. Notably, the estimates from VMS95 were closer to the real observation for mTBI 

compared with other metrics. For comparison, the MPS-based BrIC estimated quite different head 

mTBI risks than those observed in similar real crashes. The estimates from the HIC and the CSDM-

based BrIC were close to the real mTBI rates. While very few cases were indicated with sTBI, 

both the MPS-based and CSDM-based AIS4+ IRFs had larger errors when compared with the 
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other IRFs. Note that the BrIC AIS4+ IRF was originally defined with biomechanical data, and 

IRFs of other severities (including AIS2+) were scaled from the AIS4+ IRF.  

 
Figure 9-2. Injury risk for mTBI (a) and sTBI (b) sustained by the driver in high-speed frontal crashes in 

NASS and corresponding crash tests. 

A close examination of crash tests was conducted for cases subjected to high predicted 

injury (>70%) and cases subjected to low predicted injury risk (<10%) based on MPS95 

predications. Those tests were grouped for the same crash conditions and similar vehicles (vehicle 

type and vehicle year), as shown in Table 9-5. The table elucidates the differences between MPS95 

(or DAMAGE) and the HIC or BrIC. The HIC was unable to take the angular motion into account, 

and hard contacts were rare events in the crash tests with the equipment of airbags, and therefore 
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very low HIC values in the crash tests. The BrIC, developed based on either MPS or CSDM, only 

accounts for the peak angular velocities, while the MPS actually has a higher correlation with peak 

angular acceleration (R2 = 0.60) than peak angular velocity (R2 = 0.43) in the current crash dataset 

(Figure A27 in Appendix G). 

 
Figure 9-3. Absolute error between predicted Injury risk and weighted field injury rates for mTBI (a) and 

sTBI (b). Positive values indicate overpredicting injury. 
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Table 9-5. Predicted injury risk in the frontal crash tests. 

Mode 

(Car) 
ID 

Basic Kinematics Predicted Injury Probability 

𝒂𝒎𝒂𝒙 (g) 
𝛚𝐦𝐚𝐱 

(rad/s) 

𝛂𝐦𝐚𝐱 

(rad/s2) 
MPS95 DAMAGE HIC 

BrIC 

(M) 

BrIC 

(C) 

Full 

engagement 

(Compact) 

8068-01 62 28 2648 71% 74% 21% 59% 4% 

8071-01 47 42 4443 99% 100% 6% 86% 45% 

8151-01 54 37 3547 96% 99% 10% 86% 43% 

8081-01 43 32 2019 10% 13% 5% 71% 17% 

8156-01 38 28 1630 5% 4% 1% 49% 0% 

Full 

engagement 

(Mid-size) 

8106-01 48 37 3675 74% 73% 8% 80% 31% 

7966-01 53 17 1410 1% 1% 12% 21% 0% 

Small 

overlap 

(Mid-size) 

CEN1229 46 47 3032 85% 100% 6% 100% 95% 

CEN1234 42 41 3113 87% 100% 4% 98% 84% 

CEN1225 27 23 1266 2% 3% 0% 37% 0% 

CEN1230 30 26 2021 4% 4% 1% 53% 1% 

CEN1236 28 25 1252 8% 9% 0% 45% 0% 

Full 

engagement 

(SUV) 

3952-02 87 37 4609 95% 97% 77% 91% 58% 

4223-02 61 30 1883 9% 9% 21% 60% 5% 

4235-02 62 18 1489 9% 10% 24% 45% 0% 

Color codes: the cell that holds a ‘severe’ value has the shades of red. 

9.3.3 Influence of Anthropometric Test Dummy 

Figure 9-4 compares the angular velocity time histories of the ATD head and PMHS head 

in GS2 and GS3 conditions. The predominant head motion in both frontal and oblique impacts was 

observed to occur, as expected, within the sagittal plane, but PMHS had substantial out-of-the-

plane head motion, while the head of the ATD had very little axial rotation in both conditions. It 

was also observed that the resultant head displacement (not shown) was greater in the oblique 

condition. This would indicate that factors associated with the oblique condition allow for greater 

head motion when compared to that of a standard frontal impact for the same acceleration. The 

injury risk sustained by ATDs and the injury risk sustained by PMHS were compared in Figure 

9-5. Both ATDs substantially underestimated the risk of brain injury under oblique impacts, while 
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in the frontal impacts, the differences were subtle. Note that the Hybrid-III ATD was unable to 

differentiate the injury risks between these two conditions. 

 
Figure 9-4. Angular velocity time histories of ADTs and PMHS under GS2 conditions (a) and GS3 

conditions (b). 
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Figure 9-5. Predicted injury probabilities using ADTs and PMHS in GS2 conditions (a) and GS3 

conditions (b). 

9.4 Discussion 

This study applied the newly developed injury risk functions to automotive safety and 

compared the predicted injury risks in the crash tests with real-world injury rates. Owing to the 

difficulty of obtaining real-world exposure levels, the problems of evaluating risk functions using 

epidemiological data come to light. In addition, the error introduced by crash tests using ATDs 

would substantially influence the prediction of injury vulnerability under certain conditions. 
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9.4.1 Field Data Analysis 

Although the absolute injury rates may not be trustworthy in many configurations due to 

the small sample size, evaluating the IRFs with real-world crash data provided more insight into 

the choice of injury metric. Comparing between different crash configuration, the current field 

analysis revealed the occupants in side crashes are at higher risk (33%) than those in frontal crashes 

(6.6%) at a similar speed. This observation, consistent with the findings in the literature (Antona-

Makoshi et al., 2018), can be explained as occupants in side crashes are located closer to the 

intruding structure compared to those in frontal crashes, making it difficult for crashworthiness 

and restraint systems to interact. In the crash tests, as shown in Figure 9-6, this distinct disparity 

can be detected using the newly development IRFs (MPS95, MAS95, VMS95, DAMAGE, 

UBrIC), but cannot be reflected through the HIC. BrIC can also differentiate these two 

configurations to some extent. Several studies (Laituri et al., 2016, 2015; Mueller et al., 2015; 

Prasad et al., 2014) have assessed brain injury risk functions by comparing predicted injury risk 

probabilities to real-world injury rates obtained from the NASS. It was commonly found that the 

AIS 2+ injury rates based on the HIC and CP were more consistent with the real-world injury rates 

than the MPS-based BrIC injury risk function, but this does not necessarily mean the HIC and CP 

predicted the real injury risk. For example, the expected mTBI risk values based on CP (sum of 

the probabilities) was 1.7 in all the 148 crash tests, which might not be realistic.  
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Figure 9-6. Comparison between Injury probabilities in frontal crashes and side crashes. 

 

Crash configuration 1 did not differentiate the same overlap, moderate overlap, and full 

engagement frontal crashes. The predicted injury risks were similar between these three crash 

modes (Figure 9-7). This might be partially explained by the observation that the Hybrid III was 

insensitive to test modes (oblique and frontal). While the weighted injury rates of the full 

engagement and small overlap shown in the figure were significantly lower than the moderate 

overlap, the unweighted injury rates of these crashes were similar (9.2%, 11%, and 12%). Using 

the same NASS dataset, different selection criteria would lead to different conclusions (Table 9-6) 

as a very small number of injured cases were available. The field injury rates were dependent on 

Delta-V, as provided in Figure A28 (Appendix G).  

Table 9-6. Head and brain injury risk in different frontal crash modes in the literature. 

Study Full Engagement Moderate Overlap Small Overlap Categories Delta-V 

Laituri et al. 

(2016) 

5%  3%  7%  AIS2+ 48-64 km/h 

1%  2%  4%  AIS3+ 48-64 km/h 

Mueller et al., 

(2015) 
-- 1.2 %  4.6 %  AIS3+ -- 

Prasad et al., 

(2014) 
2.09%  1.86%  0.19%  

AIS3+ 

(head/face) 
-- 

Current study* 4.8% (9.2%) 13 % (11%) 2.5% (12%) 
mTBI 

(concussion) 
40-80 km/h 

*Unweighted injury rates in the parentheses. 
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Figure 9-7. Comparison between Injury probabilities in different frontal crash modes. 

It is important to note that the field analysis does have several limitations. First, the loading 

conditions in real-world crashes are complex. Even though the crash conditions were roughly 

divided based on Delta-V and impact direction, other underlying intrinsic and extrinsic conditions 

(e.g., vehicle type, principal direction of force, occupant demographics and morphology) could 

also contribute to injury risk. For example, sex and age are significant contributors to predict the 

risk of brain injury (Antona-Makoshi et al., 2018). These underlying factors also contribute to the 

large variation in injury probabilities observed in crash tests in certain crash modes. Second, 

because the crash test data and the NASS-CDS data satisfying the inclusion criteria were not 

random samples, the current analysis was limited by the small sample size. A large disparity 

between weighted and unweighted injury risk was exhibited in some configurations. The crashes 

selected in NASS CDS were a probability sample of all crashes occurring in the survey year, the 

data from these crashes were "weighted" to produce national estimates. Weights were resulted 

from the stages of selection, reflecting that crash's probability of selection. Since the selection 

criteria used by NASS was different with the current criteria used in this study, whether the 

weighting factors are still suitable is difficult to determine and requires rigorous investigation in 

the future.  
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9.4.2 Biofidelity of the Anthropometric Test Dummy  

Since the head kinematics in real-world crashes were not available, using crash tests to 

estimate real-world injury risk could also be affected by the biofidelity of ATDs. The fidelity of 

the football reconstruction data that was used to develop the IRFs was also dependent on the 

biofidelity of ATDs (Hybrid III).  

The biofidelity of the Hybrid III ATD was previously evaluated for sports injury scenarios 

in the laboratory. The Hybrid III ATD reconstructions produced similar peak accelerations for 

concussive impacts but generated higher rotational velocities under blunt impact (Schnebel et al., 

2007). While in the gold standard 3 condition the ATDs significantly produced lower rotational 

velocities. This is consistent with the findings of a study using a similar dataset (Parent et al., 

2017). But the ATD does not necessarily underpredict injury in real-world conditions. The main 

caveat to this finding was that the “gold standard” setup did not include airbags, thus the head 

response in this condition exhibited completely free motion, which was unlikely to occur in a 

frontal and oblique crash in a vehicle with adequate airbag coverage. In addition to the gold 

standard tests (Shaw et al., 2009), Parent et al. (2017) also evaluated the biofidelity of Hybrid III 

and THOR in a Far Side Oblique conditions, which represents a more realistic occupant 

environment in an Oblique Moving Deformable Barrier (OMDB) (NHTSA, 2015) crash test and 

includes a standard vehicle seat, a three-point seat belt with a pretensioner and load limiter, and a 

front passenger airbag. The correlation between the head responses of the ATDs and those of the 

PMHS in this condition were lower than those in the gold standard conditions (Parent et al., 2017). 

The effect of the head kinematics differences (Figure A29 in Appendix G) in terms of injury 

probability was actually small, as shown in Figure 9-8. Nevertheless, the variation in the head 

kinematics of those tests was much larger. It was expected that as the similarity of the test condition 
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to the real-world conditions increases, the ability of the ATDs to reproduce the biofidelic head 

response decreases. Further on, the ATDs were designed to replicate the PMHS responses, and the 

differences between in vivo subjects and the PMHS also needs to be considered. For example, the 

head motion would be affected by the condition of the brain, which may have deteriorated when 

the tests were conducted. The axial rotation of the head in the GS tests (Figure 9-4) might not be 

realistic for in vivo subject because of the lack of active musculature (Thunnissen et al., 1995). All 

those factors would contribute to the discrepancy observed between the predicted injury risk and 

the field injury rates. 

 
Figure 9-8. Predicted injury probabilities using ADTs and PMHS in far side oblique condition. 

Taken together, the newly developed injury risk functions predicted reasonable injury 

probabilities compared with the field observation in similar automotive crash conditions. They 

generally showed better capability over the current criteria (e.g., HIC) to positively distinguish the 

risk sustained in different crash scenarios (frontal impact versus side impact). In this Chapter, it 

has also been mentioned that evaluating the risk functions with real-world accident analysis is 

challenging, predicting the actual injury risk requires the accurate characterization of the exposure 

data, which is not currently available. The test dummies used to predict the head exposure data at 

certain crash configuration have questions in biofidelity. The crash tests, normally designed to 



166 
 

evaluate the safety of cars, were performed at high severity conditions, which only represent a 

small number of crashes in the current NASS CDS database. The real injury risk determined by 

those samples in the NASS CDS database was also implausible since those highly influential 

weighting factors in the NASS database can skew the distribution of injuries. The risk functions 

should be rigorously evaluated in the future when the aforementioned questions were better 

addressed with new information and biomechanical data. For the current data, the developed risk 

functions show improved predictability and sensitivity to different crash configurations, thus could 

be considered as foundations to create a feasible incentive for the industry to improve the level of 

head protection to beyond what is achievable with the current criteria (e.g., HIC).  
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CHAPTER 10 : CONCLUSIONS 

Traumatic brain injuries are a significant public health burden occurring in automotive 

crash, accidents, sports, and in military training and combat. There is a significant interest in 

understanding the tolerance of human brain to external mechanical loads with the ultimate 

objective of mitigation and prevention of TBI. Early TBI research focused on understanding the 

injury mechanisms in animals, and the latest research focus has been on collecting exposure data 

in humans that routinely experience head impacts to quantify injury risks. Both research 

approaches have major limitations when studied in isolation, but when integrated they may provide 

a complete picture on TBI mechanisms and risk. One of the biggest challenges to forming a more 

comprehensive understanding of TBI risk is the applicability of animal brain injury data to humans.  

The objective of this dissertation was to integrate human and animal brain injury data to 

establish a well-characterized brain injury dataset that would be used to develop tissue-level brain 

injury risk functions. To do achieve this goal, novel methods were developed from state-of-the-art 

computational models of human and animal brains to bridge the interspecies gap between human 

and NHP injury data, assuming the equivalence of tissue-level metrics across primates. The work 

from this dissertation is expected to have a substantial impact to the field of brain injury 

biomechanics. The results and the novel methods in the work have the potential of facilitating the 

development of advanced injury assessment tools and are a valuable overarching framework for 

technical innovation to mitigate brain injury.  

10.1 Major Contributions 

The main contribution of this dissertation will be the two innovative methodologies to 

develop tissue-level injury risk functions. 
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1. Methodology for interspecies brain injury data integration. 

This work provided an overarching framework for understanding human brain injury 

mechanism and tolerance using human and animal data. The novelty of this work lies in the 

application of harmonized computational models to integrate brain injury responses at the tissue 

level (Chapter 8). The tissue level metrics were independent of the size and shape of the brain and 

were applicable in any loading conditions. This is an efficient technique for combining interspecies 

injury data. The utilization of harmonized tools alleviate the deficits involved with physical models 

(gel-filled skull) or cadaveric models, neither of which currently have the desired spatial resolution 

for the measured nodal responses to investigate tissue-level metrics. This method can be utilized 

to enhance the current injury risk functions when new in vivo injury data are collected in the future. 

This methodology was demonstrated by integrating the primate data in the development of 

tissue-level injury risk functions. Extension of this concept to another primate (e.g., chimpanzee) 

and animal model of different size and physiologies is promising, contingent on a better 

understanding of the interspecies difference in physiological responses and mechanical properties 

of brain tissue in the future. Even when the (physiological and mechanical) prerequisite was not 

fulfilled, correlating the biomechanical responses will be the first step to correlating animal injury 

data to human injury. 

2. Cross-species brain injury scaling method 

The novelty of this dissertation also lies in proposing a new cross-species scaling method 

(Chapter 6) to facilitate the usage of animal brain injury data in human TBI study. Although animal 

data can be correlated with data from humans through FE simulations, the simulation of animal 

tests was not available in many situations (e.g., harmonized computational models were not 
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available, or legacy animal studies did not provide time history data of head kinematics). In that 

case, scaling methods are crucial in the development of both tissue-level and kinematics-based 

injury risk functions. The merit of the scaling method also gives an explicit relationship to find the 

equivalent biomechanical loads between different species that result in similar tissue-level 

mechanical responses. Particularly, the frequency scaling, inspired by characterizing 

biomechanical responses using simply mechanical systems (Mertz, 1984), addresses limitations 

with traditional scaling methods by accounting for the anatomical and morphological complexity 

of the brains of different species. A new (ellipsoidal) method was further developed to apply the 

direction-dependent frequency scaling factors to complex, three-dimensional head motions.   

The scaling relations developed in this study provided a reasonable method for correlating 

the biomechanical response of the brain of different species. Although more injury data is required 

to validate this scaling relation, application of the scaling model to the current in vivo injury data 

suggested a similar tolerance of human and NHP brain injury (Chapter 8). The approach used to 

develop the scaling relations can be extended to other animal models of different size and 

physiologies with computational tools or even experimental data if available. 

10.2 Other Contributions 

The significance of this work also lies in the following:  

1. This work developed a new modeling technique to explicitly incorporate mesoscopic 

axonal tractography in multi-scale finite element brain models.  

In Chapter 3, an anisotropic and heterogeneous brain model was developed by explicitly 

incorporating axonal fibers as embedded cable elements into the previously validated brain model. 

The updated model demonstrated good biofidelity when simulating the latest human brain 
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deformation data (Chapter 4). Although a fixed coupling between the axonal tracts and the ground 

substance was assumed in this work partly due to the lack of experimental reference, the 

mathematical formulation of this approach allows us to include slip behavior on to the axonal 

fibers. As the focus of this work was to evaluate axonal strain, slipping conditions were not 

expected to affect the results as it probably just shifts the axonal strain level. While this work 

focuses on evaluating global axonal strain as an injury predictor, the approach described (and the 

model developed) enables scientists to track the mechanical response of the mesoscale structure 

(axonal fiber tracts) of the brain. For example, investigation of the mechanical disruption of certain 

axonal tracts in the neural networks might provide us with new insights into the symptoms (e.g., 

the memory and attention deficits) observed in mild TBI subjects. The framework presented here 

can also be generalized to include other mesoscopic anatomical details in finite element models 

without additional mesh generation. 

2. This work developed a series of harmonized FE models and established a model 

calibration and evaluation procedure. 

This contribution was presented in Chapter 3, 4, and 5. Human, baboon, and macaque brain 

FE models were improved through harmonized modeling techniques and mesoscale axonal tracts. 

The development of the human brain started from the accurate constitutive characterization 

(calibration) of brain tissue and completed with evaluation of brain deformation. The calibration 

and evaluation were conducted in various modes to ensure the model’s applicability in a broad 

range of relevant loading conditions. It was one of the first studies to compare three-dimensional 

brain responses in a FE model to in situ brain deformation. The procedure used in this study can 

guide the continual development of FE models. The developed FE models may be leveraged in 

future TBI studies for a broad range of applications. 
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3. This work reviewed the pros and cons of existing in vivo injury data in the literature 

and collected a dataset suitable for the development of injury risk functions. 

The work in Chapter 7 summarized sixty years of in vivo brain injury data, and this study 

pointed out that the selection of certain injury data should be oriented towards the objectives to 

study specific types of brain injuries because of the huge disparities in test protocols, loading 

conditions, and the resulting types of injuries. A dataset of 300 cases, with a diverse spectrum of 

clinical outcomes spanning from no injury to severe diffuse injuries, was collected and prepared 

for simulation. These data and other collected data (but discarded due to different injury types) 

may be leveraged in future studies for investigating other types of brain injury (e.g., brainstem 

injury and hematoma) and the evaluation of brain injury risk functions. 

4. This work demonstrated the importance of considering the resonance behavior of the 

brain under the rotational motion in studying traumatic brain injury.  

The findings in Chapter 6 and Chapter 8 explored an intriguing hypothesis that the 

deformation responses of the brain-skull system could be simplified as a mass-spring-damping 

mechanical system. The deformation was sensitive to the frequency/duration of the loading pulses. 

As stated by Holbourn (1943) ‘for blows of long duration, the injury is proportional to the 

(angular) acceleration, on the other hand for very short blows the injury is proportional to the 

(angular) velocity’. What was unknown from Holbourn’s work was the critical values that 

distinguish a certain blow as being a long-duration pulse or short-duration pulse. In this study, the 

calculated natural frequency from the well-validated axon-based models ranges from 50 Hz to 75 

Hz depending on the rotation directions. Compared with the natural frequency of the brain, most 

head kinematics in automotive crashes with restraint system and even in some helmeted football 

impacts have a lower frequency. Thus, angular accelerations correlated better with injury than the 
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angular velocity did. This corroborated the results in Chapter 8 and those in the literature. The 

most practical meaning of this finding was creating a feasible incentive for the automotive industry 

to improve the level of head protection beyond what is achievable with the widely used HIC and 

BrIC criterion, as an effective countermeasure should aim at reducing the force at impact which is 

directly related to the angular acceleration. 

5. This work developed a set of injury risk functions for mild and severe brain injury.  

The addition of this dissertation provided a series of tissue-level injury risk functions for 

mild and severe TBI (Chapter 8). The utility of these results is the potential for the injury risk 

functions (developed or based on) in this dissertation to be used in crashworthiness and helmet 

safety evaluation. Kinematics-based injury risk functions can be derived based on the correlation 

between associated kinematics-based metrics and tissue-level metrics (Chapter 9). The developed 

injury risk functions were applied to automotive crash scenarios, and the missing link between 

biomechanical tolerance and the field injury risk was identified. Those results are expected to 

influence car safety regulations, provide guidelines for helmet design and development of other 

head safety equipment.  

10.3 Assumptions, Limitations, and Applicability 

The sections below discussed the important assumptions, some of the limitations, and the 

range of applicability of the developed methods. 

1. Cellular compositions. 

The important assumption for this work is that equal tissue-level stimulus would cause 

similar severities of injury for both animal and human. To fulfill this assumption, animal and 

human should have a similar cellular composition of the brain. There is substantial variability in 
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neuronal densities per milligram of brain tissue across mammalian species (Herculano-Houzel and 

Dos Santos, 2018). At an average of 86 billion neurons and 85 billion nonneuronal cells, the human 

brain has the same overall 1:1 nonneuronal/neuronal ratio as other generic primates, but outliers 

in the primates exist. For example, common squirrel monkey (Saimiri sciureus) has an overall 

1:1.6 nonneuronal/neuronal ratio. Some non-primate species (e.g., ferret) also have an overall 1:1 

nonneuronal/neuronal ratio as humans. This prerequisite should be carefully examined before the 

extension and application of this work to other species. 

2. Proportions and relative size. 

Apart from the consideration of cellular composition across species, other neuroanatomical 

differences between animals and humans would likely influence the tissue-level equivalence as 

only global measures of the injury metrics were considered. For example, a power law relation 

was found between the volumes of gray and white matters across mammalian species with an 

exponent around 1.22 – 1.32 (Ventura-Antunes et al., 2013; Zhang and Sejnowski, 2000). This 

difference of volume ratio between gray and white matters across species would result in a 

different interpretation of the global tissue-level metrics across species. In other words, if the gray 

matter and white matters are not equally vulnerable to TBI, the same values of the tissue-level 

injury metrics would indicate different impairments to the brains of different species as the 

proportions of injured white matter or gray matter are different. A similar argument would apply 

to the interspecies difference in the proportions of the cerebrum in the brain, which varies in 

relative size from 42% (in the mouse) to 82% of brain mass (in the human) (Herculano-Houzel, 

2009). So, another limitation in this work was that brain injury tolerance is not region-specific. 
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3. Mild brain injury diagnosis and other associated injuries. 

This study restricted the brain injuries to closed-head diffuse-type injuries. Other types of 

brain injuries (e.g., brainstem/spinal cord injury and focal injuries) were not considered due to the 

limited capabilities of current FE head models and the possible existence of alternative 

mechanisms. The diagnosis of diffuse-type mild brain injuries was ambiguous and has changed 

over time. This ambiguity in the mTBI diagnosis might introduce error into the developed mTBI 

injury risk functions. Particularly, the symptoms induced by cervical spine injuries are often 

similar to those listed for mTBI, which leads to confusion for the medical diagnosis (Morin et al., 

2016). There is a lack of sound evidence in the literature on the involvement of the cervical spine 

in mTBI. Biofidelic coupling of the brain model with a neck model would improve the 

understanding of the cervical spine injury and its relations with TBI. 

4. Other unaddressed aspects. 

Other limitations include the lack of considering the influence of age and sex on brain 

injury, unvalidated NHP brain FE models, out-of-date injury diagnosis methods, and other bias 

and ambiguity in the existing injury data (Chapter 7 and 8). Some of these limitations were likely 

to be addressed in the near future and discussed in detail in the following section. 

10.4 Future Work 

Following this dissertation, some recommended research topics include: 

1. In situ brain deformation of the animal models under rotational motion. 

The application of the tissue equivalence approach relies heavily on the biofidelity of the 

brain FE models. While our understanding of human brain deformations under rotational head 

motion has been greatly increased by recent advances in in vivo and in situ experimental studies 
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(Alshareef et al., 2018; Chan et al., 2018), unfortunately, data for validating animal brain FE model 

is still extremely limited. These data are more demanding and much-needed to translate animal 

brain injury findings to humans. In situ brain deformation experiments would also improve the 

understanding of the resonance of the human brain under head rotation, which was critical for 

selecting suitable kinematics-based metrics for certain application in this dissertation. 

2. Traumatic cerebral vascular injury. 

In addition to concussion and DAI, vascular brain injury is also frequent in automotive 

crashes (Antona-Makoshi et al., 2018). When it comes to modeling the complex cerebral 

vasculature structure, the embedded element technique adopted to incorporate FE meshes of highly 

complex structures into the brain mesh provide advantages over the traditional mesh method that 

generate shared nodes between elements. The novel method could address the caveat that requires 

cumbersome mesh generation processes and provide more options for modeling the connection 

between the blood vessel and brain tissue other than a fixed connection (Ho and Kleiven, 2007). 

This method will help us study vascular injury under relevant loading scenarios.  

3. Additional in vivo injury studies with animal models. 

The legacy non-human primate data were conducted in the 1960s to the 1980s, the 

understanding of brain injury has been improved since then, as have the techniques for measuring 

head kinematics, as well as imaging and histopathology techniques. In addition to deriving 

tolerance of human brain injury, animal models provide a unique opportunity to examine cellular 

and molecular responses using histological assessment, which can give important insights into the 

mechanism associated with the evolution of brain injury. 
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4. Advances in the computational brain model. 

Although the head and brain FE models have been continuously improving, some issues 

still hamper their application in studying brain injury and needed to be resolved. As recognized 

(Giudice et al., 2018), few existing models, if any, was able to produce a converged strain response 

at conditions relevant to injury. Biofidelic coupling of the brain model with a neck model including 

muscles and spinal cord is also desired to study brainstem injury. The boundary conditions (e.g., 

CSF and membranes) of the brain tissue, which were shown to affect the brain response in 

computational models significantly, also require accurate characterization and need to be explored 

in a rigorous manner in the future.  

10.5 Summary 

The public health burden of TBI is substantial, affecting the lives of millions and millions 

worldwide. The key public health strategy to reduce the burden and cost of this injury is prevention 

and mitigation, which requires a thorough understanding the mechanism and risk of TBI. This 

study has demonstrated the effectiveness of interspecies data integration to address some of the 

limitations using previous TBI data, the findings in this study could be immediately useful as 

tentative guidelines for designing and evaluating countermeasures at preventing TBI in automotive 

and sports industry, but more research is needed before conclusive guidelines can be identified 

because of the complex nature of TBI. The long-term vision, of which this dissertation is a small 

part, is the thorough understanding of the TBI mechanism through the combining multifaceted 

innovations in animal models, real-time field head injury data acquisition, biomarkers, medical 

imaging, and pathology techniques. The two methodologies (harmonized species-specific 

computational simulation and interspecies scaling) developed in this study could provide the 

biomechanical foundation towards revealing the true mechanism of TBI.  
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APPENDIX A: EVALUATION OF HUMAN BRAIN FE MODELS 

This section provides details on the evaluation of the axon-based and GHBMC brain 

models using the NDT impact data and sonomicrometry data. Individual nodal displacement plots 

comparing simulation results with experimental measurements are shown in Figure A1 – A5 under 

impact condition (Chapter 3) and in Figure A6 under pure rotational motion (Chapter 4). The 

model performance assessed with sonomicrometry data were quantified using CORA scores; the 

scores are provided in Table A1. 

Evaluation of Brain Deformation with NDT Impact Data 
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Figure A1. Nodal displacements comparisons for NDT291-T1. 
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Figure A2. Nodal displacements comparisons for NDT755-T2. 
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Figure A3. Nodal displacements comparisons for NDT383-T1. 
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Figure A4. Nodal displacements comparisons for NDT383-T3. 
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Figure A5. Nodal displacements comparisons for NDT383-T4. 

 

Evaluation of Brain Deformation with Sonomicrometry Data 
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Figure A6. Nodal displacements comparisons for SONO 904, X: 40-30. 
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Table A1. Quantitative evaluation results of the baseline and axon-based human model for the 

sonomicrometry data. 

 

  

mWCORA wWCORA mWCORA wWCORA mWCORA wWCORA mWCORA wWCORA

X:20-60 0.543 0.587 0.570 0.627 X:20-60 0.600 0.629 0.639 0.663

X:20-30 0.539 0.572 0.579 0.613 X:20-30 0.622 0.640 0.659 0.676

X:40-60 0.564 0.609 0.587 0.647 X:40-60 0.581 0.598 0.630 0.646

X:40-30 0.547 0.581 0.585 0.627 X:40-30 0.621 0.631 0.693 0.702

Y:20-60 0.557 0.589 0.585 0.616 Y:20-60 0.498 0.507 0.544 0.557

Y:20-30 0.587 0.626 0.604 0.640 Y:20-30 0.523 0.535 0.569 0.583

Y:40-60 0.586 0.612 0.613 0.642 Y:40-60 0.513 0.529 0.571 0.591

Y:40-30 0.551 0.569 0.569 0.585 Y:40-30 0.478 0.486 0.554 0.574

Z:20-60 0.488 0.552 0.548 0.621 Z:20-60 0.495 0.524 0.517 0.543

Z:20-30 0.505 0.573 0.563 0.638 Z:20-30 0.494 0.512 0.535 0.546

Z:40-60 0.524 0.582 0.567 0.630 Z:40-60 0.377 0.402 0.438 0.464

Z:40-30 0.473 0.511 0.511 0.557 Z:40-30 0.533 0.553 0.620 0.642

X:20-60 0.554 0.561 0.609 0.623 X:20-60 0.574 0.644 0.634 0.714

X:20-30 0.535 0.540 0.595 0.605 X:20-30 0.569 0.628 0.631 0.702

X:40-60 0.526 0.550 0.583 0.602 X:40-60 0.592 0.642 0.649 0.698

X:40-30 0.507 0.511 0.570 0.574 X:40-30 0.584 0.630 0.639 0.692

Y:20-60 0.570 0.596 0.620 0.650 Y:20-60 0.505 0.548 0.540 0.584

Y:20-30 0.546 0.562 0.609 0.625 Y:20-30 0.500 0.551 0.549 0.601

Y:40-60 0.548 0.562 0.603 0.616 Y:40-60 0.515 0.578 0.571 0.631

Y:40-30 0.496 0.497 0.563 0.557 Y:40-30 0.527 0.595 0.613 0.680

Z:20-60 0.512 0.560 0.582 0.637 Z:20-60 0.538 0.612 0.567 0.647

Z:20-30 0.454 0.488 0.538 0.582 Z:20-30 0.564 0.643 0.603 0.688

Z:40-60 0.478 0.513 0.555 0.599 Z:40-60 0.479 0.560 0.553 0.641

Z:40-30 0.440 0.454 0.531 0.560 Z:40-30 0.463 0.526 0.533 0.589

X:20-60 0.635 0.680 0.692 0.735 X:20-60 0.467 0.478 0.518 0.525

X:20-30 0.630 0.657 0.696 0.730 X:20-30 0.479 0.491 0.521 0.534

X:40-60 0.619 0.668 0.653 0.711 X:40-60 0.475 0.493 0.540 0.558

X:40-30 0.610 0.635 0.672 0.713 X:40-30 0.460 0.479 0.573 0.593

Y:20-60 0.547 0.561 0.594 0.600 Y:20-60 0.558 0.577 0.619 0.635

Y:20-30 0.567 0.566 0.602 0.597 Y:20-30 0.570 0.583 0.648 0.667

Y:40-60 0.550 0.561 0.602 0.620 Y:40-60 0.572 0.585 0.633 0.649

Y:40-30 0.579 0.588 0.667 0.680 Y:40-30 0.562 0.571 0.656 0.672

Z:20-60 0.534 0.554 0.613 0.636 Z:20-60 0.509 0.537 0.537 0.558

Z:20-30 0.564 0.582 0.625 0.649 Z:20-30 0.529 0.567 0.557 0.597

Z:40-60 0.525 0.539 0.607 0.634 Z:40-60 0.526 0.555 0.564 0.600

Z:40-30 0.530 0.533 0.626 0.642 Z:40-30 0.493 0.518 0.554 0.590

846

896

900

902

903

904

Baseline Axon-basedAxon-basedBaseline
Subject Case Subject Case
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APPENDIX B: DIMENSIONAL ANALYSIS AND SCALING 

The scaling technique, which forms the basis for dimensional analysis (Langhaar, 1951) , 

was widely used in biomechanics in an attempt to account for the effect of various sizes on the 

biomechanical responses. The essential idea of dimensional analysis assumes geometric similarity 

between the two objects scaled from and to, the relationship of the biomechanical responses 

between these two objects can thus be derived from the ratios of their fundamental properties 

(Table A2). In biomechanics, the three basic quantities are usually taken as length, mass density, 

and Young’s modulus. Constant mass density (𝜆𝜌 = 1) was normally assumed for biological 

material. When using the notion of scaling in biomechanics, another underlying assumption was 

that the structures demonstrate linear stress-strain behavior up to the point of injury/failure. This 

latter assumption is of course not strictly fulfilled considering that very few, if any, biological 

tissues demonstrate perfectly linear stress-strain behavior, but was regarded as reasonable 

approximation considering the large variability associated with the testing of biological tissues. 

Table A2. Scaling Factors Derived from Dimensional Analysis. 

Physical quantities Scaling factor 

Characteristic Length (basic quantities)  𝜆𝑙 

Young’s Modulus (basic quantities) 𝜆𝐸 

Density (basic quantities) 𝜆𝜌 = 1 

Angle 1 

Force 𝜆𝐹 = 𝜆𝑙
2𝜆𝐸 

Moment 𝜆𝑀 = 𝜆𝑙
3𝜆𝐸 

Deflection 𝜆𝑙 

Stiffness 𝜆𝑘 = 𝜆𝑙𝜆𝐸 

Time 𝜆𝑡 = 𝜆𝑙(𝜆𝐸)
−1/2 

Kinetic Energy 𝜆𝐾𝐸 = (𝜆𝑙)
3𝜆𝐸 

Velocity 𝜆𝑣 = (𝜆𝐸)
1/2

 

Angular acceleration 𝜆𝛼 = 𝜆𝐸(𝜆𝑙)
−2

 

Angular velocity 𝜆𝜔 = (𝜆𝐸)
1/2
(𝜆𝑙)

−1
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Mass Scaling 

In biomechanical application, the most conventional scaling approach is a simplification 

of dimensional analysis by assuming constant linear material properties and deriving a direction-

independent characteristic length from mass, 𝜆𝑙 = (𝜆𝑚)
1/3 . The scaling relationship of other 

physical quantities between two subjects can be simply derived by knowing the mass ratios based 

on this method, the so-called mass scaling. 

Frequency Scaling Principles: Dimensional Analysis of the sDOF Model. 

In the case of interspecies scaling, the geometric similarity between brains of different 

species is dubious, but their tissue responses with respect to a broad range of loading conditions 

can be characterized using simple mechanical systems. The similarity between the mechanical 

systems can be fulfilled, and it can be shown that the response of a pair of sDOF systems (equal 

in 𝜁 and 𝛽) can be scaled based on the ratio of natural frequency, which is the alternative basic 

quantity incorporating length and Young’s modulus, as detailed in the followings. 

A pair of damped, sDOF mechanical systems with base excitation (Figure A7) was applied 

to imitate the maximum brain deformation under rotation head motion.  

 

Figure A7. A sDOF mechanical system with sinusoid acceleration base excitation.  

The equation of motion for this system is given by the following expression: 
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𝑚�̈� + 𝑐�̇� + 𝑘𝑦 = 𝑐�̇� + 𝑘𝑥 (1) 

Where 𝑦 and 𝑥 are the displacements of the base and mass, and 𝑚, 𝑐, and 𝑘 are the system 

parameters for the mass, damping, and stiffness, respectively. The relative base-mass 

displacement, 𝛿 = 𝑥 − 𝑦, was assumed to be an analog for brain deformation due to the rotational 

head motion. Substituting parameters for the system natural frequency, 𝜔𝑛 = √𝑘/𝑚, and damping 

ratio, 𝜁 = 𝑐 √4𝑚𝑘⁄ , Eq. (1) can be rewritten in the following form: 

�̈�(𝑡) + 2𝜁 𝜔𝑛�̇�(𝑡) + 𝜔𝑛
2𝛿 = �̈�(𝑡) (2) 

In which �̈�(𝑡) is a pulse base excitation that is fully defined by the parameters 𝛼 (angular 

acceleration) and 𝜔 (angular velocity). The maximum magnitude of the relative displacement 

variable, 𝛿𝑚 = max (δ(𝑡)) , was assumed to be an analog (correlate) for maximum brain 

deformation. Further details on the analytical solution to Eq. (2) were provided in Gabler et al. 

(2018). Here we provide a proof with rigorous dimensional analysis to show that the 𝛿𝑚 responses 

of the paired systems (equal damping ratios) with different natural frequencies can be scaled based 

on the ratio of natural frequency in the following manner: 

Angular velocity: 𝜔ℎ = 𝜆𝜔𝜔𝑎 =
𝜔𝑛ℎ

𝜔𝑛𝑎
𝜔𝑎 (3) 

Angular acceleration:𝛼ℎ = 𝜆𝛼𝛼𝑎 = (
𝜔𝑛ℎ

𝜔𝑛𝑎
)2𝛼𝑎 (4) 

The maximum relative displacement of the sDOF model, 𝛿𝑚  is a function of the 

coefficients of the mechanical system (𝜔𝑛, 𝜁), and the characteristics of the pulse (𝛼, 𝜔), giving 

𝛿𝑚 = 𝑓(𝜔𝑛, 𝜁, 𝛼, 𝜔) (5) 

In the case of Eq. 5, the five variables involve only two independent dimensions (r = 2), 

that of length [L] and time [T]. According to Buckingham’s Π-theorem, the number of independent 

dimensionless Π-products is equal to the number of physical variables appearing in Eq. 5 (five 
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variables) minus the number of reference dimensions (two). Therefore, for a sDOF system 

subjected to an acceleration pulse, we have 5 − 2 = 3 Π-terms. Since we are focusing on the 

response to pulse-type motions, the obvious choices for the repeating variables are the 

characteristics of the pulse 𝛼, and 𝜔, which gives Π1 = 𝛿𝑚
𝜔2

𝛼
 , Π2 =

𝜔𝑛

𝜔
 and Π3 = 𝜁. With the 

three Π-terms established, Eq. (5) reduces to 

𝛿𝑚
𝜔2

𝛼
= 𝑓(

𝜔𝑛
𝜔
, 𝜁) (6) 

A pair of sDOF systems can be defined by a set of parameters (𝜔𝑛1, 𝜁1, 𝛼1, 𝜔1, 𝛿𝑚1) and 

(𝜔𝑛2, 𝜁2, 𝛼2, 𝜔2, 𝛿𝑚2) respectively. Given 𝜔𝑛2 = 𝜆𝜔𝑛1 and 𝜁2 = 𝜁1, then according to Eq. (6), the 

first system follows that 

𝛿𝑚1

𝜔1
2

𝛼1
= 𝑓(

𝜔𝑛1

𝜔1
, 𝜁1) (7) 

The second system follows that 

𝛿𝑚2

𝜔2
2

𝛼2
= 𝑓(

𝜔𝑛2

𝜔2
, 𝜁2) (8) 

Which can be rewritten as 

𝛿𝑚2

𝜔2
2

𝛼2
= 𝑓(

𝜆𝜔𝑛1

𝜔2
, 𝜁1) (9) 

If the excitation of the second system satisfies the following relationship 𝜔2 = 𝜆𝜔1 and 

𝛼2 = 𝜆2𝛼1, where 𝜆 = 𝜔𝑛2/𝜔𝑛1, then Eq. (9) can be rewritten as 

𝛿𝑚2

𝜔1
2

𝛼1
= 𝑓(

𝜆𝜔𝑛1

𝜔1
, 𝜁1) (10) 

We can induct that 𝛿𝑚2 = 𝛿𝑚1 by comparing Eq. (10) with Eq. (7).  
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Fitted values for the uniaxial parameters of the paired sDOF models. 

Table A3. Fitted values for the uniaxial parameters of the paired sDOF models. 

Species Parameters 
MPS (95th) MAS (95th) 

Coronal Sagittal Axial Coronal Sagittal Axial 

All 

𝑅2 0.974 0.973 0.914 0.950 0.975 0.891 

𝜁 0.900 0.950 0.600 0.750 0.880 0.550 

𝛽 0.189 0.197 0.126 0.336 0.471 0.276 
Macaque 𝑓𝑚 (Hz) 194.1 155.2 219.2 213.9 131.4 194.7 

Baboon 𝑓𝑏  (Hz) 148.0 116.3 167.2 162.9 100.0 149.4 

Human 𝑓ℎ (Hz) 56.6 49.8 74.9 62.4 41.9 68.6 

 

Comparison of Scaled Response Surfaces under Uniaxial Rotations 

Figure A8 – A10 illustrate the scaled animal response surfaces using different scaling 

methods and the comparison between them with the human responses. 
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Figure A8. Scaled Macaque MPS (95th) response surfaces. 
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Figure A9. Scaled Baboon MPS (95th) response surfaces. 
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Figure A10. Scaled macaque MAS (95th) response surfaces. 
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Figure A11. Scaled baboon MAS (95th) response surfaces. 

Robustness of the Scaling Methods 

To test the robustness of the frequency scaling method and the optimal scaling method 

discussed in Chapter 6, 100 subsets were randomly sampled (10 human cases, 10 baboon cases) 

from the whole dataset (57 human cases, 58 baboon cases) to calculate the scaling factors. If the 

methodology is robust, the scaling factors obtained using the subsets, and the whole dataset should 

be similar. The smaller variations of frequency-based factors show the better robustness of this 

scaling method (Figure A12). 
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Figure A12. Scaling factors (under sagittal rotation) calculated based on different scaling methods. (a) 

frequency scaling, (b) optimal scaling method, and (c) constrained optimal scaling method. 
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APPENDIX C: BIOMECHANICAL INJURY DATA 

Table A4. Non-Human primate injury data used in this dissertation. 

ID Source Species 

Brain 

Mass 

(grams) 

Injury 

Description 

AIS 

Coding 
Severity Symptoms 

2-004 UMTRI rhesus  88 no injury 0 no injury No 

3-012 UMTRI rhesus  81 concussion 2 mild 
Unconscious < 15 

minutes 

2-013 UMTRI rhesus  88 no injury 0 no injury Slight dazed* 

2-014 UMTRI rhesus 86 Dead, ICH 6 severe Dead 

2-015 UMTRI rhesus  88 no injury 0 no injury No* 

2-019 UMTRI cynomolgus 64 no injury 0 no injury No* 

2-020 UMTRI cynomolgus 54 Concussion 2 mild 
Unconscious < 15 

minutes 

2-024 UMTRI rhesus  111 Concussion 2-3 mild Dazed 2 min 

2-025 UMTRI rhesus  105 
concussion, 

skull fracture 
2-3 mild 

Unconscious < 15 

minutes 

2-027 UMTRI rhesus  100 
contusion, 

DAI 
4 severe 

Unconscious > 15 

minutes 

2-030 UMTRI rhesus  112 
concussion, 

skull fracture 
2 mild Dazed 1 min 

2-031 UMTRI rhesus  112 
concussion, 

skull fracture 
2 mild 

Unconscious < 15 

minutes 

2-089 UMTRI cynomolgus 57 DAI, ICH 5 severe 
Unconscious > 15 

minutes 

2-090 UMTRI cynomolgus 57 
concussion, 

skull fracture 
3 mild 

Unconscious < 15 

minutes 

2-092 UMTRI cynomolgus 67 ICH 3 mild 
Unconscious < 15 

minutes 

2-093 UMTRI cynomolgus 78 fracture, ICH 5-6 severe 
Unconscious < 15 

minutes 

2-096 UMTRI baboon 163 fracture, ICH 5 Severe 
Unconscious > 15 

minutes 

402 JARI 
Japanese 

macaque 
107 no injury 0 no injury No* 

542 JARI 
Japanese 

macaque 
110 no injury 0 no injury No* 

541 JARI 
Japanese 

macaque 
111 no injury 0 no injury No* 

529 JARI 
Japanese 

macaque 
130 no injury 0 no injury No* 

539 JARI cynomolgus 71 no injury 0 no injury No* 

B01 UPenn baboon 143 DAI 4-5 severe N/A** 

B10 UPenn baboon 160 DAI 4-5 severe N/A** 

B100 UPenn baboon 134 DAI 4-5 severe N/A** 
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B101 UPenn baboon 130 DAI 4-5 severe N/A** 

B11 UPenn baboon 153 DAI 4-5 severe N/A** 

B20 UPenn baboon 112 DAI 4-5 severe N/A** 

B23 UPenn baboon 139 DAI 4-5 severe N/A** 

B30 UPenn baboon 169 DAI 4-5 severe N/A** 

B32 UPenn baboon 124 DAI 4-5 severe N/A** 

B33 UPenn baboon 149 DAI 4-5 severe N/A** 

B35 UPenn baboon 125 DAI 4-5 severe N/A** 

B37 UPenn baboon 150 DAI 4-5 severe N/A** 

B92 UPenn baboon 156 DAI 4-5 severe N/A** 

BB2 UPenn baboon 116 DAI 4-5 severe N/A** 

BB3 UPenn baboon 105 DAI 4-5 severe N/A** 

BB6 UPenn baboon 128 DAI 4-5 severe N/A** 

BB7 UPenn baboon 139 DAI 4-5 severe N/A** 

BB8 UPenn baboon 136 DAI 4-5 severe N/A** 

BB9 UPenn baboon 126 DAI 4-5 severe N/A** 

RR18 UPenn baboon 81 DAI 4-5 severe N/A** 

RR21 UPenn baboon 101 DAI 4-5 severe N/A** 

RR22 UPenn baboon 96 DAI 4-5 severe N/A** 

1098 UPenn rhesus  80 DAI 4-5 severe N/A** 

1106 UPenn baboon 115 DAI 4-5 severe N/A** 

1108 UPenn baboon 140 DAI 4-5 severe N/A** 

1109 UPenn baboon 160 DAI 4-5 severe N/A** 

1112 UPenn baboon 155 DAI 4-5 severe N/A** 

1114 UPenn baboon 170 DAI 4-5 severe N/A** 

1115 UPenn baboon 160 DAI 4-5 severe N/A** 

1116 UPenn baboon 140 DAI 4-5 severe N/A** 

1121 UPenn baboon 152 DAI 4-5 severe N/A** 

1125 UPenn baboon 124 DAI 4-5 severe N/A** 
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1126 UPenn baboon 149 DAI 4-5 severe N/A** 

1127 UPenn baboon 129 DAI 4-5 severe N/A** 

1131 UPenn baboon 140 DAI 4-5 severe N/A** 

1135 UPenn baboon 135 DAI 4-5 severe N/A** 

1136 UPenn baboon 138 DAI 4-5 severe N/A** 

1137 UPenn baboon 140 DAI 4-5 severe N/A** 

1139 UPenn baboon 149 DAI 4-5 severe N/A** 

1140 UPenn baboon 147 DAI 4-5 severe N/A** 

1141 UPenn baboon 152 DAI 4-5 severe N/A** 

1142 UPenn baboon 140 DAI 4-5 severe N/A** 

1143 UPenn baboon 163 DAI 4-5 severe N/A** 

1144 UPenn baboon 140 DAI 4-5 severe N/A** 

1145 UPenn baboon 140 DAI 4-5 severe N/A** 

1149 UPenn baboon 148 DAI 4-5 severe N/A** 

1154 UPenn baboon 126 DAI 4-5 severe N/A** 

1156 UPenn baboon 140 DAI 4-5 severe N/A** 

1157 UPenn baboon 140 DAI 4-5 severe N/A** 

1158 UPenn baboon 130 DAI 4-5 severe N/A** 

1159 UPenn baboon 134 DAI 4-5 severe N/A** 

1160 UPenn baboon 140 DAI 4-5 severe N/A** 

1161 UPenn baboon 140 DAI 4-5 severe N/A** 

1162 UPenn baboon 140 DAI 4-5 severe N/A** 

1163 UPenn baboon 140 DAI 4-5 severe N/A** 

1164 UPenn baboon 140 DAI 4-5 severe N/A** 

*No symptom, or very minor symptom, which might be caused by invasive instrumentation instead of 

impact. 

** The histopathological identification of DAI was dependent upon the visualization of abnormal axonal 

profiles, but Individual information is unavailable. 
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APPENDIX D: KINEMATICS-BASED INJURY METRICS 

The kinematics-based head and brain injury metrics included in this study are summarized 

in Table A4 with corresponding constraints and critical values. A brief description of each metric 

is provided in the following sections.  

Table A5. Existing kinematic-based brain injury metrics and recommended critical values. 

Metrics Formulation Constraints and Critical Values 

𝐚𝐦𝐚𝐱 Peak resultant linear acceleration -- 
𝛚𝐦𝐚𝐱 Peak resultant angular velocity -- 
𝛂𝐦𝐚𝐱 Peak resultant angular acceleration -- 
HIC Eq. (11) 𝑡1 - 𝑡2 ≤ 15 ms 

CP Eq. (12) β0 = -10.2, β1 = 4.33E-2, β2 = 8.73E-4, 

β3 = -9.20E-7. 
BrIC Eq. (13) 𝜔𝑥𝑐𝑟 = 66.25, 𝜔𝑦𝑐𝑟 = 56.45, 𝜔𝑧𝑐𝑟  = 42.87. 

CIBIC Eq. (14) 

A standard linear solid model (Maxwell) 

𝑘1𝑥  = 12.76, 𝑘1𝑦  = 16.39, 𝑘1𝑧 = 17.04, 𝑘2𝑥 = 22.67, 

𝑘2𝑦 = 31.63, 𝑘2𝑧 = 47.52, 𝑐𝑥 = 129.1, 𝑐𝑦 = 120.4, 𝑐𝑧 

= 74.4, 𝐵𝑥 = 0.00313, 𝐵𝑦 = 0.00395, 𝐵𝑧 = 0.00494. 

UBRIC Eq. (15) 
𝜔𝑥𝑐𝑟 = 211, 𝛼𝑥𝑐𝑟 = 20× 103, 𝜔𝑦𝑐𝑟  = 171, 𝛼𝑦𝑐𝑟 = 

10.3 × 103, 𝜔𝑧𝑐𝑟 = 115, 𝛼𝑧𝑐𝑟 = 7.76× 103. 

DAMAGE 
A three-degree-of-freedom, coupled 2nd-

order system 

𝑘𝑥 = 32819.8 N/m, 𝑘𝑦 = 23658.6 N/m, 𝑘𝑧 = 17080.8 

N/m, 𝑘𝑥𝑦 = 0, 𝑘𝑦𝑧 = 0, 𝑘𝑧𝑥 = 1815.8 N/m, a1 = 5.6 

ms, B = 2.995 1/m. 

 

Head Injury Criterion (HIC) 

Head injury criterion (HIC), originally proposed by Versace (1971) and later adopted by 

NTHSA, is by far the most widely used measure of the risk of injury to the brain from a blunt 

impact to the head. Early cadaver experiments formed the basis for the development of the HIC, 

as a passing reference to the linear acceleration required to produce linear fractures on the skull 

was found. Using the HIC as an indication of the brain injury is a considerable extrapolation from 

the original tests, depending on an unlikely assumption that a linear skull fracture was probably 

accompanied by a concussion.  
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HIC = max
(𝑡1,𝑡2)

{(𝑡2 − 𝑡1) [
1

𝑡2 − 𝑡1
∫|𝒂(𝑡)|𝑑𝑡

𝑡2

𝑡1

]

2.5

} (11) 

Combined Probability of Concussion (CP) 

CP was an injury risk function developed by Rowson and Duma (2013) to predict the risk 

of concussion experienced by football athletes. The formulation of the kinematic metric (Eq. 12) 

is the result of a multivariate logistic regression analysis considering maximum resultant linear 

and angular acceleration as predictors. In developing this risk curve, the weighting between the 

sub-concussive and concussive data distributions was adjusted to consider concussion incidence 

rates experienced in football and the rates of undiagnosed concussions. 

𝐶𝑃 = 𝛽0 + 𝛽1𝑎𝑚𝑎𝑥 + 𝛽2𝛼𝑚𝑎𝑥 + 𝛽3𝑎𝑚𝑎𝑥𝛼𝑚𝑎𝑥 (12) 

Brain Injury Criterion (BrIC) 

BrIC, proposed by Takhounts et al. (2013), is formulated using the maximum magnitudes 

of the three orthogonal head angular velocity components: 

𝐵𝑟𝐼𝐶 = √(
𝜔𝑥
𝜔𝑥𝑐𝑟

)
2

+ (
𝜔𝑦

𝜔𝑦𝑐𝑟
)

2

+ (
𝜔𝑧
𝜔𝑧𝑐𝑟

)
2

 (13) 

where 𝜔𝑖𝑐𝑟 , (𝑖 = 𝑥, 𝑦, 𝑧) are directionally dependent critical values that were determined 

using FE modeling. 

Convolution of Impulse Response for Brain Injury Criterion (CIBIC) 

CIBIC was also proposed based on the analogy between a simple mechanical system 

(Figure A13) and the rotational response of a human FE head-brain model by the following 

formula. 
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CIBIC = max{√∑ {∫ 𝑥𝑖(𝑡 − 𝜏)𝛼𝑖(𝜏)𝑑𝜏
𝑡

0

}

23

𝑖=1
} (14) 

Where 𝑖 = 1,2,3 represent the x, y and z axis and 𝛼𝑖 is rotational acceleration.  

 

Figure A13. 1D (standard linear solid) model (Takahashi and Yanaoka, 2017). 

 

Universal Brain Injury Criterion (UBrIC) 

Based on the governing relationship between excitation and maximum deformation of a 

second-order system, the UBrIC was proposed by Gabler et al. (2018): 

𝑈𝐵𝑟𝐼𝐶 = {∑ [𝜔𝑖
∗ + (𝛼𝑖

∗ −𝜔𝑖
∗)𝑒

−
𝛼𝑖
∗

𝜔𝑖
∗
]

2

𝑖
}

1
2

 (15) 

where 𝜔𝑖
∗  and 𝛼𝑖

∗  are the directionally dependent (𝑖 = 𝑥, 𝑦, 𝑧) maximum magnitudes of 

head angular velocity and angular acceleration each normalized by a critical value (𝑐𝑟); 𝜔𝑖
∗ =

𝜔𝑖 𝜔𝑖𝑐𝑟⁄  and 𝛼𝑖
∗ = 𝛼𝑖 𝛼𝑖𝑐𝑟⁄ . The critical values normalize the metric to maximum brain strain and 

control the transition between velocity and acceleration dependent deformations. 

Diffuse Axonal Multi-Axial General Evaluation (DAMAGE) 

The second rotational-based brain injury criterion proposed by Gabler et al. (2019) was 

DAMAGE. DAMAGE is based on a three-degree-of-freedom, coupled 2nd-order multibody (MB) 
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system (Figure A14) The MB model predicts maximum brain strain (or DAMAGE value) using 

the directionally dependent (triaxial) angular acceleration time-histories from a head impact as 

inputs based on the equations of motion. The internal parameters for the MB model (including the 

effective mass, stiffness, and damping parameters, Table A4) were determined using simplified 

rotational pulses which were applied multiaxially to a 50th percentile adult human male finite 

element model (GHBMC). The MB model can predict global tissue-level strain responses with the 

accuracy similar to an FE model while maintaining the computational simplicity of a kinematic-

based metric. 

 
Figure A14. The mechanical analog to the second-order system used to formulate the DAMAGE metric 

(Gabler et al., 2018b). 
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APPENDIX E: INJURY RISK FUNCTIONS 

This section provides details on the developed tissue-level injury risk functions (Table A5) 

and existing injury risk functions (Table A6) referred to in this dissertation. 

Table A6. Coefficients of newly developed injury risk functions. 

Metrics Unit mTBI sTBI 

Scale Shape 50% Risk Figure Scale Shape 50% Risk Figure 

MPS95 -- 0.276 6.057 0.26 A15  0.391 8.707 0.37 A16 

MAS95 -- 0.132 5.452 0.12 A17 0.198 7.970 0.19 A18 

VMS95 kPa 3.217 3.397 2.89 A19 8.234 4.750 7.62 A20 

 

Table A7. Summary of existing injury risk functions and injury tolerances referred to in this dissertation. 

Metric Reference 
Injury 

Assessment Type 

Data Source for 

Development 
Equation 

Coefficients or 

tolerances* 

𝒂𝒎𝒂𝒙 
Pellman et al., 

(2003) 
Concussion Football reconstructions 16 

β0 = -4.90; 

β1 = 6.06E-2 

𝜶𝒎𝒂𝒙 
Rowson et al., 

(2012) 
Concussion 

Football impacts measured 

with wearable sensors 
16 

β0 = -12.5; 

β1 = 2.00E-3 

𝝎𝒎𝒂𝒙 
Rowson et al., 

(2012) 
Concussion 

Football impacts measured 

with wearable sensors 
16 

β0 = -12.5; 

β1 = 4.42E-1 

HIC NHTSA, (1995) 
Skull Fracture, 

TBI, AIS2+ 
Human cadavers 18 

β0 = -2.49; 

β1 = -200; 

β2 = 4.83E-3 

HIC NHTSA, (1995) 
Skull Fracture, 

TBI, AIS4+ 
Human cadavers 18 

β0 = -4.9; 

β1 = -200; 

β2 = 3.51E-3 

CP 
Rowson & 

Duma, (2013) 
Concussion 

Football impacts measured 

with wearable sensors 
19 

β0 = -10.2; 

β1 = 4.33E-2; β2 = 

8.73E-4; β3 = -9.20E-7 

BrIC 

(MPS) 

Takhounts et al., 

(2013) 

Concussion, 

AIS2+ 
Scaled animal impact data 17 

b = 0; 

λ = 0.602; 

k = 2.84 

BrIC 

(MPS) 

Takhounts et al., 

(2013) 

DAI, 

AIS4+ 
Scaled animal impact data 17 

b = 0; 

λ = 1.204; 

k = 2.84 

BrIC 

(CSDM) 

Takhounts et al., 

(2013) 

Concussion, 

AIS2+ 
Scaled animal impact data 17 

b = 0.523; 

λ = 0.324; 

k = 1.8 

BrIC 

(CSDM) 

Takhounts et al., 

(2013) 

DAI, 

AIS4+ 
Scaled animal impact data 17 

b = 0.523; 

λ = 0.647; 

k = 1.8 

*Adapted from (Sanchez et al., 2017) 

𝑃(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
 (16) 

𝑃(𝑥) = 1 − 𝑒
−(

𝑥−𝑏
𝜆

)
𝑘

 (17) 
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𝑃(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝐻𝐼𝐶
−1+𝛽2𝐻𝐼𝐶)

 (18) 

𝑃(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑎𝑚𝑎𝑥+𝛽2𝛼𝑚𝑎𝑥+𝛽3𝑎𝑚𝑎𝑥𝛼𝑚𝑎𝑥)
 (19) 

 

Figure A15. Mild brain injury risk curves based on MPS95. 
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Figure A16. Severe brain injury risk curves based on MPS95. 
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Figure A17. Mild brain injury risk curves based on MAS95. 
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Figure A18. Severe brain injury risk curves based on MAS95. 
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Figure A19. Mild brain injury risk curves based on VMS95. 
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Figure A20. Severe brain injury risk curves based on VMS95. 
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Complex head kinematics collected from automotive impacts, football impacts, and volunteer tests. 

Figure A21. MPS95 results of complex head kinematics compared with the results of idealized uniaxial 

motion. 
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APPENDIX F: HEAD KINEMATICS DATABASE 

Table A8. Complex head kinematics to evaluate frequency scaling in Chapter 6. 

ID Impact Condition Surrogate# 

Case059HD01* helmet to helmet dummy reconstruction of on-field football impact; the striking player H-III 

Case069HD01* helmet to helmet dummy reconstruction of on-field football impact; the striking player H-III 

Case071HD02MTBI* helmet to helmet dummy reconstruction of on-field football impact; struck player H-III 

Case084HD02MTBI* helmet to helmet dummy reconstruction of on-field football impact; struck player H-III 

Case092HD02MTBI* helmet to helmet dummy reconstruction of on-field football impact; struck player H-III 

Case098HD02MTBI* helmet to helmet dummy reconstruction of on-field football impact; struck player H-III 

SUV P1** vehicle sled laterally into a pedestrian PMHS, F 

CEN1325** 
vehicle into a barrier at 0deg, 25% offset, small overlap, an occupant on the left front 

seat 
H-III 

CEN1328** 
vehicle into a barrier at 0deg, 25% offset, small overlap, an occupant on the left front 

seat 
H-III 

CEN1507** 
vehicle into a barrier at 0deg, 25% offset, small overlap, an occupant on the left front 

seat 
H-III 

7429-01** impactor into a vehicle at 15deg, 35% offset, left front seat THOR 

H03-93-A** padded linear impactor into the helmeted head, oblique facemask H-III 

H11-93-UT** padded linear impactor into the helmeted head, side of facemask H-III 

H3-5-22** padded pendulum impactor at 0 deg into head CG H-III, F 

Reference: * (Sanchez et al., 2018); **(Gabler et al., 2018a). 

#50TH Male surrogate unless specified otherwise. 
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Table A9. Head kinematics in automotive conditions. 

Sources ID Type Vehicle Details Seat* Surrogate# 
∆V 

(km/h) 

NHTSA 4303-01 frontal 2003 HONDA PILOT full overlap 01 H-III 55.9 

NHTSA 4273-01 frontal 2002 MINI COOPER full overlap 01 H-III 56.2 

NHTSA 4198-01 frontal 2002 SATURN VUE full overlap 01 H-III 56.3 

NHTSA 3916-01 frontal 2002 TOYOTA SEQUOIA full overlap 01 H-III 56.3 

NHTSA 4250-01 frontal 2002 KIA SPECTRA full overlap 01 H-III 55.7 

NHTSA 4251-01 frontal 2002 SUBARU LEGACY full overlap 01 H-III 56.8 

NHTSA 4090-01 frontal 2002 MITSUBISHI LANCER full overlap 01 H-III 56.3 

NHTSA 4264-01 frontal 2002 SUBARU IMPREZA full overlap 01 H-III 55.6 

NHTSA 4215-01 frontal 2002 NISSAN ALTIMA full overlap 01 H-III 56.3 

NHTSA 4259-01 frontal 2003 CADILLAC CTS full overlap 01 H-III 56.7 

NHTSA 3987-01 frontal 2002 LEXUS ES300 full overlap 01 H-III 56.6 

NHTSA 4235-01 frontal 
2002 LAND ROVER 

DISCOVERY II 
full overlap 01 H-III 55.7 

NHTSA 3901-01 frontal 2002 CHEVROLET BLAZER full overlap 01 H-III 55.9 

NHTSA 4241-01 frontal 2002 ISUZU RODEO full overlap 01 H-III 56.5 

NHTSA 5287-01 frontal 2005 SUZUKI VERONA full overlap 01 H-III 55.8 

NHTSA 5567-01 frontal 2006 HUMMER H3 full overlap 01 H-III 56.3 

NHTSA 5595-01 frontal 
2006 SUZUKI GRAND 

VITARA 
full overlap 01 H-III 56.8 

NHTSA 5609-01 frontal 2006 TOYOTA 4RUNNER full overlap 01 H-III 56.3 

NHTSA 7966-01 frontal 2013 NISSAN ALTIMA full overlap 01 H-III 56.2 

NHTSA 7977-01 frontal 2013 BMW X5 full overlap 01 H-III 56.1 

NHTSA 7978-01 frontal 
2013 VOLKSWAGEN 

TIGUAN 
full overlap 01 H-III 56.4 

NHTSA 7989-01 frontal 2013 CADILLAC XTS full overlap 01 H-III 56.2 

NHTSA 8000-01 frontal 
2013 HYUNDAI SANTA FE 

SPORT 
full overlap 01 H-III 56.3 

NHTSA 8024-01 frontal 2013 AUDI A4 full overlap 01 H-III 56.2 

NHTSA 8035-01 frontal 2013 HONDA ACCORD full overlap 01 H-III 56.3 

NHTSA 8045-01 frontal 2013 CADILLAC ATS full overlap 01 H-III 56.2 

NHTSA 8048-01 frontal 2013 DODGE CHALLENGER full overlap 01 H-III 56.4 

NHTSA 8055-01 frontal 2013 LEXUS IS250 full overlap 01 H-III 56.2 

NHTSA 8064-01 frontal 2013 VOLKSWAGEN BEETLE full overlap 01 H-III 56.8 

NHTSA 8068-01 frontal 2013 NISSAN SENTRA full overlap 01 H-III 56.2 

NHTSA 8071-01 frontal 2013 FORD CMAX HYBRID full overlap 01 H-III 56.4 

NHTSA 8077-01 frontal 2013 FORD FUSION HYBRID full overlap 01 H-III 56.3 

NHTSA 8081-01 frontal 2013 FORD FOCUS BEV full overlap 01 H-III 56.4 

NHTSA 8091-01 frontal 2013 MERCEDES ML350 full overlap 01 H-III 56.2 

NHTSA 8106-01 frontal 2013 TOYOTA PRIUS V full overlap 01 H-III 56.6 

NHTSA 8153-01 frontal 2013 TOYOTA PRIUS C full overlap 01 H-III 55.7 

NHTSA 8151-01 frontal 2013 FORD CMAX ENERGI full overlap 01 H-III 56.4 

NHTSA 8156-01 frontal 2013 HONDA CIVIC full overlap 01 H-III 56.2 
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Sources ID Type Vehicle Details Seat* Surrogate# 
∆V 

(km/h) 

IIHS 
CEN121

9 
frontal 2012 HYUNDAI SONATA small overlap 01 H-III 64.4 

IIHS 
CEN122

0 
frontal 2012 MAZDA 6 small overlap 01 H-III 64.4 

IIHS 
CEN122

1 
frontal 2012 SUZUKI KIZASHI small overlap 01 H-III 64.4 

IIHS 
CEN122

2 
frontal 2013 FORD ESCAPE small overlap 01 H-III 64.4 

IIHS 
CEN122

3 
frontal 2012 HONDA CR-V small overlap 01 H-III 64.4 

IIHS 
CEN122

4 
frontal 2012 NISSAN ROGUE small overlap 01 H-III 64.4 

IIHS 
CEN122

5 
frontal 2012 KIA OPTIMA small overlap 01 H-III 64.4 

IIHS 
CEN122

6 
frontal 2012 JEEP PATRIOT small overlap 01 H-III 64.4 

IIHS 
CEN122

7 
frontal 

2012 MITSUBISHI 

OUTLANDER SPORT 
small overlap 01 H-III 64.4 

IIHS 
CEN122

8 
frontal 2013 SUBARU LEGACY small overlap 01 H-III 64.4 

IIHS 
CEN122

9 
frontal 2013 HONDA ACCORD small overlap 01 H-III 64.4 

IIHS 
CEN123

0 
frontal 2012 NISSAN MAXIMA small overlap 01 H-III 64.4 

IIHS 
CEN123

1 
frontal 2013 NISSAN ALTIMA small overlap 01 H-III 64.4 

IIHS 
CEN123

2 
frontal 2012 VOLKSWAGEN PASSAT small overlap 01 H-III 64.4 

IIHS 
CEN123

3 
frontal 2012 VOLKSWAGEN JETTA small overlap 01 H-III 64.4 

IIHS 
CEN123

4 
frontal 2013 HONDA ACCORD small overlap 01 H-III 64.4 

IIHS 
CEN123

5 
frontal 2013 JEEP WRANGLER small overlap 01 H-III 64.4 

IIHS 
CEN123

6 
frontal 2013 FORD FUSION small overlap 01 H-III 64.4 

IIHS 
CEN151

5 
frontal 2015 NISSAN MURANO small overlap 01 H-III 64.4 

IIHS 
CEN151

8 
frontal 2015 AUDI Q5 small overlap 01 H-III 64.4 

NHTSA 6370-01 frontal 2007 FORD FIVE HUNDRED moderate overlap 01 H-III 59.9 

IIHS 
CEF120

6 
frontal 2013 FORD ESCAPE moderate overlap 01 H-III 64.4 

IIHS 
CEF120

7 
frontal 2013 DODGE DART moderate overlap 01 H-III 64.4 

IIHS 
CEF120

8 
frontal 2013 NISSAN ALTIMA moderate overlap 01 H-III 64.4 

IIHS 
CEF130

1 
frontal 2014 MAZDA 6 moderate overlap 01 H-III 64.4 

IIHS 
CEF130

2 
frontal 2013 BMW X1 moderate overlap 01 H-III 64.4 

IIHS 
CEF130

3 
frontal 2013 BUICK ENCORE moderate overlap 01 H-III 64.4 

IIHS 
CEF130

4 
frontal 2014 FIAT 500L moderate overlap 01 H-III 64.4 

IIHS 
CEF130

5 
frontal 2014 JEEP CHEROKEE moderate overlap 01 H-III 64.4 

IIHS 
CEF130

6 
frontal 2013 CHEVROLET SPARK moderate overlap 01 H-III 64.4 



236 
 

Sources ID Type Vehicle Details Seat* Surrogate# 
∆V 

(km/h) 

IIHS 
CEF130

7 
frontal 2014 MASERATI GHIBLI moderate overlap 01 H-III 64.4 

IIHS 
CEF130

8 
frontal 2014 MITSUBISHI MIRAGE moderate overlap 01 H-III 64.4 

IIHS 
CEF140

2 
frontal 2014 NISSAN ROUGE moderate overlap 01 H-III 64.4 

IIHS 
CEF140

3 
frontal 2015 SUBARU WRX moderate overlap 01 H-III 64.4 

IIHS 
CEF140

4 
frontal 2014 FORD C-MAX HYBRID moderate overlap 01 H-III 64.4 

IIHS 
CEF140

5 
frontal 2014 MAZDA 5 moderate overlap 01 H-III 64.4 

IIHS 
CEF140

6 
frontal 2014 HYUNDAI VELOSTER moderate overlap 01 H-III 64.4 

IIHS 
CEF150

1 
frontal 2016 AUDI Q3 moderate overlap 01 H-III 64.4 

NHTSA 3818-01 side 1999 SAAB 9-5 pole 01 ES 2RE 28.5 

NHTSA 4497-01 side 2000 SAAB 9-5 pole 01 ES 2RE 32.3 

NHTSA 3820-01 side 1999 VOLVO S80 pole 01 ES 2RE 28.6 

NHTSA 4498-01 side 1999 VOLVO S80 pole 01 ES 2RE 31.9 

NHTSA 3802-01 side 1999 MERCURY COUGAR pole 01 ES 2RE 28.2 

NHTSA 7955-01 side 2013 NISSAN ALTIMA pole 01 SID-IIS, F 32.2 

NHTSA 7979-01 side 
2013 VOLKSWAGEN 

TIGUAN 
pole 01 SID-IIS, F 32.2 

NHTSA 7988-01 side 2013 CADILLAC XTS pole 01 SID-IIS, F 32.2 

NHTSA 7997-01 side 
2013 HYUNDAI SANTA FE 

SPORT 
pole 01 SID-IIS, F 32.1 

NHTSA 8052-01 side 2013 DODGE CHALLENGER pole 01 SID-IIS, F 32.2 

NHTSA 4551-01 side 2002 CHEVROLET IMPALA left-side pure 01 ES 2RE 53.1 

NHTSA 4547-01 side 2001 FORD FOCUS left-side pure 01 ES 2RE 52.6 

NHTSA 4292-01 side 1999 CHEVROLET PRIZM left-side pure 01 ES 2RE 52.6 

NHTSA 4482-01 side 1999 CHEVROLET PRIZM left-side pure 01 ES 2RE 53.1 

NHTSA 5461-01 side 2005 SATURN ION left-side pure 01 ES 2RE 53.3 

NHTSA 7967-01 side 2013 NISSAN ALTIMA left-side pure 01 ES 2RE 62.2 

NHTSA 7984-01 side 
2013 VOLKSWAGEN 

TIGUAN 
left-side pure 01 ES 2RE 62.5 

NHTSA 7990-01 side 2013 CADILLAC XTS left-side pure 01 ES 2RE 62.4 

NHTSA 7998-01 side 
2013 HYUNDAI SANTA FE 

SPORT 
left-side pure 01 ES 2RE 62.4 

NHTSA 8033-01 side 2013 HONDA ACCORD left-side pure 01 ES 2RE 62.5 

NHTSA 8047-01 side 2013 CADILLAC ATS left-side pure 01 ES 2RE 62 

NHTSA 8053-01 side 2013 DODGE CHALLENGER left-side pure 01 ES 2RE 62.6 

NHTSA 8054-01 side 2013 LEXUS IS250 left-side pure 01 ES 2RE 61.9 

NHTSA 8069-01 side 2013 FORD CMAX HYBRID left-side pure 01 ES 2RE 62.2 

NHTSA 8072-01 side 2013 NISSAN SENTRA left-side pure 01 ES 2RE 62 

NHTSA 8078-01 side 2013 FORD FUSION HYBRID left-side pure 01 ES 2RE 62.2 

NHTSA 8079-01 side 
2013 MERCEDES-BENZ C-

CLASS 
left-side pure 01 ES 2RE 62 

NHTSA 8082-01 side 2013 FORD FOCUS BEV left-side pure 01 ES 2RE 61.7 
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Sources ID Type Vehicle Details Seat* Surrogate# 
∆V 

(km/h) 

NHTSA 8092-01 side 2013 MERCEDES ML350 left-side pure 01 ES 2RE 62.2 

NHTSA 8102-01 side 2013 HONDA ACCORD left-side pure 01 ES 2RE 62 

NHTSA 8108-01 side 2013 TOYOTA PRIUS V left-side pure 01 ES 2RE 61.5 

NHTSA 8149-01 side 2013 TOYOTA PRIUS C left-side pure 01 ES 2RE 62.2 

NHTSA 8157-01 side 2013 HONDA CIVIC left-side pure 01 ES 2RE 62.4 

NHTSA 8150-01 side 2013 FORD CMAX ENERGI left-side pure 01 ES 2RE 62.2 

NHTSA 4380-01 side 2002 CHEVROLET IMPALA left-side pure 01 ES 2RE 62.1 

NHTSA 4456-01 side 2001 FORD FOCUS left-side pure 01 ES 2RE 61.8 

NHTSA 3799-01 side 2001 FORD FOCUS left-side pure 01 ES 2RE 62.1 

NHTSA 3803-01 side 2002 CHEVROLET IMPALA left-side pure 01 ES 2RE 61.6 

NHTSA 4205-02 frontal 2002 FORD THUNDERBIRD full overlap 02 H-III 56.2 

NHTSA 4266-02 frontal 2003 TOYOTA COROLLA full overlap 02 H-III 55.9 

NHTSA 4264-02 frontal 2002 SUBARU IMPREZA full overlap 02 H-III 55.6 

NHTSA 3901-02 frontal 2002 CHEVROLET BLAZER full overlap 02 H-III 55.9 

NHTSA 4215-02 frontal 2002 NISSAN ALTIMA full overlap 02 H-III 56.3 

NHTSA 4237-02 frontal 2002 NISSAN FRONTIER full overlap 02 H-III 56.2 

NHTSA 4090-02 frontal 2002 MITSUBISHI LANCER full overlap 02 H-III 56.3 

NHTSA 4223-02 frontal 
2002 FORD EXPLORER 

SPORT 
full overlap 02 H-III 55.6 

NHTSA 4267-02 frontal 2002 ISUZU AXIOM full overlap 02 H-III 55.8 

NHTSA 4242-02 frontal 2002 HONDA ODYSSEY full overlap 02 H-III 56.5 

NHTSA 4255-02 frontal 2003 ACURA 3.2 TL full overlap 02 H-III 55.8 

NHTSA 4235-02 frontal 
2002 LAND ROVER 

DISCOVERY II 
full overlap 02 H-III 55.7 

NHTSA 4265-02 frontal 2002 TOYOTA HIGHLANDER full overlap 02 H-III 55.8 

NHTSA 4249-02 frontal 2002 NISSAN XTERRA full overlap 02 H-III 55.8 

NHTSA 4259-02 frontal 2003 CADILLAC CTS full overlap 02 H-III 56.7 

NHTSA 4198-02 frontal 2002 SATURN VUE full overlap 02 H-III 56.3 

NHTSA 3915-02 frontal 2002 TOYOTA TUNDRA full overlap 02 H-III 56.2 

NHTSA 3952-02 frontal 2002 BUICK RENDEZVOUS full overlap 02 H-III 56.6 

NHTSA 5301-02 frontal 2005 DODGE DAKOTA full overlap 02 H-III 56.5 

NHTSA 5594-02 frontal 2006 NISSAN TITAN full overlap 02 H-III 56.5 

NHTSA 5595-02 frontal 
2006 SUZUKI GRAND 

VITARA 
full overlap 02 H-III 56.8 

NHTSA 7977-02 frontal 2013 BMW X5 full overlap 02 H-III, F 56.1 

NHTSA 7989-02 frontal 2013 CADILLAC XTS full overlap 02 H-III, F 56.2 

NHTSA 8035-02 frontal 2013 HONDA ACCORD full overlap 02 H-III, F 56.3 

NHTSA 8045-02 frontal 2013 CADILLAC ATS full overlap 02 H-III, F 56.2 

NHTSA 8055-02 frontal 2013 LEXUS IS250 full overlap 02 H-III, F 56.2 

NHTSA 8064-02 frontal 2013 VOLKSWAGEN BEETLE full overlap 02 H-III, F 56.8 

NHTSA 8068-02 frontal 2013 NISSAN SENTRA full overlap 02 H-III, F 56.2 

NHTSA 8080-02 frontal 
2013 MERCEDES-BENZ C-

CLASS 
full overlap 02 H-III, F 56.2 
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Sources ID Type Vehicle Details Seat* Surrogate# 
∆V 

(km/h) 

NHTSA 8081-02 frontal 2013 FORD FOCUS BEV full overlap 02 H-III, F 56.4 

NHTSA 8104-02 frontal 2013 HONDA ACCORD full overlap 02 H-III, F 55.7 

NHTSA 8106-02 frontal 2013 TOYOTA PRIUS V full overlap 02 H-III, F 56.6 

NHTSA 8153-02 frontal 2013 TOYOTA PRIUS C full overlap 02 H-III, F 55.7 

NHTSA 8156-02 frontal 2013 HONDA CIVIC full overlap 02 H-III, F 56.2 

*Occupant seat position code, 01: driver; 02: front driver. 

#50TH Male surrogate unless specified otherwise. 
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APPENDIX G: FIELD DATA ANALYSIS 

The supplemental material presented in this section was to support the field data analysis 

in Chapter 9. 

Table A10. Injury definitions and classification applied in the field analysis. 

AIS 

Code 
Injury Description* 

Injury 

Definition** 
Classification 

1404065 Cerebellum diffuse axonal injury (white matter shearing) DAI sTBI 

1404264 Cerebellum hematoma/hemorrhage intracerebellar NFS ICH sTBI 

1404304 Cerebellum hematoma/hemorrhage intracerebellar small ICH sTBI 

1404345 Cerebellum hematoma/hemorrhage intracerebellar large ICH sTBI 

1406285 Cerebrum diffuse axonal injury (white matter shearing) DAI sTBI 

1406384 Cerebrum hematoma/hemorrhage intracerebral NFS ICH sTBI 

1406404 Cerebrum hematoma/hemorrhage intracerebral small ICH sTBI 

1406424 Cerebrum hematoma/hemorrhage intracerebral small petechial 

hemorrhage(s) 

ICH sTBI 

1406444 Cerebrum hematoma/hemorrhage intracerebral small subcortical 

hemorrhage 

ICH sTBI 

1406465 Cerebrum hematoma/hemorrhage intracerebral bilateral ICH sTBI 

1406485 Cerebrum hematoma/hemorrhage intracerebral large ICH sTBI 

1406784 Cerebrum intraventricular hemorrhage/intracerebral hematoma in 

ventricular system 

ICH sTBI 

1602022 LOU <1 hr. Concussion mTBI 

1602043 LOU known to be <1 hr. with neurological deficit Concussion mTBI 

1602063 LOU known to be 1-6 hrs. Concussion mTBI 

1602084 LOU known to be 1-6 hrs. with neurological deficit DAI  

1602104 LOU known to be 6-24 hrs. DAI sTBI 

1602125 LOU known to be 6-24 hrs. with neurological deficit DAI sTBI 

1602145 LOU known to be > 24 hrs. DAI sTBI 

1604042 APR on Admis. or Initial Observ. at Scene (GCS15) no prior 

unconsciousness with neurological deficit 

Concussion mTBI 

1604062 APR on Admis. or Initial Observ. at Scene (GCS15) prior unconsciousness, 

but length of time NFS 

Concussion mTBI 

1604083 APR on Admis. or Initial Observ. at Scene (GCS15) prior unconsciousness 

with neurological deficit 

Concussion mTBI 

1604102 APR on Admis. or Initial Observ. at Scene (GCS15) amnesia Concussion mTBI 

1604123 APR on Admis. or Initial Observ. at Scene (GCS15) amnesia with 

neurological deficit 

Concussion mTBI 

1604142 APR on Admis. or Initial Observ. at Scene (GCS15) unconsciousness 

known to be <1 hr. 

Concussion mTBI 

1604163 APR on Admis. or Initial Observ. at Scene (GCS15) unconsciousness 

known to be <1 hr. with 

neurological deficit 

Concussion mTBI 

1606022 LSO post resuscitation on Admis. or Initial Observ. at Scene (GCS9-14) no 

prior unconsciousness 

Concussion mTBI 

1606043 LSO post resuscitation on Admis. or Initial Observ. at Scene (GCS9-14) no 

prior unconsciousness with 

neurological deficit 

Concussion mTBI 

1606062 LSO post resuscitation on Admission or Initial Observ. at Scene (GCS9-

14) prior unconsciousness, but 

length of time NFS 

Concussion mTBI 

1606083 LSO post resuscitation on Admis. or Initial Observ. at Scene (GCS9-14) 

prior unconsciousness, but 

length of time NFS with neurological deficit 

Concussion mTBI 
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1606102 LSO post resuscitation on Admis. or Initial Observ. at Scene (GCS9-14) 

unconsciousness known to be <1 

hr. 

Concussion mTBI 

1606123 LSO post resuscitation on Admis. or Initial Observ. at Scene (GCS9-14) 

unconsciousness known to be 

<1hr. with neurological deficit 

Concussion mTBI 

1606143 LSO post resuscitation on Admis. or Initial Observ. at Scene (GCS9-14) 1-

6 hrs. unconsciousness 

Concussion mTBI 

1606164 LSO post resuscitation on Admis. or Initial Observ. at Scene (GCS9-14) 1-

6 hrs. unconsciousness with 

neurological deficit 

DAI sTBI 

1606992 LSO post resuscitation on Admission or Initial Observ. at Scene (GCS9-

14) NFS 

Concussion mTBI 

1608023 UPR on Admis. or Initial Observ. at Scene (GCS<9) LOU NFS Concussion mTBI 

1608044 UPR on Admis. or Initial Observ. at Scene (GCS<9) LOU NFS with 

neurological deficit 

DAI sTBI 

1608063 UPR on Admis. or Initial Observ. at Scene (GCS<9) <1 hr. Concussion mTBI 

1608084 UPR on Admis. or Initial Observ. at Scene (GCS<9) <1 hr. with 

neurological deficit 

DAI sTBI 

1608103 UPR on Admis. or Initial Observ. at Scene (GCS< 9) 1-6 hrs. Concussion mTBI 

1608124 UPR on Admis. or Initial Observ. at Scene (GCS<9) 1-6 hrs. with 

neurological deficit 

DAI sTBI 

1608144 UPR on Admis. or Initial Observ. at Scene (GCS<9) 6-24 hrs. DAI sTBI 

1608165 UPR on Admis. or Initial Observ. at Scene (GCS<9) 6-24 hrs. with 

neurological deficit 

DAI sTBI 

1608185 UPR on Admis. or Initial Observ. at Scene ( GCS<9) >24 hrs. DAI sTBI 

1608204 UPR on Admis. or Initial Observ. at Scene (GCS<9) appropriate 

movements with painful stimuli no 

matter length of time 

DAI sTBI 

1608225 UPR on Admis. or Initial Observ. at Scene (GCS<9) appropriate 

movements with painful stimuli no 

matter LOU with neurological deficit 

DAI sTBI 

1608245 UPR on Admis. or Initial Observ. at Scene (GCS<9) inappropriate 

movements no matter LOU 

DAI sTBI 

1608993 UPR on Admis. or Initial Observ. at Scene (GCS<9) NFS Concussion mTBI 

1610002 Cerebral Concussion Concussion mTBI 

*LOU = Length Of Unconsciousness, APR = Awake Post Resuscitation, Admis. = Admission, GCS = Glasgow Coma Scale, 

LSO = Lethargic, Stuporous, Obtunded, UPR = Unconscious Post Resuscitation, NFS = No Further Specified 

** Adapted from (Antona-Makoshi et al., 2018). 
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Figure A22. Crush profiles for small overlap (a), moderate overlap (b), and full engagement (c) frontal 

crashes. 

 
Figure A23. Injury risk for mTBI (a) and sTBI (b) sustained by the driver in low-speed side crashes in 

NASS and corresponding crash tests. 
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Figure A24. Injury risk for mTBI (a) and sTBI (b) sustained by the driver in high-speed side crashes in 

NASS and corresponding crash tests. 
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Figure A25. Injury risk for mTBI (a) and sTBI (b) sustained by the passenger in high-speed side crashes 

in NASS and corresponding crash tests. 
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Figure A26. The absolute error between predicted Injury risk and unweighted field injury rates for mTBI 

(a) and sTBI (b). Positive values indicate overpredicting injury. 

 

Figure A27. Correlation between MPS95 and peak resultant angular accelerations (a) and angular 

velocities (b) in the crash tests. 
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Figure A28. Distribution of Delta-V (a), weighted mTBI risks (b), and unweighted mTBI risks (b) in 

different frontal impact modes. 

 

Figure A29. Head angular velocities of the ATDs and PMHS in far side oblique condition. 

 

 

 

 


