

Cyberinfrastructure to Support Flood Modeling
from Catchment to Regional Scales

A Dissertation

Presented to
the Faculty of the School of Engineering and Applied Sciences

University of Virginia

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
 in

Civil and Environmental Engineering

By

Mohamed Morsy Anwar Morsy

August 2017

APPROVAL SHEET

The Dissertation
is submitted in Partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy

Mohamed Morsy Anwar Morsy

Author

The dissertation has been read and approved by the examining committee:

 Jonathan Goodall, Ph.D., P.E.

Advisor

Teresa Culver, Ph.D.

John Porter, Ph.D.

Marty Humphrey, Ph.D.

 Michael Fitch, Ph.D.

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, Dean, School of Engineering and Applied Science

August 2017

 i

Abstract

Flooding events are projected to increase in frequency and intensity in coming years due

to climate change. New tools and approaches are needed to assist decision makers in better

understanding and addressing societal impacts due to flooding and how to mitigate these impacts.

This research addressed three challenges related to flooding impacts: (i) better understanding how

distributed stormwater infrastructure can mitigate flooding in urban catchments, (ii) designing and

building spatially-detailed, real-time flood warning systems for emergency management purposes,

and (iii) designing and building cyberinfrastructure to support reuse and transparency in both flood

modeling and hydrologic modeling more broadly. The goal of this research was to address these

challenges by conducting three studies.

The first study explored building a catchment-scale flood model used to improve

understanding of how distributing low impact development (LID) practices at the parcel level in

an already urbanized watershed reduces runoff and, therefore, flood risk. At this scale and in an

urban environment, spatially detailed descriptions of the physical environment are required. A

physically-based modeling approach was used in order to answer "what if" hypothetical scenarios

of rain garden adoption rates and their impact on watershed-scale runoff generation.

The second study explored building an automated cloud-based system for forecasting

flooded roadway and bridge locations at a regional-scale. Because the study area has very low

topographic relief, a two-dimensional (2D), computationally-expensive hydrodynamic model is

required. This study demonstrated the ability of using instances in a public cloud with powerful

graphical processing units (GPUs) to run a large (average of 4 million nodes) 2D hydrodynamic

model in a time frame relevant to real-time emergency management applications. The steps

required to build this system were (i) creating an automated workflow for obtaining and processing

 ii

forecast rainfall data, (ii) running the 2D model in the cloud, (iii) using geospatial analysis tools

to identify flooded bridges, and (iv) presenting the results online for decision makers. The system

automates forecast data access and pre-processing, execution of a high-resolution 2D

hydrodynamic model, and map-based visualization of model outputs using Amazon Web Services

(AWS).

The third study advanced approaches for sharing hydrologic models, such as the models

created in this dissertation, through community supported cyberinfrastructure. Sharing models is

important for scientific reproducibility, reuse, and fidelity. In this study, the first task was to design

a metadata framework for hydrologic models that is flexible and applicable across the wide variety

of models used by hydrologists. Then the study demonstrated the utility of this framework for

sharing, publishing, and reusing models through an implementation within the HydroShare

cyberinfrastructure system.

In the first study, the results suggest that rain gardens with 30 cm berm heights and a total

area equal to 20% of the impervious surfaces within the watershed should provide sufficient

storage to mitigate flooding for rain events up to and including a 10 year return period storm event.

The results also suggest approximately 15%, 27%, and 38% of the runoff generated from

impervious surfaces should be diverted to the rain gardens to mitigate flooding from 2, 5, and 10

year return period storm events, respectively. Given prior work on the adoption of LID approaches

for other watersheds, rain gardens could effectively mitigate up to a 5 year return period storm

event within the watershed, although further research on possible adoption rates in the study

watershed is needed to more fully support this conclusion. In the second study, an 80x speed-up

in execution time of the 2D models was achieved by using GPUs rather than a central processing

unit (CPU). A prototype deployment system was built within the Amazon Web Services (AWS)

 iii

cloud that includes a web front-end, execution for the model engine, and storage of the model

output data. The system is designed to run automatically during extreme weather events, produce

near real-time results, and consume few computational resources until triggered by an extreme

weather event. Although the model is built for a specific region of Virginia, the architecture serves

as an example that could be replicated to other regions where 2D hydrodynamic models are

required for real-time flood warning applications. In the third study, a general approach for

representing environmental model metadata that extends the Dublin Core metadata framework was

proposed. The framework was implemented within the HydroShare system and applied for a

hydrologic model sharing use case. This example application demonstrates how the metadata

framework implemented within HydroShare can assist in model sharing, publication, reuse, and

reproducibility.

 iv

Acknowledgments

In the name of Allah, the Most Gracious and the Most Merciful, first and above all, I praise

Allah for providing me this opportunity and granting me the strengths and His blessing to complete

this dissertation successfully. This dissertation would never been completed without the support,

assistance, and guidance of several people who mean a lot to my life. Therefore, I would like to

offer my sincere thanks and appreciation to all of them.

Special thanks and appreciation goes to my supervisor, Dr. Jonathan Goodall, for his

thoughtful guidance, encouragement, comments, and valuable advice. Really, I could not imagine

having a better advisor and mentor for my Ph.D. degree. My appreciation and gratitude also goes

to my committee members, Dr. Teresa Culver, Dr. John Porter, Dr. Marty Humphrey, and

Dr. Michael Fitch, for serving on my Ph.D. dissertation committee and for providing valuable

feedback and comments regarding my dissertation. I also would like to thank my friends, Dr.

Wesley Zell, Jeffrey Sadler, Gina O'Neil, Ben Bowes, Yawen Shen and Alex Chen, for their

continuous support and advice throughout the research.

I warmly thank and appreciate my family on their continuous encouragement, support, and

the love they had for me throughout my life. I feel a deep sense of love and gratitude to my beloved

parents, my father, Dr. Morsy Anwar Morsy, and my mother, Reda Mohamed Elnahta, who

gave me the love and sacrificed a lot to raise me in a good environment built on love and faith.

This dissertation is entirely dedicated to them. Truly, father, you are my idol and main guidance

in this life and, hopefully, by achieving this, I was able now to satisfy your dreams. I also would

like to thank my brothers, Ahmed and Amr, and my sisters, Mona, Mena, Basma, and Heba, for

their support and encouragement to accomplish this work.

 v

To my wife, Dr. Bakinam Tarik Essawy: I cannot imagine my life without you. You

mean everything to me. May Allah protect and bless you for me and for our small family.

Bakinam, my very special thanks and sincere gratitude goes to you. Thank you for your help,

understanding, and tolerating the late nights and early mornings I spent to accomplish this work. I

could not have accomplished this work without your love and support. We had a hard journey

together to accomplish our Ph.D. and we were able to accomplish this successfully. My little

princesses, Zeina and Kenzy, thanks a lot for your understanding and tolerating all the hard times

that we have been through during this long process to achieve our degrees. Hopefully both of you,

Zeina and Kenzy, will one day be proud of your father and what he accomplished.

 Last but not least, I would also like to thank all those not mentioned who provide me with

support and encouragement. Your kindness means a lot to me. I would not have made it so far in

life without your support and may Allah give you all the best in return.

"And say: Work; so Allah will see your work and (so will) His Messenger and the

believers; and you shall be brought back to the Knower of the unseen and the seen, then He will

inform you of what you did." Quran: Al-Tawba (105)

(بِّ زِدْنِي عِلْمًا وَقلُ رَّ)

"O my Lord! advance me in knowledge." Quran: Taa-Haa (114)

 vi

Table of Contents

Abstract ... i

Acknowledgments .. iv

List of Figures ... viii

List of Tables ... xii

Chapter 1: Introduction ... 1

1.1 References ... 4

Chapter 2: Distributed Stormwater Controls for Flood Mitigation within Urbanized
Watersheds: Case Study of Rocky Branch Watershed in Columbia, South Carolina1.......... 6

2.1 Introduction ... 6

2.2 Study Area ... 9

2.3 Data and Methods .. 11

2.3.1 Model Description and Setup ... 11

2.3.2 Data Preparation ... 14

2.3.3 Observed Storm Events .. 17

2.3.4 Model Calibration and Evaluation .. 21

2.3.5 Model Scenarios ... 21

2.4 Results and Discussion .. 23
2.4.1 Model Calibration and Evaluation .. 23

2.4.2 Impact of Rain Garden Area on Flood Mitigation ... 26

2.4.3 Runoff Contribution to Rain Gardens for Flood Mitigation ... 27

2.4.4 Impact of Storm Return Period on Flood Mitigation ... 28
2.5 Conclusions ... 32
2.6 References ... 34

Chapter 3: A Cloud-Based Decision Support System for Managing Flooding Impacts to
Transportation Infrastructure in Coastal Virginia2 .. 37

3.1 Introduction ... 37
3.2 Study Area ... 42

 vii

3.3 Data and Methods .. 44

3.3.1 R2S2 System .. 44
3.3.2 Rainfall Forecast Data Automation and Preparation .. 44

3.3.3 Speeding-up R2S2 Execution .. 46
3.3.4 Post-processing and Automating Model Output Dissemination 48

3.3.5 Design of an Automated Flood Warning System through AWS 48
3.4 Results and Discussion .. 50

3.4.1 Rainfall Forecast Data Automation and Preparation .. 50
3.4.2 Speeding-up R2S2 Execution .. 52

3.4.3 Post-processing and Automating Model Output Dissemination 64
3.4.4 Automated Flood Warning System through AWS ... 66

3.5 Conclusions ... 73
3.6 References ... 76

Chapter 4: Design of a Metadata Framework for Environmental Models with an Example
Hydrologic Application in HydroShare3 ... 80

4.1 Introduction ... 80

4.2 Methodology ... 85

4.2.1 Metadata Framework Design .. 85

4.2.2 Experimental Use Case ... 96

4.3 Results ... 99

4.3.1 Results for Software Implementation within HydroShare ... 99

4.3.2 Results from the Example Use Case... 103

4.4 Discussion ... 109
4.5 Conclusions ... 113
4.6 References ... 116

Chapter 5: Conclusions and Future Work ... 119

 viii

List of Figures

Figure 2.1 (a) Rocky Branch Watershed in downtown Columbia, South Carolina, and (b)

impervious surfaces according to the National Land Cover Dataset (orthoimagery data from USGS

National Map; impervious surface layer data from NLCD, 2011). .. 10

Figure 2.2 Depiction of Rocky Branch Watershed in SWMM model with 134 subcatchments and

188 conduits. ... 14

Figure 2.3 Rocky Branch showing stormwater infrastructure lines and cross-sectional types;

example cross sections are shown for the two stream gauge locations. 15

Figure 2.4 GIS workflow for CN computation using land use and soil hydrologic group datasets.

... 17

Figure 2.5 (a) The rain gauge and (b) the stage gauge used to collect observation data at 300 Main

Street. .. 18

Figure 2.6 Rainfall intensity and corresponding observed and simulated stage for the February 7,

2013 event at two locations along the river channel: (a) 300 Main Street; (b) Pickens Street; this

event, which did not cause flooding, was used for model calibration. ... 19

Figure 2.7 Rainfall intensity and corresponding observed and simulated stage for the July 10, 2012

event at two locations along the river channel: (a) 300 Main Street; (b) Pickens Street; the event

was used for model evaluation; this was the largest of the observed storm events and caused

flooding within the watershed. .. 20

 Figure 2.8 Simulated reduction in channel stage for July 10, 2012, storm event at 300 Main Street

through introduction of rain gardens into watershed. ... 27

Figure 2.9 Required runoff diversion to mitigate flooding from July 10, 2012, event as function

of rain garden area and ponding depth. ... 28

 ix

Figure 2.10 Synthetic storm events with higher return periods and 1 hour duration; the rainfall

pattern for each synthetic storm is based on observed July 10, 2012, storm event. 30

Figure 2.11 Percentage of runoff from impervious surfaces that must be diverted to rain gardens

to mitigate flooding as a function of rain garden area (assumes a 30 cm ponding depth for rain

gardens). .. 30

Figure 2.12 Percentage of runoff from impervious surfaces that must be diverted to rain gardens

to mitigate flooding as a function of storm return period (assumes a 30 cm ponding depth for rain

gardens). .. 32

Figure 3.1 Model domain composed of the study area where the TUFLOW model is run and the

11 subwatersheds that contribute inflow to the study area. .. 43

Figure 3.2 The digital elevation model (DEM) with resolution of 10 m x 10 m for the study area

including 11 subwatersheds that contribute inflow to the study area. .. 43

Figure 3.3 R2S2 workflow. ... 45

Figure 3.4 Forecast data workflow from HRRR to R2S2 sub-models. ... 52

Figure 3.5 Running TUFLOW model through AWS EC2 (a) g2.8xlarge instance, and (b)

p2.8xlarge instance with different numbers of GPUs. .. 54

Figure 3.6 Differences between Max. WL generated from CPU solver and GPU solver. 55

Figure 3.7 Bridges and culverts location Max. WL generated from CPU solver versus GPU solver

with MAE of 0.48 m and RMSE of 0.78 m. ... 56

Figure 3.8 USGS and NOAA station locations and Hurricane Sandy data availability in the study

area. ... 57

Figure 3.9 Hurricane Sandy hyetographs at the five NOAA stations near the study area (Figure

3.8). ... 58

 x

Figure 3.10 Model run time using GPU solver with different grid cell sizes and the corresponding

MAE versus CPU solver using M2 machine (Table 3.1). .. 61

Figure 3.11 Comparison between the stage depth observation data and the output depth from

executing the model using a GPU solver with 30 m cell size and 0.6n Manning coefficient values.

... 62

Figure 3.12 Post-processing workflow for producing different visualization resources. 65

Figure 3.13 Real-time visualization with permanent URL for visualizing the flooded bridges

location using Geosheets. (https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-

Bridges-in-The-Hampton-Roads-District). ... 66

Figure 3.14 Design of the automated workflow for a flood warning system using AWS resources.

... 67

Figure 3.15 The policies between the EC2 t2.mico and G2 or P2 instances. 69

Figure 3.16 Different policies used to access the AWS S3 Bucket data, and the AWS S3 Bucket

folder hierarchy. .. 71

Figure 3.17 EC2 t2.micro instance and the web framework used to build up the website. 72

Figure 3.18 Main webpage of the flood warning decision support website. 73

Figure 4.1 Key components of the model program and model instance resources. 86

Figure 4.2 Model program resource metadata elements expressed as RDF triples. The # prefix

signifies an attribute that can be populated when implementing the metadata framework for a given

model program. ... 88

Figure 4.3 Generic model instance and specific model instance hierarchy. Model program, generic

model instance, SWAT model instance, and MODFLOW model instance metadata have already

 xi

been designed, while metadata for the other specific model instances are either in development or

planned for the near future. ... 90

Figure 4.4 Generic model instance resource metadata elements expressed as RDF triples. 91

Figure 4.5 SWAT model instance metadata expressed as RDF triples. 94

Figure 4.6 Use case implementation as a model program and two model instance resource types.

... 98

Figure 4.7 HydroShare's general architecture emphasizing the connections between the user,

HydroShare, iRODS, and third party applications. ... 99

Figure 4.8 Metadata classes for model resources implemented within HydroShare. 102

Figure 4.9 Results of populating the model instance and model program metadata for the example

use case. .. 104

Figure 4.10 Activity diagram describing the steps required to create a new model instance resource

within HydroShare. Step 11 is highlighted to indicate that only model instances require coverage

and not model programs.. 105

Figure 4.11 Screen shot showing model resource types currently implemented on hydroshare.org.

... 106

Figure 4.12 Model program resource specific metadata on the resource's landing page on

hydroshare.org (shown in edit mode). .. 107

Figure 4.13 Generic model instance resource specific metadata on the resource's landing page on

hydroshare.org (shown in edit mode). .. 108

Figure 4.14 Model instance resource type coverage metadata on the resource's landing page

(shown in edit mode) on hydroshare.org. ... 108

 xii

List of Tables

Table 2.1 Specifications and characteristics of rain gardens to be implemented in Rocky Branch

Watershed. .. 13

Table 2.2 Properties of observed storm events used for model calibration and evaluation. 21

Table 2.3 Relative error between modeled and observed channel stage and flow at two stations

for storm events used in model calibration and evaluation. .. 25

Table 3.1 Local computers with GPUs used to investigate TUFLOW model execution times. .. 47

Table 3.2 Comparison between G2 and P2 EC2 instances performance and cost as of 06/06/2017.

... 48

Table 3.3 Comparison of available forecast datasets. .. 51

Table 3.4 Comparison of CPU versus GPU speed-up using local GPU resources (differences

bolded in each scenario). ... 53

Table 3.5 USGS stations in the study area with information about Hurricane Sandy availability.

... 58

Table 4.1 Model program extended metadata element definitions. ... 89

Table 4.2 Generic model instance extended metadata element definitions. 92

Table 4.3 SWAT model instance extended metadata element definitions. 95

 1

Chapter 1: Introduction

Floods were the number one natural disaster in the US in terms of the lives lost and property

damage during the 20th century (Perry, 2000). Statistics show that from 2006 to 2015, total flood

insurance claims averaged more than $1.9 billion per year (NFIP Statistics, 2016). Rainfall events

are predicted to become more frequent and intense due to climate change, which is expected to

cause increased flooding (Melillo et al., 2014). As society faces flooding events with increasing

frequency and intensity, flood modeling systems will become an even more important tool for

decision makers. Such models can be used to warn municipalities and communities of forecasted

flooding impacts. They can also be used to test alternative flood mitigation strategies for

addressing flood problems. This research advances knowledge of flooding impacts and modeling

methods by focusing on three knowledge gaps: the use of distributed stormwater controls for flood

mitigation in small urban catchments, the use of 2D hydrodynamic models for flood warning at

the regional-scale, and methods for documenting, sharing, and reusing flood models within the

scientific and management communities.

At the catchment-scale (~10 - 100 km2), flood models require a detailed description of the

physical environment, especially for an urban watershed where stormwater infrastructure plays a

significant role in the system. These models can be used for testing alternative solutions to flooding

problems. For example, in the stormwater management community, low impact development

(LID) approaches are drawing increased attention (Dietz, 2007). LID as a concept integrates land

development and environmental concerns with the goal of minimizing the negative impacts of land

development (Davis, 2005). LID approaches often emphasize distributed stormwater controls,

such as rain gardens, implemented at the parcel-scale. For highly urbanized watersheds without

 2

sufficient space for new centralized stormwater controls, LID approaches may be able to mitigate

flooding impacts caused by intensive storm events.

At the regional-scale (~10x103 - 100x103 km2), flood models often face computational

challenges, especially when modeling low-relief terrains that require more detailed two

dimensional (2D) hydrodynamic models. For these low-relief terrains, one dimensional (1D)

models are not sufficient due to the limitations of assumed uniform water velocity and constant

water surface elevation modeled on each cross section (Garcia et al., 2015). Executing 2D

hydrodynamic models at the regional scale requires parallel computation in order to run the model

in a time frame reasonable for flood warning applications. Graphical processing units (GPUs) have

recently been shown to be effective for running 2D hydrodynamic models with speed-ups of ~100x

(Huxley and Syme, 2016; Garcia et al., 2015). These new computational approaches suggest that

regional flood warning systems can be implemented with the spatial resolution needed to provide

targeted and detailed information to decision makers.

Regardless of the scale of a modeling application, it is important to be able to share the

model, its inputs, and its results with others. As demonstrated in this research, it takes a significant

amount of effort to collect data, construct model inputs, and calibrate and validate model

parameters. From a pragmatic perspective, this is an inefficient use of a scientist's or engineer's

time. Perhaps more importantly, it inhibits the ability to reproduce or reuse studies that have a

significant computational modeling component (David et al., 2016; Essawy et al., 2016; Gil et al.,

2016). One way to begin to address these challenges is through better approaches for sharing and

reusing models built by others. Just as there has been a major push to make better use of data

collected and maintained by others, the scientific community can benefit from a similar push to

 3

make better use of models built by others. A challenge is how to achieve model sharing given the

diversity of models used within the hydrology community.

The overarching objective of this research is to advance knowledge in flood modeling and

flood mitigation strategies. This objective is achieved through studies targeting three distinct but

related research questions in the following three chapters. Chapter 2 addresses the first research

question: "What potential does distributed green infrastructure have for flood mitigation at the

catchment-scale, especially for highly urbanized catchments?" There is evidence that LID

approaches distributed at the parcel-scale could have significant impact on runoff reduction at the

watershed-scale, but there is a lack of agreement on the extent of this reduction, especially for

flood mitigation purposes. Few, if any, studies have researched the required adoption level

necessary to achieve sufficient runoff reduction to reduce flood risks within an urban watershed

for storms with different return periods.

Chapter 3 addresses the second research question: "Is it possible to design and build a

cloud-based regional flood system for warning and emergency management purposes for low-

relief terrains?" Having the ability to accurately and quickly project potential impacts to

transportation infrastructure due to forecasted weather events will become more critical given

increased intensity of rainfall expected with climate change. A challenge facing this type of

regional model, especially for low-relief terrains, is that it would require a computationally-

expensive 2D hydrodynamic model. The ability to run a large (average of 4 million nodes) 2D

hydrodynamic model in a time frame relevant to real-time emergency management applications is

one example of such a challenge.

Chapter 4 includes methods and solutions for the third research question: "How should

model metadata and cyberinfrastructure be designed to better support reuse and transparency in

 4

hydrologic modeling?" Advanced approaches, through community supported cyberinfrastructure,

are required for sharing hydrologic models like those created in this dissertation. Sharing models

is important for scientific reproducibility, reuse, and fidelity. A motivating factor for this research

is the design and development of a new system called HydroShare (https://www.hydroshare.org).

The goal of HydroShare is to advance hydrologic science by enabling the scientific community to

more easily and freely share products resulting from their research - not only the scientific

publication summarizing a study, but also the data and models used to create the scientific

publication (Horsburgh et al., 2015; Tarboton et al., 2014; Tarboton et al., 2013).

Finally, Chapter 5 provides key conclusions and suggested future research based on the

research outcomes from Chapters 2 - 4.

1.1 References

David, C.H., Famiglietti, J.S., Yang, Z.-L., Habets, F., Maidment, D.R., 2016. A decade of
RAPID-Reflections on the development of an open source geoscience code. Earth and
Space Science . 3, 226–244. doi:10.1002/2015EA000142

Davis, A.P., 2005. Green Engineering Principles Promote Low-impact Development. Environ. Sci.
Technol. 39, 338A–344A. doi:10.1021/es053327e

Dietz, M.E., 2007. Low impact development practices: A review of current research and
recommendations for future directions. Water. Air. Soil Pollut. 186, 351–363.

Essawy, B.T., Goodall, J.L., Xu, H., Rajasekar, A., Myers, J.D., Kugler, T.A., Billah, M.M.,
Whitton, M.C., Moore, R.W., 2016. Server-side workflow execution using data grid
technology for reproducible analyses of data-intensive hydrologic systems. Earth and Space
Science. 3, 163–175. doi:10.1002/2015EA000139

Garcia, R., Restrepo, P., DeWeese, M., Ziemer, M., Palmer, J., Thornburg J., Lacasta, A., 2015.
"Advanced GPU paralellization for two-dimensional operational river flood forecasting."
In 36th IAHR World Congress.

Gil, Y., David, C.H., Demir, I., Essawy, B.T., Fulweiler, R.W., Goodall, J.L., Karlstrom, L., Lee,
H., Mills, H.J., Oh, J.-H., Pierce, S.A., Pope, A., Tzeng, M.W., Villamizar, S.R., Yu, X.,

https://www.hydroshare.org/

 5

2016. Towards the Geoscience Paper of the Future: Best Practices for Documenting and
Sharing Research from Data to Software to Provenance. Earth and Space Science
doi:10.1002/2015EA000136

Horsburgh, J.S., Morsy, M.M., Castronova, A.M., Goodall, J.L., Gan, T., Yi, H., Stealey, M.J.,
Tarboton, D.G., 2015. Hydroshare: Sharing Diverse Environmental Data Types and Models
as Social Objects with Application to the Hydrology Domain. JAWRA Journal of the
American Water Resources Assocication 52, 4. doi:10.1111/1752-1688.12363

Huxley, C., Syme, B., 2016. TUFLOW GPU – Best Practice Advice for Hydrologic and
Hydraulic Model Simulations. In: Proceedings of the 37th Hydrology and Water Resources
Symposium (HWRS), Queenstown, New Zealand, 2016.

Melillo, J.M., Richmond, T.T., Yohe, G.W., 2014. Climate change impacts in the United States.
Third National Climate Assessment.

NFIP Statistics, 2016. NFIP Statistics. The official site of the NFIP accessed December 8,
2016. https://www.floodsmart.gov/floodsmart/pages/media_resources/stats.jsp.

Perry,C. A., 2000. Significant Floods in the United States During the 20th Century - USGS
Measures a Century of Floods. Kansas Water Science Center accessed December 8,
2016. https://ks.water.usgs.gov/pubs/fact-sheets/fs.024-00.html.

Tarboton, D., Idaszak, R., Horsburgh, J., Heard, J., Ames, D., Goodall, J., Band, L., Merwade, V.,
2014. A Resource Centric Approach For Advancing Collaboration Through Hydrologic
Data And Model Sharing. International Conference on Hydroinformatics. CUNY Academic
Works. http://academicworks.cuny.edu/cc_conf_hic/314.

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Ames, D., Goodall, J.L., Band, L.E., Merwade, V.,
Couch, A., Arrigo, J., Hooper, R.P., Valentine, D.W., Maidment, D.R., 2013. HydroShare:
An online, collaborative environment for the sharing of hydrologic data and models
(Invited). Present. 2013 Fall Meet. San Fr. Calif., 9-13 Dec.

https://www.floodsmart.gov/floodsmart/pages/media_resources/stats.jsp
https://ks.water.usgs.gov/pubs/fact-sheets/fs.024-00.html

 6

Chapter 2: Distributed Stormwater Controls for Flood Mitigation
within Urbanized Watersheds: Case Study of Rocky Branch

Watershed in Columbia, South Carolina1

2.1 Introduction

Low impact development (LID) approaches are attracting increasing interest in stormwater

management (Dietz, 2007). LID as a concept integrates land development and environmental

concerns with the goal of minimizing the negative impacts of land development (Davis, 2005).

LID approaches differ from traditional stormwater management approaches in a number of key

ways. First, they seek to minimize disturbance of a site by mimicking the natural hydrology of the

site. Second, they emphasize maintaining the predevelopment runoff volume through increased

infiltration of runoff generated from impervious surfaces, in contrast to the traditional approach,

which focuses primarily on the mitigation of peak flow rates for larger storm events. Third, they

emphasize distributed, parcel-scale controls for runoff infiltration, storage, and detention (Abi Aad

et al., 2010; Dietz, 2007). One of the more commonly used LID approaches to stormwater

management is bioretention technology (e.g., bioinfiltration and rain gardens) (Davis et al., 2009).

For flood mitigation, which is the focus of this work, rain gardens have been found to be an

effective LID approach given their ability to store and infiltrate runoff (Abi Aad et al., 2010).

Distributing LID approaches throughout a watershed could offer large benefits for highly

urbanized watersheds. Many urbanized watersheds experience flooding because they were

developed prior to stormwater regulations and have insufficient storage for runoff generated from

1This Chapter is a draft manuscript of a paper that has since been published. Readers are referred to the following
citation for the final published version of the manuscript:
Morsy, M.M., Goodall, J.L., Shatnawi, F.M., Meadows, M.E., 2016. Distributed Stormwater Controls for Flood
Mitigation within Urbanized Watersheds: Case Study of Rocky Branch Watershed in Columbia, South
Carolina. Journal of Hydrologic Engineering, 21(11), p.05016025.

 7

 impervious surfaces. Owing to the level of urbanization, there may simply be no space left to add

large stormwater detention facilities, which greatly restricts the stormwater engineer's design

flexibility. If it is possible to reduce runoff at the parcel-scale using distributed LID approaches

like rain gardens, then the need for large, centralized stormwater facilities would be reduced.

Because this study considers the case where LID approaches are added to an already urbanized

watershed, it is referred to as a retrofit case study. The study results also apply to new construction,

although new construction would allow for greater design flexibility than retrofit applications.

Most prior research on the application of LID approaches used field studies to investigate

how LID approaches compare to traditional stormwater practices (e.g., Bedan and Clausen, 2009;

Line et al., 2011). A common approach has been to take a watershed-scale perspective looking at

paired basins where one basin adopted LID approaches for stormwater management and the other

basin used more traditional stormwater best management practices (BMPs). Studies taking this

approach have concluded that LID techniques are more effective at reducing runoff volumes than

traditional approaches (e.g., Bedan and Clausen, 2009; Selbig and Bannerman, 2008). These

studies have generally been limited to relatively small watersheds (less than 1 km2) and to new

developments. Applying field studies to larger urbanized watersheds is challenging given their size

and the inability to install a large number of LID practices and measure their impact on the system.

Instead, modeling approaches can be used to address the question of how LID adoption in a large,

already urbanized watershed might reduce runoff volumes and flood risks.

Some modeling studies of urban watersheds have begun to look at the effectiveness of

distributed stormwater controls at the watershed-scale. Damodaram et al. (2010) presented a

modeling approach to incorporating LID practices into an existing hydrologic model to determine

watershed-scale impacts on runoff delivered to streams. After applying the model to a watershed

 8

in College Station, Texas, the researchers concluded that LID approaches, while effective for

controlling runoff from small events, may yield little runoff control for flood events. The study

watershed was large, but not as densely developed as the watershed used in this study. Also, the

study did not use the latest version of the Storm Water Management Model (SWMM version 5)

with new modules for simulating the impact of LID on runoff reduction. A related study using

SWMM version 5 with LID modeling capabilities investigated the potential for LID techniques to

mitigate projected increases in precipitation under climate change scenarios for New York City

(Zahmatkesh et al., 2015). The researchers found that retrofits with LID controls could reduce

average annual runoff by over 40% and peak flow rates by approximately 10%.

Field and data analysis studies have supported the claim that LID practices distributed

throughout a watershed could have significant impacts on watershed-scale hydrology for highly

urbanized watersheds. A study in Wilmington, North Carolina, showed stormwater control

measures added as retrofits to an urbanized watershed in municipal rights-of-way was able to

reduce peak discharge by 28% (Page et al., 2015). Researchers investigating a suburban watershed

in Cincinnati also showed evidence that the adoption of rain gardens and barrels at the parcel level

could have a significant effect on watershed hydrology (Shuster and Rhea, 2013). Eighty-five rain

gardens and 174 rain barrels were installed in a 1.8 km2 urban watershed. Even with this level of

adoption, a small but significant reduction in runoff was observed between pre- and post-LID

implementation conditions. The study also showed that LID practices at the parcel level could be

successfully implemented with novel economic programs. Finally, Loperfido et al. (2014)

analyzed observational data from different watersheds in suburban Washington, District of

Columbia, and concluded that distributed stormwater controls might be an effective means of

reducing runoff volumes during extreme precipitation events.

 9

Based on these prior studies, there is evidence that LID approaches distributed at the parcel-

scale could have a significant impact on runoff reduction at the watershed-scale, but there is a lack

of agreement on the extent of this reduction, especially for flood mitigation purposes. Few, if any,

studies have researched the required adoption level necessary to achieve sufficient runoff reduction

to reduce flood risks within an urban watershed for storms with different return periods. The

primary objective of this study, therefore, is to improve understanding of how the rate of adoption

of LID practices at the parcel level in an already urbanized watershed affects runoff detention and,

therefore, flood risk. The Rocky Branch Watershed in Columbia, South Carolina, is used as a case

study for the present research. This watershed faces a recurrent flooding problem, as discussed in

the "Study Area" section, that is common in many other older cities with insufficient stormwater

controls. Using SWMM and a number of modeling scenarios, simulations were used to determine

the LID practices that must be adopted to reduce peak flows in the watershed so as not to exceed

bankfull conditions.

2.2 Study Area

The Rocky Branch Watershed is approximately 10.75 km2 in area and is located in

downtown Columbia, South Carolina (Figure 2.1). Rocky Branch is approximately 6.5 km long

and discharges into the Congaree River. The watershed has long experienced recurrent flooding

problems, in particular in a low-lying commercial district called Five Points (highlighted in Figure

2.1-a). Flooding typically occurs during intense summer thunderstorms. Significant efforts have

been made to mitigate these flooding problems using traditional stormwater controls, but flooding

still occurs at regular (approximately annual) intervals (Monk and Holleman, 2010; NOAA, 2010;

Santaella and Gillbert, 2011; The State, 2012; The State, 2014; WIS TV, 2015). The headwaters

 10

include residential communities and a portion of the University of South Carolina campus, where

it would be feasible to install rain gardens as stormwater controls.

Figure 2.1 (a) Rocky Branch Watershed in downtown Columbia, South Carolina, and (b)

impervious surfaces according to the National Land Cover Dataset (orthoimagery data from
USGS National Map; impervious surface layer data from NLCD, 2011).

Owing to the high percentage of impervious surfaces and steep slopes, Rocky Branch has

a flashy response to rainfall events. The time to peak for an observed storm event that caused

flooding at the Pickens Street station (Figure 2.1) was approximately 1 hour. According to the

2011 National Land Cover Dataset (NLCD), 97% of the watershed is developed (17% high

intensity, 37% medium intensity, 31% low intensity, and 12% developed open space), and much

of the watershed is impervious (Figure 2.1-b). Taking just the impervious surfaces within the

watershed, the maximum landscape slope is 42%, and approximately one-fifth of the landscape

 11

has a slope greater than 5%. It is well known that impervious surfaces, and in particular connected

impervious surfaces, increase runoff and flooding if not mitigated through stormwater controls and

BMPs (Arnold and Gibbons, 1996; Lee and Heaney, 2003; Roesner and Urbona, 1998; Schueler,

1995).

2.3 Data and Methods

A modeling approach was used during this study to improve understanding of how the rate

of adoption of LID practices at the parcel level in an urbanized watershed impacts runoff detention

and, therefore, flood risk. The model selected was the SWMM developed by the U.S.

Environmental Protection Agency (USEPA). A modeling approach was used because of the need

to answer "what if" hypothetical scenarios of rain garden adoption rates and their impact on

watershed-scale runoff generation. In this section, the SWMM model is described along with its

relevance for modeling watershed-scale hydrology and role in LID adoption at the watershed-

scale. Next, the steps required to prepare input data for the model are described, followed by a

discussion of the model calibration and evaluation to provide confidence in the modeling results.

Finally, there is a discussion of the modeling scenarios conducted to address the study research

objective.

2.3.1 Model Description and Setup

SWMM version 5.0.022 was used to model Rocky Branch Watershed and simulate the

effects of adding rain gardens at the parcel-scale to reduce peak storm flows in the main branch.

SWMM is a dynamic, open-source computer model that tracks the quantity and quality of the

runoff in urban watersheds for either single-event or continuous simulations (Rossman, 2012).

 12

SWMM routes runoff from subcatchments through a network system consisting of pipes, channels,

storage/treatment devices, pumps, and regulators. SWMM can model the hydrological

performance of typical LID controls such as bioretention cells (or rain gardens), infiltration

trenches, porous pavement, rain barrels, and vegetative swales. These LID techniques can be

placed within the desired subcatchments at any size and spatial coverage (Qin et al., 2013). SWMM

has been used extensively to evaluate the effects of several conventional drainage systems and LID

designs in stormwater management (Abi Aad et al., 2010; Elliott and Trowsdale, 2007; Qin et al.,

2013; Zahmatkesh et al., 2015; Zoppou, 2001).

The SWMM model simulates three primary processes: infiltration, surface runoff, and flow

routing. The infiltration method used is an approach adopted from National Resource Conservation

Service (NRCS) curve number (CN) method for estimating runoff. Manning's equation was used

for overland flow. The dynamic wave routing method was used for channel routing because it can

account for channel storage, backwater, entrance/exit losses, flow reversal, and pressurized flow.

This method solves the one-dimensional Saint Venant flow equations, which consist of continuity

and momentum equations for conduits and a volume continuity equation at nodes that allows for

representing a full closed-conduit pressurized flow. LID techniques are represented in the model

as a combination of vertical layers that have specific properties defined on a perunit area basis.

Infiltration rates in bioretention cells, which are also called rain gardens, are simulated by the

model. Zhang et al. (2010) conducted field experiments investigating the SWMM representation

of bioretention facilities and found that the SWMM's representation matched observed peak flow

reduction (77% from the model compared to 82% from observations).

Rain gardens were selected as the LID implementation because they could be adopted

widely within the watershed and offered significant storage and volume reduction capacity. The

 13

rain garden properties and characteristics were obtained from three resources: Wisconsin

Department of Natural Resources Conservation Practice Standard (Bannerman and Considine,

2003), Maryland 2000 Stormwater Management Design Manual (MDE, 2000; Schueler and

Claytor, 2000), and Delaware Green Technologies Design Manual and Model (DNREC, 2005).

Lucas (2005) includes easy-to-follow guidance for siting, sizing, installing, and planting a rain

garden. A rain garden consists of three layers: surface, soil, and storage (Table 2.1). In the model,

the total depth used for the soil and storage layers is 120 cm, which is the maximum recommended

depth, while the surface layer storage depth (ponding depth or berm height) is varied between the

minimum and maximum recommended depths of 10 cm and 30 cm.

Table 2.1 Specifications and characteristics of rain gardens to be implemented in Rocky Branch
Watershed.

Layer/Parameter Value
Surface

Storage depth (mm) 100 - 300
Vegetation (volume fraction) 0.5
Surface roughness 0
Surface slope 0

Soil
Soil thickness (mm) 900
Porosity 0.44
Field capacity 0.15
Wilting point (volume fraction) 0.1
Conductivity (mm/hr) 30
Conductivity slope 10
Suction head (mm) 60

Storage
Storage height (mm) 300
Storage void ratio 0.75
Storage conductivity (mm/hr) 250

 14

2.3.2 Data Preparation

The Rocky Branch Watershed was delineated into 134 subcatchments using a LiDAR-

derived 3 m resolution digital elevation model (DEM) (Figure 2.2). The discretization was done

by placing subcatchment outlets at 50 m intervals along natural (irregular) portions of the stream

channel and at 30 m intervals along the concrete-lined and conduit portions of the stream channel.

Stormwater inlets along the streamline were also designated as subcatchment outlets. Standard

Geographical Information System (GIS) procedures were used to delineate the subcatchment

boundaries. The delineated subcatchments were verified by available orthoimagery data.

Figure 2.2 Depiction of Rocky Branch Watershed in SWMM model with 134 subcatchments

and 188 conduits.

 15

Rocky Branch consists of natural (irregular) channels, pipe sections, and concrete-lined

channels that were represented in the model as 188 conduits (Figure 2.3). The Manning's roughness

coefficient for the natural cross sections was assumed to be between 0.03 and 0.04, while the

Manning's roughness coefficient of the concrete lining cross sections was assumed to be between

0.011 and 0.015. The pipe sections included circular, box, and arch cross sections. Each of the 188

conduits in the model was assigned a cross sectional profile. The cross-sectional profiles were

obtained from a combination of LiDAR and ground survey data, and a sample of the profiles was

verified by site visits. Figure 2.3 shows example cross sections as they appear within the model

for the two locations along the branch where there are stream gauges.

Figure 2.3 Rocky Branch showing stormwater infrastructure lines and cross-sectional types;

example cross sections are shown for the two stream gauge locations.

 16

Land use, soils, slope, and CN values were derived using publically available geospatial

data sets and GIS processing. Land-use and imperviousness data sets were obtained from the

NLCD 2006 (Fry et al., 2011), the latest available version at the time of the initial model

development activities. The 2011 and 2006 NLCD data were compared, and no significant

differences were found for the study area. NLCDs are raster data, where each pixel is 30 m x 30

m. The Soil Survey Geographic (SSURGO) data sets were downloaded from the USDA for

Richland County, South Carolina (SSURGO, 2012). The SSURGO data set is a vector polygon

data set with attributes describing soil properties, including Soil Hydrologic Groups. According to

these data, 72% of the watershed area is Group B soils, 22% Group A, and 6% Group C. The land

use and soil data were used to derive CN values for each subcatchment using NRCS values

(Cronshey, 1986) and the processing steps shown in Figure 2.4. Finally, average slopes for each

subcatchment were obtained from the DEM used for watershed delineation.

 17

Figure 2.4 GIS workflow for CN computation using land use and soil hydrologic group datasets.

2.3.3 Observed Storm Events

Rainfall data were collected during the study period of June 2012 - June 2013 using a

tipping bucket gauge (TR-525USW) (Figure 2.5-a) located at the University of South Carolina's

300 Main Street engineering building (Figure 2.1-a). The factory calibration of the gauge is 0.254

mm (0.01 in.) per tip. The gauge was connected to an electronic data logger (Sutron 8210 A Data

Collection Platform). The gauge was installed in a clear and unobstructed mounting location. The

stage was measured at the 300 Main Street station for the study period using a bubbler water level

gauge (Sutron 8210 A) (Figure 2.5-b). Stage and streamflow data were also obtained from the

 18

USGS (Station 02169505) for the Pickens Street station. These streamflow data at this USGS

station were obtained using an Acoustic Doppler Current Profiler (ADCP) (Levesque and Oberg

2012). Figures 2.6 and 2.7 show the observed data for two rainfall events at the two stations: the

February 7, 2013, and July 10, 2012, storms, respectively. These storms are presented as

representative examples of all six storms. The February 7, 2013, storm was used for model

calibration, and the model results for this storm were typical of the other two storms used for

calibration. The July 10, 2012, storm was the largest observed storm event and was used for model

evaluation. Baseflow at the start of the storm events, which is typically very low, was subtracted

from the hydrographs for easier comparison between storm events.

(a)

(b)

Figure 2.5 (a) The rain gauge and (b) the stage gauge used to collect observation data at 300
Main Street.

 19

Figure 2.6 Rainfall intensity and corresponding observed and simulated stage for the February 7,
2013 event at two locations along the river channel: (a) 300 Main Street; (b) Pickens Street; this

event, which did not cause flooding, was used for model calibration.

 20

Figure 2.7 Rainfall intensity and corresponding observed and simulated stage for the July 10,

2012 event at two locations along the river channel: (a) 300 Main Street; (b) Pickens Street; the
event was used for model evaluation; this was the largest of the observed storm events and

caused flooding within the watershed.

 21

2.3.4 Model Calibration and Evaluation

Model calibration was conducted using the subcatchment CN values as the calibration

parameter. Each subcatchment in the study area was assigned a specific CN value. The CN values

were uniformly changed by a percentage increase or decrease while also ensuring the adjusted

values were within the 25 - 98 range. The objective of the calibration was to minimize the relative

error between observed and modeled stream stage and flow peaks available at the two gauging

locations. This was done for three of the six observed storm events (Table 2.2) using a manual

calibration procedure that prioritized accuracy for the large storm event on July 11, 2012, that

caused flooding. The three storms selected for calibration were chosen to cover different rainfall

depths, durations, and seasons. The calibrated model was evaluated by comparing predicted and

observed peak flow and stage values for the remaining three observed storm events. The results of

the model calibration and evaluation are described in the "Results and Discussion" section.

Table 2.2 Properties of observed storm events used for model calibration and evaluation.

Storm date Duration (hh:mm) Cumulative rainfall depth (mm)

July 11, 2012 00 :55 35 .05
September 4, 2012 04 :23 10 .41
February 7, 2013 09 :40 33 .02
July 10, 2012 01 :02 50 .29
August 20, 2012 06 :33 16 .26
September 18, 2012 01 :09 7 .37

2.3.5 Model Scenarios

Three model scenarios were conducted to address the research objective of improving

understanding of how the rate of adoption of LID practices at the parcel level in an urbanized

watershed impacts runoff detention. This was done by modeling the peak stage while varying three

 22

key model variables: ponding depth, rain garden area, and diverted runoff. Ponding depth is the

maximum depth water can pond in the rain garden before overflowing (i.e., the rain garden berm

height). Rain garden area is the total rain garden area as a percentage of the watershed impervious

area. Together, these two variables control each rain garden's storage potential. Diverted runoff is

the percentage of the runoff generated from impervious surfaces that is diverted to rain gardens.

Three general scenarios were investigated in the study.

Scenario 1: Assume all runoff generated on impervious surfaces is diverted to a rain

garden (best-case scenario). Introduce rain gardens with total area equal to 10% and then 20% of

the impervious surface area in the watershed. Model the reduction in stage at the 300 Main Street

station for the event on July 10, 2012.

Scenario 2: Let the ponding depth vary between 20 cm and 30 cm and the rain garden area

vary from 15% to 30% of the impervious surfaces in the watershed. Use the model to determine

the fraction of runoff from impervious surfaces that must be diverted to rain gardens to reduce the

peak stage at the 300 Main Street station below bankfull stage for different combinations of

ponding depth and rain garden area.

Scenario 3: Fix the ponding depth at 30 cm for maximum storage potential. Increase the

storm size to 5, 10, 25, and 50 year return period storms. Use the model to determine the rain

garden area and diverted runoff required to reduce the peak stage at the 300 Main Street station

below bankfull conditions for these larger storm events.

According to the Precipitation Frequency Data Server (PFDS) and using the COLUMBIA

UNIV OF SC, 38-1944 station, the July 10, 2012, storm was equivalent to a 2 year return period,

1 hour event (Bonnin et al., 2006). Information from PFDS was used to generate storms with larger

return periods while maintaining the rainfall pattern and 1 hour storm duration from the July 10,

 23

2012, event. This was done by normalizing the July 10, 2012 event and then multiplying this

normalized storm by the total precipitation depth for a 5, 10, 25, and 50 year return period, 1 hour

duration event obtained from PFDS. Thus, these are synthetic storms with higher return periods

but the same rainfall pattern and duration as the storm observed on July 10, 2012.

2.4 Results and Discussion

2.4.1 Model Calibration and Evaluation

The final calibration resulted in the CN values for all subwatersheds being reduced by 15%

from their initial value uniformly throughout the watershed. This calibration resulted in the July

11, 2012, event having the lowest error with the two stage depth predictions within 1% relative

error and the discharge within 8% relative error (Table 2.3). The relative errors were greater for

the other two storms used in the calibration stage. The February 7, 2013, event (Figure 2.6) was

generally between the other two storms in terms of relative error for predicting peak flows. The

highest relative errors were for the September 4, 2012, event at the Pickens Street monitoring

station, with relative errors of 30 - 35% for both stage and flow. For the same event, the stage

relative error was only 8% for the 300 Main Street station. The September 4, 2012, event was a

relatively minor event, so this was deemed an acceptable error given that the primary objective of

the calibration was to match the larger July 11, 2012, storm event that resulted in flooding.

Three independent storm events not considered when calibrating the model were used for

evaluating the model. Results of the model evaluation show that the relative errors of both stage

and discharge were less than 12% for two of the three storm events (see Table 2.3 for statistics for

all three storms and Figure 2.7 for the simulated hydrograph for the storm event that occurred on

July 10, 2012). The August 20, 2012, storm had higher relative errors, showing that the model

 24

under predicted both stage and flow at both observation stations for this event. A likely explanation

for this is differences in the antecedent moisture condition (AMC) between the August 20, 2012,

storm and the other two storm events. The model assumes normal AMC (AMC II), which is

consistent with the two storms that had lower relative errors. Rainfall records for the 5 days prior

to the August 20, 2012, event, however, suggest wet AMC (AMC III). To account for this, CN

parameters in the model for the August 20, 2012, storm could be adjusted to account for wet AMC,

and this would reduce the relative error because it would increase the amount of runoff predicted

by the model. Given that the model scenarios performed in this study assume normal AMC, the

model was considered acceptable for the purposes of the study.

 25

Table 2.3 Relative error between modeled and observed channel stage and flow at two stations for storm events used in model
calibration and evaluation.

Storm events
Calibration Evaluation

July 11, 2012 September 4, 2012 February 7, 2013 July 10, 2012 August 20, 2012 September 18, 2012

300 Main St. Station
Stage (m)
Observed 1 .63 0 .70 0 .84 2 .45 0 .79 0 .66
Modeled 1 .62 0 .76 0 .78 2 .15 0 .58 0 .59
Relative error (%) -0 .65 8 .88 -7 .58 -12 .17 -26 .81 -10 .14

Pickens St. Station
Stage (m)
Observed 1 .33 0 .38 0 .53 1 .97 0 .50 0 .27
Modeled 1 .34 0 .51 0 .46 2 .05 0 .27 0 .27
Relative error (%) 1 .06 33 .60 -12 .66 4 .02 -45 .73 -2 .22
Flow (m3/s)
Observed 22 .80 3 .05 5 .00 - 4 .65 2 .80
Modeled 24 .61 4 .13 5 .46 38 .35 3 .05 2 .76
Relative error (%) 7 .95 35 .36 9 .27 - -34 .46 -1 .31

 26

2.4.2 Impact of Rain Garden Area on Flood Mitigation

Figure 2.8 shows results from the first model scenario. The channel stage for the July 10,

2012, event at the Main Street monitoring station was reduced to below bankfull conditions

through the introduction of rain gardens into the watershed. This is a best-case scenario in that all

runoff from impervious surfaces can be diverted to the rain gardens. The cases where rain garden

area equals 10% and 20% of the watershed impervious area are presented. The results suggest that

including rain gardens with a total area just above 10% of the impervious area within the watershed

would reduce the peak stage to below bankfull conditions. If the rain garden area is increased to

20% of the impervious area within the watershed, the flood peak would be further reduced to

approximately 0.2 m below the bankfull stage at the 300 Main Street station. Prior studies and

guidelines focusing on the water quality and groundwater recharge benefits of rain gardens

recommend rain garden areas of 10 - 20% of the impervious area within a watershed (Atchison et

al., 2006; Dussaillant et al., 2004), which interestingly would also be sufficient for flood control

in this scenario.

 27

Figure 2.8 Simulated reduction in channel stage for July 10, 2012, storm event at 300 Main

Street through introduction of rain gardens into watershed.

2.4.3 Runoff Contribution to Rain Gardens for Flood Mitigation

Results from the second model scenario show the relationship between rain garden area,

diverted runoff, and ponding depth for mitigating the July 10, 2012, flood event (Figure 2.9). As

an example, consider the case from the prior analysis where ponding depth was equal to 10 cm

and the rain garden area was equal to 10% of impervious surfaces. Figure 2.9 shows that 100% of

the runoff from an impervious surface would need to be diverted to the rain gardens to not exceed

bankfull conditions (i.e., to mitigate flooding). When the rain garden area is increased to 20%, the

diverted runoff required to not exceed bankfull conditions decreases significantly to only 20%.

This result shows the importance of sufficient rain garden storage to capture excess runoff volume.

Figure 2.9 also shows that, once sufficient storage is achieved, either from increasing the ponding

depth or increasing the rain garden area, the diverted runoff needed to not exceed bankfull

 28

conditions approaches approximately 15% for this storm event. Finally, Figure 2.9 shows that if a

ponding depth of 30 cm is used, the required storage volume is achieved with a rain garden area

of 20% and additional rain garden area does not significantly aid flood mitigation for this storm.

Figure 2.9 Required runoff diversion to mitigate flooding from July 10, 2012, event as function

of rain garden area and ponding depth.

2.4.4 Impact of Storm Return Period on Flood Mitigation

Results from the third model scenario show how rain gardens could mitigate flooding for

larger storm events. The prior scenarios focused on the July 10, 2012, event, which was determined

to be a 2 year return period, 1 hour duration event. In this scenario, synthetic storms with higher

return periods are used in the model (Figure 2.10). The hyetographs for these synthetic storms

were generated using the same rainfall pattern and duration of the July 10, 2012, event, but with a

total rainfall depth consistent with larger storm events as described in the "Materials and Methods"

 29

section. Using these hyetographs and assuming a 30 cm rain garden ponding depth for maximum

storage, Figure 2.11 shows the relationship between rain garden area and diverted runoff required

for flood mitigation. Again this result shows a steep curve when rain garden storage is limited.

Each return period approaches a diverted runoff value once sufficient volume is achieved. These

diverted runoff values represent the runoff reduction required to mitigate flooding for the larger

storm events.

Assuming a given rain garden area and ponding depth, it is possible to determine the

diverted runoff required to mitigate flooding for different return period storms (Figure 2.12).

Figure 2.12 shows results for a rain garden area equal to 20% and 30% of the impervious area. For

both cases, ponding depth is set to 30 cm for maximum storage potential. For return period storms

less than 10 year, there is little difference between 20% and 30% rain garden areas. This suggests

that both scenarios have sufficient storage to mitigate flooding for equivalent storms. Therefore,

there is little to be gained from adding rain gardens with a total area exceeding 20% of the

watershed's impervious cover for storms with return periods less than or equal to 10 year. For the

10 year return period storm, approximately 38% of the runoff from impervious surfaces should be

diverted to rain gardens to mitigate flooding. For the 5 year return period storm, approximately

27% of runoff should be diverted, and this value drops to 15% for the 2 year return period storm.

Storms with greater than a 10 year return period require that more than 50% of the runoff in the

study watershed be diverted for flood mitigation.

 30

Figure 2.10 Synthetic storm events with higher return periods and 1 hour duration; the rainfall

pattern for each synthetic storm is based on observed July 10, 2012, storm event.

Figure 2.11 Percentage of runoff from impervious surfaces that must be diverted to rain gardens
to mitigate flooding as a function of rain garden area (assumes a 30 cm ponding depth for rain

gardens).

 31

Given these required rain garden areas and diverted runoff amounts, the question becomes

what level of LID adoption is reasonable within the watershed. Bakacs et al. (2013) found that,

following an educational training program, 48% of respondents in Virginia and 58% of

respondents in New Jersey adopted a stormwater BMP at their homes. The majority of the

respondents who took action redirected downspouts to gardens or mulched areas (64% and 54%,

respectively). A much smaller fraction of respondents (12% and 4%, respectively) installed a rain

garden. Given that 35% of the watershed's impervious cover is rooftop area, redirecting

downspouts to existing gardens or mulched areas with sufficient storage to reduce runoff could

have a significant impact. Furthermore, efforts by public entities, including the university, to

reduce runoff from impervious surfaces using LID techniques could likewise be significant. Thus,

while it is difficult to determine what level of runoff reduction through the adoption of LID

techniques is possible in the watershed, it seems reasonable to suggest that the adoption of LID

approaches could achieve the storage increase and runoff capture required to mitigate flooding up

to a 5 year return period storm (rain gardens with total area equal to 20% of impervious surfaces

within the watershed, 27% of the runoff generated from impervious surfaces diverted to rain

gardens).

 32

Figure 2.12 Percentage of runoff from impervious surfaces that must be diverted to rain gardens
to mitigate flooding as a function of storm return period (assumes a 30 cm ponding depth for rain

gardens).

2.5 Conclusions

The primary objective of this study was to improve understanding of how the adoption of

LID practices, in particular rain gardens, at the parcel level in an already urbanized watershed

might impact runoff detention and, therefore, flood risk. By understanding the required conditions

under which distributed storm water controls like rain gardens could mitigate flooding, it is

possible to suggest the potential and limitations of the approach. Ultimately stormwater control

measures are used in combination to address water quality and quantity issues in developed

watersheds, so these modeling scenarios are meant more for providing bounds on LID techniques,

and rain gardens in particular, as a flood mitigation strategy.

 33

The first challenge in addressing flooding in an urbanized watershed is to provide sufficient

volume for storing runoff generated from impervious surfaces in the watershed. In this study, the

storage volume added by the rain gardens was the product of two model variables: the total area

of the rain gardens in the watershed as a percentage of the total impervious surface and the ponding

depth (or berm height) of the rain gardens. Typical values for rain garden area cited in prior work

focusing on water quality and groundwater recharge benefits of rain gardens have been 10 - 20%

of the impervious area (Dussaillant et al., 2004). The results suggest that 20% is a sufficient area

to mitigate flooding for storm events with less than or equal to a 10 year return period if the

maximum recommended ponding depth of 30 cm is used.

Once sufficient storage is available, the next challenge is diverting runoff from impervious

surfaces to locations like rain gardens, where it can infiltrate. Using modeling scenarios for the

study watershed, it was determined that 15% of runoff from impervious surfaces would need to be

diverted to mitigate flooding for a 2 year return period, 1 hour duration storm. For a 5 year return

period, 1 hour storm, there would need to be a 27% runoff reduction. Storms with a 10 year return

period would require 38% runoff reduction, whereas higher return periods would require over 50%

runoff reduction. Given that rooftop areas account for 35% of a watershed's impervious cover, and

research suggests approximately 50 - 60% adoption rates of LID techniques by homeowners

following an outreach campaign (Bakacs et al., 2013), the results of this study suggest that

distributed LID approaches could potentially be used to mitigate up to a 5 year return period storm.

However, further research on possible adoption rates within the study watershed is needed to verify

this conclusion.

 34

2.6 References

Abi Aad, M. P., Suidan, M. T., Shuster, W. D., 2010. Modeling techniques of best management
practices: Rain barrels and rain gardens using EPA SWMM-5. J. Hydrol. Eng.,
10.1061/(ASCE)HE.1943 -5584.0000136, 434-443.

Arnold, C. L., Jr., Gibbons, C. J., 1996. Impervious surface coverage: The emergence of a key
environmental indicator. J. Am. Plan. Assoc., 62(2), 243-258.

Atchison, D., Potter, K., Severson, L., 2006. Design guidelines for stormwater bioretention
facilities accessed August 18, 2015. http://aqua.wisc.edu/publications/
PDFs/stormwaterbioretention.pdf.

Bakacs, M. E., et al., 2013. Rain barrels: A catalyst for change. J. Extension, 51(3), 3RIB6.

Bannerman, R. T., Considine, E., 2003. Rain gardens: A how-to manual for homeowners.
Wisconsin Dept. of Natural Resources, Madison, WI.

Bedan, E. S., Clausen, J. C., 2009. Stormwater runoff quality and quantity from traditional and
low impact development watersheds. J. Am. Water Resour. Assoc., 45(4), 998-1008.

Bonnin, G. M., Martin, D., Lin, B., Parzybok, T., Yekta, M., Riley, D., 2006. Precipitation-
frequency atlas of the United States, Volume 2, Version 3: Delaware, District of Columbia,
Illinois, Indiana, Kentucky, Maryland, New Jersey, North Carolina, Ohio, Pennsylvania,
South Carolina, Tennessee, Virginia,West Virginia. U.S. Dept. of Commerce, Silver Spring,
MD.

Cronshey, R., 1986. Urban hydrology for small watersheds, Urban hydrology for small
watersheds. U.S. Dept. of Agriculture, Soil Conservation Service, Engineering Division,
Washington, DC.

Damodaram, C., et al., 2010. Simulation of combined best management practices and low impact
development for sustainable stormwater management. JAWRA J. Am. Water Resour.
Assoc., 46(5), 907-918.

Davis, A. P., 2005. Green engineering principles promote low-impact development. Environ. Sci.
Technol., 39(16), 338 A-344 A.

Davis, A. P., Hunt, W. F., Traver, R. G., Clar, M., 2009. Bioretention technology: Overview of
current practice and future needs. J. Environ. Eng., 10.1061/(ASCE)0733-
9372(2009)135:3(109), 109-117.

Dietz, M. E., 2007. Low impact development practices: A review of current research and
recommendations for future directions. Water. Air. Soil Pollut., 186(1), 351-363.

http://aqua.wisc.edu/publications/%20PDFs/stormwaterbioretention.pdf
http://aqua.wisc.edu/publications/%20PDFs/stormwaterbioretention.pdf

 35

DNREC (Delaware Natural Resources and Environmental Control), 2005. Green technology: The
Delaware urban runoff management approach. Delaware Dept. of Natural Resources and
Environmental Control, Division of Soil and Water Conservation, Dover, DE.

Dussaillant, A. R.,Wu, C. H., Potter, K.W., 2004. Richards equation model of a rain garden. J.
Hydrol. Eng., 10.1061/(ASCE)1084-0699 (2004)9:3(219), 219-225.

Elliott, A., Trowsdale, S., 2007. A review of models for low impact urban stormwater drainage.
Environ. Model. Software, 22(3), 394-405.

Fry, J. A., et al., 2011. Completion of the 2006 national land cover database for the conterminous
United States. Photogramm. Eng. Remote Sens., 77(9), 858-864.

Lee, J. G., Heaney, J. P., 2003. Estimation of urban imperviousness and its impacts on storm water
systems. J. Water Resour. Plan. Manage., 10.1061/(ASCE)0733-9496(2003)129:5(419),
419-426.

Levesque, V. A., Oberg, K. A., 2012. Computing discharge using the index velocity method
accessed August 18, 2015. http//pubs.usgs.gov/tm/3a23.

Line, D. E., Brown, R. A., Hunt,W. F., Lord,W. G., 2011. Effectiveness of LID for commercial
development in North Carolina. J. Environ. Eng., 10.1061/(ASCE)EE.1943-7870.0000515,
680-688.

Loperfido, J. V., Noe, G. B., Jarnagin, S. T., Hogan, D. M., 2014. Effects of distributed and
centralized stormwater best management practices and land cover on urban stream
hydrology at the catchment scale. J. Hydrol., 519, 2584-2595.

Lucas, W. C., 2005. Green technology: The Delaware urban runoff management approach. A
technical manual for designing nonstructural BMPs to minimize stormwater impacts from
land development. Delaware DNREC, Dover, DE.

MDE (Maryland Department of the Environment)., 2000. 2000 Maryland stormwater design
manual, Vols. I and II. Center for Watershed Protection and the Maryland Dept. of the
Environment, Water Management Administration, Baltimore.

Monk, J., Holleman, J., 2010. Heavy rains flood parts of Columbia accessed August 18, 2015.
http://www.thestate.com/news/local/article14387762.

NOAA, 2010. Five points flooding accessed August 18, 2015.
http://www.erh.noaa.gov/cae/Events/FivePointsFlood.

Page, J. L.,Winston, R. J., Mayes, D. B., Perrin, C., Hunt,W. F., 2015. Retrofitting with innovative
stormwater control measures: Hydrologic mitigation of impervious cover in the municipal
right-of-way. J. Hydrol., 527, 923-932.

http://www.thestate.com/news/local/article14387762
http://www.erh.noaa.gov/cae/Events/FivePointsFlood

 36

Qin, H., Li, Z., Fu, G., 2013. The effects of low impact development on urban flooding under
different rainfall characteristics. J. Environ. Manage., 129, 577-585.

Roesner, L. A., Urbona, B. R., 1998. Urban runoff quality management. ASCE, Reston, VA.

Rossman, L., 2012. Storm Water Management Model (SWMM) - User's manual, version 5.0
accessed August 18, 2015. http//www.epa.gov/nrmrl/wswrd/wq/models/swmm.

Santaella, T., Gillbert, J., 2011. Five points businesses recover from flood waters accessed August
18, 2015. http://archive.wltx.com/news/article/152992/2/Five.

Schueler, T. R., 1995. Site planning for urban stream protection. Metropolitan Washington Council
of Governments, Washington, DC.

Schueler, T. R., Claytor, R. A., 2000. Maryland stormwater design manual. Maryland Dept. of the
Environment, Baltimore.

Selbig,W. R., Bannerman, R. T., 2008. A comparison of runoff quantity and quality from two
small basins undergoing implementation of conventional and low-impact-development
(LID) strategies: Cross plains, Wisconsin, water years 1999 - 2005. USGS, VA.

Shuster, W. D., Rhea, L., 2013. Catchment-scale hydrologic implications of parcel-level
stormwater management (Ohio USA). J. Hydrol., 485, 177-187.

SSURGO (Soil Survey Geographic), 2012. Soil survey staff, natural resources conservation
service accessed November 10, 2012. http://sdmdataaccess.nrcs.usda.gov/.

The State, 2012. Severe weather pummels the Midlands accessed August 18, 2015.
http://www.thestate.com/news/local/article14406569.

The State, 2014. Heavy rain causes flash flooding in Midlands, severe flooding in upstate accessed
August 18, 2015. http://www.thestate.com/news/local/article13875068.

WIS TV, 2015. Morning rain after another evening of damaging, flooding storms accessed August
18, 2015. http://www.wistv.com/story/29724275/severe-storms.

Zahmatkesh, Z., Burian, S. J., Karamouz, M., Tavakol-Davani, H., Goharian, E., 2015. Low-
impact development practices to mitigate climate change effects on urban stormwater
runoff: Case study of New York City. J. Irrig. Drain. Eng., 10.1061/(ASCE)IR.1943-4774
.0000770, 04014043.

Zhang, G., Hamlett, J. M., Saravanapavan, T., 2010. Representation of low impact development
scenarios in SWMM. Dyn. Model. Urban Water Syst. Monogr., 18, 12.

Zoppou, C., 2001. Review of urban storm water models. Environ. Model. Software, 16(3), 195-
231.

http://archive.wltx.com/news/article/152992/2/Five
http://sdmdataaccess.nrcs.usda.gov/
http://www.thestate.com/news/local/article14406569
http://www.thestate.com/news/local/article13875068
http://www.wistv.com/story/29724275/severe-storms

 37

Chapter 3: A Cloud-Based Decision Support System for Managing
Flooding Impacts to Transportation Infrastructure in Coastal

Virginia2

3.1 Introduction

Floods were the number one natural disaster in the US in terms of the lives lost and property

damage during the 20th century (Perry, 2000). Statistics show that from 2006 to 2015, total flood

insurance claims averaged more than $1.9 billion per year (NFIP Statistics, 2016). Rainfall events

are predicted to become more frequent and intense due to climate change, which is expected to

cause increased flooding (Melillo et al., 2014). As society faces flooding events with increasing

frequency and intensity, flood modeling will become an even more important tool for decision

makers. Such models can be used to warn municipalities and communities of forecasted flooding

impacts. They can also be used to test alternative flood mitigation strategies for addressing flood

problems.

The National Research Council (NRC) has recommended increased use of two dimensional

(2D) hydrodynamic models for flood risk management purposes (NRC, 2009). There are several

advantages to using 2D models over one dimensional (1D) models that include better resolution

of velocity, localized depth and surface water elevation, and determination of floodplain extent

directly. 2D hydrodynamic models are especially important for cases with complex flows such as

in low-relief terrains with flat and/or mild slopes. For these low-relief terrains, 1D models are not

sufficient due to the limitations of assumed uniform water velocity and constant water surface

elevation modeled on each cross section (Garcia et al., 2015).

2This Chapter is in preparation for submission to a peer reviewed journal. The tentative title, authors, and journal
for the submission follow:
Morsy, M.M., Goodall, J.L., O'Neil, G., Sadler, J., Voce, Daniel, Hassan, G., Huxley, C. A Cloud-Based Decision
Support System for Real-time Warning of Flooding Impacts to Transportation Infrastructure in Coastal Virginia.
In preparation for submission to Environmental Modelling & Software.

 38

Executing 2D hydrodynamic models at the regional scale (~10x103 - 100x103 km2) requires

parallel computation in order to run in a time frame reasonable for flood warning applications.

graphical processing units (GPUs) have recently been shown to be an effective way for parallel

execution of 2D hydrodynamic models with speed-ups of 20x to 100x (Huxley and Syme, 2016;

Garcia et al., 2015; Vacondio et al., 2014; Kalyanapu et al., 2011). Vacondio et al. (2014) expects

that GPUs will continue to be attractive for 2D numerical models compared to clusters of central

processing units (CPUs) due to (i) fast-developing GPU hardware, (ii) quickly decreasing costs,

and (iii) less maintenance compared to large CPU clusters. With the speed-ups provided by GPUs,

regional flood warning systems can now be implemented with 2D hydrodynamic models and the

spatial resolution needed to provide targeted and detailed information to decision makers.

There are several related efforts aimed at improving flood warnings. The National Weather

Service (NWS) and the United States Geological Survey (USGS) have a joint project to generate

flood inundation maps at locations where a NWS forecast point and a USGS stream gauge exist

(Fowler, 2016). At these locations, a flood inundation map is created for multiple possible water

surface elevations and, by using a rating curve and forecasted discharge, the data is converted into

the corresponding water surface elevation. Then the corresponding flood inundation map is

selected from a precomputed library of flood inundation maps in the United States. The National

Flood Interoperability Experiment (NFIE) is a multiagency effort in collaboration with the

academic community to improve river and flood forecasts (Maidment, 2016). A key component

of NFIE is a model called Routing Application for Parallel computing of Discharge (RAPID)

(http://rapid-hub.org/) that was developed to operate on the 2.67 million NHDPlus catchments and

uses parallel computing to solve the 1D Muskingum flow equations on this large river network

(Maidment, 2016; David et al., 2013, 2011). NFIE showed it was possible to improve the spatial

http://rapid-hub.org/

 39

density of forecast flooding locations by more than 700 times compared with the present NWS

river forecast system (Maidment, 2016). However, in some instances a 2D flood model will be

necessary to accurately model water transport over large flat areas. Delft-FEWS is a hydrological

forecasting and warning framework that provides a platform through which operational forecasting

systems can be constructed, allowing for flexibility in the integration of models and data (Werner

et al., 2013). Delft-FEWS does not contain any inherent hydrologic model capabilities within its

code base. Instead, it relies on the integration of external hydrologic model components.

The objective of this research is to design and prototype a cloud-based system for

supporting decision makers as they assess flood risk to transportation infrastructure during extreme

weather events. The system automates forecast data access and pre-processing, execution of a

high-resolution 2D hydrodynamic model, and map-based visualization of model outputs. This

work advances the prior approaches described earlier by presenting a cloud-based framework for

modeling regions with complex flows using a 2D hydrodynamic model. Rather than relying on

precomputed flood maps, flood depths and extents, this approach allows for modeling water flows

in real-time based on current and forecasted conditions. It is an approach that could be adopted in

Delft-FEWS to leverage cloud and GPU resources within this general framework.

The overall goal of this study is to design and implement an automated flood warning

system using a sophisticated 2D hydrodynamic model and modern cloud-based cyberinfrastructure

and computing resources. The study advances on previous work funded by the Virginia

Department of Transportation for the Hampton Roads District of Virginia that produced the

Regional River Severe Storm Model (R2S2) (Hassan Water Resources PLC., 2012). The purpose

of R2S2 is to help Residency Administrators to efficiently allocate scarce resources to close roads

and to assist first responders with entering and exiting flood prone areas. This research advances

 40

R2S2 by automating what was previously a manual process of converting forecast rainfall data into

model inputs, running the model, and visualizing the results. Furthermore, this research addresses

computational challenges with using R2S2 for real-time flood warning and emergency management

applications. This research also moves R2S2 to the cloud and is one of the first cloud-based flood

warning applications with (i) an automated workflow for obtaining the real-time forecast rainfall

data, (ii) execution of a model to identify flooded bridge and culvert locations in a time duration

sufficient for warning and emergency management purposes, and (iii) generation of an online map

with locations of the flooded roadways and bridges, and the ability to send automated warning

messages via email. This system can provide the Virginia Department of Transportation (VDOT)

with information needed when determining road closures, disseminating warning messages for

area residents, and making other emergency management decisions that affect human safety and

property damage. Although the current system is focused on VDOT as the primary user, it could

be expanded in the future to disseminate more general flooding information to other stakeholders.

Cloud computing is gaining attention in environmental applications to satisfy the peak

performance needs of applications that use large amounts of processing power (Granell et al.,

2016). Sun (2013) used Google Drive, a cloud computing service, to host an environmental

decision support systems (EDSS) module that is migrated from the traditional client-server-based

architecture. Using Google Drive with the capability of providing a number of basic visual

analytics features, the collaboration between the decision makers can be increased and the cost of

small scale EDSS can be decreased. Ercan et al. (2014) used the Windows Azure Cloud

environment to run a created calibration tool built with the modified calibration method, a parallel

version of the Dynamically Dimensioned Search (DDS) for calibrating the Soil and Water

Assessment Tool (SWAT) model in Azure. Using this tool, the result showed a significant speed-

 41

up of the model calibration for six different model scenarios. Wan et al. (2014) introduced a public

cloud-based flood cyber-infrastructure (CyberFlood). CyberFlood collects, organizes, manages,

and visualizes several global flood databases for the decision makers and public users in real-time.

This database is expanded by applying a methodology for the data collection that allows the public

to report new flood events using smartphones or web browsers. Hu et al. (2015) implemented a

web-based application in the Hadoop-based cloud computing environment to make enhanced

coupled human and natural models publically available. This allows users to access and execute

the model without an increase in responding time. Kurtz et al. (2017) presented a stochastic cloud-

based fully-operational architecture for a real-time prediction and management system related to

the groundwater management. This proposed system allows for data assimilation and is coupled

with a physically based hydrologic model, HydroGeoSphere, in a cloud environment to use the

generated prediction for the groundwater management. This work advances on prior work by

demonstrating the ability of using resources in a public cloud, including instances with powerful

GPUs like those provided by AWS, to build an end-to-end automated cloud-based system for

regional-scale flood forecasting. This system is able to run a computationally-expensive 2D

hydrodynamic model and is activated automatically during extreme weather events by software

that is continuously monitoring forecasted rainfall conditions for potential extreme events. It is

also able to run in a time frame relevant to real-time emergency management applications and

automatically delivers model outputs through online maps and emails directly to decision makers.

The remainder of the Chapter is organized as follows. First, a Study Area section is

presented to introduce the region where the model is applied. Second, the Data and Methods

section is presented to outline the available data sources, the pre-processing steps used to translate

this data for use in the model, steps taken to speed-up the model, and the post-processing steps

 42

used to automate the model output dissemination. Next, the Results and Discussion section

presents a prototype of the software and the results from applying the system for an extreme

weather event. Finally, the Conclusion section provides a summary of the key research outcomes

and steps that could be taken to further advance this work.

3.2 Study Area

The study area is in the portion of the Chowan River basin that is within VDOT's Hampton

Roads District and is approximately 5,780 km2 (2,230 mi2) (Figure 3.1). The study area includes

the Meherrin, Nottoway, and the Blackwater Rivers. The longest flowpath along NHD flowline

features is approximately 175 km (109 mi) with a slope that varies from nearly 0% to 21%. The

study area includes 493 georeferenced VDOT bridges and culverts. Due to a high portion of the

study area consisting of low-relief terrain, especially in the eastern part of the study area (Figure

3.2), R2S2 utilizes a two-dimensional (2D) hydrodynamic model called Two-dimensional

Unsteady Flow (TUFLOW) (Syme, 2001) (https://www.tuflow.com/). The upstream portion of the

project domain is modeled using the Hydrologic Engineering Center-Hydrologic Modeling System

(HEC-HMS), a lumped hydrology model that is less computationally intensive, in order to generate

inflow boundary conditions for the study area. Including these upstream watersheds, the project

domain is approximately 11,000 km2 (4,240 mi2).

https://www.tuflow.com/

 43

Figure 3.1 Model domain composed of the study area where the TUFLOW model is run and the
11 subwatersheds that contribute inflow to the study area.

Figure 3.2 The digital elevation model (DEM) with resolution of 10 m x 10 m for the study area
including 11 subwatersheds that contribute inflow to the study area.

 44

3.3 Data and Methods

3.3.1 R2S2 System

The R2S2 system was first developed by Hassan Water Resources, PLC to integrate

multiple datasets with sophisticated hydrodynamic models to provide flood risk prediction during

severe storm events to the Hampton Roads District of the Virginia Department of Transportation

(Hassan Water Resources PLC., 2012). The R2S2 system consists of software to process the many

input files required for the TUFLOW model, to run HEC-HMS to establish boundary conditions

for TUFLOW, and to process output files from TUFLOW to determine inundated bridges and

culverts (Figure 3.3). Input data for the R2S2 such as DEM, soil, and land use data are constant,

however the observational data must be processed in real-time from federal data providers. R2S2

uses real-time forecast products for rainfall. The rainfall data is used as inputs for both R2S2

hydrologic models. First, the HEC-HMS model uses the rainfall data to generate inflow time series

for each of the 11 subwatersheds that border the study area. The TUFLOW model requires these

11 inflow time series as boundary conditions as well as the raw rainfall data to be executed and

generate water levels throughout the study area. Historic stream gauge data is used to calibrate and

verify the model and, eventually, real-time stream data will be used to set initial conditions.

3.3.2 Rainfall Forecast Data Automation and Preparation

In this study, the procedure to collect and process the rainfall data for model input was

automated to reduce human translation errors and decrease the time between when new rainfall

forecasts are available and new water level forecasts can be generated. Both the TUFLOW and

HEC-HMS models in R2S2 require input rainfall data, but in different formats. TUFLOW has three

approaches for applying the rainfall directly to the computational cells: (i) polygons covering

 45

multiple cells assigned as rainfall time series, (ii) gridded rainfall created as ASCII files for each

time step or as one NetCDF file, and (iii) a rainfall control file that allows a user to specify point

time series over the model domain and specify how the rainfall is interpolated to the model cells.

HEC-HMS has two approaches for applying the rainfall data: (i) a rainfall time series for each

basin stored in a data storage system (DSS) file that is prepared by HEC-DSSVue, a program for

viewing, editing, and manipulating DSS files (CEIWR-HEC, 2009), and (ii) gridded rainfall that

is prepared by HEC-GridUtil, a utility program for managing gridded data with HEC-DSS

(Steissberg and McPherson, 2011).

Figure 3.3 R2S2 workflow.

The identification of appropriate forecast datasets focused on National Oceanic and

Atmospheric Administration (NOAA) products that provides gridded rainfall and can be quickly

accessed for real-time flood warning applications. Several potential forecast datasets were

identified for the study region. The Rapid Refresh (RAP) product, the High-Resolution Rapid

 46

Refresh (HRRR) product, and the North American Mesoscale Forecast System (NAM) product

are all provided by the National Center for Environmental Prediction (NCEP). The National

Digital Forecast Database (NDFD) is provided by the National Weather Service (NWS). These

forecast products were compared in terms of their spatial resolution, temporal resolution, and

frequency of model initiation (i.e. model cycle). Results of this comparison and the code written

to automate the workflow for downloading and reformatting the rainfall data to meet the

requirements of the TUFLOW and HEC-HMS models are presented in Section 3.4.1.

3.3.3 Speeding-up R2S2 Execution

TUFLOW is the computational bottleneck within the overall R2S2 workflow. Using a single

central processing unit (CPU) for computation takes more than three days to run for a 15 day

simulation period (the duration over which Hurricane Sandy caused high flows in the Study

region). The use of multiple CPUs and GPUs has been investigated as a means of speeding-up 2D

hydrodynamic models (Kalyanapu et al., 2011; Brodtkorb et al., 2012; Rostrup and Sterck, 2010;

Castro et al., 2011; Lacasta et al., 2013; Bret et al., 2010; Garcia et al. 2015). As stated in the

introduction, using GPUs offers the performance of smaller clusters at a much lower cost (Jacobsen

et al. 2010). Therefore, GPUs were investigated for speeding-up the TUFLOW model.

TUFLOW comes with a GPU Module capable of operating on multiple GPUs in parallel.

We explored the use of both local and Amazon Web Services (AWS) resources for GPU

computations. The TUFLOW GPU Module uses an explicit scheme, while the TUFLOW CPU

(TUFLOW Classic) solver uses an implicit scheme. It is well known that explicit schemes are less

numerically stable compared to implicit schemes, so the differences between these two schemes

could be large and needs to be checked for consistency.

 47

Two local GPU resources with different capabilities were explored (Table 3.1). M1 is a

machine with a modest GPU and other resources typical of most desktop computers. M2 is a high-

end workstation with 64 GB of RAM and two NVIDIA GeForce Titan Graphics cards. There are

several types of AWS Elastic Compute Cloud (EC2) instances designed for GPU-based

computations. There are two sizes of G2 instances, which have lower end GPUs, and three sizes

of P2 instances, which have higher end GPUs (Table 3.2). The properties and hourly fee for these

instances varies as shown in Table 3.2.

Table 3.1 Local computers with GPUs used to investigate TUFLOW model execution times.

ID Type CPU RAM
(GB) GPU GPU RAM

M1 Desktop Dell
OptiPlex 990

3.40 GHz, 4
Core(s)

16 NVIDIA Quadro
K2000

2.00 GB, 384 SMX
CUDA parallel
processing cores

M2 Desktop Viz
Lab ESCHER

3.20GHz, 3201
Mhz, 6 Core(s)

64 Two units of
NVIDIA GeForce
GTX TITAN

6.00 GB, 2688 CUDA
parallel processing cores
for each

Several tests were performed to measure the TUFLOW model execution times using the

AWS EC2 g2.8xlarge and p2.8xlarge instances. The TUFLOW model with 50m grid cell size was

used for these tests. The g2.8xlarge instance, which has 4 GPUs, was used to execute the model

with 1, 2, 3, and all 4 GPUs. Likewise, the p2.8xlarge instance, which has 8 GPUs, was used to

execute the model with 1 through 8 GPUs. Each of these model runs were performed twice to

ensure that model run times were consistent.

 48

Table 3.2 Comparison between G2 and P2 EC2 instances performance and cost as of
06/06/2017.

EC2
Instance Model GPUs vCPU Memory

(GiB)
GPU

Memory
Storage

(GB)
Hourly

Fee

G2 g2.2xlarge 1 8 15 4 (GB) SSD 1 x 60 $0.767
g2.8xlarge 4 32 60 16 (GB) SSD 2 x 120 $2.878

P2
p2.xlarge 1 4 61 12 (GiB) EBS $1.084
p2.8xlarge 8 32 488 96 (GiB) EBS $8.672
p2.16xlarge 16 64 732 192 (GiB) EBS $17.344

G2 Instances includes NVIDIA GRID K520 GPUs, P2 Instances includes NVIDIA K80 GPUs

3.3.4 Post-processing and Automating Model Output Dissemination

The TUFLOW model computes the maximum water level at each computational cell

within the study area throughout the simulation duration. Using these maximum water levels and

the VDOT bridge locations and deck elevations, a post-processing workflow was created to

automate sending an email with the bridges expected to be overtopped based on model projections.

Web resources such as Google Maps and Geosheets (https://www.geosheets.com/) were used to

provide real-time visualization for the flooded bridges in the Hampton Roads District. Google

Maps has the capability to generate a simple visualization of uploaded keyhole markup language

zipped (KMZ) files, which is a quick and simple method to visualize the flooded bridge locations.

Geosheets, an add-on to Google Sheets, simplifies visualization capabilities in Google Maps

compared to using only the Google Maps application programming interface (API) directly. Using

the capabilities of the Google Maps API and the Geosheet application in the post-processing

workflow, advanced real-time visualization of the flooded bridge locations can be generated.

3.3.5 Design of an Automated Flood Warning System through AWS

After automating the retrieval of the forecast rainfall data, speeding-up the 2D model, and

providing methods for warning decision makers and visualizing the overtopped bridges and culvert

 49

locations in the study area individually, the final step was to create a seamless workflow in AWS

to link these three components together without the need of intermediate human action. The goal

of this automated workflow is to identify the flooded bridges and/or culverts in a time duration

that is sufficient for warning and emergency management purpose based on the highest resolution

official rainfall forecast data available. To accomplish this, the design had to meet the following

requirements. Given that a single instance capable of all of these tasks would be too expensive to

continuously run, a smaller, low cost instance was used to monitor the rainfall data for upcoming

extreme events and trigger a larger instance when a flood event is forecasted. This smaller instance

also assumes the role of maintaining the website to display and disseminate the model output runs

so that it can be available continuously. Storage resources are needed to archive the processed

rainfall data used as model input and the model outputs is needed so that model results can be

analyzed at a later time. Finally, a larger instance with NVIDIA GPU capabilities was needed to

accommodate the hydrologic models and be able to run scripts used to prepare the rainfall data

input for the models. This instance is also needed to disseminate the output data. To automate these

steps of the workflow, the GPU instance needed to execute a batch file that (i) runs the pre-

processing scripts to prepare the rainfall data, (ii) runs the hydrologic models, (iii) runs the post-

processing script for preparing the model output for dissemination, (iv) sends outputs to other

cloud resources for archiving and visualization, and (v) removes the model output files from the

GPU instance.

 50

3.4 Results and Discussion

3.4.1 Rainfall Forecast Data Automation and Preparation

Comparison of the spatial resolution, temporal resolution, and model cycle of each dataset

(Table 3.3) shows that HRRR was the best forecast rainfall product for our purpose. HRRR is a

weather prediction system composed of a numerical forecast model and an analysis/assimilation

system to initialize the model. HRRR is a higher-resolution model nested inside the hourly updated

RAP. Although RAP can provide upper-level analyses and short-range forecasts, HRRR is best

used to examine surface and near-surface parameters, such as surface precipitation. The HRRR

model is run every hour of the day and forecasts out to 18 hours on a one hour time-step for each

cycle. It provides a surface total precipitation product in units of mm of precipitation depth at a

horizontal resolution of 3 km (NOAA, 2012). Surface total precipitation can be accessed as gridded

data with dimensions of longitude, latitude, and time. Longitude and latitude are provided in the

World Geodetic System (WGS) 1984 coordinate system, and time is in units of decimal days since

1-1-1 00:00:0.0 (NOAA, 2017a). HRRR data are distributed as a part of the NOAA Operational

Model Archive and Distribution System (NOMADS) project, a network of data servers that use

the Open Source Project for a Network Data Access Protocol (OPeNDAP) (NOAA, 2017a).

Although the HRRR data is used as the primary input to the model, the system could use the coarser

Quantitative Precipitation Forecast (QPF) from the NDFD dataset, which forecasts rainfall for the

next 72 hours, to monitor for large rainfall events beyond the 18 hours horizon captured by HRRR.

This would allow for a longer lead time for preparing for severe storms. This system is developed

in a flexible way to enable the use of higher resolution rainfall forecast data that may be available

in the future. The use of better rainfall forecast data with a longer lead time will reduce the

uncertainty of the model, making it a more useful decision support tool.

 51

Table 3.3 Comparison of available forecast datasets.

Dataset Data
Provider Relevant Data Product

Resolution Forecast
(hrs)

Model
Cycle Spatial

(km)
Temporal

(hrs)

HRRR NCEP Surface total precipitation 3 1 18 24/day

RAP NCEP Surface total precipitation 13 1 18 24/day

NDFD NWS Quantitative precipitation
forecast 5 6 72 8/day

NAM NCEP Surface total precipitation 12 1 36 4/day

Figure 3.4 shows the workflow for downloading and reformatting the forecast rainfall data.

Pydap, a pure Python library implementing the OPeNDAP, is used to retrieve the desired forecast

data for the study area. The automated workflow consists of three main parts: (i) access the latest

available forecast data from the HRRR database, (ii) retrieve the forecast surface total precipitation

with a horizontal resolution of 3 km x 3 km in WGS 1984 coordinate system, and (iii) reformat

the forecast data for model input in the NAD83 UTM 18N projected coordinate system. These

rainfall data are reformatted in two ways: gridded rainfall data for TUFLOW using the Geospatial

Data Abstract (GDAL/OGR) Python library and subwatershed time series for HEC-HMS using

HEC-DSS, Python, and Java libraries. To include these direct rainfall data in TUFLOW, a

TUFLOW Event File (TEF) was created to define the storm event properties. For example, using

the new TEF file, the user can run the model for a given storm event using either historic or forecast

data.

 52

Figure 3.4 Forecast data workflow from HRRR to R2S2 sub-models.

3.4.2 Speeding-up R2S2 Execution

The speeding-up of the model was performed with model runs using rainfall from

Hurricane Sandy as input. The rainfall lasted for four days and the total modeled time span was 15

days (October 28 - November 11, 2012). Table 3.4 summarizes the results of the three TUFLOW

model scenarios using the M1 and M2 machines (Table 3.1). Using the CPU, the model took 120

hours to execute. Using the modest GPU in the M1 machine, the model took 11.5 hours to execute

(a 10x speed-up compared to the CPU). Using the two more powerful GPUs in the M2 machine,

the model took only 2.4 hours to execute (a 50x speed-up compared to the CPU and 5x speed-up

 53

compared to the M1 machine using the single GPU). The input time-step does not have a

significant effect on the execute time when using GPUs. This is due to the explicit scheme within

the TUFLOW GPU module that takes the user's input time-step value as an initial value and then

optimizes the time-step to meet the convergence condition (i.e. courant number <=1) (BMT WBM,

2016) .

Table 3.4 Comparison of CPU versus GPU speed-up using local GPU resources (differences
bolded in each scenario).

Model Specifications

Run Scenarios

Machine M1 M1 M2
Processing Unit CPU GPU GPU
No. of GPUs - 1 2
Time-step (sec) 10 10 10
Output Cell Size (m) 25 25 25
Running Time (hrs) 120 11.5 2.4

A test was conducted to determine how increasing the number of GPUs influenced model

execution time (Figure 3.5). As expected, running the model by using different numbers of GPUs

produced the same output results (i.e., no differences in the maximum water levels). Figure 3.5-a

provides the results of this test using the GPU model and the AWS g2.8xlarge instance with

different numbers of GPUs. Using the g2.8xlarge instance with one GPU, the model takes about

4.6 hours to run. Using the g2.8xlarge instance and increasing the number of GPUs, the minimum

execution time is 3 hours when all four GPUs are used, which costs about $9 per run. Because

only four GPUs were available on this instance, we were not able to test whether additional GPUs

would continue to reduce the running time. Figure 3.5-b provides the results of this test using the

GPU model and the AWS p2.8xlarge instance with different numbers of GPUs. Using the

p2.8xlarge instance with one GPU, the GPU model takes 2.75 hours to run, which is less than

 54

using the g2.8xlarge instance with 4 GPUs. This shows the benefit of the more modern GPUs in

the P2 versus G2 EC2 instances. Using the p2.8xlarge instance and increasing the number of GPUs,

the minimum execution time was found to be 1.5 hours, which is achieved when five GPUs are

used. This run, with the minimum execution time (1.5 hours), costs about $13 per run, which is

about 1.5x more expensive than the g2.8xlarge instance run; however, it is faster than the

g2.8xlarge by 2x. Comparing this 1.5 hours execution time to the CPU execution time of 120 hours

shows an 80x speed-up for the model. Using six or more GPUs on this instance increases the

execution time compared to using five due to known tradeoffs caused by data transfers between

parallel GPU units (Huxley and Syme, 2016).

(a)

(b)

Figure 3.5 Running TUFLOW model through AWS EC2 (a) g2.8xlarge instance, and (b)
p2.8xlarge instance with different numbers of GPUs.

Because the CPU and GPU TUFLOW solvers use different numerical schemes, it is

important to understand differences in their outputs (Figure 3.6). Figure 3.6 provides the

differences in maximum water level (Max. WL) generated from executing the model using the

CPU and the GPU solvers. The maximum difference in Max. WL across the study area was around

2.5 m (8 ft), with 87% of the computational cells having differences in the maximum water level

 55

less than 0.5 m (1.6 ft). Figure 3.7 shows the Max. WLs at each bridge location generated by

executing the model using the CPU solver versus the GPU solver. The mean absolute error (MAE)

of 0.48 m (1.6 ft) and the root mean square error (RMSE) of 0.78 m (2.6 ft) demonstrate a fairly

significant difference. In this study, we did a preliminary sensitivity analysis by changing the

model grid cell size and Manning coefficient values, but future research should investigate this

difference more fully.

Figure 3.6 Differences between Max. WL generated from CPU solver and GPU solver.

 56

Figure 3.7 Bridges and culverts location Max. WL generated from CPU solver versus GPU
solver with MAE of 0.48 m and RMSE of 0.78 m.

The model results using both the CPU and GPU solvers were compared against stream

stage observations for Hurricane Sandy event. Figure 3.8 and Table 3.5 show the USGS stations

with data availability for the event. The USGS provided unpublished stage data that is considered

provisional and, therefore, may contain erroneous or missing values due to instrument malfunction.

This data was processed and cleaned to address this issue before being compared to the model

output data. Figure 3.8 also shows the NOAA stations with the available recorded rainfall data for

the Hurricane Sandy storm event. Hyetographs for this storm event at these stations are shown in

Figure 3.9.

 57

Figure 3.8 USGS and NOAA station locations and Hurricane Sandy data availability in the
study area.

 58

Table 3.5 USGS stations in the study area with information about Hurricane Sandy availability.

Figure 3.9 Hurricane Sandy hyetographs at the five NOAA stations near the study area (Figure
3.8).

Station Name Current
Status

 Stage
 Parameter

Code Start Date End Date

02049500 USGS 02049500 BLACKWATER
RIVER NEAR FRANKLIN, VA Active 00065 Gauge

height 10/23/2016 2/20/2017

02047500 USGS 02047500 BLACKWATER
RIVER NEAR DENDRON, VA Active 00065 Gauge

height 10/31/2016 2/28/2017

02045500 USGS 02045500 NOTTOWAY
RIVER NEAR STONY CREEK, VA Active 00065 Gauge

height 10/31/2016 2/28/2017

02052000 USGS 02052000 MEHERRIN RIVER
AT EMPORIA, VA Active 00065 Gauge

height 10/31/2016 2/28/2017

02047000 USGS 02047000 NOTTOWAY
RIVER NEAR SEBRELL, VA Active 00065 Gauge

height 10/31/2016 2/28/2017

02050000 BLACKWATER RIVER AT HWYS
58/258 AT FRANKLIN, VA Active 00065 Gauge

height 10/31/2016 2/28/2017

 59

The finite volume schemes used by the 2D models are heavily dependent on the gird cell

shape and size (LeVeque, 2002; Caviedes-Voullième et al., 2012). The TUFLOW model GPU

solver uses only a Cartesian grid with the capability of changing the grid cell size. The TUFLOW

model was executed using the GPU solver with grid cell sizes of 50 m, 40 m, 30 m, and 20 m. The

output data from each of these runs was compared to the observed data at the six USGS stations

and model results from executing it using the CPU solver with cell size of 50 m. The modeled

peaks using the GPU solver with 50 m grid cell size were significantly higher than the observed

data and the model peaks using CPU solver at four USGS stations (02045500, 02047000,

02047500, and 02052000). However, at one of the USGS stations (02050000), the modeled peak

using the GPU solver with 50 m grid cell size was significantly lower than the observed data and

the modeled peak using the CPU solver. Finally, at another USGS station (02049500), the modeled

peak using the GPU solver with 50 m grid cell size was almost the same as the model peak using

the CPU solver. However, both peaks were significantly lower than the observed data.

The differences between the modeled and observed peak stages could be due to the lack of

adequate bathymetry data in the major rivers and tributaries. In all of the minor tributaries and

some stretches of the main rivers, bathymetry had to be assumed because no bathymetry data was

available. This also could be due to the coarse DEM resolution (10 m x 10 m). Calibration with

limited data available for such a large study area is a challenge as well, especially with a scarcity

of operating river gauges and available data for event-based calibration. In some instances, 2D

models are not used due to the low resolution of the available spatial data and the difficulties faced

when calibrating the model parameters (Caviedes-Voullième et al., 2012). This large study area

includes only six USGS gauges that recorded stream stage during Hurricane Sandy. Three of these

stations are located on the same main stream at the eastern part of the study area, one is in the

 60

middle of the study area, and the other two are located in the western part of the study area. More

gauges would be valuable to be more confident in the calibration of such a large 2D model.

When the cell size of the model using the GPU solver decreases, a significant reduction in

the peak stages was observed at four of the six USGS stations (02045500, 02047000, 02047500,

and 02052000). At station 02050000, the modeled peak stage using the GPU solver increased with

decreasing cell size, while at station 02049500 the peak stage remained nearly constant with each

cell size. Decreasing model grid cell size improved the matching of observed peaks at four of the

six observation sites and, therefore, we decided to use a smaller cell size in the model application.

The drawback of a smaller cell size is an increase in model execution time. Figure 3.10 shows the

model execution time using the GPU solver with different grid cell sizes (50 m, 40 m, 30 m, and

20 m) for the M2 machine (Table 3.1). Figure 3.10 also shows the MAE generated from comparing

the model output using different cell sizes and using the GPUs with the model output using the

CPU solver with the 50 m grid cell size. Based on these results, we chose the 30 m cell size since

there is only a small difference in the results using the GPU solver with a 20 m grid cell size model

and there is a significant increase in the model run time (2.8x from 10.2 hours to 28 hours).

 61

Figure 3.10 Model run time using GPU solver with different grid cell sizes and the
corresponding MAE versus CPU solver using M2 machine (Table 3.1).

In addition to decreasing the cell size to 30 m, we also adjusted the Manning coefficient

(n) to test its sensitivity and ability to improve matching of observed peak stages obtained from

the six USGS stations. The model initially had Manning coefficient values determined based on

the study area land use. To assess the sensitivity of the model to changes in the Manning

coefficient, this coefficient was changed to be 0.6n, 0.8n, 1.0n, 1.4n, and 1.8n. As the Manning

coefficient value decreased, the modeled peak stages became closer to the observed peaks at

stations 02045500, 02047000, 20047500, and 02052000. After reducing the grid cell size from 50

m to 30 m and the Manning’s coefficient from 1.4n to 0.6n, the model came the closest to matching

observed peak river stage. This represents a preliminary calibration of the model that should be

more fully explored through additional research.

 62

Figure 3.11 Comparison between the stage depth observation data and the output depth from
executing the model using a GPU solver with 30 m cell size and 0.6n Manning coefficient

values.

The analysis of changing the model grid cell size and Manning's coefficient was done by

applying rainfall time series for Hurricane Sandy from five rain gauges to polygons that each

covered multiple model grid cells. TUFLFOW also has the capability of using direct rainfall data

that applies input rainfall values to every cell in the 2D hydrodynamic model. When the rainfall is

 63

directly applied to the cells, the model routes flow based on the cell topography on a cell by cell

basis (Huxley and Syme, 2016). Huxley and Syme (2016) investigated using this new method by

applying the direct gridded rainfall data and found that GPU direct rainfall hydraulic modeling can

be used as an alternative to runoff-routing hydrology modeling. To check the model behavior using

the direct gridded rainfall data method with the chosen grid cell size and Manning's coefficient

values, rainfall data from Hurricane Sandy was obtained from the Tropical Rainfall Measuring

Mission (TRMM). This data has resolution of 0.25 x 0.25 degrees resulting in 16 cells covering

the entire study area. We hoped to use rainfall data from the Next Generation Weather Radar

(NEXRAD) provided by NOAA, but there was no data available for the dates of Hurricane Sandy

for our study area.

Figure 3.11 shows the results of using the gridded rainfall data provided by TRMM when

executing the model with grid cell size of 30 m and Manning's coefficient values of 0.6n using

the GPU solver. Using the gridded rainfall data with this coarse resolution produces results very

similar to those found when using the rainfall gauge data and the polygon method. The model

results almost matches the observation peaks at the 02045500, 02047000, 02047500, and

02052000 USGS stations. The other two USGS stations, 02049500 and 02050000 where the

modeled peaks are further from the observed peaks, are located on the same stream at the eastern

part of the study area along with Station 02047500. This area has the mildest slopes in the study

area (almost flat) (Figure 3.2). The station furthest upstream is 02047500. At this station, the model

predicts a slightly higher peak than the observed data and the modeled peak using the CPU model.

The second station (02049500) has a much lower peak than the observed data. However, the

modeled peak using the CPU solver is even lower than the modeled peak using the GPU solver.

The peak at station 02050000 is much higher than the observed peak and the modeled peak using

 64

the CPU solver. The variation between the observed and modeled peaks at these three stations

could be due to the coarse DEM resolution (10 m x10 m) used in the model. The slightly higher

peak at 02047500 may be due to slopes derived from the DEM being milder than the real slopes.

The much lower peak and lower volume at 02049500 could be due to having slopes derived from

the DEM much steeper than the real slopes. Like with 02047500, the much higher peaks at

02050000 may be due to the DEM-derived slopes, which are milder than the real slopes. This

would explain why the absolute differences in the peaks at stations 02049500 and 02050000 are

nearly the same but the one is below and the other is above the observed peak. If the slopes of the

contributing areas to station 02049500 were milder, the peak there would be higher and the peak

at the downstream station (02050000) would be lower, making both closer to the observed data.

This might improve if a higher DEM resolution is used within the model. Future work will explore

this and the use of NEXRAD to better understand the benefit of this rainfall data for predicting the

stage depth peaks.

3.4.3 Post-processing and Automating Model Output Dissemination

Figure 3.12 shows the resulting workflow for model output post-processing for

dissemination of model results. This workflow uses different Python libraries such as

GDAL/OGR, Simple KML library (SIMPLEKML), and an email library to generate the

visualization of the flooded bridge locations and automatically email warnings to decision makers.

The workflow and its products could be used with ArcMap, Google Maps, Google Earth,

Geosheets or a custom website, such as the one we configured and hosted on the AWS, EC2

t2.micro instance, as shown in Figure 3.12. There are three products for visualization that can be

generated from this workflow: (i) an ESRI shapefile that includes just the flooded bridges, (ii) a

 65

KMZ file that includes flood information for all bridges that can be visualized through Google

Maps or Google Earth, and (iii) a dynamic and real-time visualization on Geosheets created by

automatically uploading the bridges with their flooded status to a Google Sheet using the Google

Drive API. Unlike hosting a website to visualize the KMZ file on the EC2 t2.micro instance, using

GeoSheets requires no webserver. However, hosting our own website in the long run will provide

much more flexibility and the potential for more capabilities. Figure 3.13 shows an example of an

advanced visualization for the flooded bridges directly on the Geosheets permanent URL once the

workflow runs. This visualization shows the bridges as being not overtopped (green), nearly

overtopped (yellow), and overtopped (red) from forecast rain events.

Figure 3.12 Post-processing workflow for producing different visualization resources.

 66

Figure 3.13 Real-time visualization with permanent URL for visualizing the flooded bridges
location using Geosheets. (https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-

Bridges-in-The-Hampton-Roads-District).

3.4.4 Automated Flood Warning System through AWS

Figure 3.14 shows the design of the automated workflow that meets the design

requirements outlined in the methods section. This solution uses three AWS resources: (i) a low

cost EC2 t2.micro instance running a Linux operating system, (ii) an EC2 G2 or P2 instance with

Windows operating system, and (iii) a S3 Bucket. The EC2 t2.micro instance has two roles in the

workflow. First, the instance continuously monitors rainfall forecasts to identify an extreme

weather event. When an extreme weather event is identified, the EC2 t2.micro instance starts the

EC2 G2 or P2 instance and a model run is initiated. Second, the EC2 t2.micro instance serves the

webpages used to visualize and disseminate the model results computed by the larger EC2 G2 or

P2 instance. The EC2 G2 or P2 instance includes all of the model components. The EC2 G2 or P2

instance retrieves, preprocesses and prepares the forecast rainfall data for the hydrologic models.

https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-Bridges-in-The-Hampton-Roads-District
https://www.geosheets.com/map/s:Lo6Wq0Jl/Currrent-Flooded-Bridges-in-The-Hampton-Roads-District

 67

This same instance also executes the 2D hydrologic model. After the model runs, the EC2 G2 or

P2 instance sends model outputs to the EC2 t2.micro instance for visualization and dissemination.

The model outputs are also sent, along with the processed forecast rainfall data used as model

inputs, to the S3 bucket for archiving and reproducibility purposes.

Figure 3.14 Design of the automated workflow for a flood warning system using AWS
resources.

There are two classes of users that can access the model outputs via the webpages running

on the EC2 t2.micro instance: regular users and power users. Regular users can access the current

flooded locations and can register to receive alerts via email whenever locations are forecasted to

flood. In the current implementation, regular users do not need to authenticate with the system.

Power users have more privileges than the regular users, including access to all the archived

 68

inundation maps from the S3 bucket and the ability to run the model at any time via a powershell

script or through the website hosted by the t2.micro instance.

AWS has the ability to securely control access to services and resources for specific users

using the Identity and Access Management (IAM) service. This service was used to give

permission to the EC2 t2.micro instance to start and stop the other EC2 G2 or P2 instance. A new

user was created and then given permission for starting and stopping the EC2 G2 or P2 instance

(Figure 3.15). By using the new user credentials, the EC2 G2 or P2 instance ID, and command

lines executed in a scripting language or at the AWS command line interface (CLI), the EC2 G2

or P2 instance can be started and/or stopped automatically. The main script in the development

web framework on the EC2 t2.micro instance is called server.py. Code was added to this Python

script for monitoring and accessing the other EC2 G2 or P2 instance. In this code, a process is run

every hour to check the HRRR rainfall data (which is updated hourly). If the forecasted rainfall is

over a certain threshold value, it will start the EC2 G2 or P2 instance that includes the hydrologic

model automatically. Then the EC2 t2.micro instance keeps monitoring the EC2 G2 or P2 instance

to make sure that it is fully started (this is done by adding additional permissions to the user policy).

Then the EC2 t2.micro instance uses Secure Shell (SSH) to initiate a batch file that runs the main

workflow for retrieving the data, executing the model, and generating the output. The 2D

hydrologic model takes about 10 minutes to run through a forecasted period (18 hours) using a

model grid resolution of 50 m on the M2 machine, while it takes about 38 minutes using the model

grid resolution of 30 m on the M2 machine. The running time for the model with grid resolution

30 m is expected to be lower when using the EC2 p2.8xlarge instance. Using the p2.8xlarge AWS

instance with five GPUs, it is expected that the runtime will be 6.3 minutes for a 50 m grid cell

size and 24 minutes for 30 m grid cell size.

 69

Figure 3.15 The policies between the EC2 t2.mico and G2 or P2 instances.

This batch file that automates the model execution operates as follows. First, the HRRR

data is retrieved and processed. Once the rainfall data is retrieved and is available for the

hydrologic models, the models are run and the maximum water level at each computational cell

within the study area is computed and recorded for the duration of the simulation period. Once the

maximum water level output file is available, the KMZ file is generated from the model output

file. This KMZ file includes information about each bridge and culvert provided by VDOT, the

maximum water level predicted by the model, and by how much each bridge would be overtopped.

The KMZ file is sent to the t2.micro instance to be used for visualization. This is done using the

AWS Private Key generated for the EC2 t2.micro instance. Another policy added to the IAM user

is used to access the S3 Bucket and archive the processed rainfall data (Figure 3.16). A log file is

generated that includes a record of the parameters and scripts used in the whole process as a

 70

reference for users or decision makers. The log file is sent to both the EC2 t2.micro instance and

the S3 Bucket for archiving. Finally, any files generated from running the whole workflow are

deleted to minimize the storage on the EC2 G2 or P2 instance.

A power user can use a powershell script to automatically initialize a model run. The script

gives the user the option of running the workflow either locally or with the EC2 G2 or P2 instance.

When the workflow is chosen to run locally, the powershell script installs any required

dependencies and then runs the batch file to start the workflow. If the user chooses to run the

workflow through the cloud, the script asks for the IAM policy credentials and starts the EC2 G2

or P2 instance. Once the instance is fully started, the script uses SSH to run the batch file to start

the main workflow.

Figure 3.16 shows the different policies used by the EC2 t2.micro and G2 or P2 instances

to access the S3 bucket folder that includes the archive information for each run. Also this figure

shows the hierarchy of the S3 Bucket folders for archiving the workflow output data. The S3

Bucket folders receive data from the EC2 G2 or P2 instance once it starts. To give full access for

these specific folders and their contents to the EC2 G2 or P2 instance, another policy was added

to the IAM user (Figure 3.16). The EC2 G2 or P2 instance uses the IAM user policy to access the

main folder, floodwarningmodeldata, and archive the output data generated by the workflow in

each specific subfolder. The EC2 t2.micro instance then retrieves the archived KMZ and log files

to visualize them on the website. This is done by using a separate policy provided by the AWS S3

Bucket (Figure 3.16).

 71

Figure 3.16 Different policies used to access the AWS S3 Bucket data, and the AWS S3 Bucket
folder hierarchy.

The t2.micro instance handles the visualization of the output data using a Python based

micro web framework, Flask (http://flask.pocoo.org/) (Figure 3.17). When a user accesses the

website URL (http://ec2-34-207-240-31.compute-1.amazonaws.com/) the most recent model

output KMZ is displayed using the Google Maps JavaScript API. The output KMZ files, along

with the corresponding log files from only the five most recent model runs, are available on the

website to save storage space. NGINX (https://nginx.org/en/) and Gunicorn "Green Unicorn"

(http://gunicorn.org/) sit in between the flask application and the internet working in tandem to

support many users on the website at the same time and handle the distribution of resources.

http://flask.pocoo.org/
http://ec2-34-207-240-31.compute-1.amazonaws.com/
https://nginx.org/en/
http://gunicorn.org/

 72

The t2.micro instance also triggers a model run when HRRR rainfall forecast data exceeds

a given threshold. The forecast rainfall data is therefore retrieved every hour. If the rainfall exceeds

a certain threshold value it will start the EC2 G2 or P2 instance and initialize a model run with the

latest rainfall data. An alert on the website will show users whether a model is being run, flooding

is possible, or the model is up to date with no flooding predicted.

Figure 3.17 EC2 t2.micro instance and the web framework used to build up the website.

Figure 3.18 shows the architecture of the website. On the main view, the website contains

a navbar allowing the selection of which data to view, a link to the log file, a login page, or a page

to register for email alerts. The main section of the page is taken up by the Google Maps JavaScript

API. Using the Google Maps JavaScript API allows us to easily display the map interface using

all of Google’s resources and overlay our output data on top of it. When a user clicks on a marker

signifying a bridge, they are presented with a box containing more information about that bridge

 73

and potential flooding events. Users can sign up and their email will be stored in a secured private

Structured Query Language (SQL) database. The application will detect when flooding is possible

and send an email to everyone on the list. Through the website, power users can display output

data archived in the AWS S3 bucket without having to store output in the t2.micro instance, which

has a limited amount of storage.

Figure 3.18 Main webpage of the flood warning decision support website.

3.5 Conclusions

This work describes the creation of a cloud-based flood forecasting system designed to

assist transportation decision makers in time-sensitive, emergency situations. The flood

forecasting system is applied for the Virginia Department of Transportation in the Hampton Roads

region to provide decision makers with forecasts of flooded roadways and bridges in near real-

time based on rainfall forecasts. By using GPU resources, the model was executed for a 15 day

 74

duration up to 80x faster (from 120 hours compared to 1.5 hours) compared to using a single CPU.

An automated cloud-based workflow using AWS resources was designed and created to link and

enhance the three core model components: (i) retrieval and formatting of high resolution gridded

HRRR rainfall forecast data, (ii) execution of the 2D model in a short duration to identify flood

prone bridges and culverts, and (iii) real-time dissemination of model output via generation of an

online map with flooded locations and the ability to automatically send alert messages via email.

Using the M2 machine described earlier, the 2D hydrodynamic model, which is the heart

of the flood forecasting system, completes an analysis for the upcoming 18 forecast hours in

approximately 10 minutes with a model grid cell size of 50 m, and approximately 38 minutes with

a model grid cell size of 30 m. Using the p2.8xlarge AWS instance with five GPUs, it is expected

that the runtime will be 6.3 minutes for a 50 m grid cell size and 24 minutes for 30 m grid cell size.

For Hurricane Sandy, although the rainfall only lasted 4 days, the effects of the rainfall over the

study area lasted 15 days. Assuming running the model with a 50m grid cell size takes 6.3 minutes

to run for the upcoming 18 forecasted hours on the p2.8xlarge, if the model ran every hour through

15 day period, running the workflow would cost about $350 assuming current AWS prices. For

the same scenario but with a grid cell size of 30 m, modeling 18 hours is expected to take about

24 minutes to run and cost $1260 for the 15 day duration. However, this assumes using five GPUs

and further tests are required to run the model with grid cell size of 30 m on the AWS EC2 P2.8

instance to find the optimum number of GPUs for this scenario.

Because the TUFLOW 2D model is expensive to run, it is only used during extreme

weather events. The t2.micro instance, which costs about $10 per month to run continuously,

monitors the HRRR forecast rainfall data comparing it to rainfall thresholds that represent the

amount of rain required to cause potential flooding. In the preliminary implementation, we used a

 75

fixed value for the threshold. In the future, we plan to compare the HRRR forecast data against the

thresholds provided from the Flash Flood Guidance (FFG) produced by the U.S. National Weather

Service (NWS) at the county scale and updated daily based on soil moisture conditions (US

National Weather Service, 2017). Currently, the FFGs are published in graphical or CSV format,

however NWS plans to make them accessible via webservices. Once the webservices are available,

the workflow will be able to access the FFGs automatically each day to have up-to-date thresholds

values which are specific to the study area.

A main advantage of the cloud-based approach presented here is that it provides a way to

strategically utilize computational resources only when the flood events are likely to occur.

Additionally, the workflow is automated, start to finish, without the need for any intermediate

human interaction. This means that a decision maker with little or no experience regarding the

details of hydrologic modeling, gridded rainfall data, pre- and post-processing procedures, and so

forth, can easily execute the workflow and obtain and visualize model results. This work presents

a preliminary calibration of the model, but additional work is needed to calibrate and evaluate the

model across multiple historical flooding events. It is important to note that this model was so far

only tested for Hurricane Sandy. The scarcity of operational river gauges and significant model

run-time prior to this research made calibration challenging. The local M2 machine, which was

able to run the 15 day Hurricane Sandy model in 2.4 hours, could be used for calibration process.

Results of this study suggest a higher resolution grid will improve model accuracy, but this too

comes with an increased model run-time. A final challenge that needs more investigation is the

differences between CPU and GPU outputs. This difference may become smaller with updates to

the model software. TUFLOW plans to release a significantly enhanced version of the GPU model

called TUFLOW HPC. This version uses 2nd order solution accuracy solvers rather than the 1st

 76

order that is used in the current version. It will also allow the user to add 2D bridges to the model

for better representation within the system and has improvements in the multiple GPU speed

performance for executing the model. Finally, more research is needed to see if improving model

input data, such as using a finer DEM resolution for portions of the study area or NEXRAD rainfall

data, will improve the GPU-based model results.

3.6 References

Brodtkorb, A.R., Sætra, M.L., Altinakar, M., 2012. Efficient Shallow Water Simulations on
GPUs: Implementation, Visualization, Verification, and Validation. Computers & Fluids,
Vol. 55, pp. 1-12.

Burnash, R., 1995. The NWS river forecasting system catchment modelling. In: Singh, V. (Ed.),
Computer Models of Watershed Hydrology. Water Resources Publications, New York,
USA, pp. 311e366.

Castro, M.J., Ortega, S., de la Asunción, M., Mantas, J.M., and Gallardo, J.M., 2011. GPU
Computing for Shallow Water Flow Simulation Based on Finite Volume Schemes.
Comptes Rendus Mécanique, Vol. 339, No. 2-3, pp. 165-184.

Caviedes-Voullième, D., García-Navarro, P. and Murillo, J., 2012. Influence of mesh structure on
2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff
events. Journal of Hydrology, 448, pp.39-59.

CEIWR-HEC., 2009. HEC-DSSVue HEC Data Storage System Visual Utility Engine, User's
Manual (Computer Program Documentation No. CPD-79). Davis, CA: US Army Corps of
Engineers Institute for Water Resources.

Committee on Climate Change and U.S. Transportation, 2008. Potential Impacts of Climate
Change on U.S. Transportation. Transportation Research Board Special Report 290.
http://www.trb.org/Main/Public/Blurbs/156825.aspx. Accessed September 30, 2015.

David, C.H., Yang, Z.L., Hong, S., 2013. Regional-scale river flow modeling using off-the-shelf
runoff products, thousands of mapped rivers and hundreds of stream flow gauges.
Environmental modelling & software, 42, pp.116-132.

David, C.H., Maidment, D.R., Niu, G.Y., Yang, Z.L., Habets, F., Eijkhout, V., 2011. River
network routing on the NHDPlus dataset. Journal of Hydrometeorology, 12(5), pp.913-934.

 77

Ercan, M.B., Goodall, J.L., Castronova, A.M., Humphrey, M., Beekwilder, N., 2014. Calibration
of SWAT models using the cloud. Environmental Modelling & Software, 62, pp.188-196.

Fowler, K.K., 2016. Flood-inundation maps for the Wabash River at New Harmony, Indiana: U.S.
Geological Survey Scientific Investigations Report 2016-5119, 14 p.

Garcia, R., Restrepo, P., DeWeese, M., Ziemer, M., Palmer, J., Thornburg J., Lacasta, A., 2015.
Advanced GPU Paralellization for Two-Dimensional Operational River Flood Forecasting.
In 36th International Association for Hydro-Environment Engineering and Research World
Congress. The Hague, Netherlands.

Granell, C., Havlik, D., Schade, S., Sabeur, Z., Delaney, C., Pielorz, J., Usländer, T., Mazzetti, P.,
Schleidt, K., Kobernus, M., Havlik, F., 2016. Future Internet technologies for environmental
applications. Environmental Modelling & Software, 78, pp.1-15.

Grijssen, J., Snoeker, X., Vermeulen, C., El Amin, M., Nur, M., Mohamed, Y., 1992. An
information system for flood early warning. In: Saul, A. (Ed.), Floods and Flood
Management. Kluwer Academic Publishing, pp. 263-289.

Hassan Water Resources PLC, 2012. Past performance accessed June 12, 2017.
http://hwrgov.com/past-performance/.

Hu, Y., Cai, X., DuPont, B., 2015. Design of a web-based application of the coupled multi-agent
system model and environmental model for watershed management analysis using Hadoop.
Environmental Modelling & Software, 70, pp.149-162.

Huxley, C., Syme, B., 2016. TUFLOW GPU-Best Practice Advice for Hydrologic and Hydraulic
Model Simulations. In Proceedings of the 37th Hydrology and Water Resources
Symposium (HWRS), Queenstown, New Zealand.

Jacobsen, D., Thibault, J.C., Senocak, I., 2010. An MPI-CUDA Implementation for Massively
Parallel Incompressible Flow Computations on Multi-GPU Clusters. In American Institute
of Aeronautics and Astronautics (AIAA) 48th Aerospace Science Meeting Proceedings.
Orlando, Florida, USA.

Kalyanapu, A.J., Shankar, S., Pardyjak, E.R., Judi, D.R., Burian, S.J., 2011. Assessment of GPU
Computational Enhancement to a 2D Flood Model. Environmental Modelling & Software,
Vol. 26, No. 8, pp. 1009-1016.

Kurtz, W., Lapin, A., Schilling, O.S., Tang, Q., Schiller, E., Braun, T., Hunkeler, D., Vereecken,
H., Sudicky, E., Kropf, P., Franssen, H.J.H., 2017. Integrating hydrological modelling, data
assimilation and cloud computing for real-time management of water resources.
Environmental modelling & software, 93, pp.418-435.

http://hwrgov.com/past-performance/

 78

Lacasta, A., García-Navarro, P., Burguete, J., Murillo, J., 2013. Preprocess Static Subdomain
Decomposition in Practical Cases of 2D Unsteady Hydraulic Simulation. Computers &
Fluids, Vol. 80, pp. 225-232.

LeVeque, R.J., 2002. Finite volume methods for hyperbolic problems (Vol. 31). Cambridge
university press.

Maidment, D.R., 2016. Conceptual Framework for the National Flood Interoperability
Experiment. JAWRA Journal of the American Water Resources Association.

Melillo, J.M., Richmond, T.T., Yohe, G.W., 2014. Climate change impacts in the United States.
Third National Climate Assessment.

Moore, R., Jones, D., Bird, P., Cottingham, M., 1990. A basin-wide flow forecasting system for
real time flood warning, river control and water management. In: White,W. (Ed.),
International Conference on River Flood Hydraulics. John Wiley & Sons, Oxford, UK, pp.
21-30.

National Oceanic and Atmospheric Administration, 2012. Rapid Refresh accessed January 24,
2017. https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/rapid-refresh-
rap.

National Oceanic and Atmospheric Administration, 2017a. Advanced Data Access Methods
accessed January 24, 2017. http://nomads.ncdc.noaa.gov/guide/?name=advanced.

National Oceanic and Atmospheric Administration, 2017b. Data Products accessed January 24,
2017. https://www.ncdc.noaa.gov/nomads/data-products.

National Research Council, 2009. Mapping the zone: improving flood map accuracy. National
Academies Press.

NFIP Statistics, 2016. NFIP Statistics. The official site of the NFIP accessed December 8,
2016. https://www.floodsmart.gov/floodsmart/pages/media_resources/stats.jsp.

Perry,C. A., 2000. Significant Floods in the United States During the 20th Century - USGS
Measures a Century of Floods. Kansas Water Science Center accessed December 8,
2016. https://ks.water.usgs.gov/pubs/fact-sheets/fs.024-00.html.

Rostrup, S., Sterck, H.D., 2010. Parallel Hyperbolic PDE Simulation on Clusters: Cell Versus
GPU. Computer Physics Communications, Vol. 181, No. 12, p. 2164.

US National Weather Service, 2017. NWS Southern Region Headquarters accessed May 24, 2017.
http://www.srh.noaa.gov/rfcshare/ffg.php.

Sanders, B.F., Schubert, J.E., Detwiler, R.L., 2010. ParBreZo: A Parallel, Unstructured Grid,
Godunov-Type, Shallow-Water Code for High-Resolution Flood Inundation Modeling at

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/rapid-refresh-rap
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/rapid-refresh-rap
http://nomads.ncdc.noaa.gov/guide/?name=advanced
https://www.ncdc.noaa.gov/nomads/data-products
https://www.floodsmart.gov/floodsmart/pages/media_resources/stats.jsp
https://ks.water.usgs.gov/pubs/fact-sheets/fs.024-00.html
http://www.srh.noaa.gov/rfcshare/ffg.php

 79

the Regional Scale. Advances in Water Resources,Vol. 33, Issue 12, December, pp. 1456-
1467.

Steissberg, T. E., McPherson, M. M., 2011. HEC-GridUtil Grid Utility Program Managing
Gridded Data with HEC-DSS, User's Manual Version 2.0 (Computer Program
Documentation No. CPD-89). Davis, CA: US Army Corps of Engineers Institute for Water
Resources Hydrologic Engineering Center.

Sun, A., 2013. Enabling collaborative decision-making in watershed management using cloud-
computing services. Environmental Modelling & Software, 41, pp.93-97.

Syme, W.J., 2001. TUFLOW-Two & One dimensional unsteady flow Software for rivers, estuaries
and coastal waters. In IEAust Water Panel Seminar and Workshop on 2d Flood Modelling,
Sydney.

Vacondio, R., Dal Palù, A., Mignosa, P., 2014. GPU-enhanced Finite Volume Shallow Water
Solver for Fast Flood Simulations. Environmental Modelling & Software, Vol. 57, pp. 60-
75.

BMT WBM, 2016. TUFLOW User Manual. Build 2016-03-AA accessed June 6, 2017.
http://www.tuflow.com/Download/TUFLOW/Releases/2016-
03/AA/Doc/TUFLOW%20Manual.2016-03-AA.pdf.

Wan, Z., Hong, Y., Khan, S., Gourley, J., Flamig, Z., Kirschbaum, D., Tang, G., 2014. A cloud-
based global flood disaster community cyber-infrastructure: Development and
demonstration. Environmental Modelling & Software, 58, pp.86-94.

Werner, M., Schellekens, J., Gijsbers, P., van Dijk, M., van den Akker, O., Heynert, K., 2013. The
Delft-FEWS flow forecasting system. Environmental Modelling & Software, 40, pp.65-77.

http://www.tuflow.com/Download/TUFLOW/Releases/2016-03/AA/Doc/TUFLOW%20Manual.2016-03-AA.pdf
http://www.tuflow.com/Download/TUFLOW/Releases/2016-03/AA/Doc/TUFLOW%20Manual.2016-03-AA.pdf

 80

Chapter 4: Design of a Metadata Framework for Environmental
Models with an Example Hydrologic Application in HydroShare3

4.1 Introduction

A large variety of environmental models exists, with each model tailored to address

specific challenges related to environmental science and natural resource management (Singh and

Woolhiser, 2002; Singh et al., 2006). These models have grown in complexity, with many

simulating increasingly detailed processes occurring within environmental systems. When

scientists and engineers use models, they must devote significant effort to collect data, construct

model inputs, and calibrate and validate model parameters. Many environmental models also

require sophisticated data pre-processing routines, often with many manual steps (e.g., Billah et

al., 2016). For this reason, many models come with supporting applications such as Geographic

Information System (GIS) interfaces, calibration tools, visualization software, and other utility

software systems to assist in the data preparation process (e.g., Winchell et al., 2007). These data

pre-processing steps must be repeated each time a new model is created to simulate a system. This

introduces a number of challenges. From a pragmatic perspective, it is an inefficient use of

scientists' time. Perhaps more importantly, it inhibits scientists' ability to reproduce studies that

have a significant computational modeling component (David et al., 2016; Essawy et al., 2016;

Gil et al., 2016).

One way to begin to address these challenges is through better approaches for sharing and

reusing models built by others. Just as there has been a major push to make better use of data

3This Chapter is a draft manuscript of a paper that has since been published. Readers are referred to the following
citation for the final published version of the manuscript:
Morsy, M.M., Goodall, J.L., Castronova, A.M., Dash, P., Merwade, V., Sadler, J.M., Rajib, M.A., Horsburgh, J.S.,
Tarboton, D.G., 2017. Design of a metadata framework for environmental models with an example hydrologic
application in HydroShare. Environmental Modelling & Software, 93, pp.13-28.
https://doi.org/10.1016/j.envsoft.2017.02.028

https://doi.org/10.1016/j.envsoft.2017.02.028

 81

collected and maintained by others, the scientific community can benefit from a similar push to

make better use of models built by others. Data sharing and reuse has been strengthened through

the adoption of agreed-on metadata frameworks. Geospatial data, in particular, has benefited from

widely used metadata frameworks that allow scientists and engineers to more easily reuse data

collected by others (e.g., ISO, 2003, 2011). More recently, hydrologic time series data have also

benefited from the adoption of commonly used metadata frameworks (e.g., Taylor et al., 2014).

While many metadata frameworks exist, none specifically addresses computational environmental

models. Thus, the objective of this research was to design and implement such a metadata

framework for environmental models.

Designing a metadata framework for environmental models poses unique challenges

compared to other data types. First, the data required for models are heterogeneous and, in the case

of environmental models, input for a single simulation can include dozens, if not hundreds, of data

files. These files describe properties of the modeling elements, parameters, forcing functions,

boundary conditions, and other data needed to execute the model for a given system. Each model

largely adopts its own structure and semantics for storing data, making it difficult to standardize

across models. Second, environmental modelers make use of a large and diverse set of

computational models; Singh and Woolhiser (2002) cataloged over 65 models focusing on

watershed hydrology alone. Environmental modelers will likely continue to make use of a broad

range of models because each model is tailored for a given application. As a result, each model

adopts unique data structures and semantics for both input and output data. A model metadata

framework, therefore, must not force all models into a fixed structure, but rather be flexible and

able to accommodate this diversity of models.

 82

Some studies have begun to address the problem of designing a metadata framework for

computational models. The Content Standard for Computational Models (Hill et al., 2001)was one

of the first attempts at providing detailed metadata about a numerical model that includes the input

and output data for model scenarios. Wosniok and Lehfeldt (2013) provide a concept for metadata

driven architecture for computational fluid dynamics simulations and a way to integrate model

descriptions into spatial data infrastructures. The Community Surface Dynamics Modeling System

(CSDMS) created a metadata framework and used it to describe over 180 geoscience models,

including over 50 hydrologic models within its model catalog (see http://csdms.colorado.edu). The

CSDMS model category focuses on the software for executing a model, what we refer to in this

paper as a model program. It does not extend to the input files for a specific model simulation, or

what we refer to in this paper as a model instance. The metadata included in CSDMS also do not

follow higher-level metadata standards like Dublin Core.

Much of the past research on model metadata has focused on component-based modeling

systems. Component-based modeling systems are a tool for integrated environmental modeling

where model applications are constructed from a set of "plug-and-play" model components that

can be interchanged for different applications (Argent, 2004; Laniak et al., 2013). Metadata

frameworks have been proposed for model components generally (Elag and Goodall, 2013), the

component interfaces (Gregersen et al., 2007; Peckham et al., 2013), and the variables passed

between linked components (Peckham, 2014). Recently, Harpham and Danovaro (2015) designed

an un-encoded metadata framework supporting the description of environmental numerical models

giving more attention to the construction of model compositions by interfacing model components.

This metadata framework was designed to facilitate the description and communication between

loosely coupled components of a larger model chain. The framework enables the output from one

http://csdms.colorado.edu/

 83

model component (e.g., a meteorological model) to be used as an input for another model

component (e.g., a hydrological drainage model). This work used the ISO 19115 metadata standard

as a starting point and expanded the spatial characteristics, temporal characteristics, and

environmental parameters to enable models to be discovered and reused.

Our work is different in that we focus on standalone model programs instead of component-

based modeling systems. Standalone model programs can execute a model simulation and generate

output, while a model component requires a modeling framework in order to be executed. Model

components can be loosely coupled using a modeling framework with other model components,

while a model program does not provide this loose coupling capability. We take this focus because,

while the adoption of component-based modeling systems is growing, we believe that the vast

majority of ongoing studies are using standalone model applications and a metadata framework is

needed to enhance the sharing of these standalone model instances. Also, this work could later be

merged with past work on model component metadata to create an overarching model metadata

framework.

A motivating factor for this research is the design and development of a new system called

HydroShare (https://www.hydroshare.org). The goal of HydroShare is to advance hydrologic

science by enabling the scientific community to more easily and freely share products resulting

from their research - not just the scientific publication summarizing a study, but also the data and

models used to create the scientific publication (Horsburgh et al., 2015; Tarboton et al., 2014a,

2014b). HydroShare is a web-based collaborative system developed with the goal of sharing,

accessing, and discovering hydrologic data and models (Tarboton et al., 2014a, 2014b). It was

designed and built by the authors, along with a larger team of researchers, in collaboration with

the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI).

 84

The basic unit of digital content in HydroShare is called a "resource." One of the key steps

in designing HydroShare was defining metadata for different resource types (Horsburgh et al.,

2015; Tarboton et al., 2014a, 2014b). While users can upload any digital content as a "generic

resource" within HydroShare, these generic resources only support basic metadata elements

defined by the Dublin Core metadata framework that are applicable to any data type. Specific

resource types in HydroShare can extend this Dublin Core metadata to provide new metadata

elements that support functionality specific to common hydrologic datasets (Horsburgh et al.,

2015). For example, the time series resource types support additional metadata elements relevant

to a time series, and the system can automatically plot time series resources because of this

metadata (Sadler et al., 2015). Because a model metadata framework like this did not exist for

environmental models, we first had to design one. Then, we used the model metadata framework

we designed in HydroShare to implement new resource types specific to the needs of

environmental models. While the HydroShare implementation motivated the design of the model

metadata framework, it is important to emphasize that the metadata framework described here is

general and can be adopted for environment models more broadly.

The remainder of this Chapter is organized as follows. First, a Methodology section is

presented discussing the design of the model metadata framework and describing an example use

case where the design implemented in HydroShare was used to share results from a hydrologic

modeling study. Next, the Results section presents the implemented software and the results from

the example use case. Finally, the work concludes with a summary discussion of the proposed

approach and steps that could be taken to further advance this work.

 85

4.2 Methodology

4.2.1 Metadata Framework Design

The metadata framework design considers a computational model as two distinct concepts:

1) a model program resource, which includes software for executing a model simulation and

generating outputs, and 2) a model instance resource, which includes the input files and, optionally,

the output files for a specific simulation. Having model programs and instances as separate

resources allows a specific version of a program to be linked to several instances. If model

programs and instances were stored together as one resource, the same model program would be

stored with each model instance executed by that model program. Additionally, with instances and

programs combined, the metadata describing the model program would be repeated with each

model instance. This would result in redundant data about the same model program that would

need to be entered every time the user uploads an instance for sharing. This may lead to

opportunities for inconsistent metadata entry by users for the same model program included in

multiple resources. In order to avoid redundantly storing the same program and its metadata with

each related model instance, we separated model programs and instances as distinct resource types

and implemented an "ExecutedBy" relation as a many-to-one to link between any number of

instances and the program used for execution.

The Resource Description Framework (RDF) is used for formally encoding concepts and

their associated metadata using a subject, predicate, and object structure

(http://www.w3.org/RDF). As a simple example, this basic structure can be used to show that a

model instance (subject) is executed by (predicate) a model program (object) (Figure 4.1). Each

resource has core metadata defined by the Dublin Core metadata framework and extended

metadata designed through this research that is encoded and stored on disk using RDF-XML.

 86

Details of the metadata for model programs and model instances are described in the following

subsections.

Figure 4.1 Key components of the model program and model instance resources.

4.2.1.1 Model Program Resource Metadata

The model program resource encapsulates all of the software and files necessary to

identify, install, and run a given environmental model. The model program includes a model

engine, which is the core mathematical modeling logic for the model (Morsy et al., 2014). This

model engine is often, but not always, embedded within a larger application that includes

visualization, typically using a graphical user interface (GUI), and other utility software. It is not

uncommon for multiple model programs to use the same or similar model engine; for example,

there are multiple model programs with different user interfaces that all use the Storm Water

Management Model (SWMM) as its model engine. A key design decision was to link a model

program with a model instance, rather than a model engine with a model instance. This was done

because developers may make subtle but important changes to publically available model engines

within their own model programs. Thus, it is difficult to guarantee that two independent model

programs, both making use of the same original model engine, will produce the exact same output.

 87

The goal when identifying metadata for a model program was to sufficiently describe a

specific version of the software, its computer system compatibility, and its proper and intended

use. To foster interoperability, this metadata consists of a basic description of the resource using

elements from the Dublin Core metadata standard (shown in Figure 4.2 using the "dc" and

"dcterms" prefixes). The basic Dublin Core metadata framework is then extended with resource

specific metadata (Figure 4.2; Table 4.1). These extended metadata elements are given names with

the "hsterms" prefix, indicating that their names belong to a namespace of terms defined by

HydroShare, and are subdivided into content-related and resource-related categories. Content-

related metadata includes items such as modelEngine, modelSoftware, modelReleaseNotes, and

modelDocumentation to describe the content that should accompany a model program resource.

A model program is required to include a model engine, while the other content-related metadata

items are optional.

The resource-related metadata describe characteristics of a model program using high-level

terminology with the aim of clearly defining and distinguishing between similar model program

resources. These include modelReleaseDate, modelWebsite, modelVersion,

modelProgramLanguage, modelCodeRepository, and modelOperatingSystem metadata. The

modelReleaseDate element provides general information about the environmental model to aid in

version identification, while the modelWebsite element is intended to provide users additional

model-specific information. The remaining elements describe the software attributes and system

compatibility of the model program as shown in Table 4.1. The contents of these metadata

elements can serve many different uses, including enhanced search and discovery across a large

collection of model program resources. They also aim to support reproducibility by capturing the

exact model program used to execute a particular model instance. Some of these metadata elements

 88

(e.g., modelOperatingSystem and modelProgramLanguage) could eventually include and benefit

from controlled vocabularies.

Figure 4.2 Model program resource metadata elements expressed as RDF triples. The # prefix
signifies an attribute that can be populated when implementing the metadata framework for a

given model program.

 89

Table 4.1 Model program extended metadata element definitions.
Metadata Term Cardinality Definition
hsterms:modelVersion 1..1 Unique model version and/or build number
hsterms:modelProgramLanguage 0..* The programming language(s) used to write

the model program
hsterms:modelOperatingSystem 0..* Compatible operating system(s) to setup and

run the model program
hsterms:modelReleaseDate 0..1 The date that this version of the model

program was released
hsterms:modelReleaseNotes 0..* Notes regarding the model program release
hsterms:modelWebsite 0..1 A URL to the website maintained by the

model developers
hsterms:modelCodeRepository 0..* A URL to the source code

repository (Github, Bitbucket, etc.)
hsterms:modelDocumentation 0..* Documentation related to the model (User

manual, theoretical manual, reports, etc.)
hsterms:modelSoftware 0..* The archive containing model software

(executable, installer, utilities, etc.)
hsterms:modelEngine 0..* The archive containing the model

computational engine (source code, binary,
etc.)

4.2.1.2 Model Instance Resource Metadata

The model instance resource describes the input files used for execution by a model program. A

model instance resource may optionally include the output files resulting after execution. Output

for some models can be large. Given that these files can be recreated by executing the model, we

made including output files optional. The design for metadata associated with a model instance

was intended to capture the aspects required to define and distinguish between different model

instances across the wide variety of environmental models. To accomplish this, the design first

includes a generic model instance. This generic model instance has metadata elements applicable

to any model program instance. The design is extensible including specific model instances that

inherit the properties of a generic model instance and add new properties that are relevant to one

or more model programs. This pattern is illustrated in Figure 4.3. In this figure, some specific

 90

model instance resources are listed as examples, with the idea that this list can be extended to

include other environmental models as well. This design, therefore, provides two ways to capture

metadata for a model instance. The default option would be to use a generic model instance

resource type. However, if available, a specific model instance resource type should be used to

take advantage of enhanced functionality and metadata capture.

Figure 4.3 Generic model instance and specific model instance hierarchy. Model program,

generic model instance, SWAT model instance, and MODFLOW model instance metadata have
already been designed, while metadata for the other specific model instances are either in

development or planned for the near future.

Figure 4.4 presents the metadata for a generic model instance. Because the generic model

instance extends the Dublin Core metadata framework, it inherits the metadata elements defined

by Dublin Core (with names shown using the "dc" and "dcterms" prefix). One metadata element

defined in Dublin Core that is particularly important for model instances is the coverage element.

This metadata element defines the temporal and spatial extent of a resource. For a model instance

resource, the temporal coverage provides the start and end date/time for the simulation; the spatial

coverage provides a place name and geographic coordinates for the model instance. The spatial

coverage can be represented by a point (e.g., the centroid of the modeling domain) or a box (e.g.,

 91

the bounding box of the modeling domain). This coverage element does not represent the exact

shape of the model instance, but rather its geographic location or extent.

Figure 4.4 Generic model instance resource metadata elements expressed as RDF triples.

 92

Table 4.2 Generic model instance extended metadata element definitions.
Metadata Term Cardinality Definition
hsterms:modelOutput

A class used for describing output for an
executed model instance

 hsterms:includesModelOutput 1..1 A boolean value that indicates if the
output files are included with the model
instance

hsterms:executedBy

A class that describes the model program
that executes the model instance

 hsterms:modelProgramName 0..1 The name of the model program that
executes the model instance

 hsterms:modelProgramIdentifier 0..1 The identifier for the model program that
executes the model instance

As with the model program, the generic model instance metadata is extended from the

Dublin Core elements with the names of additional metadata elements having the "hsterms" prefix

(Figure 4.4; Table 4.2). These metadata elements are subdivided into two main classes:

ModelOutput and ExecutedBy. ModelOutput includes information about the output data generated

by the model after it is executed. Only one element was deemed necessary in the initial design for

describing the model output, although more elements could be added later. The element included

is includesModelOutput, which allows users to indicate if the output files are included along with

the input files as part of the model instance resource. The ExecutedBy element links the model

instance resource with the model program resource that is used for execution. ExecutedBy includes

two sub-metadata elements: modelProgramName and modelProgramIdentifier. The

modelProgramName element stores the name of the linked model program resource, while

modelProgramIdentifier stores its unique identifier. By linking a model instance to a model

program resource, the ExecutedBy metadata element facilitates later reproducibility of the model

results.

 93

As an example of a specific model instance, consider an extension to the generic model

instance designed to add metadata specific to an instance of the Soil and Water Assessment Tool

(SWAT). This SWAT model instance offers extended metadata elements that more fully describe

SWAT model instances, but that are not directly applicable to other environmental models. The

SWAT model instance was designed to be compatible with the SWATShare application, which is

an interactive Web tool used to run, visualize, and interact with SWAT model instances (Rajib et

al., 2016). The extended metadata elements for a SWAT model instance are shown in Figure 4.5,

and the extended metadata elements are defined in Table 4.3. While these elements are specific

and extensive, many of them are optional so the barrier to entry is still low. Also, through future

work, many of the metadata elements could be extracted automatically from model instance

configuration files. Unlike the generic model instance, the SWAT model instance introduces

controlled vocabularies for some SWAT model metadata elements including modelObjective,

simulationType, and simulationTimeStepType. These controlled vocabularies are compatible with

the controlled vocabularies used by SWATShare. For example, simulationType has a controlled

vocabulary consisting of three choices: normal simulation, sensitivity analysis, and auto-

calibration.

 94

Figure 4.5 SWAT model instance metadata expressed as RDF triples.

 95

Table 4.3 SWAT model instance extended metadata element definitions.
Metadata Term Cardinality Definition
hsterms:modelObjective 1..* The objective of the model (hydrology, water quality, BMPs, climate / landuse change,

etc.)
hsterms:simulationType 0..1 The type of the simulation used (i.e., normal simulation, sensitivity analysis, and auto-

calibration)
hsterms:modelInput

Class for describing the model instance input files

 hsterms:warm-upPeriodType 0..1 The warm-up period type (always years)
 hsterms:warm-upPeriodValue 0..1 The numeric value of the warm-up period in years
 hsterms:rainfallTimeStepType 0..1 The type of time step used in the simulation for input rainfall data (i.e., daily or sub-

hourly)
 hsterms:rainfallTimeStepValue 0..1 The time step value associated with the rainfall data
 hsterms:routingTimeStepType 0..1 The type of time step used in the simulation for river routing calculations (i.e., daily or

hourly)
 hsterms:routingTimeStepValue 0..1 The time step value used for the river routing calculations
 hsterms:simulationTimeStepType 0..1 The type of time step type used for model simulation (i.e., annual, monthly, daily, or

hourly)
 hsterms:simulationTimeStepValue 0..1 The time step value used for simulation
 hsterms:watershedArea 0..1 The watershed area in km²
 hsterms:numberOfSubbasins 0..1 The number of subbasins within the watershed
 hsterms:numberOfHRUs 0..1 The number of hydrologic response units (HRUs) within the watershed
 hsterms:DEMResolution 0..1 The resolution of the digital elevation model (DEM) in meters
 hsterms:DEMSourceName 0..1 The name of the DEM provider
 hsterms:DEMSourceURL 0..1 The URL of the DEM
 hsterms:landUseDataSourceName 0..1 The name for the land use / land cover (LULC) dataset provider
 hsterms:landUseDataSourceURL 0..1 The URL for the LULC dataset
 hsterms:soilDataSourceName 0..1 The name for soil dataset provider
 hsterms:soilDataSourceURL 0..1 The URL for Soil dataset

hsterms:modelMethod

Class that describes the model methods used in the simulation
 hsterms:runoffCalculationMethod 0..1 The runoff calculation method used
 hsterms:flowRoutingMethod 0..1 The flow routing method used
 hsterms:PETEstimationMethod 0..1 The Potential EvapoTranspiration (PET) estimation method used
 hsterms:modelParameter 0..* The parameters used in the model (crop rotation, title drainage, point source, fertilizer,

tilage operation, inlet of draining watershed, irrigation operation, etc.)

 96

While SWAT is used to provide an example of a specific model instance, similar metadata

and corresponding controlled vocabularies could be developed for other models. The design goal

of this work, however, was not to capture metadata relevant to all environmental models, as doing

so would be impractical. Rather, our goal was to design a framework that has a common core and

a clear methodology for extending this core for specific environmental models. We plan to provide

examples, like the SWAT example, that third party developers can follow to create their own

specific model instance metadata. By providing a common foundation for metadata and resource-

structure across models, there will be a level of standardization that will aid in interoperability

across software systems. Specific model metadata acknowledges the diversity among

environmental models and does not force conformity to a single set of metadata elements. The

design also allows for changes in the future. For example, if additional common model metadata

elements are identified across environmental models, then they can be added to the generic model

instance class and inherited by all specific model instances.

4.2.2 Experimental Use Case

To demonstrate the metadata design, we used the application of a SWMM model from

Chapter 2 used to study flooding in an urban watershed (Morsy et al., 2016) as a use case. We wish

to publish the resulting model instances online. There are many motivating factors for doing this.

First, we believe that a model instance, like the journal paper, is an important product from the

research and should stand on its own as a citable product. Second, we want to foster ways for other

scientists to build from or reuse our model to address their own scientific research questions. Third,

we want to ensure that the model program used in our study, including the model engine, utility

software, and documentation, is captured within a single online resource. This is important

 97

because, after some time, the model program developers may not provide this particular version

of the software on their website. Lastly, this is a way of meeting the research sponsor's data

management obligations. While this use case is specific to scientific research, a similar use case

could be followed for consulting or industrial modeling activities. While such model applications

may not result in journal publications, there is still significant value in descriptive metadata for

internal cataloging and archiving purposes. Additionally, in such cases models can be shared

privately within HydroShare allowing collaboration among specific users while keeping the data,

model, and results confidential.

As a reminder, the objective of this prior modeling study was to better understand the

potential of rain gardens as distributed stormwater controls for flood mitigation within an

urbanized watershed (Morsy et al., 2016). The specific study area of the research was the Rocky

Branch watershed, which is located in downtown Columbia, South Carolina, USA. Because a

significant portion of the watershed is developed, high intensity storms that typically occur during

the summertime result in flooding at different locations within the watershed. For this study, two

different model instances were created (Figure 4.6). The first model instance is a well-calibrated

and evaluated model that simulates flooding events in the Rocky Branch watershed. The second

model instance builds from the first model instance and includes additional, hypothetical rain

gardens as stormwater controls to test if their addition mitigates flooding in the watershed for storm

events with different return periods.

The metadata framework was implemented within HydroShare and used to share the model

program and model instance resources for the example application. HydroShare, as introduced

earlier, is an online system for managing resources adhering to a Resource Data Model (Horsburgh

et al., 2015; Tarboton et al., 2014a). The HydroShare architecture organized as shown in Figure

 98

4.7 (Heard et al., 2014) consists of open source components including Django, a web application

platform, Mezzanine, a content management system meta-framework, and the Integrated Rule-

Oriented Data System (iRODS), an enterprise storage management middleware (Rajasekar et al.,

2010). Results detailing the technical aspects of the software implementation are presented in

Section 4.3.1.

Figure 4.6 Use case implementation as a model program and two model instance resource types.

Although a SWMM-specific model instance resource type could have been designed and

implemented within HydroShare, we used the generic model instance resource type when

implementing the use case to provide an example applicable to any environmental model. A

SWMM-specific model instance would have allowed for the capture of additional metadata

relevant specifically to SWMM models. Software extensions to HydroShare could then provide

custom functionality and applications able to operate specifically on SWMM-model instances.

Using the generic model instance offers broad use across environmental models, but it lacks the

potential for customization that becomes possible when targeting a specific model instance

resource type.

 99

Figure 4.7 HydroShare's general architecture emphasizing the connections between the user,

HydroShare, iRODS, and third party applications.

4.3 Results

4.3.1 Results for Software Implementation within HydroShare

Figure 4.8 shows the class structure for the new model resource types implemented within

HydroShare based on the metadata framework design. Each resource type consists of three main

categories of classes: the resource data type class, the classes for the individual extended metadata

elements, and the container class that groups all metadata elements. For example, the classes in

the three categories for the model instance resource type are 1) ModelInstanceResource, which is

the resource data type class, 2) ModelOutput and ExecutedBy, which are the classes representing

 100

the extended metadata elements, and 3) ModelInstanceMetaData, which is the class that contains

all the metadata elements. The resource type classes for model instance and model program inherit

from the BaseResource class, which, in turn, inherits from the Abstract Resource class. This

structure allows the model resource type to inherit the Dublin Core metadata elements. Specific

model instance metadata, like that for the SWAT model instance resource type, inherits from the

generic model instance resource type class. The diagram shown in Figure 4.8, therefore, could be

extended for other specific model instance metadata.

Each Model resource type extends the BaseResource class by representing specific

metadata elements as individual classes. These extended metadata classes inherit from the

AbstractMetaDataElement class. In this class, there is one required attribute: term. Other attributes

needed for further description can be added. For example, the extended metadata class ExecutedBy

for the ModelInstance resource has the model_name, and model_program_fk attributes. The

specific metadata elements are grouped in the CoreMetaData class. The ModelProgramMetaData,

and ModelInstanceMetaData classes inherit from the CoreMetaData class, which is the metadata

container that includes the common metadata element objects. These classes are the link between

the ModelProgramResource, the ModelInstanceResource classes, and their extended metadata

classes. One-to-one relationships are made between ModelProgramMetaData and

ModelInstanceMetaData classes and each of their respective extended metadata classes. These

extended metadata classes are then included as supported metadata elements for their related

resources (ModelProgram or ModelInstance resources) where they could be used to create, update,

and delete class instances associated with these resource types.

An important method of the CoreMetaData, ModelProgramMetaData,

ModelInstanceMetaData, and SWATModelInstanceMetaData is get_xml. This method converts

 101

the stored metadata into an RDF-XML format. The CoreMetaData.get_xml method extracts the

generic metadata elements, while the get_xml method for each specific resource extracts the

related extended metadata elements. For example, for a ModelInstance resource, the

CoreMetaData.get_xml method is used to extract the Dublin Core standard metadata elements,

while the ModelInstanceMetaData. get_xml method is used to extract the extended metadata

elements.

 102

Figure 4.8 Metadata classes for model resources implemented within HydroShare.

 103

4.3.2 Results from the Example Use Case

Figure 4.9 illustrates the metadata that can be captured for the example use case using the

generic model instance and model program resources. Each resource has a title, creator, and other

metadata that follow the Dublin Core metadata standard. In addition, extended metadata elements

for each resource (with names shown using the "hsterms" prefix) help to more fully describe the

model instance and corresponding model program used for executing the model instance. Figure

4.9 also shows how the model program resource type, in this case the SWMM model (Rossman et

al., 2016), and the model instance resource type, in this case a Rocky Branch watershed simulation,

are connected using the ExecutedBy relationship.

Figure 4.10 is an activity diagram showing the steps used to create new model resources

on hydroshare.org. Three resources were created in this example: a model program resource for

the EPA-SWMM model version 5.1.009 (Rossman et al., 2016) and two model instance resources

for the Rocky Branch watershed simulations (e.g., Morsy, 2015). Figure 4.11 shows the Graphical

User Interface (GUI) for how a user selects a model resource type within HydroShare. In the

current implementation, the model resource types are grouped together under the modeling title.

Once the user selects the desired resource type, adds a title, and uploads the related files, the new

resource is created in HydroShare and the user sees the landing page for this newly created

resource. At this point, a unique identifier specific to the HydroShare system has been

automatically assigned to the resource. Later, if the user decides to formally publish the resource

in HydroShare, a more formal digital object identifier (DOI) would be assigned to the resource.

After a resource is formally published and a DOI is assigned, the user can no longer make changes

to the resource metadata or the uploaded files. Prior to formal publication, authorized users can

make changes to the resource at any time.

 104

Figure 4.9 Results of populating the model instance and model program metadata for the

example use case.

 105

Figure 4.10 Activity diagram describing the steps required to create a new model instance

resource within HydroShare. Step 11 is highlighted to indicate that only model instances require
coverage and not model programs.

Figures 4.12 and 4.13 show the resource specific metadata for the model program resource

and the generic model instance resource types, respectively, on their landing pages in HydroShare.

These figures show HydroShare's metadata "edit" mode to illustrate all of the available metadata

elements, as HydroShare's default is to hide metadata elements for which there are no values in

"view" mode. Note that the model instance is linked to the model program used for execution

(Figure 4.13). Under the "Model Program used for execution" heading on the generic model

instance landing page, there is a dropdown list that collects all the available public model program

resources in HydroShare. The user chooses the model program resource used to execute the model

instance resource from the dropdown list (or creates a new model program resource if it is not

already available). Once the user chooses the desired model program resource, a summary of the

model program metadata is displayed to aid the user in confirming that the correct model program

was selected.

 106

Figure 4.11 Screen shot showing model resource types currently implemented on

hydroshare.org.

Another important aspect of the model instance resource is the coverage metadata. Figure

4.14 shows how the coverage metadata appears in the resource's landing page in edit mode. As

explained above, there are two types of coverage metadata elements: spatial and temporal. All of

the spatial metadata is expressed in World Geodetic System (WGS) 84 coordinates, which is used

throughout HydroShare. This allows standard web tools to search the metadata easily without full

GIS functionality. However, users must be aware that errors can be introduced if the spatial data

is transformed from another coordinate system to WGS 84. For the use case, the spatial metadata

was entered for this model instance as a two-dimensional bounding box (rather than an XY point).

Once the user inserts the bounding coordinates, the box will appear on the map so that the user can

confirm the spatial coverage extent. The user can also specify the coverage by clicking a point on

 107

the map or dragging a box on the map. The temporal coverage metadata consists of start and end

dates and times for the model instance. This is implemented in the data model based on the W3C-

DTF scheme, which by default enables full specification of a date/time string, including a time

zone. Currently, as seen in Figure 4.14, the HydroShare interface supports only the entry of dates

without times or time zone specifications. HydroShare uses this coverage metadata to support both

spatial (e.g., map-based) and temporal searches to identify relevant resources.

Figure 4.12 Model program resource specific metadata on the resource's landing page on

hydroshare.org (shown in edit mode).

 108

Figure 4.13 Generic model instance resource specific metadata on the resource's landing page on

hydroshare.org (shown in edit mode).

Figure 4.14 Model instance resource type coverage metadata on the resource's landing page

(shown in edit mode) on hydroshare.org.

 109

4.4 Discussion

The metadata framework proposed in this study was designed to provide a balance between

simplicity and complexity; simplicity to encourage to sharing of models by model producers, and

complexity by providing a sufficient level of information to enable discovery and use of the model

by potential consumers. One of the most difficult design decisions in this work was to separate

model programs and model instances into two different resources rather than a single combined

resource. The design decision was made for the following reasons. First, it allows the model

program metadata to be entered only once within the system. Second, it simplifies the task of

identifying all model instances executed by a given model program stored within the system.

Third, it provides a path for online execution of many model instances that are linked to a single

model program. We felt these benefits outweighed the added complexity and management needs

introduced by separating the model program and model instance concepts into different resources

types. We acknowledge that some use cases require incremental changes to a model program's

source code, and we are considering options for capturing these incremental changes to model

programs without the need to create a completely new resource every time a model program's

source code has been changed. That said, users are not restricted from uploading a model program

within a model instance, if desired. If this becomes common practice, we are considering allowing

a model instance resource's ExecutedBy field to point to itself. This would signify to a user that

the model program, whether it be a complied binary file or the source code, is located within the

model instance resource.

Another key design decision was to allow a model instance resource to be linked to only

one model program resource. We realize that it is possible for a model instance to be executed

successfully by multiple model program resources (e.g., two model programs with different

 110

versions but compatible with the same model instance). However, allowing a model instance to be

linked to more than one model program would introduce uncertainty about what program was used

to execute the instance for a given study. Reproducibility could be compromised as a result because

executing the model instance with a different model program may return slightly different results.

For this reason, the design requires a model instance to be linked to only one model program.

We encountered through the use case application the important issue of how to handle the

case where the person uploading a resource into HydroShare, what HydroShare refers to as the

resource's owner, is not the author of that resource. HydroShare separates intellectual credit

attribution from access control and management of content. The Dublin Core vocabulary term

"Creator" is used in HydroShare metadata for the intellectual originator of the content. This is

displayed as Author on landing pages and used in citations. The term "Owner" is used in access

control and management of content and is typically the HydroShare user responsible for uploading

the content (although ownership can be transferred after uploading, and others can be assigned

permissions to edit and upload content). In the SWMM model program resource example, the

EPA-SWMM model was authored by researchers at the United States Environmental Protection

Agency (EPA) but was uploaded to HydroShare by the modeler, one of the authors of this paper.

The original authors of SWMM were entered as authors for the resource and the relationship

"isCopiedFrom" was added to the resource pointing to the website from which the model program

was obtained. With this added relationship, the HydroShare system automatically generates and

displays a citation on the resource's landing page that shows that the resource in HydroShare was

replicated from an external source, as shown below. The user that uploaded the resource into

HydroShare, but did not author the resource, remains the resource owner but rightly does not

receive authorship credit for this resource within the citation.

 111

Rossman, L. T. Schade, D. Sullivan, R. Dickinson, C. Chan, E. Burgess (2016). Storm Water
Management Model (SWMM), Version 5.1.010 with Low Impact Development (LID)
Controls, http://www2.epa.gov/water-research/storm-watermanagement-model-swmm,
accessed 4/4/2016, replicated in HydroShare at:

 http://www.hydroshare.org/resource/2cddae40e9594c21b947fdbbe4225439.

A limitation of this work at its current stage is the ability to scale-up to support dozens of

different specific model instance resource types. Ideally, the creation of new HydroShare resource

types would be simple enough that it could be done by the broader community of model

developers. Currently, however, the process of creating a new resource type within HydroShare is

time consuming and requires advanced knowledge of the HydroShare system and architecture.

One approach to address this would be to focus on simplifying the process for creating new

resource types. Another possibility would be to alter the approach described in this paper so that

specific model instances are not implemented as new resource types, but still can have extended

metadata for specific model programs. In this case, all model instances would be uploaded using

a single resource type, but there would be a mechanism to filter the metadata fields available to

the user once the user or system identifies the uploaded model instance as being a specific and

known type (e.g., a SWAT model instance). More research is needed to test these alternative

options in terms of their practicality, usability, and scalability within HydroShare.

Discovery is an important use case that model metadata must support. In HydroShare, the

metadata model for all resources was designed to support discovery. However, the search interface

design that exposes metadata elements within the existing data model is still under active

development. Currently, users can discover HydroShare resources by searching and filtering model

resources using many of the Dublin Core metadata elements implemented in the HydroShare data

model (i.e., the generic resource metadata). For example, resources can be discovered by model

authors (dc:creator), model resource type (dc:type), model keywords (dc:subject), full text search

http://www.hydroshare.org/resource/2cddae40e9594c21b947fdbbe4225439

 112

of a model resource description (dc:description/dcterms:abstract), model spatial location

(dc:coverage/dcterms:box or dcterms:point), and model temporal duration

(dc:coverage/dcterms:period). Other Dublin core elements (e.g., dc:language) have not yet been

exposed as discovery facets.

The HydroShare system does not yet allow for discovering resources using the specific

metadata designed for each resource type. Using the resource specific metadata defined for model

instances and programs in this research, however, will further enhance and improve the discovery

capabilities. For example, if a user would like to discover all model instance resources within

HydroShare that include output files along with model input files, the system could use the

metadata element ModelOutput/includesModelOutput. If a user would like to discover all the

model instance resource types that are executed by a specific model program available in the

HydroShare system, the system could use the metadata element ExecutedBy/modelProgramName.

Also, if a user would like to discover all model program resources that are compatible with a

specific operating system, the system could use the metadata element modelOperatingSystem.

As HydroShare continuities to evolve, the types of searches users wish to complete will

help guide future expansions of the metadata framework. There are many example use cases one

could imagine for enhanced discovery. For example, a user may wish to identify model programs

that have the ability to execute using a hot start file, which may be required for a specific

application like flood forecast modeling. In the current system, users can specify such details in

the resource abstract as free text and/or as keywords. This reduces the metadata complexity, but if

certain queries like this become a common occurrence within the system, then a new metadata

element (or elements) might be needed to describe this property more precisely. Doing so, users

would have the capability to more easily search and discover these resources without having to

 113

rely on free text searches of the generic metadata fields (e.g., dc:description/dcterms:abstract).

Therefore, as the system becomes more widely used, searches can be tracked, which will help

guide future expansions of the metadata to better support common queries.

A longer-term goal of this work is to provide server-side execution of model instances

directly through HydroShare. By knowing and storing the exact model program used to execute a

model instance within HydroShare, it should be possible to install the model program onto server-

side computational resources and execute a model instance using these resources. The updated

model instance including the newly generated output files could be automatically added to

HydroShare via HydroShare's existing web service application programming interface (API),

updating the original resource. Research on methods for achieving this goal, given the complexities

of server-side model execution including the potential for large model instance sizes and long

model execution times, has begun. Being able to execute a model instance directly through

HydroShare could offer significant benefits including model reproducibility where a model run is

performed in a controlled environment preconfigured with all required software dependencies.

4.5 Conclusions

This work presents a model metadata framework to support discovery, sharing and

interpretation of environmental models. Key features of the framework are (1) that the model

program and model instance are separate concepts with a one-to-many relationship (a single model

program may be linked to many model instances), (2) that metadata for these concepts extend the

well-recognized and commonly used Dublin core metadata, and (3) that the model instance

concept is a hierarchy with a generic parent class implementable for any model program, and a

more specific level tailored for certain model programs.

 114

A key challenge in this or any other metadata framework design is providing the right

balance between rich metadata for adequately describing details of resources and minimal

metadata that is critical and can be easily populated. The growing number of generic data

repositories available to environmental modelers (e.g., figshare.com, zenodo.org, institutional

repositories, etc.) largely adopt a minimal metadata approach. These systems provide metadata

roughly equivalent to the metadata used to describe a generic resource in the HydroShare system.

While this generic metadata could be used to describe, share, and discover model programs and

model instances, it misses many other properties of these resources that could be leveraged for

improved search, discovery, and use of model resources. Although these properties are generally

included in the configuration files of the model, each model has unique configurations files,

making it difficult, if not impossible, for interested users and/or an automated system to extract

the pertinent metadata across models. The purpose of the metadata analysis and design presented

here is to provide a more thorough, detailed metadata approach for model programs and instances.

We expect to improve this metadata design over time as lessons are learned from its use, and as

progress is made within the broader metadata and scientific modeling communities.

With the growing number of systems that serve a role within the larger cyberinfrastructure

being built to support science, interoperability between these systems is becoming a more pressing

need. If these systems are built from an agreed upon metadata framework, then it simplifies the

transfer of resources between the systems. This would encourage each system to specialize in

selected use cases while relying on external systems to handle other use cases outside of its scope.

For example, in this work HydroShare specializes in model metadata, resource sharing, and

resource publication. In ongoing research, we are building interoperability with the external

SWATShare system that focuses on SWAT model execution and visualization (Rajib et al., 2016).

 115

By adopting the same metadata and resource file structure for a SWAT model instance, these

model instance resources can be more easily transferred between the two systems, and users can

benefit from the functionality and strengths of both applications.

Future work will be aimed at improving the usability of the model program and model

instance resources within HydroShare. For example, to reduce the time spent manually completing

metadata fields, new functionality is planned to automate metadata extraction when a resource is

uploaded and the metadata are already present within files uploaded with the resource. This would

be especially effective for specific model instances whose input files already contain rich metadata.

Model instances, for example, often include input files containing information on spatial and

temporal coverage. The system should read these files, extract whatever metadata it can, and

request only missing metadata fields from the user. Automatic metadata extraction, along with the

increased use of controlled vocabularies, would increase the usability of the system for both

sharing and discovery. This approach is difficult, however, given the diversity among

environmental models; extracting metadata directly from model input files may require a

significant amount of custom code. One potential long term benefit of this work would be for all

model developers to add functionality that outputs a standard metadata file that can be read by

HydroShare and other systems. Ideally, this would be done within the model program source code

itself, but it could also be implemented as an external utility program. HydroShare and other

systems could then read this file for automatic metadata extraction.

 116

4.6 References

Argent, R.M., 2004. An overview of model integration for environmental applications -
components, frameworks and semantics. Environ. Model. Softw. 19, 219e234.
http://dx.doi.org/10.1016/S1364-8152(03)00150-6.

Billah, M.M., Goodall, J.L., Narayan, U., Essawy, B.T., Lakshmi, V., Rajasekar, A., Moore, R.W.,
2016. Using a data grid to automate data preparation pipelines required for regional-scale
hydrologic modeling. Environ. Model. Softw. 78, 31e39.
http://dx.doi.org/10.1016/j.envsoft.2015.12.010.

David, C.H., Famiglietti, J.S., Yang, Z.-L., Habets, F., Maidment, D.R., 2016. A decade of
RAPID-Reflections on the development of an open source geoscience code. Earth Space
Sci. 3, 226e244. http://dx.doi.org/10.1002/2015EA000142.

Elag, M., Goodall, J.L., 2013. An ontology for component-based models of water resource
systems. Water Resoures Res. 49, 5077e5091. http://dx.doi.org/ 10.1002/wrcr.20401.

Essawy, B.T., Goodall, J.L., Xu, H., Rajasekar, A., Myers, J.D., Kugler, T.A., Billah, M.M.,
Whitton, M.C., Moore, R.W., 2016. Server-side workflow execution using data grid
technology for reproducible analyses of data-intensive hydrologic systems. Earth Space Sci.
3, 163e175. http://dx.doi.org/10.1002/2015EA000139.

Gil, Y., David, C.H., Demir, I., Essawy, B.T., Fulweiler, R.W., Goodall, J.L., Karlstrom, L., Lee,
H., Mills, H.J., Oh, J.-H., Pierce, S.A., Pope, A., Tzeng, M.W., Villamizar, S.R., Yu, X.,
2016. Towards the geoscience paper of the future: best practices for documenting and
sharing research from data to software to provenance. Earth Space Sci. 3 (10), 388e415.
http://dx.doi.org/10.1002/2015EA000136.

Gregersen, J.B., Gijsbers, P.J.A., Westen, S.J.P., 2007. OpenMI: open modelling interface. J.
Hydroinformatics 9, 175. http://dx.doi.org/10.2166/hydro.2007.023.

Harpham, Q., Danovaro, E., 2015. Towards standard metadata to support models and interfaces in
a hydro-meteorological model chain. J. Hydroinformatics 17.2, 260e274.
http://dx.doi.org/10.2166/hydro.2014.061. IWA Publishing.

Heard, J., Tarboton, D., Idaszak, R., Horsburgh, J., Ames, D., Bedig, A., Castronova, A., Couch,
A., 2014. An Architectural Overview of HydroShare, a Next-generation Hydrologic
Information System. International Conference on Hydroinformatics. CUNY Academic
Works. http://academicworks.cuny.edu/cc_conf_ hic/311.

Hill, L., Crosier, S., Smith, T., Goodchild, M., 2001. A content standard for computational models.
D-Lib Mag. 7 (6), 1082e9873.

http://dx.doi.org/

 117

Horsburgh, J.S., Morsy, M.M., Castronova, A.M., Goodall, J.L., Gan, T., Yi, H., Stealey, M.J.,
Tarboton, D.G., 2015. Hydroshare: sharing diverse environmental data types and models as
social objects with application to the hydrology domain. JAWRA J. Am. Water Resour.
Assoc. 52, 4. http://dx.doi.org/10.1111/1752-1688.12363.

ISO, 2003. ISO 19115:2003 Geographic Information e Metadata accessed August 2016.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020.

ISO, 2011. ISO 19156:2011 Geographic Information -- Observations and Measurements accessed
August 2016. http://www.iso.org/iso/catalogue_detail.htm? Csnumber=32574.

Laniak, G.F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., Whelan, G., Geller, G.,
Quinn, N., Blind, M., Peckham, S., Reaney, S., Gaber, N., Kennedy, R., Hughes, A., 2013.
Integrated environmental modeling: a vision and roadmap for the future. Environ. Model.
Softw. 39, 3e23. http://dx.doi.org/10.1016/j.envsoft.2012.09.006.

Morsy, M.M., Goodall, J.L., Bandaragoda, C., Castronova, A.M., Greenberg, J., 2014. Metadata
for describing water models. In: International Environmental Modelling and Software
Society (IEMSs) 7th International Congress on Environmental Modelling and Software
doi:10.13140/2.1.1314.6561.

Morsy, M., 2015. Rocky Branch Watershed Simulation, HydroShare.
http://www.hydroshare.org/resource/12d195906f2c41918cb24e11a5c3ab60.

Morsy, M.M., Goodall, J.L., Shatnawi, F.M., Meadows, M.E., 2016. Distributed stormwater
controls for flood mitigation within highly urbanized watersheds: case study for the Rocky
Branch watershed in Columbia, sc USA. J. Hydrologic Eng. 21 (11), 05016025-
1e05016025-10. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001430.

Peckham, S.D., 2014. The CSDMS standard names: cross-domain naming conventions for
describing process models, data sets and their associated variables. In: Ames, D.P., Quinn,
N.W.T., Rizzoli, A.E. (Eds.), Proceedings of the 7th International Congress on
Environmental Modelling and Software. International Environmental Modelling and
Software Society (iEMSs), San Diego, California. ISBN: 978-88-9035-744-2.
https://csdms.colorado.edu/mediawiki/images/Peckham_2014_iEMSs.pdf.

Peckham, S.D., Hutton, E.W.H., Norris, B., 2013. A component-based approach to integrated
modeling in the geosciences: the design of CSDMS. Comput. Geosciences 53, 3e12.
http://dx.doi.org/10.1016/j.cageo.2012.04.002.

Rajasekar, A., Moore, R., Hou, C.-Y., Lee, C. a., Marciano, R., de Torcy, A., Wan, M., Schroeder,
W., Chen, S.-Y., Gilbert, L., Tooby, P., Zhu, B., 2010. iRODS primer: integrated rule-
oriented data system. Synthesis Lectures on Information Concepts, Retrieval, and Services.
http://dx.doi.org/10.2200/S00233ED1V01Y200912ICR012.

http://dx.doi.org/10.1111/
http://www.iso.org/iso/catalogue_detail.htm?%20Csnumber=32574

 118

Rajib, Md Adnan, Merwade, V., Luk Kim, I., Zhao, L., Song, C.X., Zhe, S., 2016. A web platform
for collaborative research and education through online sharing, simulation and
visualization of SWAT models. Environ. Model. Softw. 75, 498e512.
http://dx.doi.org/10.1016/j.envsoft.2015.10.032.

Rossman, L., Schade, T., Sullivan, D., Dickinson, R., Chan, C., Burgess, E., 2016. Storm Water
Management Model (SWMM), Version 5.1.010 with Low Impact Development (LID)
Controls accessed 6/2/2016, replicated in HydroShare at. http://www2.epa.gov/water-
research/storm-water-management-model-swmm.
http://www.hydroshare.org/resource/2cdda.

Sadler, J.M., Ames, D.P., Livingston, S.J., 2015. Extending HydroShare to enable hydrologic time
series data as social media. J. Hydroinformatics jh2015331 18 (2), 198e209.
http://dx.doi.org/10.2166/hydro.2015.331.

Singh, V.P., Frevert, D.K., Rieker, J.D., Leverson, V., Meyer, S., Meyer, S., 2006. Hydrologic
modeling inventory: cooperative research effort. J. Irrigation Drainage Eng. 132, 98e103.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2006)132:2(98).

Singh, V.P., Woolhiser, D.A., 2002. Mathematical modeling of watershed hydrology. J.
Hydrologic Eng. 7, 270e292. http://dx.doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270).

Tarboton, D.G., Idaszak, R., Horsburgh, J., Heard, J., Ames, D., Goodall, J., Band, L., Merwade,
V., 2014a. A Resource Centric Approach for Advancing Collaboration through Hydrologic
Data and Model Sharing. International Conference on Hydroinformatics. CUNY Academic
Works. http://academicworks.cuny.edu/cc_conf_hic/314.

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Heard, J., Ames, D., Goodball, J.L., Merwade, V.,
Couch, A., Arrigo, J., Hooper, R., Valentine, D., Maidment, D.R., 2014b. HydroShare:
advancing collaboration through hydrologic data and model sharing. In: Ames, D.P., Quinn,
N.W.T., Rizzoli, A.E. (Eds.), International Environmental Modelling and Software Society
(IEMSs) 7th International Congress on Environmental Modelling and Software doi:978-88-
9035-744-2.

Taylor, P., Cox, S., Walker, G., Valentine, D., Sheahan, P., 2014. WaterML2. 0: development of
an open standard for hydrological time-series data exchange. J. Hydroinformatics 16 (2),
425e446.

Winchell, M., Srinivasan, R., Di Luzio, M., Arnold, J.G., 2007. ArcSWAT Interface for
SWAT2005-user's Guide. Blackland Research Center, Texas Agricultural Experiment
Station and Grassland, Soil and Water Research Laboratory, USDA Agricultural Research
Service, Temple, TX.

Wosniok, C., Lehfeldt, R., 2013. A Metadata-driven Management System for Numerical
Modeling. In: Proceedings of OCEANS '13 MTS/IEEE. San Diego, CA, September 23e26.

http://www2.epa.gov/water-research/storm-water-management-model-swmm
http://www2.epa.gov/water-research/storm-water-management-model-swmm

 119

Chapter 5: Conclusions and Future Work

This research addressed three challenges related to flooding impacts: (i) estimating the

potential of distributed stormwater infrastructure, namely rain gardens, to mitigate flooding in

urban catchments, (ii) designing and building a cloud-based real-time flood warning systems for

emergency management purposes, and (iii) designing and building cyberinfrastructure to support

reuse and transparency in both flood modeling and hydrologic and environmental modeling more

broadly.

Chapter 2 focused on improving the understanding of how the adoption of LID practices,

in particular rain gardens, at the parcel level in an already urbanized watershed might impact runoff

detention and, therefore, flood risk. In this study, the storage volume added by the rain gardens

was the product of two model variables: the total area of the rain gardens in the watershed as a

percentage of the total impervious surface and the ponding depth (or berm height) of the rain

gardens. The results suggest that implementing rain gardens with an area of 20% of the study area

impervious surfaces is sufficient to mitigate flooding for storm events with less than or equal to a

10 year return period, if the maximum recommended ponding depth of 30 cm is used. It also was

determined that 15% of runoff from impervious surfaces would need to be diverted to mitigate

flooding for a 2 year return period, 1 hour duration storm. For a 5 year return period, 1 hour

duration storm, there would need to be a 27% runoff reduction. Storms with a 10 year return period

would require 38% runoff reduction, whereas higher return periods would require over 50% runoff

reduction. The results of this study suggest that distributed LID approaches could potentially be

used to mitigate up to a 5 or even 10 year return period storm. However, further research on

possible adoption rates within the study watershed is needed to verify this conclusion.

 120

Chapter 3 provides a design for creating a cloud-based flood forecasting system to assist

transportation decision makers in time-sensitive, emergency situations. The flood forecasting

system was implemented to provide decision makers with forecasts of flooded roadways and

bridges based on rainfall forecasts. The 2D hydrodynamic model used in this study, which was

executed for a modeling duration of 15 days, was executed up to 80x faster by using GPU resources

compared to using a single CPU (from 120 hours to 1.5 hours). An automated cloud-based

workflow using Amazon Web Services (AWS) resources was designed and created to link and

enhance the three core model components: (i) retrieval and formatting of high resolution gridded

rainfall forecast data, (ii) execution of the 2D model in a short duration to identify flood prone

bridges, and (iii) real-time dissemination of model output via generation of an online map with

flood warnings and the ability to send automated alert messages via email. This cloud-based

approach provides an innovative way to perform flood modeling by automatically utilizing

computational resources only when the flood events are likely to occur. Additionally, the workflow

is automated, start to finish, without any intermediate human interaction. This work presented a

preliminary calibration of the 2D model, but additional work is needed to further calibrate and

evaluate the model across multiple historical flooding events. Calibration was challenging due to

the scarcity of operational river gauges and significant model run-time. Results of this study

suggest a higher resolution grid will improve model accuracy, but this too comes with an increased

model run-time. A final challenge that needs further investigation is the differences between the

2D model outputs using CPU and GPU solvers. More research is needed to see if improving model

input data, such as using a finer DEM resolution or NEXRAD rainfall data, will improve the

accuracy of the GPU-based model results. Including also surveyed creek bathymetry data along

with bridge structure information might also improve the model results.

 121

Chapter 4 presents a model metadata framework to support discovery, sharing and

interpretation of environmental models. Key features of the framework are (i) the model program

and model instance, which are separate concepts, are linked in a one-to-many relationship (a single

model program may be linked to many model instances), (ii) metadata for these concepts, which

extend the well-recognized and commonly used Dublin Core metadata framework, and (iii) the

model instance concept, which is a hierarchy with a generic parent class implementable for any

model program, and more specific child classes tailored for certain model programs. A key

challenge in this or any metadata framework design is providing the right balance between rich

metadata for adequately describing details of resources and minimal metadata that is critical and

can be easily populated. While generic metadata could be used to describe, share, and discover

model programs and model instances, it misses many other properties of these resources that could

be leveraged for improved search, discovery, and reuse of model resources. The purpose of the

metadata analysis and design presented in this work is to provide a more thorough, detailed

metadata approach for model programs and instances. With the growing number of systems that

serve a role within the larger cyberinfrastructure being built to support science, interoperability

between these systems is becoming a more pressing need. If these systems are built from an agreed

upon metadata framework, then it simplifies the transfer of resources between the systems. This

would encourage each system to specialize in selected use cases while relying on external systems

to handle other use cases outside of its scope. Future work will be aimed at improving the usability

of the model program and model instance resources within HydroShare. For example, to reduce

the time spent manually completing metadata fields, new functionality is planned to automate

metadata extraction when a resource is uploaded and the metadata are already present within files

uploaded with the resource. Automatic metadata extraction, along with the increased use of

 122

controlled vocabularies, would increase the usability of the system for both sharing and discovery.

This approach is difficult, however, given the diversity among environmental models; extracting

metadata directly from model input files may require a significant amount of custom code.

In conclusion, this dissertation presents new tools and approaches to assist decision makers

in better understanding, addressing, and finding solutions for flooding problems faced on the

catchment and regional scales. It also demonstrates the potential benefit of harnessing the rapidly

advancing cloud and cyberinfrastructure technologies to advance hydrologic modeling. Through

computational models, this work (i) contributes understanding of the potential of rain gardens as

distributed stormwater control for flood mitigation at the catchment-scale and (ii) it demonstrates

the use of the cloud for building an automated regional-scale flood warning system using a

sophisticated 2D hydrodynamic model. This work also contributes a solution for sharing and

reusing hydrologic models, allowing them to be documented and shared with other scientists, as

well as with decision makers, which encourages model reusability, reproducibility, and

transparency.

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter 1: Introduction
	1.1 References

	Chapter 2: Distributed Stormwater Controls for Flood Mitigation within Urbanized Watersheds: Case Study of Rocky Branch Watershed in Columbia, South Carolina1
	2.1 Introduction
	2.2 Study Area
	2.3 Data and Methods
	2.3.1 Model Description and Setup
	2.3.2 Data Preparation
	2.3.3 Observed Storm Events
	2.3.4 Model Calibration and Evaluation
	2.3.5 Model Scenarios

	2.4 Results and Discussion
	2.4.1 Model Calibration and Evaluation
	2.4.2 Impact of Rain Garden Area on Flood Mitigation
	2.4.3 Runoff Contribution to Rain Gardens for Flood Mitigation
	2.4.4 Impact of Storm Return Period on Flood Mitigation

	2.5 Conclusions
	2.6 References

	Chapter 3: A Cloud-Based Decision Support System for Managing Flooding Impacts to Transportation Infrastructure in Coastal Virginia2
	3.1 Introduction
	3.2 Study Area
	3.3 Data and Methods
	3.3.1 R2S2 System
	3.3.2 Rainfall Forecast Data Automation and Preparation
	3.3.3 Speeding-up R2S2 Execution
	3.3.4 Post-processing and Automating Model Output Dissemination
	3.3.5 Design of an Automated Flood Warning System through AWS

	3.4 Results and Discussion
	3.4.1 Rainfall Forecast Data Automation and Preparation
	3.4.2 Speeding-up R2S2 Execution
	3.4.3 Post-processing and Automating Model Output Dissemination
	3.4.4 Automated Flood Warning System through AWS

	3.5 Conclusions
	3.6 References

	Chapter 4: Design of a Metadata Framework for Environmental Models with an Example Hydrologic Application in HydroShare3
	4.1 Introduction
	4.2 Methodology
	4.2.1 Metadata Framework Design
	4.2.1.1 Model Program Resource Metadata
	4.2.1.2 Model Instance Resource Metadata

	4.2.2 Experimental Use Case

	4.3 Results
	4.3.1 Results for Software Implementation within HydroShare
	4.3.2 Results from the Example Use Case

	4.4 Discussion
	4.5 Conclusions
	4.6 References

	Chapter 5: Conclusions and Future Work

