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Abstract 

Flooding events are projected to increase in frequency and intensity in coming years due 

to climate change. New tools and approaches are needed to assist decision makers in better 

understanding and addressing societal impacts due to flooding and how to mitigate these impacts. 

This research addressed three challenges related to flooding impacts: (i) better understanding how 

distributed stormwater infrastructure can mitigate flooding in urban catchments, (ii) designing and 

building spatially-detailed, real-time flood warning systems for emergency management purposes, 

and (iii) designing and building cyberinfrastructure to support reuse and transparency in both flood 

modeling and hydrologic modeling more broadly. The goal of this research was to address these 

challenges by conducting three studies.  

The first study explored building a catchment-scale flood model used to improve 

understanding of how distributing low impact development (LID) practices at the parcel level in 

an already urbanized watershed reduces runoff and, therefore, flood risk. At this scale and in an 

urban environment, spatially detailed descriptions of the physical environment are required. A 

physically-based modeling approach was used in order to answer "what if" hypothetical scenarios 

of rain garden adoption rates and their impact on watershed-scale runoff generation. 

The second study explored building an automated cloud-based system for forecasting 

flooded roadway and bridge locations at a regional-scale. Because the study area has very low 

topographic relief, a two-dimensional (2D), computationally-expensive hydrodynamic model is 

required. This study demonstrated the ability of using instances in a public cloud with powerful 

graphical processing units (GPUs) to run a large (average of 4 million nodes) 2D hydrodynamic 

model in a time frame relevant to real-time emergency management applications. The steps 

required to build this system were (i) creating an automated workflow for obtaining and processing 
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forecast rainfall data, (ii) running the 2D model in the cloud, (iii) using geospatial analysis tools 

to identify flooded bridges, and (iv) presenting the results online for decision makers. The system 

automates forecast data access and pre-processing, execution of a high-resolution 2D 

hydrodynamic model, and map-based visualization of model outputs using Amazon Web Services 

(AWS).  

The third study advanced approaches for sharing hydrologic models, such as the models 

created in this dissertation, through community supported cyberinfrastructure. Sharing models is 

important for scientific reproducibility, reuse, and fidelity. In this study, the first task was to design 

a metadata framework for hydrologic models that is flexible and applicable across the wide variety 

of models used by hydrologists. Then the study demonstrated the utility of this framework for 

sharing, publishing, and reusing models through an implementation within the HydroShare 

cyberinfrastructure system. 

In the first study, the results suggest that rain gardens with 30 cm berm heights and a total 

area equal to 20% of the impervious surfaces within the watershed should provide sufficient 

storage to mitigate flooding for rain events up to and including a 10 year return period storm event. 

The results also suggest approximately 15%, 27%, and 38% of the runoff generated from 

impervious surfaces should be diverted to the rain gardens to mitigate flooding from 2, 5, and 10 

year return period storm events, respectively. Given prior work on the adoption of LID approaches 

for other watersheds, rain gardens could effectively mitigate up to a 5 year return period storm 

event within the watershed, although further research on possible adoption rates in the study 

watershed is needed to more fully support this conclusion. In the second study, an 80x speed-up 

in execution time of the 2D models was achieved by using GPUs rather than a central processing 

unit (CPU). A prototype deployment system was built within the Amazon Web Services (AWS) 
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cloud that includes a web front-end, execution for the model engine, and storage of the model 

output data. The system is designed to run automatically during extreme weather events, produce 

near real-time results, and consume few computational resources until triggered by an extreme 

weather event. Although the model is built for a specific region of Virginia, the architecture serves 

as an example that could be replicated to other regions where 2D hydrodynamic models are 

required for real-time flood warning applications. In the third study, a general approach for 

representing environmental model metadata that extends the Dublin Core metadata framework was 

proposed. The framework was implemented within the HydroShare system and applied for a 

hydrologic model sharing use case. This example application demonstrates how the metadata 

framework implemented within HydroShare can assist in model sharing, publication, reuse, and 

reproducibility.  
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Chapter 1: Introduction 

 

Floods were the number one natural disaster in the US in terms of the lives lost and property 

damage during the 20th century (Perry, 2000). Statistics show that from 2006 to 2015, total flood 

insurance claims averaged more than $1.9 billion per year (NFIP Statistics, 2016). Rainfall events 

are predicted to become more frequent and intense due to climate change, which is expected to 

cause increased flooding (Melillo et al., 2014). As society faces flooding events with increasing 

frequency and intensity, flood modeling systems will become an even more important tool for 

decision makers. Such models can be used to warn municipalities and communities of forecasted 

flooding impacts. They can also be used to test alternative flood mitigation strategies for 

addressing flood problems. This research advances knowledge of flooding impacts and modeling 

methods by focusing on three knowledge gaps: the use of distributed stormwater controls for flood 

mitigation in small urban catchments, the use of 2D hydrodynamic models for flood warning at 

the regional-scale, and methods for documenting, sharing, and reusing flood models within the 

scientific and management communities. 

At the catchment-scale (~10 - 100 km2), flood models require a detailed description of the 

physical environment, especially for an urban watershed where stormwater infrastructure plays a 

significant role in the system. These models can be used for testing alternative solutions to flooding 

problems. For example, in the stormwater management community, low impact development 

(LID) approaches are drawing increased attention (Dietz, 2007). LID as a concept integrates land 

development and environmental concerns with the goal of minimizing the negative impacts of land 

development (Davis, 2005). LID approaches often emphasize distributed stormwater controls, 

such as rain gardens, implemented at the parcel-scale. For highly urbanized watersheds without 
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sufficient space for new centralized stormwater controls, LID approaches may be able to mitigate 

flooding impacts caused by intensive storm events. 

At the regional-scale (~10x103 - 100x103 km2), flood models often face computational 

challenges, especially when modeling low-relief terrains that require more detailed two 

dimensional (2D) hydrodynamic models. For these low-relief terrains, one dimensional (1D) 

models are not sufficient due to the limitations of assumed uniform water velocity and constant 

water surface elevation modeled on each cross section (Garcia et al., 2015). Executing 2D 

hydrodynamic models at the regional scale requires parallel computation in order to run the model 

in a time frame reasonable for flood warning applications. Graphical processing units (GPUs) have 

recently been shown to be effective for running 2D hydrodynamic models with speed-ups of ~100x 

(Huxley and Syme, 2016; Garcia et al., 2015). These new computational approaches suggest that 

regional flood warning systems can be implemented with the spatial resolution needed to provide 

targeted and detailed information to decision makers. 

Regardless of the scale of a modeling application, it is important to be able to share the 

model, its inputs, and its results with others. As demonstrated in this research, it takes a significant 

amount of effort to collect data, construct model inputs, and calibrate and validate model 

parameters. From a pragmatic perspective, this is an inefficient use of a scientist's or engineer's 

time. Perhaps more importantly, it inhibits the ability to reproduce or reuse studies that have a 

significant computational modeling component (David et al., 2016; Essawy et al., 2016; Gil et al., 

2016). One way to begin to address these challenges is through better approaches for sharing and 

reusing models built by others. Just as there has been a major push to make better use of data 

collected and maintained by others, the scientific community can benefit from a similar push to 
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make better use of models built by others. A challenge is how to achieve model sharing given the 

diversity of models used within the hydrology community. 

The overarching objective of this research is to advance knowledge in flood modeling and 

flood mitigation strategies. This objective is achieved through studies targeting three distinct but 

related research questions in the following three chapters. Chapter 2 addresses the first research 

question: "What potential does distributed green infrastructure have for flood mitigation at the 

catchment-scale, especially for highly urbanized catchments?" There is evidence that LID 

approaches distributed at the parcel-scale could have significant impact on runoff reduction at the 

watershed-scale, but there is a lack of agreement on the extent of this reduction, especially for 

flood mitigation purposes. Few, if any, studies have researched the required adoption level 

necessary to achieve sufficient runoff reduction to reduce flood risks within an urban watershed 

for storms with different return periods.  

Chapter 3 addresses the second research question: "Is it possible to design and build a 

cloud-based regional flood system for warning and emergency management purposes for low-

relief terrains?" Having the ability to accurately and quickly project potential impacts to 

transportation infrastructure due to forecasted weather events will become more critical given 

increased intensity of rainfall expected with climate change. A challenge facing this type of 

regional model, especially for low-relief terrains, is that it would require a computationally-

expensive 2D hydrodynamic model. The ability to run a large (average of 4 million nodes) 2D 

hydrodynamic model in a time frame relevant to real-time emergency management applications is 

one example of such a challenge.  

Chapter 4 includes methods and solutions for the third research question: "How should 

model metadata and cyberinfrastructure be designed to better support reuse and transparency in 
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hydrologic modeling?" Advanced approaches, through community supported cyberinfrastructure, 

are required for sharing hydrologic models like those created in this dissertation. Sharing models 

is important for scientific reproducibility, reuse, and fidelity. A motivating factor for this research 

is the design and development of a new system called HydroShare (https://www.hydroshare.org). 

The goal of HydroShare is to advance hydrologic science by enabling the scientific community to 

more easily and freely share products resulting from their research - not only the scientific 

publication summarizing a study, but also the data and models used to create the scientific 

publication (Horsburgh et al., 2015; Tarboton et al., 2014; Tarboton et al., 2013).  

Finally, Chapter 5 provides key conclusions and suggested future research based on the 

research outcomes from Chapters 2 - 4. 
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Chapter 2: Distributed Stormwater Controls for Flood Mitigation 
within Urbanized Watersheds: Case Study of Rocky Branch 

Watershed in Columbia, South Carolina1 
 

2.1 Introduction 

Low impact development (LID) approaches are attracting increasing interest in stormwater 

management (Dietz, 2007). LID as a concept integrates land development and environmental 

concerns with the goal of minimizing the negative impacts of land development (Davis, 2005). 

LID approaches differ from traditional stormwater management approaches in a number of key 

ways. First, they seek to minimize disturbance of a site by mimicking the natural hydrology of the 

site. Second, they emphasize maintaining the predevelopment runoff volume through increased 

infiltration of runoff generated from impervious surfaces, in contrast to the traditional approach, 

which focuses primarily on the mitigation of peak flow rates for larger storm events. Third, they 

emphasize distributed, parcel-scale controls for runoff infiltration, storage, and detention (Abi Aad 

et al., 2010; Dietz, 2007). One of the more commonly used LID approaches to stormwater 

management is bioretention technology (e.g., bioinfiltration and rain gardens) (Davis et al., 2009). 

For flood mitigation, which is the focus of this work, rain gardens have been found to be an 

effective LID approach given their ability to store and infiltrate runoff (Abi Aad et al., 2010). 

Distributing LID approaches throughout a watershed could offer large benefits for highly 

urbanized watersheds. Many urbanized watersheds experience flooding because they were 

developed prior to stormwater regulations and have insufficient storage for runoff generated from 

1This Chapter is a draft manuscript of a paper that has since been published. Readers are referred to the following 
citation for the final published version of the manuscript:  
Morsy, M.M., Goodall, J.L., Shatnawi, F.M., Meadows, M.E., 2016. Distributed Stormwater Controls for Flood 
Mitigation within Urbanized Watersheds: Case Study of Rocky Branch Watershed in Columbia, South 
Carolina. Journal of Hydrologic Engineering, 21(11), p.05016025. 
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 impervious surfaces. Owing to the level of urbanization, there may simply be no space left to add 

large stormwater detention facilities, which greatly restricts the stormwater engineer's design 

flexibility. If it is possible to reduce runoff at the parcel-scale using distributed LID approaches 

like rain gardens, then the need for large, centralized stormwater facilities would be reduced. 

Because this study considers the case where LID approaches are added to an already urbanized 

watershed, it is referred to as a retrofit case study. The study results also apply to new construction, 

although new construction would allow for greater design flexibility than retrofit applications. 

Most prior research on the application of LID approaches used field studies to investigate 

how LID approaches compare to traditional stormwater practices (e.g., Bedan and Clausen, 2009; 

Line et al., 2011). A common approach has been to take a watershed-scale perspective looking at 

paired basins where one basin adopted LID approaches for stormwater management and the other 

basin used more traditional stormwater best management practices (BMPs). Studies taking this 

approach have concluded that LID techniques are more effective at reducing runoff volumes than 

traditional approaches (e.g., Bedan and Clausen, 2009; Selbig and Bannerman, 2008). These 

studies have generally been limited to relatively small watersheds (less than 1 km2) and to new 

developments. Applying field studies to larger urbanized watersheds is challenging given their size 

and the inability to install a large number of LID practices and measure their impact on the system. 

Instead, modeling approaches can be used to address the question of how LID adoption in a large, 

already urbanized watershed might reduce runoff volumes and flood risks. 

Some modeling studies of urban watersheds have begun to look at the effectiveness of 

distributed stormwater controls at the watershed-scale. Damodaram et al. (2010) presented a 

modeling approach to incorporating LID practices into an existing hydrologic model to determine 

watershed-scale impacts on runoff delivered to streams. After applying the model to a watershed 
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in College Station, Texas, the researchers concluded that LID approaches, while effective for 

controlling runoff from small events, may yield little runoff control for flood events. The study 

watershed was large, but not as densely developed as the watershed used in this study. Also, the 

study did not use the latest version of the Storm Water Management Model (SWMM version 5) 

with new modules for simulating the impact of LID on runoff reduction. A related study using 

SWMM version 5 with LID modeling capabilities investigated the potential for LID techniques to 

mitigate projected increases in precipitation under climate change scenarios for New York City 

(Zahmatkesh et al., 2015). The researchers found that retrofits with LID controls could reduce 

average annual runoff by over 40% and peak flow rates by approximately 10%. 

Field and data analysis studies have supported the claim that LID practices distributed 

throughout a watershed could have significant impacts on watershed-scale hydrology for highly 

urbanized watersheds. A study in Wilmington, North Carolina, showed stormwater control 

measures added as retrofits to an urbanized watershed in municipal rights-of-way was able to 

reduce peak discharge by 28% (Page et al., 2015). Researchers investigating a suburban watershed 

in Cincinnati also showed evidence that the adoption of rain gardens and barrels at the parcel level 

could have a significant effect on watershed hydrology (Shuster and Rhea, 2013). Eighty-five rain 

gardens and 174 rain barrels were installed in a 1.8 km2 urban watershed. Even with this level of 

adoption, a small but significant reduction in runoff was observed between pre- and post-LID 

implementation conditions. The study also showed that LID practices at the parcel level could be 

successfully implemented with novel economic programs. Finally, Loperfido et al. (2014) 

analyzed observational data from different watersheds in suburban Washington, District of 

Columbia, and concluded that distributed stormwater controls might be an effective means of 

reducing runoff volumes during extreme precipitation events. 
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Based on these prior studies, there is evidence that LID approaches distributed at the parcel-

scale could have a significant impact on runoff reduction at the watershed-scale, but there is a lack 

of agreement on the extent of this reduction, especially for flood mitigation purposes. Few, if any, 

studies have researched the required adoption level necessary to achieve sufficient runoff reduction 

to reduce flood risks within an urban watershed for storms with different return periods. The 

primary objective of this study, therefore, is to improve understanding of how the rate of adoption 

of LID practices at the parcel level in an already urbanized watershed affects runoff detention and, 

therefore, flood risk. The Rocky Branch Watershed in Columbia, South Carolina, is used as a case 

study for the present research. This watershed faces a recurrent flooding problem, as discussed in 

the "Study Area" section, that is common in many other older cities with insufficient stormwater 

controls. Using SWMM and a number of modeling scenarios, simulations were used to determine 

the LID practices that must be adopted to reduce peak flows in the watershed so as not to exceed 

bankfull conditions. 

 

2.2 Study Area 

The Rocky Branch Watershed is approximately 10.75 km2 in area and is located in 

downtown Columbia, South Carolina (Figure 2.1). Rocky Branch is approximately 6.5 km long 

and discharges into the Congaree River. The watershed has long experienced recurrent flooding 

problems, in particular in a low-lying commercial district called Five Points (highlighted in Figure 

2.1-a). Flooding typically occurs during intense summer thunderstorms. Significant efforts have 

been made to mitigate these flooding problems using traditional stormwater controls, but flooding 

still occurs at regular (approximately annual) intervals (Monk and Holleman, 2010; NOAA, 2010; 

Santaella and Gillbert, 2011; The State, 2012; The State, 2014; WIS TV, 2015). The headwaters 
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include residential communities and a portion of the University of South Carolina campus, where 

it would be feasible to install rain gardens as stormwater controls. 

 
Figure 2.1 (a) Rocky Branch Watershed in downtown Columbia, South Carolina, and (b) 

impervious surfaces according to the National Land Cover Dataset (orthoimagery data from 
USGS National Map; impervious surface layer data from NLCD, 2011). 

Owing to the high percentage of impervious surfaces and steep slopes, Rocky Branch has 

a flashy response to rainfall events. The time to peak for an observed storm event that caused 

flooding at the Pickens Street station (Figure 2.1) was approximately 1 hour. According to the 

2011 National Land Cover Dataset (NLCD), 97% of the watershed is developed (17% high 

intensity, 37% medium intensity, 31% low intensity, and 12% developed open space), and much 

of the watershed is impervious (Figure  2.1-b). Taking just the impervious surfaces within the 

watershed, the maximum landscape slope is 42%, and approximately one-fifth of the landscape 
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has a slope greater than 5%. It is well known that impervious surfaces, and in particular connected 

impervious surfaces, increase runoff and flooding if not mitigated through stormwater controls and 

BMPs (Arnold and Gibbons, 1996; Lee and Heaney, 2003; Roesner and Urbona, 1998; Schueler, 

1995). 

 

2.3 Data and Methods 

A modeling approach was used during this study to improve understanding of how the rate 

of adoption of LID practices at the parcel level in an urbanized watershed impacts runoff detention 

and, therefore, flood risk. The model selected was the SWMM developed by the U.S. 

Environmental Protection Agency (USEPA). A modeling approach was used because of the need 

to answer "what if" hypothetical scenarios of rain garden adoption rates and their impact on 

watershed-scale runoff generation. In this section, the SWMM model is described along with its 

relevance for modeling watershed-scale hydrology and role in LID adoption at the watershed-

scale. Next, the steps required to prepare input data for the model are described, followed by a 

discussion of the model calibration and evaluation to provide confidence in the modeling results. 

Finally, there is a discussion of the modeling scenarios conducted to address the study research 

objective. 

 

2.3.1 Model Description and Setup 

SWMM version 5.0.022 was used to model Rocky Branch Watershed and simulate the 

effects of adding rain gardens at the parcel-scale to reduce peak storm flows in the main branch. 

SWMM is a dynamic, open-source computer model that tracks the quantity and quality of the 

runoff in urban watersheds for either single-event or continuous simulations (Rossman, 2012). 
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SWMM routes runoff from subcatchments through a network system consisting of pipes, channels, 

storage/treatment devices, pumps, and regulators. SWMM can model the hydrological 

performance of typical LID controls such as bioretention cells (or rain gardens), infiltration 

trenches, porous pavement, rain barrels, and vegetative swales. These LID techniques can be 

placed within the desired subcatchments at any size and spatial coverage (Qin et al., 2013). SWMM 

has been used extensively to evaluate the effects of several conventional drainage systems and LID 

designs in stormwater management (Abi Aad et al., 2010; Elliott and Trowsdale, 2007; Qin et al., 

2013; Zahmatkesh et al., 2015; Zoppou, 2001). 

The SWMM model simulates three primary processes: infiltration, surface runoff, and flow 

routing. The infiltration method used is an approach adopted from National Resource Conservation 

Service (NRCS) curve number (CN) method for estimating runoff. Manning's equation was used 

for overland flow. The dynamic wave routing method was used for channel routing because it can 

account for channel storage, backwater, entrance/exit losses, flow reversal, and pressurized flow. 

This method solves the one-dimensional Saint Venant flow equations, which consist of continuity 

and momentum equations for conduits and a volume continuity equation at nodes that allows for 

representing a full closed-conduit pressurized flow. LID techniques are represented in the model 

as a combination of vertical layers that have specific properties defined on a perunit area basis. 

Infiltration rates in bioretention cells, which are also called rain gardens, are simulated by the 

model. Zhang et al. (2010) conducted field experiments investigating the SWMM representation 

of bioretention facilities and found that the SWMM's representation matched observed peak flow 

reduction (77% from the model compared to 82% from observations). 

Rain gardens were selected as the LID implementation because they could be adopted 

widely within the watershed and offered significant storage and volume reduction capacity. The 
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rain garden properties and characteristics were obtained from three resources: Wisconsin 

Department of Natural Resources Conservation Practice Standard (Bannerman and Considine, 

2003), Maryland 2000 Stormwater Management Design Manual (MDE, 2000; Schueler and 

Claytor, 2000), and Delaware Green Technologies Design Manual and Model (DNREC, 2005). 

Lucas (2005) includes easy-to-follow guidance for siting, sizing, installing, and planting a rain 

garden. A rain garden consists of three layers: surface, soil, and storage (Table 2.1). In the model, 

the total depth used for the soil and storage layers is 120 cm, which is the maximum recommended 

depth, while the surface layer storage depth (ponding depth or berm height) is varied between the 

minimum and maximum recommended depths of 10 cm and 30 cm. 

 

Table 2.1 Specifications and characteristics of rain gardens to be implemented in Rocky Branch 
Watershed. 

Layer/Parameter Value 
Surface 

Storage depth (mm) 100 - 300 
Vegetation (volume fraction)  0.5 
Surface roughness 0 
Surface slope 0 

Soil  
Soil thickness (mm) 900 
Porosity 0.44 
Field capacity 0.15 
Wilting point (volume fraction) 0.1 
Conductivity (mm/hr) 30 
Conductivity slope 10 
Suction head (mm) 60 

Storage 
Storage height (mm) 300 
Storage void ratio 0.75 
Storage conductivity (mm/hr) 250 
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2.3.2 Data Preparation 

The Rocky Branch Watershed was delineated into 134 subcatchments using a LiDAR-

derived 3 m resolution digital elevation model (DEM) (Figure 2.2). The discretization was done 

by placing subcatchment outlets at 50 m intervals along natural (irregular) portions of the stream 

channel and at 30 m intervals along the concrete-lined and conduit portions of the stream channel. 

Stormwater inlets along the streamline were also designated as subcatchment outlets. Standard 

Geographical Information System (GIS) procedures were used to delineate the subcatchment 

boundaries. The delineated subcatchments were verified by available orthoimagery data. 

 
Figure 2.2 Depiction of Rocky Branch Watershed in SWMM model with 134 subcatchments 

and 188 conduits. 



  15 

Rocky Branch consists of natural (irregular) channels, pipe sections, and concrete-lined 

channels that were represented in the model as 188 conduits (Figure 2.3). The Manning's roughness 

coefficient for the natural cross sections was assumed to be between 0.03 and 0.04, while the 

Manning's roughness coefficient of the concrete lining cross sections was assumed to be between 

0.011 and 0.015. The pipe sections included circular, box, and arch cross sections. Each of the 188 

conduits in the model was assigned a cross sectional profile. The cross-sectional profiles were 

obtained from a combination of LiDAR and ground survey data, and a sample of the profiles was 

verified by site visits. Figure 2.3 shows example cross sections as they appear within the model 

for the two locations along the branch where there are stream gauges. 

 
Figure 2.3 Rocky Branch showing stormwater infrastructure lines and cross-sectional types; 

example cross sections are shown for the two stream gauge locations. 
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Land use, soils, slope, and CN values were derived using publically available geospatial 

data sets and GIS processing. Land-use and imperviousness data sets were obtained from the 

NLCD 2006 (Fry et al., 2011), the latest available version at the time of the initial model 

development activities. The 2011 and 2006 NLCD data were compared, and no significant 

differences were found for the study area. NLCDs are raster data, where each pixel is 30 m x 30 

m. The Soil Survey Geographic (SSURGO) data sets were downloaded from the USDA for 

Richland County, South Carolina (SSURGO, 2012). The SSURGO data set is a vector polygon 

data set with attributes describing soil properties, including Soil Hydrologic Groups. According to 

these data, 72% of the watershed area is Group B soils, 22% Group A, and 6% Group C. The land 

use and soil data were used to derive CN values for each subcatchment using NRCS values 

(Cronshey, 1986) and the processing steps shown in Figure 2.4. Finally, average slopes for each 

subcatchment were obtained from the DEM used for watershed delineation. 



  17 

 
Figure 2.4 GIS workflow for CN computation using land use and soil hydrologic group datasets. 
 

2.3.3 Observed Storm Events 

Rainfall data were collected during the study period of June 2012 - June 2013 using a 

tipping bucket gauge (TR-525USW) (Figure 2.5-a) located at the University of South Carolina's 

300 Main Street engineering building (Figure 2.1-a). The factory calibration of the gauge is 0.254 

mm (0.01 in.) per tip. The gauge was connected to an electronic data logger (Sutron 8210 A Data 

Collection Platform). The gauge was installed in a clear and unobstructed mounting location. The 

stage was measured at the 300 Main Street station for the study period using a bubbler water level 

gauge (Sutron 8210 A) (Figure 2.5-b). Stage and streamflow data were also obtained from the 



  18 

USGS (Station 02169505) for the Pickens Street station. These streamflow data at this USGS 

station were obtained using an Acoustic Doppler Current Profiler (ADCP) (Levesque and Oberg 

2012). Figures 2.6 and 2.7 show the observed data for two rainfall events at the two stations: the 

February 7, 2013, and July 10, 2012, storms, respectively. These storms are presented as 

representative examples of all six storms. The February 7, 2013, storm was used for model 

calibration, and the model results for this storm were typical of the other two storms used for 

calibration. The July 10, 2012, storm was the largest observed storm event and was used for model 

evaluation. Baseflow at the start of the storm events, which is typically very low, was subtracted 

from the hydrographs for easier comparison between storm events. 

 

 

 
(a) 

 
(b) 

Figure 2.5 (a) The rain gauge and (b) the stage gauge used to collect observation data at 300 
Main Street. 



  19 

 

 
Figure 2.6 Rainfall intensity and corresponding observed and simulated stage for the February 7, 
2013 event at two locations along the river channel: (a) 300 Main Street; (b) Pickens Street; this 

event, which did not cause flooding, was used for model calibration. 
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Figure 2.7 Rainfall intensity and corresponding observed and simulated stage for the July 10, 

2012 event at two locations along the river channel: (a) 300 Main Street; (b) Pickens Street; the 
event was used for model evaluation; this was the largest of the observed storm events and 

caused flooding within the watershed. 
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2.3.4 Model Calibration and Evaluation 

Model calibration was conducted using the subcatchment CN values as the calibration 

parameter. Each subcatchment in the study area was assigned a specific CN value. The CN values 

were uniformly changed by a percentage increase or decrease while also ensuring the adjusted 

values were within the 25 - 98 range. The objective of the calibration was to minimize the relative 

error between observed and modeled stream stage and flow peaks available at the two gauging 

locations. This was done for three of the six observed storm events (Table 2.2) using a manual 

calibration procedure that prioritized accuracy for the large storm event on July 11, 2012, that 

caused flooding. The three storms selected for calibration were chosen to cover different rainfall 

depths, durations, and seasons. The calibrated model was evaluated by comparing predicted and 

observed peak flow and stage values for the remaining three observed storm events. The results of 

the model calibration and evaluation are described in the "Results and Discussion" section. 

Table 2.2 Properties of observed storm events used for model calibration and evaluation. 

Storm date Duration (hh:mm) Cumulative rainfall depth (mm) 

July 11, 2012 00 :55 35 .05 
September 4, 2012 04 :23 10 .41 
February 7, 2013 09 :40 33 .02 
July 10, 2012 01 :02 50 .29 
August 20, 2012 06 :33 16 .26 
September 18, 2012 01 :09 7 .37 

 

 
2.3.5 Model Scenarios 

Three model scenarios were conducted to address the research objective of improving 

understanding of how the rate of adoption of LID practices at the parcel level in an urbanized 

watershed impacts runoff detention. This was done by modeling the peak stage while varying three 
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key model variables: ponding depth, rain garden area, and diverted runoff. Ponding depth is the 

maximum depth water can pond in the rain garden before overflowing (i.e., the rain garden berm 

height). Rain garden area is the total rain garden area as a percentage of the watershed impervious 

area. Together, these two variables control each rain garden's storage potential. Diverted runoff is 

the percentage of the runoff generated from impervious surfaces that is diverted to rain gardens. 

Three general scenarios were investigated in the study. 

Scenario 1: Assume all runoff generated on impervious surfaces is diverted to a rain 

garden (best-case scenario). Introduce rain gardens with total area equal to 10% and then 20% of 

the impervious surface area in the watershed. Model the reduction in stage at the 300 Main Street 

station for the event on July 10, 2012. 

Scenario 2: Let the ponding depth vary between 20 cm and 30 cm and the rain garden area 

vary from 15% to 30% of the impervious surfaces in the watershed. Use the model to determine 

the fraction of runoff from impervious surfaces that must be diverted to rain gardens to reduce the 

peak stage at the 300 Main Street station below bankfull stage for different combinations of 

ponding depth and rain garden area. 

Scenario 3: Fix the ponding depth at 30 cm for maximum storage potential. Increase the 

storm size to 5, 10, 25, and 50 year return period storms. Use the model to determine the rain 

garden area and diverted runoff required to reduce the peak stage at the 300 Main Street station 

below bankfull conditions for these larger storm events. 

According to the Precipitation Frequency Data Server (PFDS) and using the COLUMBIA 

UNIV OF SC, 38-1944 station, the July 10, 2012, storm was equivalent to a 2 year return period, 

1 hour event (Bonnin et al., 2006). Information from PFDS was used to generate storms with larger 

return periods while maintaining the rainfall pattern and 1 hour storm duration from the July 10, 
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2012, event. This was done by normalizing the July 10, 2012 event and then multiplying this 

normalized storm by the total precipitation depth for a 5, 10, 25, and 50 year return period, 1 hour 

duration event obtained from PFDS. Thus, these are synthetic storms with higher return periods 

but the same rainfall pattern and duration as the storm observed on July 10, 2012. 

 

2.4 Results and Discussion 

2.4.1 Model Calibration and Evaluation 

The final calibration resulted in the CN values for all subwatersheds being reduced by 15% 

from their initial value uniformly throughout the watershed. This calibration resulted in the July 

11, 2012, event having the lowest error with the two stage depth predictions within 1% relative 

error and the discharge within 8% relative error (Table 2.3). The relative errors were greater for 

the other two storms used in the calibration stage. The February 7, 2013, event (Figure 2.6) was 

generally between the other two storms in terms of relative error for predicting peak flows. The 

highest relative errors were for the September 4, 2012, event at the Pickens Street monitoring 

station, with relative errors of 30 - 35% for both stage and flow. For the same event, the stage 

relative error was only 8% for the 300 Main Street station. The September 4, 2012, event was a 

relatively minor event, so this was deemed an acceptable error given that the primary objective of 

the calibration was to match the larger July 11, 2012, storm event that resulted in flooding. 

Three independent storm events not considered when calibrating the model were used for 

evaluating the model. Results of the model evaluation show that the relative errors of both stage 

and discharge were less than 12% for two of the three storm events (see Table 2.3 for statistics for 

all three storms and Figure 2.7 for the simulated hydrograph for the storm event that occurred on 

July 10, 2012). The August 20, 2012, storm had higher relative errors, showing that the model 
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under predicted both stage and flow at both observation stations for this event. A likely explanation 

for this is differences in the antecedent moisture condition (AMC) between the August 20, 2012, 

storm and the other two storm events. The model assumes normal AMC (AMC II), which is 

consistent with the two storms that had lower relative errors. Rainfall records for the 5 days prior 

to the August 20, 2012, event, however, suggest wet AMC (AMC III). To account for this, CN 

parameters in the model for the August 20, 2012, storm could be adjusted to account for wet AMC, 

and this would reduce the relative error because it would increase the amount of runoff predicted 

by the model. Given that the model scenarios performed in this study assume normal AMC, the 

model was considered acceptable for the purposes of the study. 
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Table 2.3  Relative error between modeled and observed channel stage and flow at two stations for storm events used in model 
calibration and evaluation. 

Storm events 
Calibration Evaluation 

July 11, 2012 September 4, 2012 February 7, 2013 July 10, 2012 August 20, 2012 September 18, 2012 

300 Main St. Station 
Stage (m) 
Observed  1 .63 0 .70  0 .84    2 .45    0 .79    0 .66 
Modeled  1 .62 0 .76  0 .78    2 .15    0 .58    0 .59 
Relative error (%) -0 .65 8 .88 -7 .58 -12 .17 -26 .81 -10 .14 

Pickens St. Station 
Stage (m) 
Observed 1 .33 0 .38    0 .53 1 .97    0 .50  0 .27 
Modeled 1 .34 0 .51    0 .46 2 .05    0 .27  0 .27 
Relative error (%) 1 .06 33 .60 -12 .66 4 .02 -45 .73 -2 .22 
Flow (m3/s) 
Observed 22 .80 3 .05 5 .00 - 4 .65  2 .80 
Modeled 24 .61 4 .13 5 .46 38 .35    3 .05  2 .76 
Relative error (%) 7 .95 35 .36 9 .27 - -34 .46 -1 .31 
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2.4.2 Impact of Rain Garden Area on Flood Mitigation 

Figure 2.8 shows results from the first model scenario. The channel stage for the July 10, 

2012, event at the Main Street monitoring station was reduced to below bankfull conditions 

through the introduction of rain gardens into the watershed. This is a best-case scenario in that all 

runoff from impervious surfaces can be diverted to the rain gardens. The cases where rain garden 

area equals 10% and 20% of the watershed impervious area are presented. The results suggest that 

including rain gardens with a total area just above 10% of the impervious area within the watershed 

would reduce the peak stage to below bankfull conditions. If the rain garden area is increased to 

20% of the impervious area within the watershed, the flood peak would be further reduced to 

approximately 0.2 m below the bankfull stage at the 300 Main Street station. Prior studies and 

guidelines focusing on the water quality and groundwater recharge benefits of rain gardens 

recommend rain garden areas of 10 - 20% of the impervious area within a watershed (Atchison et 

al., 2006; Dussaillant et al., 2004), which interestingly would also be sufficient for flood control 

in this scenario. 
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Figure 2.8 Simulated reduction in channel stage for July 10, 2012, storm event at 300 Main 

Street through introduction of rain gardens into watershed. 

 

2.4.3 Runoff Contribution to Rain Gardens for Flood Mitigation 

Results from the second model scenario show the relationship between rain garden area, 

diverted runoff, and ponding depth for mitigating the July 10, 2012, flood event (Figure 2.9). As 

an example, consider the case from the prior analysis where ponding depth was equal to 10 cm 

and the rain garden area was equal to 10% of impervious surfaces. Figure 2.9 shows that 100% of 

the runoff from an impervious surface would need to be diverted to the rain gardens to not exceed 

bankfull conditions (i.e., to mitigate flooding). When the rain garden area is increased to 20%, the 

diverted runoff required to not exceed bankfull conditions decreases significantly to only 20%. 

This result shows the importance of sufficient rain garden storage to capture excess runoff volume. 

Figure 2.9 also shows that, once sufficient storage is achieved, either from increasing the ponding 

depth or increasing the rain garden area, the diverted runoff needed to not exceed bankfull 
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conditions approaches approximately 15% for this storm event. Finally, Figure 2.9 shows that if a 

ponding depth of 30 cm is used, the required storage volume is achieved with a rain garden area 

of 20% and additional rain garden area does not significantly aid flood mitigation for this storm. 

 
Figure 2.9 Required runoff diversion to mitigate flooding from July 10, 2012, event as function 

of rain garden area and ponding depth. 

 

2.4.4 Impact of Storm Return Period on Flood Mitigation 

Results from the third model scenario show how rain gardens could mitigate flooding for 

larger storm events. The prior scenarios focused on the July 10, 2012, event, which was determined 

to be a 2 year return period, 1 hour duration event. In this scenario, synthetic storms with higher 

return periods are used in the model (Figure 2.10). The hyetographs for these synthetic storms 

were generated using the same rainfall pattern and duration of the July 10, 2012, event, but with a 

total rainfall depth consistent with larger storm events as described in the "Materials and Methods" 
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section. Using these hyetographs and assuming a 30 cm rain garden ponding depth for maximum 

storage, Figure 2.11 shows the relationship between rain garden area and diverted runoff required 

for flood mitigation. Again this result shows a steep curve when rain garden storage is limited. 

Each return period approaches a diverted runoff value once sufficient volume is achieved. These 

diverted runoff values represent the runoff reduction required to mitigate flooding for the larger 

storm events. 

Assuming a given rain garden area and ponding depth, it is possible to determine the 

diverted runoff required to mitigate flooding for different return period storms (Figure 2.12). 

Figure 2.12 shows results for a rain garden area equal to 20% and 30% of the impervious area. For 

both cases, ponding depth is set to 30 cm for maximum storage potential. For return period storms 

less than 10 year, there is little difference between 20% and 30% rain garden areas. This suggests 

that both scenarios have sufficient storage to mitigate flooding for equivalent storms. Therefore, 

there is little to be gained from adding rain gardens with a total area exceeding 20% of the 

watershed's impervious cover for storms with return periods less than or equal to 10 year. For the 

10 year return period storm, approximately 38% of the runoff from impervious surfaces should be 

diverted to rain gardens to mitigate flooding. For the 5 year return period storm, approximately 

27% of runoff should be diverted, and this value drops to 15% for the 2 year return period storm. 

Storms with greater than a 10 year return period require that more than 50% of the runoff in the 

study watershed be diverted for flood mitigation. 
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Figure 2.10 Synthetic storm events with higher return periods and 1 hour duration; the rainfall 

pattern for each synthetic storm is based on observed July 10, 2012, storm event. 

 
Figure 2.11 Percentage of runoff from impervious surfaces that must be diverted to rain gardens 
to mitigate flooding as a function of rain garden area (assumes a 30 cm ponding depth for rain 

gardens). 
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Given these required rain garden areas and diverted runoff amounts, the question becomes 

what level of LID adoption is reasonable within the watershed. Bakacs et al. (2013) found that, 

following an educational training program, 48% of respondents in Virginia and 58% of 

respondents in New Jersey adopted a stormwater BMP at their homes. The majority of the 

respondents who took action redirected downspouts to gardens or mulched areas (64% and 54%, 

respectively). A much smaller fraction of respondents (12% and 4%, respectively) installed a rain 

garden. Given that 35% of the watershed's impervious cover is rooftop area, redirecting 

downspouts to existing gardens or mulched areas with sufficient storage to reduce runoff could 

have a significant impact. Furthermore, efforts by public entities, including the university, to 

reduce runoff from impervious surfaces using LID techniques could likewise be significant. Thus, 

while it is difficult to determine what level of runoff reduction through the adoption of LID 

techniques is possible in the watershed, it seems reasonable to suggest that the adoption of LID 

approaches could achieve the storage increase and runoff capture required to mitigate flooding up 

to a 5 year return period storm (rain gardens with total area equal to 20% of impervious surfaces 

within the watershed, 27% of the runoff generated from impervious surfaces diverted to rain 

gardens). 
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Figure 2.12 Percentage of runoff from impervious surfaces that must be diverted to rain gardens 
to mitigate flooding as a function of storm return period (assumes a 30 cm ponding depth for rain 

gardens). 

 

2.5 Conclusions 

The primary objective of this study was to improve understanding of how the adoption of 

LID practices, in particular rain gardens, at the parcel level in an already urbanized watershed 

might impact runoff detention and, therefore, flood risk. By understanding the required conditions 

under which distributed storm water controls like rain gardens could mitigate flooding, it is 

possible to suggest the potential and limitations of the approach. Ultimately stormwater control 

measures are used in combination to address water quality and quantity issues in developed 

watersheds, so these modeling scenarios are meant more for providing bounds on LID techniques, 

and rain gardens in particular, as a flood mitigation strategy. 
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The first challenge in addressing flooding in an urbanized watershed is to provide sufficient 

volume for storing runoff generated from impervious surfaces in the watershed. In this study, the 

storage volume added by the rain gardens was the product of two model variables: the total area 

of the rain gardens in the watershed as a percentage of the total impervious surface and the ponding 

depth (or berm height) of the rain gardens. Typical values for rain garden area cited in prior work 

focusing on water quality and groundwater recharge benefits of rain gardens have been 10 - 20% 

of the impervious area (Dussaillant et al., 2004). The results suggest that 20% is a sufficient area 

to mitigate flooding for storm events with less than or equal to a 10 year return period if the 

maximum recommended ponding depth of 30 cm is used. 

Once sufficient storage is available, the next challenge is diverting runoff from impervious 

surfaces to locations like rain gardens, where it can infiltrate. Using modeling scenarios for the 

study watershed, it was determined that 15% of runoff from impervious surfaces would need to be 

diverted to mitigate flooding for a 2 year return period, 1 hour duration storm. For a 5 year return 

period, 1 hour storm, there would need to be a 27% runoff reduction. Storms with a 10 year return 

period would require 38% runoff reduction, whereas higher return periods would require over 50% 

runoff reduction. Given that rooftop areas account for 35% of a watershed's impervious cover, and 

research suggests approximately 50 - 60% adoption rates of LID techniques by homeowners 

following an outreach campaign (Bakacs et al., 2013), the results of this study suggest that 

distributed LID approaches could potentially be used to mitigate up to a 5 year return period storm. 

However, further research on possible adoption rates within the study watershed is needed to verify 

this conclusion. 
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Chapter 3: A Cloud-Based Decision Support System for Managing 
Flooding Impacts to Transportation Infrastructure in Coastal 

Virginia2 
 

3.1 Introduction 

Floods were the number one natural disaster in the US in terms of the lives lost and property 

damage during the 20th century (Perry, 2000). Statistics show that from 2006 to 2015, total flood 

insurance claims averaged more than $1.9 billion per year (NFIP Statistics, 2016). Rainfall events 

are predicted to become more frequent and intense due to climate change, which is expected to 

cause increased flooding (Melillo et al., 2014). As society faces flooding events with increasing 

frequency and intensity, flood modeling will become an even more important tool for decision 

makers. Such models can be used to warn municipalities and communities of forecasted flooding 

impacts. They can also be used to test alternative flood mitigation strategies for addressing flood 

problems.  

The National Research Council (NRC) has recommended increased use of two dimensional 

(2D) hydrodynamic models for flood risk management purposes (NRC, 2009). There are several 

advantages to using 2D models over one dimensional (1D) models that include better resolution 

of velocity, localized depth and surface water elevation, and determination of floodplain extent 

directly. 2D hydrodynamic models are especially important for cases with complex flows such as 

in low-relief terrains with flat and/or mild slopes. For these low-relief terrains, 1D models are not 

sufficient due to the limitations of assumed uniform water velocity and constant water surface 

elevation modeled on each cross section (Garcia et al., 2015).  

2This Chapter is in preparation for submission to a peer reviewed journal. The tentative title, authors, and journal 
for the submission follow: 
Morsy, M.M., Goodall, J.L., O'Neil, G., Sadler, J., Voce, Daniel, Hassan, G., Huxley, C. A Cloud-Based Decision 
Support System for Real-time Warning of Flooding Impacts to Transportation Infrastructure in Coastal Virginia. 
In preparation for submission to Environmental Modelling & Software. 
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Executing 2D hydrodynamic models at the regional scale (~10x103 - 100x103 km2) requires 

parallel computation in order to run in a time frame reasonable for flood warning applications. 

graphical processing units (GPUs) have recently been shown to be an effective way for parallel 

execution of 2D hydrodynamic models with speed-ups of 20x to 100x (Huxley and Syme, 2016; 

Garcia et al., 2015; Vacondio et al., 2014; Kalyanapu et al., 2011). Vacondio et al. (2014) expects 

that GPUs will continue to be attractive for 2D numerical models compared to clusters of central 

processing units (CPUs) due to (i) fast-developing GPU hardware, (ii) quickly decreasing costs, 

and (iii) less maintenance compared to large CPU clusters. With the speed-ups provided by GPUs, 

regional flood warning systems can now be implemented with 2D hydrodynamic models and the 

spatial resolution needed to provide targeted and detailed information to decision makers. 

There are several related efforts aimed at improving flood warnings. The National Weather 

Service (NWS) and the United States Geological Survey (USGS) have a joint project to generate 

flood inundation maps at locations where a NWS forecast point and a USGS stream gauge exist 

(Fowler, 2016). At these locations, a flood inundation map is created for multiple possible water 

surface elevations and, by using a rating curve and forecasted discharge, the data is converted into 

the corresponding water surface elevation. Then the corresponding flood inundation map is 

selected from a precomputed library of flood inundation maps in the United States. The National 

Flood Interoperability Experiment (NFIE) is a multiagency effort in collaboration with the 

academic community to improve river and flood forecasts (Maidment, 2016). A key component 

of NFIE is a model called Routing Application for Parallel computing of Discharge (RAPID)  

(http://rapid-hub.org/) that was developed to operate on the 2.67 million NHDPlus catchments and 

uses parallel computing to solve the 1D Muskingum flow equations on this large river network 

(Maidment, 2016; David et al., 2013, 2011). NFIE showed it was possible to improve the spatial 

http://rapid-hub.org/
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density of forecast flooding locations by more than 700 times compared with the present NWS 

river forecast system (Maidment, 2016). However, in some instances a 2D flood model will be 

necessary to accurately model water transport over large flat areas. Delft-FEWS is a hydrological 

forecasting and warning framework that provides a platform through which operational forecasting 

systems can be constructed, allowing for flexibility in the integration of models and data (Werner 

et al., 2013). Delft-FEWS does not contain any inherent hydrologic model capabilities within its 

code base. Instead, it relies on the integration of external hydrologic model components.  

The objective of this research is to design and prototype a cloud-based system for 

supporting decision makers as they assess flood risk to transportation infrastructure during extreme 

weather events. The system automates forecast data access and pre-processing, execution of a 

high-resolution 2D hydrodynamic model, and map-based visualization of model outputs. This 

work advances the prior approaches described earlier by presenting a cloud-based framework for 

modeling regions with complex flows using a 2D hydrodynamic model. Rather than relying on 

precomputed flood maps, flood depths and extents, this approach allows for modeling water flows 

in real-time based on current and forecasted conditions. It is an approach that could be adopted in 

Delft-FEWS to leverage cloud and GPU resources within this general framework.  

The overall goal of this study is to design and implement an automated flood warning 

system using a sophisticated 2D hydrodynamic model and modern cloud-based cyberinfrastructure 

and computing resources. The study advances on previous work funded by the Virginia 

Department of Transportation for the Hampton Roads District of Virginia that produced the 

Regional River Severe Storm Model (R2S2) (Hassan Water Resources PLC., 2012). The purpose 

of R2S2 is to help Residency Administrators to efficiently allocate scarce resources to close roads 

and to assist first responders with entering and exiting flood prone areas. This research advances 
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R2S2 by automating what was previously a manual process of converting forecast rainfall data into 

model inputs, running the model, and visualizing the results. Furthermore, this research addresses 

computational challenges with using R2S2 for real-time flood warning and emergency management 

applications.  This research also moves R2S2 to the cloud and is one of the first cloud-based flood 

warning applications with (i) an automated workflow for obtaining the real-time forecast rainfall 

data, (ii) execution of a model to identify flooded bridge and culvert locations in a time duration 

sufficient for warning and emergency management purposes, and (iii) generation of an online map 

with locations of the flooded roadways and bridges, and the ability to send automated warning 

messages via email. This system can provide the Virginia Department of Transportation (VDOT) 

with information needed when determining road closures, disseminating warning messages for 

area residents, and making other emergency management decisions that affect human safety and 

property damage. Although the current system is focused on VDOT as the primary user, it could 

be expanded in the future to disseminate more general flooding information to other stakeholders.  

Cloud computing is gaining attention in environmental applications to satisfy the peak 

performance needs of applications that use large amounts of processing power (Granell et al., 

2016). Sun (2013) used Google Drive, a cloud computing service, to host an environmental 

decision support systems (EDSS) module that is migrated from the traditional client-server-based 

architecture. Using Google Drive with the capability of providing a number of basic visual 

analytics features, the collaboration between the decision makers can be increased and the cost of 

small scale EDSS can be decreased. Ercan et al. (2014) used the Windows Azure Cloud 

environment to run a created calibration tool built with the modified calibration method, a parallel 

version of the Dynamically Dimensioned Search (DDS) for calibrating the Soil and Water 

Assessment Tool (SWAT) model in Azure. Using this tool, the result showed a significant speed-
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up of the model calibration for six different model scenarios. Wan et al. (2014) introduced a public 

cloud-based flood cyber-infrastructure (CyberFlood). CyberFlood collects, organizes, manages, 

and visualizes several global flood databases for the decision makers and public users in real-time. 

This database is expanded by applying a methodology for the data collection that allows the public 

to report new flood events using smartphones or web browsers. Hu et al. (2015) implemented a 

web-based application in the Hadoop-based cloud computing environment to make enhanced 

coupled human and natural models publically available. This allows users to access and execute 

the model without an increase in responding time. Kurtz et al. (2017) presented a stochastic cloud-

based fully-operational architecture for a real-time prediction and management system related to 

the groundwater management. This proposed system allows for data assimilation and is coupled 

with a physically based hydrologic model, HydroGeoSphere, in a cloud environment to use the 

generated prediction for the groundwater management. This work advances on prior work by 

demonstrating the ability of using resources in a public cloud, including instances with powerful 

GPUs like those provided by AWS, to build an end-to-end automated cloud-based system for 

regional-scale flood forecasting. This system is able to run a computationally-expensive 2D 

hydrodynamic model and is activated automatically during extreme weather events by software 

that is continuously monitoring forecasted rainfall conditions for potential extreme events. It is 

also able to run in a time frame relevant to real-time emergency management applications and 

automatically delivers model outputs through online maps and emails directly to decision makers.    

The remainder of the Chapter is organized as follows. First, a Study Area section is 

presented to introduce the region where the model is applied. Second, the Data and Methods 

section is presented to outline the available data sources, the pre-processing steps used to translate 

this data for use in the model, steps taken to speed-up the model, and the post-processing steps 
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used to automate the model output dissemination. Next, the Results and Discussion section 

presents a prototype of the software and the results from applying the system for an extreme 

weather event. Finally, the Conclusion section provides a summary of the key research outcomes 

and steps that could be taken to further advance this work. 

 

3.2 Study Area 

The study area is in the portion of the Chowan River basin that is within VDOT's Hampton 

Roads District and is approximately 5,780 km2 (2,230 mi2) (Figure 3.1). The study area includes 

the Meherrin, Nottoway, and the Blackwater Rivers. The longest flowpath along NHD flowline 

features is approximately 175 km (109 mi) with a slope that varies from nearly 0% to 21%. The 

study area includes 493 georeferenced VDOT bridges and culverts. Due to a high portion of the 

study area consisting of low-relief terrain, especially in the eastern part of the study area (Figure 

3.2), R2S2 utilizes a two-dimensional (2D) hydrodynamic model called Two-dimensional 

Unsteady Flow (TUFLOW) (Syme, 2001) (https://www.tuflow.com/). The upstream portion of the 

project domain is modeled using the Hydrologic Engineering Center-Hydrologic Modeling System 

(HEC-HMS), a lumped hydrology model that is less computationally intensive, in order to generate 

inflow boundary conditions for the study area. Including these upstream watersheds, the project 

domain is approximately 11,000 km2 (4,240 mi2). 

https://www.tuflow.com/
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Figure 3.1 Model domain composed of the study area where the TUFLOW model is run and the 
11 subwatersheds that contribute inflow to the study area. 

 

Figure 3.2 The digital elevation model (DEM) with resolution of 10 m x 10 m for the study area 
including 11 subwatersheds that contribute inflow to the study area. 
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3.3 Data and Methods 

3.3.1 R2S2 System 

The R2S2 system was first developed by Hassan Water Resources, PLC to integrate 

multiple datasets with sophisticated hydrodynamic models to provide flood risk prediction during 

severe storm events to the Hampton Roads District of the Virginia Department of Transportation 

(Hassan Water Resources PLC., 2012). The R2S2 system consists of software to process the many 

input files required for the TUFLOW model, to run HEC-HMS to establish boundary conditions 

for TUFLOW, and to process output files from TUFLOW to determine inundated bridges and 

culverts (Figure 3.3). Input data for the R2S2 such as DEM, soil, and land use data are constant, 

however the observational data must be processed in real-time from federal data providers. R2S2 

uses real-time forecast products for rainfall. The rainfall data is used as inputs for both R2S2 

hydrologic models. First, the HEC-HMS model uses the rainfall data to generate inflow time series 

for each of the 11 subwatersheds that border the study area. The TUFLOW model requires these 

11 inflow time series as boundary conditions as well as the raw rainfall data to be executed and 

generate water levels throughout the study area. Historic stream gauge data is used to calibrate and 

verify the model and, eventually, real-time stream data will be used to set initial conditions. 

 

3.3.2 Rainfall Forecast Data Automation and Preparation 

In this study, the procedure to collect and process the rainfall data for model input was 

automated to reduce human translation errors and decrease the time between when new rainfall 

forecasts are available and new water level forecasts can be generated. Both the TUFLOW and 

HEC-HMS models in R2S2 require input rainfall data, but in different formats. TUFLOW has three 

approaches for applying the rainfall directly to the computational cells: (i) polygons covering 
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multiple cells assigned as rainfall time series, (ii) gridded rainfall created as ASCII files for each 

time step or as one NetCDF file, and (iii) a rainfall control file that allows a user to specify point 

time series over the model domain and specify how the rainfall is interpolated to the model cells. 

HEC-HMS has two approaches for applying the rainfall data: (i) a rainfall time series for each 

basin stored in a data storage system (DSS) file that is prepared by HEC-DSSVue, a program for 

viewing, editing, and manipulating DSS files (CEIWR-HEC, 2009), and (ii) gridded rainfall that 

is prepared by HEC-GridUtil, a utility program for managing gridded data with HEC-DSS 

(Steissberg and McPherson, 2011). 

 

Figure 3.3 R2S2 workflow. 

The identification of appropriate forecast datasets focused on National Oceanic and 

Atmospheric Administration (NOAA) products that provides gridded rainfall and can be quickly 

accessed for real-time flood warning applications. Several potential forecast datasets were 

identified for the study region. The Rapid Refresh (RAP) product, the High-Resolution Rapid 
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Refresh (HRRR) product, and the North American Mesoscale Forecast System (NAM) product 

are all provided by the National Center for Environmental Prediction (NCEP). The National 

Digital Forecast Database (NDFD) is provided by the National Weather Service (NWS). These 

forecast products were compared in terms of their spatial resolution, temporal resolution, and 

frequency of model initiation (i.e. model cycle). Results of this comparison and the code written 

to automate the workflow for downloading and reformatting the rainfall data to meet the 

requirements of the TUFLOW and HEC-HMS models are presented in Section 3.4.1. 

 

3.3.3 Speeding-up R2S2 Execution 

TUFLOW is the computational bottleneck within the overall R2S2 workflow. Using a single 

central processing unit (CPU) for computation takes more than three days to run for a 15 day 

simulation period (the duration over which Hurricane Sandy caused high flows in the Study 

region). The use of multiple CPUs and GPUs has been investigated as a means of speeding-up 2D 

hydrodynamic models (Kalyanapu et al., 2011; Brodtkorb et al., 2012; Rostrup and Sterck, 2010; 

Castro et al., 2011; Lacasta et al., 2013; Bret et al., 2010; Garcia et al. 2015). As stated in the 

introduction, using GPUs offers the performance of smaller clusters at a much lower cost (Jacobsen 

et al. 2010). Therefore, GPUs were investigated for speeding-up the TUFLOW model. 

TUFLOW comes with a GPU Module capable of operating on multiple GPUs in parallel. 

We explored the use of both local and Amazon Web Services (AWS) resources for GPU 

computations. The TUFLOW GPU Module uses an explicit scheme, while the TUFLOW CPU 

(TUFLOW Classic) solver uses an implicit scheme. It is well known that explicit schemes are less 

numerically stable compared to implicit schemes, so the differences between these two schemes 

could be large and needs to be checked for consistency. 
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Two local GPU resources with different capabilities were explored (Table 3.1). M1 is a 

machine with a modest GPU and other resources typical of most desktop computers. M2 is a high-

end workstation with 64 GB of RAM and two NVIDIA GeForce Titan Graphics cards. There are 

several types of AWS Elastic Compute Cloud (EC2) instances designed for GPU-based 

computations. There are two sizes of G2 instances, which have lower end GPUs, and three sizes 

of P2 instances, which have higher end GPUs (Table 3.2). The properties and hourly fee for these 

instances varies as shown in Table 3.2. 

Table 3.1 Local computers with GPUs used to investigate TUFLOW model execution times. 

ID Type CPU RAM 
(GB) GPU GPU RAM 

M1 Desktop Dell 
OptiPlex 990 

3.40 GHz, 4 
Core(s) 

16 NVIDIA Quadro 
K2000 

2.00 GB, 384 SMX 
CUDA parallel 
processing cores 

M2 Desktop Viz 
Lab ESCHER 

3.20GHz, 3201 
Mhz, 6 Core(s) 

64 Two units of 
NVIDIA GeForce 
GTX TITAN 

6.00 GB, 2688 CUDA 
parallel processing cores 
for each 

 

Several tests were performed to measure the TUFLOW model execution times using the 

AWS EC2 g2.8xlarge and p2.8xlarge instances. The TUFLOW model with 50m grid cell size was 

used for these tests. The g2.8xlarge instance, which has 4 GPUs, was used to execute the model 

with 1, 2, 3, and all 4 GPUs. Likewise, the p2.8xlarge instance, which has 8 GPUs, was used to 

execute the model with 1 through 8 GPUs. Each of these model runs were performed twice to 

ensure that model run times were consistent. 
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Table 3.2 Comparison between G2 and P2 EC2 instances performance and cost as of 
06/06/2017. 

EC2 
Instance Model GPUs vCPU Memory 

(GiB) 
GPU 

Memory 
Storage 

(GB) 
Hourly 

Fee 

G2 g2.2xlarge 1 8 15 4     (GB) SSD 1 x 60 $0.767 
g2.8xlarge 4 32 60 16   (GB) SSD 2 x 120 $2.878 

P2 
p2.xlarge 1 4 61 12   (GiB) EBS $1.084 
p2.8xlarge 8 32 488 96   (GiB) EBS $8.672 
p2.16xlarge 16 64 732 192 (GiB) EBS $17.344 

G2 Instances includes NVIDIA GRID K520 GPUs, P2 Instances includes NVIDIA K80 GPUs 

 

3.3.4 Post-processing and Automating Model Output Dissemination 

The TUFLOW model computes the maximum water level at each computational cell 

within the study area throughout the simulation duration. Using these maximum water levels and 

the VDOT bridge locations and deck elevations, a post-processing workflow was created to 

automate sending an email with the bridges expected to be overtopped based on model projections. 

Web resources such as Google Maps and Geosheets (https://www.geosheets.com/) were used to 

provide real-time visualization for the flooded bridges in the Hampton Roads District. Google 

Maps has the capability to generate a simple visualization of uploaded keyhole markup language 

zipped (KMZ) files, which is a quick and simple method to visualize the flooded bridge locations.  

Geosheets, an add-on to Google Sheets, simplifies visualization capabilities in Google Maps 

compared to using only the Google Maps application programming interface (API) directly.  Using 

the capabilities of the Google Maps API and the Geosheet application in the post-processing 

workflow, advanced real-time visualization of the flooded bridge locations can be generated. 

 

3.3.5 Design of an Automated Flood Warning System through AWS 

After automating the retrieval of the forecast rainfall data, speeding-up the 2D model, and 

providing methods for warning decision makers and visualizing the overtopped bridges and culvert 
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locations in the study area individually, the final step was to create a seamless workflow in AWS 

to link these three components together without the need of intermediate human action. The goal 

of this automated workflow is to identify the flooded bridges and/or culverts in a time duration 

that is sufficient for warning and emergency management purpose based on the highest resolution 

official rainfall forecast data available. To accomplish this, the design had to meet the following 

requirements. Given that a single instance capable of all of these tasks would be too expensive to 

continuously run, a smaller, low cost instance was used to monitor the rainfall data for upcoming 

extreme events and trigger a larger instance when a flood event is forecasted. This smaller instance 

also assumes the role of maintaining the website to display and disseminate the model output runs 

so that it can be available continuously. Storage resources are needed to archive the processed 

rainfall data used as model input and the model outputs is needed so that model results can be 

analyzed at a later time. Finally, a larger instance with NVIDIA GPU capabilities was needed to 

accommodate the hydrologic models and be able to run scripts used to prepare the rainfall data 

input for the models. This instance is also needed to disseminate the output data. To automate these 

steps of the workflow, the GPU instance needed to execute a batch file that (i) runs the pre-

processing scripts to prepare the rainfall data, (ii) runs the hydrologic models, (iii) runs the post-

processing script for preparing the model output for dissemination, (iv) sends outputs to other 

cloud resources for archiving and visualization, and (v) removes the model output files from the 

GPU instance. 
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3.4 Results and Discussion 

3.4.1 Rainfall Forecast Data Automation and Preparation 

Comparison of the spatial resolution, temporal resolution, and model cycle of each dataset 

(Table 3.3) shows that HRRR was the best forecast rainfall product for our purpose. HRRR is a 

weather prediction system composed of a numerical forecast model and an analysis/assimilation 

system to initialize the model. HRRR is a higher-resolution model nested inside the hourly updated 

RAP.  Although RAP can provide upper-level analyses and short-range forecasts, HRRR is best 

used to examine surface and near-surface parameters, such as surface precipitation. The HRRR 

model is run every hour of the day and forecasts out to 18 hours on a one hour time-step for each 

cycle. It provides a surface total precipitation product in units of mm of precipitation depth at a 

horizontal resolution of 3 km (NOAA, 2012). Surface total precipitation can be accessed as gridded 

data with dimensions of longitude, latitude, and time. Longitude and latitude are provided in the 

World Geodetic System (WGS) 1984 coordinate system, and time is in units of decimal days since 

1-1-1 00:00:0.0 (NOAA, 2017a). HRRR data are distributed as a part of the NOAA Operational 

Model Archive and Distribution System (NOMADS) project, a network of data servers that use 

the Open Source Project for a Network Data Access Protocol (OPeNDAP) (NOAA, 2017a). 

Although the HRRR data is used as the primary input to the model, the system could use the coarser 

Quantitative Precipitation Forecast (QPF) from the NDFD dataset, which forecasts rainfall for the 

next 72 hours, to monitor for large rainfall events beyond the 18 hours horizon captured by HRRR. 

This would allow for a longer lead time for preparing for severe storms. This system is developed 

in a flexible way to enable the use of higher resolution rainfall forecast data that may be available 

in the future. The use of better rainfall forecast data with a longer lead time will reduce the 

uncertainty of the model, making it a more useful decision support tool.  
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Table 3.3 Comparison of available forecast datasets. 

Dataset Data 
Provider Relevant Data Product 

Resolution Forecast 
(hrs) 

Model 
Cycle Spatial 

(km) 
Temporal 

(hrs) 

HRRR NCEP Surface total precipitation 3 1 18 24/day 

RAP NCEP Surface total precipitation 13 1 18 24/day 

NDFD NWS Quantitative precipitation 
forecast 5 6 72 8/day 

NAM NCEP Surface total precipitation 12 1 36 4/day 

 

Figure 3.4 shows the workflow for downloading and reformatting the forecast rainfall data.  

Pydap, a pure Python library implementing the OPeNDAP, is used to retrieve the desired forecast 

data for the study area. The automated workflow consists of three main parts: (i) access the latest 

available forecast data from the HRRR database, (ii) retrieve the forecast surface total precipitation 

with a horizontal resolution of 3 km x 3 km in WGS 1984 coordinate system, and (iii) reformat 

the forecast data for model input in the NAD83 UTM 18N projected coordinate system. These 

rainfall data are reformatted in two ways: gridded rainfall data for TUFLOW using the Geospatial 

Data Abstract (GDAL/OGR) Python library and subwatershed time series for HEC-HMS using 

HEC-DSS, Python, and Java libraries. To include these direct rainfall data in TUFLOW, a 

TUFLOW Event File (TEF) was created to define the storm event properties. For example, using 

the new TEF file, the user can run the model for a given storm event using either historic or forecast 

data. 



  52 

 

Figure 3.4 Forecast data workflow from HRRR to R2S2 sub-models. 

 

3.4.2 Speeding-up R2S2 Execution 

The speeding-up of the model was performed with model runs using rainfall from 

Hurricane Sandy as input. The rainfall lasted for four days and the total modeled time span was 15 

days (October 28 - November 11, 2012). Table 3.4 summarizes the results of the three TUFLOW 

model scenarios using the M1 and M2 machines (Table 3.1). Using the CPU, the model took 120 

hours to execute. Using the modest GPU in the M1 machine, the model took 11.5 hours to execute 

(a 10x speed-up compared to the CPU). Using the two more powerful GPUs in the M2 machine, 

the model took only 2.4 hours to execute (a 50x speed-up compared to the CPU and 5x speed-up 
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compared to the M1 machine using the single GPU). The input time-step does not have a 

significant effect on the execute time when using GPUs.  This is due to the explicit scheme within 

the TUFLOW GPU module that takes the user's input time-step value as an initial value and then 

optimizes the time-step to meet the convergence condition (i.e. courant number <=1) (BMT WBM, 

2016) . 

Table 3.4 Comparison of CPU versus GPU speed-up using local GPU resources (differences 
bolded in each scenario). 

Model Specifications 
 

Run Scenarios  

Machine  M1 M1 M2 
Processing Unit  CPU GPU GPU 
No. of GPUs  - 1 2 
Time-step (sec)  10 10 10 
Output Cell Size (m)  25 25 25 
Running Time (hrs)  120 11.5 2.4 

 

A test was conducted to determine how increasing the number of GPUs influenced model 

execution time (Figure 3.5).  As expected, running the model by using different numbers of GPUs 

produced the same output results (i.e., no differences in the maximum water levels).  Figure 3.5-a 

provides the results of this test using the GPU model and the AWS g2.8xlarge instance with 

different numbers of GPUs.  Using the g2.8xlarge instance with one GPU, the model takes about 

4.6 hours to run.  Using the g2.8xlarge instance and increasing the number of GPUs, the minimum 

execution time is 3 hours when all four GPUs are used, which costs about $9 per run. Because 

only four GPUs were available on this instance, we were not able to test whether additional GPUs 

would continue to reduce the running time. Figure 3.5-b provides the results of this test using the 

GPU model and the AWS p2.8xlarge instance with different numbers of GPUs.  Using the 

p2.8xlarge instance with one GPU, the GPU model takes 2.75 hours to run, which is less than 
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using the g2.8xlarge instance with 4 GPUs. This shows the benefit of the more modern GPUs in 

the P2 versus G2 EC2 instances. Using the p2.8xlarge instance and increasing the number of GPUs, 

the minimum execution time was found to be 1.5 hours, which is achieved when five GPUs are 

used. This run, with the minimum execution time (1.5 hours), costs about $13 per run, which is 

about 1.5x more expensive than the g2.8xlarge instance run; however, it is faster than the 

g2.8xlarge by 2x. Comparing this 1.5 hours execution time to the CPU execution time of 120 hours 

shows an 80x speed-up for the model. Using six or more GPUs on this instance increases the 

execution time compared to using five due to known tradeoffs caused by data transfers between 

parallel GPU units (Huxley and Syme, 2016).   

 

(a) 

 

(b) 

Figure 3.5 Running TUFLOW model through AWS EC2 (a) g2.8xlarge instance, and (b) 
p2.8xlarge instance with different numbers of GPUs. 

Because the CPU and GPU TUFLOW solvers use different numerical schemes, it is 

important to understand differences in their outputs (Figure 3.6).  Figure 3.6 provides the 

differences in maximum water level (Max. WL) generated from executing the model using the 

CPU and the GPU solvers.  The maximum difference in Max. WL across the study area was around 

2.5 m (8 ft), with 87% of the computational cells having differences in the maximum water level 
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less than 0.5 m (1.6 ft). Figure 3.7 shows the Max. WLs at each bridge location generated by 

executing the model using the CPU solver versus the GPU solver. The mean absolute error (MAE) 

of 0.48 m (1.6 ft) and the root mean square error (RMSE) of 0.78 m (2.6 ft) demonstrate a fairly 

significant difference. In this study, we did a preliminary sensitivity analysis by changing the 

model grid cell size and Manning coefficient values, but future research should investigate this 

difference more fully. 

 

 

Figure 3.6 Differences between Max. WL generated from CPU solver and GPU solver. 
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Figure 3.7 Bridges and culverts location Max. WL generated from CPU solver versus GPU 
solver with MAE of 0.48 m and RMSE of 0.78 m. 

The model results using both the CPU and GPU solvers were compared against stream 

stage observations for Hurricane Sandy event. Figure 3.8 and Table 3.5 show the USGS stations 

with data availability for the event. The USGS provided unpublished stage data that is considered 

provisional and, therefore, may contain erroneous or missing values due to instrument malfunction. 

This data was processed and cleaned to address this issue before being compared to the model 

output data. Figure 3.8 also shows the NOAA stations with the available recorded rainfall data for 

the Hurricane Sandy storm event. Hyetographs for this storm event at these stations are shown in 

Figure 3.9. 
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Figure 3.8 USGS and NOAA station locations and Hurricane Sandy data availability in the 
study area. 
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Table 3.5 USGS stations in the study area with information about Hurricane Sandy availability. 

 

Figure 3.9 Hurricane Sandy hyetographs at the five NOAA stations near the study area (Figure 
3.8). 

Station Name Current 
Status 

 Stage 
 Parameter 

Code Start Date  End Date 

02049500 USGS 02049500 BLACKWATER 
RIVER NEAR FRANKLIN, VA Active  00065 Gauge 

height 10/23/2016 2/20/2017 

02047500 USGS 02047500 BLACKWATER 
RIVER NEAR DENDRON, VA Active  00065 Gauge 

height 10/31/2016 2/28/2017 

02045500 USGS 02045500 NOTTOWAY 
RIVER NEAR STONY CREEK, VA Active  00065 Gauge 

height 10/31/2016 2/28/2017 

02052000 USGS 02052000 MEHERRIN RIVER 
AT EMPORIA, VA Active  00065 Gauge 

height 10/31/2016 2/28/2017 

02047000 USGS 02047000 NOTTOWAY 
RIVER NEAR SEBRELL, VA Active  00065 Gauge 

height 10/31/2016 2/28/2017 

02050000 BLACKWATER RIVER AT HWYS 
58/258 AT FRANKLIN, VA Active  00065 Gauge 

height 10/31/2016 2/28/2017 
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The finite volume schemes used by the 2D models are heavily dependent on the gird cell 

shape and size (LeVeque, 2002; Caviedes-Voullième et al., 2012). The TUFLOW model GPU 

solver uses only a Cartesian grid with the capability of changing the grid cell size. The TUFLOW 

model was executed using the GPU solver with grid cell sizes of 50 m, 40 m, 30 m, and 20 m. The 

output data from each of these runs was compared to the observed data at the six USGS stations 

and model results from executing it using the CPU solver with cell size of 50 m. The modeled 

peaks using the GPU solver with 50 m grid cell size were significantly higher than the observed 

data and the model peaks using CPU solver at four USGS stations (02045500, 02047000, 

02047500, and 02052000). However, at one of the USGS stations (02050000), the modeled peak 

using the GPU solver with 50 m grid cell size was significantly lower than the observed data and 

the modeled peak using the CPU solver. Finally, at another USGS station (02049500), the modeled 

peak using the GPU solver with 50 m grid cell size was almost the same as the model peak using 

the CPU solver. However, both peaks were significantly lower than the observed data.  

The differences between the modeled and observed peak stages could be due to the lack of 

adequate bathymetry data in the major rivers and tributaries. In all of the minor tributaries and 

some stretches of the main rivers, bathymetry had to be assumed because no bathymetry data was 

available. This also could be due to the coarse DEM resolution (10 m x 10 m).  Calibration with 

limited data available for such a large study area is a challenge as well, especially with a scarcity 

of operating river gauges and available data for event-based calibration. In some instances, 2D 

models are not used due to the low resolution of the available spatial data and the difficulties faced 

when calibrating the model parameters (Caviedes-Voullième et al., 2012). This large study area 

includes only six USGS gauges that recorded stream stage during Hurricane Sandy. Three of these 

stations are located on the same main stream at the eastern part of the study area, one is in the 
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middle of the study area, and the other two are located in the western part of the study area. More 

gauges would be valuable to be more confident in the calibration of such a large 2D model.   

When the cell size of the model using the GPU solver decreases, a significant reduction in 

the peak stages was observed at four of the six USGS stations (02045500, 02047000, 02047500, 

and 02052000). At station 02050000, the modeled peak stage using the GPU solver increased with 

decreasing cell size, while at station 02049500 the peak stage remained nearly constant with each 

cell size. Decreasing model grid cell size improved the matching of observed peaks at four of the 

six observation sites and, therefore, we decided to use a smaller cell size in the model application. 

The drawback of a smaller cell size is an increase in model execution time. Figure 3.10 shows the 

model execution time using the GPU solver with different grid cell sizes (50 m, 40 m, 30 m, and 

20 m) for the M2 machine (Table 3.1). Figure 3.10 also shows the MAE generated from comparing 

the model output using different cell sizes and using the GPUs with the model output using the 

CPU solver with the 50 m grid cell size. Based on these results, we chose the 30 m cell size since 

there is only a small difference in the results using the GPU solver with a 20 m grid cell size model 

and there is a significant increase in the model run time (2.8x from 10.2 hours to 28 hours). 
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Figure 3.10 Model run time using GPU solver with different grid cell sizes and the 
corresponding MAE versus CPU solver using M2 machine (Table 3.1). 

In addition to decreasing the cell size to 30 m, we also adjusted the Manning coefficient 

(n) to test its sensitivity and ability to improve matching of observed peak stages obtained from 

the six USGS stations. The model initially had Manning coefficient values determined based on 

the study area land use. To assess the sensitivity of the model to changes in the Manning 

coefficient, this coefficient was changed to be 0.6n, 0.8n, 1.0n, 1.4n, and 1.8n. As the Manning 

coefficient value decreased, the modeled peak stages became closer to the observed peaks at 

stations 02045500, 02047000, 20047500, and 02052000. After reducing the grid cell size from 50 

m to 30 m and the Manning’s coefficient from 1.4n to 0.6n, the model came the closest to matching 

observed peak river stage. This represents a preliminary calibration of the model that should be 

more fully explored through additional research. 



  62 

 
 

  

 
 

Figure 3.11 Comparison between the stage depth observation data and the output depth from 
executing the model using a GPU solver with 30 m cell size and 0.6n Manning coefficient 

values. 

The analysis of changing the model grid cell size and Manning's coefficient was done by 

applying rainfall time series for Hurricane Sandy from five rain gauges to polygons that each 

covered multiple model grid cells. TUFLFOW also has the capability of using direct rainfall data 

that applies input rainfall values to every cell in the 2D hydrodynamic model. When the rainfall is 
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directly applied to the cells, the model routes flow based on the cell topography on a cell by cell 

basis (Huxley and Syme, 2016). Huxley and Syme (2016) investigated using this new method by 

applying the direct gridded rainfall data and found that GPU direct rainfall hydraulic modeling can 

be used as an alternative to runoff-routing hydrology modeling. To check the model behavior using 

the direct gridded rainfall data method with the chosen grid cell size and Manning's coefficient 

values, rainfall data from Hurricane Sandy was obtained from the Tropical Rainfall Measuring 

Mission (TRMM). This data has resolution of 0.25 x 0.25 degrees resulting in 16 cells covering 

the entire study area. We hoped to use rainfall data from the Next Generation Weather Radar 

(NEXRAD) provided by NOAA, but there was no data available for the dates of Hurricane Sandy 

for our study area.  

Figure 3.11 shows the results of using the gridded rainfall data provided by TRMM when 

executing the model with grid cell size of 30 m  and Manning's coefficient values of 0.6n using 

the  GPU solver. Using the gridded rainfall data with this coarse resolution produces results very 

similar to those found when using the rainfall gauge data and the polygon method. The model 

results almost matches the observation peaks at the 02045500, 02047000, 02047500, and 

02052000 USGS stations. The other two USGS stations, 02049500 and 02050000 where the 

modeled peaks are further from the observed peaks, are located on the same stream at the eastern 

part of the study area along with Station 02047500. This area has the mildest slopes in the study 

area (almost flat) (Figure 3.2). The station furthest upstream is 02047500. At this station, the model 

predicts a slightly higher peak than the observed data and the modeled peak using the CPU model. 

The second station (02049500) has a much lower peak than the observed data. However, the 

modeled peak using the CPU solver is even lower than the modeled peak using the GPU solver. 

The peak at station 02050000 is much higher than the observed peak and the modeled peak using 
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the CPU solver. The variation between the observed and modeled peaks at these three stations 

could be due to the coarse DEM resolution (10 m x10 m) used in the model. The slightly higher 

peak at 02047500 may be due to slopes derived from the DEM being milder than the real slopes. 

The much lower peak and lower volume at 02049500 could be due to having slopes derived from 

the DEM much steeper than the real slopes. Like with 02047500, the much higher peaks at 

02050000 may be due to the DEM-derived slopes, which are milder than the real slopes. This 

would explain why the absolute differences in the peaks at stations 02049500 and 02050000 are 

nearly the same but the one is below and the other is above the observed peak. If the slopes of the 

contributing areas to station 02049500 were milder, the peak there would be higher and the peak 

at the downstream station (02050000) would be lower, making both closer to the observed data. 

This might improve if a higher DEM resolution is used within the model. Future work will explore 

this and the use of NEXRAD to better understand the benefit of this rainfall data for predicting the 

stage depth peaks. 

 

3.4.3 Post-processing and Automating Model Output Dissemination 

Figure 3.12 shows the resulting workflow for model output post-processing for 

dissemination of model results. This workflow uses different Python libraries such as 

GDAL/OGR, Simple KML library (SIMPLEKML), and an email library to generate the 

visualization of the flooded bridge locations and automatically email warnings to decision makers. 

The workflow and its products could be used with ArcMap, Google Maps, Google Earth, 

Geosheets or a custom website, such as the one we configured and hosted on the AWS, EC2 

t2.micro instance, as shown in Figure 3.12. There are three products for visualization that can be 

generated from this workflow: (i) an ESRI shapefile that includes just the flooded bridges, (ii) a 
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KMZ file that includes flood information for all bridges that can be visualized through Google 

Maps or Google Earth, and (iii) a dynamic and real-time visualization on Geosheets created by 

automatically uploading the bridges with their flooded status to a Google Sheet using the Google 

Drive API. Unlike hosting a website to visualize the KMZ file on the EC2 t2.micro instance, using 

GeoSheets requires no webserver. However, hosting our own website in the long run will provide 

much more flexibility and the potential for more capabilities. Figure 3.13 shows an example of an 

advanced visualization for the flooded bridges directly on the Geosheets permanent URL once the 

workflow runs. This visualization shows the bridges as being not overtopped (green), nearly 

overtopped (yellow), and overtopped (red) from forecast rain events. 

 

Figure 3.12 Post-processing workflow for producing different visualization resources. 
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Figure 3.13 Real-time visualization with permanent URL for visualizing the flooded bridges 
location using Geosheets.  (https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-

Bridges-in-The-Hampton-Roads-District). 

 

3.4.4 Automated Flood Warning System through AWS 

Figure 3.14 shows the design of the automated workflow that meets the design 

requirements outlined in the methods section. This solution uses three AWS resources: (i) a low 

cost EC2 t2.micro instance running a Linux operating system, (ii) an EC2 G2 or P2 instance with 

Windows operating system, and (iii) a S3 Bucket. The EC2 t2.micro instance has two roles in the 

workflow. First, the instance continuously monitors rainfall forecasts to identify an extreme 

weather event. When an extreme weather event is identified, the EC2 t2.micro instance starts the 

EC2 G2 or P2 instance and a model run is initiated. Second, the EC2 t2.micro instance serves the 

webpages used to visualize and disseminate the model results computed by the larger EC2 G2 or 

P2 instance. The EC2 G2 or P2 instance includes all of the model components. The EC2 G2 or P2 

instance retrieves, preprocesses and prepares the forecast rainfall data for the hydrologic models. 

https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-Bridges-in-The-Hampton-Roads-District
https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-Bridges-in-The-Hampton-Roads-District
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This same instance also executes the 2D hydrologic model. After the model runs, the EC2 G2 or 

P2 instance sends model outputs to the EC2 t2.micro instance for visualization and dissemination. 

The model outputs are also sent, along with the processed forecast rainfall data used as model 

inputs, to the S3 bucket for archiving and reproducibility purposes.  

 

Figure 3.14 Design of the automated workflow for a flood warning system using AWS 
resources. 

There are two classes of users that can access the model outputs via the webpages running 

on the EC2 t2.micro instance: regular users and power users. Regular users can access the current 

flooded locations and can register to receive alerts via email whenever locations are forecasted to 

flood. In the current implementation, regular users do not need to authenticate with the system. 

Power users have more privileges than the regular users, including access to all the archived 
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inundation maps from the S3 bucket and the ability to run the model at any time via a powershell 

script or through the website hosted by the t2.micro instance. 

AWS has the ability to securely control access to services and resources for specific users 

using the Identity and Access Management (IAM) service. This service was used to give 

permission to the EC2 t2.micro instance to start and stop the other EC2 G2 or P2 instance. A new 

user was created and then given permission for starting and stopping the EC2 G2 or P2 instance 

(Figure 3.15). By using the new user credentials, the EC2 G2 or P2 instance ID, and command 

lines executed in a scripting language or at the AWS command line interface (CLI), the EC2 G2 

or P2 instance can be started and/or stopped automatically. The main script in the development 

web framework on the EC2 t2.micro instance is called server.py. Code was added to this Python 

script for monitoring and accessing the other EC2 G2 or P2 instance. In this code, a process is run 

every hour to check the HRRR rainfall data (which is updated hourly). If the forecasted rainfall is 

over a certain threshold value, it will start the EC2 G2 or P2 instance that includes the hydrologic 

model automatically. Then the EC2 t2.micro instance keeps monitoring the EC2 G2 or P2 instance 

to make sure that it is fully started (this is done by adding additional permissions to the user policy). 

Then the EC2 t2.micro instance uses Secure Shell (SSH) to initiate a batch file that runs the main 

workflow for retrieving the data, executing the model, and generating the output. The 2D 

hydrologic model takes about 10 minutes to run through a forecasted period (18 hours) using a 

model grid resolution of 50 m on the M2 machine, while it takes about 38 minutes using the model 

grid resolution of 30 m on the M2 machine. The running time for the model with grid resolution 

30 m is expected to be lower when using the EC2 p2.8xlarge instance. Using the p2.8xlarge AWS 

instance with five GPUs, it is expected that the runtime will be 6.3 minutes for a 50 m grid cell 

size and 24 minutes for 30 m grid cell size. 
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Figure 3.15 The policies between the EC2 t2.mico and G2 or P2 instances. 

This batch file that automates the model execution operates as follows. First, the HRRR 

data is retrieved and processed. Once the rainfall data is retrieved and is available for the 

hydrologic models, the models are run and the maximum water level at each computational cell 

within the study area is computed and recorded for the duration of the simulation period. Once the 

maximum water level output file is available, the KMZ file is generated from the model output 

file. This KMZ file includes information about each bridge and culvert provided by VDOT, the 

maximum water level predicted by the model, and by how much each bridge would be overtopped. 

The KMZ file is sent to the t2.micro instance to be used for visualization. This is done using the 

AWS Private Key generated for the EC2 t2.micro instance. Another policy added to the IAM user 

is used to access the S3 Bucket and archive the processed rainfall data (Figure 3.16). A log file is 

generated that includes a record of the parameters and scripts used in the whole process as a 
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reference for users or decision makers. The log file is sent to both the EC2 t2.micro instance and 

the S3 Bucket for archiving. Finally, any files generated from running the whole workflow are 

deleted to minimize the storage on the EC2 G2 or P2 instance. 

A power user can use a powershell script to automatically initialize a model run. The script 

gives the user the option of running the workflow either locally or with the EC2 G2 or P2 instance. 

When the workflow is chosen to run locally, the powershell script installs any required 

dependencies and then runs the batch file to start the workflow. If the user chooses to run the 

workflow through the cloud, the script asks for the IAM policy credentials and starts the EC2 G2 

or P2 instance. Once the instance is fully started, the script uses SSH to run the batch file to start 

the main workflow.  

Figure 3.16 shows the different policies used by the EC2 t2.micro and G2 or P2 instances 

to access the S3 bucket folder that includes the archive information for each run. Also this figure 

shows the hierarchy of the S3 Bucket folders for archiving the workflow output data. The S3 

Bucket folders receive data from the EC2 G2 or P2 instance once it starts. To give full access for 

these specific folders and their contents to the EC2 G2 or P2 instance, another policy was added 

to the IAM user (Figure 3.16). The EC2 G2 or P2 instance uses the IAM user policy to access the 

main folder, floodwarningmodeldata, and archive the output data generated by the workflow in 

each specific subfolder. The EC2 t2.micro instance then retrieves the archived KMZ and log files 

to visualize them on the website. This is done by using a separate policy provided by the AWS S3 

Bucket (Figure 3.16). 
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Figure 3.16 Different policies used to access the AWS S3 Bucket data, and the AWS S3 Bucket 
folder hierarchy. 

The t2.micro instance handles the visualization of the output data using a Python based 

micro web framework, Flask (http://flask.pocoo.org/) (Figure 3.17). When a user accesses the 

website URL (http://ec2-34-207-240-31.compute-1.amazonaws.com/) the most recent model 

output KMZ is displayed using the Google Maps JavaScript API. The output KMZ files, along 

with the corresponding log files from only the five most recent model runs, are available on the 

website to save storage space. NGINX (https://nginx.org/en/) and Gunicorn "Green Unicorn" 

(http://gunicorn.org/) sit in between the flask application and the internet working in tandem to 

support many users on the website at the same time and handle the distribution of resources.  

http://flask.pocoo.org/
http://ec2-34-207-240-31.compute-1.amazonaws.com/
https://nginx.org/en/
http://gunicorn.org/
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The t2.micro instance also triggers a model run when HRRR rainfall forecast data exceeds 

a given threshold. The forecast rainfall data is therefore retrieved every hour. If the rainfall exceeds 

a certain threshold value it will start the EC2 G2 or P2 instance and initialize a model run with the 

latest rainfall data. An alert on the website will show users whether a model is being run, flooding 

is possible, or the model is up to date with no flooding predicted. 

 

Figure 3.17 EC2 t2.micro instance and the web framework used to build up the website. 

Figure 3.18 shows the architecture of the website. On the main view, the website contains 

a navbar allowing the selection of which data to view, a link to the log file, a login page, or a page 

to register for email alerts. The main section of the page is taken up by the Google Maps JavaScript 

API. Using the Google Maps JavaScript API allows us to easily display the map interface using 

all of Google’s resources and overlay our output data on top of it. When a user clicks on a marker 

signifying a bridge, they are presented with a box containing more information about that bridge 
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and potential flooding events. Users can sign up and their email will be stored in a secured private 

Structured Query Language (SQL) database. The application will detect when flooding is possible 

and send an email to everyone on the list. Through the website, power users can display output 

data archived in the AWS S3 bucket without having to store output in the t2.micro instance, which 

has a limited amount of storage.  

 

 

Figure 3.18 Main webpage of the flood warning decision support website. 

 

3.5 Conclusions 

This work describes the creation of a cloud-based flood forecasting system designed to 

assist transportation decision makers in time-sensitive, emergency situations. The flood 

forecasting system is applied for the Virginia Department of Transportation in the Hampton Roads 

region to provide decision makers with forecasts of flooded roadways and bridges in near real-

time based on rainfall forecasts. By using GPU resources, the model was executed for a 15 day 
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duration up to 80x faster (from 120 hours compared to 1.5 hours) compared to using a single CPU. 

An automated cloud-based workflow using AWS resources was designed and created to link and 

enhance the three core model components: (i) retrieval and formatting of high resolution gridded 

HRRR rainfall forecast data, (ii) execution of the 2D model in a short duration to identify flood 

prone bridges and culverts, and (iii) real-time dissemination of model output via generation of an 

online map with flooded locations and the ability to automatically send alert messages via email. 

Using the M2 machine described earlier, the 2D hydrodynamic model, which is the heart 

of the flood forecasting system, completes an analysis for the upcoming 18 forecast hours in 

approximately 10 minutes with a model grid cell size of 50 m, and approximately 38 minutes with 

a model grid cell size of 30 m. Using the p2.8xlarge AWS instance with five GPUs, it is expected 

that the runtime will be 6.3 minutes for a 50 m grid cell size and 24 minutes for 30 m grid cell size. 

For Hurricane Sandy, although the rainfall only lasted 4 days, the effects of the rainfall over the 

study area lasted 15 days. Assuming running the model with a 50m grid cell size takes 6.3 minutes 

to run for the upcoming 18 forecasted hours on the p2.8xlarge, if the model ran every hour through 

15 day period, running the workflow would cost about $350 assuming current AWS prices. For 

the same scenario but with a grid cell size of 30 m, modeling 18 hours is expected to take about 

24 minutes to run and cost $1260 for the 15 day duration. However, this assumes using five GPUs 

and further tests are required to run the model with grid cell size of 30 m on the AWS EC2 P2.8 

instance to find the optimum number of GPUs for this scenario.  

Because the TUFLOW 2D model is expensive to run, it is only used during extreme 

weather events. The t2.micro instance, which costs about $10 per month to run continuously, 

monitors the HRRR forecast rainfall data comparing it to rainfall thresholds that represent the 

amount of rain required to cause potential flooding. In the preliminary implementation, we used a 
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fixed value for the threshold. In the future, we plan to compare the HRRR forecast data against the 

thresholds provided from the Flash Flood Guidance (FFG) produced by the U.S. National Weather 

Service (NWS) at the county scale and updated daily based on soil moisture conditions (US 

National Weather Service, 2017).  Currently, the FFGs are published in graphical or CSV format, 

however NWS plans to make them accessible via webservices. Once the webservices are available, 

the workflow will be able to access the FFGs automatically each day to have up-to-date thresholds 

values which are specific to the study area. 

A main advantage of the cloud-based approach presented here is that it provides a way to 

strategically utilize computational resources only when the flood events are likely to occur. 

Additionally, the workflow is automated, start to finish, without the need for any intermediate 

human interaction. This means that a decision maker with little or no experience regarding the 

details of hydrologic modeling, gridded rainfall data, pre- and post-processing procedures, and so 

forth, can easily execute the workflow and obtain and visualize model results. This work presents 

a preliminary calibration of the model, but additional work is needed to calibrate and evaluate the 

model across multiple historical flooding events. It is important to note that this model was so far 

only tested for Hurricane Sandy. The scarcity of operational river gauges and significant model 

run-time prior to this research made calibration challenging. The local M2 machine, which was 

able to run the 15 day Hurricane Sandy model in 2.4 hours, could be used for calibration process. 

Results of this study suggest a higher resolution grid will improve model accuracy, but this too 

comes with an increased model run-time. A final challenge that needs more investigation is the 

differences between CPU and GPU outputs. This difference may become smaller with updates to 

the model software. TUFLOW plans to release a significantly enhanced version of the GPU model 

called TUFLOW HPC. This version uses 2nd order solution accuracy solvers rather than the 1st 
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order that is used in the current version. It will also allow the user to add 2D bridges to the model 

for better representation within the system and has improvements in the multiple GPU speed 

performance for executing the model. Finally, more research is needed to see if improving model 

input data, such as using a finer DEM resolution for portions of the study area or NEXRAD rainfall 

data, will improve the GPU-based model results. 
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Chapter 4: Design of a Metadata Framework for Environmental 
Models with an Example Hydrologic Application in HydroShare3 

 

4.1 Introduction 

A large variety of environmental models exists, with each model tailored to address 

specific challenges related to environmental science and natural resource management (Singh and 

Woolhiser, 2002; Singh et al., 2006). These models have grown in complexity, with many 

simulating increasingly detailed processes occurring within environmental systems. When 

scientists and engineers use models, they must devote significant effort to collect data, construct 

model inputs, and calibrate and validate model parameters. Many environmental models also 

require sophisticated data pre-processing routines, often with many manual steps (e.g., Billah et 

al., 2016). For this reason, many models come with supporting applications such as Geographic 

Information System (GIS) interfaces, calibration tools, visualization software, and other utility 

software systems to assist in the data preparation process (e.g., Winchell et al., 2007). These data 

pre-processing steps must be repeated each time a new model is created to simulate a system. This 

introduces a number of challenges. From a pragmatic perspective, it is an inefficient use of 

scientists' time. Perhaps more importantly, it inhibits scientists' ability to reproduce studies that 

have a significant computational modeling component (David et al., 2016; Essawy et al., 2016; 

Gil et al., 2016). 

One way to begin to address these challenges is through better approaches for sharing and 

reusing models built by others. Just as there has been a major push to make better use of data  

3This Chapter is a draft manuscript of a paper that has since been published. Readers are referred to the following 
citation for the final published version of the manuscript: 
Morsy, M.M., Goodall, J.L., Castronova, A.M., Dash, P., Merwade, V., Sadler, J.M., Rajib, M.A., Horsburgh, J.S., 
Tarboton, D.G., 2017. Design of a metadata framework for environmental models with an example hydrologic 
application in HydroShare. Environmental Modelling & Software, 93, pp.13-28. 
https://doi.org/10.1016/j.envsoft.2017.02.028 

https://doi.org/10.1016/j.envsoft.2017.02.028


  81 

collected and maintained by others, the scientific community can benefit from a similar push to 

make better use of models built by others. Data sharing and reuse has been strengthened through 

the adoption of agreed-on metadata frameworks. Geospatial data, in particular, has benefited from 

widely used metadata frameworks that allow scientists and engineers to more easily reuse data 

collected by others (e.g., ISO, 2003, 2011). More recently, hydrologic time series data have also 

benefited from the adoption of commonly used metadata frameworks (e.g., Taylor et al., 2014). 

While many metadata frameworks exist, none specifically addresses computational environmental 

models. Thus, the objective of this research was to design and implement such a metadata 

framework for environmental models. 

Designing a metadata framework for environmental models poses unique challenges 

compared to other data types. First, the data required for models are heterogeneous and, in the case 

of environmental models, input for a single simulation can include dozens, if not hundreds, of data 

files. These files describe properties of the modeling elements, parameters, forcing functions, 

boundary conditions, and other data needed to execute the model for a given system. Each model 

largely adopts its own structure and semantics for storing data, making it difficult to standardize 

across models. Second, environmental modelers make use of a large and diverse set of 

computational models; Singh and Woolhiser (2002) cataloged over 65 models focusing on 

watershed hydrology alone. Environmental modelers will likely continue to make use of a broad 

range of models because each model is tailored for a given application. As a result, each model 

adopts unique data structures and semantics for both input and output data. A model metadata 

framework, therefore, must not force all models into a fixed structure, but rather be flexible and 

able to accommodate this diversity of models. 
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Some studies have begun to address the problem of designing a metadata framework for 

computational models. The Content Standard for Computational Models (Hill et al., 2001)was one 

of the first attempts at providing detailed metadata about a numerical model that includes the input 

and output data for model scenarios. Wosniok and Lehfeldt (2013) provide a concept for metadata 

driven architecture for computational fluid dynamics simulations and a way to integrate model 

descriptions into spatial data infrastructures. The Community Surface Dynamics Modeling System 

(CSDMS) created a metadata framework and used it to describe over 180 geoscience models, 

including over 50 hydrologic models within its model catalog (see http://csdms.colorado.edu). The 

CSDMS model category focuses on the software for executing a model, what we refer to in this 

paper as a model program. It does not extend to the input files for a specific model simulation, or 

what we refer to in this paper as a model instance. The metadata included in CSDMS also do not 

follow higher-level metadata standards like Dublin Core. 

Much of the past research on model metadata has focused on component-based modeling 

systems. Component-based modeling systems are a tool for integrated environmental modeling 

where model applications are constructed from a set of "plug-and-play" model components that 

can be interchanged for different applications (Argent, 2004; Laniak et al., 2013). Metadata 

frameworks have been proposed for model components generally (Elag and Goodall, 2013), the 

component interfaces (Gregersen et al., 2007; Peckham et al., 2013), and the variables passed 

between linked components (Peckham, 2014). Recently, Harpham and Danovaro (2015) designed 

an un-encoded metadata framework supporting the description of environmental numerical models 

giving more attention to the construction of model compositions by interfacing model components. 

This metadata framework was designed to facilitate the description and communication between 

loosely coupled components of a larger model chain. The framework enables the output from one 

http://csdms.colorado.edu/
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model component (e.g., a meteorological model) to be used as an input for another model 

component (e.g., a hydrological drainage model). This work used the ISO 19115 metadata standard 

as a starting point and expanded the spatial characteristics, temporal characteristics, and 

environmental parameters to enable models to be discovered and reused. 

Our work is different in that we focus on standalone model programs instead of component-

based modeling systems. Standalone model programs can execute a model simulation and generate 

output, while a model component requires a modeling framework in order to be executed. Model 

components can be loosely coupled using a modeling framework with other model components, 

while a model program does not provide this loose coupling capability. We take this focus because, 

while the adoption of component-based modeling systems is growing, we believe that the vast 

majority of ongoing studies are using standalone model applications and a metadata framework is 

needed to enhance the sharing of these standalone model instances. Also, this work could later be 

merged with past work on model component metadata to create an overarching model metadata 

framework. 

A motivating factor for this research is the design and development of a new system called 

HydroShare (https://www.hydroshare.org). The goal of HydroShare is to advance hydrologic 

science by enabling the scientific community to more easily and freely share products resulting 

from their research - not just the scientific publication summarizing a study, but also the data and 

models used to create the scientific publication (Horsburgh et al., 2015; Tarboton et al., 2014a, 

2014b). HydroShare is a web-based collaborative system developed with the goal of sharing, 

accessing, and discovering hydrologic data and models (Tarboton et al., 2014a, 2014b). It was 

designed and built by the authors, along with a larger team of researchers, in collaboration with 

the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI). 
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The basic unit of digital content in HydroShare is called a "resource." One of the key steps 

in designing HydroShare was defining metadata for different resource types (Horsburgh et al., 

2015; Tarboton et al., 2014a, 2014b). While users can upload any digital content as a "generic 

resource" within HydroShare, these generic resources only support basic metadata elements 

defined by the Dublin Core metadata framework that are applicable to any data type. Specific 

resource types in HydroShare can extend this Dublin Core metadata to provide new metadata 

elements that support functionality specific to common hydrologic datasets (Horsburgh et al., 

2015). For example, the time series resource types support additional metadata elements relevant 

to a time series, and the system can automatically plot time series resources because of this 

metadata (Sadler et al., 2015). Because a model metadata framework like this did not exist for 

environmental models, we first had to design one. Then, we used the model metadata framework 

we designed in HydroShare to implement new resource types specific to the needs of 

environmental models. While the HydroShare implementation motivated the design of the model 

metadata framework, it is important to emphasize that the metadata framework described here is 

general and can be adopted for environment models more broadly. 

The remainder of this Chapter is organized as follows. First, a Methodology section is 

presented discussing the design of the model metadata framework and describing an example use 

case where the design implemented in HydroShare was used to share results from a hydrologic 

modeling study. Next, the Results section presents the implemented software and the results from 

the example use case. Finally, the work concludes with a summary discussion of the proposed 

approach and steps that could be taken to further advance this work. 
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4.2 Methodology 

4.2.1 Metadata Framework Design 

The metadata framework design considers a computational model as two distinct concepts: 

1) a model program resource, which includes software for executing a model simulation and 

generating outputs, and 2) a model instance resource, which includes the input files and, optionally, 

the output files for a specific simulation. Having model programs and instances as separate 

resources allows a specific version of a program to be linked to several instances. If model 

programs and instances were stored together as one resource, the same model program would be 

stored with each model instance executed by that model program. Additionally, with instances and 

programs combined, the metadata describing the model program would be repeated with each 

model instance. This would result in redundant data about the same model program that would 

need to be entered every time the user uploads an instance for sharing. This may lead to 

opportunities for inconsistent metadata entry by users for the same model program included in 

multiple resources. In order to avoid redundantly storing the same program and its metadata with 

each related model instance, we separated model programs and instances as distinct resource types 

and implemented an "ExecutedBy" relation as a many-to-one to link between any number of 

instances and the program used for execution. 

The Resource Description Framework (RDF) is used for formally encoding concepts and 

their associated metadata using a subject, predicate, and object structure 

(http://www.w3.org/RDF). As a simple example, this basic structure can be used to show that a 

model instance (subject) is executed by (predicate) a model program (object) (Figure 4.1). Each 

resource has core metadata defined by the Dublin Core metadata framework and extended 

metadata designed through this research that is encoded and stored on disk using RDF-XML. 
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Details of the metadata for model programs and model instances are described in the following 

subsections. 

 
Figure 4.1 Key components of the model program and model instance resources. 

 

4.2.1.1 Model Program Resource Metadata 

The model program resource encapsulates all of the software and files necessary to 

identify, install, and run a given environmental model. The model program includes a model 

engine, which is the core mathematical modeling logic for the model (Morsy et al., 2014). This 

model engine is often, but not always, embedded within a larger application that includes 

visualization, typically using a graphical user interface (GUI), and other utility software. It is not 

uncommon for multiple model programs to use the same or similar model engine; for example, 

there are multiple model programs with different user interfaces that all use the Storm Water 

Management Model (SWMM) as its model engine. A key design decision was to link a model 

program with a model instance, rather than a model engine with a model instance. This was done 

because developers may make subtle but important changes to publically available model engines 

within their own model programs. Thus, it is difficult to guarantee that two independent model 

programs, both making use of the same original model engine, will produce the exact same output. 
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The goal when identifying metadata for a model program was to sufficiently describe a 

specific version of the software, its computer system compatibility, and its proper and intended 

use. To foster interoperability, this metadata consists of a basic description of the resource using 

elements from the Dublin Core metadata standard (shown in Figure 4.2 using the "dc" and 

"dcterms" prefixes). The basic Dublin Core metadata framework is then extended with resource 

specific metadata (Figure 4.2; Table 4.1). These extended metadata elements are given names with 

the "hsterms" prefix, indicating that their names belong to a namespace of terms defined by 

HydroShare, and are subdivided into content-related and resource-related categories. Content-

related metadata includes items such as modelEngine, modelSoftware, modelReleaseNotes, and 

modelDocumentation to describe the content that should accompany a model program resource. 

A model program is required to include a model engine, while the other content-related metadata 

items are optional. 

The resource-related metadata describe characteristics of a model program using high-level 

terminology with the aim of clearly defining and distinguishing between similar model program 

resources. These include modelReleaseDate, modelWebsite, modelVersion, 

modelProgramLanguage, modelCodeRepository, and modelOperatingSystem metadata. The 

modelReleaseDate element provides general information about the environmental model to aid in 

version identification, while the modelWebsite element is intended to provide users additional 

model-specific information. The remaining elements describe the software attributes and system 

compatibility of the model program as shown in Table 4.1. The contents of these metadata 

elements can serve many different uses, including enhanced search and discovery across a large 

collection of model program resources. They also aim to support reproducibility by capturing the 

exact model program used to execute a particular model instance. Some of these metadata elements 
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(e.g., modelOperatingSystem and modelProgramLanguage) could eventually include and benefit 

from controlled vocabularies. 

 

 

 
Figure 4.2  Model program resource metadata elements expressed as RDF triples. The # prefix 
signifies an attribute that can be populated when implementing the metadata framework for a 

given model program. 
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Table 4.1 Model program extended metadata element definitions. 
Metadata Term Cardinality Definition 
hsterms:modelVersion 1..1 Unique model version and/or build number  
hsterms:modelProgramLanguage 0..* The programming language(s) used to write 

the model program 
hsterms:modelOperatingSystem 0..* Compatible operating system(s) to setup and 

run the model program   
hsterms:modelReleaseDate 0..1 The date that this version of the model 

program was released 
hsterms:modelReleaseNotes 0..* Notes regarding the model program release 
hsterms:modelWebsite 0..1 A URL to the website maintained by the 

model developers 
hsterms:modelCodeRepository 0..* A URL to the source code 

repository (Github, Bitbucket, etc.) 
hsterms:modelDocumentation 0..* Documentation related to the model (User 

manual, theoretical manual, reports, etc.) 
hsterms:modelSoftware 0..* The archive containing model software 

(executable, installer, utilities, etc.) 
hsterms:modelEngine 0..* The archive containing the model 

computational engine (source code, binary, 
etc.) 

 

4.2.1.2 Model Instance Resource Metadata 

The model instance resource describes the input files used for execution by a model program. A 

model instance resource may optionally include the output files resulting after execution. Output 

for some models can be large. Given that these files can be recreated by executing the model, we 

made including output files optional. The design for metadata associated with a model instance 

was intended to capture the aspects required to define and distinguish between different model 

instances across the wide variety of environmental models. To accomplish this, the design first 

includes a generic model instance. This generic model instance has metadata elements applicable 

to any model program instance. The design is extensible including specific model instances that 

inherit the properties of a generic model instance and add new properties that are relevant to one 

or more model programs. This pattern is illustrated in Figure 4.3. In this figure, some specific 
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model instance resources are listed as examples, with the idea that this list can be extended to 

include other environmental models as well. This design, therefore, provides two ways to capture 

metadata for a model instance. The default option would be to use a generic model instance 

resource type. However, if available, a specific model instance resource type should be used to 

take advantage of enhanced functionality and metadata capture.  

 
Figure 4.3 Generic model instance and specific model instance hierarchy. Model program, 

generic model instance, SWAT model instance, and MODFLOW model instance metadata have 
already been designed, while metadata for the other specific model instances are either in 

development or planned for the near future. 

Figure 4.4 presents the metadata for a generic model instance. Because the generic model 

instance extends the Dublin Core metadata framework, it inherits the metadata elements defined 

by Dublin Core (with names shown using the "dc" and "dcterms" prefix). One metadata element 

defined in Dublin Core that is particularly important for model instances is the coverage element. 

This metadata element defines the temporal and spatial extent of a resource. For a model instance 

resource, the temporal coverage provides the start and end date/time for the simulation; the spatial 

coverage provides a place name and geographic coordinates for the model instance. The spatial 

coverage can be represented by a point (e.g., the centroid of the modeling domain) or a box (e.g., 
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the bounding box of the modeling domain). This coverage element does not represent the exact 

shape of the model instance, but rather its geographic location or extent. 

 

 

 

 

Figure 4.4 Generic model instance resource metadata elements expressed as RDF triples. 
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Table 4.2 Generic model instance extended metadata element definitions. 
Metadata Term Cardinality Definition 
hsterms:modelOutput 

 
A class used for describing output for an 
executed model instance 

    hsterms:includesModelOutput 1..1 A boolean value that indicates if the 
output files are included with the model 
instance 

hsterms:executedBy 
 

A class that describes the model program 
that executes the model instance 

    hsterms:modelProgramName 0..1 The name of the model program that 
executes the model instance 

    hsterms:modelProgramIdentifier 0..1 The identifier for the model program that 
executes the model instance 

 

As with the model program, the generic model instance metadata is extended from the 

Dublin Core elements with the names of additional metadata elements having the "hsterms" prefix 

(Figure 4.4; Table 4.2). These metadata elements are subdivided into two main classes: 

ModelOutput and ExecutedBy. ModelOutput includes information about the output data generated 

by the model after it is executed. Only one element was deemed necessary in the initial design for 

describing the model output, although more elements could be added later. The element included 

is includesModelOutput, which allows users to indicate if the output files are included along with 

the input files as part of the model instance resource. The ExecutedBy element links the model 

instance resource with the model program resource that is used for execution. ExecutedBy includes 

two sub-metadata elements: modelProgramName and modelProgramIdentifier. The 

modelProgramName element stores the name of the linked model program resource, while 

modelProgramIdentifier stores its unique identifier. By linking a model instance to a model 

program resource, the ExecutedBy metadata element facilitates later reproducibility of the model 

results. 
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As an example of a specific model instance, consider an extension to the generic model 

instance designed to add metadata specific to an instance of the Soil and Water Assessment Tool 

(SWAT). This SWAT model instance offers extended metadata elements that more fully describe 

SWAT model instances, but that are not directly applicable to other environmental models. The 

SWAT model instance was designed to be compatible with the SWATShare application, which is 

an interactive Web tool used to run, visualize, and interact with SWAT model instances (Rajib et 

al., 2016). The extended metadata elements for a SWAT model instance are shown in Figure 4.5, 

and the extended metadata elements are defined in Table 4.3. While these elements are specific 

and extensive, many of them are optional so the barrier to entry is still low. Also, through future 

work, many of the metadata elements could be extracted automatically from model instance 

configuration files. Unlike the generic model instance, the SWAT model instance introduces 

controlled vocabularies for some SWAT model metadata elements including modelObjective, 

simulationType, and simulationTimeStepType. These controlled vocabularies are compatible with 

the controlled vocabularies used by SWATShare. For example, simulationType has a controlled 

vocabulary consisting of three choices: normal simulation, sensitivity analysis, and auto-

calibration. 
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Figure 4.5 SWAT model instance metadata expressed as RDF triples. 
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Table 4.3 SWAT model instance extended metadata element definitions. 
Metadata Term Cardinality Definition 
hsterms:modelObjective 1..* The objective of the model (hydrology, water quality, BMPs, climate / landuse change, 

etc.) 
hsterms:simulationType 0..1 The type of the simulation used (i.e., normal simulation, sensitivity analysis, and auto-

calibration) 
hsterms:modelInput 

 
Class for describing the model instance input files 

    hsterms:warm-upPeriodType 0..1 The warm-up period type (always years) 
    hsterms:warm-upPeriodValue 0..1 The numeric value of the warm-up period in years 
    hsterms:rainfallTimeStepType 0..1 The type of time step used in the simulation for input rainfall data (i.e., daily or sub-

hourly) 
    hsterms:rainfallTimeStepValue 0..1 The time step value associated with the rainfall data 
    hsterms:routingTimeStepType 0..1 The type of time step used in the simulation for river routing calculations (i.e., daily or 

hourly) 
    hsterms:routingTimeStepValue 0..1 The time step value used for the river routing calculations 
    hsterms:simulationTimeStepType 0..1 The type of time step type used for model simulation (i.e., annual, monthly, daily, or 

hourly) 
    hsterms:simulationTimeStepValue 0..1 The time step value used for simulation 
    hsterms:watershedArea 0..1 The watershed area in km² 
    hsterms:numberOfSubbasins 0..1 The number of subbasins within the watershed 
    hsterms:numberOfHRUs 0..1 The number of hydrologic response units (HRUs) within the watershed 
    hsterms:DEMResolution 0..1 The resolution of the digital elevation model (DEM) in meters 
    hsterms:DEMSourceName 0..1 The name of the DEM provider 
    hsterms:DEMSourceURL 0..1 The URL of the DEM 
    hsterms:landUseDataSourceName 0..1 The name for the land use / land cover (LULC) dataset provider 
    hsterms:landUseDataSourceURL 0..1 The URL for the LULC dataset 
    hsterms:soilDataSourceName 0..1 The name for soil dataset provider 
    hsterms:soilDataSourceURL 0..1 The URL for Soil dataset  

hsterms:modelMethod 
 

Class that describes the model methods used in the simulation 
    hsterms:runoffCalculationMethod 0..1 The runoff calculation method used 
    hsterms:flowRoutingMethod 0..1 The flow routing method used 
    hsterms:PETEstimationMethod 0..1 The Potential EvapoTranspiration (PET) estimation method used 
    hsterms:modelParameter 0..* The parameters used in the model (crop rotation, title drainage, point source, fertilizer, 

tilage operation, inlet of draining watershed, irrigation operation, etc.) 



  96 

While SWAT is used to provide an example of a specific model instance, similar metadata 

and corresponding controlled vocabularies could be developed for other models. The design goal 

of this work, however, was not to capture metadata relevant to all environmental models, as doing 

so would be impractical. Rather, our goal was to design a framework that has a common core and 

a clear methodology for extending this core for specific environmental models. We plan to provide 

examples, like the SWAT example, that third party developers can follow to create their own 

specific model instance metadata. By providing a common foundation for metadata and resource-

structure across models, there will be a level of standardization that will aid in interoperability 

across software systems. Specific model metadata acknowledges the diversity among 

environmental models and does not force conformity to a single set of metadata elements. The 

design also allows for changes in the future. For example, if additional common model metadata 

elements are identified across environmental models, then they can be added to the generic model 

instance class and inherited by all specific model instances. 

 

4.2.2 Experimental Use Case 

To demonstrate the metadata design, we used the application of a SWMM model from 

Chapter 2 used to study flooding in an urban watershed (Morsy et al., 2016) as a use case. We wish 

to publish the resulting model instances online. There are many motivating factors for doing this. 

First, we believe that a model instance, like the journal paper, is an important product from the 

research and should stand on its own as a citable product. Second, we want to foster ways for other 

scientists to build from or reuse our model to address their own scientific research questions. Third, 

we want to ensure that the model program used in our study, including the model engine, utility 

software, and documentation, is captured within a single online resource. This is important 
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because, after some time, the model program developers may not provide this particular version 

of the software on their website. Lastly, this is a way of meeting the research sponsor's data 

management obligations. While this use case is specific to scientific research, a similar use case 

could be followed for consulting or industrial modeling activities. While such model applications 

may not result in journal publications, there is still significant value in descriptive metadata for 

internal cataloging and archiving purposes. Additionally, in such cases models can be shared 

privately within HydroShare allowing collaboration among specific users while keeping the data, 

model, and results confidential. 

As a reminder, the objective of this prior modeling study was to better understand the 

potential of rain gardens as distributed stormwater controls for flood mitigation within an 

urbanized watershed (Morsy et al., 2016). The specific study area of the research was the Rocky 

Branch watershed, which is located in downtown Columbia, South Carolina, USA. Because a 

significant portion of the watershed is developed, high intensity storms that typically occur during 

the summertime result in flooding at different locations within the watershed. For this study, two 

different model instances were created (Figure 4.6). The first model instance is a well-calibrated 

and evaluated model that simulates flooding events in the Rocky Branch watershed. The second 

model instance builds from the first model instance and includes additional, hypothetical rain 

gardens as stormwater controls to test if their addition mitigates flooding in the watershed for storm 

events with different return periods. 

The metadata framework was implemented within HydroShare and used to share the model 

program and model instance resources for the example application. HydroShare, as introduced 

earlier, is an online system for managing resources adhering to a Resource Data Model (Horsburgh 

et al., 2015; Tarboton et al., 2014a). The HydroShare architecture organized as shown in Figure 
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4.7 (Heard et al., 2014) consists of open source components including Django, a web application 

platform, Mezzanine, a content management system meta-framework, and the Integrated Rule-

Oriented Data System (iRODS), an enterprise storage management middleware (Rajasekar et al., 

2010). Results detailing the technical aspects of the software implementation are presented in 

Section 4.3.1. 

 
Figure 4.6 Use case implementation as a model program and two model instance resource types. 

Although a SWMM-specific model instance resource type could have been designed and 

implemented within HydroShare, we used the generic model instance resource type when 

implementing the use case to provide an example applicable to any environmental model. A 

SWMM-specific model instance would have allowed for the capture of additional metadata 

relevant specifically to SWMM models. Software extensions to HydroShare could then provide 

custom functionality and applications able to operate specifically on SWMM-model instances. 

Using the generic model instance offers broad use across environmental models, but it lacks the 

potential for customization that becomes possible when targeting a specific model instance 

resource type. 
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Figure 4.7 HydroShare's general architecture emphasizing the connections between the user, 

HydroShare, iRODS, and third party applications. 

 

4.3 Results 

4.3.1 Results for Software Implementation within HydroShare 

Figure 4.8 shows the class structure for the new model resource types implemented within 

HydroShare based on the metadata framework design. Each resource type consists of three main 

categories of classes: the resource data type class, the classes for the individual extended metadata 

elements, and the container class that groups all metadata elements. For example, the classes in 

the three categories for the model instance resource type are 1) ModelInstanceResource, which is 

the resource data type class, 2) ModelOutput and ExecutedBy, which are the classes representing 
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the extended metadata elements, and 3) ModelInstanceMetaData, which is the class that contains 

all the metadata elements. The resource type classes for model instance and model program inherit 

from the BaseResource class, which, in turn, inherits from the Abstract Resource class. This 

structure allows the model resource type to inherit the Dublin Core metadata elements. Specific 

model instance metadata, like that for the SWAT model instance resource type, inherits from the 

generic model instance resource type class. The diagram shown in Figure 4.8, therefore, could be 

extended for other specific model instance metadata. 

Each Model resource type extends the BaseResource class by representing specific 

metadata elements as individual classes. These extended metadata classes inherit from the 

AbstractMetaDataElement class. In this class, there is one required attribute: term. Other attributes 

needed for further description can be added. For example, the extended metadata class ExecutedBy 

for the ModelInstance resource has the model_name, and model_program_fk attributes. The 

specific metadata elements are grouped in the CoreMetaData class. The ModelProgramMetaData, 

and ModelInstanceMetaData classes inherit from the CoreMetaData class, which is the metadata 

container that includes the common metadata element objects. These classes are the link between 

the ModelProgramResource, the ModelInstanceResource classes, and their extended metadata 

classes. One-to-one relationships are made between ModelProgramMetaData and 

ModelInstanceMetaData classes and each of their respective extended metadata classes. These 

extended metadata classes are then included as supported metadata elements for their related 

resources (ModelProgram or ModelInstance resources) where they could be used to create, update, 

and delete class instances associated with these resource types. 

An important method of the CoreMetaData, ModelProgramMetaData, 

ModelInstanceMetaData, and SWATModelInstanceMetaData is get_xml. This method converts 
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the stored metadata into an RDF-XML format. The CoreMetaData.get_xml method extracts the 

generic metadata elements, while the get_xml method for each specific resource extracts the 

related extended metadata elements. For example, for a ModelInstance resource, the 

CoreMetaData.get_xml method is used to extract the Dublin Core standard metadata elements, 

while the ModelInstanceMetaData. get_xml method is used to extract the extended metadata 

elements. 
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Figure 4.8 Metadata classes for model resources implemented within HydroShare. 
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4.3.2 Results from the Example Use Case 

Figure 4.9 illustrates the metadata that can be captured for the example use case using the 

generic model instance and model program resources. Each resource has a title, creator, and other 

metadata that follow the Dublin Core metadata standard. In addition, extended metadata elements 

for each resource (with names shown using the "hsterms" prefix) help to more fully describe the 

model instance and corresponding model program used for executing the model instance. Figure 

4.9 also shows how the model program resource type, in this case the SWMM model (Rossman et 

al., 2016), and the model instance resource type, in this case a Rocky Branch watershed simulation, 

are connected using the ExecutedBy relationship. 

Figure 4.10 is an activity diagram showing the steps used to create new model resources 

on hydroshare.org. Three resources were created in this example: a model program resource for 

the EPA-SWMM model version 5.1.009 (Rossman et al., 2016) and two model instance resources 

for the Rocky Branch watershed simulations (e.g., Morsy, 2015). Figure 4.11 shows the Graphical 

User Interface (GUI) for how a user selects a model resource type within HydroShare. In the 

current implementation, the model resource types are grouped together under the modeling title. 

Once the user selects the desired resource type, adds a title, and uploads the related files, the new 

resource is created in HydroShare and the user sees the landing page for this newly created 

resource. At this point, a unique identifier specific to the HydroShare system has been 

automatically assigned to the resource. Later, if the user decides to formally publish the resource 

in HydroShare, a more formal digital object identifier (DOI) would be assigned to the resource. 

After a resource is formally published and a DOI is assigned, the user can no longer make changes 

to the resource metadata or the uploaded files. Prior to formal publication, authorized users can 

make changes to the resource at any time. 



  104 

 
Figure 4.9 Results of populating the model instance and model program metadata for the 

example use case. 
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Figure 4.10 Activity diagram describing the steps required to create a new model instance 

resource within HydroShare. Step 11 is highlighted to indicate that only model instances require 
coverage and not model programs. 

Figures 4.12 and 4.13 show the resource specific metadata for the model program resource 

and the generic model instance resource types, respectively, on their landing pages in HydroShare. 

These figures show HydroShare's metadata "edit" mode to illustrate all of the available metadata 

elements, as HydroShare's default is to hide metadata elements for which there are no values in 

"view" mode. Note that the model instance is linked to the model program used for execution 

(Figure 4.13). Under the "Model Program used for execution" heading on the generic model 

instance landing page, there is a dropdown list that collects all the available public model program 

resources in HydroShare. The user chooses the model program resource used to execute the model 

instance resource from the dropdown list (or creates a new model program resource if it is not 

already available). Once the user chooses the desired model program resource, a summary of the 

model program metadata is displayed to aid the user in confirming that the correct model program 

was selected. 
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Figure 4.11 Screen shot showing model resource types currently implemented on 

hydroshare.org. 

Another important aspect of the model instance resource is the coverage metadata. Figure 

4.14 shows how the coverage metadata appears in the resource's landing page in edit mode. As 

explained above, there are two types of coverage metadata elements: spatial and temporal. All of 

the spatial metadata is expressed in World Geodetic System (WGS) 84 coordinates, which is used 

throughout HydroShare. This allows standard web tools to search the metadata easily without full 

GIS functionality. However, users must be aware that errors can be introduced if the spatial data 

is transformed from another coordinate system to WGS 84. For the use case, the spatial metadata 

was entered for this model instance as a two-dimensional bounding box (rather than an XY point). 

Once the user inserts the bounding coordinates, the box will appear on the map so that the user can 

confirm the spatial coverage extent. The user can also specify the coverage by clicking a point on 
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the map or dragging a box on the map. The temporal coverage metadata consists of start and end 

dates and times for the model instance. This is implemented in the data model based on the W3C-

DTF scheme, which by default enables full specification of a date/time string, including a time 

zone. Currently, as seen in Figure 4.14, the HydroShare interface supports only the entry of dates 

without times or time zone specifications. HydroShare uses this coverage metadata to support both 

spatial (e.g., map-based) and temporal searches to identify relevant resources. 

 

 

 
Figure 4.12 Model program resource specific metadata on the resource's landing page on 

hydroshare.org (shown in edit mode). 
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Figure 4.13 Generic model instance resource specific metadata on the resource's landing page on 

hydroshare.org (shown in edit mode). 

 

 
Figure 4.14  Model instance resource type coverage metadata on the resource's landing page 

(shown in edit mode) on hydroshare.org. 
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4.4 Discussion 

The metadata framework proposed in this study was designed to provide a balance between 

simplicity and complexity; simplicity to encourage to sharing of models by model producers, and 

complexity by providing a sufficient level of information to enable discovery and use of the model 

by potential consumers. One of the most difficult design decisions in this work was to separate 

model programs and model instances into two different resources rather than a single combined 

resource. The design decision was made for the following reasons. First, it allows the model 

program metadata to be entered only once within the system. Second, it simplifies the task of 

identifying all model instances executed by a given model program stored within the system. 

Third, it provides a path for online execution of many model instances that are linked to a single 

model program. We felt these benefits outweighed the added complexity and management needs 

introduced by separating the model program and model instance concepts into different resources 

types. We acknowledge that some use cases require incremental changes to a model program's 

source code, and we are considering options for capturing these incremental changes to model 

programs without the need to create a completely new resource every time a model program's 

source code has been changed. That said, users are not restricted from uploading a model program 

within a model instance, if desired. If this becomes common practice, we are considering allowing 

a model instance resource's ExecutedBy field to point to itself. This would signify to a user that 

the model program, whether it be a complied binary file or the source code, is located within the 

model instance resource. 

Another key design decision was to allow a model instance resource to be linked to only 

one model program resource. We realize that it is possible for a model instance to be executed 

successfully by multiple model program resources (e.g., two model programs with different 
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versions but compatible with the same model instance). However, allowing a model instance to be 

linked to more than one model program would introduce uncertainty about what program was used 

to execute the instance for a given study. Reproducibility could be compromised as a result because 

executing the model instance with a different model program may return slightly different results. 

For this reason, the design requires a model instance to be linked to only one model program. 

We encountered through the use case application the important issue of how to handle the 

case where the person uploading a resource into HydroShare, what HydroShare refers to as the 

resource's owner, is not the author of that resource. HydroShare separates intellectual credit 

attribution from access control and management of content. The Dublin Core vocabulary term 

"Creator" is used in HydroShare metadata for the intellectual originator of the content. This is 

displayed as Author on landing pages and used in citations. The term "Owner" is used in access 

control and management of content and is typically the HydroShare user responsible for uploading 

the content (although ownership can be transferred after uploading, and others can be assigned 

permissions to edit and upload content). In the SWMM model program resource example, the 

EPA-SWMM model was authored by researchers at the United States Environmental Protection 

Agency (EPA) but was uploaded to HydroShare by the modeler, one of the authors of this paper. 

The original authors of SWMM were entered as authors for the resource and the relationship 

"isCopiedFrom" was added to the resource pointing to the website from which the model program 

was obtained. With this added relationship, the HydroShare system automatically generates and 

displays a citation on the resource's landing page that shows that the resource in HydroShare was 

replicated from an external source, as shown below. The user that uploaded the resource into 

HydroShare, but did not author the resource, remains the resource owner but rightly does not 

receive authorship credit for this resource within the citation. 
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Rossman, L. T. Schade, D. Sullivan, R. Dickinson, C. Chan, E. Burgess (2016). Storm Water 
Management Model (SWMM), Version 5.1.010 with Low Impact Development (LID) 
Controls, http://www2.epa.gov/water-research/storm-watermanagement-model-swmm, 
accessed 4/4/2016, replicated in HydroShare at: 

  http://www.hydroshare.org/resource/2cddae40e9594c21b947fdbbe4225439. 

A limitation of this work at its current stage is the ability to scale-up to support dozens of 

different specific model instance resource types. Ideally, the creation of new HydroShare resource 

types would be simple enough that it could be done by the broader community of model 

developers. Currently, however, the process of creating a new resource type within HydroShare is 

time consuming and requires advanced knowledge of the HydroShare system and architecture. 

One approach to address this would be to focus on simplifying the process for creating new 

resource types. Another possibility would be to alter the approach described in this paper so that 

specific model instances are not implemented as new resource types, but still can have extended 

metadata for specific model programs. In this case, all model instances would be uploaded using 

a single resource type, but there would be a mechanism to filter the metadata fields available to 

the user once the user or system identifies the uploaded model instance as being a specific and 

known type (e.g., a SWAT model instance). More research is needed to test these alternative 

options in terms of their practicality, usability, and scalability within HydroShare. 

Discovery is an important use case that model metadata must support. In HydroShare, the 

metadata model for all resources was designed to support discovery. However, the search interface 

design that exposes metadata elements within the existing data model is still under active 

development. Currently, users can discover HydroShare resources by searching and filtering model 

resources using many of the Dublin Core metadata elements implemented in the HydroShare data 

model (i.e., the generic resource metadata). For example, resources can be discovered by model 

authors (dc:creator), model resource type (dc:type), model keywords (dc:subject), full text search 

http://www.hydroshare.org/resource/2cddae40e9594c21b947fdbbe4225439
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of a model resource description (dc:description/dcterms:abstract), model spatial location 

(dc:coverage/dcterms:box or dcterms:point), and model temporal duration 

(dc:coverage/dcterms:period). Other Dublin core elements (e.g., dc:language) have not yet been 

exposed as discovery facets. 

The HydroShare system does not yet allow for discovering resources using the specific 

metadata designed for each resource type. Using the resource specific metadata defined for model 

instances and programs in this research, however, will further enhance and improve the discovery 

capabilities. For example, if a user would like to discover all model instance resources within 

HydroShare that include output files along with model input files, the system could use the 

metadata element ModelOutput/includesModelOutput. If a user would like to discover all the 

model instance resource types that are executed by a specific model program available in the 

HydroShare system, the system could use the metadata element ExecutedBy/modelProgramName. 

Also, if a user would like to discover all model program resources that are compatible with a 

specific operating system, the system could use the metadata element modelOperatingSystem. 

As HydroShare continuities to evolve, the types of searches users wish to complete will 

help guide future expansions of the metadata framework. There are many example use cases one 

could imagine for enhanced discovery. For example, a user may wish to identify model programs 

that have the ability to execute using a hot start file, which may be required for a specific 

application like flood forecast modeling. In the current system, users can specify such details in 

the resource abstract as free text and/or as keywords. This reduces the metadata complexity, but if 

certain queries like this become a common occurrence within the system, then a new metadata 

element (or elements) might be needed to describe this property more precisely. Doing so, users 

would have the capability to more easily search and discover these resources without having to 



  113 

rely on free text searches of the generic metadata fields (e.g., dc:description/dcterms:abstract). 

Therefore, as the system becomes more widely used, searches can be tracked, which will help 

guide future expansions of the metadata to better support common queries. 

A longer-term goal of this work is to provide server-side execution of model instances 

directly through HydroShare. By knowing and storing the exact model program used to execute a 

model instance within HydroShare, it should be possible to install the model program onto server-

side computational resources and execute a model instance using these resources. The updated 

model instance including the newly generated output files could be automatically added to 

HydroShare via HydroShare's existing web service application programming interface (API), 

updating the original resource. Research on methods for achieving this goal, given the complexities 

of server-side model execution including the potential for large model instance sizes and long 

model execution times, has begun. Being able to execute a model instance directly through 

HydroShare could offer significant benefits including model reproducibility where a model run is 

performed in a controlled environment preconfigured with all required software dependencies. 

 

4.5 Conclusions 

This work presents a model metadata framework to support discovery, sharing and 

interpretation of environmental models. Key features of the framework are (1) that the model 

program and model instance are separate concepts with a one-to-many relationship (a single model 

program may be linked to many model instances), (2) that metadata for these concepts extend the 

well-recognized and commonly used Dublin core metadata, and (3) that the model instance 

concept is a hierarchy with a generic parent class implementable for any model program, and a 

more specific level tailored for certain model programs. 
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A key challenge in this or any other metadata framework design is providing the right 

balance between rich metadata for adequately describing details of resources and minimal 

metadata that is critical and can be easily populated. The growing number of generic data 

repositories available to environmental modelers (e.g., figshare.com, zenodo.org, institutional 

repositories, etc.) largely adopt a minimal metadata approach. These systems provide metadata 

roughly equivalent to the metadata used to describe a generic resource in the HydroShare system. 

While this generic metadata could be used to describe, share, and discover model programs and 

model instances, it misses many other properties of these resources that could be leveraged for 

improved search, discovery, and use of model resources. Although these properties are generally 

included in the configuration files of the model, each model has unique configurations files, 

making it difficult, if not impossible, for interested users and/or an automated system to extract 

the pertinent metadata across models. The purpose of the metadata analysis and design presented 

here is to provide a more thorough, detailed metadata approach for model programs and instances. 

We expect to improve this metadata design over time as lessons are learned from its use, and as 

progress is made within the broader metadata and scientific modeling communities. 

With the growing number of systems that serve a role within the larger cyberinfrastructure 

being built to support science, interoperability between these systems is becoming a more pressing 

need. If these systems are built from an agreed upon metadata framework, then it simplifies the 

transfer of resources between the systems. This would encourage each system to specialize in 

selected use cases while relying on external systems to handle other use cases outside of its scope. 

For example, in this work HydroShare specializes in model metadata, resource sharing, and 

resource publication. In ongoing research, we are building interoperability with the external 

SWATShare system that focuses on SWAT model execution and visualization (Rajib et al., 2016). 
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By adopting the same metadata and resource file structure for a SWAT model instance, these 

model instance resources can be more easily transferred between the two systems, and users can 

benefit from the functionality and strengths of both applications. 

Future work will be aimed at improving the usability of the model program and model 

instance resources within HydroShare. For example, to reduce the time spent manually completing 

metadata fields, new functionality is planned to automate metadata extraction when a resource is 

uploaded and the metadata are already present within files uploaded with the resource. This would 

be especially effective for specific model instances whose input files already contain rich metadata. 

Model instances, for example, often include input files containing information on spatial and 

temporal coverage. The system should read these files, extract whatever metadata it can, and 

request only missing metadata fields from the user. Automatic metadata extraction, along with the 

increased use of controlled vocabularies, would increase the usability of the system for both 

sharing and discovery. This approach is difficult, however, given the diversity among 

environmental models; extracting metadata directly from model input files may require a 

significant amount of custom code. One potential long term benefit of this work would be for all 

model developers to add functionality that outputs a standard metadata file that can be read by 

HydroShare and other systems. Ideally, this would be done within the model program source code 

itself, but it could also be implemented as an external utility program. HydroShare and other 

systems could then read this file for automatic metadata extraction. 
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Chapter 5: Conclusions and Future Work 

 

This research addressed three challenges related to flooding impacts: (i) estimating the 

potential of distributed stormwater infrastructure, namely rain gardens, to mitigate flooding in 

urban catchments, (ii) designing and building a cloud-based real-time flood warning systems for 

emergency management purposes, and (iii) designing and building cyberinfrastructure to support 

reuse and transparency in both flood modeling and hydrologic and environmental modeling more 

broadly. 

Chapter 2 focused on improving the understanding of how the adoption of LID practices, 

in particular rain gardens, at the parcel level in an already urbanized watershed might impact runoff 

detention and, therefore, flood risk. In this study, the storage volume added by the rain gardens 

was the product of two model variables: the total area of the rain gardens in the watershed as a 

percentage of the total impervious surface and the ponding depth (or berm height) of the rain 

gardens. The results suggest that implementing rain gardens with an area of 20% of the study area 

impervious surfaces is sufficient to mitigate flooding for storm events with less than or equal to a 

10 year return period, if the maximum recommended ponding depth of 30 cm is used. It also was 

determined that 15% of runoff from impervious surfaces would need to be diverted to mitigate 

flooding for a 2 year return period, 1 hour duration storm. For a 5 year return period, 1 hour 

duration storm, there would need to be a 27% runoff reduction. Storms with a 10 year return period 

would require 38% runoff reduction, whereas higher return periods would require over 50% runoff 

reduction. The results of this study suggest that distributed LID approaches could potentially be 

used to mitigate up to a 5 or even 10 year return period storm. However, further research on 

possible adoption rates within the study watershed is needed to verify this conclusion. 
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Chapter 3 provides a design for creating a cloud-based flood forecasting system to assist 

transportation decision makers in time-sensitive, emergency situations. The flood forecasting 

system was implemented to provide decision makers with forecasts of flooded roadways and 

bridges based on rainfall forecasts. The 2D hydrodynamic model used in this study, which was 

executed for a modeling duration of 15 days, was executed up to 80x faster by using GPU resources 

compared to using a single CPU (from 120 hours to 1.5 hours). An automated cloud-based 

workflow using Amazon Web Services (AWS) resources was designed and created to link and 

enhance the three core model components: (i) retrieval and formatting of high resolution gridded 

rainfall forecast data, (ii) execution of the 2D model in a short duration to identify flood prone 

bridges, and (iii) real-time dissemination of model output via generation of an online map with 

flood warnings and the ability to send automated alert messages via email. This cloud-based 

approach provides an innovative way to perform flood modeling by automatically utilizing 

computational resources only when the flood events are likely to occur. Additionally, the workflow 

is automated, start to finish, without any intermediate human interaction. This work presented a 

preliminary calibration of the 2D model, but additional work is needed to further calibrate and 

evaluate the model across multiple historical flooding events. Calibration was challenging due to 

the scarcity of operational river gauges and significant model run-time. Results of this study 

suggest a higher resolution grid will improve model accuracy, but this too comes with an increased 

model run-time. A final challenge that needs further investigation is the differences between the 

2D model outputs using CPU and GPU solvers. More research is needed to see if improving model 

input data, such as using a finer DEM resolution or NEXRAD rainfall data, will improve the 

accuracy of the GPU-based model results. Including also surveyed creek bathymetry data along 

with bridge structure information might also improve the model results.  
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Chapter 4 presents a model metadata framework to support discovery, sharing and 

interpretation of environmental models. Key features of the framework are (i) the model program 

and model instance, which are separate concepts, are linked in a one-to-many relationship (a single 

model program may be linked to many model instances), (ii) metadata for these concepts, which 

extend the well-recognized and commonly used Dublin Core metadata framework, and (iii) the 

model instance concept, which is a hierarchy with a generic parent class implementable for any 

model program, and more specific child classes tailored for certain model programs. A key 

challenge in this or any metadata framework design is providing the right balance between rich 

metadata for adequately describing details of resources and minimal metadata that is critical and 

can be easily populated. While generic metadata could be used to describe, share, and discover 

model programs and model instances, it misses many other properties of these resources that could 

be leveraged for improved search, discovery, and reuse of model resources. The purpose of the 

metadata analysis and design presented in this work is to provide a more thorough, detailed 

metadata approach for model programs and instances. With the growing number of systems that 

serve a role within the larger cyberinfrastructure being built to support science, interoperability 

between these systems is becoming a more pressing need. If these systems are built from an agreed 

upon metadata framework, then it simplifies the transfer of resources between the systems. This 

would encourage each system to specialize in selected use cases while relying on external systems 

to handle other use cases outside of its scope. Future work will be aimed at improving the usability 

of the model program and model instance resources within HydroShare. For example, to reduce 

the time spent manually completing metadata fields, new functionality is planned to automate 

metadata extraction when a resource is uploaded and the metadata are already present within files 

uploaded with the resource. Automatic metadata extraction, along with the increased use of 
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controlled vocabularies, would increase the usability of the system for both sharing and discovery. 

This approach is difficult, however, given the diversity among environmental models; extracting 

metadata directly from model input files may require a significant amount of custom code. 

In conclusion, this dissertation presents new tools and approaches to assist decision makers 

in better understanding, addressing, and finding solutions for flooding problems faced on the 

catchment and regional scales. It also demonstrates the potential benefit of harnessing the rapidly 

advancing cloud and cyberinfrastructure technologies to advance hydrologic modeling. Through 

computational models, this work (i) contributes understanding of the potential of rain gardens as 

distributed stormwater control for flood mitigation at the catchment-scale and (ii) it demonstrates 

the use of the cloud for building an automated regional-scale flood warning system using a 

sophisticated 2D hydrodynamic model. This work also contributes a solution for sharing and 

reusing hydrologic models, allowing them to be documented and shared with other scientists, as 

well as with decision makers, which encourages model reusability, reproducibility, and 

transparency. 
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