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Introduction 

One of the most robust findings in psychometric research is that cognitive abilities are 

interrelated and that these relations between abilities can be organized in terms of a hierarchical 

structure (Carroll, 1993; Gustafson, 1984; Salthouse & Ferrer-Caja, 2003). For example, in the 

Cattell-Horn-Carroll (CHC) structure, the lowest level is composed of observed measures 

(Carroll, 1993; Carroll, 2003; Keith & Reynolds, 2010). At the second level are latent factors 

like mental transformation (for example reasoning), crystallized intelligence (ability to use 

learned knowledge and experience), visual perception, auditory perception, memory, and 

processing speed that are composed of the variance shared across the tests designed to measure 

them. The highest level of the structure is commonly known as general intelligence, or g, and 

represents the broadest type of cognitive functioning. It is measured by the variance the latent 

factors have in common. These ability structures may be impacted by certain individual 

differences (Tucker-Drob, 2008); the focus of this thesis will primarily be on one such 

difference, aging.   

 The age dedifferentiation hypothesis posits that in older adulthood, cognitive abilities 

begin to share more variance (Anstey, Hofer, & Luszcz, 2003; Baltes, Cornelius, Spiro, 

Nesselroade, Willis, 1980; Hertzog & Bleckley, 2001; Hulur, Ram, Willis, Schaie, & Gerstorf, 

2015; Lindenberger & Baltes, 1997a; Tucker-Drob, 2009; Zelinski & Lewis, 2003). For 

example, Baltes & Lindenberger, (1997a) found that sensory abilities explained only 11% of 

variance in cognitive abilities for adults aged 25-69 compared with 31% in adults aged 70-103. 

Cognitive dedifferentiation is hypothesized to occur as senescence places progressively greater 

constraints on cognitive function, leading to increased correlations between abilities. (Ghisletta 

& Ribaupierre, 2005; Li et al. 2004). These constraints could be biological, for example 



structural or functional declines in the brain (Lindenberger & Baltes, 1997b; Hulur et al., 2015), 

or cognitive, for example decreased processing speed (Li et al., 2004, Ghisletta & Ribaupierre, 

2005).  

Understanding whether dedifferentiation occurs is crucial both theoretically and 

methodologically. Theoretically, it can teach us about how changes in the brain with age or 

pathology impact expression of cognitive performance. Identifying moderators to the cognitive 

structure can also provide more insight into why cognitive abilities are interrelated and about the 

nature of g. Methodologically, it is important because a difference in the structure of cognition at 

different ages implies that the measures of cognition vary in meaning across the adult lifespan. 

Such differences mean that quantitative comparisons made between age groups are confounded 

by qualitative differences, thus limiting the conclusions that can be made.  

The dedifferentiation hypothesis can be tested in three ways. The first option is to 

evaluate how many cognitive factors are present (e.g. Hedden & Yoon, 2006, Schaie, Willis, Jay, 

& Chipuer, 1989). If dedifferentiation exists there should be fewer factors in older age. However, 

this method is somewhat weak in demonstrating the lack of dedifferentiation, because 

correlations could still increase even if the factor structure does not change. The second option is 

to test how much variance is explained by g (e.g. Juan-Espinosa et al., 2002). In this case, the 

expectation is that more variance should be shared with age. A final option is to examine how 

strong the correlations are between measures or latent factors representing various abilities 

(Hulur et al., 2015; Sims, Allaire, Gamaldo, Edwards, & Whitfield, 2009). In this case, I would 

expect higher correlations with age. These last two options are a more sensitive test of 

dedifferentiation as long as statistical tests are used to determine that the correlations are 

significantly higher for older adults.  



Unfortunately, the research on dedifferentiation using all these approaches has been 

inconsistent. Both longitudinal (Cunningham & Birren, 1980; Deary, Whiteman, Starr, Whalley, 

& Fox, 2004; de Frias, Lovden, Lindenberger, & Nilsson, 2007; Ghisletta & Lindenberger, 2003; 

Hertzog, Dixon, Hultsch, & MacDonald, 2003; Hulur et al., 2015) and cross-sectional (Adrover-

Roig, Sese, Barcelo, & Palmer, 2012; Babcock, Laguna, & Roesch, 1997; Balsamo & Romanelli, 

2010; Cunningham & Birren 1980; de Frias et al., 2007; Hedden & Yoon, 2006; Hertzog, 1989; 

Hertzog & Bleckley, 2001; Li et al., 2004; Lindenberger & Baltes, 1997b; Nyberg et al., 2003; 

Salthouse & Saklofske, 2010; Schaie et al., 1989; Schultz, Kaye, & Hoyer, 1980) studies have 

supported dedifferentiation; for example, Li et al. (2004) found that g explained more variance in 

late adulthood than in young or middle adulthood. Similarly, Hulur et al. (2015) found that over 

a 30-year period, change in knowledge and mental transformation as well as between tests of 

mental transformation were increasingly coupled over time.  

However, there is also a great deal of evidence, both longitudinally (Anstey et al., 2003; 

Batterham, Christensen, & Mackinnon, 2011; Finkel, Reynolds, McArdle, & Pederson, 2007; 

Schaie, Maitland, Willis, & Interieri, 1998; Tucker-Drob, 2009; Zelinski & Stewart, 1998; 

Zelinski & Lewis, 2003) and cross-sectionally (Escorial, Juan-Espinosa, Garcia, Rebollo, & 

Colom, 2003; Hale et al., 2011; Hildebrandt, Wilhelm, Schmiedek, Herzmann, & Sommer, 2011; 

Hull, Martin, Beir, Lane, & Hamilton, 2011; Johnson, Logie, & Brockmole, 2010; Park, 

Lautenschlager, Hedden, Davidson, & Smith, 2002; Sims et al., 2009; Singer, Verhaeghen, 

Ghisletta, Lindenberger, & Baltes, 2003; Vaughn & Giovanello, 2010), that is not consistent with 

dedifferentiation. For example, Anstey et al. (2003) found no consistent patterns of 

dedifferentiation cross-sectionally (comparing individuals from 60-84 years at T1) or 

longitudinally (over a period of up to 8 years) using measures of memory, processing speed, and 



knowledge. Meanwhile, while Tucker-Drob (2008) found some changes in the correlations with 

older age, those changes actually suggested that greater differentiation was occurring.  

The inconsistent findings from the dedifferentiation literature can be complemented by 

studies evaluating cognitive testing batteries for measurement invariance, a series of statistical 

techniques that test whether the same construct is being measured at different times or in 

different groups (Benson, Hulac, & Kranzler, 2010; Molenaar, Dolan, Wicherts, van der Maas, 

2001; Niileksela, Reynolds, & Kaufman, 2013; Parker, 1983; Taub, McGrew, & Witta, 2004; 

Waller & Waldman, 1990; Ward, Axelrod, & Ryan, 2000). These studies test for two types of 

invariance that are potentially relevant to dedifferentiation- configural invariance and metric 

invariance.  

Configural invariance evaluates whether the same model has a good fit across groups. A 

good fit means that the same organization of variables can be used. A failure to find configural 

invariance could provide evidence of dedifferentiation if older adults have fewer cognitive ability 

factors (signifying a compression of the structure). However, configural invariance by itself 

cannot prove a lack of dedifferentiation, as there could still be an increase in the relations 

between cognitive abilities that is not enough to change the configural structure.  

Metric invariance can be a more relevant test of dedifferentiation when it evaluates 

whether both the factor loadings and correlations within a model can be constrained to be the 

same across groups. A failure to find metric invariance due to higher correlations between 

factors or higher loadings between cognitive abilities and g would be evidence for 

dedifferentiation. If metric invariance is found between the factor loadings with g and there is 

enough power to detect differences, this would suggest a lack of dedifferentiation, as the 

relations between cognitive abilities and/or the amount of variance explained by g is stable.  



A number of studies do show measurement invariance (Bowden, Weiss, Holdnack, & 

Lloyd, 2006; Burton, Ryan, Paolo, & Mittenberg, 1994; Cohen, 1957; Parker, 1983; Taub et al., 

2004; Niileksela et al., 2013). For example, Taub et al. (2004) found that the factor structure and 

the loadings were similar for the Weschler Adult Intelligence Scale III across all 13 age groups 

used in the study. However, evidence of invariance is not found in all studies (Benson et al., 

2010; Balsamo & Romanelli, 2010; Fox, Berry, & Freeman, 2014; Waller & Waldman, 1990; 

Ward, Axelrod, & Ryan, 2000). For example, Waller & Waldman (1990) found that a two-factor 

model fit better for the 70-74 year-old group than the three-factor model that provided the best fit 

for age groups that ranged from 16-69. So overall, even the measurement invariance literature 

has been inconsistent.  

A review of studies supporting or failing to support dedifferentiation are listed in 

Supplementary Table 1. The first important pattern to notice in this table is the large number of 

different cognitive abilities that are used to test for dedifferentiation. This could be an issue if 

only certain cognitive abilities dedifferentiate across the adult lifespan (Hertzog & Bleckley, 

2001; Li et al., 2004). Secondly, there is a wide variety of age ranges between studies. This is an 

issue if dedifferentiation only appears at a certain point in the lifespan (de Frias et al., 2007). A 

third concern is the strength of the evidence that is presented in the literature. For the purposes of 

this review, weak evidence is defined as analyses that do not directly test whether correlations 

are larger. Strong evidence statistically tests for differences in correlations with age, although not 

all include information regarding power. What is clear is that much of the evidence testing for 

dedifferentiation is weak, which may explain the lack of consistency in the literature. Finally, 

almost none of the studies provide information about effect sizes (but see Salthouse & Saklofske, 

2010) and there is a wide range of sample sizes. If the effect is small, only some of the studies 



may have the necessary power to detect dedifferentiation. In summary, there are a number of 

differences in the previous literature that may be responsible for the inconsistent findings.  

For my dissertation, I propose a cross-sectional and a longitudinal study that will advance 

our knowledge of age dedifferentiation. These studies are valuable because they will account for 

some of the major theoretical and methodological issues that have limited previous work from 

establishing the nature of dedifferentiation and the conditions in which it occurs. These issues are 

described in greater detail below.  

Different Combinations of Variables  

 The first theoretical issue that may explain the inconsistences in the literature is the type 

of cognitive abilities used to test for dedifferentiation. Different combinations of abilities have 

been examined across studies, such as (a) relations between test of mental transformation, 

processing speed and memory (Adrover-Roig et al., 2012; Hale et al., 2011; Hulur et al., 2015); 

(b) between those fluid abilities and crystallized intelligence (Finkel et al., 2007; Singer et al., 

2003; Ghisletta & Lindenberger, 2003); and (c) even between measures of cognitive 

performance and visual or auditory acuity (Lindenberger & Baltes, 1997a). It is also common for 

studies to use tests that measure a variety of cognitive abilities but not explore if certain 

combinations of abilities are differentially impacted by age (Balsamo & Romanelli, 2010; 

Escorial et al., 2003; Sims et al., 2009). This is an issue because these different combinations 

may be more or less likely to exhibit dedifferentiation, or to differ in when dedifferentiation 

begins to occur. For the sake of clarity, I will discuss cognitive abilities in four major groups: 

memory, speed, mental transformation (e.g. working memory, reasoning or measures identified 

as fluid intelligence), and knowledge.  



 One of the most important abilities to consider when looking for dedifferentiation is 

processing speed. Based on findings that processing speed mediates a majority of age differences 

in other cognitive abilities (Salthouse, 1995; Salthouse, 1996; Salthouse, 2000), particularly for 

memory and mental transformation abilities compared with knowledge abilities (Li et al., 2004), 

the general slowing account was proposed and can be extended to provide an explanation for 

dedifferentiation. According to this account, increasing age is associated with a loss of 

processing speed, which places constraints on other cognitive domains. These constraints mean 

that performance on tests of abilities that rely on processing speed, like memory and mental 

transformation, becomes increasingly determined by speed. This results in dedifferentiation.  

Consistent with this explanation, a number of findings show dedifferentiation when a 

measure of processing speed is included (Babcock et al., 1997; Ghisletta et al., 2003; Ghisletta et 

al., 2005; Hertzog & Bleckley, 2001). These patterns exist of measures mental transformation, 

but also for general knowledge. For example, Ghisletta & de Ribaupierre, (2005) showed that 

over 5 years, performance on a cross-out test (a measure of speed of processing) was related to 

change on a knowledge test but the opposite pattern was not found. 

 However, the patterns of dedifferentiation with general knowledge are likely weaker or 

occur later in the adult lifespan. This is because knowledge is presumed to accumulate with life 

experiences like education or occupation whereas memory, and mental transformation tend to be 

primarily impacted by biological influences (Ghisletta & Lindenberger, 2003; Ghisletta & de 

Ribaupierre, 2005). Unfortunately, besides Ghisletta & de Ribaupierre (2005) and Hertzog & 

Bleckley (2001), only a few studies (e.g. Li et al., 2004) have formally tested whether 

correlations involving speed of processing show greater dedifferentiation or whether there are 

different patterns of dedifferentiation for correlations between certain cognitive abilities.  



 In summary, some of the conflicting findings in the literature may be due to the different 

types of cognitive abilities that were used to test for dedifferentiation. However, this is an issue 

that could easily be resolved by using a variety of cognitive abilities and explicitly examining 

whether the magnitude and/or trajectory of dedifferentiation are moderated by the particular 

types of cognitive abilities.   

Different Sample Characteristics  

A second source for the inconsistencies in the literature could be the characteristics of the 

samples used. There are a variety of factors, including the sample sizes, the representativeness of 

the samples, what age groups were used/how long they were followed, and the proportion of 

individuals with undiagnosed pathological issues that could influence whether dedifferentiation 

was found.  

Firstly, there is a lot of variation in the size of the studies. As shown in Table S1, sample 

sizes range from 74 to over 95,000, with the average being around 200-500 participants. 

Although these samples may appear to be appropriately sized for investigating correlational 

patterns, the effect size of dedifferentiation is likely small based on the number of studies where 

no results are found (effect sizes are rarely reported) and therefore may be difficult to 

consistently detect even with smaller samples. It is likely then that at least some of the 

inconsistency may be explained by differences in the sample size.   

Another issue is the representativeness of the samples. In general, the samples used to 

investigate dedifferentiation tend to be well educated (for example, younger adults are often 

college students, Cunningham & Birren, 1980; Hertzog, 1989), and white (but see Sims et al., 

2009). This means that even if the results from this work were consistent, they may not extend to 

people of lower socioeconomic status, of different races, or with physical health conditions. 



Representativeness can also be an issue if the samples within a study are not comparable. For 

example, dedifferentiation is also found when comparing low- and high-ability individuals 

(Abad, Colom, Juan-Espinosa, & Garcia, 2003; Batterham et al., 2011; Tucker-Drob, 2008). 

Therefore, if the samples are not comparable in terms of IQ or education, results may incorrectly 

support age dedifferentiation where none exists or obscure age dedifferentiation that is present.  

A third concern is the differences between the age ranges that are being used across 

studies. Cross-sectional studies have compared young adults with older adults (Babcock et al., 

1997; Hertzog, 1989; Schultz et al., 1980), middle-aged adults with older adults (Hertzog & 

Bleckley, 2001; Hull et al., 2008), and even young-old adults with old-old adults (Hedden & 

Yoon, 2006; Singer et al., 2003; Vaughn & Giovanello, 2010). Similarly, longitudinal studies 

have evaluated individuals who can be in their 20’s at baseline (Cunningham et al., 1980; Deary 

et al., 2004), middle aged (de Frias et al., 2007; Finkel et al., 2007), or 60+ (Anstey et al., 2003; 

Batterham et al., 2011). Finally, these studies also vary in the amount of time the individuals are 

followed, from less than 10 years (Anstey et al., 2003; de Frias et al., 2007; Ghisletta et al., 

2003a; Ghisletta et al., 2005) to over 30 years (Cunningham et al., 1980; Ghisletta et al., 2003; 

Hulur et al., 2015).  

These between-study age differences are a notable concern for two reasons; firstly, the 

age groups may be too close to one another and or the amount of time elapsed may be too short 

to detect dedifferentiation. In addition, dedifferentiation may only be found in older adulthood. 

For example, differences/changes in the correlations may not begin to appear until a certain level 

of cognitive loss or brain atrophy has already occurred (de Frias et al., 2007). Much of the 

previous research is consistent with non-linearity (de Frias et al., 2007; Li et al., 2004; Schaie, 

1989; Ward, 2000). For example, Waller & Waldman (1990) found that the three-factor model 



that provided the best fit for all age groups except for the oldest (70-74) where a two-model (a 

dedifferentiated model) provided the best fit for individuals.  

This non-linear pattern could be due to something at the end of the normal adult lifespan. 

However, it could also be a results of the increasing presence of individuals with pathological or 

terminal issues primarily associated with older adulthood (Batterham et al., 2011; de Frias et al., 

2007; Wilson, Segawa, Hizel, Boyle, & Bennett, 2012). This raises the question of how carefully 

the older participants were screened for pathological decline.   

Conditions like dementia and terminal decline, the period before death, are characterized 

by increased declines in cognitive performance (Laukka, Macdonald, & Backman, 2006; 

Lovden, Bergman, Adolfsson, Lindenberger, & Nilsson, 2005; Sliwinski, Hofer, Hall, Buschke, 

& Lipton, 2003; Wilson et al., 2010) and in the brain (Schneider, Aggarwal, Barnes, Boyle, & 

Bennett, 2009; Uylings & de Brabander, 2002). For Alzheimer’s disease, these impacts appear to 

be general, with most of the differences between healthy and mild AD patients attributable to a 

global factor (Salthouse & Becker, 1998). In fact, recent work evaluating dedifferentiation in 

terminally declining and pathological individuals shows that closeness to death and pathology 

tended to be better predictors of dedifferentiation than actual age (de Frias, Dixon, & Strauss, 

2009; Batterham et al., 2011; Wilson et al., 2012, Sliwinski, Hofer, & Hall, 2003). For example, 

Sliwinski et al. (2003) found that the correlations between within-person change were stronger 

for older individuals who had been diagnosed with preclinical dementia compared with those 

who had not. Similarly, Batterham et al. (2011) found that for 687 adults 70 years and over who 

were followed for 17 years, a) a time-to-death metric exhibited significant dedifferentiation on 

four tests whereas age only showed dedifferentiation for two tests, and b) evidence of any 



dedifferentiation was attenuated when individuals with cognitive impairment were excluded 

(even though they were only 11.8% of the sample).  

Research evaluating configural and metric invariance between healthy individuals and 

those with pathological conditions is mixed. For example, Siedlecki, Honig, & Stern (2008) 

found that although the same five-factor structure provided a good configural fit in healthy older 

adults, individuals with questionable dementia, and probable dementia, metric invariance was not 

possible. This could be due to larger correlations between measures, although that is not certain. 

An evaluation of the ADNI neuropsychological battery at baseline found that the covariances 

between factors could be constrained to the same between a group of less cognitively impaired 

and more cognitively impaired individuals while still providing an excellent model fit (Park et 

al., 2012). This suggests that the relations between cognitive abilities are stable between 

impairment groups and dedifferentiation is not occurring. In Study 2, I will retest this using a 

model more consistent with the CHC to determine whether similar properties are found. 

Unfortunately, none of these studies evaluated model fit in multiple conditions across time to 

determine whether within-person changes are seen with disease progression.  

 These findings are important because not all studies report whether participants were 

asked whether they had any pathological conditions, whether they were given a screening 

measure like the Mini-Mental Status Examination (MMSE; Folstein, Folstein, & McHugh, 1975; 

e.g. Hertzog & Bleckley, 2001, Sims et al., 2009), or whether any other strictures were 

implemented to ensure that the older sample was aging normally. The proportions of individuals 

with some kind of pathological decline could therefore vary between studies, which in turn 

results in some studies finding and others failing to find evidence of dedifferentiation.  



 In summary, there are a lot of differences between these studies in regards to important 

factors like sample size, representativeness, age, and proportion of pathological individuals that 

could lead to the inconsistent findings. A better approach would be to use a large, representative 

adult lifespan sample where participants were screened for any health factors that may affect the 

results. In addition, the role of pathological/terminal changes in older adulthood in explaining 

dedifferentiation needs to be more extensively examined.  

Methodological Factors  

 In addition to the issues with different cognitive abilities and sample characteristics, there 

are a variety of methodological differences between the studies that could be responsible for the 

inconsistencies in the literature. In particular, differences in the reliability of the measures, the 

variability of the scores, and the analytical methods could produce inconsistencies.  

A study is only as good as the measures that are used. Reliability refers to the degree to 

which a measurement is vulnerable to random influences, and can be measured by having the 

same participants take a test multiple times (test-retest reliability), or to test whether a participant 

will perform similarly on one part of a test as they do on another (internal consistency). When 

reliability is low, there may not be enough systematic variance in the variables to show the true 

underlying patterns in the data.    

Unfortunately, the reliabilities of the tests are not always reported (for example, de Frias, 

Dixon, & Strauss, 2006 noted that a major problem with executive function measures is their 

questionable reliability and yet they do not report the reliabilities of their own measures). There 

is also sometimes variability in reliability within studies for the individual age groups (Babcock 

et al., 1997; Li, 2004; Lindenberger & Baltes, 1997); for example, Babcock et al. (1997), 

reported Cronbach alpha scores (a measure of internal consistency) ranging from .53 to .93 in the 



older sample versus .73 to .94 in the younger sample. Unfortunately, they did not test whether 

these differences were significant. These differences in reliability both within and between 

studies could result in the appearance of age patterns that support or refute age dedifferentiation 

that are not trustworthy. It is therefore important to use only the most reliable measures. 

 Differences in variability between age groups could also result in misleading results. As 

shown in Goodwin & Leech (2006), a correlation will generally appear to be stronger if there is 

greater variability than when there is less variability, a problem known as restriction of range. 

This is an issue for dedifferentiation because variability can differ between age groups. In 

addition, because some studies used younger samples that consist of only college students (a 

homogenous, well-educated group) and older adults that are gathered from the community (a 

sample that could be more heterogeneous), the groups may differ in variability because of 

sample selection. Finally, some studies have used various formulas for correcting for restriction 

of range in the magnitude of correlations in different groups (Deary et al., 2004; Escorial et al., 

2003; Juan-Espinosa et al., 2002). However, many do not do this (Adrover-Roig et al., 2012; 

Ghisletta & Lindenberger, 2003), which could explain some of the discrepancies between 

studies.  

 Finally, previous studies have used different types of analytical methods to test for 

dedifferentiation. The choice of analysis is important because different approaches allow 

researchers to test different hypotheses. For example, an analysis looking just for increasing 

variance explained by g doesn’t evaluate whether those increases are primarily found for certain 

types of cognitive abilities, or whether the same number of abilities constructs are maintained. 

Equally importantly, certain methods can produce more certainty in ones’ results than others. For 

example, visually comparing correlations does not provide information about whether there is a 



statistical difference or about the size of that difference. Similarly, comparing correlations at the 

latent level as opposed to the observed level is preferable because latent factors are better 

representations of their constructs. 

 In conclusion, there are notable differences in the methodological choices made across 

studies that could potentially influence whether dedifferentiation is found. In order to 

conclusively test for dedifferentiation, highly reliable measures need to be used, differences in 

variability need to be considered, and analyses that are best suited for answering important 

theoretical issues should be conducted.  

Summary of Literature 

 Understanding whether cognitive dedifferentiation occurs is important both 

methodologically and theoretically. However, the research on this topic is notably inconsistent. 

This is likely due to a variety of factors, most importantly the differences in the cognitive 

abilities included, the samples collected, and the methodological approaches used.   

 In regards to the cognitive abilities included, several explanations for dedifferentiation 

and previous work on dedifferentiation suggest that processing speed may have an important role 

(Li et al., 2004; Ghisletta & Lindenberger, 2003). Based on these findings, I hypothesize that 

dedifferentiation will be stronger for correlations that include processing speed. I also suspect the 

dedifferentiation will be weaker or appear later for correlations that include knowledge. It is 

therefore important to include correlation type as a moderator or to examine individual loadings 

to determine where changes in correlation strength are occurring.  

 Studies also differ on a number of important sample characteristics. For example, studies 

often vary in both the number and representativeness of participants, thus limiting the 

generalizability of their results. There are also differences between studies in age groups used 



and/or in the amount of change measured. This matters because dedifferentiation may be non-

linear (de Frias et al., 2007), with the changes in correlation magnitude beginning only in older 

adulthood and not when cognitive abilities first begin to decline.  

Finally, the proportion of individuals with pathology is important because it appears that 

pathology is linked to dedifferentiation. Therefore, a large number of pathological participants in 

an otherwise healthy sample could lead to the appearance of dedifferentiation in normal aging 

(Batterham et al., 2011). To examine dedifferentiation in healthy adults, it is necessary to use a 

large representative adult lifespan sample that has been screened for conditions that could 

influence cognitive function. To examine the relationship between dedifferentiation and 

pathology, more research is needed on (a) individuals with different types of pathology and (b) 

the progression of those pathologies using more measures and more sophisticated analytic 

techniques.  

 In regards to methodological issues, unreliable measures, differences in variability 

between age groups, and inappropriate analytic techniques limit our ability to test for 

dedifferentiation. Measures should be reliable and differences in variability at least be examined; 

analyses should be chosen that can answer theory-driven questions and provide conclusive 

results.  

Based on these conclusions regarding the dedifferentiation literature, my thesis consists 

of two studies. The first study is a meta-analysis where I tested whether dedifferentiation was 

found cross-sectionally in a series of large, representative adult lifespan samples that were 

screened for health conditions using a self report. The correlations were collected from normed 

cognitive tests where the tests are reliable and information is available about the variability in 



performance at different ages. I also examined the trajectory of dedifferentiation across the adult 

lifespan, and whether it is affected by the types of cognitive abilities included in the correlation. 

In the second study I tested for increased correlations between latent factors using 

longitudinal data. The data for this study were collected over three years, included healthy and 

pathological participants, and used reliable tests. In this study, the goal was to explore how MCI 

and Alzheimer’s disease were related to correlation magnitude compared with healthy adults, 

and evaluate whether the progression of these diseases resulted in additional dedifferentiation.    

Study 1: Cross-Sectional Dedifferentiation in Healthy Adults 

 The goal of the first study was to test whether cognitive dedifferentiation occurs in the 

adult lifespan using a variety of datasets collected as part of the norming process for cognitive 

batteries like the Wechsler Adult Intelligence Scale (WAIS; Wechsler, 1955; 1981; 1997; 

2008b), Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999), Wechsler 

Memory Scale (WMS, 1987; 1997; 2009), Kaufman Adult Intelligence Test (KAIT; Kaufman & 

Kaufman, 1992), Kaufman Brief Intelligence Test (KBIT; Kaufman & Kaufman, 2004), and 

Woodcock-Johnson (WJ; Woodcock & Johnson, 1989).  

 To develop the standards that are used to determine how an individual performs in 

comparison to a hypothetical “average peer”, also known as norms, a large, representative 

sample needs to be collected. These samples were designed to include a quota of individuals 

from specific regions in the country, educational levels, and racial/ethnic backgrounds. Different 

test batteries include other factors, such as religious affiliation, consumption of alcohol, etc. In 

addition, many of these test batteries have exclusionary criteria for individuals with conditions 

that impair cognition function (e.g. WAIS, WASI, and WMS batteries), although this is not 

always the case (e.g. Woodcock Johnson batteries).  



 Another benefit of using normed cognitive tests is that the correlations between tests, 

means, standard deviations, and reliabilities are available for several age groups. Although the 

test batteries do differ in the number of age groups (some include only three adult samples where 

others have up to eleven), all tests included in these batteries have been shown to have 

acceptable reliability across the age groups  (> .60) and the differences in variability between age 

groups were small. This meant that I could have confidence that any differences found were 

unlikely to be due to reliability or variability issues. Therefore, using these samples resolves 

some of the methodological issues present in earlier work. 

Hypotheses  

H1a. That dedifferentiation will be found if it occurs in healthy adulthood. I expected that 

if dedifferentiation occurs in normally aging adults, whether due to the changes in the brain and 

cognitive abilities that accompany senescence (Ghisletta & Lindenberger, 2003; Li et al., 2004), 

age would positively predict the size of the correlations. I further explored these positive 

relations when they occurred by comparing the average correlation size in a young (less than 48 

years) and old group (more than 48 years). However, as recent work has suggested that 

pathology may be a primary factor in dedifferentiation (de Frias et al., 2009; Batterham et al., 

2011; Wilson et al., 2012, Sliwinski et al., 2003a), it is possible that dedifferentiation will not be 

found in these primarily healthy samples.  

H1b.  Certain combinations of cognitive abilities (i.e. memory and knowledge vs. speed 

and memory) may be more or less likely to exhibit dedifferentiation. There is already evidence 

that certain combinations of abilities may be more likely to dedifferentiate with age. For 

example, it has been argued that declines in speed of processing compress performance on other 

abilities, which results in dedifferentiation (Li et al., 2004). Therefore, I predicted 



dedifferentiation would be strongest between speed of processing and abilities that heavily rely 

on it, like memory and mental transformation.  

I expected dedifferentiation for correlations between memory and mental transformation 

tests as both they are dependent on speed. However, since speed was not directly assessed in 

these correlations I expected that the patterns might be weaker. I also hypothesized that 

dedifferentiation for correlations between speed and knowledge would be weaker, as increasing 

biological constraints in speed should impact knowledge less than abilities like memory and 

mental transformation. Dedifferentiation should be weakest for correlations that include 

knowledge and do not include speed, for the reasons outlined above.  

To test whether certain combinations of abilities, hereafter referred to as types, show 

more dedifferentiation, I tested multiple contrasts where I set one type (e.g. speed with mental 

transformation) as a baseline or reference and compared the age patterns in the others (e.g. speed 

with memory, mental transformation with memory) to this reference. I further explored 

significant deviations when they occurred by conducting a second set of models where age 

predicted correlation size for each type individually. I also evaluated the average correlation size 

in a young (less than 48) and old group (more than 48) for each type when age was a significant 

predictor.  

H2a. Patterns of dedifferentiation are non-linear, with differences appearing primarily in 

older adulthood. Previous work suggests that dedifferentiation may not occur until older age 

(Balsamo & Romanelli, 2010; de Frias et al., 2007; Li et al., 2004; Waller & Waldman, 1990), 

and not in the linear pattern seen with cognitive decline (Salthouse, 2010). If this is the case, then 

correlations between abilities should not begin to increase until older adulthood, beginning 

around age 70. I chose age 70 because most findings of non-linear dedifferentiation appear at 



that age (de Frias et al., 2007; Ward et al., 2000; Waller & Waldman, 1990). If dedifferentiation 

is non-linear because a certain threshold of decline is needed, I hypothesized that quadratic age 

(age2) would predict correlation size. However, if the non-linear patterns found in previous work 

were due to the increasing presence of pathology in older adults (de Frias et al., 2009), I did not 

expect to find it in this generally healthy sample. I explored significant age2 patterns present in 

conjunction with a significant age effect (suggesting non-linear differentiation/dedifferentiation) 

by examining average correlation size in three age groups (18-39,40-69,70+). 

H2b. Correlations between different types of cognitive abilities (i.e. memory and 

knowledge vs. speed and memory) may vary in when dedifferentiation begins. Dedifferentiation 

may be expected to occur later for knowledge than for other abilities because it relies less heavily 

on speed than memory or mental transformation. This would mean stability in younger and 

middle age groups and larger correlations in older groups. To test whether certain combinations 

show more dedifferentiation, I conducted multiple contrasts where I set one type (e.g. speed with 

mental transformation) as a reference and compared the age2 patterns in the additional types (e.g. 

speed with memory, mental transformation with memory) to that reference. I explored a 

significant age2 predictor present in conjunction with a significant age predictor (suggesting non-

linear differentiation/dedifferentiation) for each specific type by conducting a second set of 

models where age and age2 predicted correlation size for each type individually and examining 

average correlation size in three age groups (18-39,40-69,70+).  

Method 

Inclusion Criteria  

I collected a convenience sample of all the manuals containing information on the 

standardized test batteries with norms that could be easily obtained within the University of 



Virginia community. This search yielded a total of nineteen different batteries or versions of 

batteries (i.e. WAIS IV versus WAIS III) that were then evaluated for the project. Batteries were 

included if they had correlation coefficients between tests for at least three adult age groups, the 

tests had acceptable validity and reliabilities over .6, and the batteries were normed using a 

nationally representative sample. Eleven of the batteries fit these conditions, and are described in 

greater detail in Table S2. For all test batteries, the samples were representative in terms of 

race/ethnicity, geographic region, and education level based on the most recent census data 

available at norming.  

Classification of Tests & Correlations 

The tests contributing to each correlation were categorized based on previous factor 

analytic work (Benson, Hulac, Kranzler, 2010; Bowden, Cook, Bardenhagen, Shores, & 

Carstairs, 2004; Flanagan & Mcgrew, 1998; Ortiz, Flanagan, & Alfonso, 2013; Hoelzle, Nelson, 

& Smith, 2011; Tulsky & Price, 2003), with some additions based on my own judgment and the 

ratings of another individual with extensive knowledge of the various tests. Details for each test, 

including name, battery, description (from the relevant technical manual), and classification are 

in Table S3. Below I explain in greater detail how I made the classifications for each battery. As 

the classification studies often used different names for their factors, I included the Cattell-Horn-

Carroll (CHC) classification in parentheses for all abilities.  

WAIS Batteries 

The WAIS battery was evaluated using a cross-battery assessment with the Luria-

Nebraska Battery (Shelly & Goldstein, 1982). These four factors can be interpreted as 

representing general intelligence (g), a combination of reading/writing (Grw), quantitative (Gq) 

and short term memory (Gsm), comprehension-knowledge (Gc), and a combination of visual 



abilities (Gv) and fluid intelligence (Gf), respectively. Picture completion loaded onto Gsm and 

Gc and was categorized as primarily mental transformation with general knowledge. To maintain 

consistency across the WAIS batteries I additionally classified arithmetic and similarities as 

general knowledge and mental transformation, respectively even though these cross loadings 

were not significant in Shelly and Goldstein’s (1982) analysis. 

 The WAIS-R battery was evaluated in a cross-battery analysis with WMS-R (Bowden et 

al., 2004). Although their factor structure was not developed with the CHC in mind, I believe 

their six-factor structure can be interpreted as follows: verbal comprehension (Gc), perceptual 

organization (Gv/Gf), processing speed (Gs), working memory (Gsm), verbal memory (Glr), and 

visual memory, (Glr). Tests that loaded onto Gc were categorized as General Knowledge. Tests 

that loaded on Gv/Gf and Gsm were categorized as Mental Transformation. Tests that loaded on 

Gs were categorized as processing speed. No tests loaded onto Glr. Although no cross loadings 

were tested in Bowden et al. (2004), to maintain consistency across the batteries I additionally 

categorized arithmetic, similarities, and picture completion as general knowledge, mental 

transformation, and general knowledge, respectively.  

 The WAIS III battery was evaluated in the cross-battery analysis of the WAIS-III and the 

WMS-III batteries (Tulsky & Price, 2003). As with the WAIS-R analyses, I interpreted their 

factors in terms of CHC abilities: verbal comprehension (Gc), perceptual organization (Gv/Gf), 

auditory memory (Glr), working memory (Gsm), visual memory (Glr), and perceptual speed 

(Gs). Tests that loaded on Gs were categorized as speed. Tests that loaded on Gf or Gsm were 

categorized as mental transformation. Tests that loaded on Gc were categorized as general 

knowledge. None of the WAIS tests loaded onto Glr. Although picture arrangement loaded onto 



crystallized intelligence, to maintain consistency across other WAIS batteries (where it never 

loaded on Gc), it was categorized only as mental transformation.  

 The WAIS IV classifications were reviewed in Ortiz et al.  (2013). They categorized the 

WAIS IV tests into six abilities: verbal comprehension (Gc), perceptual speed (Gs), fluid 

reasoning (Gf), short-term/working memory (Gsm), quantitative knowledge (Gq), and visual 

processing (Gv). Tests that were categorized as Gc or Gq were categorized as general 

knowledge. Tests that were categorized as Gf or Gsm were categorized as mental transformation. 

Tests that were categorized as Gs were categorized as speed. For tests that represented multiple 

abilities, the main factor as specified by Ortiz et al. (2013) was used as the primary 

categorization.   

The WASI battery was evaluated in a cross-battery CFA with the Wide Range 

Intelligence Test (WRIT; Canivez, Konold, Collins, & Wilson, 2009). They evaluated a two-

factor structure including crystallized intelligence (Gc) and fluid intelligence (Gf). Tests from the 

WASI battery loaded onto both factors. Tests that loaded onto the Gc factor were categorized as 

general knowledge. Tests that loaded onto the Gf factors were categorized as mental 

transformation. To maintain consistency across the WAIS batteries, similarities was additionally 

coded as mental transformation.    

WMS Batteries 

 The WMS-R battery was evaluated in a cross-battery CFA with the WAIS-R in Bowden 

et al., (2004). As noted above, I interpreted their six factors in terms of CHC theory. Tests that 

loaded onto Glr were treated as memory. Tests that loaded on Gsm were treated as mental 

transformation. There were no cross-loadings in this analysis. 



 The WMS III tests were categorized used an EFA from Hoelzle et al. (2011) and the 

cross-battery analysis of the WAIS-III and WMS-III batteries from Tulsky and Price (2003). The 

Hoelzle et al. (2011) analysis showed that across the nine normative samples, all the tests loaded 

onto one memory factor. Tulsky and Price (2003) found that spatial span and letter number 

sequencing primarily loaded onto a working memory factor, and were categorized as mental 

transformation.  Cross-loadings with the Gv/Gf factor were with the visual memory tests, and 

seem to be more about visual processing than mental transformation and these patterns were not 

seen for any of the other WMS batteries. Therefore, no additional types were assigned based on 

these relations.  

 The WMS IV was evaluated with exploratory principal component analyses in Hoelzle et 

al. (2011). They found a robust fit across age groups for a two-factor model that included visual 

and auditory memory abilities. However, spatial addition and symbol span were designed to 

measure working memory, and to maintain consistency across batteries these tests were 

classified as mental transformation. All other tasks were categorized as memory. There were no 

cross-loadings.  

Kaufman Batteries 

 The KAIT battery was evaluated in a cross-battery CFA with the Woodcock Johnson-

Revised in Flanagan and Mcgrew (1998). They evaluated a nine-factor structure including 

crystallized intelligence (Gc), fluid intelligence (Gf), memory span (Gsm), perceptual speed, 

(Gs), associative memory (Glr), visual memory (Gsm), closure speed (Gv), phonetic coding 

(Ga), and reading (Grw). Tests from the KAIT battery loaded onto the Gf, Glr, Gsm, and Gc 

factors. Tests that loaded onto the Gf and Gsm factors were categorized as mental 

transformation. Tests that loaded onto the Glr were categorized as memory, with the exception of 



memory for block designs. As noted in the technical manual (Kaufman & Kaufman, 1992), this 

test has also been used to assess Gf and was more consistent in content with the tests that were 

categorized as Gf. Therefore, I classified it as mental transformation. Although the auditory 

delayed recall loaded onto both Glr and Gc, it was categorized as memory as the main task is to 

recall information. Tests that loaded onto the Gc factor were categorized as general knowledge. 

When tests loaded onto multiple factors, the highest loading was used for categorization. 

 I could not find a factor analysis of the KBIT battery. However, the battery was designed 

to tap crystallized intelligence (Gc, Vocabulary) and fluid intelligence (Gf, Matrices) and 

therefore I classified the tests using these a priori assumptions (Kaufman & Kaufman, 2004).   

Woodcock-Johnson Battery 

 The Woodcock-Johnson-R (WJ-R) battery was developed using the GF-GC theory 

(which was a partial basis for the CHC), and therefore I used the classifications included in the 

technical manual (Woodcock, & Johnson, 1989). The achievement tests were not included. In 

addition, the sound blending, incomplete words, picture recognition, and visual closure tests 

were not included because they only measured auditory and visual processing abilities and were 

specifically designed not to measure fluid intelligence (Gf) or speed (Gs). For tests that were 

categorized as multiple abilities, the primary factor was chosen as specified by the technical 

manual.  

These classifications resulted in ten correlation types (MT-MT, MT-S, MT-GK, MT-M, 

S-S, S-GK, S-M, M-M, M-GK, GK-GK). Most of these groups were over 200 and all the 

between ability types were above 200 with the exception of Speed with Memory (S-M) and 

Knowledge with Memory (K-M), see Supplementary Table 4. Therefore, I chose not to 

aggregate but to be cautious in interpreting the S-M, K-M, and small within-ability types.  



Data Cleaning 

I used R (V.3.30; R Development Core Team, 2008) for all the analyses in Study 1. The 

data included the following variables (Test Battery, Sample Size (N), Mean Age, Correlation, 

Type, Sample, Age2 R-Z Correlations, Weight), the last four of which are described in greater 

detail below.  

One assumption of a basic meta-analysis is that the outcome measures are independent of 

one another. This is not the case in this study because a number of correlations were drawn from 

each sample. To resolve this dependency issue, I included a random effect for sample because it 

allowed me to keep the complexity of the data without producing biased estimates from 

assuming independence where dependencies exist (Van den Noortgate, Lopez-Lopez, Marin-

Martinez, Sanchez-Meca, 2013).  The ‘sample’ variable identifies which correlations were drawn 

from which independent sample and can be used to control for this issue. The WAIS-3 and 

WMS-3 were coded with the same identifier as were the WAIS-4 and WMS-4 because they 

relied on the same samples.  

I used the ‘meta-for’ package (Viechtbauer, 2010) to obtain Fisher’s Z transformations of 

the original correlations (R-Z Correlations) and a measure of their relative sample size 

(Weights). Fisher’s Z is a commonly used variance-stabilizing transformation that controls for 

the fact that the variances of untransformed r’s are increasingly smaller as they approach the 

upper and lower bounds (-1,1) of their distribution. This transformation allows for unbiased 

comparisons between correlations. The correlations are weighted by the number of individuals 

included in the study. To test my hypotheses regarding non-linear patterns, I standardized my age 

variable and squared it to make an age2 variable which was always entered simultaneously with 

age. 



My hypotheses regarding dedifferentiation primarily focused on correlations across 

abilities and not within abilities. Therefore, I excluded within ability correlations (S-S, MT-MT, 

M-M, GK-GK) from the analyses described below.  

Testing Assumptions 

I first evaluated whether my data met the assumptions needed to conduct the meta-

regression. First I examined whether the dependent variable, correlation size, was normally 

distributed. Unfortunately, no normality tests have been developed in R that control for the 

different weightings of the correlations and the dependencies between the correlations (multiple 

correlations being drawn from one sample). However, I can use a quantile-quantile figure to 

check visually for normality.  

In a Q-Q plot, the correlations are organized into ascending order and assigned to 

quantiles based on frequency (these are the sample quantiles, y-axis). The correlations are then 

categorized into the quantiles they would in theory be in if the data was perfectly normal (these 

are the theoretical quantiles, x-axis). Evidence of normality is found when a majority of the 

points are between -1.96 and 1.96 and the data forms a diagonal line with the lowest point in the 

bottom left corner and the highest point in the upper right corner. This plot is presented in Figure 

1. Based on the findings that 1) the majority of the points (particularly those based on larger 

sample sizes) are in the middle of the distribution and 2) the pattern is almost perfectly linear and 

diagonal, I determined that my dependent variable likely met the assumption of normality.  

I then examined the variance present in the data in several different ways. First, I wanted 

to determine how much variability was present in my dependent variable. To do this, I 

constructed a random-effects model that controlled for the dependencies present in the data. As 

expected, the variance between the correlations, or τ2, is significantly non-zero. I calculated a 



measure of heterogeneity, I2, by subtracting the df from the chi statistic produced from this 

analysis (Cochran’s Q) and dividing this difference by the Cochran’s Q (Higgins & Thompson, 

2002). I found that 72.80% of the total variation in the correlations was unexplained after 

controlling for the intercept.  

I then tested for homogeneity of variance across age by type and age2 by type. 

Unfortunately, as with normality, there is no test for heterogeneity in R that can control for 

differentially weighted items or dependencies. However, I can visually test for homogeneity of 

variance by plotting the predicted values from models that included either age*type or age2*type 

as predictors and on the x-axis and the residuals for each correlation after controlling for these 

predictors on the y-axis. Homogeneity of variance is shown when the vertical spread of the 

points is similar across the x-axis. As shown in Figure 1, there is slightly less spread on the y-

axis at certain places. However, these places appear to be primarily where there are fewer points 

altogether (and therefore less extreme values, which are predicted less well). Therefore, it 

appears that the homogeneity of variance assumption is likely met.   

Analytic Plan  

If aging is associated with increased dedifferentiation, I expected to find that age would 

significantly and positively predict the size of the correlations and that age patterns would be 

higher in the older versus younger groups. If a certain threshold of decline is needed before 

dedifferentiation occurs, or if dedifferentiation is primarily due to pathological conditions more 

common in older adults, I expected that age2 would significantly predict correlation size and that 

age patterns would primarily be higher in the oldest versus the younger groups. I also expected 

that correlations involving processing speed (e.g. S-MT, S-M) would be more likely to show 

dedifferentiation than correlations between tasks that do not include processing speed. 



I constructed a set of five models that included the intercept, age, and age2 for one of the 

cognitive ability type (hereafter referred to as the reference) and the deviations from those 

intercept, age, and age2 predictions for the other types of correlations. Setting a reference was 

necessary because ability type was a categorical variable. Comparing the other types to a 

reference also allowed me to test my hypotheses that dedifferentiation would be stronger for 

certain combination of variables than others. Finally, I examined age and age2 as predictors when 

only the data for each of the types was included individually.  

Significant results for the intercept, age, and age2 variables in the reference show that 

those variables significantly predicted correlation size in that cognitive ability type. For example, 

if speed with mental transformation was the reference and age was significant, this would mean 

that age significantly predicted correlation size for correlations that include tests of speed and 

memory. A significant deviation would demonstrate that the intercept is higher/lower or that 

age/age2 did not predict correlation size in the same way for that ability type compared with the 

reference. For example, if the deviation between speed with knowledge and the reference is 

significant, that would mean that age is a stronger or weaker predictor of correlation size in 

speed with knowledge compared with the reference.  

I used the results in each reference category to determine whether there was evidence of 

linear or non-linear dedifferentiation for that type. I used the deviations to determine when those 

linear and non-linear patterns were significantly stronger or weaker across types.  

Unfortunately, formal outlier or influence analyses are not available for the specific type 

of model I needed to control for dependencies. However, I can visually examine whether a small 

number of correlations seem to be responsible for my patterns of results. To do this, I divided the 

data into separate data sets for each correlation of two specific tests. I tested whether age 



predicted correlation size for each of these data sets for every combination of tests and plotted 

the results for each cognitive ability type. I then examined these plots to determine whether there 

were any points or clusters of points that had much higher or lower correlations than the rest. If 

this appeared to be the case, I investigated the correlations to determine if there was any 

relationship (larger age ranges, same tests) between these outlier points.  

Results 

Speed with Mental Transformation as Reference Type 

The estimates of the meta-regression model where speed with mental transformation 

served as the reference are presented in Table 1. The average correlation was significantly non-

zero, age was a significantly positive predictor (signaling dedifferentiation), and age2 was not a 

significant predictor (suggesting dedifferentiation is linear) for the Speed with Mental 

Transformation type (S-MT). These patterns were also present in additional models that included 

age and age2 as predictors of just the Speed with Mental Transformation correlations, see Tables 

6 and 7. The finding that age was a significant predictor was consistent with my hypothesis that 

dedifferentiation would be found for the S-MT type. 

Age predicted an increase in correlation size of .0020 with each additional year after 18. 

These patterns are presented in Figure 2. This suggests a very small impact on correlation size 

across the adult lifespan; between the ages of 25 and 75 the average correlation would only differ 

by about .10. The average correlation below age 48.29 (the mean of the sample, M = 27.67) was 

.37. The average correlation above 48.29 (M = 65.01) was .44. This equals an average difference 

of .0020 with each year, identical to that found in the model.  

The relations between age and predicted correlation size for each combination of tests are 

presented in Figure 3. The weighted mean of these standardized estimates is around .39 and 



show that findings of the above model do not appear to be due to a small number of data points.  

There were significant deviations in the predictions for the S-MT type compared with the 

other types for the size of the intercept, the strength of age as a predictor, and the strength of age2 

as a predictor. The intercept deviations were positive for K-M and K-MT, which means that the 

average correlations were higher for these types than for S-MT. The intercept deviations were 

negative for the M-S and MT-M, which means that the average correlations were lower for these 

types than for S-MT. There was no significant deviation between S-MT and S-K.   

The age deviations were negative for the K-M, M-S, K-MT, and MT-M types. This 

means age was a significantly weaker predictor of correlation size in these groups compared with 

S-MT type. There was no significant deviation between S-MT and S-K types. The findings that 

age dedifferentiation was weaker for the K-M, K-MT, and MT-M types were consistent with my 

hypotheses that dedifferentiation would be strongest for correlations between tests of speed and 

tests of mental transformation or memory. I expected that S-K would have weaker 

dedifferentiation, but this was not supported by the data. There was also a significant differences 

between the S-MT and S-M group which was unexpected, but may not be reliable given the 

small number of data points in this group.  

The age2 deviations were negative for the K-M, M-S, K-MT, and MT-M types. These 

results suggest that dedifferentiation is less positively non-linear in these groups. 

 Speed with Knowledge as Reference Type 

The estimates of the meta-regression model where speed with knowledge served as the 

reference are presented in Table 2. The average correlation was significantly non-zero, age was a 

significantly positive predictor (signaling dedifferentiation), and age2 was not a significant 

predictor (suggesting dedifferentiation is linear) for the speed with knowledge type (S-K). In the 



additional models that included age and age2 as predictors of just the speed with knowledge 

correlations, see Tables 6 and 7, age was no longer a significant predictor (p = .0562). The 

difference between the models seems to be due to the simultaneous inclusion of the deviations. 

The finding that age approached significance/was a significant predictor was consistent with my 

hypothesis that dedifferentiation would be found for the S-K type. 

Age predicted an increase in correlation size of .0019 with each additional year after 18. 

These patterns are presented in Figure 2. This suggests a very small impact on correlation size 

across the adult lifespan; between the ages of 25 and 75 the average correlation would only differ 

by about .10. The average correlation below age 48.29 (the mean of the sample, M = 27.65) was 

.36. The average correlation above 48.29 (M = 65.17) was .44. This equals an average difference 

of .0020 with each year, identical to that found in the model. 

The relations between age and predicted correlation size for each combination of tests are 

presented in Figure 3. The weighted mean of these standardized estimates is around .39. The 

findings of the above model do not appear to be due to a small number of data points. 

There were significant deviations in the predictions for the speed with knowledge 

correlations compared with the other types for the size of the intercept, the strength of age as a 

predictor, and the strength of age2 as a predictor. The intercept deviations were positive for K-M 

and K-MT, which means that the average correlations were higher for them than for S-K. The 

intercept deviations were negative for the M-S and MT-M types, which means that the average 

correlations were for them than for S-K.  

The age deviations were negative for the K-M, M-S, K-MT, and MT-M types. This 

means age was a significantly weaker predictor of correlation size for them compared with S-K 

type. The findings are somewhat surprising, as I expected dedifferentiation would likely be 



comparable or stronger for the MT-M type because memory and mental transformation are more 

dependent on speed than knowledge is. However, it is possible that patterns are stronger here 

because speed is assessed directly as part of the S-K correlations and only indirectly for in the 

MT-M correlations.     

The age2 deviations were negative for the K-M, M-S, K-MT, and MT-M types. These 

results suggest that dedifferentiation are less positively non-linear in these types.  

Mental Transformation with Memory as Reference Type 

The estimates of the meta-regression model where mental transformation with memory 

served as the reference are presented in Table 3. The average correlation was significantly non-

zero, age was not a significant predictor, and age2 was a significant predictor for Mental 

Transformation with Memory (MT-M). In the additional models that included age and age2 as 

predictors of just the Mental Transformation with Memory correlations, see Tables 6 and 7, age2 

was no longer a significant predictor (p = 0.2370). The difference between the models seems to 

be due to the simultaneous inclusion of the deviations. These patterns are inconsistent with my 

hypothesis that dedifferentiation would be present, albeit weaker, because both mental 

transformation and memory are both impacted by lower speed of processing capacity.  

Relations between age and correlation size for each combination of tests are presented in 

Figure 3. The weighted mean of these standardized estimates is around -.08. The findings of the 

above model do not appear to be due to a small number of data points. 

There were significant deviations in the predictions for the MT-M type compared with 

the other types for the size of the intercept, the strength of age as a predictor, and the strength of 

age2 as a predictor. The intercept deviations were positive for the K-M and K-MT types, which 

means that the average correlations were higher for them than for MT-M. There was no 



significant deviation between MT-M and M-S.   

There were no significant deviations for age between any of the types. This further 

supports the above findings of stability for mental transformation. The age2 deviations was 

positive for the K-MT type. These results suggest that the non-linear patterns are more positive 

for the K-MT type.   

Mental Transformation with Knowledge as Reference Type 

The estimates of the meta-regression model that included Mental Transformation with 

Knowledge (K-MT) as a reference are presented in Table 4. The mean correlations were 

significantly non-zero. Age and age2 were not significant predictors (no dedifferentiation). These 

patterns are presented in Figure 2. No differences were found in additional models that included 

age and age2 as predictors of just the Knowledge with Mental Transformation correlations, see 

Tables 6 and 7. These results were consistent with my hypotheses that dedifferentiation would be 

weak or nonexistent for correlations including knowledge (which I predicted would be less 

dependent on speed) and where speed was not directly assessed.  

Relations between age and correlation size for each combination of tests are presented in 

Figure 3. The weighted mean of these standardized estimates is around .12. The findings of the 

above model do not appear to be due to a small number of data points. 

The intercept deviation was positive for the K-M type and weaker for the M-S, which 

means that the average correlations were higher and lower for these types compared with K-MT, 

respectively. There were no significant deviations in age as a predictor between types. The age2 

deviations were negative for the K-M and M-S types. These results suggest that dedifferentiation 

may be non-linear in these groups. 

Speed with Memory as Reference Type 



The estimates of the meta-regression model where Speed with Memory served as the 

reference are presented in Table 5. The average correlation was significantly non-zero. Age and 

age2 were not significant predictors suggesting stability in the correlations for the Speed with 

Memory type. In additional models that included age and age2 as predictors of just the Speed 

with Memory correlations, see Tables 6 and 7, age and age2 are still not significant but the 

direction of the age patterns has reversed. The difference between the models seems to be due to 

the simultaneous inclusion of the deviations.  

Relations between age and correlation size for each combination of tests are presented in 

Figure 3. The weighted mean standardized estimate is around .34. The small number of points 

likely explains why no dedifferentiation was found for this type.  

The intercept deviation was positive for the M-K type, which means that the average 

correlations were higher for M-K than S-M. The age deviations were positive for the M-K type. 

This means age was a significantly stronger predictor of correlation size for M-K compared with 

S-M type. There were no significant deviations in age2 as a predictor.  

Memory with Knowledge without other Types 

The estimates of the meta-regression model that included age and age2 as predictors of 

just the Memory with Knowledge correlations are presented in Tables 6 and 7. The mean 

correlations were significantly non-zero, age was not a significant predictor (no 

dedifferentiation) and there were no quadratic age patterns. Linear age patterns are presented in 

Figure 2. Relations between age and correlation size for each combination of tests is presented in 

Figure 3. The weighted mean of these relations is around .09. The findings of the above model 

do not appear to be due to a small number of data points. These results were consistent with my 

hypotheses that dedifferentiation would be weak or nonexistent for correlations including 



knowledge (which I predicted would be less dependent on speed) and where speed was not 

directly assessed.  

Summary  

In summary, the Speed with Mental Transformation showed evidence of age 

dedifferentiation. As expected, dedifferentiation was stronger in these correlations compared 

with the correlations that included a test of knowledge but not speed and in comparison to the 

mental transformation with memory type. The lack of a significant effect for the speed with 

memory type is not surprising given the low number of samples for that type. 

However, there was no significant difference between the speed and general knowledge 

and the speed with mental transformation types as expected. This may suggest that lower levels 

of speed constrain performance on other cognitive tests similarly. It was also unexpected that 

correlations of mental transformation with memory would show no dedifferentiation. However, 

given the small size of the effects (less than an increase of .10 from 25 to 75) even when speed is 

directly included in the correlation, it may not be surprising that dedifferentiation was not 

identified for this combination of abilities.  

 I predicted that the amount of dedifferentiation should be stronger for older age groups, 

and that non-linear patterns would be particularly strong for the speed with general knowledge 

type. However, although there were differences in the strength of the age2 predictor between 

types, age2 was never a significant predictor in conjunction with age (dedifferentiation) and was 

only inconsistently significant for the mental transformation with memory type. As age2 was 

never reliably significant, I did not explore correlations in three different age groups.   

Constrained Analyses 



 One of the issues with the above analyses is that some of the tests assessed multiple 

abilities. This means that some of the ability types specified in the analysis above contained tests 

that measured something in addition to the ability they were primarily categorized as, which 

could have biased results.  

I reran all the analyses after excluding these tests and evaluated whether similar patterns 

were produced for both analyses. As shown in Supplementary Tables 5-11, the patterns found 

with the constrained analyses were almost identical to that of the unconstrained analyses, even 

though the number of correlations for most types were reduced, see Supplementary Table 4. The 

only major difference was that age was a weaker predictor of speed with knowledge compared to 

speed with mental transformation. Therefore, I believe that my findings are not generally not 

biased due to the inclusion of these tests that assessed multiple abilities. 

Discussion 

 The goal of the first study was to evaluate whether dedifferentiation would be found, 

whether it would be stronger in older age, and whether these patterns would be impacted by the 

cognitive abilities included in the correlations being compared. I found evidence of age 

dedifferentiation when a speed test was included in the correlation, although the effect was small. 

In addition, significant nonlinear patterns were not found for any of the types, even though there 

were significant deviations in how strong age2 was a predictor.  

Linear Age Effects 

 Overall, it appears that dedifferentiation is the exception, not the rule across the adult 

lifespan. Consistent with previous reports where dedifferentiation was found when a speed of 

processing test was correlated with a test of memory and/or mental transformation (Babcock et 

al., 1997; Ghisletta et al., 2003; Ghisletta et al., 2005; Hertzog et al., 2001) and with hypotheses 



that lower levels in speed at older ages compress performance on other cognitive tests (Li et al., 

2004), dedifferentiation was present for two of the three categories that that included speed (and 

given that K = 28 for the Speed with Memory type it is not surprising that there were no 

significant age trends for that type). However, dedifferentiation was not found in any of the other 

correlation types and the effects were relatively small even for correlations that included (less 

than .11 increase between 25-75).  

 I expected that dedifferentiation would be stronger for the speed with mental 

transformation correlations than speed with general knowledge correlations because general 

knowledge tests are less reliant on speed of processing and more reliant on life experiences 

compared with mental transformation tests. This difference in age patterns between the Speed 

with general knowledge and the speed with mental transformation types was not significant in 

the overall sample, but did appear for the constrained analyses. These results are consistent with 

my hypothesis that speed may not constrain performance on tests that purely assess knowledge 

as much as tests that assess mental transformation.  

I predicted that I would find dedifferentiation for the Mental Transformation with 

Memory type, as both abilities can be postulated to be reliant on speed. However, age was not a 

significant predictor for this type. This may not be surprising, however, given that the magnitude 

of dedifferentiation was small even when a direct test of speed was included; indirect impacts of 

speed may be too minimal to capture.  

 Finally, I expected to find little to no dedifferentiation in the general knowledge with 

mental transformation and general knowledge with memory types because there was no direct 

test of speed and because general knowledge is less reliant on speed as noted above. These 

hypotheses were consistent with the data.   



It is important to note that there may be power issues in detecting effects. Unfortunately, 

there is little to no information about evaluating power for meta-regression mixed-effects models 

that include dependent effect sizes. However, factors that can influence the power include 

number of independent effect sizes, between-studies heterogeneity, and number of predictors 

included. There was a moderate amount of heterogeneity in each type and although there were a 

large number of correlations, many of them were dependent on one another. Therefore, although 

my findings are likely accurate that correlations that included speed produced the strongest 

dedifferentiation, a larger sample may show there are additional differences between ability 

types.  

Non-Linear Age Effects  

 I hypothesized that the increase in correlations would be stronger in older than younger 

adults based on hypotheses that dedifferentiation occurs after either a certain amount of 

cognitive/neural decline (de Frias et al., 2007) or because of pathological conditions more 

common in older adults (de Frias et al., 2009; Batterham et al., 2011; Wilson et al., 2012, 

Sliwinski et al., 2003). I also expected that because general knowledge is less dependent on 

speed compared with memory and mental transformation, greater deterioration in speed (i.e. a 

bigger threshold) may be needed before dedifferentiation occurs for correlations of speed with 

general knowledge compared to correlations of speed with mental transformation or memory. 

However, although there were differences between the ability types in how strong a predictor 

age2 was, age2 only predicted correlation size for mental transformation with memory and there 

was no accompanying significant age effect.  

It is possible that the lack of significant quadratic patterns in the individual groups, 

despite the significant deviations, are due to power issues. As described above, the power of my 



analyses may be limited by the relatively small number of independent correlations and the 

between-studies heterogeneity. Therefore, more work is needed to establish whether increased 

dedifferentiation in older samples would be demonstrated when more independent correlations 

are included. 

However, these patterns may be accurate given that the decline of speed is linear across 

the adult lifespan (Salthouse, 2010). In addition, the norming samples for many of the test 

batteries (WAIS, 1955; 1981; 1997; 2008b; WASI, 1999; WMS, 1987; 1997; 2009; although not 

all, Woodcock & Johnson, 1989) included screenings for health conditions that affect cognitive 

functioning, like possible dementia. If the non-linear patterns found in previous studies were due 

to a subsample of individuals with pathological issues (Batterham et al., 2011), then it is 

reasonable that such patterns would not be replicated here.   

Categorization using CHC 

As described above, the evidence in favor of dedifferentiation was mainly found for 

specific combinations of cognitive abilities. This raises an important question: are these true 

patterns or are they artifacts of the categorization process? The factor analytic work was not 

ideal, as it was conducted in multiple samples ranging in size with different methodological 

analytic techniques. However, it did provide some objectivity and the use of cross-battery 

analyses whenever possible provided additional links between the batteries.  

A secondary issue is that some of the tests included in the unconstrained analysis were 

associated with multiple abilities. This could mean that certain correlations assessed more than 

just one ability and were therefore biasing the patterns found in my analysis. To resolve this 

issue, I excluded all correlations including tests that measured multiple abilities according to 

previous factor analytic literature (Benson et al., 2010; Bowden et al., 2004; Flanagan & 



Mcgrew, 1998; Hoelzle et al., 2011; Tulsky & Price 2003) and reran the analyses. Patterns were 

nearly identical, with the exception that age was a significantly weaker predictor of speed with 

knowledge compared with speed with mental transformation. This supports the assumption that 

the patterns found in the unconstrained analyses were generally unbiased.     

Overall, although the categorizations may not be perfect, the techniques used for 

classification were primarily objective and when reviewed by an expert were considered 

acceptable. In addition, after removing tests that assessed multiple abilities the patterns were 

nearly identical.  

Additional Limitations  

There was also some concern that a subset of the correlations influenced the results in the 

overall dataset. For example, if a single test had extremely strong relations between age and 

correlation size whereas the rest of the tests showed only weak relations, patterns could appear to 

be stronger in the overall model than was actually the case. 

To explore this possibility, I separated the data into individual sets that included the 

correlations by age for each combination of tests. I then used age to predict the correlations in 

each of these subsets datasets; the estimates are presented in order of size in Figure 3. Although 

the individual estimates are not particularly trustworthy in themselves, I felt I could use them 

together to examine the relations between age and correlation size in my data and look for certain 

data points that were behaving differently from the overall sample. After a visual examination of 

the data, none of the effects appear to be driven by a subset of correlations. Based on these 

results, I conclude that it is unlikely that a minority of cases is responsible for the patterns found 

in the data.  

Summary  



 In summary, evidence for age dedifferentiation was found, but was specific to certain 

types and small in magnitude. Consistent with the general slowing account of dedifferentiation, 

age effects on correlation size were only found when one of the tests included in the correlation 

measured speed. Increasingly strong dedifferentiation in older age groups was predicted but not 

found. This may represent the nature of dedifferentiation in health individuals, but could also be 

due to the limited number of independent samples.  

Study 2: Longitudinal Dedifferentiation in Healthy and Pathological Adults 

 In the first study, I evaluated cognitive dedifferentiation with a number of large 

representative samples and a wide range of reliable cognitive abilities. Unfortunately, however, I 

could not explore within-person change or the role of pathology. Therefore, I conducted a second 

study where I evaluated the size of correlations between cognitive abilities in healthy and 

pathological individuals at baseline and over a three-year period.  

The dataset used in the preparation of this article was obtained from the Alzheimer’s 

Disease Neuroimaging Initiative1 (ADNI) database (adni.loni.usc.edu). The ADNI was launched 

in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD).  

Hypotheses 

																																																								
1 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and 
implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A 
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 
	



 H1. The presence of pathology will result in greater cognitive dedifferentiation at 

Timepoint 1 (T1) for AD and MCI individuals compared to healthy individuals of similar age 

and educational ability. As described in greater detail above, there is evidence that time to death 

(Hulur et al., 2015; Wilson et al., 2012) and pathology (de Frias et al., 2007; Sliwinski et al., 

2003) can be better predictors of dedifferentiation than age. Similarly, Siedlecki et al. (2008) 

found that there was a loss of fit for the model when metric invariance was imposed for healthy 

and impaired individuals. To test for pathological dedifferentiation, I will examine whether 

correlations between abilities are significantly higher for the individuals with large impairments 

than for individuals with less impairments. However, using the ADNI dataset with a slightly 

different model that that used here, Park et al. (2012) found the covariance between their ability 

factors could be achieved without loss of fit, suggesting that stability in the structure is also 

likely here.  

H2. Cognitive dedifferentiation will be shown in a period of 3 years, but only in 

pathological individuals. I predicted that there would be no significant changes in correlation 

magnitude for healthy adults because age-related cognitive change in the healthy adults was 

unlikely to be found, particularly given the large number of time they took each of the tests 

during that time (Salthouse, 2014). This is supported by previous research; only two of the six 

longitudinal studies (Ghisletta & Lindenberger, 2003a; Ghisletta & de Ribaupierre, 2005) with 

intervals under ten years showed any evidence of dedifferentiation (Anstey et al., 2003; Ghisletta 

& Lindenberger, 2003a; Ghisletta & de Ribaupierre, 2005; Schaie et al., 1998; Tucker-Drob, 

2008; Zelinski et al., 2003) and in both cases the evidence was weak.  

However, I did predict that there would be changes in correlation magnitude in the 

impaired individuals. In three years, individuals with MCI decline twice as fast as healthy 



individuals and those with Alzheimer’s decline four times as fast (Wilson et al., 2010). If 

dedifferentiation is tied to declining function as expected, it should be stronger in these 

populations. To test this hypothesis, I evaluated whether correlations are larger at T2 compared 

with T1 for the more impaired and less impaired group, with the expectation that evidence of 

dedifferentiation over time was more likely to appear for the more impaired versus less impaired 

group.  

Method 

Participants 

The ADNI study included 229 cognitive normal individuals, 395 participants with MCI, 

and 190 participants with Alzheimer’s Disease between 55-90 who completed a battery of 

cognitive tests at T1.  

Healthy normal participants needed to have Mini-Mental State Examination scores 

between 24-30 and clinical dementia ratings of 0, non-depressed, non-MCI, and non-demented. 

Participants in the MCI condition were required to have MMSE scores of 24-30, a memory 

complaint, objective memory loss measured by a normed score on the WMS logical memory II, 

a CDR of .5, and an absence of significant impairments in other domains, preserved ADLs, and 

an absence of dementia. Finally, the participants with Alzheimer’s Disease were required to have 

MMSE scores of 20-26, a global CDR of .5-1, and to meet the NINCDS/ADRDA criteria for 

probable AD (adni.loni.usc.edu).  

Cognitive Tests 

 Fourteen cognitive tests from the ADNI1 dataset were used in the analyses. Information 

on these tests can be found at the following paper (Park et al., 2012). Descriptions of the tests are 

listed in Supplementary Table 12. The MMSE was used as a screening measure and was not 



included in any of the four ability factors included in this analysis. Speed was measured using 

digit symbol substitution, the ADAS number cancellation test, and Trails A. Knowledge was 

measured using category fluency (animals & vegetables), the Boston naming test, and the ADAS 

naming test. These are not ideal tests for assessing general knowledge because according to 

recent CHC standards fluency tests are more consistent with measures of long-term memory than 

knowledge (Schneider & McGrew, 2012). However, they are the closest tests available to the 

construct in this battery, and therefore I chose to use them and simply interpret my results 

carefully with regard to this factor. Memory was measured using the auditory verbal learning test 

(trials 1-5, short delay, long delay, recognition), the ADAS delayed recall test, and the ADAS 

recognition test. Finally, Mental Transformation was measured using digit span backward, clock 

drawing, and the ADAS construction test.  

Analytic Plan 

Confirmatory factor analyses were conducted in AMOS (Arbuckle, 2010) and maximum 

likelihood was used to deal with missing data. Two models were used to evaluate cross-sectional 

and longitudinal dedifferentiation.  

For the cross-sectional analyses, I tested whether the presence of pathological conditions 

result in higher correlations at T1. Model 1, presented in Figure 4, is a hierarchical model in 

which the correlations between the cognitive tests at T1 are explained by first-order latent factors 

presumed to represent Mental Transformation, Memory, Speed, & Knowledge. These factors are 

correlated with one another in each impairment group and these correlations are the focus of my 

first analysis.  

In order to make the comparison of these correlations reasonable, I tested the fit of a 

metric invariance version of Model 1, which forces the loadings between the observed tests and 



latent factors to be the same to determine if there was a loss of fit. Using this approach ensures 

the meaning of latent factors is the same across conditions. I evaluated the fit of this model using 

absolute measures (CFI, RMSEA) and by comparing it to a configural model where the 

restrictions of the metric model are relaxed I did not constrain the covariances between the 

factors to be the same. I will use the metric invariance model if there is not a significant loss of 

fit, or if the absolute fit is still excellent (although this means that that the loadings may not be 

equivalent).  

I first attempted to fit a model where the loadings were constrained across the normal, 

MCI, and AD diagnostic conditions. However, this model failed to converge and therefore was 

not usable. Therefore, I abandoned this option and instead divided the sample into groups based 

on sum-of-boxes CDR scores. The sum-of-boxes CDR scores is a total of the ratings (0-3) on six 

measures of cognitive and daily functioning: memory, orientation, judgment and problem 

solving, community affairs, home and hobbies, and personal care. This method was used in a 

previous analysis of the ADNI neuropsychological battery (Park et al., 2012).  

Although the full range for the sum CDR scores is 0-18, the median score in this sample 

was 1.5. To get roughly equal samples, individuals below 1.5 were categorized as less 

functionally impaired, and those with a score of 1.5 or above were categorized as more 

functionally impaired. Mean age and proportion female were similar across conditions, see Table 

8, but there were a far greater percentage of individuals who were cognitively normal in the less 

impaired group and a far greater percentage of individuals who have Alzheimer’s Disease in the 

more impaired group.   

 As described in greater detail below, the metric invariance comparing CDR groups also 

provided a poorer fit than the configural model. Looking at the loadings in the two groups, the 



differences appear to stem from higher loadings on the speed and general knowledge tests and 

lower loadings for the memory tests in the more impaired groups. However, the absolute fit 

measures were still excellent and so I decided to use these groups keeping in mind that this 

model is not the most accurate representations of the true patterns across groups in my data.2  

I performed z-tests comparing the correlations between each of the impairment groups. If 

the correlations were significantly higher in the more impaired (CDR > 1.5) versus less impaired 

conditions (CDR < 1.5), this would suggest that pathological dedifferentiation was occurring. 

The primary value of these analyses was to determine if whether my modified model based more 

closely on CHC constructs would be consistent with the Park et al. (2012) study that found no 

reduction of fit when constraining the relations between cognitive ability factors.  

For the longitudinal analyses, I tested whether the progression of pathological conditions 

result in higher correlations at T2 versus T1 for the less impaired and more impaired conditions 

individually. Model 2 (Figure 5) is composed of two hierarchical organizations including first-

order latent factors presumed to represent Mental Transformation, Memory, Speed, & 

Knowledge. These factors are correlated with one another at each time point for each impairment 

group and these correlations are the focus of my first analysis. 

As with the baseline model, I tested for metric invariance over time for each of the 

impairment conditions. To do this, I fit a version of Model 2 where the loadings from each factor 

to its latent factor were the same at T1 and T2. I evaluated this model by looking at absolute fit 

statistics and comparing it to a configural invariance model where these strictures were not 

imposed. As described in greater detail in the results, the fit of this model was significantly 

																																																								
2	Similar patterns were found when groups were compared using a median split of MMSE 
scores, but due to the use of the CDR measure in a previous CFA of the ADNI database, I chose 
to use the CDR scores.			



poorer but still excellent. Therefore, I moved forward with the metric invariance model while 

keeping in mind that it was not the ideal fit for the data and some patterns may be obscured. 	

I then compared whether forcing the covariances between the latent factors at T1 to be 

the same at T2 reduced model fit. This would suggest that relations between cognitive abilities 

vary across time. If model fit was reduced, I released each of the covariances individually and 

examined which improved model fit. If a covariance that was allowed to vary improved model fit 

and the correlation was higher at T2 than T1, this would provide evidence of longitudinal 

dedifferentiation. I hypothesized that this pattern would be more evident for more impaired 

versus less impaired condition if pathological dedifferentiation was taking place. This approach 

is admittedly limited because it only indirectly compares changes between the groups. However, 

given the difficulty of comparing these groups directly and my expectation that dedifferentiation 

should be weaker and therefore not found in the less impaired groups, it was still sufficient.  

Results 

Baseline Model  

 Correlation matrices for the two impairment conditions at T1 are presented in 

Supplementary Tables 13 and 14. Tests where higher scores represented poorer cognitive 

performance were multiplied by -1 so that for all tests higher scores signified higher ability. In 

all conditions, the tests hypothesized to represent the four cognitive abilities were generally 

positively correlated to one another, although the strength of these correlations varied between 

conditions.     

 I first compared a model with metric invariance, this means that the parameters 

connecting the observed tests to the latent factors had to be the same across conditions, with one 

where these parameters were allowed to vary. It is important to use a metric invariance model 



because it ensures that the latent factors have the same qualitative meaning and are comparable 

across conditions. Although the metric model had a significantly poorer fit than the configural 

model where these parameters were free to vary, (c2 = 146.69, df = 12, p < .001), it still provided 

an excellent overall fit. Absolute fit statistics, unstandardized loadings, and standardized loadings 

are in Table 9. Given that metric invariance model still provided an excellent fit I chose to use, 

while taking into consideration that it was not the best way to model the data.  

The standardized loadings from each latent construct and its respective observed 

variables were moderate to large across groups, providing evidence of convergent validity.  

 The correlations were z-transformed and compared across impairment conditions. I 

predicted that if dedifferentiation occurs with pathology, correlations should be significantly 

higher in the more impaired condition compared with the less impaired condition.  For speed 

with mental transformation, correlations were higher for the more impaired condition than the 

less impaired (z = 6.82, p < .0001) condition. For memory with mental transformation, 

correlations were lower for the more impaired versus less impaired (z = 4.28, p < .0001) 

condition. There were no other significant differences.  Correlations between abilities are 

presented in Table 10.  

 Overall, one of the correlations was larger in the more impaired versus less impaired 

condition, consistent with pathological dedifferentiation. However, one of the other correlations 

showed the opposite pattern and the others were stable. Therefore, there is little evidence of 

pathological dedifferentiation. These results are consistent with those found in Park et al. (2012) 

who found that the covariances between groups could be constrained without a loss in fit and 

demonstrates that altering their model to fit more closely with CHC constructs did not 

significantly impact the overall patterns.  



Longitudinal Models  

Correlation matrices for the two impairment conditions at T2 are presented in 

Supplementary Tables 15 and 16. Tests where higher scores represented poorer cognitive 

performance were multiplied by -1 so that for all tests higher scores signified higher ability. 

Consistent with T1, the tests hypothesized to represent the four cognitive abilities were generally 

positively correlated to one another for both conditions. Correlations between tests at T1 and T2 

(presented in Table 11) were moderate to high, suggesting both stability and some change over 

time.   

 To explore whether dedifferentiation occurred over time, I evaluated whether allowing 

correlations between latent factors to vary across the three-year period improved model fit. I 

conducted separate analyses for the more impaired versus less impaired groups.  

I first tested for each impairment group whether the loadings between each test and its 

respective latent construct could be constrained to be equal at T1 and T2. As described in greater 

detail below, although absolute fit for the ‘just loadings constrained’ models provided excellent 

fits in both impairment groups, both models performed significantly worse than models without 

these constraints. As with the baseline model, I chose to continue my analyses using the 

constrained model while keeping in mind that it did not provide the best fit for the data.  

In the next step, I evaluated whether the covariances between the latent constructs could 

also be constrained to be equal at T1 and T2. If these loadings and covariances constrained 

models had significantly poorer fits compared with the just loadings constrained model, it would 

mean that there were significant differences in at least one of the correlations across conditions.  

I then tested whether model fit would be improved by freeing each covariance 

individually. If freeing a covariance between latent structures improved fit, and the correlation 



was higher at T2 than T1, that would suggest increased dedifferentiation over time. I expected to 

find greater evidence of dedifferentiation in the more impaired versus less impaired condition as 

the progression of pathology should have a greater impact on the more impaired condition.  

Less Impaired Group  

Although both the loadings constrained model (c2 = 726.48, df = 418, CFI = .95, RMSEA 

= .044)	and the unconstrained model (c2 = 691.38, df = 406, CFI = .95, RMSEA = .043) 

provided excellent fits for the data, the loadings constrained model was a poorer fit to the data 

(∆c2 = 35.10, p < .001). As with the baseline model, I chose to move forward using this model 

with the awareness that it is not the best possible fit for the data and therefore some part of the 

true nature of these data may be lost. 	

Constraining the covariances in addition to the loadings provided an excellent fit for the 

data in the less impaired condition (c2 = 790.82, df = 424, CFI = .94, RMSEA = .047). However,  

the loadings and covariances constrained model provided a significantly poorer fit for the data 

than the loadings constrained model (∆c2 = 63.07, p < .001). This means that at least one of the 

relations between cognitive abilities differs significantly between T1 and T2. The standardized 

loadings from each latent construct and its respective observed variables were moderate to large, 

providing evidence of convergent validity. All the cognitive constructs for T1 and T2 were 

significantly correlated with one another. Absolute fit statistics, unstandardized loadings, and 

standardized loadings for both these models are in Tables 12 & 13.   

I then evaluated whether freeing each additional parameter improved fit. Allowing the 

covariance between the memory and speed factors to vary with time resulted in a significant 

improvement in fit over the loadings and covariances constrained model, (∆c2 = 6.83, p = .009). 

The correlation between speed and memory was higher at T2 (r = .55) than T1 (r = .50).  



Allowing the covariance between the memory and knowledge factors to vary with time resulted 

in a significant improvement in fit over the loadings and covariances constrained model, (∆c2 = 

4.25, p = .039). The correlation between memory and knowledge was higher at T2 (r = .74) than 

T1 (r = .68). Allowing the covariance between the mental transformation and speed factors to 

vary with time resulted in a significant improvement in fit over the loadings and covariances 

constrained model, (∆c2 = 5.71, p = .017). The correlation between mental transformation and 

speed was higher at T2 (r = .70) than T1 (r = .69). Releasing the other covariances did not 

significantly improve model fit (p’s > .10).	In	sum,	it	appears	that	some	of	the	correlations	were	

larger	at	T2	than	at	T1,	consistent	with	dedifferentiation	in	the	less	impaired	group. 

More Impaired Group 

Although both the loadings constrained model (c2 = 715.62, df = 418, CFI = .94, RMSEA 

= .041)	and the unconstrained model (c2 = 647.97, df = 406, CFI = .95, RMSEA = .037)	provided 

excellent fits for the data, the loadings constrained model was a poorer fit to the data (∆c2 = 

67.65, p < .001). As with the baseline model, I chose to move forward using this model with the 

awareness that it is not the best possible fit for the data and therefore some part of the true nature 

of these data may be lost. 	

Constraining the covariances in addition to the loadings provided an excellent fit for the 

data in the less impaired condition (c2 = 777.33, df = 424, CFI = .93, RMSEA = .044). However,  

the loadings and covariances constrained model provided a significantly poorer fit for the data 

than the loadings constrained model (∆c2 = 61.71, p < .001). This means that at least one of the 

relations between cognitive abilities differs significantly between T1 and T2. The standardized 

loadings from each latent construct and its respective observed variables were moderate to large, 

providing evidence of convergent validity. All the cognitive constructs for T1 and T2 were 



significantly correlated with one another. Absolute fit statistics, unstandardized loadings, and 

standardized loadings for both these models are in Tables 12 and 13.  	

 I then evaluated whether freeing each covariance improved fit. Allowing the covariance 

between the mental transformation and speed factors to vary with time resulted in a significant 

improvement in fit over the loadings & covariances constrained model, (∆c2 = 5.61, p = .018). 

The correlation between speed and mental transformation was higher at T2 (r = .93) than T1 (r = 

.85), consistent with dedifferentiation. However, it is important to note that although there was a 

significant difference between these models, the model fit for the model where the memory-

speed covariance was free to vary was extremely similar to that of the loadings and covariances 

constrained model. Releasing the other covariances individually did not significantly improve 

model fit (p’s > .07). 

 In summary, and contrary to expectations, the less impaired condition actually showed 

more evidence of dedifferentiation over time compared with the more impaired condition. In 

addition, although there were significant differences in model fit, the increases in correlation size 

over time tended to be very small and did not notably impact model fit.    

Discussion 

 The goal of the second study was to evaluate whether pathological dedifferentiation 

would be found when comparing individuals with less or more impairment at one time point and 

over a three-year time period. In contrast to previous research that showed differences between 

pathological and healthy individuals, I found only weak evidence of pathological 

dedifferentiation when comparing correlations between less and more severe levels of 

impairment. Dedifferentiation was shown across the time in both impairment conditions, 



although there were more significant differences in the less impaired condition. Overall, the 

present study provides somewhat inconsistent evidence of pathological dedifferentiation.    

Cross-sectional Pathological Dedifferentiation  

Previous work has found increased dedifferentiation in pathological conditions and 

individuals in terminal decline (de Frias et al., 2009; Batterham et al., 2011; Wilson et al., 2012, 

Sliwinski et al., 2003). They attributed the increase in correlation size to the gross changes in 

cognitive performance (Laukka et al., 2006; Lovden et al., 2005; Sliwinski et al., 2003; Wilson et 

al., 2010) and in the brain (Schneider et al., 2009; Uylings & de Brabander, 2002) that 

characterize pathological and terminal decline. Consistent with these hypotheses, pathology and 

terminal decline have been shown to be stronger predictors of dedifferentiation than age 

(Batterham et al., 2011; Wilson et al., 2012, Sliwinski et al, 2003). In the present cross-sectional 

analysis, however, only one of the correlations, speed with mental transformation, was larger in 

the more impaired versus less impaired condition as would be consistent with dedifferentiation. 

The other correlations were stable with the exception of memory with mental transformation, 

which was higher in the less impaired versus more impaired condition.  

These cross-sectional results suggest stability rather than dedifferentiation even when 

pathology is present. However, it is possible that the methodological limitations may have 

occluded real group differences. In the present study, the failure to achieve metric invariance for 

any model across the AD, MCI, and normal conditions meant that these groups could not be used 

for comparisons. This lead to the necessity of comparing conditions on CDR Sum-of-Boxes 

scores and in the inclusion of MCI individuals in both the less impaired and more impaired 

conditions. This reduced the differences between the impairment conditions used in this analysis, 



which in turn may have obscured dedifferentiation between the healthy and pathological 

individuals.  

This explanation is supported by the results of a similar study de Frias et al. (2009) where 

the comparison groups did not overlap as in the current analysis. They found that a 

multidimensional model of executive functioning provided the best fit for cognitively elite and 

normal older adults whereas a simpler, unidimensional model provided the best fit for 

cognitively impaired older adults. This suggests that the specificity of cognitive abilities 

decreases in those with cognitive impairments, consistent with pathological dedifferentiation. 

Both the de Frias et al. (2009) study and the present study had a cross-sectional element, both 

had multiple tests for their cognitive constructs, and both used structural equation modelling. The 

major differences were that de Frias et al. (2009)’s groups were defined by performance on tests 

(CE above the mean in all five tests; CN: scores on all five between -1.5 and 1.5 standardized 

deviations, CI, at least one test more than 1.5 SDs below the relevant group mean) and the 

abilities assessed by the cognitive tests.  

In summary, the evidence of pathological dedifferentiation when comparing the less 

versus more impaired groups at T1 was inconsistent and more in favor of stability. This is the 

similar to the results found in Park et al., 2012, which means that altering their model to more 

closely align with CHC abilities did not affect the overall patterns. This could mean that 

dedifferentiation does not occur in the presence of pathology. However, evidence for 

dedifferentiation may have been obscured by the inclusion of individuals with MCI in both the 

less and more impaired conditions.  

Longitudinal Pathological Dedifferentiation  



In the longitudinal analysis, evidence of dedifferentiation was found for both the more 

and less impaired conditions. Interestingly, dedifferentiation was actually more common in the 

less impaired than more impaired group. For the less impaired condition, allowing three of the 

six correlations (memory with knowledge, memory with speed, mental transformation with 

speed) to vary at T1 and T2 improved model fits. When released, these correlations were 

uniformly higher at T2 than T1, consistent with dedifferentiation. In contrast, only one of the six 

correlations (mental transformation with speed) improved model fit when allowed to vary from 

T1 to T2. For both conditions, the changes in model fit were minimal, suggesting that 

pathological dedifferentiation is a small effect. 

Given previous research establishing model invariance over time (Salthouse, 2012) in 

healthy individuals and the inclusion of pathological individuals in both impairment groups, it is 

likely that the patterns found in both conditions are examples of pathological dedifferentiation. 

However, it was still somewhat surprising that patterns were weaker, not stronger, in the more 

impaired group. The interpretation of these results appears to be due to the grouping issues 

discussed above and the differential rates of attrition across the diagnostic groups. Only 11 of the 

AD patients included at T1 remained at T2 and the more impaired condition had only 157 

participants as compared to 430 participants at T1. The lower N in the more impaired group 

reduced the power to detect change, and the additional loss of distinctiveness between the 

conditions made it less likely to identify between-group differences in patterns.  

In summary, evidence of longitudinal dedifferentiation that is likely due to pathology was 

found over a three-year time period. Contrary to expectations, these patterns were stronger in the 

less impaired versus more impaired condition, but these results are likely due to the low 

distinctiveness between groups and the small N at T2 in the more impaired condition.  



Types of Cognitive Abilities  

Although the evidence for dedifferentiation was inconsistent, it is interesting to note that 

several of the patterns identified in Study 1 were mirrored in Study 2. Specifically, speed with 

mental transformation correlations were significantly higher in the more impaired versus less 

impaired groups at baseline and higher at T2 than T1 for both impairment groups. In addition, 

the speed with memory correlations showed evidence of dedifferentiation for the less impaired 

group. These results add some support to the hypothesis of a role for speed in dedifferentiation, 

and reasserts the importance of evaluating specific combinations of cognitive abilities. The 

additional findings of dedifferentiation over time for the less impaired group for memory with 

knowledge and an absence of dedifferentiation for speed with knowledge suggest a difference in 

the mechanisms underlying age and pathological dedifferentiation.  

Limitations  

 The most notable limitation in Study 2 was the inability to achieve metric invariance 

without losing fit in the data. Although the overall fit was still excellent after forcing the loadings 

to be the same across impairment conditions or over time the loss of fit suggests that there are 

patterns in the data that were not represented. However, in order to make the assumption that the 

meaning of my factors was comparable across groups and time, I had to constrain the factor 

loadings despite a loss in fit.  

 Additionally, the tests included in the neuropsychological battery for the ADNI were 

fairly limited and did not always provide the purest representations of the cognitive abilities. 

Therefore, it is possible that the pattern of results presented above would not be replicated with 

alternative tests that better represented the CHC constructs of interest and had higher loadings.  



 Another issue is that in the longitudinal groups I did not directly compare the change over 

time in correlation magnitude between the impairment groups. However, this does not appear to 

be a major issue because fewer correlations were greater in T2 than T1 in the more impaired 

group, which provides acceptable evidence that dedifferentiation was not be stronger for the 

more impaired compared with the less impaired group as I predicted.  

 Finally, as noted above, the use of impairment groups as opposed to diagnostic groups 

and the greater attrition rates over time in the more impaired group meant that there was a fair 

amount of overlap in pathology. Therefore, true differences between these groups may have been 

obscured both at baseline and over time.  

Summary 

 In summary, evidence for pathological dedifferentiation was inconsistent cross-

sectionally. There was evidence of a small amount of longitudinal dedifferentiation in both the 

impairment categories, although the patterns were stronger in the less versus more impaired 

condition. These patterns are likely due to the presence of MCI individuals in both groups and 

the limited N in the more impaired group at T2. Overall, results suggest that a small amount of  

dedifferentiation occurs for individuals with progressing pathology.   

General Discussion 

  Previous research on age dedifferentiation has been extremely inconsistent. Various 

studies have found evidence of dedifferentiation (Cunningham & Birren, 1980; Deary et al., 

2004; de Frias et al., 2007; Ghisletta & Lindenberger, 2003; Hertzog et al., 2003; Hulur et al., 

2015; Adrover-Roig et al., 2012; Babcock et al., 1997; Balsamo & Romanelli, 2010; 

Cunningham & Birren 1980; de Frias et al., 2007; Hedden et al., 2006; Hertzog, 1989; Hertzog et 

al., 2001; Li et al., 2004; Lindenberger & Baltes, 1997; Nyberg et al., 2003; Salthouse & 



Saklofske, 2010; Schaie et al., 1989; Schultz et al., 1980) whereas other studies have supported 

stability across the adult lifespan (Anstey et al., 2003; Batterham et al., 2011; Finkel et al., 2007; 

Schaie et al., 1998; Tucker-Drob, 2009; Zelinski & Stewart, 1998; Zelinski et al., 2003, Juan-

Espinosa et al., 2003; Hale et al., 2011; Hildebrandt et al., 2011; Hull et al., 2011; Johnson et al., 

2010; Juan-Espinosa et al., 2000; Park et al., 2002; Sims et al., 2009; Singer et al., 2003; Vaughn 

& Giovanello, 2010).  

These inconsistencies could be due to a variety of factors. In this project, I specifically 

examined three major issues: whether the types of cognitive abilities used to test for 

dedifferentiation impact the results, whether dedifferentiation is linear or non-linear across the 

adult lifespan, and the role of pathology in age dedifferentiation. Study 1 showed evidence of 

linear age dedifferentiation in normal individuals when speed was directly assessed as part of the 

correlation, consistent with the general slowing account of dedifferentiation (Li et al., 2004). 

This demonstrates that dedifferentiation does not occur after a threshold of decline has been 

reached or due to pathological dedifferentiation (Batterham et al., 2011; de Frias et al., 2009; Li 

et al., 2004). However, these patterns were extremely small, which may explain why many 

previous studies failed to support age dedifferentiation. Inconsistent evidence for 

dedifferentiation in pathological individuals was found at baseline. Comparisons across time 

showed small increases in correlation size for certain correlations.  

In summary, dedifferentiation does appear to occur with age and when pathology is 

present under certain condition. However, its influence is weak and are unlikely to confound 

quantitative comparisons between groups.   

Types of Cognitive Abilities  



 The first goal was to explore whether dedifferentiation was limited to certain cognitive 

abilities. Specifically, I expected that dedifferentiation would be strongest for speed with 

memory and mental transformation. This is based on Li et al. (2004)’s argument that 

dedifferentiation occurs when biological restraints on processing speed limit the expression of 

other cognitive abilities. This explanation is consistent with the results of previous studies that 

included a test of processing speed (Babcock et al., 1997; Ghisletta et al., 2003; Ghisletta et al., 

2005; Hertzog et al., 2001). 

I hypothesized that dedifferentiation would be found for correlations between speed and 

knowledge as in previous studies (Ghisletta et al., 2003; Ghisletta et al., 2005) but that these 

patterns would be weaker because knowledge abilities are more associated more with life 

experiences like education or occupation than other abilities (Ghisletta & Lindenberger, 2003; 

Ghisletta & de Ribaupierre, 2005). 

I predicted that dedifferentiation would be found for memory with mental transformation 

correlations, given that both these abilities are dependent on speed. However, as with speed and 

knowledge, I expected that patterns could be weaker since speed was not directly.  

Finally, I predicted that dedifferentiation would not be found for knowledge with 

memory and knowledge with mental transformation because speed was not directly assessed and 

because knowledge was less likely to be impacted by speed.  

 The first study explored whether age predicted correlation size using a set of large cross-

sectional samples drawn from the technical manuals of various cognitive batteries. Benefits of 

using these data were that each of the cognitive abilities of interest were assessed with a variety 

of different tests, these tests were reliable and valid, there were a range of different ages 



available for testing, and the fairly large samples were healthy and representative of the general 

population at the time of data collection.  

Consistent with my hypotheses, evidence in favor of dedifferentiation was found for 

correlations that directly assessed speed (speed with mental transformation; speed with 

knowledge) although the effects were small (∆ r’s between 25 & 75 < .11). Age was not a 

significant predictor for speed with memory, but the sample for this combination was extremely 

small and therefore any results may not be found for a larger sample. These findings are 

consistent with the general slowing account of dedifferentiation suggested in Li et al. (2004). As 

expected, age was a weaker predictor of correlation size for speed with knowledge compared to 

speed with mental transformation. Finally, age was also not a predictor for knowledge with 

memory and knowledge with mental transformation. 

 One surprising finding was that age was not a significant predictor of the mental 

transformation with memory correlations as predicted. However this is explainable given that the 

amount of dedifferentiation was extremely small even when speed was directly measured as part 

of the correlation.  

 The second study explored whether correlations would be higher in individuals with more 

versus less cognitive impairments at baseline and over time. The benefit of this study was that it 

includes multiple time points and individuals with pathological groups. Results at baseline 

between the impairment groups were inconsistent; one correlation was higher and one correlation 

was lower in the more impaired groups. Over time, correlations between speed and memory, 

memory and knowledge, and mental transformation and speed factors were higher in the less 

impaired groups. Correlations between mental transformation and speed were also higher in the 

more impaired groups. As with Study 1, these patterns are mainly consistent with the general 



slowing account of dedifferentiation, although there were some differences that might be specific 

to pathology.  

 In summary, evidence of dedifferentiation across both studies was primarily limited to 

correlations that directly assessed speed. This is consistent with the hypothesis that cognitive 

abilities become more closely connected to one another lower levels of speed of processing 

constrains abilities in other types of cognitive performance. In all cases where it was identified, 

dedifferentiation was extremely small. This may explain why patterns were not found for 

correlations between tests that are heavily impacted by speed but are not direct assessments of it.  

Trajectory of Dedifferentiation 

 The second and third goals were to explore the trajectory of dedifferentiation across the 

adult lifespan and the role of pathology. Several previous studies have found that 

dedifferentiation occurs only after a certain age point and proposed that a certain amount of 

cognitive decline must have taken place (de Frias et al., 2007; Li et al., 2004; Schaie, 1989; 

Ward, 2000). An alternative explanation for non-linear dedifferentiation is that ‘age’ 

dedifferentiation only occurs because samples of older adults are likely to have a larger number 

of individuals with pathological conditions. These conditions lead to major deterioration in both 

one’s cognitive abilities and the brain that impact the way cognitive performance is expressed 

and result in dedifferentiation (Batterham et al., 2011). This hypothesis has been supported by 

findings of dedifferentiation when comparing healthy and normal samples (de Frias et al., 2009) 

and studies where terminal decline/pathology is a stronger predictor of dedifferentiation than age 

(Batterham et al., 2011; Sliwinski et al., 2003; Wilson et al., 2012).  

 I explored non-linear dedifferentiation in both studies. In Study 1, I evaluated whether the 

trajectory of dedifferentiation in a healthy adult lifespan sample. If age dedifferentiation is a 



linear process like cognitive decline (Salthouse, 2010), I expected that age would and age2 would 

not significantly predict correlation size. If dedifferentiation is non-linear and a certain threshold 

of decline is needed, I expected age to be a stronger prediction of correlation size in older adults 

versus younger adults. Finally, if pathology was a primary cause of age dedifferentiation, I 

expected no dedifferentiation or weak non-linear dedifferentiation because the participants in 

many of the samples included (WAIS, 1955; 1981; 1997; 2008b; WASI, 1999; WMS, 1987; 

1997; 2009), although not all (Woodcock & Johnson, 1989), were screened for pathological 

conditions.  

In contrast to previous reports, when significant dedifferentiation occurred it was always 

linear. This was determined based on the lack of a significant age2 predictor. These results 

suggest that dedifferentiation does not occur only after a certain amount of decline has occurred. 

In addition, these findings demonstrate that age dedifferentiation is not just an epiphenomenon of 

pathological decline as it was found in a primarily healthy sample and was not limited to the 

older age groups. 

In Study 2, I wanted to determine whether pathological impairment was associated with 

correlations at baseline and over time. If pathology results in dedifferentiation, I expected higher 

correlations between abilities at baseline for the more impaired group. I also expected more 

evidence of dedifferentiation in the more impaired group as their more severe pathological 

conditions progressed.  

At baseline, there was more evidence for stability than dedifferentiation or 

differentiation. Only one correlation was significantly higher for the more impaired versus less 

impaired groups; four of the other correlations were not significantly different from one another 

and the final correlation was significantly lower in the more impaired versus less impaired 



groups. These results do not suggest that increased pathology results in dedifferentiation, 

although they could be due to the inclusion of pathological individuals in both groups.  

Over time, there was evidence for dedifferentiation. However, it was primarily for the 

less impaired versus more impaired groups. In the less impaired groups, three of six correlations 

increased in size. In the more impaired groups, only one of the six increased in size. This may 

not be surprising, given the large attrition, particularly for the participants with Alzheimer’s, seen 

in the more impaired group (only 36% of the more impaired sample remained compared with 

76% of the less impaired sample) may have reduced my power to detect significant differences. 

It seems likely that the differences in both groups are primarily due to pathological change, as 

cognitively normal individuals tend to show little change in performance over a period as short 

as three years with a large number of assessments (Salthouse, 2014) and only two out of six 

studies focusing on healthy adults showed evidence of dedifferentiation under ten years. This 

supports suggestions that the inclusion of pathological individuals could lead to the appearance 

of dedifferentiation in otherwise normal individuals (Batterham et al., 2011). In both groups, 

these increases were small (∆ r’s < .08).  

 In summary, although previous work suggests that age dedifferentiation is non-linear, 

age2 was not a significant predictor of correlation size for any of the correlations that exhibited 

dedifferentiation in the healthy cross-sectional sample. This suggests that at least in normally 

aging individuals, dedifferentiation does not occur only after a certain threshold of decline has 

been reached and is not just an epiphenomenon of pathological dedifferentiation. In the second 

study, evidence of pathological dedifferentiation was inconsistent at baseline. However, small 

differences in correlation size were found over time and are likely due to the inclusion of 



pathological individuals, consistent with previous reports (Batterham et al., 2011; de Frias et al., 

2007; Li et al., 2004; Schaie, 1989).  

Implications for Cognitive Aging Research 

 One of the major reasons for exploring age dedifferentiation was to determine whether it 

changed the meaning of the cognitive abilities across the adult lifespan. If cognitive abilities 

share more variance in older age groups/over time this would suggest that the specific abilities 

are less or more reflective of general intelligence. If these differences are large, it could mean 

that quantitative comparisons between young and old adults or over time are confounded. 

However, in both the normal and pathological samples, the magnitude of 

dedifferentiation was small. In addition, these patterns were generally only found when speed 

was included in the correlation. Based on this evidence, I believe that although dedifferentiation 

does occur it is too specific and weak to seriously impact cognitive structure and confound 

quantitative comparisons.    

Limitations    

 In both studies, the tests used to assess the cognitive abilities of interest had their 

limitations. In Study 1, not all tests were designed with the CHC theory in mind and I had to use 

previous factor analytic work to determine the abilities they likely represented. In Study 2, 

several tests had lower than optimal loadings on their factors of interest. In addition, the tests 

used to represent General Knowledge are more accurately tests of long-term memory in the CHC 

(Schneider & McGrew, 2012) and therefore the patterns for this group may not be replicated for 

other tests of General Knowledge.  

 There were also limitations with the number of participants or samples in each study. For 

Study 1, there were fewer groups in the older age ranges than in the middle and younger age 



ranges. In addition, the number of correlations assessing speed and memory were extremely low, 

meaning that it was impossible to reliably determine whether dedifferentiation occurred in this 

group. For Study 2, there was a large amount of attrition between T1 and T2, particularly for the 

participants with Alzheimer’s in the more impaired group. This meant that power was limited in 

this group.  

 Previous work on dedifferentiation has been impacted by differences in the reliability of 

the measures, the variability of the scores, and the analytical methods used could produce 

inconsistencies. Although I did not directly test whether these methodological issues would be 

more likely to produce differentiation/dedifferentiation, I used standardized tests with 

documented reliability and variability. Therefore, I reduced the likelihood of these issues 

occuring.  

That being said, I did take this issues into consideration when designing my research 

approach. For Study 1, the use of normed tests meant that I could ensure that all tests included 

had acceptable reliabilities and similar variabilities in the different age groups. I used a meta-

analytic method that allowed me to control for the dependencies between data and to test 

moderators. For Study 2, all the tests included were well-established and had been evaluated in 

previous work (see Park et al. 2012 for details). However, constraining the loadings from factors 

to tests resulting in a loss fit; this means that there could have been differences between age 

groups and times in the tests’ reliability.   

Conclusion 

  This project was designed to explore the inconsistencies in previous research regarding 

age dedifferentiation. Study 1 revealed that although age dedifferentiation does occur, patterns 

are weak and limited to correlations that included direct assessments of speed. In addition, 



patterns were primarily linear; this suggests that dedifferentiation does not occur after a certain 

threshold of decline or is primarily due to the presence of higher number of pathological 

individuals in older age. There was no consistent evidence of cross-sectional pathological 

dedifferentiation and although correlations increased over time, the increases were small and 

primarily found for the less impaired individuals. Overall, it appears that although 

dedifferentiation does occur, it is unlikely to impact quantitative comparisons. 
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Figures and Tables 
Figure 1. QQ-plot and homogeneity plots for age, test type, test type, and the interactions of age with test type and test type. 

 
Notes: Within type correlations (S-S, GK-GK, MT-MT, M-M) were not included in this analysis. Age is represented by a gradient 
going from red to blue (young to old). Symbols range in size based on the weight of the correlation as determined by its sample size. 
Different symbols represent different types: K-M = circle, M-S = triangle point up, K-MT = plus sign, MT-M = cross, S-K = diamond, 
MT-S = triangle point down. 
 
  



Figure 2. Relations between linear age and z-transformed correlations for each of the six types.  
 

 
Notes: Increasing circle size represents increasing weights/larger N’s for the individual samples represented.   
  



Figure 3. Correlations for age with predicted correlation size for each combination of tests. 

	
Notes: Increasing circle size represents increasing weights/larger N’s for the individual samples represented. The correlations were 
ordered in terms of correlation size and assigned order numbers, which are on the x-axis (Index). The dashed lines are the weighted 
(by the N’s of each correlation) mean of the correlations. 	



 
Figure 4. Four-factor hierarchical model used for the baseline and alternative baseline model.  

 
Notes: ADAS = Alzheimer’s Disease Assessment Scale. AVLT: Adult Verbal Learning Test. 
  



Figure 5. Proposed four-factor hierarchical temporal invariance model. 

  
Notes: In the loadings constrained model, the solid black lines were held constant for T1 and T2. For the loadings and covariances 
model, the solid black and red lines were held constant for T1 and T2. Method correlations excluded for simplicity. ADAS = 
Alzheimer’s Disease Assessment Scale. AVLT: Adult Verbal Learning Test. 



Table 1. Estimates of the correlation meta-analysis where the average age, type of correlation, 
age2 predict correlation size in the S-MT type and then compared to the five other groups.  

 

Unstandardized 
Estimate 

Standard 
Error 

Lower 
Bound 

Upper 
Bound Z p 

 
      

Intercept (S-MT) 0.4727 0.0123 0.4485 0.4969 38.34 < .0001 
Age (S-MT) 0.0020 .0005 0.0010 0.0031 3.76 0.0002 

Age2 (S-MT) 0.0096 0.0145 -0.0188 0.038 0.66 0.5083 

       Intercept (K-M) 0.0916 0.0091 0.0737 0.1095 10.01 < .0001 
Intercept (S-M) -0.0593 0.0184 -0.0953 -0.0233 -3.23 0.0012 
Intercept (K-MT) 0.0974 0.0039 0.0898 0.1050 25.09 < .0001 
Intercept (MT-M) -0.0494 0.0053 -0.0598 -0.0391 -9.36 < .0001 
Intercept (S-K) -0.0052 0.0054 -0.0157 0.0053 -0.96 0.3349 

       Age (K-M) -0.0020 .0004 -0.0029 -0.0011 -4.44 < .0001 
Age (S-M) -0.0037 .0009 -0.0055 -0.0019 -4.11 < .0001 
Age (K-MT) -0.0016 .0002 -0.0019 -0.0012 -8.51 < .0001 
Age (MT-M) -0.0030 .0003 -0.0035 -0.0025 -11.96 < .0001 
Age (S-K) -.0002 .0003 -.0007 .0003 -0.68 0.4995 

       Age2 (K-M) -0.0550 0.012 -0.0785 -0.0315 -4.58 < .0001 

Age2 (S-M) -0.0596 0.0236 -0.1059 -0.0134 -2.53 0.0115 

Age2 (K-MT) -0.0168 0.005 -0.0265 -0.0071 -3.38 .0007 

Age2 (MT-M) -0.0399 0.0068 -0.0533 -0.0266 -5.86 < .0001 

Age2 (S-K) 0.0078 0.0069 -0.0057 0.0212 1.13 0.2567 
       

Notes: Items in bold are significant at p < .05. Random effects for sample were included.  
  



Table 2. Estimates of the correlation meta-analysis where the average age, type of 
correlation, age2 predict correlation size in the S-K type and then compared to the four other 
groups. 

  

Unstanda
rdized 

Estimate 

Standard 
Error 

Lower 
Bound 

Upper 
Bound Z p 

 
      

Intercept (S-K) 0.4677 0.0127 0.4427 0.4926 36.78 <.0001 

Age (S-K) 0.0019 0.0006 0.0008 0.0030 3.37 0.0007 

Age2 (S-K) 0.0178 0.015 -0.0117 0.0473 1.18 0.2364 

 
      

Deviations from       

       

Intercept (K-M) 0.0912 0.0097 0.0722 0.1102 9.41 <.0001 

Intercept (S-M) -0.0722 0.0188 -0.1091 -0.0353 -3.83 0.0001 

Intercept (K-MT) 0.1034 0.0049 0.0938 0.113 21.16 <.0001 

Intercept (MT-M) -0.0461 0.0061 -0.0581 -0.0341 -7.53 <.0001 

 
      

Age (K-M) -0.0019 0.0005 -0.0028 -0.001 -4.03 0.0001 

Age (S-M) -0.004 0.0009 -0.0058 -0.0022 -4.30 <.0001 

Age (K-MT) -0.0014 0.0002 -0.0018 -0.0009 -6.06 <.0001 

Age (MT-M) -0.0028 0.0003 -0.0034 -0.0023 -9.78 <.0001 

 
      

Age2 (K-M) -0.0688 0.0127 -0.0936 -0.044 -5.43 <.0001 

Age2 (S-M) -0.0852 0.0242 -0.1326 -0.0377 -3.51 0.0004 

Age2 (K-MT) -0.0244 0.0062 -0.0366 -0.0121 -3.91 0.0001 

Age2 (MT-M) -0.0496 0.0079 -0.0651 -0.0342 -6.29 <.0001 

              

Notes: Items in bold are significant at p < .05. Random effects for sample were included.  
 
  



Table 3. Estimates of the correlation meta-analysis where the average age, type of correlation, 
age2 predict correlation size in the MT-M type and then compared to the three other groups.  

  

Unstandardized 
Estimate 

Standard 
Error 

Lower 
Bound 

Upper 
Bound Z p 

 
      

Intercept (MT-M) 0.4179 0.0119 0.3945 0.4413 35 <.0001 

Age (MT-M) -0.0008 0.0005 -0.0019 0.0002 -1.57 0.1153 

Age2 (MT-M) -0.0302 0.0142 -0.0581 -0.0024 -2.13 0.0334 

       

Deviations from       

       Intercept (K-M) 0.1414 0.0089 0.1238 0.1589 15.81 <.0001 

Intercept (S-M) -0.0151 0.0187 -0.0518 0.0215 -0.81 0.4184 

Intercept (K-MT) 0.1526 0.0048 0.1431 0.1621 31.61 <.0001 

       Age (K-M) 0.0010 0.0004 0.0001 0.0019 2.27 0.0235 

Age (S-M) -0.0007 0.0009 -0.0025 0.0011 -0.76 0.4446 

Age (K-MT) 0.0013 0.0002 0.0008 0.0018 5.63 <.0001 

       Age2 (K-M) -0.0210 0.0118 -0.0441 0.0021 -1.78 0.0755 

Age2 (S-M) -0.0380 0.0241 -0.0851 0.0092 -1.58 0.1144 

Age2 (K-MT) 0.0236 0.0063 0.0113 0.0359 3.77 0.0002 

  
      Notes: Items in bold are significant at p < .05. Random effects for sample were included.  

 
  



Table 4. Estimates of the correlation meta-analysis where the average age, type of correlation, 
age2 predict correlation size in the K-MT type and then compared to the two other groups.  

  

Unstandardized 
Estimate 

Standard 
Error 

Lower 
Bound 

Upper 
Bound Z p 

Intercept (K-MT) 0.5747 0.0101 0.5549 0.5944 56.96 <.0001 

Age (K-MT) .0005 .0004 -.0004 0.0014 1.09 0.2757 

Age2 (K-MT) -0.0111 0.0119 -0.0345 0.0123 -0.93 0.3525 

       

Deviations from       

       Intercept (K-M) 0.0444 0.0093 0.0261 0.0627 4.76 <.0001 

Intercept (S-M) -0.1358 0.0192 -0.1734 -0.0982 -7.07 <.0001 

       Age (K-M) .0006 .0005 -.0003 0.0015 1.29 0.1975 

Age (S-M) -0.0016 .0009 -0.0034 .0003 -1.69 0.0918 

       Age2 (K-M) -0.0533 0.0123 -0.0773 -0.0292 -4.34 <.0001 

Age2 (S-M) -0.0796 0.0248 -0.1281 -0.0311 -3.22 0.0013 

              
Notes: Items in bold are significant at p < .05. Random effects for sample were included.  
 
  



Table 5. Estimates of the correlation meta-analysis where the average age, type of correlation, 
age2 predict correlation size in S-M type and then compared to K-M.  

  

Unstandardized 
Estimate 

Standard 
Error 

Lower 
Bound 

Upper 
Bound Z p 

       Intercept (S-M) 0.4890 0.0344 0.4217 0.5564 14.23 <.0001 

Age (S-M) -0.0009 0.0015 -0.0039 0.0021 -0.58 0.5643 

Age2 (S-M) -0.0357 0.0419 -0.1177 0.0464 -0.85 0.3945 

       

Deviations from       

       Intercept (K-M) 0.0891 0.0228 0.0443 0.1338 3.90 0.0001 

       Age (K-M) 0.0023 0.0011 0.0001 0.0045 2.02 0.0433 

       Age2 (K-M) 0.0275 0.0294 -0.0301 0.0851 0.94 0.3487 

  
      Notes: Items in bold are significant at p < .05. Random effects for sample were included.  

 
  



Table 6. Estimates of the correlation meta-analysis where the average age predicts correlation 
size for each of types.    

 Unstandardized 
Estimate 

Standard 
Error 

Lower 
Bound 

Upper 
Bound Z p 

       
S-M (28)       
    intercept 0.4183 0.0396 0.3406 0.4960 10.55 <.0001 
    age  0.0021 0.0019 -0.0016 0.0057 1.11 0.2679 
       
S-MT (554)       
    intercept 0.4494 0.0119 0.4261 0.4726 37.85 <.0001 
    age 0.0019 0.0005 0.0009 0.0030 3.67 0.0002 
       
S-K (292)       
    intercept 0.4585 0.0199 0.4195 0.4975 23.04 <.0001 
    age 0.0017 0.0009 -0.0000 0.0034 1.91 0.0562 
       
K-M (162)       
    intercept 0.5778 0.0280 0.5229 0.6327 20.64 <.0001 
    age 0.0013 0.0011 -0.0009 0.0035 1.15 0.2485 
       
K-MT (1256)       
    intercept 0.5729 0.0104 0.5526 0.5933 55.20 <.0001 
    age 0.0003 0.0005 -0.0005 0.0012 0.75 0.4504 
       
MT-M (882)       
    intercept 0.3838 0.0203 0.3859 0.4236 18.89 <.0001 
    age -0.0008 0.0009 -0.0025 0.0010 -0.87 0.3859 
       
Notes: Items in bold are significant at p < .05. K’s are in parentheses. Used the unconstrained 
data. Random effects for sample were included.



Table 7. Estimates of the correlation meta-analysis where the average age predicts correlation 
size for each of types.    

 Unstandardized 
Estimate 

Standard 
Error 

Lower 
Bound 

Upper 
Bound Z p 

       
S-M (28)       
    intercept 0.4591 0.0763 0.3095 0.6087 6.02 <.0001 
    age  0.0017 0.0023 -0.0028 0.0062 0.75 0.4513 
    age2 -0.0437 0.0644 -0.1699 0.0825 -0.68 0.4972 
       
S-MT (554)       
    intercept 0.4538 0.0195 0.4157 0.4920 23.32 <.0001 
    age 0.0020 0.0006 0.0009 0.0031 3.57 0.0004 
    age2 -0.0042 0.0143 -0.0322 0.0239 -0.29 0.7720 
       
S-K (292)       
    intercept 0.4643 0.0327 0.4003 0.5283 14.22 <.0001 
    age 0.0017 0.0009 -0.0001 0.0036 1.88 0.0605 
    age2 -0.0054 0.0240 -0.0523 0.0416 -0.22 0.8233 
       
K-M (162)       
    intercept 0.5859 0.0435 0.5005 0.6712 13.46 <.0001 
    age 0.0014 0.0012 -0.0010 0.0037 1.16 0.2442 
    age2 -0.0080 0.0323 -0.0714 0.0554 -0.25 0.8050 
       
K-MT (1256)       
    intercept 0.5905 0.0168 0.5576 0.6235 35.14 <.0001 
    age 0.0005 0.0005 -0.0004 0.0014 1.10 0.2702 
    age2 -0.0163 0.0122 -0.0403 0.0077 -1.33 0.1824 
       
MT-M (882)       
    intercept 0.4126 0.0317 0.3504 0.4748 13.00 <.0001 
    age -0.0005 0.0009 -0.0023 0.0013 -0.56 0.5787 
    age2 -0.0291 0.0246 -0.0775 0.0192 -1.18 0.2370 
       
Notes: Items in bold are significant at p < .05. K’s are in parentheses. Used the unconstrained 
data. Random effects for sample were included.



Table 8. Means and standard deviations for each variable in the total sample and each of the 
conditions at T1 and T2.  
 T1 T2 
 Total CDR < 1.5 CDR >= 1.5 Total CDR < 1.5 CDR >= 1.5 
       
N 819 389 430 451 294 157 
       
Age 75.19 (6.84) 75.61 (5.95) 74.80 (7.54) 75.19 (6.84) 75.61 74.80 (7.54) 
Proportion Female .42 .42 .42 .42 .42 .42 
Proportion CN .28 .59 .00 .41 .64 .00 
Proportion MCI .48 .41 .55 .56 .36 .92 
Proportion AD .24 .00 .45 .03 .00 .08 
       
MMSE 26.74 (2.67) 28.38 (1.64) 25.27 (2.57) 27.89 (1.93) 28.56 (1.50) 26.63 (2.03) 
       
AVLT Learning (1-5) 3.66 (2.66) 4.93 (2.61) 2.52 (2.15) 3.81 (2.74) 4.54 (2.75) 2.38 (2.09) 
AVLT Short Delay 4.49 (3.82) 6.63 (3.81) 2.57 (2.62) 4.82 (4.16) 6.07 (4.20) 2.41 (2.79) 
Delayed Recall (ADAS) 5.82 (2.86) 4.02 (2.38) 7.45 (2.22) 5.48 (3.25) 4.35 (2.92) 7.65 (2.70) 
AVLT Long Delay 3.62 (4.00) 5.85 (4.10) 1.60 (2.58) 4.10 (4.19) 5.40 (4.22) 1.58 (2.74) 
AVLT Recognition 10 (4.01) 11.80 (3.21) 8.37 (3.97) 10.20 (4.55) 11.57 (3.75) 7.53 (4.79) 
Word Recognition (ADAS) 4.51 (3.00) 3.32 (2.60) 5.58 (2.94) 4.05 (3.31) 3.07 (2.86) 5.91 (3.32) 
       
Digit Span Backward 6.19 (2.17) 6.90 (2.16) 5.53 (1.97) 6.52 (2.34) 6.96 (2.35) 5.62 (2.04) 
Construction (ADAS) .58 (.62) .44 (.54) .70 (.66) .55 (.69) .47 (.59) .72 (.82) 
Clock Drawing 4.12 (1.11) 4.49 (.82) 3.79 (1.23) 4.22 (1.14) 4.48 (.91) 3.73 (1.36) 
       
Category Vegetables 11.15 (4.35) 13.21 (4.17) 9.28 (3.59) 11.21 (5.27) 12.81 (4.87) 8.04 (4.58) 
Category Animals 16.18 (5.79) 18.33 (5.62) 14.23 (5.22) 16.39 (6.56) 18.09 (6.14) 13.09 (6.09) 
Boston Naming 25.44 (4.74) 26.97 (3.30) 24.06 (5.39) 25.74 (5.29) 27.16 (3.98) 23.00 (6.32) 
Naming (ADAS) .28 (.58) .14 (.36) .41 (.70) .27 (.70) .13 (.40) .54 (1.00) 
       
Trails A 47.80 

(27.22) 
38.05 

(13.94) 
56.66 

(32.78) 
45.24 

(29.55) 
37.90 

(20.21) 
59.82 

(38.52) 
Digit Span Substitution  37.03 

(13.15) 
42.93 

(11.03) 
31.64 

(12.61) 
39.70 

(14.75) 
43.68 

(13.38) 
31.75 

(38.52) 
Cancellation (ADAS) 1.01 (1.09) .60 (.80) 1.39 (1.19) .94 (1.20) .64 (.91) 1.55 (1.45) 
       
Note: Standard deviations reported in parentheses. For tests in italics, lower scores represent poorer performance.  
 
 
 
  



Table 9. Measurement invariance across functional impairment group for the baseline analyses.  
Indicator       Configural Invariance      Metric Invariance 
   Less Impaired More Impaired Less Impaired More Impaired 
      
N  389 430 389 430 
    
Memory     
AVLT Learning (1-5) 1.2 (.70)* 0.8 (.56)* 1.1 (.63)* 1.1 (.63)* 
AVLT Short Delay 1.5 (.83)* 0.8 (.64)* 1.2 (.74)* 1.2 (.74)* 
Delayed Word Recall 1.2 (.82)* 1.2 (.87)* 1.3 (.79)* 1.3 (.79)* 
AVLT Long Delay 1.5 (.80)* 0.8 (.66)* 1.1 (.76)* 1.1 (.76)* 
AVLT Recognition 1 (.69) 1 (.56) 1 (.49) 1 (.49) 
Word Recognition 0.8 (.53)* 1.0 (.55)* 0.9 (.47)* 0.9 (.47)* 
     
Mental Transformation     
Digit Span Backward .9 (.38)* 0.6 (.50)* 0.7 (.53)* 0.7 (.53)* 
Construction 1.1 (.52)* 0.8 (.60)* 0.9 (.61)* 0.9 (.61)* 
Clock Drawing 1 (.55) 1 (.70)* 1 (.68) 1 (.68) 
     
Speed     
Trails A 0.4 (.59)* 1.1 (.78)* 0.9 (.72)* 0.9 (.72)* 
Digit Symbol Substitution  1 (.86) 1 (.88) 1 (.91) 1 (.91) 
Cancellation 0.5 (.48)* 0.9 (.70)* 0.8 (.68)* 0.8 (.68)* 
     
General Knowledge      
Category Vegetables 1.2 (.59)* 0.7 (.71)* 0.9 (.78)* 0.9 (.78)* 
Category Animals 1.3 (.65)* 0.8 (.76)* 1.0 (.82)* 1.0 (.82)* 
Boston Naming 1 (.69) 1 (.74) 1 (.67) 1 (.67) 
Naming  0.6 (.49)* 0.8 (.59)* 0.7 (.45)* 0.7 (.45)* 
     
Model Fit Statistics     
RMSEA .036  .045  
CFI .962  .934  
c2, df 370.60, 182  517.28, 194  
     
Notes: Raw (standardized) factor loadings are shown. Standardized loadings are correlations 
between the observed indicator and latent factor. The difference in degrees of freedom between 
the configural and metric invariance models is 12 because 12 factor loadings were constrained to 
be the same. RMSEA = root mean squared error of approximation, CFI = comparative fit index. 
Tests in italics are reverse coded so that all scores represented higher performance. 
 
  



Table 10. Correlations between latent constructs for less impaired versus more impaired in the 
metric invariance model.  
 T1 
 CDR < 1.5 CDR >= 1.5 
   
N 389 430 
   
Memory w/ Mental Transformation .59* .36* 
Knowledge w/ Memory .60* .55* 
Memory w/ Speed .44* .33* 
Knowledge w/ Mental Transformation .70* .64* 
Mental Transformation w/ Speed .61* .83* 
Knowledge w/ Speed .65* .58* 
   
Note: *p < .05. Items in bold were significantly different across the conditions.  
 
  



Table 11. Correlations between T1 and T2 for each of the individual tests.  
 CDR < 1.5 CDR >= 1.5 
   
AVLT Learning (1-5) .44* .38* 
AVLT Short Delay .69* .54* 
Delayed Word Recall .76* .67* 
AVLT Long Delay .67* .63* 
AVLT Recognition .46* .60* 
Word Recognition .38* .54* 
   
Digit Span Backward .61* .66* 
Construction .36* .35* 
Clock Drawing .34* .45* 
   
Category Vegetables .71* .61* 
Category Animals .68* .62* 
Boston Naming .76* .72* 
Naming (ADAS) .35* .52* 
   
Trails A .51* .65* 
Digit Span Substitution  .80* .77* 
Cancellation .42* .44* 
   
   
Note: *p < .05.  
 
  



Table 12. Measurement invariance across time points for the less impaired condition for the 
temporal invariance model.  
Indicator     Configural  Metric (loadings + correlations 

constrained) 
   T1 T2 T1 T2 
      
N  389 294 389 294 
      
Memory      
AVLT Learning (1-5)  1.2 (.66)* 1.0 (.68)* 1.1 (.66)* 1.1 (.66)* 
AVLT Short Delay  1.5 (.83)* 1.3 (.85)* 1.4 (.82)* 1.4 (.84)* 
Delayed Word Recall  1.3 (.84)* 1.2 (.89)* 1.2 (.85)* 1.2 (.87)* 
AVLT Long Delay  1.5 (.81)* 1.3 (.83)* 1.4 (.80)* 1.4 (.83)* 
AVLT Recognition  1 (.69)* 1 (.80)* 1 (.72)* 1 (.76)* 
Word Recognition  0.8 (.53)* 0.9 (.72)* 0.9 (.58)* 0.9 (.64)* 
      
Mental Transformation      
Digit Span Backward  1.0 (.39)* 1.0 (.59)* 1.0 (.44)* 1.0 (.50)* 
Construction  1.0 (.48)* 0.7 (.46)* 0.8 (.43)* 0.8 (.47)* 
Clock Drawing  1 (.55)* 1 (.73)* 1 (.60)* 1 (.67)* 
      
Speed      
Trails A  0.4 (.58)* 0.6 (.72)* 0.5 (.66)* 0.5 (.62)* 
Digit Symbol Substitution   1 (.87)* 1 (.89)* 1 (.86)* 1 (.91)* 
Cancellation  0.5 (.49)* 0.7 (.64)* 0.6 (.57)* 0.6 (.55)* 
      
General Knowledge       
Category Vegetables  1.2 (.62)* 1.2 (.75)* 1.2 (.65)* 1.2 (.73)* 
Category Animals  1.3 (.67)* 1.2 (.79)* 1.3 (.69)* 1.3 (.76)* 
Boston Naming  1 (.69)* 1 (.77)* 1 (.72)* 1 (.72)* 
Naming   0.6 (.48)* 0.6 (64)* 0.6 (.52)* 0.6 (.59)* 
      
Model Fit Statistics      
RMSEA  .043  .047  
CFI  .95  .94  
c2, df  691.38, 406  790.82, 424  
      
Notes: *p < .05.  Raw (standardized) factor loadings are shown. Standardized loadings are 
correlations between the observed indicator and latent factor. The difference in degrees of 
freedom between the configural and metric invariance models is 18 because 12 factor loadings 
and 6 covariances were constrained to be the same across time. RMSEA = root mean squared 
error of approximation, CFI = comparative fit index. Tests in italics are reverse coded so that all 
scores represented higher performance. 
 
  



Table 13. Measurement invariance across time points for the more impaired condition for the 
temporal invariance model.  
Indicator     Configural  Metric (loadings + correlations 

constrained) 
   T1 T2 T1 T2 
      
N  430 157 430 157 
      
Memory      
AVLT Learning (1-5)  .84 (.62)* .51 (.56)* .67 (.56)* .67 (.57)* 
AVLT Short Delay  .86 (.75)* .62 (.78)* .74 (.72)* .74 (.77)* 
Delayed Word Recall   1.1 (.86)* .84 (.85)* .98 (.83)* .98 (.84)* 
AVLT Long Delay  .85 (.79)* .56 (.74)* .70 (.72)* .70 (.74)* 
AVLT Recognition  1 (.60)* 1 (.77)* 1 (.65)* 1 (.68)* 
Word Recognition  .87 (.53)* .92 (.78)* .91 (.60)* .91 (.68)* 
      
Mental Transformation      
Digit Span Backward  .57 (.50)* .62 (.70)* .57 (.53)* .57 (.55)* 
Construction  .81 (.60)* .87 (.73)* .82 (.64)* .82 (.58)* 
Clock Drawing  1 (.71)* 1 (.82)* 1 (.74)* 1 (.72)* 
      
Speed      
Trails A  1.12 (.79)* 1.4 (.90)* 1.19 (.81)* 1.19 (.81)* 
Digit Symbol Substitution   1 (.87)* 1 (.91)* 1 (.87)* 1 (.90)* 
Cancellation  .91 (.71)* 1.5 (.90)* 1.03 (.75)* 1.03 (.72)* 
      
General Knowledge       
Category Vegetables  .84 (.78)* .66 (.81)* .74 (.76)* .74 (.77)* 
Category Animals  .93 (.79)* .80 (.89)* .84 (.79)* .86 (.86)* 
Boston Naming  1 (.68)* 1 (.84)* 1 (.74)* 1 (.76)* 
Naming   .86 (.54)* 1.12 (.80)* .95 (.64)* .95 (.65)* 
      
Model Fit Statistics      
RMSEA  .037  .044  
CFI  .95  .93  
c2, df  647.97, 406  777.33, 424  
      
Notes: *p < .05.  Raw (standardized) factor loadings are shown. Standardized loadings are 
correlations between the observed indicator and latent factor. The difference in degrees of 
freedom between the configural and metric invariance models is 18 because 12 factor loadings 
and 6 covariances were constrained to be the same across time. RMSEA = root mean squared 
error of approximation, CFI = comparative fit index. Tests in italics are reverse coded so that all 
scores represented higher performance. 
 
 
  



Supplementary Tables. 
Table S1. A summary of studies testing for dedifferentiation as evidence for structural differences, increased g variance, and 
higher correlations magnitudes.  

Source Constructs Type N Age Range Comparison Results Strength of Evidence 
        

Adrover-
Roig 

(2012) 

Mental 
Transformati
on 

C 122 48 - 91 Configural 
invariance 

A two-factor solution was 
found to provide the best fit 
an older sample, whereas an 
earlier sample found the best 
fit for younger adults was a 

three factor fit (Miyake et al., 
2000) 

Weak; comparison age 
groups were not included, 
and therefore differences 

could be due to differences 
in measures/analytic 

techniques etc., not age 

        
Anstey 
(2003) 

Speed 
Memory 
Knowledge 

C/L 1823 70 – 85 + 
(8 yrs) 

Correlation 
magnitude 

No consistent evidence of 
increased correlations, cross-
sectionally or longitudinally 

Strong; multiple measures of 
cognitive abilities; multiple 

age groups; 8 years over 
time; statistically tested 

        
Babcock 
(1997) 

Speed C 144, 
105 

18 - 24, 
55 - 80 

Configural 
invariance, 

Metric 
invariance, 
Variance 

explained by 
g 

Same number of factors 
found across age groups. 
Factor loadings from tests 

were invariant, but interfactor 
loadings were higher in older 
adults. A higher order factor 
explained more variance in g.  

Strong; model fit was 
statistically significantly 

worse by forcing interfactor 
loadings to be the same 

across age groups.    

        
Balsamo 
(2010) 

Knowledge 
Mental 
Transformati
on 

C 267, 
256 

65 – 74, 
74 +  

Configural 
invariance 

A 1 factor solution provided 
the best fit for WAIS-R 

Italian older sample, whereas 
studies looking at the 

younger groups had better 
fits for 3 and 2 factor 

solutions, Orsini & Laicardi 

Weak; comparison age 
groups were not included, 
and therefore differences 

could be due to differences 
in measures/analytic 

techniques etc., not age 



(1997, 2003) 
        

Baltes 
(1980) 

Speed 
Memory  
Mental 
Transformati
on 
Knowledge 
 

C 109 60 - 89 Configural 
invariance 

The model was more 
integrated than previous 

work in done with college 
students, however that 
research was done with 

different variables 

Weak; comparison age 
groups were not included, 
and therefore differences 

could be due to differences 
in measures/analytic 

techniques etc., not age 

        
Baltes 
(1997) 

Speed 
Memory 
Mental 
Transformati
on 
Knowledge 
 

C 171, 
516 

25 - 69, 
70 - 103 

Correlation 
magnitude 

Relations between sensory 
and intellectual functioning 

increased from 11% in 
adulthood to 31% in older 

adulthood 

Strong; except for reasoning, 
significantly more variance 
predicted by hearing/vision 

in old age group 

        
Batterham 

(2011) 
Speed 
Knowledge 
Memory  

L 687 70 - 97 + 
(12 yrs) 

Variance 
explained by 

g 

Only 2/7 cognitive tests 
showed significant 

dedifferentiation, which was 
attenuated by controlling for 

possible cognitive 
impairment 

Strong; multiple measures of 
cognitive abilities; multiple 

age groups; linear and 
quadratic effects; 17 years 

over time 

        
Benson 
(2010) 

Speed 
Knowledge 
Mental 
Transformati
on Memory 

C 2200 16-90 Configural 
invariance, 

metric 
invariance 

Constraining the factor 
loadings from subtests to 

latent factors in the WAIS IV 
standardization sample across 
age resulted in a significant 

loss in fit  

Strong; metric invariance 
resulting in significant loss 

of fit, but not in the direction 
of dedifferentiation (higher 
loadings in younger ages)  

        
Bowden Speed C 1299 16-89 Configural With adjacent groups, strict Strong; Overall, evidence is 



(2006) Knowledge 
Mental 
Transformati
on Memory 

invariance, 
metric 

invariance 

invariance was found. 
However, when comparing 

the youngest and oldest 
groups, there some evidence 
of differences in the factor 
loadings and theta, due to 

largest factor loading for the 
picture completion subtest in 

the oldest age group  

in favor with metric 
invariance. And even though 

there is a difference, it 
appears to be due to only one 

measure and only found 
between the extreme groups  

        
Burton 
(1994) 

Speed 
Knowledge 
Mental 
Transformati
on 

C 225 75-79, 80-
96 

Configural 
invariance 

Out of 7 models tested, the 
same model was found to 

provide the best fit for both 
groups 

Weak; correlations could 
still be significantly larger 

(consistent with 
dedifferentiation) even 

though configural invariance 
is found; this was not tested 

        
Cohen 
(1957) 

Memory  
Mental 
Transformati
on Speed 
Knowledge 
 

C 1152 18-over 
75 

Configural 
invariance, 

metric 
invariance 

The same model fit in all 
groups except the 60+ group. 

In this case, greater 
differentiation was evidence 

by tests having weaker 
loadings, as well as a change 
in what tests load onto which 

factors for the WAIS-R 

Weak; failure of configural 
invariance due to tests 

loading onto different factors 
confounds the meaning of 

the changes in factor 
loadings 

        
Cunningha
m (1980) 

Speed 
Knowledge 
 
 

C/L 96 
L/12
3 C 

College 
Students 
(40 yrs, 3 

T’s), 
additional 

college 
sample at 

Time-lag 
comparisons; 
Configural 
invariance, 

metric 
invariance 

Comparisons were invariant 
across college students in 
1919 and at 1960. Some 

increase in factor loadings 
between 1919 and 1950, no 

model that fit in these 
samples could be fitted in 

Weak; large differences are 
found in the factor loadings 
(direction consistent with 
dedifferentiation) but the 

strength of that difference is 
not statistically tested. 



T3 1960. Correlations above .7 
at T3 versus basically 0. 

(1960) 
        

De Frias 
(2006) 

Mental 
Transformati
on 
(Executive 
Functioning) 

C/L 427 55 – 85 Configural 
Invariance  

A two-factor solution was 
found to provide the best fit 
an older sample, whereas an 
earlier sample found the best 
fit for younger adults was a 

three factor fit (Miyake et al., 
2000) 

Weak; comparison age 
groups were not included, 
and therefore differences 

could be due to differences 
in measures/analytic 

techniques etc., not age 

        
De Frias 
(2007) 

Memory 
Mental 
Transformati
on 
Knowledge 
 

L 1000 
(649 
by 
T3) 

35 – 80, 
(10 yrs, 3 

T’s) 

Correlation 
magnitude 

between age 
groups and 
across time  

Correlations at T1 were 
stronger in oldest age group 
versus other; Variances in 

slope increase in that group 
as well 

Strong; trying to constrain 
the model covariances to be 

the same resulted in a 
statistically significant loss 

of fit.  

        
Deary 
(2004) 

Mental 
Transformati
on Memory 

C/L 353, 
74 

65 VS 78  Correlation 
Magnitude/ g 

Variance 

Correlations were universally 
higher in the older vs. 

younger sample, g explained 
60.6 of the variance in the 

older vs 47.3 in the younger  

Strong; all correlations were 
higher and 6/10 were 
significantly higher 

        
Escorial 
(2003) 

Knowledge 
Mental 
Transformati
on Speed  

C 719 16-54 Variance 
explained by 

g 

Variance explained by g was 
not significantly greater in 

older age groups of the 
WAIS-III Spanish norming 

samples 

Strong; specific statistical 
tests of g variance reveal no 
differences, but age groups 
relatively young (see age 

range) 
        

Finkel 
(2007) 

Memory  
Speed  

L 806 50-88 (16 
yrs) 

Correlation 
magnitude  

Adding coupling parameters 
between measures of verbal 

Weak; testing whether 
parameters add additional fit, 



Knowledge 
Mental 
Transformati
on 

and spatial factors (gc and gf) 
did not improve model fit. 

However, including a speed -
> memory and speed -> 
space did improve fit, 

whereas the reverse did not.  

but not whether correlations 
are increasing. However, 

directionality is interesting  

        
Ghisletta 
(2003a) 

Speed  
Knowledge 
 

L  80-85 (3 
yrs)  

Variance 
explained by 
“mechanics” 

test in 
“pragmatics” 

test 

With increasing age, changes 
in a processing speed test 
explains increasing more 

variance in a knowledge test, 
but not the other way around 

Weak; testing whether 
parameters add additional fit, 
but not whether correlations 

are increasing. However, 
directionality is interesting 

        
Ghisletta 
(2003b) 

Speed  
Knowledge 

L 516 70 – 103 
(34 yrs, 
every 2 

yrs) 

Variance in 
explained by 
speed test in 
knowledge 

test 

With increasing age, changes 
in a processing speed test 
explains increasing more 

variance in a knowledge test, 
but not the other way around 

Weak; testing whether 
parameters add additional fit, 
but not whether correlations 

are increasing. However, 
directionality is interesting 

        
Ghisletta 
(2005) 

Speed 
Knowledge 
 

L 377 79.5 – 
84.5 (5 

yrs, 5 T’s) 

Variance in 
explained by 

speed in 
knowledge 

test 

With increasing age, changes 
in a processing speed test 
explains increasing more 

variance in a knowledge test, 
but not the other way around 

Weak; testing whether 
parameters add additional fit, 
but not whether correlations 

are increasing. However, 
directionality is interesting 

        
Hale 

(2011) 
Memory C 388 20 – 89 Configural 

invariance/m
etric 

invariance 

The same model was found 
to fit in old and young 

groups; comparisons made 
with CFI found that factor 

loadings and intercorrelations 
could be constrained without 

loss of fit.  

Weak; relations between 
variables can be constrained 

to be the same without a 
statistically significant loss 

in fit. However, no 
information about direction 



        
Hedden 
(2006) 

Memory 
Mental 
Transformati
on Speed 

C 121 63-82 Configural 
invariance 

A two-factor solution was 
found to provide the best fit 
an older sample, whereas an 
earlier sample found the best 
fit for younger adults was a 

three factor fit (Miyake et al., 
2000) 

Weak; comparison age 
groups were not included, 
and therefore differences 

could be due to differences 
in measures/analytic 

techniques etc., not age 

        
Hertzog 
(1989) 

Speed  
Knowledge 
Mental 
Transformati
on 

C 833 College 
Students, 
43 – 89 

Correlation 
magnitude 

across groups 

Trend of increasing 
correlations across age 

groups between speed factor 
and verbal meaning factor. 

Also, no interaction between 
speed and age predicting 
verbal meaning. Finally, 

patterns not found for other 
cognitive factors 

Weak; patterns only found 
between one pair of factors, 

statistical tests of the 
strength of the magnitude 

increase not run; also 
speed*age predicting verbal 

meaning not significant.   

        
Hertzog 
(2001) 

Speed  
Mental 
Transformati
on 
Knowledge 
 

L 833 43 – 78  Correlation 
magnitude 

across groups 

Higher correlations found 
with increasing age which 

were eliminated by 
controlling for speed factor 

(answer sheet speed) 

Weak; testing whether 
parameters add additional fit, 
but not whether correlations 

are increasing. However, 
directionality is interesting 

        
Hildebrandt 

(2011) 
Memory 
Speed 
Mental 
Transformati
on 

C 448 18 – 82 Configural 
and Metric 
Invariance 

The same model fit across 
both samples, and the 

loadings could be constrained 
without a significant loss of 
fit. (The intercepts could not 
be restricted to be the same 

without loss of fit.) 

Strong; relations between 
variables can be constrained 

to be the same without a 
statistically significant loss 

in fit. 



        
Hull (2008) Mental 

Transformati
on 
Knowledge 
 

C 100 51 – 74 Configural 
Invariance  

The model used in younger 
adults did not fit, but the 

pattern was not consistent 
with that of dedifferentiation 

(fewer factors, but also 
weaker correlations) 

Weak; change in configural 
invariance consistent with 

dedifferentiation, but 
weakened correlations were 

not 

        
Hulur 
(2015) 

Knowledge 
Mental 
Transformati
on 

L 419 22 – 84 
(up to 49 

yrs) 

Correlations 
magnitude 
over time* 

After removing mean trends 
in decline, cognitive abilities 
became more coupled over 

time 

Weak; correspondence to 
dedifferentiation as 

measured by increased 
correlations unclear  

        
Johnson 
(2010) 

Memory C 9500
0 

18 – 90 Configural 
Invariance; 

Metric 
Invariance 

The same single factor model 
fit across age groups, but the 
tests had a lot of unexplained 

variance. In addition, 
although there were 

differences in the loadings to 
the model, they did not 

consistently reflect 
dedifferentiation 

Strong; metric invariance 
failure but not consistent 

with dedifferentiation  

        
Juan-

Espinosa 
(2002) 

Memory  
Mental 
Transformati
on 
Knowledge 
Speed 

C 1369 16 – 94 Variance 
accounted for 
by g and by 
four group 

factors 

There were no significant 
changes in the variance 

accounted for by and by the 
four group factors in the tests 

in the WAIS-III Spanish 
norming sample 

Strong; specific statistical 
tests of g/factors variance 
reveal no differences, but 

age groups relatively young 
(see age range) 

        
Li (2004) Memory  

Knowledge 
Speed 

C 356 Adult 
sample 18 
– 89 (four 

Correlation 
magnitudes; 
configural 

Larger correlations/more g 
variance in late adulthood 
and old age vs young and 

Strong; both higher 
correlations found and 
change in configural 



Mental 
Transformati
on 

groups) invariance; g 
variance 

middle adulthood; PCA 
revealed 5 components for 2 
younger groups VS 2 in the 2 

older groups 

structure consistent with 
dedifferentiation.  

        
Lindenberg
er (1997) 

Perceptual 
Speed 
Mental 
Transformati
on Memory 
Knowledge 
 

C 516 70 – 103 Correlation 
magnitude; 
configural 
invariance  

Correlations higher in older 
adulthood; older adult data 
can be well described by a 

single 2nd higher order factor 
(but are still differentiated at 

1st level) 

Strong; both higher 
correlations found and 
change in configural 

structure consistent with 
dedifferentiation. 

        
Nyberg 
(2003) 

Memory  
Knowledge 
 

C 925 35 – 50, 
55 – 65, 
70 – 80 

Correlation 
magnitude 

Correlations higher with age, 
but differences were not 

significant  

Strong; no significant 
differences despite higher 

magnitudes 
        

Park (2002) Memory 
Speed 
Sensory 
Knowledge 
 

C 345 30 – 92 Configural 
invariance; 

model 
comparisons 

A differentiated model fit 
better for both young and 

older adults; but the model 
was not exactly the same  

Weak; correlations could 
still be higher even if 

configural invariance is 
acheived 

        
Schaie 
(1998) 

Knowledge 
Speed 
Mental 
Transformati
on Memory 

C/L 1998 32,46,53,6
0,67,76 (7 

yrs) 

Configural 
invariance; 

metric 
invariance 

Configural invariance was 
found across all groups. 

Weak factorial invariance 
was found across time for all 

cohorts and could be 
accepted across all groups 

except the oldest and 
youngest 

Weak; Overall, evidence is 
in favor with metric 

invariance. And even though 
there is a difference, it 

appears to be due to only one 
measure and only found 

between the extreme groups 

        
Schaie Speed  C 1621 22 – 95  Configural Configural invariance is Weak; Failure of fit and 



(1989) Mental 
Transformati
on 
Knowledge 

invariance; 
metric 

invariance 

achieved, but neither factor 
correlations nor loadings 

could be constrained to be 
invariant 

reference to increases in 
covariance across age 

groups; but also in variance 
up to 60’s. Also large 

differences in sample sizes 
between groups 

        
Schultz 
(1980) 

Mental 
Transformati
on 
Knowledge 

C 100, 
100 

19.54, 
63.99 

Configural 
invariance; 
correlation 
magnitude 

The same model did not fit 
across groups; all but one 

correlation was larger with 
age.  

Weak; failure of model fit 
attributed to higher 

correlations; but no test of 
significant increase in 

magnitude 
        

Sims 
(2009) 

Memory 
Speed 
Mental 
Transformati
on 
Knowledge 

C 512 50 – 79 (3 
groups, 10 

yrs) 

Configural 
invariance; 

metric 
invariance  

Constraining the loadings 
and the factor covariances to 
be equal across the 3 groups 

did not reduce the fit 
compared with the 

unconstrained model.  

Strong; constraining 
loadings resulted in the no 
statistically significant loss 

of fit.  

        
Singer 
(2003) 

Speed 
Memory  
Knowledge  
Mental 
Transformati
on 

C/L 132 70-103 (7 
yrs) 

Directionalit
y 

dedifferentiat
ion 

Longitudinally, whereas fluid 
abilities declined, crystallized 

abilities were stable 

Weak; testing for changes in 
direction, but no increases in 

correlation magnitude 

        
Tucker-

Drob 
(2008) 

Speed 
Knowledge 
Memory 
Mental 
Transformati
on 

C/L 1281 18-95 + (7 
yrs) 

Variance in 
change 

explained by 
g across 
groups 

g was not responsible for a 
greater amount of change 

seen in older groups versus 
younger adults  

Strong; large age range, 
multiple measures of 

cognitive abilities; multiple 
age groups; 7 years over 

time; specifically testing for 
changes in correlation 



        
Tucker-

Drob 
(2009) 

Knowledge 
Mental 
Transformati
on Speed  
Memory 
 

C 6273 4 – 101 Variance 
explained by 

g across 
groups 

g was not responsible for a 
greater amount of change 

seen in older groups versus 
younger adults; in fact, in 
older adulthood patterns 

suggested greater 
differentiation 

Strong; large age range, 
multiple measures of 

cognitive abilities; lifespan 
sample; specifically testing 
for changes in correlation 

        
Vaughan 
(2010) 

Mental 
Transformati
on 

C 95 60 – 90 Configural 
Invariance, 
correlation 
magnitude 

A three factor model of 
executive function fit in older 
adults as it does in younger 
adults (Miyake et al., 2001), 

and correlations between 
factors were actually tended 

to be weaker with age 

Weak; comparison age 
groups were not included, 
and therefore differences 

could be due to differences 
in measures/analytic 

techniques etc., not age 

        
Waller 
(1990) 

Knowledge 
Mental 
Transformati
on 

C 1880 16-74 Configural 
invariance 

A three-factor model fit 8/9 
age groups best. In the oldest 
group however, a two-factor 
model provided a better fit 

Strong; statistical loss of fit 
when old group fit with 3 

factor model versus 2 factor 
model 

        
Ward 
(2000) 

Knowledge 
Mental 
Transformati
on 

C 1880 16-74 Configural 
invariance 

One of the tests loaded onto a 
different factor in younger 

versus older adults. Modeling 
a fourth improved fit for all 

age groups except the oldest.  

Weak; Differences in 
configural invariance could 

be consistent with 
dedifferentiation; however 
other changes (like what 

tests load onto what factors) 
may confound this.  

        
Zelinski 
(1998) 

Memory 
Knowledge 
 

L 82 55 – 81, + 
(16 yrs) 

Comparing 
predictors of 

change 

Although two measures 
shared some predictors of 

change, they were not 

Weak; not directly testing 
for dedifferentiation, but 
whether certain factors 



consistent across measures- 
suggesting there is not a 

unitary source of change nor 
are the mechanisms of 

change completely 
differentiated.  

explained age differences 
comparable across measures.  

        
Zelinski 
(2003) 

Memory  
Speed  
Mental 
Transformati
on 
Knowledge 

C/L 613 
(289 
by 
T3) 

30 - 97 Configural 
invariance, 

metric 
invariance 

Cross-sectionally the age 
groups had configural 

invariance, but only partial 
invariance. However, 

longitudinally, there was 
evidence of configural and 

metric invariance  

Strong; large age range, 
multiple measures of 

cognitive abilities; lifespan 
sample; specifically testing 
for changes in correlation 

        
	
	



Table S2. Data sources included in the meta-analysis, with their age ranges, cognitive variables, etc. 	
Name Collection Date # Constructs Tests Included Total N Age Groups Source 

WAIS III 1997 14 Vocabulary 
Arithmetic  

Block Design 
Comprehension 

Digit Span 
Digit Symbol  
Information 

Letter-Number 
Sequencing  

Matrix Reasoning 
Object Assembly  

Picture Arrangement  
Picture Completion 

Similarities  
Symbol Search  

2450 
12 groups: all 

200 except 
80-84 = 150 
85-89 = 100 

18-89 
12 groups: 

18-19, 20-24, 
25-29, 30-34, 
35-44, 45-54, 
55-64, 65-69, 
70-74, 75-79, 
80-84, 85-89 

WAIS III & 
WMS III 
Technical 

Manual pgs. 
218-230 

       
WAIS IV 2008 15 Block Design 

Arithmatic  
Cancellation 

Coding 
Comprehension 

Digit Span 
Figure Weight 

Information  
Letter-Number 

Sequencing 
Matric Reasoning 

Picture Completion 
Similarities  

Symbol Search  
Visual Puzzles 

2200 
12 groups: 
youngest 9 

N= 200 
oldest 4 groups 

N= 100 

18-90 
12 groups: 

18-19, 20-24, 
25-29, 30-34, 
35-44, 45-54, 
55-64, 65-69, 
70-74, 75-79, 
80-84, 85-90 

WAIS IV 
Technical 

Manual: pgs. 
138-150 



Vocabulary 
       

WMS III 1997 11 Faces 1,2 
Family Pictures 1,2 

LM Recall 1,2 
LN 1 Sequence 

Spatial Span  
VPA 1,2 Recall 

Auditory Recognition 

1250 
13 groups: all 

100 except 
80-84 = 75 
85-89 = 75 

18-89 
12 groups: 

18-19, 20-24, 
25-29, 30-34, 
35-44, 45-54, 
55-64, 65-69, 
70-74, 75-79, 
80-84, 85-89 

WAIS III & 
WMS III 
Technical 

Manual pgs. 
231-243 

       
WMS IV 2009 14 Logical Memory 1,2 

Verbal Paired 
Associates 1,2 

Designs 1,2 
Visual Reproduction 

1,2 
Spatial Addition 

Symbol Span 
Logos 1,2 
Names 1,2 

1400 
100 in each are 
band (double 
collection of 

65-69) 

18-90 
12 groups: 

18-19, 20-24, 
25-29, 30-34, 
35-44, 45-54, 
55-64, 65-69, 
70-74, 75-79, 
80-84, 85-90 

WMS – IV 
Technical 
Manual 

 
pgs. 184-197. 

       
KAIT 1993 10 Auditory 

Comprehension 
Auditory Delayed 

Recall 
Definitions 

Double Meanings 
Famous Faces 
Logical Steps 

Memory for Block 
Designs 

Mystery Codes 

2000 (500 
children/ 1500 

adults) 

17-85+ 
10 groups: 

17-19, 20-24, 
25-34, 35-44, 
45-54, 55-59, 
60-64, 65-69, 

70-74, 75-
85+ 

Kaufman 
Adolescent & 

Adult 
Intelligence 

Test 
pgs 130-136 



Rebus Delayed Recall 
Rebus Learning 

       
WJ-R 1990 21 Memory for Names 

Memory for Sentences 
Visual Matching  

Incomplete Words 
Visual Closure 

Picture Vocabulary 
Analysis-Synthesis 

Visual-Auditory 
Learning 

Memory for Words 
Cross Out  

Sound Blending  
Picture Recognition 

Oral Vocabulary 
Concept Formation 

Delayed Recall- 
Memory for Names 

Delayed Recall- 
Visual-Auditory 

Learning  
Numbers Reversed 

Sound Patterns 
Spatial Relations 

Listening 
Comprehension  

Verbal Analogies  

2669 
144, 208, 316, 

312, 254, 
1074, 184, 177 

 

18-79 
4 groups: 18, 
30-39, 50-59, 

70-79 

Woodcock 
Johnson II: 

pgs. 307-328 

       
WMS-R 1987 11 Mental Control 

Figural Memory 
Logical Memory 1 

316 
5 groups: 53, 
50, 54, 54, 55, 

20-74 
5 groups: 20-

24, 35-44, 

Wechsler 
Memory Scale-

Revised pgs. 



Visual Paired 
Associates 1 
Verbal Paired 
Associates 1 

Visual Reproduction 1 
Digit Span 

Visual Memory Span 
Logical Memory 2 

Visual Paired 
Associates 2 
Verbal Paired 
Associates 2 

Visual Reproduction 2 

50 55-64, 65-69, 
70-74 

144-150 

       
WASI 1999 4 Vocabulary (gc) 

Block Design (gf) 
Similarities (gf) 

Matrices (gf) 

1,245: 
each groups: N 

= 100 
except 

75-79; 80-84 = 
85 

85-89 = 75. 

17-89: 
12 groups: 

17-19, 20-24, 
25-29, 30-34, 
35-44, 45-54, 
55-64, 65-69, 
70-74, 75-79, 
80-84, 85-89 

WASI manual: 
pgs. 203-210 

       
WAIS 1955 11 Information 

Comprehension 
Arithmetic 
Similarities  
Digit Span  
Vocabulary 

Digit Symbol  
Picture Completion 

Block Design 
Picture Arrangement  

1700: 
3 groups: 200, 

300, 300 

18-54: 
3 groups: 18-

19, 25-34, 
45-54 

WAIS manual: 
pgs. 15-17 



Object Assembly  
       

WAIS R 1981 11 Information 
Comprehension 

Arithmetic 
Similarities  
Digit Span  
Vocabulary 

Digit Symbol  
Picture Completion 

Block Design 
Picture Arrangement  

Object Assembly 

1880: 
9 groups: 200, 
200, 200, 300, 
250, 250, 160, 

160, 160 

18-74 
8 groups: 18-

19, 20-24, 
25-34, 35-44, 
45-54, 55-64, 
65-69, 70-74 

WAIS-R 
manual: pgs. 

37-45 

       
KBIT 1990 2 Vocabulary 

Matrices 
2022: 

4 groups: 113, 
109, 105, 119, 
123, 122, 116, 
207, 181, 148, 
179, 213, 172, 

115 
 

17-90: 
4 groups: 

17-19, 20-34, 
35-54, 55-90 

Kaufman Brief 
Intelligence 
Test: pg. 58 

 

       
       

 



Table S3. List of tests by battery, name, description, and the type.   
Test Battery Test Description Type/ies 

    
KAIT Auditory Comprehension Listening to a recording of (or examiner reading 

aloud) a news story, then answering literal and 
inferential questions about the story.  

GK, MT 

KAIT Auditory Delayed Recall Answering literal and inferential questions about 
news stories that were heard during administration of 
Auditory Comprehension. 

M 

KAIT Definitions Integrating two types of clues-a word with some of 
its letters missing and an oral clue — about the 
word’s meaning-to identify the word.  

GK 

KAIT Double Meanings Studying two sets of word clues, then thinking of a 
word with two different meanings that fits both sets 
of clues.  

GK 

KAIT Famous Faces Naming people of current or historical fame, based 
on their photographs and a verbal clue. (Also serves 
as an alternate subtest for the Core Battery 
Crystallized Scale.)  

GK 

KAIT Logical Steps Attending to logical premises presented both visually 
and orally, using these to solve a problem.  

MT 

KAIT Memory for Block Designs Studying a printed design that is briefly exposed, then 
constructing the design using six cubes and a form 
board. (Also serves as an alternate subtest for the 
Core Battery Fluid Scale.)  

MT 

KAIT Mystery Codes Cracking a code that is used to identify a set of 
pictures, and then applying this code to a new set of 
pictures.  

MT 

KAIT Rebus Learning Learning the word or concept that is represented by a 
rebus (that is, a picture that stands for a word), and 
then ‘reading’ phrases and sentences composed of 
these rebuses.  

M 

KAIT Rebus Delayed Recall  ‘Reading’ phrases and sentences composed of M 



rebuses that were learned earlier during the 
administration of Rebus Learning. (see above) 

    
KBIT Vocabulary The examiner says a vocabulary word, and the examinee points 

to the picture that illustrates the word.  
GK 

KBIT Matrices Finding a relationship or rule in a set of pictures or patterns, and 
pointing to the picture or pattern that best fits the relationship or 
rule.  

MT 

    
WASI Vocabulary For picture items, the examinee names the object 

presented visually. For verbal items, examinee 
defines words presented visually and orally. 

GK 

WASI Block Design This subtest consists of two-dimensional designs 
which the client tries to copy using three dimensional 
blocks. 

MT 

WASI Similarities The subtest consists of 18 pairs of words. The 
client is asked to identify the qualitative 
relationship between the two words. 

GK, MT 

WASI Matrices This is a nonverbal reasoning task in which 
individuals are asked to identify patterns in designs. 

MT 

    
WAIS Information Examinee answers questions that address a broad 

range of general knowledge topics. 
GK 

WAIS Comprehension Examinee answers questions based on his/her 
understanding of general principles and social 
situations. 

GK 

WAIS Arithmetic Working within a specified time limit, the 
examinee mentally solves a series of arithmetic 
problems. 

MT, GK  

WAIS Similarities  The subtest consists of 18 pairs of words. The 
client is asked to identify the qualitative 
relationship between the two words. 

GK, MT 

WAIS Digit Span  Digit Span Forward (individual tries to repeat digits 
forward). Digit Span Backward (individual tries to 

MT 



repeat digits backward). Digit Span Sequencing 
(individual tries to repeat digits in ascending order) 

WAIS   Vocabulary For picture items, the examinee names the object 
presented visually. For verbal items, examinee 
defines words presented visually and orally. 

GK 

WAIS Digit Symbol  Examinee goes through a grid of numbers and places 
the correct symbol above each number.  

S 

WAIS Picture Completion Working within a specified time limit, the 
examinee views a picture with an important part 
missing and identifies the missing part. 

MT, GK 

WAIS Block Design This subtest consists of two-dimensional designs 
which the client tries to copy using three dimensional 
blocks. 

MT 

WAIS Picture Arrangement  Eleven items. Each item consists of 3 to 6 cards 
containing pictures. The examinee must arrange the 
pictures from left to right to tell the intended story. 

MT 

WAIS Object Assembly Four items, each item being a "cut up" object, like a 
puzzle. Examinee must correctly assemble the parts 
of the puzzle. 

MT 
 

    
WAIS-R Information Examinee answers questions that address a broad 

range of general knowledge topics. 
GK 

WAIS-R Comprehension Examinee answers questions based on his/her 
understanding of general principles and social 
situations. 

GK 

WAIS-R Arithmetic Working within a specified time limit, the 
examinee mentally solves a series of arithmetic 
problems. 

MT, GK 

WAIS-R Similarities  The subtest consists of 18 pairs of words. The 
client is asked to identify the qualitative 
relationship between the two words. 

GK, MT  

WAIS-R Digit Span  Digit Span Forward (individual tries to repeat digits 
forward). Digit Span Backward (individual tries to 

MT 



repeat digits backward). Digit Span Sequencing 
(individual tries to repeat digits in ascending order) 

WAIS-R Vocabulary For picture items, the examinee names the object 
presented visually. For verbal items, examinee 
defines words presented visually and orally. 

GK 

WAIS-R Digit Symbol  Examinee goes through a grid of numbers and places 
the correct symbol above each number.  

S 

WAIS-R Picture Completion Working within a specified time limit, the 
examinee views a picture with an important part 
missing and identifies the missing part. 

MT, GK 

WAIS-R Block Design This subtest consists of two-dimensional designs 
which the client tries to copy using three dimensional 
blocks. 

MT 

WAIS-R Picture Arrangement  Eleven items. Each item consists of 3 to 6 cards 
containing pictures. The examinee must arrange the 
pictures from left to right to tell the intended story. 

MT 

WAIS-R Object Assembly Four items, each item being a "cut up" object, like a 
puzzle. Examinee must correctly assemble the parts 
of the puzzle. 

MT 

    
WAIS III Block Design This subtest consists of two-dimensional designs 

which the client tries to copy using three dimensional 
blocks. 

MT 

WAIS III Comprehension Examinee answers questions based on his/her 
understanding of general principles and social 
situations. 

GK 

WAIS III Digit Span Digit Span Forward (individual tries to repeat digits 
forward). Digit Span Backward (individual tries to 
repeat digits backward). Digit Span Sequencing 
(individual tries to repeat digits in ascending order) 

MT 

WAIS III Digit Symbol Examinee goes through a grid of numbers and places 
the correct symbol above each number.  

S 

WAIS III Vocabulary For picture items, the examinee names the object GC 



presented visually. For verbal items, examinee 
defines words presented visually and orally. 

WAIS III Arithmetic  Working within a specified time limit, the 
examinee mentally solves a series of arithmetic 
problems. 

MT, GK 

WAIS III Information Examinee answers questions that address a broad 
range of general knowledge topics. 

GK 

WAIS III Letter-Number Sequencing  The examinee is read a sequence of numbers and 
letters and recalls the numbers in ascending order and 
the letters in alphabetical order. 

MT 

WAIS III Matrix Reasoning This is a nonverbal reasoning task in which 
individuals are asked to identify patterns in designs. 

MT 

WAIS III Object Assembly  Four items, each item being a "cut up" object, like a 
puzzle. Examinee must correctly assemble the parts 
of the puzzle. 

MT 

WAIS III Picture Arrangement  Eleven items. Each item consists of 3 to 6 cards 
containing pictures. The examinee must arrange the 
pictures from left to right to tell the intended story. 

MT 

WAIS III Picture Completion Working within a specified time limit, the 
examinee views a picture with an important part 
missing and identifies the missing part. 

MT, GK 

WAIS III Similarities  The subtest consists of 18 pairs of words. The 
client is asked to identify the qualitative 
relationship between the two words. 

GK, MT 

WAIS III Symbol Search The client, under time pressure, scans a search group 
and indicates whether one of the symbols in the target 
group matches. 

S 

    
WAIS IV Block Design This subtest consists of two-dimensional designs which the 

client tries to copy using three dimensional blocks. 
MT 

WAIS IV Arithmetic  Working within a specified time limit, the examinee 
mentally solves a series of arithmetic problems.  

MT, GK 

WAIS IV Cancellation Working within a specified time limit, the examinee scans a 
structured arrangement of shapes and marks target shapes.  

S 



WAIS IV Coding In this subtest individuals are asked to record associations 
between different symbols and numbers within time limits.  

S 

WAIS IV Comprehension Examinee answers questions based on his/her understanding of 
general principles and social situations.  

GK 

WAIS IV Digit Span Digit Span Forward (individual tries to repeat digits forward). 
Digit Span Backward (individual tries to repeat digits 
backward). Digit Span Sequencing (individual tries to repeat 
digits in ascending order)  

MT 

WAIS IV Figure Weights Working within a specified time limit, the examinee views a 
scale with missing weight(s) and selects the response option that 
keeps the scale balanced. 

MT 

WAIS IV Information  Examinee answers questions that address a broad range of 
general knowledge topics.  

GK 

WAIS IV Letter-Number Sequencing The examinee is read a sequence of numbers and letters and 
recalls the numbers in ascending order and the letters in 
alphabetical order.  

MT 

WAIS IV Matrix Reasoning This is a nonverbal reasoning task in which individuals are 
asked to identify patterns in designs. 

MT 

WAIS IV Picture Completion Working within a specified time limit, the examinee views a 
picture with an important part missing and identifies the 
missing part.  

MT, GK 

WAIS IV Similarities  The subtest consists of 18 pairs of words. The client is asked 
to identify the qualitative relationship between the two 
words.  

GK, MT 

WAIS IV Symbol Search  The client, under time pressure, scans a search group and 
indicates whether one of the symbols in the target group 
matches.  

S 

WAIS IV Visual Puzzles In this subtest individuals view a completed puzzle and then 
select three response options that can be combined to 
reconstruct the puzzle. 

MT 

WAIS IV Vocabulary For picture items, the examinee names the object presented 
visually. For verbal items, examinee defines words presented 
visually and orally.  

GK 

    
WMS-R Figural Memory The examinee looks briefly at abstract designs, and is 

then asked to identify them from a larger group of 
designs. 

M 

WMS-R Logical Memory 1 The examinee is asked to retell a story from memory 
immediately after hearing it.  

M 



WMS-R Verbal Paired Associates 1 This subtest assesses verbal memory for associated word pairs 
after seeing them.   

M 

WMS-R Visual Reproduction 1 The examinee looks at a geometric design and is then 
asked to draw it from memory. 

M 

WMS-R Digit Span Digit Span Forward (individual tries to repeat digits 
forward). Digit Span Backward (individual tries to 
repeat digits backward). Digit Span Sequencing 
(individual tries to repeat digits in ascending order) 

MT 

WMS-R Visual Memory Span The two parts of the visual memory span subtest, 
tapping forward and tapping backward. Tapping 
forward the examinee watches the examiner touch the 
red squares on a card and are then asked to repeat the 
sequences. For tapping backward, the examinee 
watches the examiner touch the green squares on a 
card and are then asked to repeat the performance in 
reverse.  

MT 

WMS-R Logical Memory 2 The delayed condition assesses long-term narrative 
memory with free recall and recognition tasks 

M 

WMS-R Visual Paired Associates 2 The delayed condition assesses long-term recall for 
visually paired information with cued recall and 
recognition tasks, and includes a free recall task 

M 

WMS-R Verbal Paired Associates 2 The delayed condition assesses long-term recall for 
verbally paired information with cued recall and 
recognition tasks, and includes a free recall task 

M 

WMS-R Visual Reproduction 2 The examinee looks at a geometric design and is then 
asked to draw it from memory after a delay. 

M 

    
WMS III Faces 1,2 

 
The examinee is presented photographs of 24 target 
faces. The examinee is then presented photographs of 
48 faces, included 24 faces and 24 new faces. The 
examinee must identify each face as either a target 
face of a new one. For faces 2, the examinee must 
again identify each face as a target or new face. 

M 



WMS III Family Pictures 1,2 A family portrait and four subsequent scenes 
involving the family characters and family dog are 
shown in to the examinee. The examinee is asked to 
identify who was in each scene and each character’s 
activity and location. Family pictures 2 requires the 
examinee to recall the same information after a delay.  

M 

WMS III LM Recall 1,2 The examinee is asked to retell a story from memory 
immediately after hearing it.  

The delayed condition assesses long-term narrative 
memory with free recall and recognition tasks 

M 

WMS III LN 1 Sequence The examinee is read a sequence of numbers and 
letters and recalls the numbers in ascending order and 
the letters in alphabetical order. 

MT 

WMS III Spatial Span  Spatial span is a visual analogue of the Digit Span 
subtest. 

MT 

WMS III VPA 1,2 Recall This subtest assesses verbal memory for associated word pairs  

The delayed condition assesses long-term recall for verbally 
paired information with cued recall and recognition tasks, and 
includes a free recall task. 

M 

    
WMS IV Logical Memory 1,2 The examinee is asked to retell a story from memory 

immediately after hearing it.  

The delayed condition assesses long-term narrative memory 
with free recall and recognition tasks  

M 

WMS IV Verbal Paired Associates 1,2 This subtest assesses verbal memory for associated word pairs  

The delayed condition assesses long-term recall for verbally 
paired information with cued recall and recognition tasks, and 
includes a free recall task  

M 

WMS IV Designs 1,2 This subtest assesses spatial memory for unfamiliar visual 
material.  

The delayed condition assesses long- term spatial and visual 

M 



memory with free recall and recognition tasks. 
WMS IV Visual Reproduction 1,2 This subtest assesses memory for nonverbal visual stimuli  

The delayed condition assesses long-term visual- spatial 
memory with free recall and recognition tasks, and includes a 
direct copy task  

M 

WMS IV Spatial Addition Assesses visual-spatial working memory using a visual addition 
task.  

MT 

WMS IV Symbol Span The examinee is briefly shown a series of abstract symbols on a 
page and then asked to select the symbols from an array of 
symbols, in the same order they were presented on the previous 
page 

MT 

    
WJ-R Memory for Names Participants must remember an increasingly large 

number of names of novel cartoon characters 
M 

WJ-R Memory for Sentences Participants must repeat complete sentences, 
using sentence meaning to aid recall.   

MT, GK 

WJ-R Visual Matching  Participants must quickly find and circle two 
identical numbers in a row of six numbers in 3 
minutes. 

S 

WJ-R Picture Vocabulary Participants must name familiar and unfamiliar 
pictured objects 

GK 

WJ-R Analysis-Synthesis Participants must analyze the components of an 
incomplete logic puzzle and to determine and name 
the missing components.  

MT 

WJ-R Visual-Auditory Learning Participants must associate new visual symbols with 
familiar words and to translate a series of sentences 
into a controlled learning situation.  

M 

WJ-R Memory for Words Participants must repeat lists of unrelated words in 
the correct order 

MT 

WJ-R Cross Out  Participants must mark drawings that are identical to 
the first drawing in the row in 3 mins. 

S 

WJ-R Oral Vocabulary Participants hear words and then must state either a 
synonym or antonym to those words.  

GK 

WJ-R Concept Formation Participants must identify rules that make up MT 



geometric figures after being exposed to concepts. 
WJ-R Delayed Recall- Memory for 

Names 
Participants must recall and relearn (after a 30-minute 
to 8-day delay) names of novel cartoon 

M 

WJ-R Delayed Recall- Visual-
Auditory Learning  

Participants are asked to name the words associated 
with the symbols learned during visual auditory 
learning 1-8 after original test.  

M 

WJ-R Numbers Reversed Participants must repeat a series of random numbers 
backward 

MT 

WJ-R Spatial Relations Participants must select the component parts of whole 
shape 

MT 

WJ-R Listening Comprehension  Participants must supply a single word missing at 
the end of pre-recorded passage.  

GK, MT 

WJ-R Verbal Analogies Participants must complete phrases with words 
that indicate appropriate analogies  

MT, GK 

    
Notes: Tests that load on multiple constructs based on previous reports are in bold.  



Table S4. Number of dependent and independent samples (K) in each of the individual 
correlation types.  
   
 Total K Independent K 
   
   
Total Sample 3174 (2355) 68 (68) 
   
Speed with Memory 28 (28) 4 (4) 
   
Speed with Mental Transformation 554 (416) 39 (39) 
   
Speed with Knowledge 292 (217) 39 (39) 
   
Knowledge with Memory 162 (118) 12 (12) 
   
Knowledge with Mental Transformation 1256 (722) 63 (63) 
   
Mental Transformation with Memory 882 (854) 37 (37) 
   
Notes: K’s for unconstrained (constrained) overall/independent K’s for the total dataset and the 
individual types. There are overlaps between the independent K’s in each of the groups. Total 
K’s represent the number of correlations included in each type. Independent K’s represent the 
number of separate samples from which these correlations were drawn from.  
 



Table S5. Estimates of the correlation meta-analysis where the average age, type of correlation, 
age2 predict correlation size in the S-MT type and then compared to the five other groups 
(constrained analyses). 

 
Unstandardized 

Estimate 
Standard 

Error 
Lower 
Bound 

Upper 
Bound Z p 

 
      

Intercept (S-MT) 0.4758 0.0134 0.4496 0.5019 35.61 <.0001 

Age (S-MT) 0.0024 0.0006 0.0012 0.0035 4.00 0.0001 

Age2 (S-MT) 0.0089 0.0155 -0.0215 0.0392 0.57 0.5664 

       

Deviations from       

       Intercept (K-M) 0.0631 0.0106 0.0424 0.0839 5.95 <.0001 

Intercept (S-M) -0.0612 0.0188 -0.098 -0.0244 -3.26 0.0011 

Intercept (K-MT) 0.0752 0.0047 0.0659 0.0845 15.91 <.0001 

Intercept (MT-M) -0.0505 0.0057 -0.0617 -0.0394 -8.88 <.0001 

Intercept (S-K) -0.008 0.0062 -0.0202 0.0042 -1.28 0.2008 

       Age (K-M) -0.003 0.0005 -0.004 -0.0019 -5.66 <.0001 

Age (S-M) -0.0047 0.0009 -0.0065 -0.0029 -5.11 <.0001 

Age (K-MT) -0.0021 0.0002 -0.0025 -0.0017 -9.43 <.0001 

Age (MT-M) -0.0032 0.0003 -0.0038 -0.0027 -11.94 <.0001 

Age (S-K) -0.0006 0.0003 -0.0012 -0.0001 -2.19 0.0287 

       Age2 (K-M) -0.0507 0.0138 -0.0777 -0.0237 -3.68 0.0002 

Age2 (S-M) -0.0574 0.0239 -0.1042 -0.0106 -2.4 0.0162 

Age2 (K-MT) -0.0205 0.006 -0.0321 -0.0088 -3.43 0.0006 

Age2 (MT-M) -0.0362 0.0072 -0.0503 -0.0220 -5.00 <.0001 

Age2 (S-K) 0.0026 0.0078 -0.0127 0.0179 0.33 0.7402 

              
Notes: Items in bold are significant at p < .05. Random effects for sample were included.  
 
  



Table S6. Estimates of the correlation meta-analysis where the average age, type of correlation, 
age2 predict correlation size in the S-K type and then compared to the four other groups 
(constrained analyses). 

 
Unstandardized 

Estimate 
Standard 

Error 
Lower 
Bound 

Upper 
Bound Z p 

       Intercept (S-K) 0.4679 0.0139 0.4408 0.4951 33.75 <.0001 

Age (S-K) 0.0018 0.0006 0.0006 0.0030 2.87 0.0041 

Age2 (S-K) 0.0119 0.0161 -0.0198 0.0435 0.74 0.4620 

       

Deviations from       

       Intercept (K-M) 0.0664 0.0113 0.0443 0.0885 5.90 <.0001 

Intercept (S-M) -0.0721 0.0196 -0.1105 -0.0337 -3.68 0.0002 

Intercept (K-MT) 0.0841 0.0059 0.0726 0.0956 14.34 <.0001 

Intercept (MT-M) -0.0439 0.0068 -0.0572 -0.0306 -6.48 <.0001 

       Age (K-M) -0.0024 0.0006 -0.0035 -0.0014 -4.41 <.0001 

Age (S-M) -0.0047 0.0010 -0.0066 -0.0028 -4.88 <.0001 

Age (K-MT) -0.0015 0.0003 -0.0020 -0.0009 -5.34 <.0001 

Age (MT-M) -0.0026 0.0003 -0.0033 -0.0020 -8.12 <.0001 

       Age2 (K-M) -0.059 0.0146 -0.0876 -0.0304 -4.04 0.0001 

Age2 (S-M) -0.0799 0.0249 -0.1287 -0.0311 -3.21 0.0013 

Age2 (K-MT) -0.0227 0.0074 -0.0371 -0.0083 -3.09 0.0020 

Age2 (MT-M) -0.0410 0.0086 -0.0578 -0.0241 -4.76 <.0001 

       Notes: Items in bold are significant at p < .05. Random effects for sample were included.  
 
  



Table S7. Estimates of the correlation meta-analysis where the average age, type of correlation, 
age2 predict correlation size in the MT-M type and then compared to the three other groups 
(constrained analyses). 

 
Unstandardized 

Estimate 
Standard 

Error 
Lower 
Bound 

Upper 
Bound Z p 

       
Intercept (MT-M) 0.4179 0.0119 0.3945 0.4413 35.00 <.0001 

Age (MT-M) -0.0008 0.0005 -0.0019 0.0002 -1.57 0.1153 

Age2 (MT-M) -0.0302 0.0142 -0.0581 -0.0024 -2.13 0.0334 

       Deviations from       

       

Intercept (K-M) 0.1414 0.0089 0.1238 0.1589 15.81 <.0001 

Intercept (S-M) -0.0151 0.0187 -0.0518 0.0215 -0.81 0.4184 

Intercept (K-MT) 0.1526 0.0048 0.1431 0.1621 31.61 <.0001 

       Age (K-M) 0.0010 0.0004 0.0001 0.0019 2.27 0.0235 

Age (S-M) -0.0007 0.0009 -0.0025 0.0011 -0.76 0.4446 

Age (K-MT) 0.0013 0.0002 0.0008 0.0018 5.63 <.0001 

       Age2 (K-M) -0.021 0.0118 -0.0441 0.0021 -1.78 0.0755 

Age2 (S-M) -0.038 0.0241 -0.0851 0.0092 -1.58 0.1144 

Age2 (K-MT) 0.0236 0.0063 0.0113 0.0359 3.77 0.0002 

       
Notes: Items in bold are significant at p < .05. Random effects for sample were included.   



Table S8. Estimates of the correlation meta-analysis where the average age, type of correlation, 
age2 predict correlation size in the K-MT type and then compared to the two other groups 
(constrained analyses). 

  Unstandardized 
Estimate 

Standard 
Error 

Lower 
Bound 

Upper 
Bound Z p 

       
Intercept (K-MT) 0.5536 0.0112 0.5316 0.5755 49.43 <.0001 

Age (K-MT) 0.0003 0.0005 -0.0007 0.0013 0.58 0.5622 

Age2 (K-MT) -0.016 0.013 -0.0416 0.0096 -1.22 0.2206 

       Deviations from       

       

Intercept (K-M) 0.0598 0.0111 0.0381 0.0816 5.39 <.0001 

Intercept (S-M) -0.0898 0.0208 -0.1306 -0.0489 -4.31 <.0001 

       Age (K-M) 0.0002 0.0005 -0.0009 0.0012 0.28 0.7782 

Age (S-M) -0.0023 0.001 -0.0044 -0.0003 -2.28 0.0225 

       Age2 (K-M) -0.0403 0.0145 -0.0687 -0.0119 -2.79 0.0053 

Age2 (S-M) -0.0700 0.0266 -0.1222 -0.0178 -2.63 0.0086 

              
 Notes: Items in bold are significant at p < .05. Random effects for sample were included.  
  



Table S9. Estimates of the correlation meta-analysis where the average age, type of correlation, 
age2 predict correlation size in S-M type and then compared to K-M (constrained analyses). 

  Unstandardized 
Estimate 

Standard 
Error 

Lower 
Bound 

Upper 
Bound Z p 

       
Intercept (S-M) 0.4598 0.0321 0.3968 0.5228 14.31 <.0001 

Age (S-M) -0.0008 0.0015 -0.0038 0.0021 -0.55 0.5845 

Age2 (S-M) -0.0334 0.0403 -0.1123 0.0456 -0.83 0.4075 

       

Deviations from       

       Intercept (K-M) 0.0991 0.025 0.0501 0.1481 3.96 0.0001 

       Age (K-M) 0.0018 0.0012 -0.0006 0.0042 1.47 0.1405 

       Age2 (K-M) 0.0107 0.0319 -0.0519 0.0733 0.33 0.7383 

              
Notes: Items in bold are significant at p < .05. Random effects for sample were included.  
  



Table S10. Estimates of the correlation meta-analysis where the average age predicts correlation 
size for each of types (constrained analyses).    

 Unstandardized 
Estimate 

Standard 
Error 

Lower 
Bound 

Upper 
Bound Z p 

       
S-M (28)       
    intercept 0.4179 0.0396 0.3403 0.4954 10.56 <.0001 
    age  0.0021 0.0019 -0.0016 0.0057 1.11 0.2679 
       
S-MT (416)       
    intercept 0.4458 0.0121 0.4222 0.4695 36.90 <.0001 
    age 0.0022 0.0005 0.0012 0.0033 4.10 <.0001 
       
S-K (217)       
    intercept 0.4558 0.0210 0.4146 0.4971 21.66 <.0001 
    age 0.0015 0.0009 -0.0004 0.0033 1.57 0.1175 
       
K-M (118)       
    intercept 0.5584 0.0257 0.5080 0.6088 21.72 <.0001 
    age 0.0009 0.0011 -0.0012 0.0030 0.82 0.4106 
       
K-MT (722)       
    intercept 0.5530 0.0114 0.5306 0.5754 48.41 <.0001 
    age 0.0001   0.0005 -0.0009 0.0011 0.16 0.8714 
       
MT-M (854)       
    intercept 0.3841 0.0204 0.3441 0.4242 18.81 <.0001 
    age -0.0008 0.0009 -0.0025 0.0010 -0.84 0.3962 
       
Notes: Items in bold are significant at p < .05. K’s are in parentheses. Used the unconstrained 
data. Random effects for sample were included. 
  



Table S11. Estimates of the correlation meta-analysis where the average age predicts correlation 
size for each of types (constrained analyses).    

 Unstandardized 
Estimate 

Standard 
Error 

Lower 
Bound 

Upper 
Bound Z p 

       
S-M (28)       
    intercept 0.4587 0.0763 0.3091 0.6084 6.01 <.0001 
    age  0.0018 0.0023 -0.0027 0.0062 0.78 0.4377 
    age2 -0.0428 0.0630 -0.1663 0.0807 -0.68 0.4972 
       
S-MT (416)       
    intercept 0.4485 0.0198 0.4097 0.4872 22.67 <.0001 
    age 0.0022 0.0006 0.0011 0.0034 3.93 <.0001 
    age2 -0.0024 0.0143 -0.0304 0.0256 -0.17 0.8667 
       
S-K (217)       
    intercept 0.4662 0.0344 0.3987 0.5337 13.54 <.0001 
    age 0.0016 0.0010 -0.0004 0.0035 1.59 0.1116 
    age2 -0.0094 0.0248 -0.0580 0.0391 -0.38 0.7032 
       
K-M (118)       
    intercept 0.5811 0.0396 0.5035 0.6588 14.67 <.0001 
    age 0.0011 0.0011 -0.0011 0.0032 0.95 0.3400 
    age2 -0.0223 0.0298 -0.0806 0.0361 -0.75 0.4545 
       
K-MT (722)       
    intercept 0.5746 0.0183 0.5388 0.6103 31.47 <.0001 
    age 0.0003 0.0005 -0.0007 0.0013 0.60 0.5483 
    age2 -0.0199 0.0131 -0.0456 0.0058 -1.52 0.1284 
       
MT-M (854)       
    intercept 0.4125 0.0319 0.3500 0.4750 12.94 <.0001 
    age -0.0005 0.0009 -0.0023 0.0014 -0.51 0.6124 
    age2 -0.0281 0.0242 -0.0756 0.0194 -1.16 0.2458 
       
Notes: Items in bold are significant at p < .05. K’s are in parentheses. Used the unconstrained 
data. Random effects for sample were included.  



Table S12. List of tests by name, description, and the category.  
Test Description Type 
   
MMSE 30-point questionnaire that is used extensively in clinical and research 

settings to measure pathological cognitive impairment. 
- 

   
   
AVLT This is a test of episodic memory that assesses the ability to acquire 15 words across five 

immediate learning trials, to recall the words immediately after an intervening interference 
list, and to recall and recognize the words after a 30-minute delay interval. 

M 

   
Delayed Recall (ADAS) Ask the subject to recall as many words as possible from the words presented in the 

Immediate Word Recall task. ADAS tests were scored so that higher scores represent poorer 
performance.  

M 

   
Recognition (ADAS) In the learning portion of this test, the subject is given one trial to learn a list of 12 words. 

They are then shown a list of words that were on the list and were not and asked to identify 
the words that were on the list. ADAS tests were scored so that higher scores represent poorer 
performance. 

M 

   
   
Digit Span Backward This is a widely used measure of working memory (or attention) in which the subject is read 

number sequences of increasing length and then asked to repeat each sequence backward. 
The primary measure of performance is the number of digit sequences correctly reversed.  

MT 

   
Cog Construction (ADAS) This test assesses the subject’s ability to copy 4 geometric forms. The forms should be 

presented one at a time. ADAS tests were scored so that higher scores represent poorer 
performance. 

MT 
 

   
Clock Drawing Participants are asked to draw the face of a clock showing the numbers and two hands set to 

ten after eleven.  
MT 

   
Trails A Part A consists of 25 circles numbered 1 through 25 distributed over a white sheet of 81/2” x 

11” paper. The subject is instructed to connect the circles with a drawn line as quickly as 
possible in ascending numerical order. The subject’s performance is judged in terms of the 
time, in seconds, required to complete each Trail. The time to complete Part A (150-second 
maximum) is used as measure, with longer scores representing poorer performance.   

S 



   
Digit Symbol Substitution Participant fills in as many squares with corresponding symbols as possible, one after the 

other, without skipping any in 90 seconds. 
S 

   
Number Cancellation 
(ADAS) 

Participants are shown two numbers. Participants are then given 45 seconds to go through a 
list of random numbers and cross out those two numbers whenever they appear. ADAS tests 
were scored so that higher scores represent poorer performance. 

S 

   
Category Fluency This is a widely used measure of semantic memory (verbal fluency, language). The subject is 

asked to name different exemplars from a given semantic category. The number of correct 
unique exemplars named is scored. 

GK 

   
Boston Naming Participants are shown 30 images and are asked to tell the administrator the name of the 

object that you see. 
GK 

   
Naming Test (ADAS) The subject is asked to name 12 randomly presented real objects. ADAS tests were scored so 

that higher scores represent poorer performance. 
GK 

   
Notes: ADAS = Alzheimer’s Disease Assessment Scale. AVLT: Adult Verbal Learning Test. 
 

 
  



Table S13. Correlations between MMSE and cognitive tests at T1 for participants with CDR scores less than 1.5. 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
                  
1 MMSE 1                
                 
2. AVLT Learning .36* 1               
3. AVLT Short D. .37* .61* 1              
4. Delayed Recall .47* .58* .68* 1             
5. AVLT Long D. .34* .56* .83* .66* 1            
6. AVLT Recog. .33* .45* .59* .55* .58* 1           
7. Word Recogn. .25* .37* .40* .46* .40* .42* 1          
                 
8. DS backward .25* .16* .24* .17* .22* .13* .15* 1         
9. Construction .31* .24* .29* .24* .27* .25* .14* .22* 1        
10. Clock Drawing .32* .25* .24* .24* .22* .28* .20* .15* .31* 1       
                 
11. Category Veg. .31* .33* .44* .43* .43* .35* .23* .19* .17* .15* 1      
12. Category Anm. .32* .30* .38* .39* .41* .28* .22* .22* .19* .21* .55* 1     
13. Boston Naming .34* .28* .32* .32* .32* .29* .22* .19* .26* .33* .34* .46* 1    
14. Naming .23* .21* .26* .17* .24* .14* .16* .18* .19* .20* .31* .23* .45* 1   
                 
15. Trails A .17* .15* .23* .21* .15* .22* .10 -.04 .24* .22* .22* .26* .33* .15* 1  
16. DS Substitution .35* .27* .38* .31* .36* .26* .16* .23* .26* .32* .34* .44* .39* .23* .50* 1 
17. Cancellation .19* .14* .19* .19* .18* .09 .10 .12* .11* .14* .29* .17* .21* .15* .29* .41* 
                 
Notes: *p < .05.  Tests in italics are reverse coded so that all scores represented higher performance. Correlations in the rectangles are 
from tests that hypothesized to measure the same construct. AVLT learning = AVLT learning, AVLT Short D. = AVLT short delay, 
Delayed recall = delayed recall (ADAS), AVLT Long D. – AVLT long delay, Word Recog. = word recognition (ADAS), DS 
backward = digit span backward, Construction = construction (ADAS), Category Veg. = category vegetables, Category Anm. = 
category animals, Naming = naming (ADAS), DS Substitution = digit symbol substitution, Cancellation = cancellation (ADAS), 
ADAS = Alzheimer’s Disease Assessment Scale, AVLT: Adult Verbal Learning Test. 
  



Table S14. Correlations between MMSE and cognitive tests at T1 for participants with CDR scores greater than or equal to 1.5.  
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
                  
1. MMSE 1                
                 
2. AVLT Learning .30* 1               
3. AVLT Short 
Delay 

.23* .59* 1              

4. Delayed Recall .46* .49* .55* 1             
5. AVLT Long 
Delay 

.29* .61* .77* .57* 1            

6. AVLT 
Recognition 

.29* .40* .48* .49* .52* 1           

7. Word Recogn. .32* .32* .36* .48* .37* .29* 1          
                 
8. DS backward .29* .09 .05 .08 .02 .05 .05 1         
9. Construction .28* .13* .09 .29* .13* .18* .12* .27* 1        
10. Clock Drawing .38* .21* .15* .24* .17* .16* .20* .31* .39* 1       
                 
11. Category Veg. .39* .29* .37* .38* .38* .22* .28* .26* .24* .37* 1      
12. Category Anm. .39* .24* .27* .36* .27* .19* .21* .26* .31* .34* .60* 1     
13. Boston Naming .38* .18* .19* .31* .19* .19* .20* .16* .24* .33* .48* .57* 1    
14. Naming .27* .12* .12* .20* .13* .10* .04 .18* .13* .19* .38* .38* .59* 1   
                 
15. Trails A .29* .10* .13* .16* .05 .12* .11* .30* .38* .43* .37* .41* .27* .16* 1  
16. DS Substitution -.37* .18* .21* .28* .16* .17* .26* .42* .38* .46* .43* .45* .31* .14* .68* 1 
17. Cancellation .29* .11* .16* .17* .08 .06 .18* .30* .26* .39* .35* .36* .25* .16* .53* .60* 
                 
Notes: *p < .05.  Tests in italics are reverse coded so that all scores represented higher performance. Correlations in the rectangles are 
from tests that hypothesized to measure the same construct. AVLT learning = AVLT learning, AVLT Short D. = AVLT short delay, 
Delayed recall = delayed recall (ADAS), AVLT Long D. – AVLT long delay, Word Recog. = word recognition (ADAS), DS 
backward = digit span backward, Construction = construction (ADAS), Category Veg. = category vegetables, Category Anm. = 
category animals, Naming = naming (ADAS), DS Substitution = digit symbol substitution, Cancellation = cancellation (ADAS), 
ADAS = Alzheimer’s Disease Assessment Scale, AVLT: Adult Verbal Learning Test. 
  



Table S15. Correlations between MMSE and cognitive tests at T2 for participants with CDR scores less than 1.5. 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
                  
1 MMSE 1                
                 

2. AVLT Learning .10 1               
3. AVLT Short Delay .11 .58* 1              
4. Delayed Recall .01 .41* .64* 1             
5. AVLT Long Delay -.03 .50* .84* .68* 1            
6. AVLT Recognition -.11 .34* .56* .56* .57* 1           
7. Word Recogn. .06 .20* .39* .38* .36* .50* 1          
                 
8. DS backward .11 .03 .14 .02 .08 .01 -.03 1         
9. Construction .23* -.04 .11 .11 .13 .01 .04 .09 1        
10. Clock Drawing .18* .03 .14 .15* .13 .01 .02 .21* .34* 1       

                 
11. Category Veg. .05 .27* .47* .39* .42* .20* .29* .02 .22* .21* 1      
12. Category Anm. .12 .17* .39* .28* .40* .21* .26* .17* .16* .18* .47* 1     
13. Boston Naming .14 .08 .19* .03 .16* .12 .11 .07 .10 .11 .14 .33* 1    
14. Naming -.05 .16* .16* .07 .12 .15 .07 .02 -.06 .03 .12 .06 .40* 1   
                 
15. Trails A .19* .08 .19* .10 .14 .05 .18* .14 .01 .02 .24* .35* .17* -.06 1  
16. DS Substitution .23* .18* .36* .31* .28* .17* .29* .17* .19* -.08 .35* .34* .15* .01 .53* 1 
17. Cancellation .01 .10 .19* .21* .21* .16* .23* .07 .07 -.00 .19* .14 -.09 .03 .14 .37* 
                 
Notes: *p < .05.  Tests in italics are reverse coded so that all scores represented higher performance. Correlations in the rectangles are 
from tests that hypothesized to measure the same construct. AVLT learning = AVLT learning, AVLT Short D. = AVLT short delay, 
Delayed recall = delayed recall (ADAS), AVLT Long D. – AVLT long delay, Word Recog. = word recognition (ADAS), DS 
backward = digit span backward, Construction = construction (ADAS), Category Veg. = category vegetables, Category Anm. = 
category animals, Naming = naming (ADAS), DS Substitution = digit symbol substitution, Cancellation = cancellation (ADAS), 
ADAS = Alzheimer’s Disease Assessment Scale, AVLT: Adult Verbal Learning Test. 
  



Table S16. Correlations between MMSE and cognitive tests at T2 for participants with CDR scores greater than or equal to 1.5. 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
                  
1 MMSE 1                
                 

2. AVLT Learning .13 1               

3. AVLT Short Delay .29* .59* 1              
4. Delayed Recall .27* .46* .78* 1             
5. AVLT Long Delay .25* .52* .87* .75* 1            

6. AVLT Recognition .39* .35* .57* .64* .60* 1           
7. Word Recogn. .27* .36* .57* .65* .56* .62* 1          
                 
8. DS backward .23* .18* .18* .23* .15 .21* .13 1         
9. Construction .25* .11 .29* .29* .22* .27* .26* .21* 1        
10. Clock Drawing .25* .26* .34* .31* .29* .33* .39* .35* .28* 1       
                 
11. Category Veg. .17 .26* .41* .47* .41* .32* .44* .31* .25* .42* 1      
12. Category Anm. .19* .36* .56* .54* .52* .37* .49* .25* .20* .39* .68* 1     
13. Boston Naming .28* .23* .37* .35* .27* .25* .37* .29* .31* .47* .52* .65* 1    
14. Naming .20* .13 .23* .24* .17 .13 .20* .28* .28* .41* .47* .47* .65* 1   
                 
15. Trails A .09 .20* .23* .28* .22* .31* .22* .39* .32* .42* .41* .41* .36* .33* 1  
16. DS Substitution .12 .32* .38* .38* .38* .28* .31* .49* .39* .53* .40* .41* .42* .32* .66* 1 
17. Cancellation .11 .19* .26* .34* .27* .23* .31* .40* .30* .42* .47* .43* .34* .31* .69* .72* 
                 
Notes: *p < .05.  Tests in italics are reverse coded so that all scores represented higher performance. Correlations in the rectangles are 
from tests that hypothesized to measure the same construct. AVLT learning = AVLT learning, AVLT Short D. = AVLT short delay, 
Delayed recall = delayed recall (ADAS), AVLT Long D. – AVLT long delay, Word Recog. = word recognition (ADAS), DS 
backward = digit span backward, Construction = construction (ADAS), Category Veg. = category vegetables, Category Anm. = 
category animals, Naming = naming (ADAS), DS Substitution = digit symbol substitution, Cancellation = cancellation (ADAS), 
ADAS = Alzheimer’s Disease Assessment Scale, AVLT: Adult Verbal Learning Test.		


