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Abstract

Smart home sensor systems that infer residents’ activities enable a number of exciting medical

monitoring and energy conservation applications. Existing home activity recognition systems are

invasive, since they require significant manual effort from the end user in installing or training the

system, inconvenience the resident by requiring them to constantly wear tags, or require invasive

cameras or expensive sensors. Our main hypothesis is that by effectively using data fusion techniques,

leveraging the existing smart meter infrastructure in homes, and using only weak biometric sensing,

we can build convenient, accurate home activity recognition solutions for the end user.

The key challenges for home activity recognition systems addressed in this dissertation include

reducing configuration effort from the end user, reducing sensor installation effort, and identifying

residents in multi-person homes without using invasive sensors. To reduce user configuration effort,

we develop an unsupervised activity recognition algorithm called AUTOLABEL that leverages

data fusion and cross-home activity models to accurately recognize resident activities without user

training. To eliminate many direct sensors in the home for activity recognition, we develop effective

Bayesian data fusion techniques, which combine the existing smart meter infrastructure in homes,

with one low cost, non-invasive sensor per room. In our WaterSense approach, we combine a single

smart water meter per home, with an occupancy sensor per room to eliminate direct sensors on

individual water fixtures. In our LightSense approach, we combine a single smart energy meter per

home with a light sensor per room, to eliminate direct sensors on individual light fixtures. Finally, we

propose the use of resident height, which is a weak biometric, in an effective data fusion approach, to

identify residents for activity recognition in multi-person homes.

We evaluate our proposed activity recognition solutions through short term prototype sensor

deployments in home environments lasting from 7 to 10 days each. We show that our low cost,
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convenient solutions satisfy the activity recognition needs of numerous smart home applications,

such as remote medical monitoring for elderly residents, and fine-grained resource consumption

monitoring of light and water fixtures in the home. Finally, we observe that our unsupervised activity

recognition algorithm can be used in a wireless snoop attack on smart homes, to infer the residents’

daily activities with high accuracy in spite of encrypted wireless transmissions. We propose and

evaluate a suite of privacy solutions to mitigate the inference accuracy of such an attack without

affecting the performance or functionality of the home activity recognition system.
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Chapter 1

Introduction

Wireless sensor systems are increasingly being used to monitor physical phenomena in diverse

application domains, such as industrial efficiency and safety monitoring [1], military target tracking

and localization [2], outdoor environmental monitoring [3], and urban scale sensing for traffic and

environmental applications [4]. In the home environment, a number of exciting medical monitoring

and energy conservation applications are enabled by wireless sensor systems that monitor the daily

activities of residents [5, 6, 7, 8, 9]. In this thesis, we focus on the problem of human activity

recognition in the home environment, i.e. inferring the activities of all residents in the home at

any time instant.

In the medical monitoring domain, a key application enabled by activity recognition is remote

elderly monitoring [10, 7, 8]; these systems monitor elderly residents living independently in their

homes, and provide a constant record of residents’ daily activity activities to caregivers and relatives

of the elderly. Interested stakeholders can then use this daily record to ensure that the residents are

able to perform their Activities of Daily Living (ADLs) normally, without fail. Several companies

today offer such peace of mind remote monitoring solutions [8, 7], and these systems are already

deployed in millions of homes across the world.

In the energy conservation and sustainability domain, information about the daily activities of

in-home residents can be used for two distinct purposes - providing better feedback about resource

consumption in the home [11, 12, 13, 14], and enabling better control of the appliances in the home

to save energy without sacrificing user comfort [15, 5].
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Firstly, fine-grained resident activities can be used to infer when individual electrical and water

fixtures are being used in the home; this usage data can be combined with smart electric and water

meters being installed by utility companies [16, 17, 18], to infer how much energy or water is being

used by individual fixtures in the home. In contrast to existing utility bills which only report the total

energy or water consumption in the home, smarter utility bills that include information about the

resource consumption of individual fixtures in the home have been shown in the literature to be very

beneficial in affecting user behavior, and saving energy in the home by as much as 15% [19, 20, 21].

Secondly, activity recognition can also enable smarter appliances that automatically turn on

or off, or adjust their operation and energy consumption based on current resident activity. For

example, the smart thermostat approach automatically controls the thermostat in an intelligent way

to achieve better comfort and energy savings for the in-home residents [15, 5], by leveraging both

the instantaneous resident activities, and the long term resident activity patterns. Intelligent home

lighting systems that adjust their operation based on resident activities have also been proposed

for saving energy in the home [22]. In addition to medical monitoring and energy conservation

applications, other applications for resident activity monitoring have been deployed successfully,

such as home automation [23], home security [24], and home entertainment applications [25].

1.1 Background

There has been significant work on activity recognition in the home setting, in the context of both

medical monitoring and energy conservation applications. Typical activity recognition systems

require users to deploy sensors in the home, and apply machine learning algorithms on the sensor

data to infer user activities [26, 27, 28]. We argue that existing approaches to activity recognition are

invasive for the end user, due to three main reasons.

Firstly, most existing activity recognition approaches require significant training from the end

user, of the order of several days, to achieve high activity recognition accuracy [26, 28]. This training

data is collected through a variety of different techniques, such as using periodic prompts on a

smartphone or PDA [29], or using a bluetooth microphone to verbally specify the current activity

being performed [26]. Intensive configuration and labeling effort from the end user is a significant



3

hurdle to the widespread acceptance of home activity recognition systems; end users would like a

turn-key activity recognition system that requires little or no configuration.

Secondly, existing activity recognition systems require significant effort from the end user in

installing the individual sensors in the home. For example, many activity recognition systems

currently in use require anywhere from 40-200 sensors depending on the size of the home [27, 28],

and may require on the order of 25-45 man hours in installing the sensors in the home [27, 28, 30].

Some sensors such as magnetic contact reed switches are more difficult to install compared to infrared

motion sensors placed easily on a cabinet or a wall. Initial effort in installing and configuring the

numerous sensors can be another significant hurdle to widespread acceptance of these systems.

Thirdly, typical activity recognition systems in multi-resident home scenarios inconvenience

the end user. In particular, existing approaches to multi-person activity inference requires users to

constantly wear inconvenient tags [31, 32, 33], or allow the installation of cameras and microphones

[34, 35], which are perceived to be invasive by many end users for long term home monitoring [36].

Multi-person activity recognition is important for both medical monitoring and energy conservation

applications. In medical monitoring applications, caregivers would like to know who is currently

toileting [7], while in energy conservation applications, rooms could be conditioned to different

temperatures or light levels depending on the preferences of a particular user.

1.2 Outline of our activity recognition approach

Our goal is to build convenient, non-invasive activity recognition solutions for end users, by overcom-

ing the three main limitations of existing activity recognition systems. Our main hypothesis is that

by effectively using data fusion techniques, leveraging the existing smart meter infrastructure

in homes, and using only weak biometric sensing, we can build convenient, and accurate home

activity recognition solutions for the end user.

Firstly, we hypothesize that by using effective data fusion techniques, and leveraging cross-home

activity classifiers, we can eliminate user effort in training the activity recognition system. Secondly,

we observe that many homes are already being fitted with whole-house power and water consumption

monitoring units, in the form of smart meters installed by utility companies. We propose a novel data

fusion approach to combine these whole house smart meters with a handful of sensors in the home,
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to eliminate many individual direct sensors, and reduce user effort in installing direct sensors in the

home. Finally, we observe that we can use weak biometric sensors such as height sensors above

the doorways of a home to accurately differentiate among the few residents in a home, in order to

identify who is performing which activity. Our approach uses only low cost, non-invasive sensors,

does not require user training, and uses only a handful of easy to install sensors even in large homes.

We first present our unsupervised activity recognition algorithm [37], which we call AUTOLA-

BEL, in chapter 3. We discuss the three tier data fusion approach that combines data from several

simple sensors in the home, to automatically infer the room location of the sensors, the objects

to which they are attached to, and the daily activities of residents, with little configuration effort

from the end user. We present the evaluation of our AUTOLABEL approach in eight diverse home

deployments for one week each, to test whether unsupervised activity recognition approaches such as

AUTOLABEL can achieve high enough accuracy with little configuration effort from the end user.

After providing a proof of concept for how we can reduce user training effort in chapter 3, we

focus on the problem of reducing user effort in installing individual sensors in chapters 4 and 5.

In chapter 4, we present our WaterSense approach to eliminate direct sensors on individual

water fixtures in the home [38]. Our proposed approach combines a single motion sensor in each

bathroom or kitchen, with a whole house smart water meter, to automatically infer when individual

water fixtures such as the sink and flush are being used, in each room in the home. To ease end user

acceptance, WaterSense uses only low cost, non-invasive motion sensors that are easy to install, and

does not require training effort from the end user. Using sensor deployments in two homes, we show

that we can effectively disambiguate water fixture usage, by combining both water flow signatures

at the water meter, and motion sensor signatures generated as residents in the home use individual

water fixtures. Water fixture usage information is important for many activity recognition algorithms,

including our unsupervised approach from chapter 3. In addition to monitoring usage, we show that

our WaterSense approach accurately infers the total water consumption of individual fixtures in the

home.

In chapter 5, we present our LightSense approach to eliminate direct sensors on individual light

fixtures in the home. Our proposed approach combines a single light sensor in each room, with a

whole house smart electricity meter, to automatically infer the number of light fixtures in each room,

when they are being used, and how much energy they consume. Similar to WaterSense, LightSense is
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unsupervised, and only uses a handful of cheap, easy to install sensors. Based on sensor deployments

in four homes, we show that LightSense accurately infers the energy usage of individual light fixtures

in the home, which are the highest energy consumer in the low power appliance range. Monitoring

light fixture use is also important from a medical perspective, since the usage of certain lights could

help differentiate between medically relevant activities, such as sleeping vs. reading, or cooking vs.

eating, by inferring the use of bed-side lamps, stove-top lamps, or task lighting near the dining table.

In chapter 6, we present our solution for identifying residents in multi-person homes for activity

recognition purposes [39]. We propose using ultrasonic height sensors above doorways for resident

identification in homes. Height sensors are convenient, cheap, and easy to install for end users.

Height is typically only a weak biometric, but we observe that it is effective for differentiating among

the few residents typically seen in home environments. We also show that it is possible to improve

the inherent biometric accuracy of height sensors, by aggregating height sensor measurements at

multiple doorways in a home, in a data fusion approach. Our approach shows high accuracy in

controlled lab experiments with 20 subjects, and high accuracy in multi-resident elderly homes at a

nationwide scale, when extrapolating the accuracy results from our lab experiments.

While our study was the first to propose the use of height sensors for resident identification in

homes, recent work in the literature has focused on the challenging problem of using ultrasonic

height sensors in in-situ environments for the purpose of continuously tracking residents’ locations

in homes. This recent work shows that the major challenges in using height sensors for tracking are:

dealing with false positives and negatives in the height sensor data due to multi-path effects in homes,

inferring user direction when walking through a door, and addressing the annoyance caused to pets

in the home. Future sensor fusion solutions to the noise problem in height sensors are discussed in

chapter 8.

1.3 Privacy considerations

Protecting the privacy of residents in our home monitoring scenario is a significant obligation and

design consideration for home activity recognition researchers. ADLs are typically very personal

and private, and must be kept secret from third parties. This is particularly true in medical facilities
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where ADLs are used to infer medical conditions; these facilities are obliged by HIPAA regulations

[40] to protect this information.

Our proposed activity recognition approach, similar to other approaches, proposes using wireless

sensors in the home environment. Wireless technology has clear advantages over wired networking

techniques, in particular in enabling convenient and fast installations. For example, over 32 million

homes in the US already have wireless security sensors installed on doors and windows, and motion

sensors installed inside and/or outside the home [41]. These sensors recognize ADLs of residents for

home security and home automation applications, for remote elderly medical monitoring, and also

for energy conservation applications.

We make the key observation that our unsupervised activity recognition approach introduced in

chapter 3 can be used to infer the private ADLs of residents in smart homes, by an adversary outside

the home snooping only on the wireless fingerprints [42, 43, 44] and transmission timestamps of

sensor firings from inside the home. Wireless fingerprints serve to uniquely identify the source of

timestamped sensor firings, while our unsupervised activity inference approach automatically infers

the sensor semantics, and activities performed using our three tier inference algorithm. We call this

the Fingerprint And Timing-based Snooping (FATS) attack [37].

In chapter 7, we propose a suite of techniques to protect against the FATS attack. For example, we

hide packet transmissions from the adversary using signal attenuators, we introduce random delays

on transmissions, and we generate spurious transmissions in order to decrease the effectiveness of

the FATS attack. We find that each of these techniques has a different tradeoff in terms of privacy

protection performance, hardware costs, and application/user costs. Based on the cost-benefit profile

of each technique, we present guidelines for applying them most effectively in typical home sensor

systems for activity recognition. We evaluate these design guidelines and show how many of these

guidelines can be used together in a hybrid fashion to yield very high privacy protection with minimal

implementation costs.

1.4 Limitations

Our proposed activity recognition solutions and their evaluation have several limitations that could

be addressed in future research.
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Firstly, our unsupervised activity recognition approach presented in chapter 3 is evaluated

primarily in graduate student and post doctoral employee homes from a single city, and not in diverse

geographic locations, or in large family homes and multi-story homes. We have also not evaluated

how our algorithm may be extended to address long term deployments of one year or longer, or dense

sensor deployments containing more than 100 sensors per home. Since our AUTOLABEL approach

is based on the invisible man approach to activity recognition, it can only recognize activities that

involve the use of instrumented objects in the home, or simple activities that can be inferred based on

time of day, room location, and length of room occupancy inferred using binary occupancy sensors.

Our ground truth methodology requires residents and researchers to label the activities post-hoc

from the sensor data, and may contain errors in the activity labels due to missing sensor data or

poor resident memory; in the future, more accurate ground truth activity labeling systems need to be

developed.

Secondly, our WaterSense approach presented in chapter 4 is currently evaluated only in two

homes over a short term deployment of one week each. Also, we only consider usage information

from sinks and flushes in these homes, since other fixtures are not instrumented for ground truth usage

measurement. We combine the data from contact reed switches with the whole house water flow data

to estimate the usage and water consumption of individual fixtures in the home; this approach results

in errors in the ground truth due to false positives and negatives from the contact switches. As a

result, we do not evaluate recall and precision for the fixture usage inferred by WaterSense, but only

classification accuracy for true positive water fixture events estimated by the reed switch data and the

whole house water flow data.

Thirdly, our LightSense approach presented in chapter 5 could also be improved to address

several limitations. LightSense does not report the physical location of the light fixtures in each room.

LightSense does not recongize the use of dimmable lights whose intensity changes with every use,

nor does it accurately detect light fixtures with low wattage less than 10 W due to high noise at the

power meter. In larger rooms, LightSense might require multiple light sensors per room if certain

light fixtures do not create any light intensity change at any single sensor location. Another limitation

of our current evaluation of LightSense is intermittent data loss from both the light sensors and the

whole house power meter during the deployment period, due to power line noise and lossy wireless

communication.
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Our height sensor based identification approach presented in chapter 6 has several limitations.

Firstly, a key limitation of our approach is that our in-situ evaluation of height sensing accuracy

does not consider false positives and negatives in individual height sensor events due to the lack

of accurate ground truth. False positives and negatives, and height sensor inaccuracy, are possible

due to multi-path effects from ultrasonic sensors, especially in (1) rooms with wide doorways that

require several adjacent height sensors to achieve sufficient coverage, and (2) adjacent doorways

very close to each other. Another key limitation is that we do not develop and evaluate a complete

tracking approach to estimate the residents’ current room locations based on the height sensor data.

An inherent limitation of our approach is that it only identifies residents at doorways, and not inside

rooms; such an approach is suitable for room level localization of residents. Finally, since our

approach is based on a resident biometric, it cannot be applied in all homes with high accuracy,

unlike existing approaches such as tag and track approaches [31, 32, 33].

Finally, in our wireless fingerprint based snooping attack presented in chapter 7, a key limitation

is that we do not evaluate the ground truth packet reception rate, and fingerprinting accuracy, for

a typical adversarial snooping device deployed outside the home. Another limitation is that we

emulate many of our privacy solutions such as radio signal attenuation and fingeprint masking in our

evaluation. It would be important in future research to physically implement these solutions to better

understand the cost vs privacy tradeoffs involved in these solutions.

1.5 Summary of Contributions

We summarize the five main contributions of this thesis below. In chapters 3 to 7, we list the more

detailed contributions of each component of our non-invasive activity recognition approach. Each

of our activity recognition components are evaluated through individual, short term home sensor

deployments lasting from 7 to 10 days. The evaluation of each of our activity recognition components

in real homes constitutes an important contribution in itself.

1. An unsupervised activity recognition algorithm (AUTOLABEL) that requires little user con-

figuration or training effort, and achieves 80-90% activity recognition accuracy, on par with

existing supervised approaches that require training over multiple days. Our novel 3 tier AU-

TOLABEL algorithm is the first to combine unsupervised sensor clustering based on relative
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room location, along with cross-home, tiered classification of room locations of sensors, sensor

semantics, and daily activities, with little configuration input from the end user.

2. An unsupervised data fusion algorithm (WaterSense) to eliminate direct sensors on water

fixtures by combining a single motion sensor in each room with the whole house smart

water meter provided by utility companies; WaterSense achieves only a 10% loss in accuracy

compared to sensor intensive approaches that require a direct sensor on each water fixture. We

design a novel Bayesnet approach as part of WaterSense to fuse ambiguous water flow profiles

and motion sensor profiles to accurately identify water fixture usage in homes.

3. An unsupervised data fusion algorithm (LightSense) to eliminate direct sensors on all light

fixtures by combining a single light sensor in each room with the whole house smart power

meter provided by utility companies; LightSense achieves only about a 10% loss in accuracy

compared to sensor intensive approaches that require a direct sensor on each light fixture. As

part of LightSense, we design a novel Bayesnet approach to perform data fusion on noisy

sensors with low precision to accurately identify physical phenomena that impact multiple

sensors.

4. A new sensing approach based on ultrasonic height sensors for convenient resident identi-

fication in homes. We show that the inherent biometric accuracy of height sensors can be

improved by aggregating multiple height measurements at different doorways in a home. A

first pass evaluation shows high identification accuracy in controlled environments, and the

potential to achieve 95% identification accuracy in 95% elderly homes in the USA through an

extrapolation study.

5. The discovery of a novel wireless snoop attack on smart home activity recognition systems,

and low cost privacy solutions to mitigate the adversarial inference accuracy of such an attack

from 90% to less than 15%. Our FATS attack is the first to show that only the timestamps and

physical characteristics of wireless transmissions can be combined to accurately infer the daily

activities of residents in spite of encryption, by learning the relative room locations of sensors

over time, and automatically inferring the semantic room locations, sensor types, and resident

activities by leveraging the cross-home classifiers from AUTOLABEL.
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In chapter 2, we discuss the state of the art activity recognition approaches and their limitations

in more detail. In chapters 3 to 7, we present our activity recognition approach, as outlined in section

1.2. In chapter 8, we present the main conclusions drawn from this thesis, and also present the current

limitations, and opportunities for future work to address these limitations.
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Chapter 2

Background

Several approaches have been proposed in the literature to address the problem of activity recognition

in a home environment. A naive approach to activity recognition is to simply employ an observer in

the home to manually record the activities of residents in the home. A variant of the manual recording

approach is to have the residents themselves self-report their daily activities. Such a manual recording

approach is clearly too intrusive for the residents in the home, and is also expensive if a dedicated

employee must be paid to interpret and record activities. To ease the burden of self-reporting,

experience sampling methods have been explored in the literature, that prompt users periodically to

select their current activity from a drop-down list on a personal device such as a smartphone or a

PDA [45, 29]. However, these techniques are also too disruptive for end users, and the amount of

activity data collected reduces over time as users lose interest in the experience sampling system

[46].

To address the limitations of manual activity recording approaches, several researchers have

proposed sensor based approaches to activity recognition in the home environment. These approaches

require users to deploy sensors in the home environment, and then use machine learning techniques

on the collected sensor data to automatically report resident activities [28, 27, 26]. Existing activity

recognition approaches differ greatly in the types of sensors used, and also the inference techniques

used to infer resident activities from the sensor data. The dollar cost of these systems, and the user

effort in installing the sensor system in the home, depend heavily on the sensor types used in these

systems. On the other hand, user effort in configuring the sensor system depends heavily on whether

the inference techniques used are unsupervised or supervised. We provide an overview of the existing
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sensing and inference approaches to activity recognition in the home, and provide a motivation for

why our proposed activity recognition system is required to overcome the limitations of these existing

approaches.

2.1 Sensing Approaches

2.1.1 Video and Audio based sensing

The earliest activity recognition systems used camera sensors to recognize resident activities in

the home. Most of the research was performed by the vision community, which focused on the

challenging problem of identifying everyday actions in the home environment, such as stirring a bowl,

opening or closing an oven, or using a toaster [47, 48]. While camera based systems are promising, a

key hurdle to their widespread acceptance is that end users perceive cameras to be too invasive for

long term monitoring in a home environment. In spite of guarantees about how the data is stored or

interpreted, user studies conducted in the literature found cameras, along with microphone sensors,

to be most objectionable to end users for long term activity monitoring [36, 49].

2.1.2 Invisible man approach to activity sensing

To ease end user concerns about continuous audio or video recording, researchers at MIT and

Intel proposed the pioneering invisible man approach to activity recognition in the home. The key

breakthrough here was to replace invasive cameras or audio sensors, with simple, binary sensors on

objects used in everyday activities, such as the stove, microwave, toilet, shower, along with simple

binary motion detectors in rooms to detect user occupancy [28, 27]. The term “invisible man” was

coined to denote the fact that the residents themselves were invisible to the sensor system, and were

not being monitored using video cameras; rather, only their interactions with everyday objects in the

home were monitored for activity recognition purposes. For example, the use of appliances such

as the stove or the microwave could be used to infer cooking, while the use of water fixtures such

as the flush and sink could be used to infer toileting activities. By being able to directly recognize

interaction with everyday objects, the invisible man approach also avoided the challenging problem

of recognizing objects using video cameras in a dynamic environment such as the home. Several

user studies, and reports from commercial home monitoring companies, confirmed that this invisible
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man approach was most acceptable to end users for activity recognition in the home environment

[27, 50, 49, 36]. One key limitation of the invisible man approach is that it is only able to recognize

activities that involve interaction with objects in the home; thus diverse physical activities that do not

involve interaction with everyday objects such as jumping, sitting, exercising, or lying on the floor,

cannot be recognized using simple binary sensors alone. To recognize such activities, more invasive

camera sensors [47] or inconvenient, wearable accelerometer sensors may be used [51]. However,

the invisible man approach is able to recognize the majority of activities and room locations relevant

to many medical monitoring and energy conservation applications, using only non-invasive, binary

sensors.

The invisible man approach was implemented using two main sensing modalities, which presented

different tradeoffs in terms of usability, and sensor cost and installation effort.

Wearable sensing

Researchers at Intel proposed the iBracelet and iGlove wearable system for monitoring everyday

interactions with objects in the home [52, 53]. The wearable bracelet was equipped with an RFID

reader with a small read range, while everyday objects were tagged with cheap RFID tags, costing

about 10 cents each. When a user interacts with an object such as a kettle, or the stove, the wearable

RFID reader reads the unique RFID tag on the object, to recognize which object the user has

interacted with [53, 54]. Thus, at the cost of a more expensive wearable device, Intel researchers

were able to drastically reduce the cost of individual sensors attached to objects to monitor their

usage. However, the main drawback of wearable sensing approaches is that, for long term home

monitoring applications such as peace of mind monitoring [7] and energy conservation [5], users

are uncomfortable wearing or carrying a sensor device all the time. Even if residents do agree to a

wearable sensor, we observed in our own deployments [30] that users often forget to carry the tags,

resulting in lost activity data.

Non-invasive direct sensing

To overcome the inconvenience caused by continuous wearable sensors for long term home mon-

itoring, Tapia et al at MIT developed an activity recognition system using simple and ubiquitous

self-contained sensors in the home environment [28, 27]. In particular, magnetic contact reed switch
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sensors were used to monitor the usage of everyday objects such as the sink, the flush, the shower,

the microwave, and the fridge. By combining these sensors with non-invasive, binary infrared

motion detectors in the home, Tapia et al achieved good results in recognizing a number of resident

activities relevant to both medical monitoring and energy conservation applications [28]. However,

a significant drawback to this sensing approach was that users still had to spend a large number of

man-hours installing the sensors in the home. For example, in many of our home deployments, an

average of 20 man hours per home was spent just on installing direct sensors to monitor the use of

light switches in the home. The sensors also required constant monitoring for failures, and were

not aesthetically pleasing, since they were installed conspicuously on almost every object the user

interacted with in the home [30].

Emerging single point sensing

To overcome the limitations of non-invasive direct sensing, researchers at Georgia Tech and the

University of Washington, propose the use of single point sensors on the home’s electrical, water, and

gas lines [55, 56, 57, 58, 59], to effectively eliminate direct sensors on individual water fixtures such

as the sink and the flush, and individual electrical fixtures such as light fixtures, the stove and the

microwave. These approaches use differences in the noise transients created on the home’s electrical

or water lines as fixtures are used, to identify the usage of individual water and electrical fixtures for

use by the invisible man approach. However, these approaches require significant configuration and

training effort from the end user, high cost sensors, and have not yet been evaluated in in-situ home

environments. We discuss single point sensing approaches in more detail in chapters 4 and 5, when

we discuss our non-invasive approaches to eliminate direct sensors on electrical and water fixtures in

the home by leveraging the smart metering infrastructure.

2.2 Inference approaches

Irrespective of the sensing approach used to infer when individual objects are used in the invisible

man approach, a significant proportion of research on activity recognition has focused on the learning

techniques used to infer resident activities from the sensor data. We classify the learning approaches
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into two broad categories depending on the amount of user input required to configure or train the

activity recognition algorithm.

2.2.1 Supervised learning

Supervised learning approaches require users to label their current activities over several days or

weeks [28, 26]. Based on the labeled data, optimal classifiers are created to translate the input

sensor data to output activities, by leveraging several existing supervised classification techniques,

such as Bayesian classifiers, hidden Markov models, support vector machines, and decision trees.

Although supervised classification approaches are an improvement over self-reporting systems, they

still require residents to provide a constant record of their daily activities over several days or weeks,

using devices such as a Bluetooth microphone [26], or an experience sampling technique using a

SmartPhone or a PDA [28, 29]. Such high configuration effort appears to be a significant hurdle to

the widespread acceptance of activity recognition systems in the home. Ideally, users would like a

turn-key activity recognition system.

2.2.2 Unsupervised learning

Unsupervised learning approaches do not require continuous user effort in training the activity

recognition system. The most significant unsupervised activity recognition approach was developed

by Wyatt et al in 2005 [54]. This approach requires an RFID reader bracelet to obtain object use

information from tagged objects; this approach then uses automatically mined activity models from

the web to recognize activities, by viewing activities as a sequence of natural language terms, where

the individual terms represent the use of a particular object such as the sink, tea kettle, or flush. A

significant drawback of this approach is that it requires users to label each sensor in the home with

a textual semantic label that ideally matches text corpora in the web describing the object. Thus,

it transfers user configuration effort from labeling daily activities, to labeling the numerous dense

sensors in the home. With this approach, the researchers achieved only about 42% recognition

accuracy, well above the 3.8% baseline, but still too low for many activity recognition applications

[7, 5].
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To overcome the limitations of these inference approaches, we propose the AUTOLABEL

unsupervised activity recognition approach in chapter 3 [37]. Our approach neither requires users

to label individual sensors for everyday objects, nor requires users to label daily activities. Our

AUTOLABEL approach automatically infers the location and semantics of the objects to which

individual sensors are attached to, and also the daily activities of residents in the home.

In chapters 4 and 5, we show how to improve over existing sensing approaches to provide the

underlying input to our AUTOLABEL approach, by eliminating many of the direct sensors used in

our proof of concept activity recognition evaluation in chapter 3 [38]. Finally, an important concern

for home activity recognition systems is the problem of differentiating activities of multiple residents

in the home, by identifying their location without using invasive wearable sensing or camera sensors.

In chapter 6, we propose a non-invasive convenient solution for resident identification in homes, that

shows high accuracy in initial experiments in the lab [39]. In chapter 7, we present a novel wireless

snooping based privacy attack on resident activity recognition systems, and propose solutions to

protect against such an attack in future smart homes [37].
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Chapter 3

Reducing user configuration effort

To reduce user effort in training and configuring the activity recognition system, we develop an

unsupervised activity recognition algorithm, that neither requires users to provide semantic labels for

individual sensors in the home [54], nor requires effort in labeling daily activities for the purpose

of supervised classification [28, 26]. We call our activity recognition algorithm as AUTOLABEL

[37]. Our AUTOLABEL algorithm uses a tiered inference approach that effectively performs data

fusion between the multiple sensor streams to automatically infer the room location and semantics of

each individual sensor, and leverages cross-home activity classifiers to accurately recognize daily

activities of residents without any training effort from the resident.

We empirically evaluate our AUTOLABEL approach by deploying the same non-invasive direct

sensors used in the invisible man approach [28, 26], in eight different homes. We deployed low cost,

non-invasive sensors on salient objects, including sinks, stoves, showers, and doors, and collected

data for a week or more in each home. We tested a diverse range of homes, with different floor

layouts, different sets of deployed sensors, and occupied by both single and multiple residents from

different age groups and lifestyles. We used individual direct sensors mainly to provide a proof of

concept evaluation of our AUTOLABEL algorithm. In a realistic activity recognition system, many

of these direct sensors will be eliminated by using our low cost sensing approaches presented in

chapters 4 and 5, that leverage the smart metering infrastructure in homes. We observe that our

AUTOLABEL algorithm is surprisingly robust to the diversity of homes, people and sensed objects

in our deployments, and can infer detailed resident activities with high accuracy.
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The rest of this chapter is organized as follows. In section 3.1, we present the design of the

AUTOLABEL algorithm, and illustrate its operation by using example data from one of our home

deployments. In section 3.2, we present the sensor deployments in eight diverse homes and the

experimental setup, to evaluate our AUTOLABEL approach. Finally, in section 3.3, we present the

activity recognition accuracy of our AUTOLABEL approach in the eight homes.

3.1 AUTOLABEL design

We now provide an overview of the activity inference algorithm. Figure 3.1 shows the inference

tiers used in the AUTOLABEL approach, to transform the input sensor streams into activity streams,

without any knowledge about the location or semantics of each individual sensor stream, or any

activity labels for training. To better illustrate the AUTOLABEL algorithm, we depict its concrete

operations on real data in Figure 3.2; the various black lines in figure 3.2 depict individual sensor

streams in the home, while the vertical spikes indicate the timestamps when these individual sensors

fired.

Firstly, figure 3.1 shows a Tier 0, where we can only detect very general activities such as home

occupancy or sleeping, from just the timestamps of sensor firings. In Tier I, we use the unique

sensor identifiers for each sensor firing, depicted by the black lines in Figure 3.2. Then, these sensor

identifiers are grouped into sensor clusters corresponding to rooms in the home based on similarities

in their firing times, shown by the cluster labels on the left of Figure 3.2. The approximate number

of residents in the home can be inferred by observing simultaneous activity in multiple rooms, as

shown in Figure 3.1. In Tier II, specific features are first extracted from the combined firings of all

devices in a spatial cluster, denoted by the red lines in Figure 3.2 beneath each cluster. These features

are passed to a classifier that identifies each room as either a kitchen, bathroom etc. Figure 3.1 shows

that these room labels can be used to infer the number of times the residents visit, for example,

the kitchen or bathroom each day. Finally, in Tier III, another classifier is used to determine the

likelihood of a sensor being the motion sensor, stove sensor etc. This information can be used to

recognize subtly different activities, namely cooking hot and cold food or showering, toileting, and

grooming, as shown in figure 3.1. In the rest of this section, we describe in more detail, the design of

the four tiers in our AUTOLABEL algorithm.
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T, ID

Sensor to Cluster Mapping

Tier-I Clustering

Cluster to Room Mapping

Tier-II Room Classification

Tier-III Object Recognition

Tier-0

T

Sleep, Home Occupancy

Number of residents

Bathroom and Kitchen visits

Detailed Bathroom and 
Kitchen activities

ID to Sensor Type Mapping

Figure 3.1: The AUTOLABEL Activity Recognition Algorithm that uses just the timestamp T, and
unique source identifier ID, of each binary sensor firing to automatically infer daily activities of
residents without any configuration or training effort.

3.1.1 Tier-0: General Activity Detection

Firstly, we observe that we can identify long term, coarse grained activities such as home occupancy,

and sleeping, by just using simple features such as time of day, and the presence or absence of sensor

firings from all motion detectors in the home. In Tier 0, we implement a simple algorithm that

identifies silent periods during the day as away events, silent periods during the night as sleep events,

and all active periods to be home events. To reduce the effect of spurious sensor activity, we use a

threshold of at least 4 sensor firings per hour to indicate home presence. In multi-person homes, only

the aggregate activity can be inferred, such as when everyone in the home was sleeping or not. In

Tier 0, we use only the timestamps of the sensor firings. In the subsequent inference tiers, we show

that knowledge of sensor identifiers in combination with transmission timestamps allows us to infer

much more detailed activities of residents in the home.
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Figure 3.2: Sample data from one of our home sensor deployments. The textual labels and logical
groupings are derived from the raw sensor data (black lines) by our AUTOLABEL algorithm.

3.1.2 Tier-I Clustering

The goal of Tier I is to identify which sensors are in the same rooms. It does this by assuming that

sensors in the same room fire at similar times due to human activity in the room. Thus, we use a

temporal distance calculated between the transmission patterns of each pair of sensors to cluster
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together those sensors that have small distances to each other. In chapter 4, we will show how to

adapt this room clustering algorithm to handle more complex sensor types, such as using a single

water meter to sense individual water fixtures in the home.

We denote the set of all devices (identified using their unique identifiers) to be ID, and the

vector of all transmission timestamps from each device i ∈ ID to be Ti. We use bracket notation to

index into vectors, so the kth timestamp from node i is referred to with Ti[k]. The Tier I clustering

algorithm is then defined as:

for all i, j ∈ ID

for h = 1 to length(Ti)

distij [h] =∞

for k = 1 to length(Tj)

disthk = |Ti[h]− Tj [k]|

if disthk < distij [h]

distij [h] = disthk

Dij = min(median(distij),median(distji))

D′ =SPDIST(D)

F =CMDS(D′)

CLUSTER=k-means(F, k)

For each pair of devices i and j, we first compute the difference in time between each transmission

of i and the closest transmission of j, creating a difference vector distij with length |Ti|. We then

calculate the temporal distance Dij between devices i and j to be the minimum of the median of

the time difference vectors distij and distji. These distances are stored as elements of the symmetric

distance matrix D of size |ID| × |ID|, which holds the distances between each pair of transmitters.

Not all devices in the same room will be temporally correlated; for example, the dishwasher

may have a large temporal distance from the refrigerator because they are never used together, even

if both devices have small temporal distances to something else like the sink or a motion sensor.

Therefore, we use Dijkstra’s shortest path algorithm to convert the distance matrix D to a new matrix

D′ of metric distances by replacing each distance Dij by the shortest path distance SPij through D.

We then use classical non-parametric multi-dimensional scaling (CMDS), to convert the distance

matrix D′ into positions of the |ID| sensors in |ID|-dimensional space. Finally, we use the k-means
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clustering algorithm to cluster together sensors that are temporally correlated, arriving at a mapping

CLUSTER : ID → C, from the source identity i ∈ ID of every device to one of the k = |C|

clusters; our assumption is that each cluster consists of sensors from the same room, and there exists

at least one cluster for each room in the home. Takada et al [60] describe a related algorithm to group

co-located sensors together based on time series data; however, the underlying sensors used, the

distance matrix computation and the clustering algorithm used there are different. A key requirement

of the Tier I clustering algorithm is that the end user has to manually input the number of rooms

or k for the k-means clustering algorithm. In the Tier-I evaluation in section ??, we show that the

algorithm is robust to incorrect values of k within two rooms of the actual number of rooms in the

home, and is able to correctly cluster the majority of sensors in the home.

3.1.3 Tier-II Room Classification

The goal of Tier II is to identify the function of each room as a bathroom, kitchen, bedroom, or living

room, without requiring any configuration input from the end user. This tier makes two assumptions:

(i) different houses have similar rooms (ii) similar rooms across homes can be identified using specific

features of room usage. To identify the function of each room, this tier passes features computed for

each room based on the the overall sensor transmissions from the room to a bi-partite matching based

classifier. From assumptions (i) and (ii), the bi-partite matching based classifier is created using

training data from a small set of homes, and then is used repeatedly in multiple test homes to label

rooms; thus, the user is relieved of the need to explicitly enter room labels into the activity recognition

system. We call this type of classification approach as a cross-home classification approach.

Once the devices are clustered, we generate an overall series of timestamps Tc of all transmission

timestamps from all sensors in sensor cluster c ∈ C. We also generate temporal activity clusters,

used in the features below, by using the db-scan algorithm to cluster the timestamps in Tc. Each

temporal activity cluster forms a continuous temporal block from Tc with a relatively high density

of sensor firings. db-scan [61] performs well here because it automatically leaves out outliers and

computes high-density clusters unlike k-means. We then generate a number of features for every

room cluster c from the series Tc listed below.

• the number of transmissions per day from the room
• the median inter-transmissions time within a room
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• the median length of temporal activity clusters
• the total number of transmissions during the day
• the total number of transmissions during the night
• the cluster to transmit first after long silence periods
• a histogram of transmission, with four hour granularity

We use these features to create a feature vector Fr for every room r. To classify rooms in a test

home, we set apart a small number of other homes from our deployment to provide training data.

We define R to be all possible room labels (e.g., bedroom, kitchen, bathroom, etc) and create a single

feature vector Fr for every label r ∈ R by averaging the feature vectors of all rooms in the training

data with the same label. Then, to label the rooms in a test home, we compute a min-cost bipartite

matching between the feature vectors Fc : c ∈ C from the clusters of that home and the training

feature vectors Fr : r ∈ R. We define the cost of a match between two feature vectors to be the sum

of the Euclidean distances between corresponding individual features.

The resulting bipartite matching represents the room labeling. Unlike a conventional classifier,

the matching process allows us to enforce mutual exclusivity of room labeling; for e.g., a home

with three rooms cannot have two bathrooms or three kitchens. When necessary, we can allow for

multiple rooms with the same label in a home by simply including extra copies that room in the set

of room labels. In our experiments, we observed that all rooms were correctly labeled across both

single and multi-person homes. Using room labels from this tier, we infer the timing and duration of

individual room visits, such as bathroom and kitchen visits by simply using the temporal activity

clusters that occur in each room classified as the bathroom or kitchen.

3.1.4 Tier-III Sensor and Activity Classification

The goal of Tier III is to identify activities in the home, such as cooking, showering, or toileting.

This is a two step process. In step 1, we classify sensors to obtain a probability distribution for each

unknown sensor indicating the likelihood of its matching with known sensors such as the stove,

shower etc. The matching probability Ms for sensor s is indexed by the known sensor types; for

example, Ms[stove] indicates the probability that sensor s is the stove sensor. In step 2, we use

these probability distribution vectors to classify activities based on which sensors are likely to be

active during an activity. Similar to Tier II, we use a cross-home classification approach to identify

activities, since we observe that across homes, similar sensors are involved in the same activities;
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for example, the flush sensor for toileting, the stove sensor for cooking, etc. Thus, end users are

relieved of the burden of having to constantly provide training data to the activity recognition system

over multiple days. Interestingly, we do not require the sensor classification to be 100% accurate

and show here how inaccurate probability distributions for sensor labels can be used to accurately

classify activities.

Sensor Classsification

To obtain the probability distribution over known sensor labels for each unknown sensor stream,

we first calculate a feature vector for each sensor, using features similar to those described in Tier

II, obtained from temporal characteristics of the sensor firings. We then classify each sensor by

passing each feature vector through a standard linear discriminant analysis (LDA) classifier, trained

again using a cross-home classification approach. In other words, for each of the eight homes, we

constructed this classifier using training data obtained from a subset of the remaining seven homes

with hand-labeled sensor types. We do not assume that all houses have exactly the same set of

sensors, but we do assume that all types of sensors in the test home have been observed at least once

in a training home.

We train a separate classifier for each room in a home: a sensor from the kitchen cluster in Tier II

will not be classified as a bathroom sensor. Thus, the room classification results from Tier II are used

to improve the sensor classification results in Tier III. The output of this classification procedure is

the mapping vector Ms for each sensor s in a home. In our experiments, the mapping vectors were

accurate for bathroom sensors, but were not very accurate for kitchen sensors, where activities like

cooking produced similar features in several sensors, such as the stove and cabinet sensors. These

objects are often either misclassified as each other or partially classified as multiple objects. However,

these incorrect classifications can still be used to recognize activities in Tier III.

Activity Recognition

To recognize activities, we calculate a feature vector for every temporal activity cluster in every

device cluster. These feature vectors include (i) start time, (ii) duration, and (iii) the total number

of times that each known sensor type transmits. Feature (iii) is obtained by adding the mapping

vectors for every sensor firing in the activity cluster. If a device is partially classified as multiple
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types of sensors, partial counts are maintained in the feature vector. This ensures that sensors used in

the same activity (such as the pantry and stove used in cooking) that are misclassified or partially

classified as each other do not affect the overall counts of known sensor firings in feature (iii). We

then classify each temporal activity cluster as an activity using an LDA classifier that was trained

on other homes with hand-labeled activity labels. We used this approach to recognize showering,

washing/grooming, and toileting activities in the bathroom, and to recognize cooking hot food and

preparing cold food in the kitchen.

Thus, our three tier AUTOLABEL inference algorithm automatically infers the sensor semantics

and daily activities of residents in the home, without requiring any configuration input from the end

user. Our approach is a significant improvement over existing approaches that require significant

configuration or training effort from the end user in the home.

3.2 Experimental setup

3.2.1 Home Sensor Deployments

We empirically evaluate our AUTOLABEL approach by collecting real sensor data from homes

containing off-the-shelf wireless X10 motion sensors and contact sensors. We used an X10 receiver

inside the home to record the timestamp and device ID for each sensor firing message. Motion

sensors were placed in each room and contact switches were placed on doors, sinks, toilets, showers,

refrigerators, stoves, and cabinets, some of which are shown in Figure 3.3. These sensors are the

same types of non-invasive low cost sensors used in the invisible man approach. Even though we

use direct sensors for our proof of concept evaluation here, we show how to eliminate many of these

direct sensors on water fixtures and electrical fixtures in chapters 4 and 5, using smart meters in

homes.

Data was collected in each home for seven days or more. To be sure that our evaluation is not

specific to a particular home or type of home, we deployed the X10 devices in eight diverse homes.

All homes had different floor plans, a different number of sensors, different items being monitored,

and a different number of residents with diverse age groups and occupations. Some homes had three

male graduate student residents while other homes had a married couple and mother-in-law. Layouts

varied from studios to two-bedroom apartments. A summary of the diversity of homes is shown in
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table 3.1. Hereafter, we label the single person homes A through D and the multi-person homes E

through H.

(a) Refrigerator (b) Sink

Figure 3.3: Examples of the sensors we deployed to evaluate AUTOLABEL.

Home Number Number Number Number
of Sensors of Rooms of people of firings

A 13 3 1 5888
B 22 5 1 3074
C 16 4 1 4020
D 16 4 1 10326
E 12 4 3 14340
F 15 5 3 20534
G 14 4 2 10964
H 16 5 2 16571

Table 3.1: Characteristics of the eight homes used in our AUTOLABEL deployments

3.2.2 Evaluation Metrics for Activity Recognition

Each tier of our inference algorithm will produce a set of resident activity time intervals I that are

defined by a start time and an end time. We also produce a set of ground truth activity intervals Î

by hand-labeling the sensor data after data collection is over. We use a min-cost bipartite matching

algorithm to pair each interval in I with an interval in Î . Then, we use three metrics to quantify the

correctness of the inference algorithm:

1. Event Detection Rate (EDR): the percentage of intervals in Î that were mapped to some

interval in I .

2. True Positive Rate (TPR): the percentage of intervals in I that were mapped to a real event

in Î

3. Duration Accuracy (DA): the absolute difference in duration between events in I and their

matched events in Î
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A EDR value of 60% would be produced if 10 cooking events occurred but only 6 were detected.

A TPR value of 60% would be produced if the adversary detected 10 cooking events of which 4

were false alarms. By measuring both EDR and TPR, we ensure that the FATS algorithm does not

achieve a high EDR simply by generating a large number of spurious events. A DA of 60% would

be produced if a cooking event takes 100 minutes, and the algorithm indicates an event of either 60

minutes or 140 minutes.

3.3 Evaluation

In this section, we present the activity recognition accuracy of each tier in our AUTOLABEL approach

using the evaluation metrics described above. Firstly, we note that sleep and home event detection

has 85 to 100% duration accuracy (DA) in both single and multi-person homes. Also, as shown in

Figure 3.5, we observe that for these two activities, the event detection and true positive rates, are

also very high, indicating that we detect coarse grained home occupancy and sleep occupancy very

accurately by just using the timestamps of sensor firings in the home.

3.3.1 Tier-I Evaluation

In Tier I, unlike Tiers II and III, no resident activities are detected. Rather, only sensor clusters

corresponding to rooms in the home are created. However, the activity recognition accuracy of

activities identified in Tiers II and III, depend on how accurately sensors in the same room are grouped

together in Tier I. Therefore, we first evaluate the accuracy of our sensor clustering approach.

To compute clustering accuracy, we first compute a maximal min cost bipartite mapping between

the set C of computed clusters and the set Ĉ of true room clusters obtained from the deployment

plan. We define a device i ∈ ID to be correctly clustered if i’s computed cluster c ∈ C is mapped to

a room cluster r ∈ Ĉ such that device i is actually in room r. We then define clustering accuracy

to be the proportion of devices that are correctly clustered.

Figure 3.4 shows the clustering accuracy across homes for multiple values of k, and the non-

parametric db-scan clustering algorithm [61]. Maximal clustering accuracy is achieved when the

value of k matches the number of rooms in each home. However, our overall inference algorithm

does not require the exact number k of rooms in the home and is robust to incorrect, larger values k.
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The parameterless db-scan algorithm performs poorly in several homes where all devices are highly

correlated temporally. Thus, we need a parameterized clustering technique like k-means with large

enough k to enforce a reasonable partitioning of the sensors into clusters corresponding to rooms in

the home. It is important to note in figure 3.4b that clustering accuracy remains high in multi-person

homes in spite of simultaneous activity in different rooms; this is because we still get sensors firing

in the same room most of the time.
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Figure 3.4: Accuracy of clustering sensors into rooms in AUTOLABEL, using both dbscan and
k-means with 4 different values of k.

3.3.2 Tier-II Evaluation

In Tier II, from the room labels attached to sensor clusters, and the temporal activity clusters inferred

for each room, we infer the room visits of residents in the home to rooms such as the bathroom and

the kitchen. Figure 3.5 shows that AUTOLABEL infers these room visits, with 95-100% accuracy

across both single and multi-person homes using our room classification algorithm. Of course, in



29

multi-person homes, the variables represent how many times all residents in the home visited roooms

such as the bathroom or kitchen in total.
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Figure 3.5: Overall Inference Accuracy of AUTOLABEL on events detected in Tier 0, Tier II, and
Tier III, using all three metrics: EDR, TPR, and DA.

3.3.3 Tier-III Evaluation

In Tier III, our AUTOLABEL approach infers a probability distribution over sensor labels for each

sensor, and also the daily activities of residents in the home. Though we do not show the sensor

label distributions here, figure 3.5 shows the activity recognition results for Tier III. In single person

homes, the average accuracy of AUTOLABEL in inferring detailed activities is around 80%, while

the accuracy in multi-person homes is lower, but still well above the baseline of random guessing. The

lower accuracy in multi-person homes is due to spatial clustering errors introduced by simultaneous

activity in many rooms; for example, in home E, an incorrect clustering of the shower sensor with

the living room prevented us from detecting showering events. To address the clustering and sensor
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classification errors in multi-person homes, we note that in realistic deployments as discussed in

chapters 4 and 5, prior knowledge about each water or electrical fixture can be used to identify

its semantics based on whole house smart meters, and this information can feed back into room

clustering decisions. Also, our approach for identifying multiple residents in chapter 6, can also be

used to eliminate some of the spatial clustering errors introduced in our sensor deployments discussed

above.

3.4 Limitations

Even though our AUTOLABEL approach achieves high activity recognition accuracy in our sample

set of homes, there are several limitations with both the approach and the evaluation that could be

improved as part of future research.

A key limitation of our AUTOLABEL evaluation is that it is largely carried out in relatively

similar graduate student or post-doctoral employee homes within the same city. We did not encounter

large families with young children, or large multi-story homes with diverse room functions. Regional

or cultural variations may result in diverse usage patterns, and our current AUTOLABEL algorithm

may need to be improved to handle such variations. For example, the end user could manually

input their lifestyle or family size from a pre-defined list, each with its own training set for our

AUTOLABEL algorithm; such lifestyle information could also potentially be learned automatically

by examining which training set maximizes the likelihood of observing the home sensor data. In

our sample set of deployments, we do not consider the challenge of how to provide information

back to the user regarding the level of uncertainty in the room locations, sensor types, and activities

recognized by AUTOLABEL; such feedback could potentially allow the user to more efficiently

correct errors in the unsupervised sensor labeling producing by AUTOLABEL.

Another limitation is that the AUTOLABEL approach is evaluated only using short term de-

ployments of 7 days each. We have not addressed the problem of adapting our activity recognition

algorithm automatically to account for changing object usage patterns over the long term when

performing daily activities.

Since our AUTOLABEL approach uses the same sensing approach as the invisible man approach

to activity recognition, it shares its key limitation: AUTOLABEL only recognizes activities that
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involve the use of instrumented objects in the home, or simple activities that can be inferred based on

time of day, room location, and length of room occupancy inferred using binary occupancy sensors.

Diverse physical activities such as jumping, or exercising that do not involve interation with objects

in the home, cannot be recognized with high accuracy by our approach. However, to infer such

detailed activities, state of the art techniques use invasive sensors such as camera sensors [47], or

inconvenient inertial sensors attached to the body [51]. In contrast, our AUTOLABEL approach uses

only non-invasive sensors, but cannot infer detailed activities that do not involve interaction with

objects in the home.

Additionally, our home sensor deployments contained about 15-20 sensors in each home depend-

ing on the size of the home; in contrast, some sensor deployments of the invisible man approach

contained a high density of sensors with around 80-100 sensors per home, including sensors on

objects such as the brush, tea pot, and cooking pan [28, 27, 54]. We have not evaluated the accuracy of

our sensor labeling and activity recognition approach, when using dense sensors to infer fine-grained

activities such as making tea, or brushing teeth. In the future, it would be interesting to evaluate if

our high sensor labeling accuracy extends as the density of sensing increasing, and which sensors, if

any, are incorrectly labeled by the AUTOLABEL approach.

Although our AUTOLABEL approach is unsupervised, and can automatically infer sensor

labels and daily activities, it does require the user to input the number of rooms for our Tier I

clustering algorithm; an interesting direction for future research is to explore clustering approaches

that eliminate the need to enter the number of rooms. As mentioned above, in the future, the user

may also interact with the system by entering some minimal lifestyle information, or interact with

the system based on the uncertainty about sensor labeling and activity data to correct erroneous

inference. Our unsupervised AUTOLABEL approach achieves high recognition accuracy, of 85-

90% that matches the recognition accuracy of supervised approaches evaluated on similar home

deployments in the literature [26]. In contrast, AUTOLABEL does not require users to label their

daily activities over multiple days, or manually enter the location and semantics of each sensor unlike

other unsupervised approaches [54]. However, a limitation of our evaluation is that state of the art

supervised learning algorithms have not been implemented on our home sensor data to compute the

potential improvement in accuracy that supervised approaches could achieve on our sample home

sensor data.
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Finally, another limitation of our evaluation is that we manually label the activity data post-hoc

in an indirect manner using researchers and home residents to interpret the sensor data; such an

approach may not have the same accuracy as a direct, but inconvenient approach where the end user

personally labels the activities while performing them [26]. Convenient ground truth annotation

for activity recognition research is a challenging and expensive problem. In the future, it would be

important to develop more rigorous techniques to label the activity data automatically with high

accuracy for ground truth purposes, or adopt more cost and effort intensive approaches as used by

the placeLab deployment, where subjects are paid to label the activity data post-hoc based on a video

camera placed in the home that records resident activities [27].

3.5 Conclusions

We note that the high proportion of activities that are correctly classified in Tier III indicate that the

simple assumptions made by our AUTOLABEL algorithm in Tiers I, II, and III appear to be true

across our sample set of homes, and that this type of tiered activity recognition approach can be

used to accurately infer activity information about the residents of a home. Our three tier inference

approach is designed to first infer the room location and semantics of each binary sensor used as part

of the invisible man approach, and then use this information in a cross-home activity classifier. Thus,

unlike existing approaches, the user neither has to enter configuration input about the sensors in the

home [54], nor label daily activities unlike supervised approaches [26, 28]. Our three tier approach

is specifically designed to achieve high accuracy in inferring the room locations and fixture types

of each sensor. We observed that first labeling the rooms in Tier II based on their temporal usage

patterns was highly accurate. Also, a key advantage of first determining the room location of sensors

is that it narrows down the potential space of fixtures that can be present in the room; this improves

the classification accuracy of determining the correct fixture types greatly, since a flush and a stove

cannot be confused since they are unlikely to be in the same room.

Our three tier approach may be modified to accommodate emerging sensor types such as single

point sensors to replace some of the binary sensors on water fixtures and electrical fixtures; we

discuss these extensions in the next two chapters. For example, in our current approach, detecting

usage events from individual objects in the home such as a sink or a flush is straightforward, since
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we use a binary event sensor per fixture. However, when using single point sensors, a separate edge

detection tier is needed to detect unique events from the single sensor on the home’s power line or

water input.

In the AUTOLABEL algorithm presented, grouping sensors into rooms in Tier I is performed by

clustering distinct sensors based on a unique temporal distance metric between every pair of sensors.

However, when using single point sensors, there are no unique sensors to represent the usage of

unique fixtures in the home; rather, more sophisticated Bayesian algorithms and filters are required

to cluster individual noisy events on the power or water line into rooms, by combining data from the

single point sensors and a few distributed sensors in the home. Finally, the signatures generated on

the water or power line for single point sensors may contain information useful in identifying the

type of sensor currently inferred in Tier III of the AUTOLABEL algorithm; a Bayesian approach

may be designed to leverage this information, and jointly infer the relative room location, room label,

and sensor label, instead of the tiered approach presented above.
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Chapter 4

Reducing sensor installation effort to

monitor water fixture usage

The AUTOLABEL approach presented in the previous chapter eliminates user effort in training and

configuring the activity recognition system. However, practical activity recognition systems must also

aim to reduce user effort in installing individual sensors on objects used in the home. In particular, the

advantage of not having to configure each sensor by using our AUTOLABEL algorithm may be lost,

if the user has to physically install sophisticated sensors on each fixture. The contact reed switches

used in the previous chapter to monitor water fixture usage are low cost and non-invasive; however,

these magnetic reed switches are quite difficult to install for a novice, and are also inconvenient for

everyday usage, since the aesthetics of water fixtures are affected by the presence of a conspicuous

sensor on each faucet, flush or shower [55, 30]. In addition to being difficult to install, magnetic reed

switches only report when each water fixture is being used, and not how much water is consumed at

each fixture, which is an important need for sustainability applications. In this chapter, we focus on

the problem of reducing sensor installation effort to monitor the usage and water consumption of

water fixtures in the home.

As seen in the previous chapter, water fixture monitoring is essential for recognizing several

important medically relevant activities of daily living, such as cooking, washing, toileting, and

showering [28, 26, 37]. In addition to medical activity recognition applications, water fixture

monitoring has important implications for sustainability and resource conservation applications. The
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world’s usable water supply is decreasing at a faster rate than it can be replenished. Household

water conservation is important to ensure sustainability of fresh water reserves, to save energy from

water treatment and distribution, and to prevent fresh water habitats from being affected through

excessive water use [62]. Residents have a number of practical options to conserve water, ranging

from replacing high flow toilets and showers with low flow replacements, to reducing water usage for

daily activities such as brushing teeth or washing dishes. To make informed decisions that maximize

water savings, households first need a detailed understanding of how much water is used by each

appliance and water fixture in the home.

A simple alternative to magnetic contact reed switches is to install a water flow meter at every

fixture to monitor both usage and water consumption, but flow meters are expensive, and also may

require plumbing expertise to install on certain pipes, depending on the type of sensor used; also,

not all pipes providing water to a fixture may be easily exposed for installing individual flow meters.

We make the key observation that water utilities are increasingly installing smart water meters

that provide real-time access to household water consumption, and 31 million smart water meters

are expected to be installed by 2016 [18]. Clearly, the already available smart water meter sensors

are valuable in eliminating individual, direct sensors on each water fixture. However, these meters

are installed at the water mains and only provide aggregate whole-house water usage, primarily

for billing purposes. Disaggregation is the problem of deciding how much of that usage is due to

individual fixtures in the home, and when these individual fixtures are being used. In this chapter,

we focus on how to eliminate individual sensors on water fixtures in the home by solving the

disaggregation problem on the whole house water flow data collected at the smart water meter.

There is significant existing work on the disaggregation problem. For high flow appliances

such as washing machines, dishwashers, and sprinklers, existing flow trace techniques can be used

on the aggregate flow data from smart meters to uniquely identify their usage time and water

consumption [63]. However, monitoring the usage of multiple sinks, toilets, showers, and other

fixtures that produce similar rates of flow in a home setting, is challenging. For this reason, existing

disaggregation techniques require additional sensing on the water piping infrastructure, and/or a

manual characterization of each water fixture [64, 55, 56, 14]. Similar to installing contact reed

switches or water flow meters on each individual fixture, these techniques can be expensive, difficult

to deploy, and time consuming. Also, fixtures such as multiple sinks, toilets, and showers, are most
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used on an everyday basis; therefore, monitoring them is important for sustainability applications,

and also for activity recognition applications.

In this chapter, we present the WaterSense system to infer fixture-level disaggregation of smart

water meter data using only a simple motion sensor per room, without requiring inconvenient or

expensive sensing on each water fixture. Motion sensors are inexpensive ($5 each for X10 motion

sensors [65]), and easy to install; many motion sensors can simply be placed on cabinets in an

inconspicuous manner even by novice users. Also, motion sensors are already prevalent in many

homes as part of home security or home automation systems. WaterSense does not require any

additional sensing infrastructure on the water pipes or fixtures, and disaggregates fixtures in an

unsupervised manner that does not require the collection of training data.

The WaterSense technique is based on two basic insights: 1) fixtures with similar flow signatures

(e.g. identical toilets) are often in different rooms, and 2) fixtures in the same room often have

different flow signatures (e.g. a toilet vs. bathroom sink). Based on these insights, WaterSense

clusters all water usage events based on both flow signatures and motion sensor signatures, and each

of these clusters represents a unique water fixture in the home. One limitation of this technique is

that it is not likely to differentiate two identical fixtures in the same room, such as double sinks

in a bathroom. However, such distinctions may also be less important for the purpose of water

conservation decisions or activity recognition applications.

We use a three tier inference approach that first identifies water flow events from the whole house

flow data, assigns each flow event to a room, and then identifies the fixture type associated with each

event, to uniquely identify the usage of water fixtures in the home. A key challenge that we face in

WaterSense is that individual fixtures are represented using noisy flow signatures from the water flow

data, unlike the direct sensors used in AUTOLABEL; therefore, we design a Bayesian data fusion

algorithm in Tier II that clusters each water flow event to a room, by combining both the motion

sensor signatures and water flow signatures. Our data fusion algorithm is able to uniquely identify

fixture use even in the presence of simultaneous motion activity, or lost motion sensor packets. We

deployed the WaterSense system in two different, natural home environments for 7 days each and

found that the system can disaggregate flow at the water mains to individual fixtures with an average

86% classification accuracy.
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The rest of this chapter is organized as follows. In section 4.1, we discuss existing approaches to

reduce sensor installation effort for water fixture monitoring in the home. We then present the design

of the WaterSense system in section 4.2, and present its evaluation in two multi-resident homes in

section 4.3.

 

Tier 1: Detecting 

Water Flow Events 

Tier 2: Creating Room Clusters 

Water fixture activities 

Water flow data 
Motion Sensor 

Data 

Activity Room Assignments 

Tier 3: Differentiating Fixture Types 

Fixture level usage information 

Figure 4.1: Three tier inference algorithm used by WaterSense to find 1) water flow events 2) clusters
of flow volumes that often co-occur with certain motion sensors, and 3) different types of fixtures in
the same room.

4.1 State of the art

Several approaches have been proposed in the literature to eliminate or reduce sensor installation

effort for monitoring water fixtures in homes. The most basic approach is to use flow signatures

from the whole house flow meter data, such as flow rate, flow duration or, in the case of high flow

appliances such as washing machines and sprinklers, patterns of flow to identify types of fixtures and

appliances [63]. However, flow signatures alone cannot disambiguate between different instances

of identical sinks, toilets, or showers in the same home. Fogarty et al. [64] use microphones

installed in a basement to classify water fixture use, and achieve good accuracy in identifying high

consumption appliances, but low accuracy in differentiating between different instances of the same

fixture category.
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Another recent approach [14] uses relatively easy to install vibration sensors on pipes to disag-

gregate total flow measured at a central location in a novel, unsupervised manner. Both of these

techniques, however, require additional sensing of the water infrastructure, which may require access

to pipes in crawl spaces or walls. Furthermore, microphones and accelerometers are more power

intensive than motion sensors and would either have a short battery life or would require wired power.

Froehlich et al. [55] avoid extensive sensing by using a single water pressure sensor that samples

at 500Hz, plugged into a free spigot or water outlet in the home. However, this approach requires

significant training data on the order of several days in a real world setting [56] to achieve high

accuracy in inferring individual water fixture events. Our WaterSense approach is an unsupervised

technique that does not require training data or configuration effort from the end user.

4.2 WaterSense System Design

In this section, we describe both the underlying sensing components and the three tier inference

approach used by WaterSense to infer fixture-level water usage from the whole house water flow data

stream and occupancy data streams. The WaterSense algorithm uses a three tier approach, as seen

in figure 4.1, and the sensor components shown in figure 4.2. In Tier I, we perform edge detection

on the water flow data stream, matching rising edges and falling edges to compute a sequence of

water flow events. In Tier II, we present an algorithm that groups flow events based on the motion

sensors with which they often co-occur. A key challenge is that motion sensor data is very noisy

due to (i) false positives from multiple residents moving in different rooms simultaneously, and (ii)

false negatives from low sensitivity on the PIR sensors or wireless packet loss. To address these

challenges, we design a Bayesian approach that we call ELoc that uses both instantaneous and

historical co-occurrence of a each flow volume with each motion sensor. Finally, in Tier III, we

differentiate the fixtures in each room into different types based on flow signatures.

Throughout this section, we will explain each of the system components in terms of an example

involving two simultaneous toilet flush events. The data trace from the events is shown in Figure 4.3:

the top three graphs show motion sensor data from the kitchen and two bathrooms, and the bottom

graph shows the total flow levels that must be disaggregated. In this example, Tier I detects four

edges with flow rates of 0.3 and 0.6 kl/hour, respectively, and identifies them as two different flow
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(a) Water Flow meter (b) Motion Sensor

(c) Contact Switch for Ground Truth

Figure 4.2: Sensors used in WaterSense and its evaluation. WaterSense uses a single flow sensor at
the water mains (a) and motion sensors (b). Sensors were placed on fixtures for evaluation purposes
only (c).

events. Tier II assigns the two water flow events to two different bathrooms based on their temporal

proximity to motion sensor data in the two rooms, as well as the historical correlation between these

flow rates and these motion sensors. Tier III identifies both flow events as toilets using the flow

volume and duration.

4.2.1 Physical Sensor Components

Our WaterSense approach requires a water flow meter at the whole house water input line, and

also motion sensors in each room that contains water fixtures. In our home deployments, we use a

Shenitech Ultrasonic water flow meter [66] that uses the Doppler effect to measure the velocity and

resulting flow of water through the pipeline. The flow meter reports instantaneous water flow (in

cubic meters per hour) at a frequency of 2Hz using the home’s Wi-Fi connection to transmit data. We

expect that utility water flow meters being deployed in a large scale [18] in homes will have a similar

setup. Figure 4.2(a) shows the installation of the flow meter in one of our home deployments. In

addition to the flow meter, WaterSense requires at least one motion sensor in each room containing

water fixtures. In our deployments, we use off the shelf X10 motion sensors [65] inside rooms to

detect occupancy, as seen in figure 4.2(b). The X10 motion sensors send a binary ON message

whenever motion is seen with a minimal damping interval of 7 seconds between ON messages.
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 Time (in hours) 

Flow rate (kl/hour) 

Kitchen 

Bathroom1 

Bathroom2 

Bathroom1 flush Bathroom2 flush 

Figure 4.3: A 6 minute data trace from Home 1 of the WaterSense deployments that shows the
water flow data and binary occupancy data from two simultaneous flush events. Tier I detects four
edges with flow rates of 0.3 and 0.6 kl/hour, respectively, and identifies them as two different flow
events. Tier II assigns the two water flow events to two different bathrooms based on their temporal
proximity to motion sensor data in the two rooms, as well as the historical correlation between these
flow volumes and motion sensors. Tier III identifies both flow events as toilets using the flow volume
and duration.

4.2.2 Tier I: Detecting Water Flow Events

The goal of Tier I is to transform the raw water flow time series F (t) (in kl/hour) from our

flow monitor to a sequence of timestamped water flow events W containing events of the form

Wi = (sti, endi, fi), where sti and endi denote the start and end timestamps of the event, while fi

denotes the mean flow rate during event Wi. Tier I uses the Canny edge detection algorithm [67]

on time series F (t) to compute a sequence of timestamps Et when potential edges are present. The

edge value Evi for a given edge timestamp Eti is then computed as the difference between the median

flow rate of the time intervals after and before the edge timestamp given by equation 1 below.

Evi = |median(F (Eti : Eti+1))−median(F (Eti−1 : Eti ))| (4.1)

The rising and falling edges from E are partitioned into two separate sets RE and FE respec-

tively, matched using a min cost bipartite matching approach the Hungarian algorithm [68]). We set
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each edge value to its absolute value when we partition the edges to rising and falling edges. The

edge weight between a rising edge REi and a falling edge FEj is defined to be −log(pij), where pij

is the match probability, obtained assuming a normal distribution on the relative difference between

rising and falling edges:

pij = N ((REvi − FEvj )/min(REvi , FEvj ), 0, σ) (4.2)

Additionally, we ensure that rising edges occur before falling edges in each match, and that

edges from two different water flow events are not matched with each other. Specifically, we set

pij to 0 if (i) REti > FEtj , or (ii) min(F (REti : FE
t
j)) <= βREvi . Currently, we set parameters

σ = 0.3, β = 0.5 that works well across multiple homes. Any unmatched sink edges whose

corresponding ON or OFF edges coincide with a flush event, are mapped accordingly to a feasible

higher flow event of opposite polarity, if such an event is detected. From the resulting matches

(RE,FE), we compute water flow events Wi = (sti, endi, fi) by setting sti = REti , endi = FEtj ,

and fi = mean(REvi , FE
v
j ). Durations Ti for each water flow events Wi are also computed as

endi − sti for use in the subsequent inference tiers.

In our example data trace in Figure 4.3, Tier I infers two distinct water flow events for the two

toileting events in bathroom 1 and bathroom 2, with different start and end times. It does this by

detecting two rising and two falling edges each with flow rates of 0.62 kl/hour and 0.32 kl/hour

respectively.

4.2.3 Tier II: Creating Room Clusters

The goal of Tier II is to assign a room r̂i ∈M to each water flow event Wi computed in Tier I, using

both Wi and the set M of relevant motion sensor data streams as input; we design the ELoc Bayesnet

shown in figure 4.4 to make this room assignment. In our current approach, we only consider motion

sensors in rooms containing water fixtures. Going back to our example data trace in Figure 4.3, Tier

II correctly assigns water flow events W1 and W2 inferred by Tier I to bathroom 1 and bathroom 2

respectively. However, this assignment is not intuitive just from figure 4.3 alone; both bathroom 1 and

bathroom 2 are occupied during the two flush events. Tier II first clusters all water flow events based

on their duration and flow rate value, and then computes how likely these clusters are to co-occur
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with the M motion sensor data streams. Event W1 with a duration of 54 seconds and flow rate of

0.62 kl/hour belongs to a (0.6 kl/hour, 40 second) cluster that is more likely to be in bathroom 1

than bathroom 2; similarly, the other 0.32 kl/hour flush event is more likely to co-occur with the

bathroom2 based on long term evidence. The ELoc Bayesnet, which uses both the instantaneous

occupancy evidence from motion sensors, and also the historical room to flow signature likelihoods,

accurately assigns the flush events to the two bathrooms. On the other hand, when multiple water

fixtures such as flushes across multiple rooms do have closer flow signatures, such as the two 0.5-0.7

kl/hour flushes in Home 2, the Bayesnet can still use the immediate occupancy evidence to match

motion sensors to flow events with high accuracy.

In the Bayesnet shown in figure 4.4, ri denotes the room of water flow event Wi. Di encapsulates

the temporal distance between event Wi and the |M | motion sensors, while ci ∈ C is a hidden

variable that denotes the flow signature cluster to which the current event Wi belongs. Each motion

sensor stream M s consists of a sequence of timestamps when motion sensor s transmitted an ON

event to our base station. We compute room assignments r̂i for each event using a maximum

likelihood approach:

r̂i = argmax
ri

∑
ci

P (ri|ci).P (Wi|ci).P (ci).P (Di|ri) (4.3)

We first describe how the variables Di and the set of water flow clusters C are computed, in

order to obtain the three conditional probabilities required in equation 3 above. Di is composed of

two |M | dimensional binary vectors Di1 and Di2, which denote if the minimal temporal distance

between the start time and end time of each water flow event and motion sensor stream M s is below

a threshold time dT (set to 12 seconds in our current approach):

Ds
i1 = (min(|M s − sti|) < dT )∀s ∈M (4.4)

Ds
i2 = (min(|M s − endi|) < dT )∀s ∈M (4.5)

We assume independence between the binary vectors Di1 and Di2, and also assume that the

room assignment to motion sensor j is independent of binary vectors Ds
i , when s 6= j. Applying
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Bayes rule and our independence assumptions, we get:

P (Di|ri = j) =
2∏

k=1

(P (ri = j|Dj
ik) ∗ P (ri = j)|P (Dj

ik)) (4.6)

 
iD  

ir  
iW  

ic  

Figure 4.4: ELoc Bayesnet used in WaterSense to cluster water flow events based on both flow
volume and co-occurrence with motion sensors.

Currently, we fix the parameter P (ri = j|Dj
ik = 1) = 0.9 ∀j, k, i, which works well across

multiple homes. We currently discount P (ri = j) as a constant and set the prior probability

P (Dj
ik = 1) to be proportional to the number of ON events from each motion sensor:

P (Dj
ik = 1) = |M j ||(

∑
s∈M
|M s|)∀k, j, i (4.7)

We compute the set C of flow signature clusters by clustering the water flow event Wi based on

two features: the event duration Ti, and the event value fi. We use quality threshold (QT) clustering

with a fixed relative distance width of 0.25 on both duration and edge value [69]. QT clustering

makes a hard cluster assignment of qi ∈ C to each event Wi. Thus P (ci|Wi) = 1 when ci = qi and

zero otherwise. In the future, it would be interesting to explore alternative clustering algorithms with

soft cluster assignments for use in the Bayesnet.

Finally, P (ri|ci) is obtained by first assigning events Wi to rooms rdi using Di alone (rdi =

argmaxri P (ri|Di)), and then computing P (ri|ci) using a frequency count on how many events

from cluster qi are assigned to each of the motion sensors in M . If we denote the set of events Wi

such that (rdi = j ∧ qi = x) is true to be RCj,x, and the set of events Wi such that qi = x to be

CLx, then we get the remaining probabilities required in equation (3) as:

P (ri = j|ci = x) = |RCj,x|/|CLx| (4.8)
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P (ci = x) = |CLx|/|W | (4.9)

From equations (6), (7), (8), (9), and our hard cluster assignments for events using QT clustering,

we assign maximum likelihood room labels r̂i using equation (3). In the future, it would be interesting

to learn the parameters for P (ri|ci) using a non-linear convex optimization algorithm to maximize

the likelihood of observing the sensor data , given by L =
∏|W |
i=1 P (Wi, Di). Another interesting

direction is to explore alternative distance vector features Di to potentially improve accuracy further.

4.2.4 Tier III: Differentiating Fixture Types

The goal of Tier III is to infer fixture types, such as a sink or a flush, for each water flow event

Wi from Tier I. In the current simplistic implementation, we first infer a flush event cluster FLj in

each room j, if any, by looking for an event cluster contained in that room with an average flow rate

greater than 0.3 kl/hour and an average duration greater than 30 seconds, with an event frequency of

at least 10% of events from the room. Events belonging to this cluster FLj are assigned as flush

events, while the remaining low flow events are assigned as sinks. The fixture types from Tier III

and the room assignments from Tier II together constitute unique water fixtures in the home, and we

use these assignments to present users with feedback on the time of use of individual water fixtures

distributed around a home. We also provide users with feedback on total water consumption of

individual fixtures by multiplying the fixture use durations Ti of each unique water fixture with the

corresponding flow values fi.

4.3 Evaluation

4.3.1 Experimental setup

To evaluate our WaterSense approach, we deploy our system in two homes for 7 days each. Both

homes had multiple residents, multiple bathrooms, and a wide array of water fixtures and appliances.

Details of the two deployments are summarized in Figure 4.5. To execute WaterSense in these homes,

we deployed a single water flow sensor on the water mains and a motion sensor in each room. In

Home 2, one of the motion sensors in a bathroom malfunctioned during our week long deployment,
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Home 
#  

Number 
of 
Residents 

Number 
of rooms 
with 
fixtures 

Number of 
monitored 
fixtures 

Pipe 
material 
and width 

Home 
1 

2 3 5 ¾” Copper 

Home 
2 

4 3 5 ¾” PEX 

 

Figure 4.5: Home deployment details for WaterSense. Our deployments involved two homes with
multiple residents. Both homes had a kitchen sink and two bathrooms with both sink and toilet.

so we used a motion sensor in an adjacent bedroom with a partial view of the bathroom in our

analysis.

To evaluate the system, we deployed ZWave contact reed switches [70] , as shown in Figure 4.2(c)

to record the actual times that each fixture was used. We compute ground truth water consumption for

each fixture by integrating total water flow into the house when each fixture was used. In the case of

simultaneous toilet and sink events when we do not observe explicit sink edges, we ignore the short

duration usage of the sink. These cases constitute a small fraction of events and we do not believe

that it significantly changes the overall water consumption profiles. In this experiment, we installed

ground truth sensors on only 3 sinks and 2 toilets in each home and only evaluate accuracy for these

fixtures. Other fixtures and appliances were also used during the experiment period, and we observe

several anecdotal instances of fixtures such as the shower or the sprinkler system being inferred in

these homes. However, we currently limit our evaluation only to those ground truth events observed

from the ZWave system. Ground truth events that do not change the total water consumption of

the house are ignored, since they do not affect the water consumption feedback to the end user. In

the future, it would be interesting to expand the evaluation evaluation to a larger set of fixtures and

appliances.

4.3.2 Fixture monitoring accuracy

Figure 4.6 shows the confusion matrix for classifying individual fixture usage events. We observe

that classification accuracy is high for the majority of fixtures in the home. Most misclassifications
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Fixtures K S B1 S B1 F B2 S B2 F 

K S 8 0 0 8 1 

B1 S 1 19 0 2 0 

B1 F 0 1 49 0 0 

B2 S 3 1 0 16 2 

B2 F 0 0 0 1 14 

 
(a) Home 1

Fixtures K S B1 S B1 F B2 S B2 F 

K S 81 10 0 3 0 

B1 S 7 78 0 5 0 

B1 F 1 0 85 0 5 

B2 S 0 1 0 6 0 

B2 F 0 0 2 1 13 

 
(b) Home 2

Figure 4.6: Confusion matrix of WaterSense when classifying water flow events across the two
homes. Confusion between fixtures of the same type in different rooms is common due to overlapping
occupancy. Confusion between fixtures of different types, such as a sink and a flush, due to
overlapping flow signatures, is less common. (B stands for bathroom, K for kitchen, S for sink, and F
for flush)
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that did occur were due to simultaneous occupancy in multiple rooms from fixtures with similar flow

signatures, such as high confusion between sink usage in the kitchen and bathroom2 in Home 1. In

Home 1, we find zero confusion between the flush fixtures in the two bathrooms even in the presence

of simultaneous occupancy as seen in the example data trace in Figure 4.3, while in Home 2, there

is about 7% confusion between the two flush fixtures. The reason is that in Home 1, the two flush

fixtures have a larger difference in flow signatures (0.3 and 0.6 kl/hour flow rates), while in Home

2, the two flush fixtures have similar flow signatures of 0.6-0.7 kl/hour; the Bayesnet in Home 2

relies more heavily on the noisy instantaneous occupancy than in Home 1, resulting in slightly more

errors. In general, these misclassifications do not cause significant degradation in water consumption

accuracy because they are infrequent and roughly symmetric across the diagonal, and so they often

cancel each other out. The average classification accuracy of 86-90% across the two homes indicates

that our WaterSense approach is a promising technique to eliminate individual sensors on water

fixtures for activity recognition purposes.

The true and estimated water consumption levels for each fixture are shown in Figure 4.7. The

order of the fixtures is sorted based on their actual flow. WaterSense estimated water flow at each

fixture with a median accuracy of 81.5% in Home 1 and 89.9% in Home 2. More importantly,

however, WaterSense preserves the relative ordering of fixtures in terms of maximum consumption;

it correctly indicates, for example, which sink or toilet causes the most water usage. End users can

use the output of WaterSense to understand what the high consumption fixtures in their home are. If

combined with intuitive displays that show users when each fixture was being used, and in which

daily activity, we expect to provide users with actionable recommendations to save water, such as

leaving the sink closed while washing or brushing, or providing low flow replacements for certain

showers and flushes. For example, in Homes 1 and 2, residents might be able to infer that it might

be most efficient to replace the high flow toilet in bathroom 1, while in Home 2, residents can also

infer that replacing the high flow toilet in bathroom2 would have about the same effect as using the

sinks in bathroom1 and the kitchen more efficiently with a better understanding of how they are

used. Thus, WaterSense also shows significant promise as a cheap and unsupervised technique for

monitoring the water consumption of individual fixtures in the home.
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(b) Home 2

Figure 4.7: Water consumption feedback provided by WaterSense for the various fixtures monitored
in the two homes, along with closely matching ground truth consumption. End users can use such
a display to start considering cost effective ways to conserve water. (B stands for bathroom, K for
kitchen, S for sink, and F for flush)
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4.4 Limitations

A key limitation of our WaterSense evaluation is that it does not consider water flow events from high

flow appliances such as the washing machine, dishwasher, and the shower that are not instrumented

to measure ground truth usage. In the future, it would be interesting to perform a complete evaluation

that includes all water fixtures and appliances, to address potential challenges posed due to simul-

taneous use of high and low flow appliances. As more high flow appliances are considered in the

evaluation, Tier III of the WaterSense algorithm needs to be improved to handle complex appliances

such as washing machines and dishwashers, using insights from the flow profiling literature [63].

Another limitation of our evaluation is that our ground truth measurement system currently

combines contact reed switches with the whole house water flow data to measure the water con-

sumption of individual fixtures; such a system is prone to errors when water fixtures are being used

simultaneously, since the water flow increase is not proportional to the number of fixtures as more

fixtures are used concurrently. Also, to address false positives in the reed switch sensors, we ignore

reed switch events that do not cause an increase in the whole house water flow; such an approach

could classify certain true positive reed switch events as false positives, if they are low flow events

that are not detected at the whole house flow meter. Conversely, flow events that do not cause a

corresponding firing in any of the contact reed switches are assumed to be from uninstrumented high

flow appliances such as the washing machine or the dishwasher; due to false negatives in the reed

switch sensors, such an approach may cause certain true positive events from instrumented fixtures

such as the sink and the flush to be ignored as being from an uninstrumented fixture. To handle these

challenging problems with ground truth measurement, a comprehensive, but more expensive system

consisting of a flow meter at every water fixture could be used in the future to provide accurate

ground truth.

Finally, in our evaluation of WaterSense, we only consider data from two homes over a short

term period of 7 days each, with two bathrooms and a kitchen containing water fixtures in each home.

In the future, it would be important to extend the evaluation to include more homes and apartments,

and also perform the evaluation over a longer term. It would be interesting to evaluate if WaterSense

achieves high accuracy in such a larger scale evaluation, or if lower accuracy is achieved in certain

homes due to similar fixture types and higher simultaneous use.
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4.5 Conclusions

In this chapter, we presented the unsupervised WaterSense approach to infer the fine-grained fixture

level breakdown of water consumption in homes by effectively combining cheap occupancy sensors

and whole house water flow meter data. Our WaterSense approach is evaluated in two homes for 7

days each, and is able to accurately infer both the time of use and water consumption of individual

fixtures.

Our three tier inference approach for WaterSense may be used to provide the underlying water

fixture usage input to the three tier AUTOLABEL inference algorithm discussed in the previous

chapter. In AUTOLABEL, each water fixture is sensed by a unique binary sensor. On the other hand,

in WaterSense, we first need to detect water flow events from the whole house flow data using an

event detection tier, since there is no longer a binary sensor on each water fixture. For clustering

sensors to rooms, AUTOLABEL leverages a unique temporal distance computed between every pair

of distinct sensors. In contrast, we need to use a Bayesian clustering approach in WaterSense to

effectively fuse the noisy flow signature and motion signature evidence, to cluster flow events from

the water flow data to rooms containing motion sensors. Also, the flow signatures in WaterSense are

able to identify the actual fixture type, such as a sink or a flush. On the other hand, AUTOLABEL

only relies on temporal features of usage to determine the fixture type in tier III. In the future,

the fixture type information from WaterSense can be leveraged in the AUTOLABEL algorithm to

determine the room label in the room classification tier (Tier II of the AUTOLABEL algorithm).

In our current implementation, we only use off the shelf binary PIR sensors in each room

containing a water fixture. In the future, it would be interesting to consider non-binary PIR sensors

that report the actual intensity of infrared changes, as opposed to the existing binary motion sensors;

with non-binary PIR sensors, it would be possible to perform a joint clustering of the flow rate and

the infrared intensity, to achieve higher accuracy in identifying individual fixtures within a room, and

also better disambiguate cases where there is simultaneous occupancy in multiple rooms. It would

also be interesting to explore how weak biometric sensors used for resident identification in rooms

can be used along with the occupancy sensors in the WaterSense approach to better disambiguate

water fixture usage.
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Chapter 5

Reducing sensor installation effort to

monitor electrical fixture usage

In chapter 4, we presented the WaterSense solution to eliminate direct sensors on individual water

fixtures in the home. In addition to water fixtures, the usage of individual electrical fixtures in the

home is a key input for recognizing resident activities. For example, the use of appliances such as

the stove and microwave indicate cooking, while the use of appliances such as the dishwasher or the

washing machine indicate hygiene activities [28, 27, 26, 37]. In our evaluation of our AUTOLABEL

activity recognition approach in chapter 3, we used magnetic contact reed switches on individual

electrical fixtures in the home. As discussed in chapter 4, reed switches can be time consuming for

a novice to install, and also inconvenient due to the presence of conspicuous sensors on electrical

appliances used every day. Also, reed switches do not indicate how much energy is being consumed

by the light fixture under consideration. A naive alternative to reed switches is to install an in-line

current sensor at each electrical switch; however, based on our own experiences, such an effort

consumes more than 20 man-hours on average per home to install, and also inconveniences the end

user by requiring power to be shut off while the installation is ongoing. In this chapter, we present

new approaches for eliminating direct sensors on individual electrical fixtures in the home.

Similar to our WaterSense approach, it is possible to leverage the smart meters being deployed

in homes by utility companies to monitor the use of individual electrical fixtures. For example,

non-intrusive load monitoring (NILM) approaches [71] have long been used to identify the usage of
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major appliances by analyzing their electrical power signature, using only a single power meter on the

electrical mains of the home; this approach achieves high accuracy for high power appliances such

as the stove, the washing machine, or the microwave. However, NILM is not effective for low-power

appliances (30-100W), since several low power appliances have similar wattages in 30-100W range,

and the wattage of a low power appliance is similar to the electrical noise levels of a typical home.

In this chapter, we choose to focus on the highest power consumers among low power appliances,

namely light fixtures.

Light fixtures play an essential role in the home, and monitoring their usage can serve activity

recognition systems targeted at both sustainability and medical applications. For example, task

lighting near a chair, countertop, or table can be a good indicator of medically relevant activities of

daily living (ADLs) such as reading, preparing food, and eating dinner. In fact, light fixture usage

may be the primary indicator of certain activities, at least from a sensing perspective. For example,

the status of the light in a bedroom may be an indicator of either reading or sleeping [27].

Monitoring light usage is also important from an energy conservation viewpoint. Light fixtures

account for 11% of energy consumption in US homes on average [72] and 25% in California because

heating and cooling energy is lower due to the mild climate [73]. This energy usage is equivalent to

that used by 15 million homes or about 20% of all automobiles on the road in the US. Homeowners

can reduce lighting energy by installing energy-efficient CFL or LED bulbs, daylight harvesting

hardware, or occupancy-automated lighting controls. For example, when both occupancy and light

sensors are available, researchers have shown that smarter control of light fixtures can yield savings of

50-70% through light fixtures fitted with actuators. However, these solutions are costly relative to the

energy saved: some of the homes we analyzed contained over 50 bulbs, including specialized lighting

(e.g. recessed lighting or under-cabinet lighting) that is particularly costly to retrofit. Homeowners

need concrete data about individual light fixture usage to quantitatively assess the expected return on

investment of any given solution. Also, past studies have shown that up to 15% energy savings can

be achieved for individual appliances, if residents have a precise understanding of their energy costs

[19, 20, 21].

Unfortunately, light fixture monitoring remains a challenge today, since approaches such as

NILM are not effective in the wattage range of a typical incandescent light bulb(30-100W). Recently,

several alternatives to NILM have been developed, but each has important limitations. For example,
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they require a sensor to be installed on every fixture [11, 13, 12, 74], require a manual training

and labeling period [58], or are limited to light fixtures that involve switched-mode power supplies

(SMPS) [57] such as those with CFLs or dimmer switches.

A key challenge with monitoring light fixtures using the power meter is the high level of noise;

using the power meter alone, we observed that only 15% of the low power events corresponded to

light fixture usage in the home. Similar to the WaterSense approach, we first explored combining the

motion sensor data with the power meter data to eliminate noisy events from the power meter, and

disambiguate light fixtures in different rooms with the same wattage. However, we found that such

an approach still produced a significant number of false positives when trying to identify genuine

light fixture events. The high noise in the power meter data was not effectively filtered by motion

activity, since motion activity durations were very long, and only sometimes correlated with light

fixtures turning ON and OFF. To effectively reduce the number of false positives, we explored using

alternative sensors to better eliminate false positives from the power meter data, compared to motion

sensors.

In this chapter, we present a new approach called LightSense that uses data fusion between

the whole house power meter and a light sensor in each room, to cheaply, easily, and accurately

infer light fixture usage. LightSense effectively captures both the electrical signature and the light

signature of each fixture in an unsupervised manner. For a typical home, this approach requires only

3-8 more sensors than conventional NILM techniques. Furthermore, light sensors are inexpensive ($

0.5-1) and can be easily installed without touching the electrical wiring. Also, these light sensors can

be piggybacked on the motion sensor devices in each room used by our WaterSense approach.

However, light sensors alone are not sufficient to detect fixture usage: the light levels produced

by a typical fixture are similar to or even smaller than the light levels caused by window shades

opening and closing, people walking past the sensor, and clouds passing overhead. Light fixtures

account for only a small fraction (25%) of the light level changes in a room. To address this problem,

LightSense exploits several insights about light fixture usage: 1) noise on the power lines and noise

in light are typically independent 2) light fixtures typically exhibit a similar power/light signature

over time, even when using dimmers 3) light usage always occurs in ON/OFF pairs: a light cannot

be turned ON twice in a row. In this chapter, we present a probabilistic data fusion framework that
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combines power and light data streams, automatically learns the long-term signature of each light

fixture, and accurately recognizes the real-time usage events.

LightSense is completely unsupervised: it does not require a training process in which users

manually label light fixture usage. Furthermore, it does not require user configuration: users do not

need to indicate the number of fixtures in a home or their individual wattages. These parameters are

automatically inferred.

We envision two types of LightSense deployments. In a short-term energy audit, light sensors

would be placed on a shelf or countertop in each room for a period of several days or weeks to

assess the total energy usage of each light fixture. Power data would be collected from a smart

power meter, which are already deployment in many parts of the US by power utility companies for

billing purposes. For longer-term activity recognition applications, the light sensors would simply

be integrated with other sensors. For example, several commercial motion sensors already have

integrated light sensors for calibration purposes [65, 70]. If a motion sensor is placed in every room

for activity recognition purposes anyway, the light sensor data can be used by LightSense to infer

light fixture usage.

We evaluate LightSense with an in-situ deployment of power meters and light sensors in four

multi-resident homes over 10 days each, monitoring a total of 41 light fixtures across 32 rooms.

We deployed wireless light switches and smart plugs to collect ground truth information about

light fixture usage. We found that the power meter alone detects light fixture events with only 15%

precision, and the light sensors alone achieve only 25% precision. By combining the two data

streams, however, the LightSense data fusion algorithm detects ON/OFF events with 81% recall and

86% precision. We also demonstrate that LightSense can disaggregate whole-house energy usage

into fixture-level energy usage, estimating the total energy usage of most the commonly used light

fixtures with 91.1% accuracy on average.

The rest of this chapter is organized as follows. In section 5.1, we discuss the state of the art in

cheaply monitoring light fixture usage in homes. In section 5.2, we discuss the LightSense data fusion

algorithm. In section 5.3, we discuss the experimental setup and home sensor deployments used to

evaluate LightSense. In section 5.4, we discuss the accuracy results for LightSense in monitoring

individual light fixture energy consumption, and in section 5.5, we present the accuracy of LightSense

in identifying individual light fixture ON and OFF events for activity recognition purposes, and
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Technique/ Feature Easy to Install? Cost Energy feedback? Accuracy  User training? Applicability? In-site evaluation? 

Electrisense Yes High No High No CFLs No 

Using mechanical 
properties of 
switches 

Yes High No High Yes Incandescent No 

NIALM Yes Low Yes Very Low Yes All Yes 

Direct sensing No High Yes Very High No All Yes 

Ambient sensing No High Yes High No All No 

Light Sense Yes Low Yes High No All Yes 

 

Figure 5.1: Comparison of existing techniques to infer usage and power consumption of light fixtures

provide an explanatory analysis to show why LightSense achieves high accuracy in spite of noise

from the light and power data streams.

5.1 State of the art

Several approaches have been developed for monitoring light fixture usage, but each has important

limitations. Figure 5.1 lists the main techniques in this area, and compares them to LightSense in

terms of several important metrics.

Non-Intrusive Appliance Load Monitoring (NIALM) [71] techniques can be used to identify

the usage of electrical fixtures in the home based on electrical signatures. These signatures can be

extracted using only a single power meter [17], which is already available in many homes today [16].

Some appliances have a unique profile of real and reactive power, while other appliances such as

washing machines and dishwashers exhibit characteristic electrical patterns over time. However,

NIALM techniques not effective for light fixtures that exhibit constant, low power values due to the

large number of similar, low power appliances in homes, and due to low power state transitions from

complex appliances such as the television or the HVAC system [71].

An alternative to NIALM is use in-line current sensors to directly measure the amount of energy

consumed by individual appliances. Examples include pluggable power meters [70, 11] to monitor

lamp fixtures, and smart switches [70] to monitor lights controlled by wall switches. However, direct

sensing a large number of sensors to be integrated with the home’s electrical wiring, which is costly

in terms of both hardware and installation time. In our own deployments across four homes, for

example, installing in-line current sensors for ground truth consumed approximately 19 man hours
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per home on average, while the LightSense installations only consumed an average of 25 minutes per

home.

Recently, new solutions have been developed that require only a single sensor on the power line.

Gupta et al propose the Electrisense system [57], which uses an easy to install, plug-in sensor that

leverages unique high frequency EMI(Electromagnetic Interference) signals on the power line to

identify light fixtures. However, this approach is limited to appliances that use switched-mode power

supplies (SMPS) such as lights with CFL bulbs or dimmer switches; it does not work for conventional

incandescent bulbs. Patel et al [58] propose a related approach to identify mechanically switched

appliances in homes based on a unique high frequency voltage transients. However, this approach

requires users to manually train the system by labeling ON and OFF events of individual appliances.

If lights are added or moved throughout the house, training must be performed again. Furthermore,

the authors only evaluate the ability to classify manually labeled events that are explicitly input to the

classifier(recall and classification accuracy). It is unclear if the reported upper bound classification

accuracy for these approaches of 75-95% will be retained in a realistic, in-situ evaluation, where false

positives in the power line signals could reduce precision. Moreover, neither of these approaches can

currently infer the energy consumption of individual fixtures; they can only identify which fixture

was used. LightSense is a completely unsupervised technique that can identify fixtures and measure

their energy consumption. LightSense is also evaluated in a in-site experiment.

The systems most similar to LightSense include ambient sensing approaches that fuse data

from whole-house power monitors with environmental sensors deployed throughout the house. For

example, Viridiscope [12] uses one specialized sensor node per appliance containing light, acoustic,

and magnetic sensors with whole house power meter data to infer the energy costs of individual

appliances in the home. However, the Viridiscope algorithm makes the strong assumption that the

power consumed by unmonitored appliances is constant, essentially requiring complete coverage of

every electrical fixture and appliance in the home. A contactless sensing system proposed by Rowe

et al [13] also requires specialized environmental sensors per appliance, and additionally uses high

frequency circuit level power meter data, which requires high installation effort at the breaker box.

Both of these approaches require far more sensors and a more involved installation process than

LightSense. LightSense can detect light fixture usage without the need to monitor any other fixtures

or appliances in the home. Further, it does not require a sensor on each fixture, but only requires full
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coverage of all light fixtures of interest (typically, one sensor per room). More recently, Delaney et al

proposed a system to save energy from lighting based on smart control in an office environment, and

presented savings of 50-70% [22]. However, they used direct sensors and actuators on each light

fixture, and do not address the problem of effectively inferring the energy usage of each light fixture.

5.2 LightSense Design

The LightSense algorithm uses a three-tier data fusion framework to combine raw light sensor and

power meter data and generate the usage times and energy costs of individual light fixtures. The

framework is illustrated in figure 5.2. The Tier I applies edge detection algorithms to identify both

rising and falling edges in both data streams. LightSense uses several novel edge detection algorithms

tailored to the noise typical of light and power timer series. Tier II combines the edges detected in

both data streams to generate a single series of events. Tier II applies three basic principles to decide

which edges to keep: a) the edge must appear in both the light and power data b) the light and power

values must be typical for that room c) there must be a matching between rising edges and falling

edges. Once the light fixture events are identified, Tier III uses a clustering algorithm to infer the

individual light fixtures present in each room, their usage times, and their total energy costs. Figure

5.3 shows a sample data trace from 6AM to 4PM in one home. The output of Tier I produces a large

number of false edges for both the light and power data, and the data fusion algorithm in Tier II

eliminates almost all of them to identify only 4 correct ON/OFF events.

5.2.1 Tier I: Light and Power Edge detection

The goal of Tier I is to detect rising and falling edges in the power and light data streams, despite

several types of noise. The inputs to Tier I are the time series data from each light sensor i denoted

by Li, and the time series data from the whole house power meter P . Using this input, the edge

detection algorithms output a sequence of rising and falling edges for each light sensor i, denoted

by RLi and FLi, respectively, and a sequence of rising and falling edges for whole house power

consumption, denoted by RP and FP , respectively.
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Tier I: Light 

Edge Detection 

Light Sensors 

Data 

Power Meter 

Data 

Tier I: Power 

Edge Detection 

Tier II: Data Fusion and 

Bayesian Matching 

Tier III: Fixture 

Identification 

Power Edges Light Edges 

Room Level ON-OFF Events 

Fixture Level ON-OFF events 

Figure 5.2: Three tier data fusion framework used by LightSense to combine data streams.

Power Edge Detection

To detect whole house power consumption edges from the power meter time series P , we apply

a sliding window based edge detection algorithm, that computes all possible power edges with a

maximum window bound. In particular, each power edge e is defined by a time window [es, ef ], and

the edge value is given by ev = (P [ef ]− P [es]). We place two main constraints on time windows

which can constitute a power edge e:

1. (ef − es) ≤ maxwinP

2. |ev | ≥ dP

Condition 1 ensures that all edges have a time window length bounded by maxwinP . A small

parameter for maxwinP parameter ensures that we eliminate a significant number of slow power

intensity changes that do not originate from artifical lighting. In our current implementation, we fix

maxwinP = 5 seconds across all homes. Condition 2 determines the lowest wattage light fixtures

detected by LightSense, parameterized by dP ; in section 5.5.3, we evaluate the recall precision

tradeoff as dP is varied.
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Our power edge detection algorithm is a multi-edge detection approach, since multiple power

edges could simultaneously be detected at any time instant from the different time window lengths

bounded by maxwinP . We adopt this approach because the power meter data typically contains

several closely spaced simultaneous low power events, and a single edge window is insufficient to

achieve high recall; a larger edge window is ineffective when there are closely spaced events ON or

OFF events, while a smaller edge window does not capture slowly increasing power events from

dimmable lights as reported by the power meter, which reports rms power every second from the

AC current and voltage inputs. We address the problem of pruning power edges in section 5.2.2,

by leveraging the joint light and power signatures of light fixtures. Also, we bound the maximum

power edge magnitude |ev| to 1000W to prevent interference from high power appliances such as

the stove or the washing machine. The edges output by our edge detection algorithm are partitioned

to rising and falling power edges RP and FP , respectively, and the edge value ev is set to |ev| in the

partitioned subsets.

Figure 5.3 shows the timestamps of edges output by the power edge detection algorithm. We

observe that the power edge detection approach shows poor precision in detecting light fixture events,

due to false positives from numerous low power appliances, and low power state transitions of

complex appliances such as the HVAC system or the television.

Light Edge Detection

To detect light edges from each light sensor stream, we design the light edge detection algorithm

outlined below. Figure 5.3 shows the timestamps of rising (ON) and falling (OFF) edges output by

the two steps in the light edge detection algorithm. The first step uses a sliding window-based edge

detection algorithm similar to the power edge detection algorithm to eliminate noise due to slowly

changing light events, such as daylight changes from the movement of the sun. The second step uses

three novel adaptive noise filters to filter the typical noise events seen in home light sensors.

for each light sensor i ∈ S

LSi = medfilt(Li, window)

Ei = windowdetect(LSi,maxwin, dL)

F i = null

for each e ∈ Ei
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b = noise filter(e) ∧ onoff filter(e) ∧ consensus filter(e)

if b == 1 then add e to F i

partition F to (RL,FL)

In the algorithm above, for every light sensor i ∈ S, where S is the set of light sensors in the

home, we first perform median filtering on the light sensor time series Li with a fixed window size

of 10 samples across all four homes. Median filtering eliminates impulse noise from our light sensors.

We then apply a window-based edge detection algorithm windowdetect on the smoothed time series

LSi to output a sequence of edges Ei. This algorithm uses the two conditions mentioned above for

the window-based power edge detection algorithm, with new parameters dL and maxwinL instead

of parameters dP and maxwinP . Setting a small bound on the maxwinL parameter ensures that

we eliminate a significant number of slow light intensity changes that do not originate from artifical

lighting. In our current implementation, we fix maxwin = 2.5 seconds across all homes, since

that is the maximum time required for typical residential dimmer switches to reach their target light

intensity level. Paramter dL determines the lowest intensity of light edges detected by LightSense; in

section 5.5.3, we evaluate the recall precision as dL is varied. We also add two additional constraints

on edges e ∈ Ei to ensure that multiple light edges are not detected simultaneously:

1. ∀d ∈ Ei, (e 6= d)→ ([es, ef ] ∩ [ds, df ] = {})

2. ∀[x, y], (|Li[y]− Li[x]| ≥ dL) ∧ ([x, y] ⊂ [es, ef ])→ (ev ∗ (Li[y]− Li[x])) > 0

The above conditions together ensure that the edge window sizes are adjusted automatically

depending on the variation in the light signal; smaller edge windows are used when light intensity

changes are dense, while larger edge windows are used when the light intensity changes are sparse.

Due to space constraints, we do not discuss how the windowdetect algorithm ensures the constraints

above to output Ei, but we note that it is a straightforward algorithm that is in O(|Li|).

For each edge e ∈ Ei output by the windowdetect algorithm, we apply three additional adaptive

filters to eliminate noisy edges, namely the noise filter, the onoff filter, and the consensus filter; in

figure 5.3, we see that these adaptive filters eliminate a significant number of noisy edges output by

the windowdetect algorithm.

Firstly, lights do not turn on and off very frequently; if we detect a large number of similarly

sized light edges, we assume they are ambient noise. For each edge e, the noise filter algorithm first
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Raw Light Data

Power Consumption in Watts

Light Edges

Filtered Light Edges
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Data Fusion and Bayesian Matching

Matched Light Power Edges

Power Edge Detection

Window based edge Detection

Adaptive filters
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Figure 5.3: Sample Data Trace from a bedroom light sensor and whole house power meter from
4AM to 4PM in House 2 of our LightSense deployments, along with ground truth fixture events.
LightSense eliminates false positive light and power Edges by performing data fusion and matching.

counts the number of comparable, temporally adjacent edges x within time dTa of edge time es,

whose magnitude is at least α times the current edge value ev under consideration. The filter returns

false if the number of such comparable edges exceeds a maxcount parameter. We fix parameters

dTa = 20 minutes, maxcount = 20, and α = 0.8 across all homes.

Secondly, when people or clouds pass by the light sensor, a rising edge and falling edge occur

closely together in time; we filter these pairs of events out. For each edge e, the onoff filter algorithm

returns false if an opposing, comparable, temporally adjacent edge y exists within time window dTb

of edge time es, whose magnitude yv is at least α times the current edge e under consideration, and

whose polarity is opposite to edge e. We fix parameter dTb = 12 seconds.

Thirdly, redundant light fixture events from adjacent rooms are detected in multiple light sensors.

So, when we observe light edges in multiple light sensors simultaneously with the same polarity, we

only retain the light edge with maximum intensity, since that edge is most likely from the sensor

in the same room as the light fixture. Assuming a coarse time synchronization among the multiple

light sensor streams based on timestamps at the receiver base station, the consensus filter eliminates
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redundant light edges within one second of each other. Finally, the filtered light edges are partitioned

to rising and falling edges based on their polarity to RL and FL, respectively.

5.2.2 Tier II: Data Fusion and Matching

The goal of Tier II is to combine the low precision light and power edges from Tier I to compute a

sequence of matched ON-OFF events M i for each light sensor i. Each ON-OFF event m ∈M i is

defined by a four tuple (ms, mf , mp, ml); ms and mf denote the ON and OFF time, respectively,

while mp and ml denote the average power consumption and light intensity increase for event m.

Firstly, we use data fusion to eliminate temporally isolated power or light edges as false positives.

Secondly, we use Bayesian matching to prune unmatched ON or OFF light and power edges as false

positives. Finally, we use a novel Bayesian clustering approach to accurately assign power costs to

each ON-OFF event, by automatically learning the typical power and light signatures in a room.

 

kcl
 

kcp
 

kl  

kp  

Figure 5.4: The lpbayes Bayesnet used by LightSense to find the maximum likelihood clusters (top
nodes) given the power and light edges (lower nodes).

Data Fusion

The Data Fusion step combines the rising and falling power edges {RP,FP} and light edges

{RLi, FLi} to compute a set fused light-power edges {RLP i, FLP i} for each light sensor i ∈ S.

We first describe how the rising light-power edges RLP i are computed from RP and RLi. We

first compute a power edge set PSe for each light edge e ∈ RLi, where PSe denotes all the power

edges from RP within time dTadd of the light edge timestamp es. If no power edges are found, we

discard the light edge e, otherwise we add the light-power edge (e, PSe) to RLP i. Thus, temporally

isolated light or power edges are eliminated as false positives, while temporally adjacent light and
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power edges are added to RLP i. We similarly compute the falling light-power edges FLP i from

FP and FLi. We currently set dTadd to 12 seconds across our deployments to account for time

synchronization errors between the light sensor and power meter data streams. Since the power meter

data is noisy, multiple power edges in PSe are typically associated with a single light edge e; the

problem of assigning the correct power edge to each light edge is addressed as part of our Bayesian

Clustering step below.

Bayesian Matching

For each light sensor i ∈ S, the Bayesian matching step matches rising light-power edges RLP i

to falling light-power edges FLP i to compute the sequence of matched light fixture events M i.

Bayesian matching prunes false positive edges from RLP i and FLP i that cannot be matched with

high probability. The algorithm is shown below:

for each light sensor i ∈ S

Weightsi = null

for each edge (d, PSd) ∈ RLP i

for each edge (e, PSe) ∈ FLP i

c1 = (ds > es)

c2 = min(Li[ds : es]) > γ ∗ dv

if (c1 ∨ c2)

pmatchid,e = 0

else

compute lprobid,e, pprob
i
d,e

pmatchid,e = lprobid,e ∗ pprob
i
d,e

Weightsi[d, e] = −log(pmatchid,e)

M i = Hungarian(Weightsi) with weight threshold wmax

The Bayesian Matching algorithm shown above first constructs a weighted bipartite graph

with edges from the set of rising light-power edges RLP i, to the set of falling light-power edges

FLP i. The edge weight Weightsi[d, e] between any rising edge d ∈ RLP i and any falling edge

e ∈ FLP i is set to −log(pmatchid,e), where pmatchi(d,e) represents the probability of edge d being

matched to edge e. We perform a min-cost bipartite matching on the weighted bipartite graph
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represented by Weightsi, which returns an optimal matching M i with maximum match likelihood,

i.e. M i = argmaxx(
∏

(d,e)∈x pmatch
i
d,e).

In the algorithm above, we see how the match probabilities pmatchid,e are computed. Firstly,

we set pmatchid,e = 0 if any of the two conditions c1 or c2 are satisfied. Condition c1 ensures that

rising edges in an ON-OFF event occur before falling edges. Condition c2 ensures that rising and

falling edges from two different ON-OFF event pairs are not matched together by by leveraging the

observed additive nature of light intensities in a room; if a +100 rising edge and a −100 falling edge

are separated by a time interval where the total light intensity is only 5, then the two edges are likely

from different ON-OFF events. In the algorithm, γ is set based on empirical experiments to 0.8

across all our deployments. If conditions c1 and c2 are false, the two edges d, e under consideration

could potentially be matched.

As shown in the matching algorithm, the match probabilities pmatchid,e are computed as

lprobid,e ∗ pprobid,e, where the light match probability lprobid,e denotes the probability that the

light edges d and e are matched, while the power match probability pprobid,e denotes the probability

that the two corresponding power edge sets PSd and PSe are matched.

We compute the light match probability lprobid,e as the likelihood that ON and OFF light edges

d, e belong to the same light fixture; we observe that ON and OFF light edges from the same two-state

light fixture have similar edge values. To leverage this observation, we first cluster all the light edge

values from RLP i and FLP i using the QT (Quality Threshold) clustering algorithm [69] with a

relative distance error threshold of 0.25 on the light edge values. QT Clustering outputs a set of light

edge clusters CLi with a fixed cluster assignment for each edge. We assume each light edge cluster

has a normally distributed light intensity distribution, and compute the mean and standard deviation

for each light cluster cl ∈ CLi as clmean and clstd, respectively, from the edges assigned to cl. The

probability lprobid,e that the two light edges d, e belong to the same light cluster cl ∈ CLi is then

computed as:

lprobid,e =
∑

cl∈CLi

N (dv, clmean, clstd) ∗ N (ev, clmean, clstd) (5.1)
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Computing the power match probabilities pprobid,e is less straightforward since there are typically

multiple rising and falling edges in the power edge sets PSd and PSe. To simplify this problem, we

choose the assignment x ∈ PSd, y ∈ PSe that maximizes pprobid,e as follows:

pprobid,e = max
x,y

(vprobix,y ∗ pi(x, dv) ∗ pi(y, ev)) (5.2)

In equation 2, the power value match probability vprobix,y denotes the probability that the

two power edges x, y are from the same light fixture, while the joint light-power probabilities

pi(x, dv), p
i(y, ev) denote the probability that a light fixture with light edge value dv or ev has a

power consumption of x or y, respectively. To compute the power value match probability vprobix,y,

we leverage the observation that two-state light fixtures produce ON and OFF power edges with

similar values. We cluster all the power edge values in edge sets from RLP i and FLP i using the QT

(Quality Threshold) clustering algorithm with a relative distance error threshold of 0.25 to obtain the

set of power edge clusters CP i; from CP i , vprobix,y is computed similar to lprobid,e in equation 1.

In equation 2, the light-power probability pi(x, dv) denotes the joint probability of observing power

edge value x together with light edge value dv from light sensor i. We use the lpbayes Bayesian

Clustering approach described below to compute the joint light-power probability values.

Bayesian Clustering

Our Bayesian Clustering approach computes the joint probability pi(pk, lk) of observing any power

edge value pk and any light edge value lk together in the same light-power edge from light sensor

i ∈ S. The joint probability must effectively capture the typical light and power signatures that

occur together in a room. For example, consider an example ON-OFF match from a 100W light

bulb, containing a rising edge of d = (40L,[40W, 103W, 500W]) and a corresponding falling edge of

e = (41L,[40W, 95W, 1000W]) sensed by light sensor i. We expect lprobid,e to be high for this match,

since the two light edges are very likely to be from the same 40L light cluster. Among the multiple

power edge assignments possible, the highly likely assignments based on vprobi from equation 2

are (40W, 40W ) and (103W, 95W ). If we use only vprobi, we incorrectly assign the (40W, 40W )

power edges to the ON-OFF event, since they are more likely to be from the same cluster than the

(103W, 95W ) edges which are more noisy. However, by leveraging the joint probability of occurance



66

of the light and power meter data streams using lpbayes, we still make the correct 100W assignment

to the ON-OFF match because the 103W event has a much higher likelihood than a 40W event of

co-occuring with the 40L light event, i.e. pi(103W, 41L) >> pi(40W, 41L) .

Our Bayesian Clustering approach uses the lpbayes Bayesnet shown in figure 5.4 to compute

the joint probabilities pi(pk, lk); in the Bayesnet, clk and cpk are hidden random variables that

denote the cluster to which the light edge value lk and power edge value pk belong to, respectively.

The Bayesnet effectively captures the probabilistic relationship between individual light or power

values and their cluster assignments, and more importantly, the conditional relationship between

the light and power clusters, indicating how likely an element from power cluster cpk occurs given

that an element from light cluster clk has occured. From the basic properties of Bayesnets, the joint

light-power probabilities pi(pk, lk) are computed as follows:

pi(pk, lk) =
∑
clk

∑
cpk

p(lk|clk) ∗ p(pk|cpk) ∗ p(cpk|clk) (5.3)

The conditional probabilities p(lk|clk) and p(pk|cpk) are computed using the Gaussian distribu-

tions computed for the light and power edge clusters during the QT clustering process described

in the previous section, i.e. (p(lk|clk) = N (lk, cl
k
mean, cl

k
std) and (p(pk|cpk) = N (pk, cp

k
mean, cp

k
std) .

The conditional probability P (cpk = a|clk = b) is computed by frequency counting the number of

individual light edges z assigned by QT clustering to light cluster b that have at least one edge in

PSz assigned to power cluster a. In other words, if we denote the set of light-power edges assigned

to light cluster b as CAb, and the set of light-power edges in which at least one element in the power

edge set is assigned to power cluster a as CAa, then:

p(cpk = a|clk = b) = |CAa ∩ CAb|/|CAb| (5.4)

The power assignments x, y that maximize equation 2 are fixed as the optimal power assignments

for the current match (d, e) under consideration. From equations 1, 2, 3, and 4, we calculate the

match probabilities pmatchid,e. After computing the match probabilities, the edges from RLP i and

FLP i are matched using the min-cost bipartite matching algorithm (Hungarian algorithm [68]). We

limit the maximum match weight wmax to 70 in our deployments to eliminate highly noisy matches

which are unlikely to be true light fixture events. For each match m ∈M i, the start and end times
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ms and mf are set to the timestamps of the rising and falling edge, respectively. The light intensity

value ml and the power value mp are set to the mean of the light and optimal power edges in the

rising and falling edge of match m, respectively.

5.2.3 Tier III: Fixture Identification

The goal of Tier III is to identify the individual light fixtures in each room, their nominal wattage

values, usage times and total energy costs. Using the ON-OFF matches M i from Tier II as input,

Tier III outputs a set of light fixtures LF i for each light sensor i; for each light fixture lf ∈ LF i we

output: (a) the sequence of ON-OFF event times given by lfm ⊆M i, (b) the nominal wattage value

lfw, and (c) the total energy consumption lfe.

To compute LF i, we cluster the ON-OFF matches M i based on the match light intensity ml

using QT clustering with a relative distance error threshold of 0.25. For each light fixture cluster

lf ∈ LF i output by QT clustering, we compute (i) the usage times based on the start and end times

of the matches lfm ⊆ M i assigned to cluster lf , (ii) the total energy consumption based on the

ON-OFF event timings and power consumptions as lfe =
∑

m∈lf mp ∗ (mf −ms), and (iii) the

nominal wattage value of the light fixture as the median of the power assignments mp made to

matches m ∈ lf . We perform a simple threshold based filtering to eliminate any degenerate light

fixtures df ∈ LF i, if the number of events assigned to the light fixture df is less than 2, or if the total

energy contribution of the light fixture to the room containing the light sensor i is less than ε %, i.e.

if dfe < (ε/100) ∗ (
∑

y∈LF i ye).We set ε to 10% in our implementation across all deployments. The

resulting set of light fixtures after eliminating degenerate light fixtures is output as the final set of

light fixtures LF i in the room containing light sensor i.

5.3 Experimental setup

In this section, we discuss details of our underlying sensing and ground truth hardware, and their

deployment in homes, to evaluate LightSense.
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(a) TED Power Meter

 

(b) Light Sensing Mote

 

(c) ZWave Switch

 

(d) ZWave Smart Plug

Figure 5.5: Sensors used in LightSense and its evaluation. Our system uses (a) a smart power meter
on the electrical mains, and (b) light sensors in each room. For experimental ground truth, we also
deployed (c) Z-wave light switches for in-line fixtures, and (d) Z-wave plug load metering for plug-in
fixtures.

5.3.1 Real World Deployments

To evaluate the LightSense system, we deploy it in four multi-resident homes for 10 days each. We

use the TED power meter [75] along with the cheap Hamamatsu photo diodes [76] interfaced with

the telosb mote [77], as shown in figure 5.5a and figure 5.5b. The power meter samples at 1Hz to

match the capabilities of prevalent smart utility meters, while the light sensors sample only at 2Hz to

have a minimal impact on the lifetime of the sensing node.

A key challenge in evaluating electrical load sensing systems, as observed in the literature

[30, 19], is accurately determining ground truth usage times. To measure ground truth, we replace

the existing switches in each home with wireless ZWave smart switches [70], and connect each lamp

to a wireless ZWave smart plug [70] that measures the power consumption of the appliance plugged

into it. Figure 5.6 shows details of the four homes in which LightSense and the ground truth sensing

system were deployed. We see that each home has a high proportion of rooms with windows, which

introduces higher noise levels due to natural light changes for our LightSense approach to handle.

During our deployments, we also encountered multiple light fixture types such as incandescent

bulbs, CFLs, and halogen lights, and both dimmable and non-dimmable switches with different light

intensities and wattages as seen in figure 5.8.

5.3.2 Energy Usage Ground Truth

Before we can evaluate the energy feedback accuracy of LightSense, we first need to map the set

of ground truth light fixtures GF monitored using the ZWave devices, to the set of light fixtures

LF inferred by LightSense. To perform this mapping, we first compute a match recall metric mrg,l
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House # # of 
residents 

# of 
rooms 

# of 
light 
fixtures 

House Type # of 
rooms 
with 
windows 

1 3 8 12 3 floor House 8 

2 3 6 6 3 bedroom 
student 
apartment 

6 

3 2 8 9 1 bedroom 
condo 

6 

4 4 9 14 3 floor house 7 

 

Figure 5.6: Details of the four homes chosen for deploying LightSense

between each fixture g ∈ GF and each fixture l ∈ LF , that denotes the proportion of ON-OFF

events from g that are detected by at least one ON-OFF event from l. An event x from fixture g is said

to be detected by an event y from fixture l if both the ON and OFF times of events x and y are within

dTm = 10 seconds of each other. We map each ground truth fixture g to an unmapped LightSense

fixture map(g) ∈ LF with the maximum match recall metric, if the maximum match recall metric

mrg,max(g) > .5, i.e. at least 50% of the ON-OFF events from fixture g are detected from fixture l.

At the end of this matching process, some light fixtures in GF and LF may be unmapped, resulting

in false negatives and false positives, respectively.

To provide an easily understandable economic interpretation of light fixture energy consumption,

we transform the raw energy in KWh for each light fixture to a projected energy cost over 5 years,

assuming a cost of $0.15 per KWh, and extrapolating our 10 day sample period to a 5 year period.

We use the ZWave ON and OFF times to compute the energy cost of each ground truth light fixture.

We set the threshold parameters dL(in raw ADC units), and dP (in watts), to both be 10 in order to

identify even low intensity light fixtures; we perform a sensitivity analysis on these parameters in

section 5.5.3.

5.4 Assessing Energy Usage

Given the above experimental setup, we assess the accuracy with which LightSense infers the energy

usage of individual light fixtures. Figure 5.7 shows the projected energy cost of each light fixture for
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Figure 5.7: Energy Costs at $0.15 per KWh projected over 5 years, for individual light fixtures across
all four homes, as computed by LightSense and the ground truth system. LightSense accurately
reports the energy costs of the top energy consumers in each home.

the ground truth approach and LightSense, across all four houses over the 10 day deployment period.

For each light fixture in figure 5.7, figure 5.8 shows the corresponding room locations, wattages, and

light intensity changes observed at our light sensors.

We see from figure 5.7 that our LightSense approach accurately computes the energy costs of the

top energy consumers in each home; we observe an average accuracy of 91.1% in determining the

energy cost of light fixtures consuming 90% of the home’s lighting energy. All of the false negatives

and positives have very low energy consumption and do not significantly interfere with decision

making about which light fixtures to optimize. Interestingly, House 1, which is a large 3 floor house,

uses less lighting energy than House 2, which is a 3 bedroom student apartment; the reason is that

House 1 has large wall-sized windows, which negate the need for lighting during most of the day.

Our feedback can also be used to apportion the lighting bill based on energy usage; for example,

the resident in Bedroom1 of House 2 might be motivated to reduce her high lighting energy given a

personal cost incentive to do so.

For each light fixture, LightSense uses Tier III to provide users with the (1) nominal wattage,

(2) room location based on the light sensor room location, and (3) the total energy cost. LightSense

reports the nominal wattage of each light fixture shown in figure 5.8 within ±5W accuracy for

all the top 90% energy consuming light fixtures in each home. Using these three inputs, residents
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Light 

#

Room Wattage Light 

change

1 MasterBed 135 23

2 Livingroom 35 193

3
Livingroom 40 29

4
Kitchen 90 20

5 MasterBath 20 36

6 MidBathroom 10 62

7
BottomBath 40 41

8
MasterBath 42 0

9
BottomBath 40 27

10 Kitchen 5 -

11
TopRoom 80 923

12
Kitchen 98 -

Light 

#

Room Wattage Light 

change

1 Livingroom 185 366

2 Bedroom1 90 55

3
Kitchen 120 71

4
Bedroom2 35 50

5 Bedroom3 50 414

6 Bathroom 50 260

Light 

#

Room Wattage Light 

change

1 Livingroom 95 155

2 Livingroom 115 59

3
Bathroom2 220 1187

4
Bedroom 95 70

5 Kitchen 110 181

6 Officeroom 90 55

7
Bathroom1 305 1157

8
Diningroom 200 182

9
Livingroom 55 239

10* Diningroom 100 19

Light 

#

Room Wattage Light 

change

1 Frontroom 55 311

2 Basement 325 353

3
Kitchen 250 60

4
Bathroom 395 1028

5 Kitchen 280 125

6 Livingroom 80 50

7
Dining Room 200 110

8
Bedroom 95 69

9
Bathroom1 95 649

10 Nursery 55 129

11
Bedroom 60 32

12
Kitchen 70 -

13
Kitchen 30 -

14
Kitchen 110 -

House 1 House 2 House 3 House 4

Figure 5.8: Nominal Wattages and Room Locations for the light fixtures in the four houses along
with the light intensity increase or decrease observed at our light sensor as the fixtures are switched
ON or OFF, respectively. The light fixture numbers here match the light fixture numbers in figure 5.7.
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House 4 Optimal
House 4 LightSense

Figure 5.9: Projected cost savings based on LightSense recommendations and an optimal system
with ground truth data.

can optimize high energy light fixtures by replacing incandescent bulbs with CFLs or LED bulbs,

by replacing traditional lights with motion activated lights, by implementing a daylight harvesting

system, or just by using the lights in a more conservative fashion. Each of these techniques requires a

different input cost and reduces energy by a different amount, so the energy feedback from LightSense

is valuable to the end user in order to maximize net cost savings.
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Given a limit n on the number of light fixtures that users can optimize, we compute the maximum

projected energy cost savings achievable over 5 years (the typical lifetime of a CFL), assuming we

optimize the top n light fixtures based on the energy cost ordering computed by LightSense; we

assume 75% energy reduction for each light fixture after optimization, which is similar to the energy

savings obtained on switching from incandescent lights to CFLs. Figure 5.9 shows the maximum

projected cost savings of LightSense for each house as n is increased along the x-axis. We also

show the cost savings for an optimal system that uses the ground truth energy costs. We see that

LightSense closely tracks the optimal recommendation system for optimizing light fixtures across

all houses. Also, in each house, the cost savings are quite different and become very small after 6-7

fixture are replaced; this suggests that users should carefully weigh the cost vs. benefit of optimizing

light fixtures, before deciding on a suitable n for each house.

We see the value of LightSense by combining the results from figures 5.7, 5.8 and 5.9 ; many of

the low energy, low return on investment light fixtures in each house are in similar rooms as the top

energy consumers, and in some cases even have a higher or similar nominal wattage compared to the

top energy consumers. Thus, optimizing light fixtures based on their actual energy usage is more

profitable compared to using only their nominal wattages or room locations.

5.5 Analysis

In this section, we analyze the accuracy of LightSense in identifying individual light fixture ON and

OFF events, and provide detailed insights on the high accuracy achieved by LightSense in inferring

the energy cost of individual light fixtures in the home. Firstly, we show that both the data fusion

and Bayesian matching steps contribute equally to aggresively filter out false positives. Secondly,

we show that our Bayesian Clustering approach is needed to accurately assign power measurements

to ON-OFF events. Finally, we perform a sensitivity analysis of LightSense to the power and light

thresholds dP and dL.

5.5.1 Impact of Data Fusion and Matching

To understand the impact of Data Fusion and Bayesian Matching on improving LightSense accuracy,

we implement five distinct inference approaches with increasing sophistication, namely: Light Edge
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(a) Edge Detection Recall
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(b) Edge Detection Precision

Figure 5.10: Edge Detection Recall and Precision for LightSense and its individual inference
components. LightSense outperforms the individual components by effectively fusing the noise
filtering properties of data fusion and ON-OFF event matching.

Detection (LE), Power Edge Detection (PE), Light Edge Matching (LM), Power Edge Matching

(PM), and finally Light Power Data Fusion (LP), that eliminates temporally isolated light or power
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edges from by applying our temporal intersection step. We also consider the LightSense approach,

which effectively uses all the inference algorithms and sensor sources used in the five approaches

above. To measure the accuracy of each inference approach above, we use the common evaluation

metrics of edge detection recall and precision for light fixture ON and OFF edges. These two

evaluation metrics represent the accuracy of LightSense in identifying individual light fixture events,

and are different from the energy accuracy presented in section 5.4.

Figure 5.10 shows the recall and precision metrics for all approaches; we fix the light and power

thresholds dL = dP = 10, to be low enough to detect the low intensity fixtures seen in figure

5.8. We see that approaches LM and LP improve precision significantly compared to the simpler

approaches LE and PE in each house, by eliminating unmatched or temporally isolated false positive

edges. Interestingly, approach PM only has a marginal improvement over approach PE due to the

large number of false positive power edges. Finally, we see that in each house, LightSense improves

upon both LM and LP, by combining both noise elimination techniques to aggressively filter out

false positives from the light and power meter data streams. We also observe that in most houses,

both data fusion and bayesian matching contribute equally to eliminate false positive light and power

events that do not originate from light fixtures.

5.5.2 Impact of Bayesian Clustering

To understand the impact of using Bayesian Clustering in accurately assigning power costs to ON-

OFF events, we consider two different power assignment approaches: (1) Power Only assignment

uses only the power meter data to assign power edges to ON-OFF events, i.e. by only using vprobix,y

in equation 2, (2) Bayesian Clustering assignment also uses the joint probability of observing the

light and power meter data as shown in equation 2 using our lpbayes Bayesnet. For each approach,

we consider the total energy cost error, normalized as a percentage by the total energy cost of all

fixtures in the home. In figure 5.11, we observe that leveraging the long term temporal correlation

between the light and power meter data reduces the total normalized energy cost error from 40-50%

to less than 10% in multiple homes. We see almost no impact of our Bayesian Clustering approach in

House 2, because this small apartment has a little noise on the power lines due to the lack of HVAC,

television, or other complex appliances.
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Figure 5.11: Relative Total Cost Error for power only assignment and lpbayes power assignment.

5.5.3 Parameter Sensitivity Analysis
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Figure 5.12: Recall Precision tradeoff for LightSense and its individual inference components as the
light and power level thresholds are decreased from 500 to 10 in steps 50.

The main variable parameters in our approach that affect classification accuracy are the light and

power edge thresholds dL(in ADC units) and dP (in Watts). Figure 5.12 shows the recall-precision

graph for all the five additional inference approaches from section 5.5.1 and LightSense as dL and

dP are simultaneously decreased from 500 to 10 in steps of 50 each; we set the the minimum values
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of the threshold parameters to be 10 instead of 0, and make the last step size 40. We plot the edge

detection recall and precision for each parameter setting averaged across the four homes.

As the threshold parameters are decreased, we observe that (1) edge recall for all approaches

increases as low intensity events greater than the decreasing threshold are detected, and (2) precision

decreases as more false positives are introduced from low intensity edges. While approaches LM

and LP achieve only about a 5-10% worse F1 score compared to LightSense at a threshold setting of

50, they achieve much lower precision when detecting low intensity events at less than 50 ADC light

units or less than 50 W. However, identifying low intensity events is important, since we see from

figure 5.8 that several light fixtures in the top 5 or 6 consumers in each home have either a wattage

less than or close to 50W, or a light intensity less than 50 ADC units. Thus, our LightSense approach

combines both noise elimination techniques, matching and data fusion, to accurately identify even

important low intensity light fixture events.

5.6 Limitations

Although our LightSense approach achieves high accuracy in inferring the usage and energy con-

sumption of individual light fixtures, there are several limitations in the approach and evaluation.

LightSense currently does not provide feedback to the end user about the location of light fixtures

detected in rooms. Therefore, if a room has multiple 100W light fixtures, extensions to the LightSense

approach are needed to provide users with the locations of the light fixtures relative to the light

sensor, based on their average light intensity at the sensor. Also, in larger rooms, or rooms with

multiple virtual partitions, multiple light sensors are needed in the same room to ensure that all light

fixtures are detected by at least one light sensor. In such a case, a methodology is needed to compute

the locations of the unique light fixtures detected by each light sensor, and provide this input to

the end user effectively. For dimmable lights, LightSense only reports the wattage at the typical

dim level, and not the nomimal wattage of the light bulb in the fixture; this makes the problem of

locating reported light fixtures in the room more challenging. One solution to address the challenge

of locating sensors is to provide an interactive interface to the user, that allows her to turn on and

off a particular light under consideration, and enhance the LightSense approach to map the current
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light under consideration to a light fixture whose usage energy consumption profile has already been

created by LightSense using long term sensor data.

Another key limitation is that LightSense cannot differentiate fixtures that have the same wattage

and the same light intensity at the light sensor; although such a case is rare, it is possible if a light

sensor is placed equidistant to two light fixtures of the same model and wattage. Also, LightSense

cannot accurately recognize the usage of dimmable switches, if they are set to a different dim level

each time they are used; this is because a consistent light and power signature that enables LightSense

to identify the source light fixture is no longer generated for such dynamic dimmable light fixtures.

LightSense is also unlikely to achieve high accuracy with light fixtures that have a wattage of less

than 10W due to its dependence on the power meter, which has very high noise in this low wattage

range. Finally, LightSense is not currently set up to address multi-state light fixtures, and can only

effectively infer the usage of two state light fixtures, which are the most common case; during our

four home deployments, we did not encounter any multi-state non-dimmable light switches.

Improvements are also possible to our experimental setup used to evaluate LightSense in our

four sample homes. The main limitation of our current evaluation is intermittent data loss from both

the light sensors and the whole house power meter during the deployment period. Data loss from

the light sensors is due to unreliable wireless communication, especially in larger homes; to address

this challenge, more reliable packet delivery protocols need to be used. Data loss from the whole

house power meter is due to lossy powerline communication used by commercial power meters [75],

affected by noise on the power line and the use of electronics in the home. To address this challenge,

it is necessary to use more reliable power meters that use wireline or reliable wireless communication

to communicate instantaneous power usage data to the smart home system.

5.7 Conclusions

In this chapter, we presented the LightSense system to infer the fine-grained energy usage of

light fixtures in homes, without requiring direct sensors on individual light fixtures in the home.

Through 10-day deployments in four natural home environments, we show that LightSense effectively

combines two noisy sensor sources, namely light sensors with 25% precision and whole house power

consumption data with 15% precision, to infer the energy costs of individual light fixtures with
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91.1% accuracy. Our LightSense and WaterSense approaches address the challenging problem of

recognizing the use of individual water fixtures and electrical fixtures that are ambiguous in their

smart meter profiles. Both approaches use a simple, cheap sensor in each room, and do not require

any configuration or training effort from the end user.

Our LightSense inference algorithm requires an edge detection tier to detect unique events from

the power meter and light sensor data, similar to the WaterSense algorithm. However, unlike the

AUTOLABEL and WaterSense algorithms, room clustering of light sensors with motion sensors is

not a primary concern, since we assume that the motion sensors and light sensors are present in the

same wireless sensor device. Rather, a key challenge is to eliminate false positives in both the light

sensor data and power meter data; this challenge is absent in both the AUTOLABEL and WaterSense

approaches because of the inherent nature of the binary sensor and water flow data. To address this

new challenge, we developed effective data fusion techniques in Tier II of the LightSense algorithm

to combine the noisy light sensor and power meter data streams to eliminate noisy events.

Our data fusion and Bayesian clustering techniques from LightSense, can be used to combine any

pair of sensor streams whose noise is not temporally correlated, in order to detect distinct physical

phenomena that affect both sensor streams in a consistent manner. Similar to WaterSense, we use

a Bayesian matching approach to match positive events with negative events in the sensor data,

corresponding fixture ON and fixture OFF events; however, unlike WaterSense, we find that the

Bayesian matching in LightSense turns out to be an effective tool to eliminate a number of false

positives from both the light sensor and power meter data streams.

By combining the WaterSense and LightSense approaches with our AUTOLABEL inference

approach, we expect that future activity recognition systems will be able to effectively reduce both

sensor installation effort, and any configuration or training effort, in using home activity recognition

systems; in other words, our vision is that users should be able to purchase a handful of sensors,

deploy them in the home with minimal effort, and start using the turn-key activity recognition system

for medical and sustainability applications.
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Chapter 6

Non-Invasive Resident Identification

In earlier chapters, we presented sensing and inference solutions to reduce user effort in configuring

and installing accurate activity recognition systems in the home. However, these activity recognition

solutions are only able to infer which activities are being performed, and not who performed them.

These single person activity recognition solutions are useful in many scenarios. For example, in single

person homes with an independent elderly resident, such solutions could be used by commercial

peace of mind monitoring companies such as QuietCare and Wellaware [7, 8], to provide relatives

of the elderly and caregivers with the elderly resident’s daily activity record. Such solutions may

also be useful in whole house intelligent heating or cooling solutions such as the smart thermostat

approach [5], which uses only the aggregate activities of all residents in homes.

However, in order to respond to activities in the home, many applications require that the activity

recognition system must be able to identify who is in a particular location or performing a particular

action such as cooking or exercising; thus, the ability to identify residents is crucial for many activity

recognition applications in multi-person homes. For example, in sustainability applications, it is

important to know who is using more energy or water so that utility bills may be apportioned correctly,

or who is in a particular room so that the temperature or light levels can be adjusted to improve

comfort for the residents in the home. As another example, in medical applications, caregivers are

interested in who is unable to sleep well, or is visiting the toilet an abnormally large number of times.

Existing innovative implementations that perform resident identification in homes have several

advantages, but also have drawbacks. Some approaches are inconvenient because they require the

user to wear a tag [31, 32], or to manually trigger a biometric sensor such as a thumbprint or retina
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scanner [78]. Some systems require cameras for gait, form, or face recognition [35], but cameras

are often perceived as invasive because they can be used to collect much more information than

just the user’s identity [36]. Other implementations require structural changes to the home, such as

instrumenting the floor [79, 80] with force plates, which can incur high cost and effort. Many practical

smart home applications such as in-home medical care for the elderly [81, 8] and occupant-based

energy monitoring [15] cannot use solutions that inconvenience the user, are intrusive, or require an

expensive building retrofit.

Our recent discussions with the WellAware elderly monitoring company [7] reveal several

interesting user requirements for accurate, long term elderly resident identification and tracking in

homes: (1) residents will not wear tags or manually identify themselves at every room for long periods

of time, (2) residents will not allow perceived invasive devices such as cameras or microphones

in the home, and (3) residents want the sensors to be fairly invisible, similar to existing motion

sensor installations, and do not want an expensive building retrofit. Since existing implementations

have some drawbacks with respect to the above requirements, commercial deployments by the

elderly monitoring enterprise [7] today are limited to single-resident homes or do not fully monitor

information about multiple residents.

In this chapter, we examine the use of biometric height sensors to satisfy the above requirements

for both the elderly monitoring enterprise [7], and a wide variety of other activity recognition

applications. Height sensors have several advantages over existing approaches: they are cheap,

convenient and minimally invasive for the residents, and not very time consuming to install in an

existing home. We use ultrasonic distance sensors mounted above the doorways to measure the

height of individuals that walk through the doorway. The inherent accuracy of height sensing is

too low for reliable biometric identification from a large population of individuals: in controlled

experiments in the lab, height sensors requires a 7cm difference in height to differentiate people with

99% accuracy, and most people have heights within a small range from 160-180 cm. However, we

make two key insights that allow height to be an effective biometric sensor in the home. First, most

homes have very few residents: height may be a weak biometric for differentiating between 20 or

more people, but is likely to be very effective in homes that have only 2-4 residents. Second, people

move through a home in predictable ways, as determined by the floor layout: if height sensors are
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placed above every doorway, then the history of height measurements can be used to potentially

surpass the inherent accuracy of the sensor.

In this study, we evaluate the use of height as a biometric in four ways: (1) We quantify the

biometric error of our approach using 20 subjects in a controlled laboratory environment, in which we

vary the direction, speed, and location of the person walking under the doorway. (2) We perform a first

pass evaluation of using height events to differentiate residents at doorways as they enter and leave

rooms in 3 homes for 5 days each (3) We use public anthropometric data containing the heights of

elderly residents in 2077 multi-resident homes from the 2006 health and retirement study to estimate

that our approach can potentially achieve at least 95% identification accuracy in 85% of elderly

US homes sampled in this study, based on extrapolating the accuracy results from our controlled

experiments in the lab. (4) Through a simulation study, we show that incorporating the history of

height measurements at multiple doorways using a tracking approach can potentially increase the

proportion of homes where our solution is applicable with 95% accuracy from 85% to 95%, and

also reduce the height difference required for 99% identification accuracy from 7cm to 3.25cm.

We quantitatively compare our approach against two other state of the art non-invasive resident

identification implementations, namely anonymous binary sensor and activity model based multi-

resident tracking [50], and weight sensing [80], and find that our approach achieves improvements in

identification accuracy or installation effort and cost compared to existing implementations of these

approaches.

In this chapter, we present the first ever analysis of biometric height sensing for home activity

recognition applications. A key limitation of our study is that we do not characterize the proportion

of false positive and false negative height sensor events in real home environments, and also do not

develop a holistic approach to track residents’ locations in homes based on the height sensor data

streams. As mentioned in chapter 1, based on our key insights on height sensors, there has been

significant follow up research on designing and evaluating complete tracking solutions for in-situ

home environments using height sensors. In contrast to that work, we lay the groundwork in this

study that shows the potential of using weak biometric sensors in residential monitoring scenarios;

we do not address the challenge of continuous tracking of residents in in-situ scenarios. The main

challenge as observed in the follow up research is to address false positives and negatives caused in

the height sensor data due to complex home environments and multiple height sensors being placed
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Figure 6.1: Sensor and sample data used in our resident identification study. Our study used the Go
Motion ultrasonic range finder mounted above doorways (a). As users walked beneath the sensor, the
range measurements changed (b).

very close to each other. In addition to removing false positives and negatives, it is also necessary to

determine the direction of residents as they walk through the doorway in order to accurately track

residents in the home. Finally, another limitation of our ultrasonic height sensing approach is that it

causes annoyance to pets in the home, and thus cannot be used in homes with pets.

The rest of this chapter is organized as follows. Section 6.1 discusses existing resident identifi-

cation solutions from the literature in more detail. Section 6.2 gives an overview of our approach

and describes our algorithm to sense height from ultrasonic distance measurements. Sections 6.3

and 6.4 describe the results of our controlled lab experiments and preliminary in-home experiments

respectively. Section 6.5 analyzes how our empirical results potentially extrapolate to a national level

using public anthropometric data. Section 6.6 presents the simulation study to evaluate the potential

improvement in the inherent identification accuracy of the height sensor by tracking the history of

height measurements at multiple locations in a home.

6.1 State of the art

Resident identification in smart homes is a long-standing problem with many existing solutions. In

this section, we discuss a representative sample of these solutions, including their advantages and

disadvantages, and their applicability with respect to our user requirements.

Tag-and-track approaches operate by placing a uniquely identifiable device on each individual

resident. This approach has been widely used since the Active Badge system almost two decades ago

[33], and in other systems since. The pedestrian localization system proposed by Woodman et al
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[31] uses a foot mounted inertial sensor to track pedestrians to within .7 meters 95% of the time in a

large office building with no additional infrastructure. More recently, innovative tracking solutions

that require a very low infrastructure cost [82, 83] are emerging. Tag and track approaches have

three important advantages: (a) High location granularity with little or no infrastructure, (b) Selective

preservation of location privacy by switching off device, and (c) Highly scalable with respect to

the number of residents in an indoor space: each user can be given a new device with a uniquely

identifying number. However, one drawback of this approach is that it requires the user to actively

carry the device at all times when location information is desired. It can be an inconvenience to

in-home residents for long-term deployments. In our past experience with deployments, and while

trying to use MoteTrack [32] wireless tags to collect ground truth in this study, users frequently

forget to carry their tag, especially immediately after waking up or showering. Automatically

reminding residents to carry the device is an option, but we believe such an approach is intrusive and

inconveniences the user for long-term applications such as elderly medical monitoring.

Several indoor resident identification systems use cameras for computer-vision based face, shape,

and gait recognition [35], or microphones and audio signal processing. These approaches might

require expensive on-board computation or high communication bandwidth to a central base station

that executes the vision algorithms, but are passive and highly accurate. However, user studies by

researchers from Intel and companies like WellAware have found that a large fraction of potential

users have perceived privacy concerns about cameras or microphone sensors [36]. Therefore, this

class of approaches is most appropriate for short-term situations in which rapid deployment, and/or

high accuracy are important, and where long-term privacy concerns of monitoring residents in their

own homes are not an issue.

Wilson et al, in 2005, propose using only resident usage models of anonymous motion sensors

in rooms and switch sensors on daily-use objects, and resident activity models to identify and

track their activities and locations [50]. They propose using a particle filter that uses Markov state

transition and sensor use models learned from short term training data, obtained using a tag and track

approach or manual labeling. The main advantage of this approach is that the simple single-pixel

sensors are cheap and easy to install, and are not perceived to be invasive or inconvenient. However,

an important drawback of this approach is low accuracy: this system was reported to have 70%

accuracy when tracking 3 residents over a week-long period, and in our own deployments in 3
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multi-resident homes, we observed this approach to have accuracies of 65-75%. These accuracy rates

may be reasonable for some applications, but confusing the identities of residents more than a third

of the time could cause problems for some smart home applications such as medical monitoring. To

increase identification accuracy, additional biometric sensor data, as discussed in this chapter, can be

included in the STAR particle filter.

Several systems including the Active Floor and the Smart Floor instrument the floor to locate

and identify individuals [80, 79]. Jenkins et al, in 2007, studied the effectiveness of using resident

mass, derived using force plate signals, to identify multiple individuals in a large population [80].

Gait analysis can also be used to differentiate individuals from instrumented floors. This type of

single-pixel mass-based identification approach has the advantage that it can be performed without

inconveniencing the user or violating resident privacy. Existing force plates and smart floors require

careful installation to improve aesthetic appeal and achieve user acceptance; accurate force plates are

also very expensive. However, more compact, cheap designs of weight sensors that have the same

form factor as a floor mat can be explored for easier installation and better aesthetic appeal in the

home.

Height is a weak biometric that is often used on driver’s licenses or police reports, and it can

not be used to definitively identify individuals from a large population . Some existing systems

use invasive video cameras to identify height [84]. Nishida et al [85] propose instrumenting the

entire ceiling with a dense set of ultrasonic devices to perform fine-grained location tracking with an

ultrasonic radar system. However, this system is not evaluated for its ability to differentiate or identify

individuals, and this approach would involve substantial deployment effort. In 2006, Jenkins et al

[86] proposes placing infrared or ultrasonic distance detectors on top of doorways for identification

based on height (in a poster), using an approach similar to that described in this chapter. However,

height sensors are not experimentally evaluated for accuracy, multiple readings are not combined

as the user walks through the home to improve accuracy, and the poster does not analyze the wider

ramifications of height sensing on in-home resident identification. To the best of our knowledge,

our study is the first to analyze how height sensing can potentially be used to effectively address the

multi-resident room location and identification problem in homes with high accuracy.



85

6.2 Overview: Sensing Height with Ultrasonic Sensors

To identify residents as they move throughout a home, we deploy an ultrasonic distance sensor above

every exit and entry into a room. We used an off-the-shelf ultrasonic distance sensor [87] shown in

figure 6.1a. This distance sensor sends out ultrasonic pulses at 50KHz in a diverging cone 15 to 20◦

off the axis of the beam. The device then measures the time taken for the echo to return, and uses it

to calculate the distance to any obstacle in front of it. Only the minimal distance of any obstacle is

reported. For example, when a resident stands under the device, only the distance to the top of the

head is reported, while distances to the shoulder, ear etc are automatically filtered out.

Figure 6.1b shows the example data from the distance sensor as a subject walks repeatedly under

the ultrasonic sensor mounted on top of a typical doorway eight times. The default distance reported

is 2.1m, which is the distance when there is no obstacle in front of the ultrasonic sensor. When a

subject walks under the sensor, we see minimal peaks that correspond to the ultrasonic beam making

contact with the subject’s head; the difference between this minimal distance and the default distance

of 2.1m returns the apparent height of the person as she walks under the doorway. In our controlled

experiments, described in the next section, we observe that this apparent height measured while

walking, is on average less than the erect height measured while standing, by about 1-3cm.

Our algorithm to extract height events and height values is as follows. We first compute times-

tamps when the reported distance is below the default distance with no obstacles. We then cluster

these timestamps using the DB-SCAN clustering algorithm [61] to compute discrete height events,

that correspond to residents passing by or standing under the sensor. This clustering process elim-

inates most noise due to a single, spurious reading. Then, for each cluster of low readings, we

find the minimum distance reported (i.e. the maximum height value measured). We subtract that

measurement from the default height measurement with no obstacles and use the result to be the

height measurement for that height event.

To identify residents based on measured height values, we use a Maximum Likelihood Estimate

(MLE) classifier to assign each height event to one of multiple candidate residents in a home. For

each height event, the MLE classifier simply computes the probability that each resident triggered it,

based on the height of that resident and the error distribution of the sensor, and assigns the height

event to the resident that maximizes the likelihood of the observed measurements. In the next section,
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we collect height data from 20 test subjects using controlled experiments in a lab to characterize the

error distribution of height measurements, under diverse scenarios of passing through a doorway.

6.3 Experiments in a Controlled Lab Environment

6.3.1 Experimental setup

We characterize the error distribution of height sensors in a controlled lab setting by placing the

ultrasonic sensor on top of a doorway about 90 cm wide and having 20 users with known heights

pass beneath the sensor in a controlled manner. We chose a doorway of this width because it matched

the width of many of the doorways seen in our real home deployments. We selected 20 subjects

of differing heights for our experiment. The distribution of heights among the 20 subjects can be

inferred from any of the scatter plots in figure 6.2. The subjects were randomly chosen from a pool

of graduate students from 20-30 years of age; 16 of our subjects were male and 4 were female.

For each subject, we first manually measured the height while standing using a tape measure. We

then measured the height reported by the ultrasonic sensor when the subject stands still exactly under

the sensor. The subject then walked under the sensor several times as we varied the configurations

of our doorway and requested changes in the direction and speed of walking. In particular, every

subject (1) Walked 20 times in a simulated narrow doorway measuring 75 cm in width, (2) Walked

21 times under the full doorway 90 cm in width (7 times perpendicular to the plane of the doorway,

and 7 times on two perpendicular planes at an angle of 45◦ to the plane of the doorway, for a total of

21 times). We repeated the above experiments with and without shoes for each resident.

6.3.2 Evaluation results

Figure 6.2a illustrates that, when residents are standing erect beneath the sensor, the average error

across all 20 subjects is only 0.2cm, and the maximum height error is 1.15 cm. Figures 6.2b and c

show scatter plot of mean height measurement error and standard deviation in error while walking.

Error here refers to the difference between the manually measured height and the height output by

our height based identification algorithm for each height event. The results shown in figure 6.2 use

the aggregated height data from all our walking experiments without shoes. We do not include results
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Figure 6.2: Experimental results for height based identification in the lab. Controlled laboratory
experiments indicate low measured error while standing. Mean error while walking is higher due to
a natural reduction in height compared to standing erect, and different walking styles. Standard error
while walking is very low. The error distribution approximates a log normal distribution.

with shoes here, but observe that the mean measured height simply increased by the height of the

shoe on average, and changes to the standard deviation of errors were negligible with shoes on.

From figure 6.2b, walking height as measured by our sensors is lower than erect, standing height

by 3.31 cm on average across all subjects. This is possibly due to the natural decrease in apparent

height as a person walks. Also, different walking styles such as bending and keeping heads down

contribute to this decrease compared to erect standing height. More important is the deviation in

residual error, the standard error, for each subject across different height events, since this will be

crucial in determining identification accuracy among multiple residents in a home. We note that the

mean deviation in error is only 1.45 cm. This low deviation implies that 99% identification accuracy

can be obtained as long as the heights of two residents are 7cm apart. We explore this tradeoff more

fully in section 6.6, when we describe our history based tracking algorithm using height.

In figure 6.2d, we show an example distribution of residual error from one test subject. The

distribution shown here suggests a log normal distribution rather than a normal distribution for

residual error. Thus, we ran hypotheses tests at .03 significance level for all subjects to test two
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Empirical height data from 20 subjects
Extrapolation to the US elderly population

Figure 6.3: Identification Accuracy as the number of individuals to be differentiated is increased.
Height measurements become less effective for biometric identification as the pool of individuals
increases. The heights in our study were easier to differentiate than those of the general population.

different hypotheses (a) distribution of height values is normal (b) distribution of height values is

log-normal. The proportion of subjects for which the normal and log-normal hypotheses could not

be rejected are 75% and 85% respectively. The log-normal distribution, which skews naturally to the

right, appears to be a better fit for modeling measured height. This is because the apparent height of

a person very rarely increases (perhaps due to thick shoes) while walking, but more often decreases

in experiments due to the ultrasonic beam making contact with the person’s side (e.g.) shoulder or

ear) instead of the head.

Using the empirical height data collected in the lab, we compute how well height can differentiate

among a fixed set of N residents in an indoor space. In particular, we empirically calculate the accu-

racy with which height events are assigned to their ground truth test subjects. In figure 6.3, we show

how this empirical identification accuracy using height decreases as we increase the number of resi-

dents under consideration in the indoor space; we randomly choose residents from our pool of 20 sub-

jects, and evaluate how accurately individual height events generated by our subjects are labeled using

a log normal MLE classifier trained from the controlled experiment data. For eachN value, we repeat

the random sampling 100 times. Also shown in figure 6.3 is how this analysis extrapolates to a na-

tional level. We model the mean and standard deviation in residual height error as a function of height

using two types of curve fit models: simple linear curve fitting, and nearest neighbor interpolation.
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Thus, given the height of a resident, we can derive his/her mean and standard deviation, and use this in

turn to derive the mean and deviation of the corresponding log normal distribution of measured height.

Figure 6.4: Height sensors

deployed above doorways in

a home.

The 2006 health and retirement study [88] (HRS 2006) contains

height measures of 4154 elderly residents living in multi-resident

households. We randomly sample a fixed number N from this set of

residents to be identified in an indoor space. We then analytically

calculate the probability that any height event is assigned to the correct

resident among the N residents, assuming a MLE classifier that uses

the log normal distributions derived from our nearest neighbor and

linear fit models. In figure 6.3, we show how this probability of correct

event labeling degrades as we increase the number of residents in the

home, randomly sampling 100 different sets of elderly residents for each N value. We only show

the results with the nearest neighbor curve fit model, since only negligble differences were observed

when the linear fit model was used.

As we can see in figure 6.3, for indoor spaces strongly resembling 2 or 3-resident elderly

homes, height based identification has a mean accuracy of 87-92% using both empirical data and

extrapolation to the national level. In particular, we note that 99% of the elderly multi-resident

households with valid height measurements in the national study were 2-resident households. We

use this insight in the next section to demonstrate the high accuracy of height based identification in

3 real multi-resident home deployments. For households with 4 residents, the identification accuracy

drops to 77%; in section 6.6, we show that by using the history of height events at multiple doorways

in a home, we can improve the identification accuracy in even 4-resident homes to 90%.

6.4 Experiments in Home Environments

Our controlled experiments characterize the sensitivity of height measurements to various conditions,

but these experiments do not reveal the frequency with which these conditions occur in a home

environment. To evaluate the accuracy of height based identification in such an environment, we

deployed ultrasonic sensors in three homes for five days each. The ultrasonic sensors were deployed
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Figure 6.5: Sensors used in our height based identification study in homes. Motetrack tags and
beacons (left) were used to collect ground truth locations. Motion and magnetic reed switch sensors
(middle/right) were used to evaluate STAR.

on doorways of rooms similar to our controlled experiments, and can be seen in figure 6.4. In addition

to the ultrasonic sensors, we deployed the motetrack indoor localization system [32] in all homes to

get ground truth locations of residents. Motetrack is a tag and track approach to localization that

requires each resident to carry a mote. It uses trained RSSI signatures from beacon nodes, like the

one shown in figure 6.5a, to localize the mobile motes in the home.

The main goal of the natural home deployments is to evaluate the ability of height sensors

to identify residents at doorways in the home, and compare it to a state of the art non-invasive

multi-resident identification solution that only relies on simple activity models derived from labeled

binary sensor data [50]. In order to make this comparison, we also deployed anonymous X10 motion

sensors in every room, and X10 switch sensors on daily-use objects such as the fridge, microwave,

stove etc. Figures 6.5b and c show examples of the motion and switch sensors used in the homes. In

section 6.5, we also compare with another well studied non-invasive resident identification solution

[80] that uses resident mass to differentiate between residents in a home.

Table 6.1 shows some of the deployment details for the 3 homes, including number of rooms, and

ground truth height values of the couple living in each home. Given the large differences in height

values in the three homes, we expect our height based identification solution to perform with high

accuracy. We evaluate the accuracy with which biometric height sensors are able to identify residents

in a home. We compare the accuracy of our approach with a state of the art passive identification

technique based only on ’biometrics’ of simple activity models of residents, derived from labeled

binary sensor data, as evaluated by Wilson et al in their STAR approach [50].

First, we temporally cluster X10 motion sensor firings from the same room using db-scan [61],

to identify discrete room visits of residents in the home; we assume here that these temporal clusters

correspond reliably to ground truth room visits of residents. Ground truth resident labels for the
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temporal clusters are obtained from motetrack’s location trace. Our aim is to assign resident labels

to each of these clustered room visits, using either biometric height sensors, or using the location

trace for each resident computed in STAR using only activity models of residents. To assign resident

labels to room visits using only height sensors, we run the log normal MLE classifier on each height

event that occurred during the temporal cluster. When the MLE classifier assigns a height event to a

resident, that resident is added to the list of labels for that temporal cluster.

The STAR resident tracking system proposed by Wilson et al [50], uses individual Markov

state transition and sensor observation models of residents to track their activities and locations.

The essence of their tracking approach is that individual residents have different movement/activity

patterns in the home, and/or have unique sensor use patterns. Similiar to their original implementation

[50], we simply restrict our state space to include current room location of individual residents. The

state transition and sensor observation probabilities are learned using counting from our ground

truth training data obtained from the motetrack location trace; we performed leave-one-out cross

validation over the 5 days of room occupancy data obtained from each home, i.e. for each day, we

tracked residents using Markov models trained from all the other days’ data. We implemented a

multi-hypotheses tracking solution to track room visits of multiple residents in the home, similar to

the particle filter solution implemented by Wilson et al [50].

Home Number Height of Height of
of rooms resident A resident B

in m in m
1 7 1.88 1.77
2 4 1.68 1.55
3 5 1.75 1.63

Table 6.1: Details of the 3 homes used in deployments to evaluate height based resident identification

Figure 6.4 compares the identification accuracy of our height sensor approach and the existing

approach based on activity and binary sensor use models. We see that identification based on simple

activity models and binary sensor use models only achieves accuracy around 65-75% in 3 homes,

while height based identification achieves accuracies ranging from 98-100%. Clearly, the activity and

binary sensor use patterns of residents in these homes are not distinguishing enough to assign room

visits with high accuracy. We do not claim here that our approach is better than STAR; instead, we

simply compare with an existing instantiation of the STAR framework using only ’biometric’ room
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transition models and binary sensor use models. Certainly, as pointed out by Wilson et al [50], by

using more fine-grained sensing at a higher installation cost than our approach, it is possible to better

differentiate residents even using these simple models; one could even incorporate height sensor data

in the STAR particle filter.

We also observe that our height sensor based approach does not require any training phase, while

any approach that depends mainly on activity or binary sensor use models requires a long training

phase where ground truth locations of residents need to collected using wearable tags, to determine

the probability models used in tracking; such a training phase might also require the installation of a

separate infrastructure just for tracking, although recent advances in low cost tag and track solutions

[83, 31] may negate the need for such a tracking infrastructure.
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Figure 6.6: Accuracy of height based identification and activity model based identification. Height
sensors achieve higher accuracy than achieved by existing implementations of the STAR approach
that use only activity models and binary sensor use models of residents for identification.

6.5 Accuracy of Height Sensing in Homes Nationwide

We analyze the proportion of homes at a national level where our height solution can potentially

differentiate residents with high accuracy using the 2006 health and retirement study (HRS 2006)

[88], which contains height and weight measures of elderly residents living together in the same

household. Of the 2107 multi-resident households with valid height and weight measures for every

resident in the home, we used the 2077 households that were two-person households. We do not have

currently have access to any anthropometric datasets that support our claim for a wider population

demographic. We also note here that wider, longer term deployments in real homes are the best way
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to evaluate this technology, and our results below are best effort extrapolations from our controlled

experiments in the lab.

For each home, using the height values of the residents in the home, we first derive a log normal

probability model for each resident in the home using his/her height and the curve fit models described

in section 6.3.2. We then analytically calculate the probability that any height event will be assigned

to the right resident, assuming that each resident is equally likely to generate a height event. From

now on, we refer to this probability as the probability of correct resident identification in a home.

For each home, HRS 2006 also provides the weight measures of every resident. Jenkins et al [80] in

2007 observe that weight based identification using force plates has a Gaussian error with a mean

of 0.67kg and standard deviation of 0.96. Assuming this Gaussian model and mean parameters, we

calculate the probability that any gait event will be assigned to the right resident, assuming again that

each resident is equally likely to generate a gait event.

Given the probability of correct resident identification for each home in the sample, we compute

the proportion of homes where the probability of correct identification is above a fixed threshold;

Figure 6.7 shows how this proportion decreases as we increase the threshold for probability of correct

resident identification. Our height based identification solution is potentially applicable to 85%

elderly homes in the US with at least 95% identification accuracy. Using force plates and weight

based identification, up to 92% of the elderly homes can potentially achieve least 95% identification

accuracy. Given the high cost and effort involved in retrofitting a home with force plates, height

based identification is preferable, even though it is slightly less accurate; however, alternative cheaper

sensing solutions for weight measurement or gait analysis can be explored for preferential use over

height sensors in some homes.

6.6 Improving Height Measurement Accuracy with History

We have shown in the previous sections that height based biometric resident identification is poten-

tially applicable to a significant proportion of elderly homes in the US with high accuracy. However,

from the analysis seen in figure 6.7, height sensors achieve less than 95% identification accuracy in

15% of the homes. In this section, we show how information such as the room topology of a home,
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Figure 6.7: Applicability of height based identification at a nationwide scale. Height sensors are
potentially applicable with high accuracy to a large proportion of US elderly households. Weight
sensors have potentially higher applicability, but require good sensor design to aesthetically install
on the floor.

and the past history of height sensor events on multiple doorways in a home, can potentially be used

to improve the inherent accuracy of biometric identification using the height sensor.

As an illustrative example, assume two residents A and B initially in the bedroom. Assume

that after some time, resident A leaves the bedroom, and goes to the kitchen through the living

room to get a snack. Even if a few individual height sensor events lead to incorrect results from the

MLE classifier, the sequence of height events generated by A will have a higher likelihood of being

classified as resident A; we use spatio-temporal continuity of motion through the constrained floor

layout of a home to improve identification accuracy. An assumption in the in the example above, and

in the analysis below, is that the error at individual height sensors is independent; this assumption

may be true most of the time. However, there might occur cases where the error is more systematic,

such as a person stooping over to carry a heavy object; in such cases, the utility of using the sequence

of height measurements could potentially be reduced.

We use a simulation based study that is driven by the public-use height data from HRS 2006

and our height error models derived in section 6.3.2, to estimate the improvement in identification

accuracy that can be achieved using the history of height events in a home. We assume a 6 room

home across all the elderly households for consistency. We define the same HMM for each resident’s

room transitions, to indicate equal transition likelihood from one room to another; we do this to

ensure that differing room transition patterns of residents or specific room topologies of homes do
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Figure 6.8: Potential improvement in height based identification accuracy from using a tracking
approach. Our simulation study shows that the history of height measurements collected over the
track of a resident through the home potentially improves identification accuracy and applicability of
height sensing in US elderly homes.

not unfairly improve the identification accuracy possible by using the past history of height events

alone. We generate 1000 height events for each home in HRS 2006, using our HMM to generate

room transitions, and using the height error models from section 6.3.2 to generate noisy height events

for each resident. We assume a height sensor at every entry/exit into a room.

Given the simulation trace, we evaluate two approaches to identify resident labels for height

events in the home (1) A naive MLE classifier that only considers data from individual height events

(2) A probabilistic multi-hypotheses tracker that uses past history and room topology, embedded in

a HMM Viterbi approach. Figure 6.8 shows the applicability of height based identification across

elderly homes in the US with and without history information, based on the results of our simulation

experiment. When our probabilistic multi-hypotheses tracker is used, we observe that height based

identification can potentially achieve at least 95% identification accuracy in 95% of elderly homes in

US, as opposed to only 85% of elderly homes covered by the naive identification algorithm.

Figure 6.9(a) provides more insight into the scenarios where history information might be most

useful. When the height difference of the residents living in the home is small, using the past history

of height events greatly improves the accuracy over naive MLE classification. Using tracking history

can potentially reduce the height difference required for 99% identification accuracy from 6.9cm to

3.25 cm. Figure 6.9(b) demonstrates another important benefit of using history, the ability to achieve

higher accuracy in indoor spaces with more residents; the heights of residents in the hypothetical
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(b) Number of indoor residents

Figure 6.9: Impact of tracking on height difference required for accurate identification, and the
number of individuals that can be differentiated accurately. A history of readings could potentially
decrease the height difference required for accurate identification(a), and increase the number of
residents that can be reliably differentiated(b)

multi-resident homes (100 sample homes at each point) are randomly generated using height data

from the 4154 elderly residents from HRS 2006. By using the history of height events in a home, we

can potentially improve the identification accuracy in 4 person homes from 77% to 90%.

6.7 Limitations

Although our novel height sensing solution shows promise in non-invasive resident identification for

home activity recognition applications, there are several limitations with our approach and evaluation

that could be addressed in future research. A key limitation of our approach is that our in-situ

evaluation of height sensing accuracy does not consider false positives and negatives in individual

height sensor events due to the lack of accurate ground truth; rather, motion sensor events are used as

an approximation of room visits to be labeled with concurrent height sensor events. Better ground

truth solutions need to be developed to label each height event; this is a challenging problem, since

cameras might be unacceptable for long term resident labeling, while wearable radio tags pose

accuracy problems in homes for ground truth purposes. False positives and negatives, and height

sensor inaccuracy, are possible due to multi-path effects from ultrasonic sensors, especially in (1)

rooms with wide doorways that require several adjacent height sensors to achieve sufficient coverage,

and (2) adjacent doorways very close to each other. The multi-path challenge could be addressed

using a combination of a distributed synchronization algorithm, and careful placement of the sensors.
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Another promising approach is to add simple infrared range sensors, that suffer less from multi-path

effects but are also less accurate, to eliminate uncorrelated noise in the ultrasonic height sensor data.

Another key limitation is that we do not develop and evaluate a complete tracking approach

to estimate the residents’ current room locations based on the height sensor data. Our simulation

study to evaluate the improvement in height sensor accuracy from tracking makes two simplified

assumptions that are challenging to handle in a holistic tracking approach: (1) we do not add false

positives and negatives to height sensor events, which occur in practice, (2) we assume that we know

the direction of room transition for each height sensor event. Recent research has shown that handling

these two challenges introduces additional state in the tracking algorithm, and a HMM based Viterbi

algorithm is no longer able to handle the large solution space; to handle the computational complexity,

particle filter algorithms are being developed to track the likely resident states and height sensor data

associations. Another limitation of our study is that we have not considered the challenges in height

sensor based tracking posed by guests with similar heights, multiple shoes, pets, or residents with

gait based disabilities.

An inherent limitation of our approach is that it only identifies residents at doorways, and not

inside rooms; such an approach is suitable for room level localization of residents. In contrast, camera

based techniques [35], tag-and-track approaches [31, 32], and recent solutions that use a dense array

ultrasonic rangers on the ceilings [85], are able to track residents at a meter level granularity. The

lack of meter level location of residents could potentially limit the accuracy in assigning individual,

concurrent activities of two residents in the same room. To address this challenge, additional height

sensors could be deployed, or variations of the data association algorithm for simultaneous tracking

and activity recognition, proposed by Wilson et al [50] could be explored. Another limitation of

using ultrasonic sensors is that it disturbs pets such as cats and dogs in the home.

Another limitation of our study is that we extrapolate our empirical results in the lab environment

to a nationwide data set which is restricted only to elderly multi-resident home; we restricted

ourselves to the elderly demographic, since anthropometric measures for other populations were not

publicly available. An interesting extension would be to explore how our solution generalizes to

a larger population, including young couples, small and large families, and multi-resident student

homes, by conducting large scale surveys of anthropometric measures in these homes. Since our

approach is based on a resident biometric, it cannot be applied in all homes with high accuracy,
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unlike existing approaches such as tag and track. For applications that require higher identification

accuracy than offered by height sensing alone in a given home, we propose to explore adding multiple

non-invasive sensing modalities including floor mat sensor implementations for weight measurement,

color sensors above the doorway, and potentially additional infrared or ultrasonic range sensors to

measure the profile of a person as they walk through the doorway.

6.8 Conclusions

In this study, we analyze the use of ultrasonic range sensors placed above doorways in a home to

identify residents for multi-person activity recognition systems. Height is typically a weak biometric,

but we make two key insights that make it promising for in-home monitoring. First, height is highly

effective among small populations where the height differences among residents are likely to be

large enough for reliable differentiation. Second, residents walk through the home in predictable,

constrained patterns dictated by the floor layout, and the multiple height measurements of the resident

as they walk through multiple doorways in the home can be potentially be used to improve the inherent

accuracy of the height sensor. In this study, we quantify the error with which ultrasonic height sensors

measure the heights of residents as they walk under the doorway. Using publicly available height

measures of residents from multi-resident elderly homes and the height error distributions derived

from our controlled lab experiments, we extrapolate that a resident identification accuracy of at least

95% can potentially be achieved in 85% of elderly homes using a naive classification algorithm and

in 95% of elderly homes using an approach that aggregates measurements from multiple doorways.

Height measurements can potentially be used for accurate resident room level tracking and

activity recognition, if height sensors are placed above every entrance and exit to a room, as proposed

in this paper. A key challenge in achieving high room level localization accuracy is to address

the problem of false positives and negatives in the ultrasonic height sensor data. Of course, any

biometric sensors including thumbprint or retina scanners [78], could be placed at the entrance of

any room to locate residents, but violates our requirement of not requiring manual identification

effort from residents. Tag and Track systems such as Pedestrian localization [31] and Motetrack

[32] can be inconvenient to the user, STAR [50] using activity models has low accuracy and requires

an inconvenient training phase, and weight sensing using force plates or smart floors [80] to track
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residents would require a costly installation. Of these existing implementations, our height sensor

approach shows significant promise as a cheap, convenient, and non-invasive solution for identifying

residents in homes.
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Chapter 7

Wireless privacy for home activity

recognition systems

In the previous chapters, we presented several solutions for designing convenient activity recognition

systems for the home, without requiring high sensing or configuration cost and effort. An important

consideration overlooked so far in this dissertation is user privacy in home activity recognition

systems. As mentioned in chapter 1, Activities of Daily Living (ADLs) are typically very personal

and private, and must be kept secret from third parties. In particular, activity recognition systems

deployed for remote medical monitoring applications, are obliged by HIPAA regulations [40] to

protect this ADL information from unauthorized users.

In all of the activity recognition systems that we have presented so far, wireless data collection is

preferred to using wireline networks to collect data from sensors distributed in the home. Wireless

sensors are much easier to install, especially in a home environment, where it is intrusive and time

consuming to place wires connecting each sensor to a central base station. As seen in our recent

guide on home sensing deployments, alternative power line based communication is also not feasible

in the home environment [30]. Indeed, wireless home sensor systems have already been deployed at a

large scale in US homes. Over 32 million homes in the US have wireless security sensors installed on

doors and windows, and motion sensors installed inside and/or outside the home [41]. Over 5 million

homes have wireless X10 devices [65] and ZigBee devices such as wireless doorbells, appliance

controls, wireless smoke detectors, and wireless light switches. These sensors produce a constant
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record of the Activities of Daily Living (ADLs) within a home, thereby enabling applications such as

elderly monitoring [28], energy conservation, and home security [65].

Although wireless communication greatly eases installation effort and cost for home sensing

systems, it does pose a privacy risk, since the data is broadcast in a public medium, that is potentially

accessible to an adversary outside the home overhearing the wireless transmissions with a snooping

device. To protect the ADL data from an adversary snooping outside the home, wireless sensor data

is usually encrypted using one of several encryption systems developed for wireless sensor networks

[89, 90].

In this chapter, we present a powerful new attack that allows us to observe private activities in the

home such as cooking, showering, toileting, and sleeping by snooping on the wireless transmissions

of sensors in a home, even if all of the transmissions are fully encrypted. This attack needs only

the timestamp and the fingerprint of each radio message, where a wireless fingerprint is a set

of features of a RF waveform that are unique to a particular transmitter. Thus, we call this the

Fingerprint And Timing-based Snooping (FATS) attack. Our FATS attack uses the unsupervised

AUTOLABEL algorithm discussed in chapter 3, to transform the timestamps and fingerprints of

wireless transmissions, to ADL data for exploitation by an adversary.

Our FATS attack is a new attack that has not previously been studied or demonstrated. Wireless

fingerprinting and traffic timing analysis are both well-studied techniques. However, we are the

first to combine these two techniques to create and demonstrate a novel privacy attack in the kind

of single-hop, wireless networks common in residential ubiquitous computing. In this chapter, we

present solutions for designing wireless activity recognition systems in residential environments

to preserve private activity information about the residents from FATS attacks. For example, we

hide packet transmissions from the adversary using signal attenuators, we introduce random delays

on transmissions, and we generate spurious transmissions in order to decrease the effectiveness

of the FATS attack. We find that each of these techniques has a different tradeoff in terms of

privacy protection performance, hardware costs, and application/user costs. Based on the cost-benefit

profile of each technique, we present guidelines for applying them most effectively in typical home

activity recognition systems. We evaluate these design guidelines and show how many of these

guidelines can be used together in a hybrid fashion to yield very high privacy protection with minimal

implementation costs.
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We empirically evaluate both the FATS attack and our suite of privacy preservation techniques

by using the sensor data from the activity recognition systems in eight different homes used to

evaluate our AUTOLABEL approach. Our results suggest that the FATS attack is highly effective

even without knowing any prior information about the home, achieving around 80-95% accuracy on

activity recognition in many homes in the best case. The design guidelines that we propose greatly

decrease the effectiveness of the FATS attack, reducing the inference accuracy to anywhere from 0 to

15%, while greatly reducing implementation costs.

The rest of this chapter is organized as follows. In section 7.1, we present related wireless privacy

attacks, and show how they are different from our proposed FATS attack. In section 7.2, we briefly

discuss how an adversary uses our AUTOLABEL inference algorithm to infer private activities of

residents in the home, and evaluate how such an attack performs in a realistic environment, containing

both packet loss and errors in wireless fingerprinting. In section 7.3, we present a suite of privacy

solutions to the FATS attack, and show how many of these solutions can be used together in a hybrid

fashion to protect against the FATS attack in a home environment.

7.1 Background

FATS is a type of side channel attack, which means that it uses information revealed by a cryp-

tographic system other than the ciphertext to infer either the cryptographic keys or the original

data [91]. Some well-known side channel attacks include the TEMPEST attack, which uses leaked

electromagnetic radiation from a computer monitor to infer the plain text input to the system [92],

and a recent study that exploits physical properties of variable bitrate encoding schemes to infer the

movie a person is watching on commercial devices [93].

Wireless fingerprinting is a well-studied technique in which physical characteristics of RF

transmissions are used to differentiate between messages from different radios, even when those

radios have the same model and manufacturer. Statistical features of transient signal amplitude

have been used to fingerprint Bluetooth devices [94] with false positive rates of 5% and detection

accuracies as high as 93%. Similar results have been observed on 802.11 WiFi radios [43] and on

sensor nodes using the ChipCon CC1000 radio [44]. We discuss the hardware requirements for

fingerprinting when we discuss deployment details in the next section. The above work on wireless
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fingerprinting is different from software-based fingerprinting, such as recent work that identifies

and tracks users of 802.11 enabled devices by exploiting implicit identifiers in 802.11 network

traffic [95]. Wireless fingerprinting is usually used to enhance privacy by enabling hardware-based

authentication [43], not to compromise it. A recent study proposed using wireless fingerprints to

compromise privacy in vehicular sensor networks [96], but did not combine fingerprints with traffic

timing analysis.

The FATS attack is different from most existing traffic analysis attacks. Previous work has

demonstrated that Internet traffic patterns in wired networks can be used to match a sender with

a recipient [97], and multi-hop radio traffic in wireless sensor networks can be used to locate the

sensor source or the base station [98, 99]. The countermeasures for these attacks require changing

network flow patterns at the routing level. The FATS attack uses fingerprints to do traffic analysis in

a single-hop network, and so is not affected by such countermeasures. Yang et al [100] describe a

related traffic analysis attack in which an adversary can infer when a network event has occurred

by observing global transmission timestamps alone, but this work does not combine transmission

timestamps with wireless fingerprints.

Our FATS attack infers activities such as cooking, showering and toileting. It simply leverages

the AUTOLABEL algorithm discussed from chapter 3 to infer private ADLs of residents in the

home. The FATS attack assumes a home fitted with simple wireless sensors [101] from the invisible

man approach to activity recognition, as discussed in chapter 2. Our FATS attack would be less

successful with other sensing approaches to activity recognition, that use RFID tags on household

objects coupled with wearable RFID readers [54]. Our attack is more suited to a wireless sensor

system than to an RFID-based system, since it’s easier to snoop on relatively long range wireless

transmissions than on short-range RFID signals. As we have argued in this thesis, the wireless sensor

approach to activity recognition is more convenient to the end user, and thus, we believe that our

attack is an important consideration to take into account when building future residential activity

recognition systems.



104

7.2 The FATS Attack

The FATS attack adversary uses a wireless snooping device to record the timestamps and unique

source fingerprints of each wireless transmission. This series of timestamps and source identifiers, is

input to our AUTOLABEL activity inference algorithm, discussed in detail in chapter 3. We do not

repeat the algorithm and its evaluation here, but note that our three tier AUTOLABEL algorithm is

first able to infer coarse grained activities such as sleeping and home occupancy from Tier 0 using

just the transmission timestamps, as discussed in section 3.1 in chapter 3. The FATS attack is then

able to combine the source fingerprints with the timestamps in Tiers I, II and III, to automatically

infer the room visits of residents to rooms such as the bathroom and kitchen, and also private ADLs

such as cooking, showering, toileting, and eating hot/cold food. Since our AUTOLABEL algorithm

does not require any prior information about the home or its residents, it can be easily used by our

FATS adversary to infer private ADLs of residents.

To fingerprint radio sources, the FATS adversary could either simply use the RSSI values [102] of

radio messages, which is less accurate, or use an antenna connected to a high frequency oscilloscope

or a commercial integrated signal analyzer with built-in fingerprinting software [103]. Even though

many of these snooping devices are currently costly and power hungry, it is expected that cheaper

devices will be available as wireless fingerprinting matures and becomes increasingly important for

hardware-based authentication. It is easier for an adversary to launch the FATS attack if she has

access to uninterrupted power, either from an unattended outdoor power outlet nearby, an adjacent

apartment or a distant surveillance area with powerful directional antennae. We have performed

experiments to validate that wireless mica motes inside our office buildings can be snooped upon

from the outside. Also, X10 radios have a long radio range and snooping on these devices is as easy

as driving around with an X10 receiver to receive unencrypted X10 camera data [104].

As mentioned earlier in this chapter, we evaluate our FATS attack using the sensor data from

eight homes, as presented in chapter 3 to evaluate the AUTOLABEL activity recognition approach.

It must be noted that all of this wireless sensor data is recorded by a base station inside the home,

that understands the source identity of each message. We use this data to emulate an adversary

outside the home snooping on the timestamps and fingerprints of wireless transmissions. In particular,

we emulate the adversary first assuming a best case scenario, where all packets are received, and



105

fingerprinted correctly to indicate the source of the wireless transmissions. We then emulate the

adversary using a realistic setting, introducing both packet loss and fingerprinting errors in the sensor

data collected at the base station in each home.

To measure how accurately an adversary can infer the private ADLs of residents in the home,

we use the same evaluation metrics used in chapter 3, and discussed in section 3.2.2, namely Event

Detection Rate (EDR), True Positive Rate (TPR), and Duration Accuracy (DA). In the best case

scenario, we observe that the adversary receives the same data received at the base station in the

home, and thus achieves the same recognition accuracy as our AUTOLABEL approach from chapter

3, as discussed in section 3.3. Thus, the FATS adversary is able to infer Tier 0 activities such as

sleeping and home occupancy with 85-100% accuracy, Tier II room visits with 85-90% accuracy,

and Tier III activities such as cooking, toileting, and showering, with around 80% accuracy, on par

with supervised activity recognition approaches in the literature.

We also evaluate the FATS attack in practical, non-ideal settings, where the adversary will

observe both packet loss and fingerprint errors. The evaluation in figure 7.1 models packet loss

as a percentage of the nodes hidden from the adversary. Even under pessimistic scenarios such as

30% of the nodes hidden from the adversary, the FATS attack still infers about 50% of Tier II and

Tier III events and detects Tier 0 events with about 80% DA. Tier 0 DA is unaffected by fingerprint

errors, since it simply relies on the transmission timestamps. Figure 7.5 shows how fingerprint errors,

modelled as a feature deviation in the x-axis and explained in detail in the next section, affect Tier

II and Tier III EDR. Under pessimistic feature deviations of about 50% of the total feature space

(deviations of 20 for a feature space of 40), the adversary still infers upto 50% of Tier II and Tier

III events in the home. Assuming both 20% packet loss and 20% feature deviations, the adversary

still infers Tier II and Tier III events with 40% EDR, and Tier 0 events with 85% DA on average.

Thus, even under pessimistic scnearios, the FATS attack is effective in recognizing the private ADLs

of residents in the home, and this motivates the need for effective privacy solutions to reduce the

inference accuracy of the adversary to less than 10 or 15%.
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7.3 Design Guidelines to Enhance Privacy

In this section, we evaluate a number of techniques to thwart the FATS attack in future home activity

recognition systems. Each of these techniques has a different cost-benefit profile, and we analyze

how and when each technique is most effective. We present the following five guidelines for building

wireless ubiquitous computing systems in homes or residential environments. We justify each

guideline in subsequent subsections. We conclude by presenting a hybrid approach that combines

many of these guidelines to achieve very high privacy protection with very low implementation costs.

1. Signal attenuators should be deployed in a select few rooms such as kitchens or bathrooms

where many activities occur to effectively mask activities in these rooms.

2. Random delays of the order of 15 to 20 minutes should be added to the transmissions of

sensors in the bathroom and kitchen that are involved in short duration activities to effectively

hide these activities.

3. Periodic transmissions should be used on binary or low bandwidth sensors that are typically

involved in long-duration activities, such as bedroom and living room sensors.

4. Fingerprint masking should be used on time-critical sensors like fall detection sensors,

where latency introduced by random delays or periodic transmissions is unacceptable, or on

sensors/rooms where signal attenuators are infeasible.

5. Spurious or fake transmissions should be combined with real transmissions for sensors

such as camera or microphone sensors that cannot afford the high energy cost from periodic

transmissions.

7.3.1 Using Signal Attenuators

The most obvious approach to protect against the FATS attack is to prevent the adversary from

hearing messages in the first place. There are several possible signal attenuators, and we list three

here: (i) Using very low power transmissions and a multi-hop route to the base station: this incurs a

moderate hardware cost in terms of additional router nodes, and reduces reliability (ii) Using a wired

connection to the base station: this requires quite a lot of deployment effort and time, and (iii) Using

Faraday cages: this is expensive to set up and prevents outside communication from hidden rooms,

which is essential for eldercare applications. We recommend scheme (i) since it has the least cost

among the various schemes, though it does not have the same protection guarantees as scheme (ii).
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Figure 7.1: Effect of Signal Attenuators on event detection rate (EDR) of Tier II and III events, and
on duration accuracy (DA) of Tier 0 events

We implement two schemes for signal attenuators in our evaluation, namely: (i) SAA - Signal

Attenuators in All rooms, and (ii) SABK - Signal Attenuators in the Bathroom and Kitchen only,

as per design guideline #1. Figure 7.1 shows the effectiveness of the FATS attack as we increase

the percentage of nodes hidden by signal attenuators from 0-90%. Figure 7.1(a) shows that signal

attenuators are very effective at reducing the EDR for Tier˜II and Tier˜III activities; with 40% hidden

nodes, EDR is reduced to about 30-35% in scheme SAA and to 20% in scheme SABK. Thus, many

of the activities detected in Tiers II and III can be hidden effectively by using signal attenuators in

just the bathroom and kitchen. Figure 7.3 shows that signal attenuators do not have a strong effect in

reducing the Tier˜II and Tier˜III DA and TPR. The TPR actually increases as more nodes are hidden,

because the number of events detected becomes small enough that almost no events are spurious.

Figure 7.1(b) shows that signal attenuators, even if implemented in the entire home (SAA), are not

very effective at reducing the DA for Tier 0 information; with 40% hidden nodes, the DA is nearly

90% in single person homes, and is over 60% in multi-person homes. This is because the sensors

that are not hidden by the signal attenuators still reveal the presence of human activity very well.

Thus, we recommend in design guideline #1 that signal attenuators be used in select rooms such as

the bathroom and kitchen (SABK) where many activities occur to reduce implementation cost and

hide these activities effectively.
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Figure 7.2: Effect of random delays on event detection rate (EDR) of Tier II and III events, and on
duration accuracy (DA) of Tier 0 events

7.3.2 Using Random Delays

Because all tiers of the FATS algorithm rely on transmission timestamps, modifying the transmission

time is one way of reducing the effectiveness of the attack. Thus, we propose adding random delays

to sensor transmissions bounded by a maximum delay parameter. We implemented two schemes in

our evaluation of random delays: (i)RDA - Random Delays on All sensors, and (ii) RDBK - Random

Delays on Bathroom and Kitchen sensors involved in short duration activities only, such as cooking

and toileting. Figure 7.2 shows that the effectiveness of the FATS attack decreases as increasingly

long random delays are added to sensor transmissions. Figure 7.2(a) shows that even small random

delays of about 10 minutes are highly effective at reducing the EDR for Tier III events such as

cooking and showering to about 50-60% under both schemes RDA and RDBK. This is because

random delays introduce errors in Tiers I, II and III which use the device transmission timestamps

as input. Also, figure 7.3 shows that random delays of about 30 minutes reduces both DA and TPR

of Tier II and III events to about 40%; i.e., more than half the events detected by the adversary are

false positives, and the inferred duration of these events is highly inaccurate. As seen in figure 7.2(b),

longer random delays of about 3 hours reduce Tier 0 DA to about 60% in single person homes and a

much lower 25% in multi-person homes. In multi-person homes, there are only a few hours per day

with no activity from all residents, and 3 hour random delays ensure that almost no period is inactive,

resulting in the larger duration errors. However, we do not recommend such long delays of the order

of hours to hide long duration Tier 0 activities such as home presence and sleeping.
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Despite their effectiveness, random delays conflict with the requirements of real-time sensors

such as wireless light switches, or fall detection sensors that need to transmit data immediately. Also,

we need to consider if random delays of the order of 15-30 minutes are acceptable to the end users;

they might be certainly acceptable to remote healthcare providers who are only interested in long

term trends such as a decline in the ability of residents to perform ADLs. For other users, we need

user queries to verify if such delays are acceptable. Given the similar performance of schemes RDA

and RDBK in protecting Tier III events, we recommend in design guideline #2 that random delays of

the order of 15 minutes be applied to non-emergency sensors in the bathroom and kitchen if the end

users find such delays acceptable.

7.3.3 Using Periodic Transmission

If a sensor transmits periodically instead of only when it has data to transmit, it makes the transmission

timestamps independent of the data, making it impossible for the adversary to infer any information.

Thus, periodic transmission on all sensors guarantees 100% privacy. We first estimate the extra

power consumed by periodic transmissions for typical binary home sensors, using empirical power

consumption data on the telos mote with the CC2420 radio [105], a popular hardware platform in

wireless sensor network research. We assume that a mote sleeps for a latency period P and wakes up

to transmit a large enough data payload to capture binary event information for the past P seconds,

along with the mandatory header fields. The total percent reduction in node lifetime for different

periods P is shown in Figure 7.4. As the period P increases, the percent reduction in node lifetime

decreases along with the power consumed by periodic transmissions; this is because as the period

increases, the number of packets and the associated energy wastage from packet overhead decreases.

We note that the total reduction in node lifetime for periodic transmission with a period of 8 seconds

is only 8.75% of the total original lifetime of the node; thus, periodic transmissions is an excellent

solution for binary sensors. The low power consumption here is because the network is one-hop, and

nodes do not need to go into receive mode, unlike other sensor network deployments.

Despite their effectiveness, periodic transmissions cannot be applied to (i) real-time sensors,

because of the delay limitation, and (ii) high bandwidth sensors, because of the excessive power

consumed by redundant transmissions. Thus, we recommend in design guideline #3 that periodic

transmissions be used for binary, non-emergency sensors in the living room and bedroom. This will
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Figure 7.4: Effect of period of transmission on node lifetime

hide Tier 0 DA with only a negligible power cost, where the other techniques are expensive. Indeed,

we implemented periodic transmissions on bedroom and living room sensors and found that this

reduced Tier 0 DA by 17% in single person homes and a significant 71% in multi-person homes.

7.3.4 Using Fingerprint Masking

We can also preserve privacy through fingerprint masking, in which we hide the fingerprint of a

transmitter. One approach to doing this might be to use potentiometers instead of resistors for all

radio circuitry, and to vary these during each transmission. Another approach might be to wire

together multiple sensors and use a common radio for all of them, so that the individual source

fingerprint is hidden. As a variation, a sensor can also be wired to multiple radios, each of which

might have a different set of sensors assigned to it, to further obfuscate the fingerprints. One problem

with fingerprint masking is that it creates an arms race scenario in which the adversary and hardware

designer must continually try to outsmart each other to uncover and hide new features respectively.

Because of this challenge and the need to change existing radio hardware, we recommend in design

guideline #4 to use fingerprint masking only in sensors that cannot tolerate any delays, such as

wireless light switches or fall sensors and in sensors/rooms where signal attenuators are infeasible.
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Figure 7.5: Effect of fingerprint masking on event detection rate (EDR) of Tier II and III events

For evaluation purposes, we use a simple model to simulate various degrees of fingerprinting error.

We assign a scalar fingerprint IDi using a uniform random distribution to each device i such that

0 < IDi < L. When a device transmits, the adversary observes some fingerprint ˆID = N (IDi, σ)

and identifies the transmitter to be argminj | ˆID − IDj |. Thus, fingerprinting errors are likely

to increase as the standard deviation σ increases. We simulate fingerprint errors on the raw data

by gradually increasing σ until it equals the actual length of the feature space L, set to 40 in our

case. Figure 7.5 shows that small fingerprint errors are effective at reducing Tier II and III EDR.

Also, figure 7.3 shows that fingerprint masking has a similar effect to random delays in terms of

Tier II and III DA and TPR, causing a significant drop in both duration accuracy and true positive

rate. Introducing fingerprint errors is effective because it distorts sensor clustering as devices from

different rooms appear to fire together, and also distorts the features used in our classifiers.

7.3.5 Introducing Spurious or Fake Transmissions

Yang et al [100] propose a countermeasure for traffic timing analysis in which fake and real transmis-

sions are combined in such a way that a fixed probability distribution is maintained for time between

transmissions. Real transmissions are delayed to follow the probability distribution when necessary.

This countermeasure can be applied to our FATS attack too. Similar to periodic transmissions, fake

transmissions would essentially ensure 100% privacy with some transmission delay but with a lower

power consumption, since we are only adding some fake packets rather than transmitting large

constant data payloads periodically. Thus, we recommend in design guideline #5 to use spurious or
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fake transmissions on high bandwidth sensors such as cameras or microphones that transmit data

occasionally.
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Figure 7.6: Effect of hybrid schemes on Tier II and Tier III EDR and Tier 0 DA across all homes

7.3.6 Hybrid Schemes

Based on our design guidelines, it is clear that each of our privacy solutions is best suited to certain

kinds of sensors and is better at protecting certain types of information. Therefore, many of these

solutions will be used in combination in a real home wireless system with diverse sensor types. To

demonstrate that such a hybrid approach offers excellent privacy protection, we implemented several

hybrid solutions that include the techniques listed in our design guidelines, namely PT - Periodic

Transmissions on living and bedroom sensors, Signal Attenuators and Random Delays (SA and

RD) on bathroom and kitchen sensors, and FM - Fingerprint Masking. The effect of these hybrid

schemes on Tier II and Tier III EDR and Tier 0 DA is shown in figure 7.6. The hybrid schemes

shown are annotated with details relating to the extent to which each technique was applied: for

example, 40% FM refers to 40% feature deviations, RD 20 min to a 20 minute random delay, and

40% SA to 40% hidden nodes. Based on the results shown in figure 7.6, scheme PT + RD 20 min

should be used effectively in homes where such delays are acceptable to hide information from all

tiers of the FATS attack with minimal costs. For homes where such delays are not acceptable, one of

the other hybrid schemes should be chosen based on the implementation costs affordable. Scheme

PT + 20% SA + 20% FM looks promising, since it requires neither extensive signal attenuation nor

extensive fingerprint masking, but achieves excellent privacy preservation with relatively small costs.
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7.4 Limitations

While we show that our wireless fingerprint based snoop attack is an important privacy problem for

future smart homes to address, there are a few limitations with our current evaluation of the attack

and the associated privacy solutions. Firstly, we do not evaluate the ground truth packet reception

rate, and fingerprinting accuracy, for a typical adversarial snooping device deployed outside the

home; it would be interesting to measure the typical packet reception rate and fingerprinting accuracy,

in order to better the evaluate the exact activity recognition accuracy that could be achieved by the

FATS attack. However, a key challenge in such an evaluation is that different wireless standards

such as bluetooth, Wifi, and zigbee protocols may have different fingerprinting accuracies and

packet reception rates for receivers outside the home. To address this challenge in our study, we

emulate a range of packet reception and fingerprinting accuracies to evaluate the spectrum of activity

recognition accuracies achievable by the FATS attack.

Another limitation is that we emulate many of our privacy solutions such as radio signal at-

tenuation and fingeprint masking in our evaluation. It would be important in future research to

physically implement these solutions to better understand the cost vs privacy tradeoffs involved in

these solutions. Finally, we do not provide formal proofs to evaluate our privacy solutions, but rather

show their effectiveness against our existing FATS attack implementation. It would be interesting as

part of future research to explore whether an adversary can design more robust inference algorithms

that can better adapt to packet loss, fingerprinting errors, fake messages, or random timestamp delays;

it would also be interesting to develop formal models for the inference attack, and explore if we can

better estimate the privacy achieved through our suite of privacy solutions.

7.5 Conclusions

In this chapter, we showed how our AUTOLABEL inference algorithm could be used by an adversary

to recognize private activities of residents inside the home fitted with wireless sensors, in spite of

encrypted wireless transmissions. Firstly, we show that simple activities such as home occupancy

and sleeping could be inferred just from the timestamps of wireless transmissions from the home,

without any knowledge of the data content or source of each wireless message. Secondly, we
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show that with additional information about the source of each wireless message, through wireless

fingerprinting techniques [94, 43, 44], our AUTOLABEL algorithm from chapter 1 can be used

by the adversary to recognize detailed activities and room visits of residents in the home, even if

all wireless transmissions are encrypted. Our FATS attack is evaluated on existing home activity

recognition systems with binary sensors used in the invisible man approach, and achieves an activity

recognition accuracy of 80-90% in the best case scenario for the adversary.

With emerging infrastructure mediated sensing techniques, many of the direct binary sensors

in the home could be replaced by a single sensor on the home’s electrical or water infrastructure

that simple outputs data periodically, such as the smart meters discussed in chapters 4 and 5. Thus,

the FATS attack could be deprived of detailed fixture usage information, potentially reducing the

accuracy of an adversary in inferring fine-grained activities such as toileting vs washing. However,

since wireless occupancy sensors are likely to be present in each room in future smart homes, the

adversary would still have access to information about the individual room visits of residents, such as

bathroom or kitchen visits. The adversary could potentially achieve moderate accuracy in inferring

detailed activities of residents inside these rooms, by just using temporal features of these room visits,

such as the start time, and duration.

Our design guidelines to protect against the FATS attack may become increasingly important as

wireless sensors become more ubiquitous in homes and residential environments. Millions of homes

are already vulnerable to the FATS attack, and new systems are being deployed at an ever increasing

rate. Also, we believe that the FATS attack is just one instance of many potential physical-layer

privacy attacks on wireless ubiquitous systems. Other attacks could be carried out in offices, factories,

and even in urban-scale wireless networks. For example, a company that shares an office building

with a competitor may infer a new product launch by the competitor by observing increased traffic in

certain areas. This study demonstrates the power and ease of physical-layer wireless privacy attacks

such as FATS, and our design guidelines are a first step toward thwarting such attacks.
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Chapter 8

Conclusions

In this dissertation, we first identified three key drawbacks of existing activity recognition systems

that inconvenience the end user, namely:

1. Existing activity recognition systems require users to provide extensive configuration input

and training data of the order of several days.

2. Existing systems require high cost sensors, or a large number of difficult to install sensors, to

provide the sensory input necessary for activity recognition algorithms.

3. Existing activity recognition systems for multi-person homes use invasive sensors such as

video cameras, or inconvenient wearable sensors that need to be carried all the time.

Our goal in this dissertation was to overcome the above limitations, and design convenient,

non-invasive, accurate activity recognition solutions for in-home residents. Our main hypothesis was

that by effectively using data fusion techniques, leveraging the existing smart meter infrastructure in

homes, and using only weak biometric sensing, we can build convenient and accurate home activity

recognition solutions for the end user. We note that we are indeed able to make progress towards our

goal, by leveraging our main hypothesis. In section 8.1, we discuss our main contributions towards

achieving this goal, and present the advantages of our approach over existing activity recognition

approaches. In section 8.2, we discuss example medical and sustainability applications that are

enabled by our activity recognition system, some of which have already been implemented and

demonstrated in real homes. In section 8.3, we discuss the contributions of this dissertation beyond
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smart home systems. Finally, in section 8.4, we list the current limitations of our activity recognition

approach, and future improvements and directions to integrate our solutions as a holistic activity

recognition system for smart home environments.

8.1 Key contributions towards home activity recognition systems

In this dissertation, we have made several key contributions to designing effective home activity

recognition systems. In this section, we summarize these contributions, and place them in the context

of existing and potential future activity recognition approaches.

8.1.1 Lower training and configuration effort

Firstly, our novel AUTOLABEL inference approach [37] is the first unsupervised activity recognition

algorithm that requires users to neither label the sensor semantics [54] nor label daily activities

[28, 26]. We observe that our unsupervised activity recognition approach achieves an accuracy of

80-90%, which is similar to accuracies achieved by state of the art supervised approaches [26, 54, 28].

In contrast to existing approaches require users to label all their daily activities for 5-10 days [26, 28],

our approach requires no training data about daily activities from the end user. Our approach also

achieves higher accuracy than other unsupervised approaches based on mining the web for textual

activity models [54] (40-60% accuracy), that require users to individually label the 40-60 sensors in

the home. Our tiered inference approach clusters unknown sensors to rooms, and jointly leverages

prior knowledge about room usage patterns, and sensor usage patterns, to label room locations and

sensor semantics of each individual sensor in the home; from the room locations and sensor semantics

of each sensor, a cross-home activity classifier is used to accurately recognize daily activities. Such an

approach is preferable to existing approaches that require users to configure the activity recognition

system by labeling the individual sensors and/or labeling daily activities, and is likely to be more

acceptable to end users who wish to buy and use a commercial product for home activity recognition.

8.1.2 Fewer, easier to install, low cost sensors

Secondly, our LightSense and WaterSense approaches [38] eliminate the majority of sensors on water

fixtures and electrical fixtures in the home, thus allowing users to more easily install the home activity



118

recognition system. We achieve only a 10% loss in accuracy as a result of eliminating individual

direct sensors on fixtures in the home. Existing approaches to eliminate sensors on individual fixtures

require configuration effort per fixture, along with a specialized expensive single sensor on the

home’s water or electrical infrastructure [55, 56, 57, 58]. Our hybrid approaches use an existing

smart meter on the home’s infrastructure along with few simple sensors distributed in the home, and

are completely unsupervised; our approaches reduce both configuration and sensor installation effort

per fixture. While our approaches do typically require a sensor per room, we believe that this sensor

can be piggybacked on room level occupancy and identity sensors that will likely be used in future

smart homes built for medical monitoring and energy conservation applications.

The Bayesian clustering technique developed as part of our WaterSense approach will be critical

in future smart home systems that need to differentiate similar fixtures in multiple rooms of the home,

with similar signatures derived from an infrastructure sensor [38, 57]. Our Bayesian data fusion

approach developed in LightSense will be useful in effectively combining any pair of noisy sensor

sources in the home with temporally uncorrelated noise, to detect phenomena that affect both sensor

streams in a consistent manner.

8.1.3 More convenient resident identification

Thirdly, our height sensor based resident identification approach [39] is a significant contribution

over existing inconvenient approaches that require users to carry a tag or allow camera use at all

times [31, 32, 35]. Our solution is particularly useful in non-critical applications such as peace of

mind elderly monitoring or home energy conservation applications. Our approach shows significant

promise in early studies, and shows the potential to achieve 95% accuracy in 95% elderly homes

in the US, if challenges arising from multi-path effects in homes can be overcome with sensor

fusion approaches. The occupancy sensors and light sensors used in our WaterSense and LightSense

approach can be integrated with our height sensors into a single doorway sensor for future smart

home applications.
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8.1.4 Improved wireless privacy

Finally, we discover a novel wireless snooping attack on smart homes [37], that will become

increasingly important to address as wireless smart homes are commercialized and deployed in a

larger scale. Our wireless snoop attack shows the potential to achieve 80-90% activity recognition

accuracy in the best case, even for activities such as cooking, showering, and toileting. Our hybrid

solution approach of introducing small random delays, and enforcing periodic transmissions when

feasible, greatly reduces the adversarial inference accuracy of such an attack to less than 10% without

a significant impact on the cost or functionality of the smart home system.

8.2 Example applications enabled by our activity recognition approach

Our proposed activity recognition system enables a number of practical applications for smart homes.

In this section, we provide a few concrete examples of these applications.

Firstly, in the medical monitoring domain, monitoring daily activities of residents is useful in

early diagnosis and continuous care for several ailments, such as depression, and Alzheimer’s disease.

For example, the Empath approach [106] geared towards depression monitoring requires information

about daily activities of residents in the home such as showering, sleeping, toileting, and eating.

Detection of changes in the duration, ordering, or presence of daily activities can be very useful in

the continuous treatment of medical conditions such as Alzheimer’s disease. An ongoing area of

research is to develop effective inference algorithms and anomaly detection approaches to apply on

the daily activity information inferred by our non-invasive activity recognition approach.

Secondly, in the energy conservation domain, our activity recognition approach has already been

shown to provide accurate feedback to the end users about the energy consumption of individual

electrical and water fixtures in the home [38]. Additionally, our non-invasive sensing approach has

been used in the smart thermostat approach to leverage the sleeping, and home occupancy activities

of residents to automatically control the thermostat and save energy in the home [5]. Our height

sensor based identification approach could also potentially be used with emerging smart zoning

approaches, to individually control the temperature in each room, or switch off heating in unoccupied

rooms. In general, information about the location and activities of all residents in the home could
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enable smart control of everyday appliances such as the television, lights, computer, etc., resulting in

high energy savings with little effort from the end user.

8.3 Contributions beyond smart homes

Although we focus on our contributions towards smart home activity recognition systems in this

thesis, many of our approaches could be extended to benefit other cyber physical systems beyond

smart homes. Firstly, our unsupervised activity recognition framework could potentially be applied to

wearable sensor systems such as smartphones. Two key challenges for wearable activity recognition

systems is that the end user has to train the system specific to the location of the wearable sensor

on the body, and variations in the location of wearable sensors require re-training. To address these

challenges, a tiered inference approach could be used to first infer the body location of each wearable

sensor, similar to AUTOLABEL, and then cross-person classifiers could be explored for unsupervised

activity recognition across individuals.

Secondly, our data fusion approaches developed in LightSense and WaterSense could be applied

to other problems in cyberphysical systems that require sensor fusion. Both data fusion approaches

address the key challenge of efficiently combining instantaneous sensor data from multiple sensors

with historical sensor evidence to effectively detect and classify physical events affecting multiple

sensors. The data fusion approach developed in WaterSense could be applied to other sensor fusion

problems that combine a distributed proximity sensor network with another single point sensor to

detect events that generate both a proximity event, and a location specific noisy signal in the single

point sensor; for example, one data fusion application could combine sparsely distributed sound

sensors with densely distributed proximity sensors to infer the typical location of certain animals in a

large forest. Similarly, our LightSense data fusion approach could be used to combine other pairs of

noisy sensors with high false positive rates to accurately detect distinct physical events that generate

consistent signatures in both the sensor sources.

Finally, our wireless privacy attack based on overhearing wireless fingerpints of devices could

have broad implications beyond smart home systems. Other indoor wireless systems used in offices

and commercial buildings could be subjected to a FATS style attack to infer protected information.

For example, rival companies could learn of potentially high activity prior to an unannounced product
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launch. The specific inference algorithms, and external knowledge, used in these unexplored wireless

fingerprinting attacks could be different from the three tier algorithm used in our approach. Wireless

fingerprinting attacks could also be applied at an urban scale to localize an individual by observing

the unique wireless fingerprint of his personal smart phone or tablet device. As wireless technology

becomes more prevalent, effective fingerprint masking techniques may need to be included in future

wireless devices to protect against fingerprinting attacks similar to FATS.

8.4 Future improvements

Though our individual solutions to address the limitations of existing activity recognition systems

show promise when evaluated in home environments, a key direction for future research is to integrate

the various solutions presented. For example, the three tier AUTOLABEL algorithm is currently

designed to work on a sensor system consisting of simple binary sensors. With the addition of single

point sensing solutions, the use of individual fixtures such as the sink or the stove are recognized

using flow or power profiles at the whole house smart meters; therefore, information about the sensors

in tier III could be inferred from smart meter profiles and this sensor information could be used to

constrain the room labels in tier II. Also, in our AUTOLABEL approach which uses direct sensors, a

room clustering approach that uses a single distance measure between every pair of direct sensors

achieves high accuracy; however, in WaterSense, to cluster noisy flow events to the motion sensor in

each room, a probabilistic Bayesnet approach is more appropriate. In future systems that may contain

both direct sensors and single point sensors, a hybrid clustering approach may need to be designed to

effectively cluster together both direct sensors with flow or power events from the smart meters.

Another key direction for future research is building on our existing height sensor based identifi-

cation solution, to evaluate it for tracking purposes in in-situ environments. Such a system requires

height sensors that can sense both identity and direction, and eliminate noisy edges that may arise

due to multi-path effects. Recently, a particle filter based tracking algorithm has been developed to

track the locations of residents in the home, in spite of false positive events from the height sensors.

A potential approach to eliminate false positives would be to combine infrared range sensors to

eliminate noisy events from ultrasonic range sensors, and use the ultrasonic distance sensors to

estimate identity and direction. Another key challenge in evaluating such a tracking system over a



122

long term is obtaining accurate ground truth about the locations of the residents in the home. Once a

height sensor based system is deployed in homes, it could potentially be used in our AUTOLABEL

approach to cluster events to rooms. Another key challenge is attributing individual fixture usage and

activities inside rooms to residents identified at entry points in the room; several simple heuristics or

solutions from the existing data association literature [50] may be explored to address this problem.

In the future, we envisage an integrated activity recognition system that uses a simple doorway

sensor module per room, along with smart meters, to infer the locations and fine-grained activities

of residents in the home, along with information about the resources used by each fixture and by

each resident. Additionally, emerging single point sensors that can automatically detect the use of

low power electronics may be added [57]. Even with such novel sensing solutions, our Bayesian

approaches to uniquely identify similar appliances by clustering their power signatures with motion

sensor signatures will be necessary and important. Also, in this dissertation, as mentioned earlier, we

do not require residents to wear tags or carry smartphones at all times. However, in the future, it is

possible that residents may use smartphones or other wearable devices some of the time as part of

other applications. In such a scenario, it would also be important to develop effective data fusion

solutions that leverage both the wearable sensor data with pervasive sensors in the home, to achieve

higher accuracy than would be possible from either system alone.
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