
Visualizing AWS EC2 Unsellable Server Instances Using the Elastic Stack

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Ryan Robinson

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science



Visualizing AWS EC2 Unsellable Server Instances Using the Elastic Stack

CS4991 Capstone Report, 2023

Ryan Robinson
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
rpr6at@virginia.edu

Abstract
AWS EC2 was built iteratively and
relatively quickly to get ahead of other
competing cloud providers. Because of this,
it is possible for servers to go “missing,”
becoming unsellable, which cuts into a
significant minority (billions of dollars) of
Amazon AWS profits per year. In order to
hunt down and recover missing servers, the
data on these servers needs to be compiled
in an easily digestible format. To do this, my
team and I compiled the data from all EC2
instances during their lifecycle. We then
processed and displayed the data using the
Elastic Stack hosted on EC2 Instances.
Because the generated data was easily
shareable and displayable, our team was
able to demonstrate the problem more
clearly to higher AWS executives who
provided us with necessary resources to
recover more servers. During the last two
weeks of my internship, The tool helped
recover tens of thousands of dollars worth of
servers. To continue the development of this
tool, I would create deployment scripts so
that the tool could be more easily
maintained without having to have any
knowledge of the Elastic Stack.

1. Introduction
To customers, a service as widely used as
AWS may appear to function flawlessly.
Behind the scenes, however, there are a
variety of issues and challenges at every
layer. One of these core issues is the

“unsellable servers” problem. The AWS
cloud is made up of millions of physical
servers in hundreds of data centers around
the world. With this many servers, it is
inevitable that a certain percentage of them
will fail due to any number of issues. AWS
has, of course, accounted for this.

When a server goes down, the data is
transferred to another server, and the failed
hardware is put through a maintenance
process that in most cases will restore the
server to its original state. The server space
can then be resold to customers. The
“unsellable” problem arises when the
maintenance process fails to recover the
server. When this happens, the server
becomes “unsellable,” and is now taking up
resources without generating any profit.
There are tens of thousands of reasons why
this could occur, and that is what makes the
problem so difficult to diagnose and solve. It
is like a bunch of tiny holes leaking server
space from the cloud. In addition, these
points of failure are quite varied, and each
category of failure will require a specific
team to manually recover the lost server
space.

My team’s responsibility was to provide an
overhead view of all Unsellable Servers in
the EC2 fleet, and work towards
categorizing all failures to their respective
teams so the servers could be recovered. To
do this, we built software that classified



every tracked unsellable server once a day
and published the data in a CSV. We then
had to manually go through all our
classifications and develop patterns to help
us determine which classifications belonged
to which teams. Unfortunately, this raw data
was difficult to sort through, and even more
difficult to present to other teams or higher
executives. Our team desperately needed a
more robust interface that would allow us to
complete these tasks more easily.

2. Related Works

AWS was originally conceived in 2006
when executives at Amazon realized they
could sell the server infrastructure they had
created to service their website (Mille,
2016). While this allowed them to be the
first to market, it also meant that some of
their core infrastructure is older and not as
waterproof as other server providers who
built from a clean slate. This initial style of
development] is a contributor to the
Unsellable problem.

Elasticsearch, as described by Namaug
(2022), has many advantages over other data
storage options, allowing for the search and
retrieval of large amounts of data in real
time. This allows for dynamic graphing and
display of very large data sets, which was
exactly what I needed to do with the
Unsellable data. This is one of the reasons I
chose the Elastic stack to implement my
solution.

3. Process Design

To solve this problem, I followed a strict
design plan.

3.1 Review of Current Architecture

Before the start of my project, my team had
already built a working classification engine.

Every day, the engine would take as input all
the data on known unsellable servers, and
output a CSV file giving each server a
variety of different classifications. This
spreadsheet was then published on a data
storage service. These spreadsheets were
large, containing hundreds of thousands of
rows. In order to extract aggregate data from
these spreadsheets so we could identify
trends, our team needed to construct
advanced SQL queries, run them over the
dataset, and manually graph the results of
the query. Oftentimes the query outputs
were quite large, so creating these graphs
was time consuming and tedious. In
addition, if any other team wanted to
analyze our data, they were required to
either ask us to do it for them or construct
the advanced SQL queries themselves.
Although our data was very useful for
teams trying to identify unsellable servers in
their domain, it often went unused because it
was so difficult to interface with.

3.2 Requirements

The direction of the project was dictated by
the client needs and limitations of the
system.

3.2.1 Client Needs

My project had a variety of different clients,
each with different priorities, so it was
important to balance all of them to create the
most effective solution. The first client was
my own team. First and foremost, it was our
job to analyze the data. We had to both
ensure we were classifying the unsellable
servers as accurately as possible, as well as
identify new trends in rising unsellable
servers and report them. To do this more
efficiently, my team needed an interface
that:



A. Automatically grabbed the unsellable
data from the CSV daily snapshots

B. Processed the data so it could be
queried

C. Provided a simple, not cluttered
interface over the data that allowed
easy filtering of the based on all
defined attributes in the dataset

D. Displayed the query results as a trend
line over time

By accomplishing these goals, I would be
able to satisfy my first client. My second
clients were the upper managers with
leadership roles in EC2 and the engineers
that needed to present the data to them.
These clients were not as likely to analyze
the data themselves. They needed an
interface that:

A. Wasn’t over cluttered or distracting.
Easy to understand just by looking at
it.

B. Could be easily shared between
devices and tweaked. During a
meeting, if someone wants to view
the presented data on their device,
they should not need to waste time
setting up specific filter presets.

My final clients were the other teams that
had actual ownership of the unsellable
servers we were tracking down. They had
the same requirements as before, but in
addition they needed:

A. A familiar interface, This would
increase the likelihood of widespread
adoption.

B. Easy to access, not locked behind a
bunch of security walls specific to
my team.

My project was built with all these
requirements in mind.

3.2.2 System Limitations

Given that I had access to all Amazon’s
resources to build my project, technically I
could have approached it in any way I
wanted. My one major restriction was that
any solution I proposed basically needed to
use AWS and Amazon infrastructure. Even
if I preferred another service, there was no
funding allocated for any other service.

3.3 Final Solution

The solution I eventually implemented
addressed the requirements by using elastic
stack services hosted on AWS EC2
instances. The elastic stack consists of a
database, called elasticsearch, a pipelining
tool, called Logstash, and a dashboarding
tool, called Kibana. I chose this approach
over a custom interface because it would be
easier for my team to maintain. While all
these tools were useful, the main reason for
landing on this solution was because of
Kibana.
Many people in the organization were
familiar with Kibana and enjoyed using it.
This meant that it was much more likely a
tool based on it would be widely adopted. In
addition to fulfilling all the desired
functionality, the interface also allowed for
much customizability from the user, as they
could add or subtract filters depending on
their specific use case. For example, if they
only needed to use two filters, they could
add those to the interface and not have the
clutter of 33 other useless filters. Most
importantly, Kibana addressed the main
issue other dashboarding tools had with
sharing. Once a user had added the desired
filters to the interface and set their values,
all they needed to do to share their results
was copy the URL and send it. In addition to
being useful in meetings, this allowed for
the tool to be spread quickly throughout the
organization.



3.4 Key Components

After getting my solution approved and
implementing it, the final architecture was
as follows:

A. When the daily CSV data was
uploaded to the data bucket, a switch
was triggered

B. This signal was sent to a Logstash
data pipeline hosted on an EC2
server instance. When it received the
signal, it began importing the data
and processing it into a format
digestible by the Elasticsearch
database.

C. All data was then imported into the
Elasticsearch database

D. Once the data had been successfully
cataloged, it could then be accessed
by a Kibana dashboard

E. The built Kibana dashboard
consisted of several graphs graphing
trend different Unsellable server
trend lines over time. To filter the
data based on server attributes, users
could add and subtract filters based
on their need. A few very commonly
used filters were always included in
the dashboard for the sake of
convenience

F. To access the dashboard, users
needed to have the valid AWS
certifications for our organization.
This was required for security
reasons.

3.5 Challenges

While in the end this interface was
functional and used throughout the
organization, there were some major
challenges getting it to work. For one,
gathering the requirements from all the
stakeholders was difficult, as many people

had different ideas about where the project
should go. Compiling them all into one
concise vision that everyone was happy with
was a difficult task.

A more technical challenge was that the
daily CSV data was not originally accessible
by Logstash. I had to change the
classification engine to publish the data to a
data bucket that the pipeline could retrieve
data from, which required me to make
changes to our teams’ main project (the
classification engine). This comes with a lot
more yellow tape than when a project is
built from scratch.

4. Results

After the product was released, our team
saw immediate impact. Within a week of
release, the tool was used to demonstrate
problems related to unsellables in meetings
with higher management. The interface was
circulated among stakeholders very quickly
and many teams began to use it.

During one meeting that I was a part of,
participants were able to identify a problem
where a subset of the unsellable servers had
been rapidly increasing since a specific
change was pushed. Several thousand total
servers were affected, and when I left my
internship the team that owned them had
already begun to make headway in
recovering all of them.

While it is difficult for me to know now how
many servers the tool has helped recover,
given the upward trend I saw in the final two
weeks in my internship and an email I
received in November from my boss telling
me that the tool was still in use, It would be
safe to assume it has aided in the recovery of
hundreds of thousands if not millions of
dollars worth of AWS hardware.



5. Conclusion

Data is only as useful as it is accessible. My
project allowed other teams and managers a
very clear window into the work our team
was doing, and facilitated the sharing of our
data. The interface greatly increased the
productivity of our team and our usefulness
to other teams. Due to the shareability of the
interface, our teams’ visibility among the
organization has also greatly increased,
giving us access to more resources to
continue our work finding and driving down
the number of unsellable servers. Overall,
the interface was the capstone of a major
project for our team. While I had worked
with many of the tools used before, I had
never developed a project with the reach and
user base of this interface. I learned how to
balance the needs of many stakeholders and
deliver results in a timely and efficient
manner.

6. Future Work

The next phase of this project would be to
build automated and general deployment
scripts. While the project is completely

functional for its use case, if a similar
interface was required, our team would be
forced to manually recreate the architecture
that I built for their use case. While this is
not particularly time consuming or difficult,
there is room for error and confusion, and it
is a waste of resources if it has already been
done by another engineer. For this reason, if
I was given more time or I was to build this
project from the ground up again, I would
prioritize using automated deployment
scripts to reduce the complexity of
implementation for future engineers.

References
Miller, R. (2016, July 2). How AWS came to
be. TechCrunch. Retrieved February 24,
2023, from
https://techcrunch.com/2016/07/02/andy-jas
sys-brief-history-of-the-genesis-of-aws/

Namuag, P. (2022, August 2). What is
Elasticsearch and why use it? Severalnines.
Retrieved February 24, 2023, from
https://severalnines.com/blog/what-is-elastic
search-and-why-use-it/


