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Abstract 

While significant efforts have been made to reduce agricultural nitrogen export to the 

Chesapeake Bay, loads from many agriculturally-intensive areas continue to increase due 

to the discharge of legacy nitrates from surficial aquifers beneath agricultural systems.  In 

order to improve understanding of the relationship between land surface management 

improvements and water quality response, the Chesapeake Bay Program (CBP) has 

endorsed the use of targeted small watershed studies as a means of better understanding 

the impact of agricultural best management practices (BMPs) on surface water quality.  

This dissertation supports the CBP objectives for small watershed studies by characterizing 

groundwater flow and nitrate transport and removal in one of the targeted watersheds.  

The dissertation uses an agriculturally-intensive catchment on the Maryland Eastern Shore 

to examine a series of questions related to understanding and managing nitrogen in 

agricultural systems, with particular focus on (i) modeling nitrogen transport subject to 

groundwater lag times and (ii) calibrating the simulation tools used for that modeling.  The 

collective purpose of the four studies included in the dissertation is to improve our ability 

to calibrate and use numerical groundwater simulation tools, with the aim of better 

modeling the impact of agricultural intensification and de-intensification on water quality, 

and thus support management by improving our ability to interpret signs of decline and 

improvement in receiving streams. 

The first study compares the range and character of different catchment-scale simulation 

models that result when an automated calibration routine is driven by various 

combinations of spatially- and temporally-distributed CFC, SF6, 3H, and 3He information. 

While researchers commonly use groundwater-age information to calibrate subsurface flow 
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and transport models, rarely is there a rich enough age-tracer dataset to investigate the 

question of what number, spatial distribution, and measurement uncertainty of calibration 

targets are needed in order to adequately characterize a site.  In this investigation 238 

environmental-tracer measurements were used individually and in combination to 

estimate recharge rates, hydraulic conductivities, and effective porosity for a three-

dimensional groundwater flow and transport model of our study site.  The various 

combinations of spatially- and temporally-distributed CFC, SF6, and 3H information used to 

drive the automated inverse modeling routine resulted in a range of catchment-scale 

simulation models and associated parameter uncertainty bounds.  The study demonstrates 

that while tracer data can provide necessary supplemental information for the calibration 

of flow and transport models, the use of data from a single tracer or from a small tracer set 

may be insufficient to fully interpret the information content of the tracers. 

In the second study we use the calibrated groundwater flow and transport model to resolve 

the key components of the nitrogen budget for the targeted watershed.  While subsurface 

nitrate transport and catchment removal processes have been widely investigated, there 

have been few fully distributed, three-dimensional modeling studies of nitrate transport 

and removal in catchments with nitrogen removal rates that are highly spatially-variable, 

as is the case with our study site.  We link the re-constructed time-variable land surface 

loadings to time-variable stream responses in two subcatchments that have similar land 

use histories but highly disparate nitrate export signatures, and we estimate the impact of 

soil denitrification and in-stream nitrogen removal as well as the potential influence of 

retarded nitrate transport.  We show that in spite of spatial and temporal uncertainty in 

loading, multiple calibration scenarios agree that in-stream nitrate removal efficiencies 
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vary significantly between the two sub-catchments, with one stream removing 60-70% of 

incoming nitrogen loads and the contrasting stream removing only 15-30%. 

While we use a steady state representation of the flow system in the descriptions of 

environmental tracer and nitrate transport in the first two studies, in some situations 

variability in base-flow age may impact in-stream solute concentrations.  In the third study, 

we examine the impact of time-variable hydrologic forcing – such as that due to seasonal 

changes in precipitation and evapotranspiration – on the age of base-flow discharge.  We 

develop a method for simulating the transient delivery of base-flow age from subsurface to 

receiving stream as a function of seasonal changes in hydrology and aquifer storage, and 

we apply the method to a variety of synthetic two-dimensional (2D) aquifers as well as to 

the study site.  We found that the timing of maximum base-flow age relative to the timing of 

minimum base-flow discharge varied with both the hydraulic conductivity field and the 

annually averaged recharge, which determines the system mean age.  The two assumptions 

of (i) an aquifer in which ages are vertically well-mixed and (ii) an aquifer in which ages are 

strongly stratified provide two end-members for estimation of how the base-flow age 

might respond to seasonal changes in recharge and base-flow, and the simulations in this 

study found that the change that occurs in real systems is somewhere in between.  For the 

cases that we investigated, apparent ages inferred from SF6 measurements while assuming 

piston-flow transport assumptions for the SF6 were biased young, with biases especially 

pronounced with layered hydrogeology in which discharge consists of shallow surficial 

flow mixed with a contrasting regime of much older water.  For one of the subcatchments 

in our Maryland study site we found that seasonal changes in recharge may only result in 

changes in base-flow age of 3 to 4 years, but that SF6 apparent ages based on piston-flow 
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assumptions of tracer transport may underestimate the mean base-flow age by 60% and 

more closely resemble the median system age.  

In the fourth and final study, we consider the impact of assumptions about age transport on 

the automated calibration of groundwater flow and transport models.  As illustrated in the 

calibration of the flow and transport model used throughout this dissertation, parameters 

such as porosity and dispersivity must often be estimated through model calibration 

against data describing groundwater age.  In such cases, the groundwater age observed at a 

point in the subsurface is often assumed to be a function of purely hydraulic processes.  In 

this study we use the automated calibration of several synthetic aquifers to investigate the 

impact of that assumption on the resulting calibrated model under a variety of 

heterogeneity and dispersivity scenarios.  We also consider the impact of applying 

advective-dispersive methods to the same range of scenarios.  We show that as true system 

dispersivity increases, the capacity of kinematic simulations of age to translate the available 

system information into accurate parameter estimates decreases. 
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Chapter 1:  Introduction 

 

A defining characteristic of the Anthropocene (whether or not that term is used in a 

geologically-specific manner; cf. Autin and Holbrook, 2012, and Monastersky, 2015) is the 

human re-configuration of geochemical cycles (Steffen et al., 2011).  The most widely 

discussed example of this is the transformation of fossil fuels to carbon dioxide.  Carbon 

has, understandably, become the stuff of treaties and papal reflection (Francis I, 2015), and 

policy questions at the inter-governmental scale are focused on reducing the accelerated 

relocation of carbon and the associated impact on the climate.  However, other geochemical 

interruptions in recent centuries have also had profound impacts on environmental 

systems, and for many aquatic systems no change has been more dramatic than alterations 

to the nitrogen cycle (Vitousek et al., 1997; Galloway et al., 2003; Galloway et al., 2008).  By 

some estimates, anthropogenic conversion of atmospheric nitrogen to reactive forms 

through the Haber-Bosch process will soon surpass biological nitrogen fixation as the 

largest global producer of bioavailable nitrogen (Galloway et al., 2004).  With curious 

symmetry, nitrogen has been pulled from the sky before ultimate deposition in estuaries 

and coastal bays at the same time that carbon has been re-routed to the atmosphere from 

prehistoric seas and swamps.  Just as our capacity as humans to get and burn carbon has 

provided warmth, light, and innumerable resulting forms of life, community, and creativity 

(complicatedly interwoven with more tragic, carbon-energized forms of human agency), so 

also our capacity to make bioavailable nitrogen has dramatically increased food production 

through the application of inorganic nitrogen fertilizers to agricultural systems.  However, 

this application of nitrogen fertilizers has, for much of the last century, exceeded the 
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demands of the crops that we grow, and it is largely – though not solely – a result of this 

agricultural use that more nitrogen than any other nutrient is entering the hydrosphere 

from the landscape (Schindler and Vallentyne, 2008). 

 

Because of water quality problems associated with eutrophication, nitrogen has been a 

subject of policy concern in developed countries for several decades (e.g., Royal 

Commission, 1979; Burt et al., 2010).  In the United States, the Chesapeake Bay is one of the 

most significant ecological and economic system subject to the adverse effects of nitrogen 

pollution.  The Chesapeake Bay, like many estuarine systems, has chronic water quality 

problems that are driven by excessive nutrient loads from upstream sources (Kemp et al., 

2005).  Like most estuarine systems, eutrophication in the Chesapeake Bay is nitrogen 

limited most of the time (Science and Technical Advisory Committee, 2010; Vitousek et al., 

1997; Schindler and Vallentyne, 2008).  State and federal governments have made 

significant efforts since the early 1980’s to improve water quality in the Chesapeake Bay.  

However, voluntary efforts by states have not impacted key indicators of the Bay’s health 

(Figure 1.1), and as a result the Environmental Protection Agency (EPA) assumed 

oversight of the Bay remediation effort in 2010.  Federal courts have recently confirmed 

that the EPA may require the governments of states in the Bay watershed to reduce the 

discharge of nitrogen, phosphorous, and sediment to Bay tidal waters and tributaries 

(Hicks, 2015).  Each jurisdiction must submit a series of Watershed Implementation Plans 

(WIPs) that describe how they will make the reductions required to meet the intermediate 

goals of the Bay Total Maximum Daily Load (TMDL) by 2017 and the final goal by 2025. 
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Figure 1.1 Percent of Chesapeake Bay attaining water quality standards for dissolved oxygen, 

chlorophyll a, and water clarity.  Data from 
http://www.chesapeakebay.net/indicators/indicator/achievement_of_chesapeake_bay_water_quality

_standards (downloaded 7/7/2015). 
 

Agriculture is a primary driver of nitrogen to the Chesapeake Bay, and much of the 

agricultural nitrogen load to the Bay is transported via groundwater linkages.  While 

significant efforts have been made to reduce agricultural nitrogen export to the Chesapeake 

Bay, loads to Bay tributaries and tidal waters from many agriculturally-intensive areas 

continue to increase (Figure 1.2).  This temporal disconnect between land surface 

improvements and in-stream nitrogen loads is due to the accumulation of nitrates in 

surficial aquifers beneath agricultural systems during the past century (Puckett et al., 

2011).  At a given location the present in-stream nitrate concentration is an artifact of past 

land surface actions, as the base-flow nitrate concentration integrates agricultural nitrogen 

inputs that were distributed backwards in time and across the land surface in space. That 

is, any base-flow nitrate concentration is a complicated function of both transient surface 

phenomenon (such as precipitation and land use patterns) and subsurface characteristics 



 4 

(such as aquifer travel times and dispersivities).  It may consequently be difficult to extract 

the signal of management improvement from the noise that is associated with multiple, 

converging flow paths of varying age and nitrate concentration.   

 

Figure 1.2 Trend in nitrate concentrations for various flows in the Choptank River on the Maryland 
Eastern Shore.  Nitrate estimated for April 1 of each year using the Weighted Regressions on Time, 
Discharges, and Seasons (WRTDS) model (Hirsch et al., 2010). The increasing concentration at low 

flow shows the impact of nitrates transported by groundwater flow and base-flow discharge. 
 

Thus, while numerous studies have connected the increase in groundwater nitrates to the 

intensification of agricultural practices during the last century, the magnitude and timing of 

the impact of agricultural practices that are intended to lower groundwater nitrate levels is 

not well understood (Meals et al., 2010).  The uncertainty associated with predicting the 

water quality benefits of landscape action can have serious implications for the 

management of environmental systems like the Chesapeake Bay.  The most basic questions 

Figure modified from Hirsch et al. (2010) 
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for such a system are: (1) Who is responsible for the degraded water quality and adverse 

ecological/economic impacts in the downstream receiving waters? (2) How much 

cumulative management action (for example, changes in farming practice) must be taken in 

order to improve the water quality and reverse the ecological/economic impacts? and (3) 

When will the degraded system respond to management improvements?  Where the time 

scale of ecological response is much longer than the time scale of public opinion and 

legislative action (as is true of the Chesapeake Bay), analyses are required that will enable 

stakeholders and decision-makers to discern the impacts - or explain the lack of impacts - 

of mandated conservation measures.  For example, the full engagement of the Bay 

agricultural community in the Phase III Watershed Implementation Plans (WIPs) will be 

supported by analytical tools that can distinguish between the failure and pending success 

of hardship incurred due to the Phase II WIPs. 

Groundwater transport processes and timescales are not well represented in the present 

suite of Chesapeake Bay Program (CBP) models.  The process-based Phase 5.3.2 Watershed 

Model (WSM) provides a steady state estimate of the delivery of nitrogen, phosphorous, 

and sediment to the Chesapeake Bay as a function of land use, point sources, population, 

and atmospheric deposition (USEPA, 2010).  The WSM conversion of land use to nutrient 

delivery rates is supported by estimates from the empirical Spatially Referenced 

Regression on Watershed Attributes (SPARROW) model.  SPARROW is similarly steady 

state, relating estimates of long-term averaged land surface loading to downstream 

observations in order to calibrate parameters that describe delivery and transport (Ator et 

al., 2011).  These limitations thus require supplementary studies to qualify the modeling 

results of the WSM, to better estimate the timescales of groundwater improvement, and to 
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continue improving its parameterization and calibration procedures.  A critical but 

uncertain parameter in the WSM and the regulatory application of its results is the 

magnitude of load reductions due to agricultural best management practices (BMPs) and 

the timing of water quality benefits from those load reductions.  In order to improve 

understanding of the relationship between land surface management improvements and 

water quality response, the Chesapeake Bay Program (CBP) has endorsed the use of 

targeted small watershed studies as a means of: (i) focusing resources for the accelerated 

implementation of agricultural best management practices (BMPs); (ii) documenting that 

implementation and making higher resolution land use data available to researchers and 

key federal partners such as the US Geological Survey; and (iii) explaining the magnitude 

and time-scale of water quality responses to agricultural BMPs (Science and Technical 

Advisory Committee, 2015).  This dissertation supports the CBP objectives for small 

watershed studies by characterizing groundwater flow and nitrate transport and removal 

in one of the targeted watersheds.  In so doing, this dissertation examines a series of 

questions related to understanding and managing nitrogen in agricultural systems, with 

particular focus on (i) modeling nitrogen transport subject to groundwater lag times and 

(ii) calibrating the simulation tools used for that modeling. 

The order of the dissertation is as follows.  In Chapter 2 we introduce the Upper Chester 

study site, an agricultural watershed on the Maryland Eastern Shore, and we describe the 

modeling framework that is common to the analysis of the subsequent chapters.  The 

Upper Chester site is one of three agriculturally-intensive watersheds in the Chesapeake 

Bay drainage that has been targeted by the U.S. Department of Agriculture (USDA) for 

further study; as a result, it is an important site for the sort of small watershed study 
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described above.  In Chapter 3 we apply a uniquely rich dataset of environmental tracer 

observations to the calibration of the flow and transport model, and we compare the range 

and character of different catchment-scale simulation models that result when an 

automated calibration routine is driven by various combinations of spatially- and 

temporally-distributed CFC, SF6, 3H, and 3He information.  In Chapter 4 we use the 

calibrated model to link estimated historic land surface inputs to subsurface and base-flow 

nitrate concentrations in order to characterize the controls on nitrate removal in the Upper 

Chester.  While subsurface nitrate transport and catchment removal processes have been 

widely investigated, there have been few fully distributed, three-dimensional modeling 

studies of nitrate transport and removal in catchments with nitrogen removal rates that are 

highly spatially-variable, as is the case in the Upper Chester.  Chapters 3 and 4 use the 

steady state flow model to describe environmental tracer and nitrate transport; under 

these steady state conditions, the age of base-flow discharging to a stream is, by extension, 

constant.  In some situations, variability in base-flow age may impact in-stream solute 

concentrations, and in Chapter 5 we use several synthetic aquifers as well as the Upper 

Chester model to examine the impact of time-variable hydrologic forcing – such as that due 

to seasonal changes in precipitation and evapotranspiration – on the age of base-flow 

discharge.  Finally, in Chapter 6, we return to the topic of the use of groundwater age 

information in parameter estimation and consider the impact of assumptions about age 

transport on the automated calibration of groundwater flow and transport models.  In sum, 

the purpose of the studies described in the following chapters is to improve our ability to 

calibrate and use numerical groundwater simulation tools, with the immediate aim of 

better modeling the impact of agricultural intensification and de-intensification on water 
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quality, and thus improve our ability to interpret signs of decline and improvement in 

receiving streams. 
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Chapter 2: Case Study Description 
 
 
2.0 INTRODUCTION 

This chapter introduces the study site and the numerical model that was used to simulate 

groundwater flow and the transport of environmental tracers, age, and nitrates as 

described in chapters 3-6 of this dissertation.  Model details common to all simulation 

studies, such as the model framework, the basic conceptualization of flow and transport 

processes, and the head and discharge data used to calibrate the flow model, are described 

here.  Further details regarding the simulation of environmental tracer and nitrate 

transport, including the data and parameter estimation methods specific to that transport, 

are described in subsequent chapters. 

 

2.1 SITE OVERVIEW 

The study site is located on the Maryland Delmarva Peninsula and combines the USDA-

designated Upper Chester Showcase Watershed (Nelson and Spies, 2013) with the adjacent 

Morgan Creek subcatchment (Figure 2.1).  For purposes of this study, ‘Upper Chester’ 

hereafter refers collectively to the Showcase Watershed plus the Morgan Creek watershed.  

The 125-km2 study site is a low-relief agricultural watershed underlain by variably 

permeable unconsolidated sediments that dip to the southeast (Bo hlke and Denver, 1995).  

The topmost fluvial deposits of the Pensauken formation and the underlying marine 

deposits of the Aquia formation together form an unconfined aquifer that is responsible for 

the majority of base-flow discharge to both Morgan Creek and Chesterville Branch (Bo hlke 

and Denver, 1995).  The Aquia Formation is underlain by the Aquia Confining Unit, which 
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likewise dips to the southeast, outcropping at Morgan Creek and forming its bed sediments 

(Puckett et al., 2008).  The identification of the confining unit conductivity is one focal 

purpose of this study.  The Aquia Confining Unit separates the surficial unconfined aquifer 

from the Hornerstown Aquifer; the conductivity of the confining unit – and the associated 

proportion of older, pre-agricultural water that discharges to Morgan Creek – may be an 

important driver of stream water chemistry in Morgan Creek (Bo hlke and Denver, 1995; 

Bachman et al., 2002).  In order to account for the effects of weathering on Confining Unit 

permeability, we assumed that Confining Unit hydraulic conductivity was twice its areal 

average in locations where the Confining Unit outcropped at the land surface. 
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(a) (b) 

 

Figure 2.1 Upper Chester study site and observation locations.  Note that some subsurface 
observation locations indicate nested wells with observations at multiple elevations.  Shaded area 
in panel (b) shows the simulated location of Aquia Confining Unit in the lower reaches of Morgan 

Creek (see discussion in text).  See Figure 2.2 for cross-section A-A’. 

 

Results from preliminary calibration runs showed that hydraulic conductivity estimates for 

the Pensauken and Aquia units are highly correlated given the available data.  As a result, in 

the numerical model the Pensauken and Aquia Aquifers were combined into a single 

hydrogeologic unit that we refer to as the ‘Surficial Aquifer’ (Figure 2.2).  For ease of 

reading we hereafter refer to the Aquia Confining Unit as simply the ‘Confining Unit’ and to 

the Hornerstown Aquifer as the ‘Confined Aquifer’ (Figure 2.2). 
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Figure 2.2 A cross-section of the hydrostratigraphic units for Upper Chester site. 
See Figure 2.1 for cross-section location (A-A’). 

 

2.2 Overview of Flow and Transport Model 

2.2.1 – Model Framework and Simulation of Groundwater Flow 

Groundwater flow in the Upper Chester was modeled using the U.S. Geological Survey 

(USGS) numerical simulation code MODFLOW (Harbaugh, 2005).  MODFLOW-2005 was 

used for steady state solutions, which were subsequently used to simulate the transport of 

environmental tracers and nitrates as described in chapters 3 and 4 of this dissertation.  A 

version of MODFLOW that was modified by S.S. Papadopulos and Associates for purposes of 

better handling water table fluctuations was used for the transient head solution used in 

Chapter 5 of this dissertation and is described in more detail there. 

For all simulations of flow and transport in the Upper Chester the finite-difference grid 

consisted of 220 rows, 180 columns, and 27 layers with square model cells 76 m across.  

Layer thicknesses were 1.5 m for the top 16 layers and 3.0 m or 7.6 m for the lower layers.  
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A deterministic hydrogeologic framework for the study site was constructed using LIDAR 

elevation data from the USGS National Map (http://nationalmap.gov) and regional geologic 

unit elevation contours digitized by the Maryland Geological Survey (Andreasen et al., 

2007) (Figure 2.2).  Hydrogeologic units that fall within the model domain were sampled 

onto the finite difference grid and adjusted to conform to local hydrogeological data that is 

available from previous studies in the area (e.g., Drummond, 1998; Böhlke and Denver, 

1995; Bachman et al., 2002).  No head or tracer data exists for the hydrogeologic units 

below the confined Hornerstown Aquifer; consequently, for our simulations the bottom of 

the active simulation volume corresponds to the bottom of the confined aquifer (Figure 

2.2). 

MODFLOW calculates the head at each cell in the model grid by solving a finite-difference 

discretization of the general equation for groundwater flow through porous media, 

        
 
  (  

  
  )  

 
  (  

  
  )  

 
  (  

  
  ) + W , (2.1) 

where S is specific storage, h is head at location and time (x,y,z,t), Ki for i = x, y, z is the 

hydraulic conductivity along the appropriate axis, and W is the volumetric flux due to 

inputs and withdrawals at location and time (x,y,z,t).  There is little evidence of irrigation 

(i.e., pumping) or other relevant stresses in the study area (Hancock and Brayton, 2006), 

and we consequently assumed that the single input and single output to the aquifer system 

were recharge and base-flow discharge, respectively.  We assumed that a groundwater 

divide and associated zero-flux boundary condition coincided with the watershed divide 

that delineates the Upper Chester study site (Figure 2.1). 
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Base-flow discharge to receiving streams was simulated using MODFLOW’s drain package.  

Under this conceptualization, each cell in the top layer of the model is defined as a head-

dependent (i.e., Cauchy type) boundary condition with the boundary elevation equal to the 

elevation of the land surface at that point.  Simulated base-flow discharge consequently 

occurs at a model location when the water table elevation in a cell exceeds the land surface 

elevation for that cell.  A combination of the USGS code Zonebudget (Harbaugh, 1990) and 

Python scripting was used to post-process the drain outflow calculated by MODFLOW at 

each time step; this post-processing calculated the total simulated base-flow in Morgan 

Creek and in Chesterville Branch by aggregating the discharge from all model cells located 

upstream of the gage in each reach.  The Chester River (Figure 2.1) was simulated as a 

general head boundary at constant stage of 0.76 m, which is the mean high water elevation 

at Chestertown (email communication, Buck Nickerson), approximately 5 km downstream 

of the active model area. 

Our calibration targets for simulated head were long-term average groundwater levels 

from observation wells that had ten or more groundwater level measurements.  Discharge 

calibration targets were average discharge measurements in Morgan Creek and 

Chesterville Branch (Figure 2.1).  Base-flow was assumed to be 85% of measured 

streamflow per the results of Sanford et al. (2011), who examined base-flow components of 

streams in other similar low-relief, high-infiltration catchments on the Delmarva Peninsula.  

Base-flow residuals from preliminary calibration runs suggested that recharge rates per 

unit area are higher in the Chesterville Branch drainage than the Morgan Creek drainage.  

Reilly et al. (1994) found for their 2D transect simulation that reducing recharge in areas of 

more poorly drained soils in the catchment uplands improved the model fit.  Applying this 
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insight to the entire Upper Chester improved the base-flow residuals for our 3D model 

since soils in the Morgan Creek catchment are on average more poorly drained than in the 

Chesterville Branch catchment.  Consequently, two recharge zones, distinguishing well-

drained soil types from other soil types, were derived from USDA SSURGO data for Kent 

County and Queen Anne’s County (Soil Survey Staff). 

2.2.1 – Simulation of Subsurface Transport 

For all transport simulations, travel times through the unsaturated zone were assumed to 

be negligible due to the high water table and thin unsaturated zone on the Delmarva 

Peninsula.   Initial tests compared the performance of two different approaches to the 

simulation of subsurface transport: an advection-only simulation using MODPATH (Pollock, 

2012) and a fully advective-dispersive model (ADM) using MT3DMS (Zheng and Wang, 

1999).  However, the parameter estimates resulting from ADM simulation of both age and 

tracer concentration (not shown) appeared to be impacted by numerical dispersion 

introduced by the finite difference solution to the ADM.  Several authors have described the 

challenges of using lower order finite difference ADM schemes to simulate transport in 

advection-dominated systems (e.g., Zheng and Bennett, 2002).  From their simulation of a 

2D cross-section in the Chesterville Branch subcatchment, Reilly et al. (1994) concluded 

that hydrodynamic dispersion was very small.  They estimated longitudinal dispersivity to 

be less than 0.3 m and inferred from the sharp vertical fronts between nested wells vertical 

that transverse dispersivity was effectively zero.  Chapter 6 of this dissertation shows that 

the use of a Eulerian ADM conceptual model to simulate age in a low-dispersive system may 

have unpredictable effects on the estimation of flow and transport parameters.  The use of 
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an ADM for the Upper Chester confirms those results, and also suggests that the numerical 

dispersion associated with an ADM method may confound automated parameter 

estimation whether tracer concentrations or age are simulated.  Consequently, 

hydrodynamic dispersion in the Upper Chester was assumed to be minimal, and advection-

only transport was simulated solely in the remainder of this study.  For all transport 

described in subsequent chapters, which include studies describing the transport of 

environmental tracers (Chapters 3 and 5), nitrate (Chapter 4), and age (Chapters 5 and 6), 

the particle-tracking code MODPATH (Pollock, 2012) and a series of Python scripts was 

used to (i) convert the simulated head field calculated by MODFLOW into a simulated 

velocity field and (ii) generate a distribution of advective travel times for subsurface and 

surface water observation locations.  These travel time distributions (TTD) were convolved 

with land surface solute input functions in order to simulate the solute concentrations at 

the given location.  More details on the use of this method to calculate environmental tracer 

and nitrate concentrations are provided in the next two chapters. 
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Chapter 3:  The Comparative Use of Environmental Tracer Data in Model 
Calibration to Examine Tracer Transport Processes and 
Resolve Hydrogeological Uncertainty1 

 

3.0 INTRODUCTION 

Numerical simulation of groundwater solute transport is a critical tool for predicting the 

behavior of contaminants, including the identification of the probable location and timing 

of their introduction to the subsurface and the management of any risks they pose to 

human and environmental health.  Field observations of groundwater age can be an 

important means of establishing rates of recharge and subsurface velocities; consequently, 

they may also be used to constrain estimates of the model parameters critical to the 

prediction of contaminant transport and management impact (Sanford, 2011).  

Groundwater age is the time between a water molecule's entry into a groundwater system 

and the observation of that water at some subsequent point in space and time.  Data 

describing this transit time is available from analyses of environmental tracer 

concentrations in subsurface and base-flow samples.  A number of different tracers exist, 

with the applicability of any individual tracer to a particular groundwater question 

dependent upon the timescales and potential confounding environmental factors involved.  

See Cook and Herczeg (2000), Kazemi et al. (2006), or Turnadge and Smerdon (2014) for 

comprehensive reviews of different tracer sources and some methodological 

considerations for their use in groundwater studies. 

                                                        
1 A version of this chapter is currently under review with Journal of Hydrology. 
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Chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium (3H) are particularly 

useful for the study of shallow groundwater systems that have been (and still are) subject 

to the various types of anthropogenic contamination over the past century.  CFCs (i.e., CFC-

11, CFC-12, and CFC-113) and SF6 are gaseous atmospheric constituents that dissolve into 

recharging waters (Plummer and Busenberg, 2000), while 3H is an isotopic variation on the 

water molecule itself (Solomon and Cook, 2000).  The timescale of intensification for the 

atmospheric concentrations of these tracers roughly corresponds to the timescale of 

intensification of chemical fertilization of agricultural land (Figure 3.1). 

 

Figure 3.1 North American atmospheric concentrations of CFCs, SF6, and 3H.  All lines show the 
annually-averaged concentration except for the grey line, which shows all available data for 

atmospheric 3H.  Data downloaded from http://water.usgs.gov/lab/software/air_curve/index.html. 
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For a problem in which the timing and location of a contaminant source is adequately 

known, a time series of data that describes the plume development for the contaminant of 

interest may itself be used to calibrate a model that can then be applied for predictive and 

management purposes.  However, problems of nonpoint source subsurface contaminants, 

such as those associated with agricultural inputs, may include large source-term 

uncertainties due to the lack of data describing the spatial and temporal variability of land 

surface loading; this uncertainty is compounded by a similar lack of data describing 

contaminant transformations (e.g., denitrification) that may occur between the land surface 

and the water table, or along a flow path through the saturated zone.  These uncertainties 

make it difficult to estimate transport parameters through an inverse modeling exercise 

constrained only by data pertaining to the contaminant of interest, as a result making the 

model less useful for management.  In such cases, sampled subsurface tracer data, 

combined with our relative confidence in the spatial and temporal distribution of inputs 

from the atmosphere, may enable improved estimates of system-wide transport 

parameters such as effective porosity. 

A number of studies have used CFCs, SF6, 3H and/or the tritium/tritiogenic helium (3H/3He) 

ratio to calibrate the flow or transport parameters of numerical groundwater models.  

These studies have typically involved the use of tracers to calibrate a single realization of a 

two-dimensional (2D) model of a transect or a single piezometer nest.  For example, Reilly 

et al. (1994), Cook et al. (1995), Portniaguine and Solomon (1998), and Bauer et al. (2001) 

used CFC concentrations and/or 3H/3He ages to estimate flow and transport parameters for 

two-dimensional (2D) groundwater models.  Mattle et al. (2001) used a single tracer 

species (3H/3He ages) with a three-dimensional (3D) model to estimate aquifer recharge 
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due to river leakance.  Zuber et al. (2005) used SF6 observations from several wells to 

calibrate a transport model for an aquifer in Poland.  In addition to the numerical 

simulation models employed in these studies, other studies have used these same tracers to 

calibrate lumped-parameter models of flow and transport.  For example, Long and Putnam 

(2009) paired a convolution model with transient CFC and 3H data at a single well to 

estimate the time-varying relative contributions of quick-flow and slow-flow reservoirs for 

a karst system in South Dakota. 

In spite of these previous works, few if any studies have examined the effect of tracer 

species selection or tracer dataset size on the automated calibration of a fully 3D numerical 

simulation model.  The present paper examines the impact of different tracers on 

parameter estimation for a coastal aquifer system by applying a uniquely rich dataset of 

subsurface atmospheric tracer observations to the calibration of a 3D flow and transport 

model.  The study compares the range and character of different catchment-scale 

simulation models that result when an automated calibration routine is driven by various 

combinations of spatially- and temporally-distributed CFC, SF6, 3H, and 3He information. 

Model calibration may be sensitive to tracer species selection for a variety of reasons, 

including those factors that impact the recharge of atmospheric tracers to the water table 

or their subsequent transport through the subsurface.  For example, the recharging 

concentration of a dissolved tracer is a function of the atmospheric concentration, the 

variables that govern partitioning between the gas and dissolved phases (i.e., recharge 

temperature and elevation), and the amount of excess air introduced at the time of recharge 

(Plummer et al., 2006; Gooddy et al., 2006).  When using inverse modeling to estimate 
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system transport parameters, inaccurate representation of the tracer mass boundary 

condition may result in inaccurate interpretation of system velocities and, therefore, system 

effective porosity.  However, the different tracers – and therefore the models that result 

from using the different tracers as calibration targets – vary in their sensitivity to 

representation of these factors.  For example, the relative solubilities of SF6 and CFCs make 

SF6 much more sensitive to errors in estimating the excess air content of recharging waters 

(Gooddy et al., 2006).  In cases where the assumed amount of excess air cannot be well-

constrained (e.g., by sampled ratios of atmospheric nitrogen to argon), parameters that are 

estimated against SF6 data may be subject to uncertainty that can be interrogated by 

comparison with estimations made against other tracers (Busenberg and Plummer, 2000). 

Inaccurate estimates of system transport parameters may similarly result from inaccurate 

conceptualization of tracer transport processes.  For example, most studies that have used 

atmospheric tracer data to calibrate groundwater models have assumed conservative tracer 

transport (e.g., Szabo et al., 1996; Hunt et al., 2006).  However, several field and laboratory 

studies have observed the non-conservative behavior of CFCs due to degradation or 

sorption in a variety of hydrogeological settings.  Cook et al. (1995) found that CFC-11 was 

degraded in both the highly organic unsaturated zone as well as in anaerobic portions of a 

Canadian aquifer, while CFC-113 appeared to be retarded by sorption in the unsaturated 

zone.  Bauer et al. (2001) found evidence of delayed CFC-113 transport, which they 

modeled with linear sorption (R = 1.5).  Results from Happell et al. (2003) indicated the 

removal of CFCs in the anoxic sediments of the groundwater-surface water interface.  Both 

Sebol et al. (2007) and Hinsby et al. (2007) observed the degradation of CFCs in anaerobic 

zones due to pyrite oxidation in unconfined aquifers. 
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For CFCs that recharged when the atmospheric concentration was monotonically increasing 

(Figure 3.1), either degradation or retardation of CFCs in the subsurface would result in an 

under-estimation of system velocities (i.e., an exaggeration of the apparent age) and an 

associated over-estimation of system porosity if that mass loss or delay is not accounted for 

in the transport model. 

In sum, the dataset and methods described below further the investigation of important 

uncertainties associated with tracer transport.  The study demonstrates the comparative 

use of inverse modeling to highlight consistency or detect variability in transport processes 

between different tracer species.  As such, this is a tracer-specific demonstration of the 

more general practice of using model calibration as a tool to corroborate a conceptual 

model or identify its shortcomings (Hill and Tiedeman, 2006; Hill, 2006). 

In the course of using parameter estimation as a tool for comparing tracer transport, the 

study also demonstrates the utility of atmospheric-derived tracers to characterize 

important hydrogeological features.  For example, argillaceous leaky confining units, such 

as the clay and silt Aquia Confining Unit located in the Upper Chester, are often important 

at controlling groundwater age distribution (Sanford, 2011) but their vertical leakance is 

notoriously difficult to quantify (Neuzil, 1994).  In this regard, previous studies at this site 

have suggested that the complicated hydrology and nutrient transport in the agriculturally 

intensive catchment may be further clarified by better characterizing the hydraulic 

connectivity between the surficial and lower aquifers (Böhlke and Denver, 1995; Bachman 

et al., 2002). 
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3.1 METHODS 

Multiple environmental tracer species were used individually and in combination to 

estimate recharge rates, conductivities, and effective porosity for the Upper Chester model. 

For each method, flow and transport parameters were estimated both sequentially and 

simultaneously.  For the sequential cases, flow parameters (i.e., recharge rates and 

hydraulic conductivities) were first calibrated against head and discharge data; the 

resulting estimated values of the flow parameters were then assigned while the effective 

porosity was calibrated against the tracer concentrations or interpreted ages designated by 

each transport calibration method (Table 3.1).  (In the following, ‘porosity’ refers to 

effective porosity.)  For the simultaneous cases, recharge rates, conductivities, and porosity 

were calibrated simultaneously. 

Table 3.1 Transport Calibration Methods. 

 

Groundwater levels and stream discharges used to constrain calibrated hydraulic 

conductivities and steady state recharge are described in Section 2.2 of this dissertation.  
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Porosity was estimated in this study using CFC, SF6, 3H, and 3He data collected during 

previous studies (Busenberg and Plummer, 2000; Dunkle et al., 1993; Ekwurzel et al., 

1994).  This entire tracer dataset consisted of 238 measurements taken between 1990 and 

1998 at 28 observation wells in the active model area (Figure 2.2; Table 3.1).  The 

number of observations available and the type of tracer sampled varied for each well; some 

wells were sampled once for a single tracer, while other wells were sampled multiple times 

for multiple tracers.  No data exists to describe spatially varying porosity, and preliminary 

calibration experiments using depth-dependent variable porosity did not appreciably 

impact the resulting parameter estimates.  Consequently, a homogenous porosity field was 

used in all simulations, such that each calibration method estimated a single, spatially-

averaged effective porosity. 

3.1.1 - Calibration methods using solute concentrations of environmental tracers 

The concentration Ck,j(t) of a conservative tracer species k at location j and time t in a steady 

state system may be calculated as the convolution integral 

 𝐶𝑘,𝑗(𝑡)  ∫ 𝐶𝑘,𝑎 𝑚(𝑡
∞

0
− 𝜏)𝑔𝑗(𝜏)𝑑𝜏 (3.1) 

where Ck,atm is the tracer input function (i.e., the time series of recharge tracer 

concentration of species k) and the system functional gj(W) is equal to the travel time 

distribution (TTD) of groundwater sampled at location j.  As alluded to above, a variety of 

parametric and non-parametric distributions have been derived for g(W) subject to various 

aquifer conditions (Cook and Bo hlke, 2000; Maloszewski and Zuber, 1982; McCallum et al., 



 27 

2014).  In contrast, we used the numerical model to generate the TTD for each observation 

well by backward tracking particles from the well screen to the recharge location in order 

to determine the advective travel time and associated recharge rate for each particle.  Well-

screens were assumed to be 1-m in length (Reilly et al., 1994) and particles were released 

at 1 cm intervals.  The resulting recharge-weighted histogram of travel times was then 

convolved with the annually averaged atmospheric tracer time series.  Note that this is 

more precisely expressed as the discrete time form 

 𝐶𝑘,𝑗[𝑡]  ∑𝐶𝑘,𝑎 𝑚[𝑡 − 𝜏]𝑔𝑗[𝜏]
∞

𝜏=0
 . (3.2) 

The input function Ck,atm for each species k was derived from the tracer atmospheric mixing 

ratios for North America (Figure 3.1).  Concentrations in air were converted to dissolved 

concentrations using Henry’s law and assuming constant values of 2 cm3/L recharged 

excess air and 10° C recharge temperature.  Busenberg and Plummer (2000) used N2-Ar 

ratios in groundwater to estimate the recharge temperature in the Upper Chester to be 

10.5° ± 1.3° C, and they found excess air in nearly all groundwater samples to be between 0 

and 3 cm3/L.  Dunkle et al. (1993) estimated the recharge temperature on the Delmarva to 

be 9° ± 2° C. 

In addition to calibrations involving single tracer species, a composite data set that included 

all CFCs and SF6 measurements was used as transport calibration targets in order to 

examine the impact of additional information on the parameter estimation process.  For the 

Composite method, both the observations at wells and the input signal for each tracer 

species were normalized (and therefore located on a common dimensionless scale) by 
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dividing all observed concentrations and simulated input concentrations by the maximum 

dissolved input concentration for that species. 

3.1.2 - Calibration using ages inferred from environmental tracers 

The methods described in the previous section for simulating the subsurface transport of 

conservative tracers may also be applied to tritium, using the atmospheric history of 3H as 

the recharging boundary condition and the combined concentration of both the parent 

species and the decay product (3H + 3He) as the calibration target at observation locations.  

However, the extreme non-linearity of the tritium input signal (Figure 3.1), and the 

associated sensitivity of simulated 3H + 3He to small changes in porosity, make the 

simulation of 3H + 3He transport poorly suited for the regression methods used in this study 

(see description of those methods below).  While use of an annually-averaged time series 

reduces the volatility of the 3H input signal (Figure 3.1), the use of this approximation for 

estimating Upper Chester parameters resulted in physically unrealistic calibrated porosities 

with very large uncertainty bounds (results not shown). 

In contrast, with simultaneous measurement of 3H and 3He, the decay relationship between 

the two species may be used to calculate a 3H/3He age that is independent of uncertainties 

associated with the input signal (Solomon and Cook, 2000).  For the Trit_Hel_Ages method 

(Table 3.1), 3H/3He ages reported by Ekwurzel, et al. (1994) were used as calibration 

targets, and the simulated age at each observation location was equal to the mean of the 

TTD generated with backward particle tracking. 
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3.1.3 - Automated parameter estimation algorithm 

For all calibration methods, automated parameter estimation was performed with the 

inverse modeling software UCODE (Poeter et al., 2005), which uses a modified Gauss-

Newton nonlinear method to minimize a least squares objective function.  The standard 

deviations of tracer measurements were used to weight CFC and SF6 observations during 

calibration.  Weights for the 3H/3He age observations were set equal to 10% of the age.  In 

order to test the sensitivity of the calibration results to the weight assignments we repeated 

the calibration methods without weighting observations (i.e., with all observations 

weighted equally).  Calibration used a maximum of 50 iterations, which in most cases 

allowed stabilization of estimated parameter sets even if (in the case of some simultaneous 

methods) the calibration did not converge according to the designated criteria of less than 

1% change in all parameter values.  The optimized parameter set was the identified set 

resulting in the lowest weighted sum of square errors (i.e., not necessarily the set at the 

50th iteration). 

3.1.4 - Simulation of steady state base-flow age in receiving streams 

For each calibrated model (i.e., using the parameter sets estimated by the various 

calibration methods), the steady state TTD of base-flow in receiving streams was simulated 

using travel times calculated by MODPATH (Pollock, 2012).  Particles were uniformly 

distributed across the water table and tracked forward to their discharge location.  The 

travel times of discharging particles were then aggregated for each stream (i.e., Morgan 

Creek and Chesterville Branch) in order to construct the empirical cumulative distribution 

function (ECDF) and the associated mean and median base-flow age for each stream. 
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3.2 RESULTS 

This section compares the parameter sets estimated by the various calibration methods 

with particular attention given to the following model characteristics: 

1. Estimated system porosity.  The effective porosity, particularly of the Surficial Aquifer, 

is a key control on the rate of agricultural contaminant delivery to local streams and 

is therefore of focal interest to the research questions for which the calibrated model 

will be used.  Note that for the sequential transport calibration methods, the 

porosity was the only calibrated parameter (i.e., it was estimated after previously 

calibrating recharge and hydraulic conductivities against head and discharge 

information).  The range of total porosity for sand is typically reported as 0.25 – 0.50 

(Freeze and Cherry, 1977).  Sanford et al. (2009) examined several cores from 

further south on the Delmarva Peninsula and found that the total porosity for 

unconsolidated sands in both surficial and confined aquifers ranged from 

approximately 0.35 – 0.55.  The effective porosity may be as high as 94 percent of 

the total porosity in unconsolidated sands (Hudak, 1994). 

2. Estimated conductivity of the Confining Unit.  As mentioned above, the conductivity of 

the confining unit between the Surficial Aquifer and the Confined Aquifer may also 

be important for explaining agricultural contaminant concentrations in Morgan 

Creek. 

3. Estimated mean age of base-flow discharge to Morgan Creek.  In surface water 

systems where contaminant transport is dominated by base-flow (as is the case for 

nitrate delivery in the Upper Chester), the travel time distribution of base-flow ages 

discharging to a receiving stream provides an important integrated hydrological 
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metric for system susceptibility to contamination and the timescale of system 

recovery from contamination. 

3.2.1 - Comparison of calibrated parameter sets 

Figure 3.2 shows the normalized simulated versus observed tracer concentrations for each 

of the calibrated models.  Figure 3.3 shows the parameter estimates and the associated 

95% confidence intervals that result from the various sequential and simultaneous 

calibration methods.  The range of calibrated recharge values was similar to estimates from 

previous studies on the Upper Eastern Shore (Bohlke and Denver, 1995; Green et al., 2008). 

The range of calibrated hydraulic conductivities for the Surficial and Confined Aquifers are 

also consistent with field studies and model calibration from elsewhere on the Delmarva 

Peninsula (Andreasen, 2007; Sanford et al., 2012). 
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(a) Sequential Methods 

 
 

(b) Simultaneous Methods 

 
 

Figure 3.2 Simulated vs. observed tracer concentrations and 3H/3He ages for the calibrated models.  
Note that each subplot shows the results of a different calibrated model (e.g., the CFC11 plot shows 

the simulated vs. observed CFC-11 concentrations that are simulated by the model calibrated 
against CFC-11 concentrations). Red and green markers show observations in Chesterville Branch 

and Morgan Creek, respectively.  The stars show high-leverage observations, with leverage 
evaluated by Cook’s D values reported by UCODE. 



 33 

(a) Sequential Methods 
with weighted observations 

(b) Sequential Methods 
with unweighted observations 

  

(c) Simultaneous Methods with weighted observations 

 

Figure 3.3 Upper Chester parameter estimates using different tracer datasets as calibration targets.  Error 
bars show 95% confidence intervals calculated by UCODE.  The individually labeled porosity values specify 

the calibrated values (i.e., rather than the confidence interval).  See Table 3.1 for method descriptions. ‘Flow 
Only’ refers to hydraulic conductivity and recharge parameters calibrated against head and discharge data.  

The sequential methods were each calibrated using a flow field described by the Flow Only parameters. 
 

The estimated porosities are within the range of values expected from Sanford et al. (2009).  

The calibrated porosities are more highly variable for the sequential methods than the 

simultaneous methods.  For the weighted sequential methods (i.e., for the case in which 
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each method used an identical flow field and only estimated the porosity – Figure 3.3a) it 

is notable that the porosities estimated with CFC-11 and CFC-12 data are the highest (0.48 

and 0.44, respectively), and that the porosities estimated with CFC-113 and SF6 are both (i) 

lower than the CFC-11 and CFC-12 estimates and (ii) similar to one another.  The porosity 

estimated from the Composite tracer dataset (0.41) was equal to the mean of the porosity 

estimates from the datasets of individual tracer species (Figure 3.3a). 

The porosity estimate using the Composite dataset did not vary between the weighted and 

unweighted sequential methods.  In contrast, the calibration methods that used individual 

tracers showed sensitivity to the weighting scheme (compare Figures 3.2a and 3.2b).  

Interestingly, when compared to the weighted sequential methods, the unweighted 

sequential methods resulted in porosity estimates that moved towards (and in some cases 

past) the Composite porosity estimate.  The sequential use of the unweighted SF6 dataset 

resulted in the highest porosity estimate of all methods examined in this study. 

For both CFC-11 and SF6 , simultaneously calibrating all parameters resulted in a porosity 

estimate closer to that of the Composite method than did the sequential use of those tracers 

(compare Figures 3.2a and 3.2c).  The inclusion of multiple tracer species (i.e., the 230 

transport observations of the Composite dataset) resulted in very small confidence 

intervals for all parameters and consistent porosity estimates between the weighted 

sequential, unweighted sequential, and simultaneous cases (0.41, 0.41, and 0.43, 

respectively).  For CFC-11, the lower porosity estimate that resulted from the simultaneous 

procedure was accompanied by similar reductions in both the calibrated hydraulic 

conductivities as well as the recharge calibrated for the more poorly drained recharge 
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areas.  In other words, when compared to the sequential CFC-11 method, the simultaneous 

use of the CFC-11 transport observations resulted in a model that reduced flow rates and 

offset those reductions by a reduction in effective porosity (which raises advective 

velocities).  For both the CFC-113 and the Composite methods, the estimated porosity was 

consistent between the sequential and simultaneous procedures, but the simultaneous 

procedure resulted in increased recharge rates as well as a significantly reduced calibrated 

hydraulic conductivity for the Confining Unit.  When compared to the weighted sequential 

method, the simultaneous use of the 3H/3He dataset did not affect the flow parameter 

estimates, the porosity estimate, or the associated uncertainty bounds (Figures 3.2a and 

3.2c).  For both of those cases, the use of the 3H/3He ages resulted in the lowest porosity 

estimate of all methods examined in this study. 

The Confining Unit hydraulic conductivity estimate resulting from individual tracer 

datasets were within an order of magnitude, with the exception of the CFC-113 estimate, 

which was an order of magnitude less than the estimates made against other datasets (0.03 

m/day for CFC-113, versus 0.16, 0.60, and 0.81 m/day, respectively, for CFC-11, CFC-12, and 

SF6; see Figure 3.3c).  Of the methods using individual tracer datasets, the CFC-113 data – 

with more consistent tracer measurements at the four wells located in the Confined Aquifer 

– also resulted in the smallest uncertainty bounds.  No 3H/3He age data exists for wells 

located below the Confining Unit; as a result the calibration using 3H/3He ages could not 

constrain the Confining Unit parameter estimate.  The use of all data resulted in an estimate 

of 0.08 m/day with very small uncertainty bounds (Figure 3.3c).  In contrast, calibration 

without tracer information (Flow Only) was unable to constrain its estimate of the 

confining unit conductivity. 
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3.2.2 - Comparison of the resulting simulated distributions of base-flow age 

The management purposes of the Upper Chester simulation model include predicting the 

residual catchment response to historic nitrate loading and the future catchment response 

to nitrate mitigation strategies.  As stated above, the estimated distribution of base-flow 

ages, including descriptors such as the mean and median ages, serve as important 

indicators of this response.  Figure 3.4 shows the simulated age distributions of base-flow 

discharging to Morgan Creek for the models calibrated by different tracer datasets.  Table 

3.2 specifies the mean age for each of the calibrated models. 
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(a) Sequential Methods 

 

(b) Simultaneous Methods 

 

Figure 3.4 Simulated steady state base-flow age distribution for Morgan Creek for the multiple calibrated 
models.  Age distribution simulated at the stream gage (see Figure 2.1 for gage location).  In-stream travel 

times were assumed to be negligible. 
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Table 2.  Mean and median base-flow age simulated at the Morgan Creek stream gage by 
the calibrated models. See Figure 2 for gage locations.  ‘Leakance to Confined Aquifer’ 

calculated as the inflow to the Confined Aquifer divided by the total recharge to the model. 

 

 

The mean base-flow age predicted by the models calibrated with individual tracers are 

within 20-30% of the mean age predicted by the model calibrated with the Composite 

dataset.  The weighted sequential and simultaneous sets of methods indicate very similar 

ranges of mean base-flow age (simulated base-flow age for the unweighted sequential 

methods are not shown).  In other words, while the simultaneous calibration methods 

resulted in different parameter values than the sequential methods (Figure 3.3), those 

differences had little aggregated effect on the predicted mean base-flow age.  In contrast, 

when compared to the sequential methods, the simultaneous use of flow and tracer 

information generally reduced the predicted median ages by 25-40% (as a result of 

reducing the Confining Unit conductivity and thereby increasing the contribution of 

shallower, faster flow paths).  All methods indicate that 80-90% of base-flow is younger 

than 70 years and has therefore recharged since the onset of post-1940 agricultural 
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intensification (Figure 3.4).  As expected, larger calibrated porosities result in slower 

system velocities and therefore generally correlate with older base-flow ages; e.g., for both 

the sequential and simultaneous sets of methods, the CFC-11 method resulted in the largest 

estimated porosity (Figure 3.3) and the oldest simulated mean base-flow ages (Figure 3.4, 

Table 3.2).  When compared to the sequentially-calibrated model, the simultaneous use of 

the Composite dataset resulted in a lower median age due to the adjustments to the 

recharge rate and the Confining Unit hydraulic conductivities (Figure 3.3c).  The SF6 

method is the only method for which the mean and median ages were higher using 

sequential calibration than when using simultaneous calibration. 

3.3 DISCUSSION 

In this section we examine the factors that contribute to the variability in the parameter 

sets that result from calibration using different tracer datasets.  In the absence of 

knowledge about the true parameter values, we consider the Composite porosity estimates 

to be the most reliable due to their derivation from the largest dataset and the smaller 

confidence intervals that result from this dataset when compared to the confidence 

intervals associated with other species (Figure 3.3).  However, the Composite dataset is 

subject to the same potential impacts of any errors in excess air estimates or transport 

model formulation as its constituent species.  (It should also be noted that because the 

confidence intervals shown in Figure 3.3 do not integrate these sources of uncertainty they 

should consequently be considered to be minimum confidence intervals).  In addition, for 

the weighted calibration methods, the Composite parameter estimates are markedly 

different than the Trit_Hel_Ages estimates (Figure 3.3).  As previously described, the 
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3H/3He ages are independent of the atmospheric history and therefore less subject to 

uncertainty in the input signal.  As such, the parameter estimates that result from the 

Trit_Hel_Ages method provide an important provisional benchmark for the accuracy of the 

estimates made by other methods.  However, due to the relatively small number of 

observations (Table 2.1), the estimates made with the Trit_Hel_Ages method are 

characterized by large confidence intervals and as such provide limited evidence.  

The sequential methods each used the same flow field but generated a range of porosity 

estimates.  Furthermore, while the simultaneous calibration methods resulted in more 

consistent porosity estimates, the various methods did not result in consistent adjustments 

to other model parameters (Figure 3.3).  The variability of parameter estimates and the 

non-overlapping confidence intervals between methods suggest the following potential 

explanations: 

1. The CFC-11 and CFC-12 datasets are impacted by some form of mass loss or 

transport delay and are therefore not well-described by the conservative advective 

transport assumed by our simulation model. 

2. The SF6 dataset is a function of a higher excess air amount than the value assumed 

by our simulation model (2 cm3/L). 

3. The spatial distribution of measurement uncertainty and the associated calibration 

weights is not consistent between species, such that the different calibration 

methods were leveraged by large residuals at different observation locations. 

These interpretations are considered in more detail below. 
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3.3.1 - Investigating the potential impact of tracer retardation or degradation 

As discussed earlier, because the atmospheric CFC input signal was increasing for most of 

the recharge times sampled by this dataset, subsurface degradation of tracer mass or 

retardation of tracer transport would make apparent ages artificially old (Figure 3.1).  For 

a model that assumes conservative, advection-only transport, calibration against artificially 

old age information would result in elevated porosity estimates. 

It is not expected that CFC retardation would affect calibration results at the Upper Chester 

study site.  CFC sorption is commonly associated with the fraction of organic carbon (foc) in 

groundwater systems (Plummer and Busenberg, 2000), but the Upper Chester has 

generally low organic content, except localized surface areas of higher organic content in 

small depressional wetlands that have been converted to agricultural use (Denver et al., 

2014).  Furthermore, in previous studies CFC-113 was more affected by sorption than CFC-

11 and CFC-12 (Choung and Allen-King, 2010; cf. Cook et al., 1995, and Bauer, 2001), 

whereas in the present study CFC-113 appears to be less impacted by mass loss or delay 

than CFC-11 and CFC-12. 

CFC-11 and CFC-12 apparent ages are older than the CFC-113 and SF6 apparent ages for a 

few deeper measurements (Figure 3.5), which may suggest some preferential degradation 

of CFC-11 and CFC-12.  The reducing conditions required for CFC degradation have been 

observed in portions of the Upper Chester (Bo hlke and Denver, 1995).  For example, Figure 

3.6a shows a well nest in which, for the deepest well in the Chesterville Branch catchment 

(Be159), low O2 and low nitrate indicate the potential impact of reducing conditions on 

contributing transport pathways, and the CFC-12 apparent ages are notably older than the 

CFC-113 apparent age.  However, the lack of a CFC-113 age gradient with depth, and the 
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dissimilarity of CFC-113 ages to both SF6 and CFC-11 ages, may indicate CFC-113 

contamination.  Further, previous investigators have observed that CFC-12 is more resistant 

to degradation than CFC-113 (Sebol et al., 2007; Oster et al., 1996).  Thus, if CFC 

degradation is an important component of tracer transport in the Upper Chester we would 

expect that the porosity estimate using CFC-12 would be lower than the estimate using 

CFC-113, which was not the case (Figures 3.2a and 3.2b).  Finally, analysis of observation 

influence using Cook’s D as a metric of leverage does not suggest that measurement 

locations at which CFC-11 and CFC-12 ages are older than CFC-113 or SF6 ages (Figure 3.5) 

have more influence than other observations on the porosity estimate (results not shown).  

In sum, there is little evidence from the porosity estimate that CFC degradation or 

retardation impacted the calibration results or should be included in the transport model. 
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Figure 3.5 Scatter-matrix of apparent piston-flow ages interpreted from Upper Chester tracer 

measurements.  Integer values on axes are apparent age in years.  Plots on diagonal show 
distribution of apparent ages for each tracer (represented by kernel density estimate). 

 

The variations in the conductivity estimate for the Confining Unit were due to small 

variations in the tracer concentrations sampled below the Confining Unit.  For the four 

wells located in the Confined Aquifer, the sampled waters were anoxic (data from Bachman 

et al., 2002) and the tracer concentrations were either zero or near the limits of the 

measureable tracer amounts (e.g., apparent recharge dates between 1945 and 1965; see 

Figure 3.1).  Each of these four wells contained a small amount of SF6 (0.02 to 0.07 fmol/L; 

see data for wells Be189, Be200, Be210, and Be211 in Busenberg and Plummer, 2000) 

while, in contrast, only one of the wells in the Confined Aquifer contained CFC-113.  In the 

absence of any subsurface sources of background SF6 this may suggest conservative SF6 

transport but the preferential degradation of CFC-113 at some sites due to reducing 
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conditions in the silt and clay deposit (cf. Hinsby, 2007).  However, given the uncertainty 

associated with sampling very small tracer concentrations (Busenberg and Plummer, 2000) 

and the mixed evidence of the CFC data (e.g., the CFC-11 apparent ages are younger than 

the SF6 apparent ages at Be210) it is not clear that there is a difference in transport 

mechanisms between the different tracer species.  More clear is the evidence of hydraulic 

connectivity between the Surficial and Confined Aquifer since each of the four wells 

contained a measurable amount of at least one tracer species.  The small confidence 

intervals on the Confining Unit hydraulic conductivity estimated by the Composite method 

(Figure 3.3c) particularly shows that tracer concentrations in the Confined Aquifer can be 

explained by transport from the Surficial Aquifer through the silt and clay deposit (i.e., 

rather than from some more distant recharge location). 
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Figure 3.6 Tracer apparent ages and nitrate and dissolved oxygen concentrations at two well nests 
in the Chesterville Branch subcatchment (a and b) and one well nest in the Morgan Creek 

subcatchment (c).  Identifiers for the individual wells in each nest are listed in the far right panel.  
The dashed lines connect measurements made on the same date. 

 

3.3.2 - Investigating the potential impact of errors in model boundary conditions 

As with CFC-113, sequential calibration using SF6 resulted in a lower porosity estimate than 

the estimate from the CFC-11 or CFC-12 method (Figure 3.3a).  The porosity estimate 

using the simultaneous SF6 method was marginally lower than CFC-11 or CFC-12 but with 

much larger uncertainty (Figure 3.3b).  SF6 is not known to degrade; it would therefore be 

expected that, in the event of CFC degradation, calibration against SF6 data would result in 

lower porosities (i.e., faster advective velocities and younger apparent ages) than 
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calibration against CFC data.  However, while SF6 observations are less susceptible to mass 

removal than CFC observations, SF6 simulation is much more sensitive to excess air 

assumptions than is CFC simulation because of their relative solubilities (Gooddy et al., 

2006).  In order to examine the sensitivity of the porosity estimate to the excess air 

assignment we performed additional sequential calibrations using SF6 and CFC-113 and 

assigning 1, 3 and 4 cm3/L excess air as inputs to the Henry’s Law conversions (noting that 

Busenberg and Plummer, 2000, found evidence of excess air values as high as 3 cm3/L on 

the Delmarva Peninsula).  The SF6 porosity estimate was highly sensitive and the CFC-113 

estimate was not (Figure 3.7).  In other words, it could be the case that our general 

assumption (2 cm3/L for all recharging tracers) underestimates the actual excess air, such 

that our porosity calibrated with SF6 is in erroneously low.  In this case, the SF6 porosity 

estimates would be more consistent with the CFC-11 and CFC-12 estimates; however, this 

would not explain the lower CFC-113 porosity estimate. 

 

Figure 3.7 Sensitivity of calibrated porosity to the value assumed for recharged excess air. 
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3.3.3 - Investigating the potential impact of measurement uncertainty and calibration weights 

Much of the distinction between the sequentially-estimated parameter sets may be 

explained by examining the most influential observations in each tracer dataset and 

comparing the weighted calibration results to the unweighted calibration results for each 

method (Figure 3.3).  For example, the CFC-11 porosity estimate is strongly influenced by 

the observation at Be208, a well located in the Morgan Creek headwaters.  The reported 

measurement standard deviation for Be208 is very low (1%, from Busenberg and Plummer, 

2000), which results in this observation being heavily weighted during the regression.  

Figure 3.6c shows the steep age and nitrate gradients at this near-stream location; these 

gradients reflect the convergence of disparate flow paths near their discharge in Morgan 

Creek.  We tested the sensitivity of the CFC-11 calibration results to the confidence assigned 

at well Be208 and found that by simply increasing the Be208 measurement uncertainty 

from 1% to 2%, the porosity estimate using CFC-11 as calibration targets dropped from 

0.48 to 0.44.  The porosity estimate using the unweighted CFC-11 dataset reflects this same 

sensitivity to calibration weights (Figure 3.3b). 

Similarly, the low porosity value estimated using CFC-113 reflects the influence of Be163, 

an observation location in the Chesterville Branch headwaters with a low (< 1%) CFC-113 

measurement uncertainty (Busenberg and Plummer, 2000).  The lack of age gradient and 

nitrate gradient at Be62 and Be163 (Figure 3.6b) indicates locally-complex hydrology, 

including ponding and focused recharge from a swale at the land surface (oral 

communication, J.K. Bo hlke).  The CFC-113 apparent age is consistent with the ages derived 

from other tracers (Figure 3.6b); however, unlike CFC-113, the larger sample standard 

deviations for measurements associated with other tracer species reflect the uncertainty in 
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this area of the model.  By relaxing the relative importance of this observation, the porosity 

estimate using CFC-113 data increases from 0.35 to 0.43 (Figures 3.2a and 3.2b), closer to 

the estimate derived from the Composite dataset. 

In sum, the spatial distribution of measurement uncertainty is not consistent across 

species, and this variation in confidence explains much of the variation in calibration 

results.  It may be further noted that neither the measurement uncertainty nor the 

simulated residuals are spatially biased (Figure 3.2).  For CFC-11, CFC-12, and CFC-113, 

damping the influences of individual measurements by using an unweighted regression 

resulted in porosity estimates similar to the estimate derived from the collective evidence 

of the weighted Composite dataset. 

3.4 CONCLUSIONS 

CFC, SF6, and 3H/3He datasets were used individually and in combination to calibrate a 

groundwater flow and transport model for an agricultural catchment on the Delmarva 

Peninsula.  Sequential calibrations, in which individual tracer species were used with an 

identical flow model to calibrate the effective porosity, resulted in a wide range of porosity 

estimates.  Biases due to un-modeled transport processes (e.g., degradation or retardation) 

are not evident in the datasets and do not appear to be responsible for the differences in 

calibration results.  Instead, the differences between calibrated models can be largely 

explained by the variation in the spatial distribution of measurement uncertainty for the 

different tracer species.  The use of a composite dataset of multiple tracer species was 

judged to provide the most accurate parameter estimates; for the calibrations performed 

with individual tracer species, small adjustments to the calibration weights at a few 
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locations resulted in parameter estimates consistent with those derived from the weighted 

composite dataset and suggested that the different species are consistently described by 

conservative advective transport.  Sensitivity analysis did show that errors in the 

assignment of recharging excess air could also explain the inconsistency between the 

porosity estimate using SF6 and the porosity estimates using CFC-11 and CFC-12.  

Simulated base-flow age using models calibrated by individual tracer species varied by +/- 

20% from the age simulated by a composite dataset of multiple species.  The use of the 

tracer dataset allowed estimation of the hydraulic conductivity for a semi-confining unit 

that was not previously well understood, showing that the confined aquifer does receive 

recharge from the surficial aquifer. 

This work demonstrates that while tracer data can provide necessary supplemental 

information for the calibration of flow and transport models, the use of data from a single 

tracer or from a small tracer set may be insufficient to fully interpret the information 

content of the tracers.  While use of multiple weighting schemes with datasets of individual 

tracers may be important for suggesting the range of possible models, the combined use of 

multiple tracers is less sensitive to the weighting scheme and results in more confident 

parameter estimates. 
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Chapter 4:  Simulating Nitrate Removal Mechanisms in an Agricultural 
Catchment with Contrasting Nitrate Base-flow Concentrations 
in Subcatchment Streams2 

 

4.0 INTRODUCTION 

As point source controls on nutrient discharges to receiving waters have improved in 

recent decades, non-point source loading has become an increasingly important 

contributor to surface water quality problems.  In coastal estuaries and bays, where 

primary productivity is typically nitrogen limited (Vitousek et al., 1997; Schindler and 

Vallentyne, 2008), algal blooms and dissolved oxygen deficits may persist due to the 

ongoing discharge of groundwater nitrates that have accumulated in surficial aquifers 

during the past century (Puckett et al., 2011).  For example, studies have estimated that 

roughly half of nitrogen inputs to the Chesapeake Bay are transported via recharge to the 

subsurface and subsequent base-flow discharge to Bay tributaries or direct groundwater 

discharge to the Bay itself (Lindsey et al., 2003).  On the agriculturally-intensive Eastern 

Shore of the Chesapeake Bay, the fraction of nitrate transported via groundwater may be as 

high as 70% (Ator and Denver, 2012). 

 

While numerous studies have documented the linkages between agricultural nitrogen loads 

and surface water degradation (e.g., Bo hlke and Denver, 1995; Rupert, 2008), the 

magnitude and timing of load reductions due to agricultural best management practices 

(BMPs) that are intended to reduce groundwater nitrates and improve surface water 

                                                        
2 This chapter is being prepared for submission to Environmental Science and Technology. 
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quality at the catchment scale are not well understood (Meals et al., 2010).  In gaining 

streams, in-stream nitrate concentrations are an aggregate measure of the transport due to 

many converging groundwater flow paths, such that the in-stream nitrate measurement at 

any point in time is a composite response to spatially- and temporally-distributed land use 

management and landscape processes.  As a result, while loading reductions due to BMPs 

have been documented at laboratory and field scales (e.g., Staver and Brinsfield, 1998), the 

anticipated effects of these practices are often difficult to detect at the outlets of 

agricultural watersheds in which they have been widely implemented (Osmond et al., 

2012).  For example, Sutton et al. (2009) concluded from 20 years of base-flow nitrate 

measurements in a Maryland agricultural catchment that nitrate discharge did not decrease 

in spite of catchment-wide implementation of agricultural BMPs.  They suggested that, 

while BMP implementation may have slowed the rate of increase of in-stream nitrate 

concentrations, the potential impact of BMPs could not be separated from other spatially- 

and temporally-distributed processes affecting in-stream loads.  Gitau et al. (2010) 

similarly compared trends in stream nitrate concentrations with a detailed land use and 

BMP-implementation history for an agricultural catchment in Arkansas.  They concluded 

that the impact of BMP implementation could not be disentangled from the contributing 

effects of other land use changes.   

 

These studies illustrate two fundamental challenges to detecting water quality impacts 

from agricultural BMPs such as cover crop implementation or nutrient management plans.  

First, the failure to detect improvement may be because those improvements are not yet 

evident given the length of groundwater travel times and the associated lag between land 
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surface action and surface water response (Sanford and Pope, 2013).  In this case, the use 

of groundwater flow and transport modeling or lumped parameter methods to characterize 

the travel time distribution (TTD) of base-flow discharge may be needed in order to 

estimate the likely timescale of system response and the concomitant timescale of 

monitoring programs required to discern that response.  Second, the identification of water 

quality responses due to management improvements – or the explanation of disparate 

responses across agricultural catchments subject to the same regime of improvements – 

requires accounting for a variety of confounding environmental factors.  These 

confounding factors, which may vary widely between catchments, include background 

rates of nitrogen removal at the land surface, in the aquifer, or in the receiving stream.  In 

this case, analysis or prediction of the effects of land surface conservation practices may 

require prior characterization of nitrate transport processes and removal mechanisms. 

 

In the current Chesapeake Bay Watershed Model (WSM) of the Chesapeake Bay Program, 

assigned BMP efficiencies are derived from small-scale experiments and perturbed in order 

to account for the uncertainty due to differences in setting (e.g., topography, geology), 

maintenance, and operation between the experimental site and the application site (USEPA, 

2010).  It has been recognized that the lack of field-scale and catchment-scale measures for 

BMP nitrate-reduction performance is a significant source of uncertainty for the Bay WSM 

predictions and the regulatory decisions that are based on those predictions (Scientific and 

Technical Advisory Committee, 2005).  In order to better assess the catchment-scale water 

quality benefit of agricultural management improvements in the Chesapeake Bay basin, the 

U.S. Department of Agriculture (USDA) has targeted three agriculturally-intensive 
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watersheds (i.e., characterized by high rates of agricultural nutrient export) for increased 

BMP implementation and associated water quality monitoring.  BMP implementation was 

initially funded through allocations from the Chesapeake Bay Watershed Initiative, which 

was included in the 2008 Farm Bill (Science and Technical Advisory Committee, 2010).  

The U.S. Geological Survey (USGS) is coordinating monitoring and analysis of these targeted 

watersheds [Science and Technical Advisory Committee, 2010; Nelson and Spies, 2013).  

The current phase of these watershed studies effectively began in 2010 and includes: (i) 

land use data collection (including reconstruction of recent nutrient inputs and 

conservation efforts); (ii) accelerated, state- and federally-funded implementation of BMPs; 

and (iii) more intensive watershed monitoring (Nelson and Spies, 2013).  In some cases, 

including the Upper Chester watershed that is examined in this study and described in 

more detail below, the focus watersheds have a prior history of surface water and 

groundwater data that was collected in the course of individual studies or at longer term 

monitoring sites (e.g., USGS surface water gages). 

 

The objective of the study described in this chapter is to use groundwater modeling to link 

estimated historic land surface inputs to subsurface and base-flow nitrate concentrations 

in order to characterize the controls on nitrate removal in the Upper Chester (MD) targeted 

watershed (Figure 2.1).  The study makes an important contribution to the catchment-

scale examination of subsurface nitrate transport and catchment removal processes.  

Though these phenomena have been widely investigated, there have been few fully 

distributed, three-dimensional modeling studies of nitrate transport and removal in 

catchments with nitrogen removal rates that are highly spatially-variable, as is the case in 
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the Upper Chester.  The Morgan Creek and Chesterville Branch subcatchments (Figure 2.1) 

have similar land-use histories, soil types, and stream discharge rates but widely different 

in-stream nitrate levels.  Concentrations at the Morgan Creek USGS gage hovered between 

2 and 3 mg NO3-N/L for the duration of its sampling history; in contrast, concentrations at 

the Chesterville Branch gage have increased from 4-6 mg/L in the early 1990's and 

currently persist near 10 mg/L (Figure 4.1).  Field data suggest several potential reasons 

for this variability though no catchment scale studies have integrated the available data in 

order to test or quantify their relative contributions.  For example, Bohlke and Denver 

(1995) reported elevated nitrate G15N levels, excess dissolved N2, and indicators of pyrite 

reduction at the glauconitic confining unit that outcrops at the lower reaches of Morgan 

Creek (Figure 2.1b).  Microbial reduction of nitrate to N2 prefers G14N, leaving an enriched 

nitrate G15N value in the remaining nitrate and excess N2 in the water sample; therefore, 

this evidence from lower Morgan Creek indicates that some fraction of potential nitrate 

loads from the surficial aquifer may be removed by denitrification due to contact with the 

Confining Unit before discharge as base-flow.  The Confining Unit is tens of meters deeper 

beneath Chesterville Branch (Figure 2.2); as a result, fewer discharging base-flow paths 

encounter the Confining Unit and base-flow concentrations consequently show no evidence 

of denitrification. 

 

Additionally, Bachman et al. (2002) observed increasing silica concentrations in a 

downstream direction on Morgan Creek.  Groundwater silica concentrations elsewhere on 

the Delmarva Peninsula have been shown to positively correlate with tritium-derived 

groundwater ages (Clune and Denver, 2012); therefore, increased silica in the lower 
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reaches of Morgan Creek may indicate the dilution of agricultural nitrates with older, 

higher silica, nitrate-free water that reaches the stream from the confined aquifer.  

Sediment cores in lower Morgan Creek show an abrupt change in the elevation of the 

Confining Unit and thus suggest a discontinuity that could allow influx of older 

groundwater from the Confined Aquifer (Bachman et al., 2002). 

 

 

Figure 4.1 Observed stream nitrate concentrations at the (a) Morgan Creek and (b) 
Chesterville Branch gages (see Figure 2.1 for gage locations).  Hollow markers show all 

nitrate observations; filled markers show those observations for which the associated base-
flow component was greater than 90% of the total discharge (see Section 4.1.3). 

 

Finally, because the Morgan Creek stream channel is downcut into the outcropping Aquia 

Confining Unit, direct groundwater discharge through the streambed is limited.  

Groundwater instead emerges through seeps at the edge of a near-stream floodplain and 

travels to the main channel via small rivulets and sheetflow.  In a study of the lower reach, 

Duff et al. (2008) found nitrate concentrations in the groundwater, rivulets, and stream to 

be 10.2 mg-N/L (median value), 5 mg-N/L (mean value), and 2.8 mg-N/L (mean value), 

respectively.  This suggests that riparian nitrogen removal may account for a significant 



 59 

portion of load reductions to Morgan Creek.  There is no equivalent field data describing 

nitrate processing at or near the Chesterville Branch stream channel. 

 

This study uses the steady state flow model calibrated in Chapter 3 of this dissertation to 

derive travel time distributions (TTDs) for each observation location in a large dataset of 

subsurface and surface water nitrate measurements.  Identifying these controls on nitrate 

transport and removal will allow subsequent disentanglement of the background nitrate 

removal from water quality improvements that may be due to management actions.  As 

such, this study provides an important baseline assessment of the Upper Chester targeted 

watershed in support of future efforts to detect any water quality benefits from BMP 

implementation.   

 

4.1 METHODS 

4.1.1 - Simulation of nitrate transport 

The time-variable nitrate concentrations at observation wells and at the Morgan Creek and 

Chesterville Branch stream gages were simulated by convolving the steady-state travel 

time distribution (TTD) at each location with the time-variable nitrate input function 

(described in Section 4.1.2) minus reductions due to nitrate removal mechanisms.  As 

described in Chapter 3 of this dissertation, previous studies have found solute transport in 

the study area to be strongly advection-dominated, and TTDs for this study were generated 

without dispersion using MODPATH (Pollock, 2012).  TTDs at observation wells were 

generated by backward tracking particles from each well location to the land surface and 

then aggregating the travel times of all pathlines into a distribution.  In order to account for 
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the uncertainty associated with the particle interpolation scheme and the spatial 

distribution of loading, as well as small scale mixing near the observation wells, backward 

particles were tracked from a cylindrical registration volume (radius = 5 meters, height = 

10 meters) centered on the reported location of the observation well (cf. Figure 6.1 and 

the associated discussion in Section 6.0.2 of this dissertation).  TTDs at the stream gages 

were generated by forward tracking particles from the land surface to discharge locations 

and then aggregating the travel times of all pathlines that discharged to either Morgan 

Creek or Chesterville Branch into a TTD for that stream.   

 

Several factors govern the delivery of excess nitrates to the water table and their transport 

through the subsurface to discharge locations.  These factors include not only nitrogen 

inputs (e.g., the rate and timing of fertilizer applications) and plant uptake, but also climate 

variables, soil drainage type, and soil organic matter content (Vinten et al, 1993).  For 

example, multiple researchers have shown the particular sensitivity of leachate 

concentrations to precipitation patterns, as rainfall deficits during the growing season 

reduces crop uptake efficiencies and increases pools of excess nitrate (Burt et al., 2008), 

while large rainfall amounts post-harvest accelerate nitrate flushing from the root zone to 

the water table (Staver and Brinsfield, 1998).  In addition, there is some evidence of nitrate 

sorption in agricultural soils, as Clay et al. (2004) estimated a retardation factor of 1.37 

from column studies of clay-loam soils. 

 

We estimated three parameters describing nitrate transport and removal in the Upper 

Chester: (i) nitrate removal at the land surface due to soil denitrification; (ii) retardation of 
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nitrate transport relative to the advective velocities described by the calibrated flow 

model; and (iii) nitrate removal at the stream due to the aggregated impact of in-stream 

and near-stream processes (e.g., denitrification at the groundwater-streambed interface, 

denitrification due to hyporheic exchange, and biotic uptake).  The Surficial Aquifer in the 

Upper Chester has high dissolved oxygen concentrations and low organic carbon content, 

and previous researchers have found little evidence of denitrification in the aquifer itself 

(Green et al., 2008); as a result, we assumed conservative transport between the root zone 

(i.e., after removal due to soil denitrification) and the discharge location, with the 

important exception of flow paths that contacted the Aquia Confining Unit.  Based upon the 

evidence of Bohlke and Denver (1995), we assumed without calibration, complete removal 

of nitrogen from these flow paths due to pyrite reduction and denitrification.  

Approximately 35% of simulated discharge to Morgan Creek contacts the Confining Unit, 

and a high fraction of those flow paths recharge from agriculturally-loaded areas. 

 

4.1.2 Annual estimates of excess nitrogen 

Loading rates of nitrate recharging from agricultural land to the water table were derived 

from county-level nitrogen budgets.  These budgets were based on agricultural inputs, 

agricultural outputs, and atmospheric deposition.  County-level budgets were estimated 

and converted to areal loading rates as follows.  For the years 1930-2006, the total mass of 

agricultural nitrogen available for recharge to groundwater in Kent County during year i 

was calculated as  

     ,  ,   𝑎 ,  , −  𝑎 ,   ,  (4.1) 
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where Nag,in is the agricultural nitrogen inputs, and Nag,out is the agricultural nitrogen 

exports.  Historical county-level agricultural nitrogen inputs were derived from estimated 

and reported inorganic fertilizer sales (Alexander and Smith, 1990; Gronberg and Spahr, 

2012) and estimates of poultry manure production (Sanford and Pope, 2013) (Figure 4.2).  

Historical county-level agricultural nitrogen exports were derived from the annual 

production of corn, soybeans, and wheat as published by the National Agricultural 

Statistics Service (NASS).  The amount produced of each crop was converted to mass 

nitrogen by assuming the nitrogen content of harvested crops to be 0.9, 1.1, and 1.5 pounds 

nitrogen per bushel for corn, soybeans, and wheat, respectively (Murrell, 2008).  The 

nitrogen within reported harvested silage (which is not reported for the full period of 

record) was assumed to remain in the catchment and thus be available for leaching. 

 

 

Figure 4.2  (a) Crop acreage, (b) agricultural nitrogen inputs and exports, and (c) estimated 
recharging nitrate concentrations for agricultural land in the Upper Chester.  The High Loading and 

Low Loading scenarios are calculated using a three-year window; see discussion in text. 
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For each year, county-level estimates of the residual nitrogen available after crop uptake 

(Eq. 4.1) were converted to an areal loading rate that was applied within the model 

domain.  With the exception of a few years for which a land use snapshot was available, the 

spatial and temporal distribution of crops – and, therefore, loading – is uncertain.  That is, 

corn receives a much higher fraction of total fertilizer inputs for a given year than other 

crops (Hancock and Brayton, 2006), but in recent decades most agricultural land in the 

model area has been in rotation between corn, soybeans, and wheat (Hancock and Brayton, 

2006).  Given these data limitations, we assumed a constant spatial extent of agricultural 

land, and for all simulated years nitrogen loads were uniformly distributed across model 

cells that were categorized as row crop or pasture land by the 2008 Cropland Data Layer.  

In order to address the loading uncertainty, we estimated upper and lower bounds on the 

loading rates that were applied to an agricultural model cell in a given year.  The upper 

estimation (referred to as the High Loading scenario; Figure 4.2c) assumed that fertilizers 

were applied to only corn and therefore calculated the areal loading rate (mass N · area-1 · 

year-1) for year i as 

   𝑡   ,    ,   
    ,  , 

     𝐶     
 (4.2) 

where Ntot,in,i is the county-level mass of nitrogen remaining after crop export for year i (Eq. 

4.1) and Area Corni is the county-level area of harvested corn for the year i.  In contrast, the 

Low Loading scenario assumed that the excess nitrogen was uniformly available to the 

cumulative harvested area for corn, soybeans, and wheat as reported by NASS and 

therefore calculated the areal loading rate as 
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   𝑡   ,   ,   
    ,  , 

     (𝐶                 𝑡) 
 (4.3) 

For both scenarios, additional nitrogen from atmospheric deposition was uniformly 

applied to the entire model domain.  Rates of nitrate wet deposition were obtained from 

the National Atmospheric Deposition Program monitoring site in Wye, Maryland, 

approximately 30 miles southeast of the study site (data downloaded from 

http://nadp.sws.uiuc.edu on 6/4/2015).  Wet deposition data was available from 1983-

2006.  We assumed zero wet deposition for years prior to 1935; for years between 1935 

and 1983 we used a linear interpolation to estimate annual wet deposition rates.  No data 

on nitrate dry atmospheric deposition for the Maryland Eastern Shore was available, and so 

dry deposition was not included in the analysis. 

 

We further accounted for the uncertainties associated with (i) crop rotation and (ii) 

variability in the timing of leaching driven by variability in precipitation inputs by 

transforming the loading to the water table in year i to the three-year moving average of 

the rates calculated with equations 4.1, 4.2, and 4.3 (Figure 4.2c).  In summary, the High 

Loading scenario, which we simulated as the worst-case scenario, overestimates the total 

nitrogen inputs to the subsurface because it derives the fertilizer intensity from only corn 

acreage and applies that intensity to all agricultural acreage in the study area.  In contrast, 

the Low Loading scenario is more closely mass conservative, but cannot capture localized 

loading variability.  Spatial variability in loading may have important consequences, such as 

high nitrate leaching from cornfields. 
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4.1.3 Parameter estimation method 

Parameters characterizing nitrate transport and removal were estimated in two phases.  

For both phases we calibrated parameters using the automated parameter estimation code 

UCODE (Poeter et al., 2005).  In the first phase, the soil removal fraction and the transport 

retardation were calibrated against groundwater nitrate observations.  Subsurface nitrate 

observations were aggregated into annually-averaged concentrations at each observation 

well.  Groundwater nitrate measurements included observations from three closely-spaced 

transects of 3-4 piezometers each that sampled shallow groundwater in the lower reach of 

Morgan Creek.  For reasons that are further discussed in the Results section, these 

observations were aggregated into a single calibration target for each transect.  In sum, 233 

total nitrate measurements were aggregated through annually-averaging and aggregation 

of transects into 96 subsurface calibration targets that date between 1988 and 2004.   

 

Soil denitrification was assumed to be a function of soil drainage type and calculated with 

the expression 

 

 (  )
𝑚

   (4.1) 

 

where S is a rank of soil drainage type on a scale of 1 to 5 and m is a calibrated parameter 

(cf. Sanford and Pope, 2013).  S for each land surface model cell was derived from the 

spatial distribution of soil drainage type as identified by the ‘drclasswt’ attribute in the Soil 

Survey Geographic Database (SSURGO) dataset for Kent County MD (Soil Survey Staff). 
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Most soils in the study site are well-drained or moderately well-drained (corresponding to 

S=1 and S=2, respectively). 

 

In the second phase of parameter estimation, parameters describing nitrate mass removal 

due to in-stream and near-stream processes for both Morgan Creek and Chesterville 

Branch were calibrated against base-flow nitrate observations.  Base-flow nitrate 

concentrations were extracted from the complete record of in-stream nitrate 

concentrations by (i) separating the stream discharge record into base-flow and event 

components and (ii) selecting those nitrate concentrations for which the associated 

discharge measurement had a base-flow component that was evaluated to be 90% or 

higher (Figure 4.1).  The base-flow component of total discharge was calculated using the 

Web-based Hydrograph Analysis Tool (WHAT) (www.engineering.purdue.edu/~what/; cf. 

Lim et al., 2005). 

 

4.2 RESULTS AND DISCUSSION 

4.2.1 - Characterization of Nitrate Transport and Removal Mechanisms 

Table 4.1 shows the (i) calibrated values of the parameters describing nitrogen transport 

and removal and (ii) the relative model performances under the different loading and 

parameterization scenarios.  Figure 4.3 and Figure 4.4 show the simulated and observed 

nitrate concentrations for the Low Loading + No Retardation calibration scenario.  Note 

that for each loading/retardation scenario, calibration was performed in two phases (see 

Section 4.1.3) and thus two sum of squared error (SOSE) terms apply.  The SOSEs for the 

High Loading scenario is much higher than the SOSEs for the Low Loading scenario because 
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the higher loading assumptions increase the maximum possible error for an individual 

observation.   

 

The similarity across the scenarios of the terms describing near-stream/in-stream removal 

at Chesterville Branch and Morgan Creek indicates that these values accurately describe 

the role of these systems in the nitrogen budget for each subcatchment.  For Morgan Creek, 

stream processes remove 60-70% of incoming loads, while for Chesterville Branch stream 

process only remove 15-30% of incoming loads.  Note that the stream removal term for 

Morgan Creek is in addition to removal due to denitrification at the Confining Unit, which is 

already accounted for in the model and is assumed to completely remove nitrate from flow 

paths that intersect it.  This means that if the actual removal percentage due to the 

Confining Unit is lower than modeled, then the removal rates due to stream processes at 

Morgan Creek are higher than estimated here.  Conversely, if the spatial extent and 

influence of the Confining Unit is greater in reality than is represented by the model, then 

the Morgan Creek removal rates would be lower than shown in Table 4.1. 

 

For the High Loading Scenario, the addition of the retardation parameter reduced the SOSE 

by 10%, and for the Low Loading Scenario the addition of the retardation parameter 

reduced the SOSE by 40%.  The estimated value of the retardation parameter was similar 

under both loading scenarios (1.39 for the High Loading scenario and 1.45 for the Low 

Loading scenario), and the confidence intervals associated with both loading scenarios 

overlapped.  Notably, the parameter estimates under both loading scenarios are close to 

the value of 1.37 estimated by Clay et al. (2004) for clay-loam column studies. 
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Table 4.1.  Calibrated nitrogen removal mechanisms and transport parameters.  Values in 
parentheses under each estimated parameter are the lower and upper 95% confidence intervals 

calculated by UCODE.  No confidence intervals could be calculated for the soil removal terms under 
the Low Loading scenarios. 

 

 

Note that the soil removal term is determined by a single calibrated parameter, m (see 

Section 4.1.3), but described in Table 4.1 by its resulting removal estimate for specific soil 
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types.  The estimated soil removal terms vary significantly between loading scenarios but 

are not sensitive to the presence or absence of the retardation parameter.  For the High 

Loading scenarios, the majority of soils in the model domain (i.e., well drained and 

moderately drained soils) are estimated to have removed approximately 40-60% of excess 

nitrogen, while under the Low Loading scenarios no soil removal occurred.  These 

estimates of soil removal percentages should be considered bounds associated with the 

range of possible loading scenarios rather than estimates of the values themselves. 

 

 

 

Figure 4.3 Simulated and observed groundwater nitrate concentrations 
for observation wells in the Upper Chester.  The mean simulated/observed value is the mean 

subsurface measurement for the specified catchment. 
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Figure 4.4 Simulated and observed base-flow nitrate concentrations in Morgan Creek (green 
circles and green line) and Chesterville Branch (red triangles and red line).  The gray line shows the 
nitrate concentration recharging to the water table for simulations using the Low Loading Scenario.  

Concentrations simulated until 2006, which is the most recent year for published fertilizer sales. 
 

Morgan Creek has lower median age because the Confining Unit creates a shallower 

surficial system with a higher fraction of faster delivery.  It is therefore more sensitive to 

changes in land use.  Note, for example, the small decline in the Morgan Creek simulated 

base-flow concentrations during the late 1980’s in response to the decline in recharging 

nitrate during that same time period (Figure 4.4).  Chesterville Branch, in contrast, has 

older median and mean ages than Morgan Creek.  Therefore, for the Chesterville Branch 

simulated base-flow nitrate, the rate of increase slowed in response to the decline in 

recharging nitrate during the late 1980’s but the concentrations did not decrease. 

 

The effect of the different removal mechanisms on the total nitrogen budget in each 

catchment can be seen in Figure 4.5.  The dotted line in each panel shows the loads that 

would be exported by base-flow discharge in a given year if no nitrogen were removed by 
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any of the calibrated processes (i.e., soil denitrification, Confining Unit denitrification, or in-

stream removal).  The dashed line in each panel shows the level to which loads were 

reduced by soil denitrification and Confining Unit removal.  The solid line in each panel 

shows the actual loads leaving each catchment (i.e., the level to which loads are reduced by 

in-stream removal processes). 

 

For the Low Loading scenario shown in Figure 4.5, soil denitrification removed 

approximately 1% of annual loads to both catchments.  The Confining Unit removal 

partially accounts for the difference in stream nitrate concentrations.  In the Chesterville 

Branch catchment, no flowpaths that recharged since 1940 and carry agricultural nitrate 

contacted the Confining Unit.  Therefore, for Chesterville Branch there was no removal due 

to Confining Unit contact, and the dotted and dashed lines coincide (Figure 4.5b).  In 

contrast, the Confining Unit removed approximately 15% of total nitrate loads to Morgan 

Creek in a given year.  However, the differences between Morgan Creek and Chesterville 

Branch are more a function of in-stream removal processes than denitrification at the 

Confining Unit.  Morgan Creek drains a larger catchment than Chesterville Branch and 

consequently has more loads recharging to the water table and potentially reaching the 

stream (dotted lines in Figure 4.5).  Even after removal due to Confining Unit contact, the 

loads to Morgan Creek are larger than the loads to Chesterville Branch (dashed lines in 

Figure 4.5).  However, after in-stream removal processes, the loads leaving the catchment 

are lower in Morgan Creek than in Chesterville Branch (solid lines in Figure 4.5). 
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Figure 4.5 Contributions of removal mechanisms to reducing exported loads in (a) Morgan Creek 
and (b) Chesterville Branch.  Time series shown for calibrated parameters from Low Loading/No 

Retardation scenario (see Table 4.1).  Line styles identified in panel (b) legend apply to both panels. 
 

 

 

4.2.2 – Model performance, and the use of the calibrated flow model to corroborate the 

nitrogen loading history 

Figure 4.6 shows the model-predicted recharge date for subsurface nitrate observations in 

the Upper Chester and compares those to the estimated loading time series (described in 

Methods, above).  The simulated recharge date shown on the horizontal axis refers to the 

recharge date that is predicted by the calibrated flow model given the date and location of 

the subsurface nitrate observations shown on the vertical axis. 
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Figure 4.6 Recharge-dates predicted by the flow model for Upper Chester 
groundwater nitrate observations.  The Simulated Recharge Date (horizontal axis) is the 
recharge date predicted by the calibrated flow model given the date and location of the 

nitrate observation. 
 

 

Given the uncertainty associated with estimating historic nitrate loads from county-level 

crop data and distributing according to limited spatial information, the general consistency 

between the assumed loading time-series and the observed subsurface nitrate 

concentrations provides an important corroboration of our loading methodology.  Figure 

4.6 simultaneously suggests: (i) the general capacity of the flow model to relate land 

surface inputs to subsurface observations; (ii) the uncertainties in the transport simulation 

that may be introduced by the flow model’s simplifications of local heterogeneities; and 

(iii) the uncertainties in the transport simulation that may be introduced by both highly 

heterogeneous land surface loading and sub-surface removal mechanisms.  That is, the 

recharge dates simulated by the flow model map the trend of the majority of nitrate 

observations (shown by black triangles and black circles) to the trend in recharging nitrate 
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for those portions of the aquifer in which oxic conditions prevail and transport is expected 

to be conservative.  Subsurface concentrations for observations that recharged prior to the 

late 1980’s increase with time.  In the late 1980’s and early 1990’s, increasing energy costs 

drove increasing fertilizer costs, resulting in the conversion of cropland from corn to 

soybeans and associated decreases in fertilizer input (written communication with Ann 

Baldwin, Natural Resource Conservation Service liaison for Kent County, MD).  During this 

same time period, intermittent dry conditions may have contributed to the volatile crop 

productivity evident in Figure 4.2b. This combination of lower fertilizer nitrogen inputs 

and lower nitrogen uptake rates may be responsible for the variability in subsurface 

observations that recharged around 1990.  Green et al. (2008) used G15N and age 

information to reconstruct the loading history for a well transect in Morgan Creek and 

similarly found evidence of some transition in loading rates around 1990.  The early 1990’s 

began a period of increased implementation of nutrient management plans leading up to 

their mandatory implementation by all Maryland farmers beginning in 1998 (written 

communication with Ann Baldwin); however, it appears from the nitrogen balance 

calculated in this study that loading again increased in the 1990’s, and that loading 

reductions observed by Green et al. (2008) may have been due to a market-driven or 

hydrologically-driven pause rather than an improvement in land use management. 

 

Exceptions to the general trends just described may be briefly considered as follows.  For 

well KEBe165 (Figure 4.6a), there is evidence that spatial heterogeneities in recharge 

conditions and temporal heterogeneities in land use are responsible for the apparent 

disconnect between the modeled recharge date and the nitrate observation.  Nitrate 
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observations for the well nest including KEBe167, KEBe166, and KEBe165 are shown by 

blue circles on Figure 4.6a.  Figure 4.7 additionally shows simulated and observed ages 

for this nest.  Focused recharge from an unsimulated, edge-of-field drainage pond that is 

located near this well nest would account for higher transport velocities and younger 

observed ages at wells KEBe165 and KEBe166 than is predicted by the flow model.  At the 

same time, time-variable land use data from the National Land Cover Dataset and the 

Cropland Data Layer shows that the plots adjacent to the well nest have been used for both 

field crops and hay pasture during the last two decades.  Noting that the low nitrate 

concentrations at KEBe167 (Figure 4.6) were sampled in successive years (1990, 1991), 

these low concentrations could be explained by recharge from a non-fertilized period.  In 

other words, supporting information for this location collectively suggests that (a) the 

recharge date for well KEBe165 is approximately 1970 (rather than 1955, as predicted by 

the flow model; Figure 4.6a) and (b) the recharge concentrations for well KEBe167 may 

not be coordinated with the agricultural loading trend. 

 

 

Figure 4.7 Age, nitrate, and dissolved oxygen observations for the well nest that includes 
KEBe167, KEBe166, and KEBe165.  Triangles show observations; the dashed lines connect 
observations made on the same day.  The red circles (y) on the leftmost panel show model 

simulated ages for the three wells.   
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The single observation at well KEBe212 (shown by a green triangle on Figure 4.6b) may 

be similarly independent of the general agricultural loading history because it is located 

near a nursery located in the headwaters of Chesterville Branch.  No data on loading rates 

at the nursery are available.  However, it may be noted that other observations from wells 

that likely sample groundwater flow paths recharging from the nursery exhibit much lower 

nitrate concentrations, on the order of 10-15 mg-N/L. 

 

The five observations at well KEBe50 are shown by red circles on Figure 4.6a.  These 

samples were collected between 1988 and 1992 and similarly appear to be the 

consequence of a loading hotspot at the recharge location.  Residuals from both simulated 

heads and simulated atmospheric tracer concentrations are very small (results not shown); 

we are consequently confident in the model-predicted recharge dates.  There is no 

evidence of land use other than row crop agriculture for the recharge location identified by 

the flow model for this well.  However, unlike the likely causal link between the nursery 

and the high concentrations at KEBe212, no data exists that would explain why this 

location more than others would preserve such a high recharging nitrate signal. 

 

Finally, several nitrate observations are from closely-spaced transects of piezometers that 

sample groundwater at depths of 0-3 m beneath the stream bed on the lower reaches of 

Morgan Creek (shown by hollow circles on Figure 4.6a).  This very small area (i.e., all 

observations separated by less than 300 meters) is subject to very steep nitrate gradients.  

Chemical and isotopic evidence indicates that these gradients are due to a combination of 
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at least three factors: (a) converging flow paths of widely disparate ages from the Surficial 

Aquifer and Confined Aquifer; (b) nitrate removal due to denitrification in the Confining 

Unit sediments; and (c) concentrated near-stream loading that possibly originates at a 

dairy operation waste retention pond near the lower right bank of Morgan Creek (Puckett 

et al., 2008; Bohlke and Denver, 1995; Bachman et al., 2002).  As described in Section 4.1.3, 

these multiple measurements were aggregated into a single measurement for each transect 

at a given point in time.  Figure 4.6a shows the aggregated measurements, which as 

aggregates are well represented by model, rather than all individual measurements from 

lower Morgan Creek. 

 

In summary, while it is not expected that a catchment-scale model can reproduce all local 

complexity, the flow model successfully maps the general trend of the observed subsurface 

nitrate to the likely nitrate loading history.  This corroborates its utility as a simulation tool 

linking the land surface to surface water and identifying the controlling removal 

mechanisms. 

 

4.2.3 - Discussion of contrasting stream removal efficiencies 

Given the available data, the current analysis cannot conclusively identify why the in-

stream/near-stream removal rates vary so much between the two catchments.  However, 

two potential factors may be considered.  Recent studies have used regression analysis of 

nitrogen removal across a range of stream types (Mulholland et al., 2008; Alexander et al., 

2009; Böhlke et al., 2009) as well as modeling of nitrate transport through individual 

stream networks (Wollheim et al., 2006) to show that nitrate removal efficiency in smaller 
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order streams is a function of both stream depth (or velocity) and stream nitrate 

concentration.  At shallow depths and low velocities, a greater fraction of the stream 

nitrates has longer exposure to (i) denitrifying microbes in streambed sediments and (ii) 

nitrogen uptake services from in-channel biota (Alexander et al., 2009).  Less well 

understood is the finding that nitrogen removal efficiency declines with increasing stream 

nitrate concentration.  For example, Mulholland et al. (2008) found across a range of 

smaller order streams that increasing the stream nitrate concentration from 1.5 to 15 mg/L 

may reduce the nitrate removal fraction by more than half (from approximately 25% to 

10%; see Figure 4 in Mulholland et al., 2008).  Scanlon et al. (2010) similarly observed that 

the background in-stream nitrate removal rates in a small forested stream network were 

approximately 80% but dropped to less than 5% following a widespread tree defoliation 

event that quadrupled the in-stream nitrate concentration.  While the disruption of 

increased nitrate concentrations on benthic and aquatic community nitrate processing is 

not well described, we may note that declining nitrogen removal functions with increasing 

nitrate concentrations have also been observed in higher organisms such as freshwater 

mussels (Spooner et al., 2013). 

 

The potential for differences in (i) stream channel and flow characteristics or (ii) stream 

water quality to explain the differences in stream removal rates between Morgan Creek 

and Chesterville Branch is briefly considered here.  The Morgan Creek riparian zone is 

thickly wooded, with tree debris common in the stream channel (Duff et al., 2008).  As 

described above, the Confining Unit which outcrops at the lower reaches may not only 

account for substantial nitrogen removal through denitrification, but also controls the 
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manner in which discharge enters the main channel (i.e., through rivulets and sheetflow in 

the near-stream floodplain, rather than through the bed sediments).  While the Chesterville 

Branch stream network has not been characterized with the same detail, it is expected that 

base-flow discharge to Chesterville Branch is via upwelling through the sandy bed 

sediments (part of the Aquia Aquifer formation), bypassing the riparian zone processing 

that is an important control in Morgan Creek.  The organic content of the Chesterville 

Branch bed sediments, and the associated denitrification potential of those sediments (cf. 

Gu et al., 2008) is not known. 

 

A coarse comparison of the stream channels may be made using (i) velocities and 

associated cross-sectional flow areas sampled at the catchment outlets (Figure 4.8) and 

(ii) National Hydrography Dataset (NHD) representation of the stream networks (shown in 

Figure 2.1).   It is important to note that it is not known how representative outlet 

characteristics are of velocities and cross-sectional flow areas throughout the respective 

stream networks. Nevertheless, we may tentatively conclude that the Chesterville Branch 

catchment has shorter in-stream residence times due to a shorter network (Figure 2.1) 

and higher velocities (Figure 4.8b).  These variable residence times may account for some 

of the variation in stream nitrate removal. 
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Figure 4.8 Flow characteristics measured at the Morgan Creek and Chesterville Branch stream 
gages.  Each marker represents a field measurement.  See Figure 2.1 for locations. 

 

In addition, evidence from a small set of synoptic studies suggests that Chesterville Branch 

headwater concentrations have historically been much higher than headwater 

concentrations in Morgan Creek (Figure 4.9).  These conclusions are likewise tentative 

because of the few spatially-distributed snapshots that include both Morgan Creek and 

Chesterville Branch (Morgan Creek is not recently sampled, while multiple sites on 

Chesterville Branch have been sampled twice yearly since 2011).  In the early 1990’s (i.e., 

at the time at which the stream networks were simultaneously sampled) surficial aquifer 

nitrate concentrations in each catchment had nitrate concentrations of 10-20 mg NO3-N/L 

for observation wells near the upstream-most site in both catchments.  However, Morgan 

Creek headwater concentrations were significantly lower than aquifer concentrations, 

while Chesterville Branch headwater concentrations were not. 
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Figure 4.9 Base-flow stream nitrate concentrations from synoptic surface water sampling in 
Morgan Creek and Chesterville Branch.  Sites shown in the rightmost panel (July 2011) are 

currently sampled bi-annually. 
 

 

4.2.4 – Management implications 

These results raise an additional question that is of potential significance for management 

of nitrogen export from lower order streams.  Most basically stated for Chesterville Branch: 

are the low removal rates in Chesterville Branch (i) a characteristic of the natural system or 

(ii) a legacy of stream degradation?  That is, given the evidence of suppressed stream 

processing efficiency with elevated nitrate concentrations (Mulholland et al., 2008; 

Alexander et al., 2009; Scanlon et al., 2010), it is important to consider whether nitrate 

removal services in Chesterville Branch may be improved (i.e., restored) by reducing the 

headwater loads.  Further study is required to evaluate the relative importance of 

headwater loads (versus loads from tributaries or base-flow discharge further 
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downstream) in the high concentrations at the subcatchment outlet, and whether these 

loads are responsible for degrading the in-stream processing capacity. 

 

The same essential question may be applied in different terms to Morgan Creek: does the 

nitrate load reduction provided by Confining Unit denitrification help maintain the in-

stream processing potential of Morgan Creek?  That is, in the absence of the damping that is 

due to the Confining Unit, would the in-stream/near-stream removal rates in Morgan Creek 

be as high as they are observed to be in this study?  This requires further specification of 

the spatial extent of the Confining Unit and its potential impact on not only base-flow loads 

to the lower reaches but also to the Morgan Creek headwaters.  Alternatively, are there 

other removal mechanisms in the Morgan Creek headwaters that filter higher loads and 

thus preserve the relatively high rates of nitrate removal along the reach?  If these 

alternative mechanisms can be identified, their maintenance may be a priority for 

management of loads from the Morgan Creek subcatchment.  

 

These results also illustrate the complexity of predicting and managing agricultural nitrate 

export at a regional scale.  For example, highly variable nitrate export due to highly 

variable removal rates from lower-order streams could have important implications for the 

economics of nutrient reduction in the Chesapeake Bay watershed.  Under some proposed 

systems, BMP implementation in both subcatchments would qualify for the same nutrient 

reduction credits even though management action in Morgan Creek may be redundant with 

natural processes.  That is, the natural denitrification potential in the aquifer may establish 

a lower limit on nitrate concentrations for the management timescale of interest.  This 
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would therefore mean, for example, that a municipality that offsets nitrate loads from 

future development through the purchase of credits generated in the Morgan Creek 

catchment will not, in fact, be offsetting those future loads, since no further load reductions 

are to be expected as a result of the agricultural BMPs. 

 

4.3 CONCLUSIONS AND FUTURE WORK 

The assessment and management of agricultural nitrogen loadings to receiving waters 

requires both (i) characterizing groundwater nitrate transport to ecological systems and 

(ii) characterizing the background capacity of those systems to process excess nitrate.  This 

is particularly true in areas of agricultural land-use, where the relative contribution of 

base-flow to nitrate loads is higher due to the ongoing discharge of nitrates that have 

accumulated in surficial aquifers during the past century.  We used the travel time 

distributions generated by a well-calibrated flow model in order to relate land surface 

loadings to stream responses and resolve the key components of the catchment nitrogen 

budget.  We examined adjacent agricultural subcatchments with similar land use histories 

but disparate nitrate export signatures in order to quantify the removal fractions of various 

removal mechanisms.  We showed that in spite of spatial and temporal uncertainty in 

loading, multiple calibration scenarios agreed that in-stream nitrate removal efficiencies 

vary significantly between the two streams. 

 

Future research should integrate improved land use information and more spatially 

distributed watershed monitoring.  Under Section 1619 of the Farm Bill, the USDA is 

developing a detailed, privacy-protected database of land use and agricultural practices 
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associated with programs administered by the Farm Service Agency (FSA) and Natural 

Resources Conservation Service (NRCS).  This emerging dataset will provide spatially- and 

historically-distributed data on BMP implementation and conservation measures (Hively et 

al., 2013).  Watershed monitoring since 2011 now includes: (i) bi-annual monitoring of 

base-flow discharge and several water quality parameters at multiple sites within the 

watershed; and (ii) high-frequency (e.g., 15-minute or daily) monitoring of both total 

discharge and nitrate concentration at the Chesterville Branch outlet (Science and 

Technical Advisory Committee, 2010).  Given the lag times between land surface action and 

stream response, several years of water quality monitoring will be required to fully 

leverage the higher resolution land use data now being collected.  However, more 

immediate further investigations will consider whether the emerging land use dataset 

provides any information upon which reconstructions of historical loading may be 

conditioned, thus reducing the loading uncertainty described in this chapter. 
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Chapter 5:  Numerical Simulation of Seasonal Changes in Base-flow Age3  

 

5.0 INTRODUCTION 

5.0.0 - Background and Motivation 

The age of streamwater – and the distribution of flowpaths that constitute that age – are 

important integrated descriptors of how catchments store and release both rainfall and 

contaminants (Kirchner et al., 2001; McDonnell et al., 2010).  For example, in-stream 

concentrations of contaminants that discharge from the subsurface, such as agricultural 

nitrates, are a function of both time-varying land surface inputs and time-varying 

hydrology.  The interaction of these variations makes it challenging to assess the impact of 

land management action on in-stream water quality (Hirsch et al., 2010; Howden et al., 

2011).  A largely-unexplored dimension of these entangled drivers is the relationship 

between seasonal variations in base-flow discharge and the age of that discharge.  That is, 

base-flow age is a measure of the subsurface flow paths discharging to a stream, and for 

time-variable land surface inputs, the contaminant concentration of those flow paths is a 

function of recharge time and therefore age.  In many agricultural systems where land 

management actions should be improving stream water quality, it would be instructive to 

resolve the components of in-stream contaminant variability (Figure 5.1).  These 

components include: long-term trends in contaminant inputs; shorter term noise from 

recent climate impact on crop performance (Staver and Brinsfield, 1998); temperature- 

and season-dependent in-stream contaminant removal processes (Mulholland et al., 2008; 

                                                        
3 This chapter is being prepared for submission to Water Resources Research. 
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Bohlke et al., 2009); and transient subsurface hydrology and the associated changes in the 

distribution of ages arriving at the stream. 

 

Figure 5.1 Seasonal variations in stream nitrate concentrations (y) and stream discharge for 
Chesterville Branch on the Maryland Eastern Shore. 

 

Several researchers have developed theoretical frameworks for describing the age of 

streamwater (Botter 2012; Gomez and Wilson, 2013; Harman, 2014) or have used 

experimental methods to identify the age of water discharging from monitored catchments 

(e.g., Ogrinc et al., 2008; Rodhe et al. 1996).  A preponderance of experimental studies have 

used the input and output signals of the stable isotope G18O to infer the underlying 

distribution of flowpath ages discharging to a stream (McGuire and McDonnell, 2006).  In 

these lumped-parameter studies, the travel time distribution (TTD) is assumed to be of a 

known form such as an exponential or gamma distribution (Kirchner et al., 2001; 

Maloszewski and Zuber, 1998).  With the form of the TTD assumed, the input and output 

signals may then be used in inverse-modeling to specify the values of the distribution 

parameters (e.g., the mean age parameter for an exponential distribution, or the shape and 

scale parameters for a gamma distribution) and thus derive the mean age (Figure 5.2). 
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Figure 5.2  From McGuire and McDonnell (2006).  Schematic illustrating the use of  (i) a 
precipitation input signal plus (ii) the assumption that the streamflow preserves that signal to infer 

the TTD for a catchment. 
 

 

The use of G18O as a tracer depends on seasonal variations in the G18O content of 

precipitation.  Previous researchers have shown that the actual range of these seasonal 

variations effectively restricts the use of the G18O method to catchments with mean travel 

times of approximately 4 years or less (McGuire and McDonnell, 2006).  Stewart et al. 

(2010) has similarly shown that because G18O cannot be used to detect the contributions of 

older groundwaters to stream age, the results from analysis that have relied on it are likely 

biased young.  These limitations suggest that more methods are needed in order to better 

understand the contribution of base-flow to the age (and therefore contaminant response) 

of streamflow.  This is particularly the case in low-relief, high-infiltration catchments in 
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which groundwater discharge dominates streamflow, and even more so when such a 

catchment is subject to diffuse agricultural loadings such as nitrate.  For example, in some 

agriculturally-intensive catchments on the Delmarva Peninsula, chemical hydrograph 

separations suggest that groundwater discharge is responsible for as much as 85% of long-

term average streamflow (Sanford, 2011). 

Beyond using G18O, a few studies have used tritium (3H) individually or in combination with 

some other conservative tracer to date streamwater (Michel, 1992; Stewart et al., 2010).  

For example, Peters et al. (2013) paired (i) a high-frequency time series of in-stream 

dissolved silica (Si) measurements with (ii) a relationship between 3H and Si derived from 

near-stream observation wells to generate a time series of stream age at the Panola 

Mountain (GA) catchment.  It should be noted, however, that 3H methods face their own 

limitations.  The atmospheric concentration of 3H has declined from the mid-20th century 

bomb peak towards background levels at a rate similar to the rate of 3H radioactive decay, 

which means that waters of different ages may have indistinguishable 3H concentrations 

(Stewart et al., 2010).  Tritium is therefore more useful when coupled with either the 3He 

daughter species or an altogether different tracer such as dissolved CFCs or SF6.  These 

dissolved tracers have, in turn, limitations as well, since the equilibration of dissolved 

gaseous tracers with the atmosphere has historically required that these tracers must be 

measured in the saturated zone.  However, more recently methods have been developed 

that allow atmospheric-tracer base-flow concentrations to be measured by sampling 

stream water (Sanford et al., in press).  These methods measure diurnal changes in stream 

temperature and in-stream concentrations of SF6 or CFCs to infer the stream residence 

time and the mean concentration of the dissolved tracer when it discharged from the 
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subsurface.  This estimate of the discharging tracer concentration can then be used to 

estimate the apparent age of the discharging base-flow. 

In contrast to lumped-parameter methods that use in-stream stable isotope information, 

the present study uses a groundwater flow and transport model calibrated against 

subsurface environmental tracer information to simulate the age of base-flow discharge to 

a stream.  In other words, rather than sample some surrogate of age in the stream and infer 

a TTD from that, the present study develops a numerical groundwater flow and transport 

model and uses it to simulate the transport of age through the system. 

In addition to a general methodological dependence on stable isotopes, most investigations 

of streamwater age have focused on the calculation or measurement of a mean steady state 

age as a fundamental descriptor of catchment processes.  These investigations include 

studies that have employed lumped parameter methods (e.g., Ogrinc et al., 2008; 

Hrachowitz et al., 2009) as well as studies that have used forward modeling methods 

similar to those implemented in the present work (e.g., Abrams, 2012; Sanford and Pope, 

2013).  However, more recent researchers have emphasized that the TTD is itself a function 

of time-dependent hydrological changes, such as seasonal fluctuations in storage driven by 

seasonal variability in precipitation and evapotranspiration.  Harman (2014), building on 

Botter (2012), used a probabilistic framework to derive a general expression for a time-

variable TTD that was then applied to the Plynlimon Experimental Catchment chloride time 

series in order to develop a transient, lumped-parameter model of streamflow age.  Gomez 

and Wilson (2013) used a finite-element implementation of the governing equation for 

groundwater age (Ginn, 1999; Ginn et al., 2009) to simulate the impact of a harmonic head 
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distribution on system velocities, flow directions, and age distributions in a synthetic (i.e., 

Tothian – cf. Toth, 1962) regional groundwater system.  The present study is 

complementary to the work of Gomez and Wilson (2013) in that it applies an alternative 

simulation method to generate time-variable TTDs.  Further, the present study applies the 

method to estimate the seasonal changes in base-flow age for a field study. 

5.0.1 – Potential methods for simulating transient base-flow age 

Another vein of research has conceptualized groundwater age as a mass that accumulates 

with time in a subsurface system (Ginn, 1999; Goode, 1996; Gomez and Wilson, 2013;).  

This conceptual model may be mathematically expressed through a modified form of the 

advective dispersive model (ADM) and implemented with a solute transport code (e.g., 

MT3DMS – Zheng, 2005).  Under this modeling scheme, the simulated mean age of base-

flow discharging from the groundwater system to surface water is equal to the mean age 

(i.e., solute concentration of age) of the model element (e.g., finite-difference grid cell) at 

which the discharge occurs.  Varni and Carrera (1998) and Gomez and Wilson (2013) 

describe methods for specifying, in addition to the mean, higher moments or the full TTD at 

a point in time.  It may be noted, however, that direct simulation of age with a modified 

transport code (such as MT3DMS) may only allow simulation of a mean age, rather than a 

full TTD, and production of the full time-variable TTD may be computationally prohibitive 

(Gomez and Wilson, 2013). 

An alternative method for simulating time-variable base-flow age is with a tracking scheme 

that traces the flow paths governed by system hydraulics.  While multiple authors have 

discussed the potential shortcomings of this kinematic conception of age (e.g., Goode, 1996; 
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Varni and Carrera, 1998), some systems are in fact well described by advective transport 

and therefore well-suited for a kinematic description of age.  For example, Chapter 3 of this 

dissertation showed that environmental tracer datasets were well-described by particle 

tracking.  Further, kinematic methods avoid the computational burdens and numerical 

dispersion associated with applying the groundwater age form of the ADM to advection-

dominated systems.  We use kinematic methods for this study, as described in further 

detail in next section. 

5.1 METHODS 

In order to investigate the impact of both system characteristics and system inputs on 

base-flow age, we simulated the time-variable age of groundwater discharge to surface 

water under different recharge conditions for a variety of synthetic two-dimensional (2D) 

aquifers.  We also simulated the time-variable age of base-flow to Morgan Creek in the 

Upper Chester catchment using a transient form of the Upper Chester model described in 

Chapter 2 and calibrated in Chapter 3 of this dissertation.  The following sections describe 

the method of simulating flow and base-flow age, the suite of synthetic recharge series and 

synthetic aquifers used in the study. 

5.1.1 – Simulation of base-flow and base-flow age 

For all scenarios, the distribution of aquifer heads was calculated using a modified form of 

the finite-difference simulation code MODFLOW-2000 (Harbaugh et al., 2000).  The code 

modifications were developed by S.S. Papadopolous and Associates, and the resulting 

simulation code is hereafter referred to as MF2K-SSPA.  Briefly stated, MF2K-SSPA uses a 

modified form of the equation for saturated groundwater flow and a Newton-Raphson 
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solution method in order better accommodate fluctuating water tables (Bedekar et al., 

2012).  Base-flow discharge was simulated using the MODFLOW drain package as 

described in Chapter 2. 

Simulations were performed in monthly time steps for the synthetic cases and quarterly 

time steps for the field study.  Intra-annual variations in groundwater recharge were 

represented by a discretized approximation of a sinusoidal function, with the system 

receiving the highest recharge inputs during the late-winter/early-spring months and no 

recharge inputs during summer months (described in more detail below).  

For all scenarios in this study, base-flow age was simulated using a modified form of the 

particle tracking software MODPATH 5 (Pollock, 1994) developed by S.S. Papadopolous as 

a companion to MF2K-SSPA and hereafter referred to as MP-SSPA.  The code modifications 

included in MP-SSPA include improved capacity to track particles (i.e., quantify flow paths) 

through grid cells that dry and re-wet as the water table elevation changes due to transient 

forcing.  A series of Python scripts was used to (i) extract the water table elevation from the 

MF2K-SSPA head solution for each time step at each row/column location throughout the 

model grid and (ii) input those time-variable water table elevations as particle starting 

locations for MP-SSPA.  Particles were tracked forwards from the water table to the 

discharge location.  An additional series of Python scripts was used to aggregate 

discharging particles at each time step and generate a kinematic TTD from the travel times 

associated with those discharging particles.  In order to calculate the flux-weighted mean 

age, each discharging particle was weighted by the recharge rate associated with the time-

step at which that particle entered the system.  For all scenarios, the simulation included an 
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initialization period required to spin the model up to an annually repeating cycle of 

seasonally-variable mean ages.  In most cases, the total simulation time required to reach 

this annually repeating cycle exceeded the number of time steps accommodated by the 

simulation codes.  For these circumstances, Python scripting was used to extract the 

location of particles that were in transit between recharge and discharge at the end of a 

simulation run and re-start those particles at the same location in the model grid for the 

next stage of the simulation. 

5.1.2 – Simulation of base-flow SF6 

In addition to simulating discharging base-flow ages, we also simulated the time variable 

concentration of base-flow SF6 by weighting each discharging particle with the recharging 

SF6 concentration for the year in which the particle entered the subsurface.  In order to 

calculate the recharging SF6 concentration for each particle, the atmospheric SF6 partial 

pressure for the recharge year was converted to dissolved SF6 concentrations using 

Henry’s law and assuming that SF6 recharged at 10° C and with 2 cm3/L excess air (cf. 

Chapter 3).  Note that the simulation of base-flow SF6 required the assignment of an 

arbitrary reference time.  That is, while the simulation of base-flow age subject to 

sinusoidal recharge forcing is independent of a specific calendar year, the simulation of SF6 

is not because its atmospheric history is not steady state.  For the Synthetic cases we 

assumed that the sampling year was 2011, and for the Morgan Creek case study we 

assumed that the sampling year was 2007. 

For each scenario, an SF6 apparent age was determined by relating the simulated mean 

base-flow SF6 concentration to the SF6 atmospheric time series.  The ‘apparent age’ refers 
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to the age derived from some form of measured tracer under the assumption that the entire 

sample recharged at a single point in time.  See McCallum et al. (2014) or Kazemi (2006) 

for more information on apparent age and related groundwater age concepts.    

5.1.3 - Synthetic simulation scenarios 

We simulated the seasonally-variable base-flow age for a suite of synthetic two-

dimensional (2D) aquifers.  For all synthetic scenarios, the aquifer was 100 m deep by 1250 

m wide and discretized into 20 layers of uniform thickness equal to 5 m.  For most 

scenarios, the aquifer was discretized into 50 columns of uniform width equal to 25 m.  

However, for some scenarios we re-gridded the column layout into 250 columns of equal 

width equal to 5 m; these re-gridded scenarios are identified in the Results and Discussion 

section.  The spatially-uniform porosity and specific yield for each aquifer was equal to 

0.25, and the specific storage for each aquifer was equal to 1 x 10-5 m-1.  The land surface 

elevation slope was 2% (not shown on Figure 3).  

The synthetic aquifer systems were subject to variation in: (i) the aquifer hydraulic 

conductivity field; (ii) the annually averaged recharge; (ii) the amplitude of the time-

varying recharge input; and (iv) the spatial distribution of the recharge input for a given 

time step.  These variations are summarized in Figure 5.3 and further described as follows: 

i. The synthetic aquifer framework was either (a) homogeneous unconfined or (b) 

composed of an unconfined surficial aquifer overlaying a confining unit and a 

confined aquifer.  The impact of aquifer diffusivity on the base-flow age time series 

was tested by varying the homogenous hydraulic conductivity field between 0.6, 1, 

2.5 and 10 m/day (Figure 5.3).  In these simulations the aquifer diffusivity is equal 



 98 

to Kb/Sy, where K is the hydraulic conductivity, b is the saturated thickness and Sy is 

the specific yield. 

ii. Unless explicitly noted, annually averaged recharge to the subsurface was 40 

cm/year.  For the four separate hydraulic conductivity fields (three homogeneous 

plus layered) the steady state application of this recharge rate resulted in steady 

state mean base-flow ages of 54 to 58 years (Figure 5.4).  In order to examine the 

impact of aquifer mean age on the base-flow age time series we held the aquifer 

conductivity field constant (homogeneous conductivity = 1 m/day) and ran a series 

of scenarios with different magnitudes of annually-averaged recharge, ranging from 

20 to 80 cm/year.  This resulted in scenarios with steady state mean base-flow ages 

ranging from 36 to 112 years (Figure 5.5). 

iii. In order to examine the impact of the amplitude of the seasonal recharge input on 

the base-flow time series we applied both a high and low amplitude recharge time 

series to the homogenous 1 m/day conductivity field (Table 5.1).  For all other 

synthetic cases we generated the monthly recharge time series use the recharge 

factors designated as ‘High Amplitude’ in Table 5.1. 

iv. Finally, we also considered the impact of the spatial distribution of the recharge by 

applying both spatially uniform and spatially variable recharge to the homogeneous 

1 m/day conductivity field.  For the spatially variable scenario, the recharge rate 

increased as a linear function of distance from the discharge location (Figure 5.3; cf. 

Goode, 1996).  Note that for a given scenario the same spatial distribution was 

applied at each time step, with the magnitude of the recharge for that time step 

determined by the appropriate recharge factors listed in Table 5.1. 
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Figure 5.3 Aquifer dimensions, hydraulic conductivity fields, and recharge spatial distributions for 
synthetic 2D scenarios. 
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Figure 5.4 Steady state base-flow age distributions for different aquifer scenarios 
subject to 40 cm/year recharge. 
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Figure 5.5 Steady state base-flow age distributions for the homogenous 1 m/day conductivity field 
subject to different recharge rates. 
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Table 5.1 Multiples of steady state recharge used to decompose 
the annually averaged recharge into seasonally varied recharge. 

 

 

5.2 RESULTS AND DISCUSSION 

5.2.1 - Synthetic Scenarios 

5.2.1a - Comparison of variable conductivity field 

Figures 5.6 and 5.7 shows the seasonally varying recharge, base-flow, age, and SF6 time 

series for various aquifer configurations.  Each configuration in Figure 5.6 and Figure 5.7 

received 40 cm/year recharge distributed according to the High Amplitude factors listed in 
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Table 5.1 (maximum recharge in February and zero recharge in July, August, and 

September).  For each scenario we computed the recharge-weighted base-flow age for each 

month and then fitted a sinusoidal curve to the resulting monthly series using least squares 

regression.  For each scenario, the vertical dashed lines indicate the temporal relationship 

between the minimum base-flow discharge and the maximum base-flow mean age.  Note 

that the recharge input, base-flow discharge, and sinusoidal best-fit mean age are annually-

repeating series; the vertical lines are shown only for a single year. 

As expected, the base-flow discharge time series is a damped and lagged form of the 

sinusoidal recharge input.  The amplitude of the base-flow discharge series varied with 

system conductivity.  For the homogeneous cases (Figures 5.6a, 5.6b, and 5.6c) the lag 

between low recharge and low base-flow was constant; low base-flow occurred in October, 

which is a one-month lag from the September zero recharge.  For the layered case (Figure 

5.7), which had a much lower median age due to the shallow unconfined aquifer, the base-

flow discharge responded more quickly to changes in recharge and the low base-flow 

discharge occurred in September. 

Within a single year, the mean base-flow ages for the homogeneous cases vary by 7-12 

years, but for the layered case that included a confining unit and lower aquifer the mean 

base-flow ages vary by nearly 20 years during a single year (Table 5.2).  This larger range 

of ages for the layered case is a function of the changing contributions of older water from 

below the confining unit during the contrasting high and low base-flow regimes.  At high 

base-flow, the base-flow age TTD for the layered scenario is dominated by the shallower 
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flow-paths of the surficial aquifer, while at low base-flow the TTD is more heavily 

influenced by discharge from below the confining unit. 

 

 

Figure 5.6 Comparison of base-flow age time series resulting from changes in the aquifer conductivity 
field.  The vertical dashed lines mark the timing of minimum base-flow and peak sinusoidal best fit age 

(in top and bottom panels, respectively, for scenarios a-c). 
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Figure 5.7 Flow and age time series for the layered conductivity scenario with annually averaged 
recharge = 40 cm/year. 

 
 

For the homogeneous case with hydraulic conductivity = 0.6 m/day (Figure 5.6a) the 

maximum base-flow age is lagged by 5-6 months from the minimum base-flow discharge; 

the peak simulated mean age occurred in March and the peak of the best-fit sinusoidal 

occurred in April.  For the case in which homogeneous hydraulic conductivity = 1 m/day 

(Figure 5.6b) the lag between minimum base-flow and maximum age is reduced to 1-2 

months.  With homogeneous conductivity = 10 m/day or with layered conductivity 

(Figures 5.6c and 5.7, respectively) the maximum base-flow age is closely coordinated 

with the minimum recharge.  These results suggest that the distribution of discharging ages 

is a function of both (i) velocity, which is controlled by the recharge rate and (ii) diffusivity, 

which controls the rate at which changes in the potential energy field are translated 

through the system.  For both (i) the shallow, fast surficial system in the layered 

conductivity field and (ii) the highest homogeneous conductivity (10 m/day) the ages are 

more closely synced with rising and falling recharge velocities, while for the lower 

hydraulic conductivities the response of discharging age to incoming recharge is more 

delayed. 
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5.2.1b - Consideration of computational noise 

For all cases the long-term average recharge weighted age for the transient simulation was 

close to the steady-state base-flow age; this supports the basic utility of this method for 

identifying seasonal variability in ages.  However, for some scenarios the simulated base-

flow age time series included significant deviation from a sinusoidal form (e.g., Figure 

5.6c).  A full characterization of this noise, including its dependence on the spatial or 

temporal simulation discretization or the aquifer characteristics, has not been completed.  

However, we offer preliminary observations here.  It is possible that the noise includes 

artifacts introduced by approximations of the velocity field as generated by the particle-

tracking routine.  MODPATH calculates advective velocities by interpolating between heads 

at adjacent nodes (Pollock, 1994), and the resolution of the interpolated velocity field is 

determined by the number of particles.  However, preliminary sensitivity studies indicated 

that refining the resolution of the velocity field by increasing the number of particles 

introduced during each time step does not of itself improve the fit of the simulated ages to a 

sinusoidal function.  Similarly, we did not find that reducing the time step of the transient 

flow solution improved the fit.  We did find evidence that reducing the grid size was 

necessary to reduce the noise in simulations with higher flow velocities.  Figure 5.8 

compares the seasonal base-flow ages generated by simulation using column widths equal 

to 25 m and 5 m for the homogeneous aquifer with hydraulic conductivity equal to 10 

m/day.  Note that Figure 5.8a is identical to Figure 5.6c.  Note that when compared to the 

25 m resolution, the reduction of column width to 5 m had some effect on the simulated 

water table elevation and thus increased the mean steady state age.  Reducing the column 

width to 5 m significantly improved the fit of the simulated mean ages to a sinusoidal 
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function.  However, we also observe that the phase of the sinusoidal best-fit function is 

identical for each grid resolution, suggesting that the noisy base-flow age time series is also 

identifying the temporal relationship between recharge, base-flow, and discharging ages. 

While the computational questions that we are describing here should not be confused 

with the numerical challenges associated with the advection-dispersion equation (ADE) for 

solute transport (Zheng and Bennett, 2002), it is plausible that the computational noise 

encountered in some of the simulation conditions in this study is a function of the same 

elements that constitute the Courant number, which is one of the stability criterion for 

numerical solutions to the ADE (I am grateful to Mohamed Morsy for suggesting this 

paradigm).  The Courant number is a combined indicator of advective velocity, simulation 

time step, and grid discretization (Zheng and Bennett, 2002).  To our knowledge, no formal 

accuracy criterion has been formulated for MODPATH and should be the subject of further 

investigation in support of the method described in this chapter. 
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Figure 5.8 Effects of simulated grid size on the fit of simulated mean ages to a sinusoidal function 
for homogeneous aquifer with conductivity = 10 m/day and annual recharge = 40 cm/year.  The 

dashed vertical line marks the timing of the maximum value of the sinusoidal for each panel. 
 

5.2.1c - Comparison of the seasonal range of base-flow ages to ages derived from steady state 
scenarios 

In order to further inspect the simulated range of seasonal ages we consider the variations 

in age that would result under two simplifying assumptions.  The first assumption 

considers the aquifer to be completely mixed in the vertical direction such that age  

transport only occurs in one-dimension (1D) through a constant saturated thickness.  

Implementation of the groundwater transport equations can demonstrate that for 1D flow 

and transport perpendicular to the stream with spatially distributed recharge that varies 

cyclically in time, the variations in mean age are negligible.  For the homogeneous aquifer 

with conductivity = 1 m/day and high amplitude recharge series, such a 1D analysis 

showed that the mean age varied by < 1% (results not shown).  A contrasting simplifying 

assumption would consider poor mixing and strict stratification between ages in the 

aquifer, such that all variation in base-flow discharge occurred within a young fraction of 
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the discharge.  Under this second assumption, the seasonal high in base-flow age would 

result from the absence of some young fraction at low base-flow conditions.  Figure 5.6b 

shows that for the homogeneous aquifer with conductivity = 1 m/day, the base-flow 

discharge varies approximately ±10% around the mean annual value, such that at low 

base-flow the discharge is 20% less than at high base-flow.  Using the assumption just 

described we may consider the impact of removing the youngest 20% of water from a 

steady state age distribution that is generated by a steady state recharge rate which 

reproduces the maximum base-flow discharge.  Note that this assumes that the full 

distribution of base-flow ages is discharging at maximum base-flow; this assumption is not 

exact.  This condition is assumed in Figure 5.9a.  For the homogeneous aquifer with 

hydraulic conductivity = 1 m/day, we estimated the age distribution at maximum base-flow 

using the steady state age distribution associated with that base-flow level.  This results in 

a mean base-flow age of 54 years; if, in order to move to low base-flow conditions, we 

remove the youngest 20% of water, the resulting mean age is equal to 67 years.  This age is 

approximately 10% older than the maximum base-flow age from our transient simulations 

for the same system (61 years  - see Figure 5.6b).  We also note that we may vary the 

amount of water that we remove from the steady state age distribution at maximum base-

flow in order to match the range of simulated ages from the transient simulation.  We found 

that removing 11% of the youngest water from the steady state distribution at maximum 

base-flow discharge resulted in a mean age of 61 years; removing 1% of the oldest water 

resulted in a mean age of 52 years.  In sum, the two assumptions of (i) vertically well-mixed 

and (ii) strongly stratified provide two end-members estimating how the base-flow age 
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might respond to seasonal changes in recharge and base-flow.  The simulations in this 

study demonstrate that the change that occurs in real systems is somewhere in between. 
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(a) 

 
(b) 

 
Figure 5.9 Steady state age distribution at maximum base-flow conditions for homogeneous 

aquifer with hydraulic conductivity = 1 m/day.  Solid line shows mean base-flow age at 43 cm/year; 
this is the amount of steady state recharge that will reproduce the maximum base-flow from the 
transient simulation (Figure 5.6b).  Dashed line shows the adjusted mean age that results from 

removing young ages.  Dotted line shows the adjusted mean age that results from removing the old 
ages. 
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5.2.1d - Comparison of simulated mean ages and apparent ages from SF6 concentration 

For all cases shown in Figure 5.6 and Figure 5.7, apparent ages derived from SF6 

measurements were younger than the mean ages (Table 5.2).  The bias is the largest for 

the layered case.  This is due to the contrasting ages in the surficial and lower aquifers and 

the absence of SF6 from the lower aquifer.  That is, the elevated SF6 concentrations of the 

younger water mask the presence of older, tracer-free water.  Stewart et al. (2010) 

describes a similar bias associated with the use of G18O as an age tracer.  For all systems, 

base-flow ages derived from the SF6 concentrations more closely correlated to median than 

mean ages (Table 5.2). 

 
Table 5.2 Comparison of base-flow SF6 apparent ages and mean age of 

discharging particle distribution.  For Synthetic cases, SF6 apparent ages calculated during 2011 (see 
Figure 5.6).  For Morgan Creek, SF6 apparent ages calculated during 2007 (see Figure 5.11 and 

discussion later in the text). 
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5.2.1e - Comparison of variable annually averaged recharge 

Figure 5.10 further considers the variability in the lag between low base-flow and 

maximum mean age for homogeneous hydraulic conductivity fields (K = 1 m/day) with 

different depths of recharge and resultant mean ages.  Note that Figure 5.10b is identical 

to Figure 5.6b, though the vertical axes have been rescaled.  Note also that for Figures 

5.10a-5.10d, since the focus of the analyses is the relative timing of peaks, the vertical axes 

are not consistently scaled between subfigures.  For all cases in Figure 5.10 the lag 

between the minimum recharge and the minimum volumetric base-flow discharge was 

identical such that the minimum base-flow discharge occurred in November.  The month at 

which the peak best-fit sinusoidal age occurred varied between August (synced with 

minimum recharge) and January (2 month lag following minimum base-flow).  

Interestingly, the amplitude of the intra-annual variation in the base-flow age time series 

decreased with the increases in annually averaged recharge from 20 to 40 cm then 

increased with increases in recharge to 60 and 80 cm.  The amplitude of the SF6 

concentration time series increased dramatically with increasing recharge suggesting the 

uncertainty of inferences made from point measurements of SF6 in systems with both (i) 

high annually averaged recharge and (ii) high inter-annual recharge variability.   
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Figure 5.10 Comparison of base-flow age time series resulting from changes in annually averaged 
recharge and aquifer mean age. 
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5.2.1f - Comparison of recharge amplitude and recharge spatial distribution 

Figure 5.11 compares the results of simulations that varied both the amplitude of the 

seasonally variable recharge (Table 5.1) and the spatial distribution of that recharge at 

each time step.  Note that Figure 5.11c is identical to Figure 5.6b.  The time series of 

discharging mean ages is very noisy under the Low Amplitude recharge scenarios (Figures 

5.11a and 5.11b), and under the Low Amplitude/Spatially Uniform scenario (Figure 

5.11a) no periodic trend in discharging mean ages could be detected.  For spatially variable 

recharge, the recharge at the discharge location is equal to 0 and the recharge at the point 

most distant from the discharge location (i.e., the watershed divide) is equal to twice the 

average recharge for that time step (Figure 5.3).  Relative to the spatially uniform 

scenarios, this spatial configuration of recharge decreases the velocities and increases the 

travel time of the shortest flow paths but increases the velocities and decreases the travel 

time of the longest flow paths.  For the Low Amplitude/Spatially Varied scenario (Figure 

5.11b) this had no net effect on the long-term average mean base-flow age (compare to 

Figure 5.11a).  However, when compared to the Spatially Uniform scenario (Figure 

5.11c), the High Amplitude/Spatially Varied scenario resulted in a reduced long-term 

average mean base-flow and a larger amplitude of the base-flow age time series (Figure 

5.11d). 
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Figure 5.11 Comparison of base-flow age time series resulting from changes in the amplitude and spatial 
distribution of the seasonally-varying recharge.  For all cases the homogeneous hydraulic conductivity = 
1 m/day and the annually averaged recharge = 40 cm/year.  The vertical dashed lines mark the timing of 

minimum base-flow and peak sinusoidal best fit age (in top and bottom panels, respectively, for 
scenarios a-d). 

 

5.2.2 - Case study 

Figure 5.12 shows the results of the Morgan Creek base-flow age simulation.  The 

hydrogeology of Morgan Creek is similar to the layered synthetic case discussed above 

(Figure 5.3b) with a shallow surficial aquifer underlain by a semi-confining unit and a 

lower confined aquifer.  This creates contrasting age regimes contributing to the base-flow 

discharge to the stream.  According to the calibrated flow and transport model the steady 

state base-flow age is 37 years (see Chapter 3).  See Table 5.1 for the decomposition of the 

calibrated steady state recharge into quarterly time steps.  Figure 5.12 shows that, for the 
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calibrated flow and transport model, the range of seasonally-varying base-flow ages 

predicted by the particle-tracking method used in this study is 35-41 years, and the range 

of the best-fit sinusoidal trend is 36-39 years.  As with the synthetic 2D layered system, the 

peak of the sinusoidal trend in base-flow mean age is synced with the minimum of the 

recharge signal (cf. Figure 5.7), though the maximum simulated monthly age typically 

occurs the following quarter in sync with the minimum base-flow discharge. 

Also similar to the layered 2D scenario, our model suggests that the Morgan Creek system 

is subject to significant biases in apparent ages inferred from SF6 concentrations.  Apparent 

ages associated with simulated concentrations of SF6 reflect the median, rather than the 

mean, steady state base-flow age (Table 5.2).  This disconnect between SF6 apparent ages 

and mean base-flow age could complicate attempts to link in-stream water quality with 

time-variable inputs at the land surface. 

 

Figure 5.12 Simulated seasonal base-flow age and SF6 concentration for Morgan Creek. 
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5.3 CONCLUSIONS AND FUTURE WORK 

We simulated the transient delivery of base-flow age from subsurface to receiving stream 

as a function of seasonal changes in hydrology and aquifer storage for a variety of synthetic 

2D aquifer configurations and for a fully 3D case study.  We found that the timing of 

maximum base-flow age varied with both the hydraulic conductivity field and the annually 

averaged recharge, which determines the system mean age.  The two assumptions of (i) an 

aquifer in which ages are vertically well-mixed and (ii) an aquifer in which ages are 

strongly stratified provide two end-members for estimation of how the base-flow age 

might respond to seasonal changes in recharge and base-flow.  The simulations in this 

study found that the change that occurs in real systems is somewhere in between.  For the 

cases that we investigated, apparent ages inferred from SF6 measurements were biased 

young, with biases especially pronounced with layered hydrogeology in which discharge 

consists of shallow surficial flow mixed with a contrasting regime of much older water.  

Future work with this modeling technique should include further characterization of the 

sources and remedies for computational noise.  This should include further investigation of 

the role played in computational noise by both (i) the spatial and temporal resolution of the 

flow simulation as well as (ii) the spatial and temporal distribution of particle starting 

locations. 
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Chapter 6:  The Impact of Kinematic Assumptions on Parameter 
Estimation for Advective-Dispersive Groundwater Systems4 

 

6.0 INTRODUCTION 

As discussed in Chapter 3 of this dissertation, information about groundwater age can be an 

important means of establishing rates of recharge and subsurface velocities and – through 

inference from these - the parameters critical to the prediction of contaminant transport 

and management impact (Sanford, 2011).  While some researchers have developed 

methods for deriving dispersivities from the distribution of hydraulic conductivities (e.g., 

Sudicky, 1986; Rehfeldt et al., 1992), in most applications the distribution of conductivities 

is not known with the detail required for such a method and the dispersivity, like the 

effective porosity, must be estimated through model calibration (Zheng and Bennett, 2002). 

The integration of groundwater age information into modeling efforts requires decisions 

about two fundamental questions, as well as attention to the model’s sensitivity to those 

decisions.  These decisions are summarized in Table 6.1.  First, how is the age information 

represented in the parameter estimation process?  For example, is the calibration target for 

an inverse modeling procedure a sampled tracer concentration, or is it instead a measure of 

age inferred from the tracer?  The advantage of the former is that fewer interpretations are 

interposed between the model and its constraining data, since the conversion of a sampled 

tracer concentration to an age is itself a modeling exercise with built-in assumptions.  For 

instance, lumped parameter models assume some distribution to describe a mixture of ages 

                                                        
4 This chapter is being prepared for submission to Groundwater. 



 123 

at a sampling point (Maloszewski and Zuber, 1982; Cook and Bohlke, 2000; Massoudieh 

and Ginn, 2011).  Alternatively, the simplest assumption treats the water sample as an 

unmixed packet of a single age; under this assumption the age inferred from the tracer 

concentration is often termed the apparent age (McCallum et al., 2014b).  If the calibration 

data is represented as interpreted age, a second question follows: how should the model be 

compared to the data?  That is, given the representation of groundwater age data as an age 

(rather than as a tracer concentration), how should the model simulate age?  As described 

below, age transport (like the transport of other solutes) may be simulated as an advection-

only process or as a more complicated process involving dispersion.  Most basically stated: 

what are some possible consequences of treating the system as advection-only when in fact 

dispersion is present?  These questions are of computational significance since, for a large 

three-dimensional model, the time required to simulate an advection-only, particle tracking 

measure of age is much faster than the full numerical solution of an ADM, making 

advection-only simulations of age much more efficient given the likely need to run the age 

simulation many times during the calibration process. 
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Table 6.1 Options for inclusion of groundwater age information in model calibration 

 

 

6.0.1 - Potential problems with kinematic measures of age 

An advection-only measure of groundwater age assumes that a tracer measurement 

represents the mean age at a point and that the tracer mass arrived at that point along a 

single flow path and without mixing.  This conceptualization of the elapsed time for 

groundwater flow may be referred to as the kinematic age (Varni and Carrera, 1998).  

Kinematic-age assumptions allow the calibration of porosity against the age information 

using an advection-only particle tracking simulation tool such as MODPATH (Pollock, 2012).  

Szabo et al. (1996) and Hunt et al. (2006) used kinematic assumptions and apparent ages 

derived from CFCs and 3H to calibrate groundwater flow models for a New Jersey coastal 

aquifer and a Wisconsin lake system, respectively.  Sanford and Pope (2012) similarly used 

kinematic assumptions and apparent ages derived from CFCs and 3H to calibrate the 

porosity for a groundwater model of the Delmarva Peninsula.  Varni and Carrera (1998) 

demonstrated the shortcomings of the kinematic conception of age for heterogeneous 

aquifers, namely that kinematic ages are unstable with respect to location and that a 

groundwater sample at an observation point should in fact be represented as a distribution 

of ages.  Several researchers have developed methods for simulating the age of 

groundwater subject to other transport factors.  Common to these methods is the 
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recognition that a sample from any point in a non-homogenous aquifer is a composite of 

multiple converging flow paths subject to exchanges due to macrodispersion and diffusive 

exchange with waters of varying age (McCallum, 2014b).  The age of any groundwater 

sample should therefore be more rigorously viewed as the mean of a mixture – i.e., a 

distribution – of the travel times accumulated along those flow paths and subject to 

dispersive exchange.  After various authors we refer to the distribution of ages at a point as 

the travel time distribution (TTD) and we define ‘kinematic TTD’ as the distribution of 

advection-only travel times collected at a location of interest such as a well screen or 

receiving stream.  In contrast to the kinematic TTD, multiple methods exist for generating a 

TTD that accounts for both advective and dispersive effects at an observation location in an 

aquifer.  Varni and Carrera (1998) developed a recursive method for identifying moments of 

the TTD (but not the distribution itself).  Neupauer and Wilson (2004) derived the 

backward adjoint method, which for a given flow and transport model simulates the TTD as 

a distribution of probable travel times and transport pathways to an observation point.  

Jury and Roth (1990) showed that for a steady state system the TTD at a point is equivalent 

to the breakthrough curve due to a unit pulse of a conservative substance at the inflow 

boundary.  For finite difference approximation of the groundwater flow and transport 

equations, the unit pulse boundary condition may be implemented using a solute transport 

code such as MT3DMS (Zheng, 1999), with an initial unit mass dissolved in the mobile zone 

of each grid cell containing the water table.   In addition to these methods of generating a 

travel time distribution at a point, Goode (1996) showed that mean groundwater age may 

be calculated using a modified form of the ADM; this is commonly referred to as the direct 

age method.  For purposes of numerical simulation the direct age method produces a single 
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age rather than a TTD at each model node, such that multiple model nodes must be 

combined to create a TTD.  Gusyev et al. (2014) used this method to generate the TTD for 

rivers using a groundwater flow and transport model that simulates the direct age at all 

cells contributing baseflow discharge to the receiving stream. 

6.0.2 – Examining the calibration impact of assuming kinematic age 

While the potential limitations associated with the simplifying assumptions of the 

kinematic conception of age are well known, few if any studies have considered the impact 

of kinematic assumptions on automated parameter estimation processes or compared a 

model calibrated with only kinematic representations of age to those calibrated with fully 

advective-dispersive representations of age.  The present study uses the automated 

calibration of several synthetic two-dimensional (2D) aquifers to observe the consequences 

of kinematic assumptions for the resulting parameter estimates.  To isolate the impacts of 

these kinematic assumptions on calibration, we assume for the synthetic cases that 

accurate age determinations are available.  That is, for the synthetic cases we do not explore 

the variety of tracer-specific biases inherent in the derivation of an age measure from a 

sampled tracer concentration, including those biases that result from the shape of the 

atmospheric time series and the exacerbation of those biases by aquifer heterogeneity.  

These complexities have been explored in two recent papers by McCallum et al. (2014a and 

2014b). 

Further, the synthetic case studies considered in this chapter assume that the ADM and its 

Fickian approximation of the exchange among flowpaths can accurately represent 

subsurface solute transport in many systems and, by extension, the hydrodynamic 
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dispersive mixing of groundwaters of different ages.  Several authors have shown the limits 

of the ADM assumption that (i) variability in velocity is generated by (ii) random variability 

in hydraulic conductivity (Zheng and Bennett, 2002).  Perhaps the most notable example of 

these limits is the highly heterogeneous MADE test site, where the inability of the ADM to 

explain the most significant spatial and temporal features of intensively-monitored 

experimental plumes led to a more satisfactory model of mass exchange between mobile 

and immobile zones (Feehley et al., 2000; Harvey and Gorelick, 2000; Zheng, et al., 2011).  

However, in contrast to the MADE site, the results of tracer tests at more homogenous sites 

like Borden (Freyberg, 1986) and Cape Cod (Garabedian et al., 1991) are well-described by 

an ADM.  These latter sites serve as the paradigm for the synthetic cases that are 

considered here. 

As a supporting question for our synthetic studies, the present chapter also considers 

whether the use of a registration volume – i.e., enlarging the number of advective pathlines 

contributing to the TTD at an observation location – can serve as a surrogate for dispersive 

effects.  In their analytical work on TTDs, Varni and Carrera (1998) described the TTD for a 

point in an advective-dispersive system as “the distribution of kinematic ages one would 

obtain by perturbing the measurement location”, which suggests that kinematic tools such 

as particle tracking routines may be able to approximate the true TTD at a point through 

the construction of an ensemble of kinematic ages collected within a registration volume 

around that point (Figure 6.1).  Troldborg et al. (2008) used a registration volume and 

kinematic ages to construct a TTD that they convolved with a particle-based contaminant 

input function in order to predict the contaminant concentration at an observation point.  

Weissman et al. (2002) used backward particle tracking from a registration volume with 
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the addition of random walk perturbations to simulate dispersion of environmental tracers 

in an aquifer system.  Both of these studies assigned a fixed registration volume; neither 

calibrated transport parameters against groundwater age and consequently did not 

consider the impact of the registration volume on the parameter estimation process.  In 

addition to using fixed registration volumes to construct kinematic TTDs, the present study 

also investigates the use of adjustable registration volumes as an option to improve 

calibration.  These methods are described in Section 6.1. 

 

Figure 6.1 Comparison of simulated advective flowpaths to (a) a wellscreen and (b) a 
registration volume surrounding the well screen.  Flowpaths do not include dispersive 

effects and are solely subject to system hydraulics.  The spatially-correlated binary 
conductivity field is described in the text. 
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6.0.2 – Examining the calibration impact of aggregating time-variable tracer information into 
steady state measures of age  

As a related question, we additionally consider the impact of aggregating time-varying data 

from multiple tracer species into a single set of steady-state calibration targets that are 

expressed as age rather than tracer concentration.  Thus we examine the informational 

effect of converting multiple tracer concentrations at an observation site into a single 

measure of inferred age at that site and subsequently simulating the transport of age rather 

than the transport of a tracer (cf. Table 6.1).  As already discussed, this conversion requires 

some assumptions about the underlying age distribution of the groundwater sample (Cook 

and Böhlke, 2000; Maloszewski and Zuber, 1982; Massoudieh and Ginn, 2011; McCallum et 

al., 2014a).  Most studies that have used inferred ages as calibration targets have 

simultaneously assumed a piston-flow mechanism of subsurface tracer transport is 

responsible for the underlying tracer concentration and aggregated multiple tracer 

observations into a single age measure (e.g. Reilly et al., 1994; Szabo et al., 1996; Hunt et al., 

2006; Sanford and Pope, 2012).  Turnadge and Smerdon (2014) have recently argued that, 

due to the uncertainties associated with the tracer-to-age conversion of tracer 

observations, the tracer itself rather than interpreted ages should be modeled.  To our 

knowledge, no studies have considered the implications of this conversion for the 

calibration of a field model; the present study consequently examines this aggregation by 

comparing the calibrated flow and transport model that results from using a consolidated 

dataset of apparent ages to models that are calibrated against the original datasets of tracer 

concentrations as described in Chapter 3 of this dissertation. 
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6.1 METHODS 

6.1.1 – Synthetic Aquifer Configurations and ‘True’ System Values 

Three synthetic 2D confined aquifers with different spatial distributions of heterogeneity 

were used to examine the impact of how age is modeled (i.e., simulated kinematic age or 

simulated advective-dispersive age) on calibration results.  Figure 6.2 shows the boundary 

conditions and the three synthetic heterogeneity cases that were considered by variously 

representing the subsurface as: ‘Binary’, which used a spatially-correlated random binary 

field; ‘Lenses’, which used an aquifer matrix with randomly located high permeability lenses 

(with each lens randomly assigned one of two conductivities, for a total of three 

conductivities for the system); or ‘Stratified’, which used a stratified sequence of three 

conductivities (aquifer – confining unit – aquifer).  It is important to note that for each case 

the spatial distribution of hydrogeologic facies were assumed to be known, so that during 

the inverse modeling process only the parameters assigned to each unit – rather than any 

spatial characterization of the units - were calibrated.  This includes the random binary 

case; for that scenario the spatial description was stochastically generated, but once 

generated was considered to be known. 

Each of the three heterogeneity configurations had a ‘true’ constant porosity of 0.30.  For 

each configuration, three different constant longitudinal dispersivities (0, 10, or 25 m) were 

tested.  The heterogeneity configuration (Binary, Lenses, or Stratified) and the system 

dispersivity (0, 10, or 25 m) are hereafter designated by the form Configuration_Dispersivity 

(e.g., ‘Binary_0’ refers to the case of the randomly generated binary heterogeneity 

configuration with no longitudinal dispersivity). 
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Figure 6.2 Aquifer conductivity configurations and locations of calibration targets for synthetic 
cases.  (a) Binary case; (b) Lenses case; (c) Stratified case.  The boundary conditions and 

observation names shown for the Binary case apply to all three cases.  Model grid dimensions are 
50 columns x 20 layers.  Model cells are 25 m wide by 5 m thick. 

 

For each of the nine possible combinations of heterogeneity and dispersivity, calibration 

targets included system discharge as well as heads and groundwater ages at 12 observation 

locations (Figure 6.2).  For each scenario, the values of these calibration targets were 

generated by steady state simulation with the addition of Gaussian noise to represent 

sampling uncertainty.  We will refer to these synthetically-generated target values as the 

‘true’ representation of the system.  Weights for each observation type and location were 

assigned as an inverse function of the standard deviation of the sampled set.  Heads and 
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baseflow discharge were simulated with MODFLOW-2005 (Harbaugh, 2005).  For the zero 

dispersivity case, true groundwater ages were simulated by backward-tracking particles 

from a 1-meter screen length using MODPATH (Pollock, 2012).  For the cases with 

dispersivity, true groundwater ages were simulated with MT3DMS (Zheng and Wang, 1999) 

using the total variation diminishing (TVD) solver and a zeroth-order production term to 

implement the direct age method (Zheng, 2009; Goode, 1996).  In order to generate the 

steady state groundwater age field with this method the transport simulation was run with 

a steady state flow field until the spatial distribution of age reached steady state.  The TVD 

solver was used to generate the target ages in order to minimize the effects of numerical 

dispersion, though it is important to note that in the ADM calibration tests, the finite 

difference solver was used based on the presumption of a dispersive system. 

6.1.2 - Calibration Method, Measures of Simulated Groundwater Age, and Performance Metrics 

Automated calibration was performed using UCODE (Poeter et al., 2005) as described in 

Section 3.2.3 of this dissertation.  The parameter values for recharge, hydraulic 

conductivities, porosity, and (when the ADM was employed) dispersivity were estimated 

for each of the nine aquifer configurations by calibrating the model against the generated 

targets.  For all aquifer cases, steady recharge was first derived from the noisy discharge 

value and then this recharge was assigned during the estimation of the other parameters. 

For each model, flow and transport parameters were calibrated using both simultaneous 

and sequential methods.  The simultaneous methods used all available head and age 

information in order to calibrate flow and transport parameters at the same time.  The 

sequential method first calibrated hydraulic conductivities against head observations then 



 133 

assigned those conductivity values in order to calibrate porosity against age measurements.   

The simultaneous methods are distinguished from one another by the method of simulating 

the travel time distribution at the observation location (Table 6.2).  Three of these methods 

used kinematic measures of age and the fourth used an ADM measure of age.  ‘WellOnly’ 

refers to the use of particle tracking to simulate groundwater age by backward tracking 

advective pathlines from the 1-m well screen to the recharge location and then computing 

the mean age of the resulting kinematic TTD.  ‘RegVol’ refers to the use of backward particle 

tracking from a registration volume centered on the well to similarly generate a kinematic 

TTD and an associated mean age; for the 2D synthetic examples the registration volume 

reduces to a rectangle (Figure 6.1).  For the RegVol method, the dimensions of the 

registration area were calibrated parameters.  As a comparison, and in order to simplify the 

calibration by reducing the number of estimated parameters, a RegVol_Fixed method was 

also tested; this method generated kinematic TTDs using a fixed 10-m by 10-m area 

centered on the well screen.  ‘UnitPulse’ refers to the use of a unit pulse boundary condition 

with an ADM to generate a travel time distribution and an associated mean age.  Mean ages 

were computed as the 1st moment of the TTD.  As mentioned above, the UnitPulse method 

used the finite different (FD) solver to simulate the transport of age with dispersion.  For 

the sequential calibration method (labeled ‘Sequential’), age was simulated using the 

WellOnly method (i.e., backward particle tracking from the well screen to the recharge 

point in order to construct the kinematic TTD and derive the mean age). 
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Table 6.2 Calibration Methods and Calibrated Parameters for Synthetic Cases 

 

 

6.1.3 - Calibration of the Upper Chester model using ages inferred from environmental tracers 

In order to examine the impact of aggregating multiple tracer measurements into single 

measures of steady state age we calibrated the Upper Chester flow and transport model 

(see Chapter 3 of this dissertation) against interpreted steady state ages.  For calibration 

methods that used aggregated interpreted ages rather than tracer concentrations as 

transport observations we simulated the age at each well by calculating the mean of the age 

distribution g(W� (Eq. 3.2).  To consolidate these multiple environmental tracer 

concentrations into units of steady state age we aggregated the tracer information available 

at each well into a single inferred age for that well.  In order to consider the impact of the 

aggregation scheme on calibration results, we used two methods of estimating the steady 

state age.  We refer to these estimates as the Curated and Uncurated steady state age 

targets.  Curated targets used the apparent ages and associated uncertainty (i.e., sample 

standard deviation) estimated by Busenberg and Plummer (2000).  Curated targets also 

privileged 3H/3He and SF6 information when consolidating multiple apparent ages at a 

single observation site. 3H/3He was privileged because it approximates an ideal tracer; if a 
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3H/3He measurement existed for a particular location, the 3H/3He-derived age was used as 

the steady state age.  SF6 was privileged for the curated ages because the atmospheric 

concentration of SF6 has continued to increase in recent decades as atmospheric CFCs have 

plateaued and declined; the SF6 signal in young waters is more distinct, and the SF6-derived 

ages were therefore used for groundwaters apparently recharged after 1988.  Furthermore, 

SF6 is assumed to be less subject to mass loss (see discussion in Chapter 3 of this 

dissertation).  An unweighted average of ages derived from CFC and SF6 data were used for 

remaining samples.  The standard deviations of the age that were estimated by Busenberg 

and Plummer (2000) were combined into a single measurement variance and used to 

weight the observations during calibration.  In contrast to the Curated calibration targets, 

Uncurated targets for each site were constructed as an unweighted average of all available 

SF6, CFC, and 3H/3He measurements.  Each dissolved tracer concentration was converted to 

an apparent age by matching the sampled concentration to a corresponding year on the 

annually averaged atmospheric input time series (Figure 3.1).  This is simply the inversion 

of the method described in the Section 3.2 for calculating the tracer concentrations at each 

well as a function of the travel times; as such, the calculation of age from tracer 

concentration also assumed advective-only transport with recharge conditions of 10 C and 

2 cm3/L excess air.  Standard deviations for each Uncurated steady state age were 

calculated by multiplying the derived mean age by the coefficient of variation of the tracer 

sample. 

In general, the mean Curated ages tend to be slightly younger than the Uncurated ages 

(Table 6.3).  This is mostly due to privileging the tritium-based ages that were derived by 

Busenberg and Plummer (2000).  More significantly, the Uncurated targets include much 
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larger standard deviations for older ages.  That is, for water samples with very low CFC 

concentrations, the ages interpreted by Busenberg and Plummer included a relatively high 

confidence that the trace CFC measurement is in fact a signal from the beginning of the CFC 

time series, rather than noise from contamination or non-simulated, non-advective mixing 

(see Table 3 in Busenberg and Plummer, 2000).  Because the inverse of the standard 

deviations were used to weight observations during the calibration procedure, increasing 

the Uncurated standard deviations decreased the relative importance of older, deeper 

observations. 
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Table 6.3 Calibration targets for Upper Chester calibrations using steady state interpreted age. 
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6.2 RESULTS AND DISCUSSION 

6.2.1 – Results and Discussion for Synthetic Cases 

In this section the performances of the various calibration methods using the Synthetic 

cases are evaluated using the following metrics for comparison:  (1) the weighted sum of 

squared errors (WSSE); (2) the accuracy of the porosity estimate; and (3) the accuracy of 

the simulated mean baseflow age (i.e., age of the system discharge).  In surface water 

systems where contaminant delivery is dominated by baseflow, the travel time distribution 

of baseflow ages provides an important integrated hydrological metric for the susceptibility 

of receiving waters to contamination.  The capacity of the calibrated model to simulate the 

‘true’ baseflow age may therefore be understood as an indicator of the model’s capacity to 

make accurate transport predictions.  

Table 6.4 and Table 6.5 show the calibrated porosity values and simulated discharge ages, 

respectively, for each scenario.  Because the RegVol_Fixed method performed more poorly 

than the RegVol method it is therefore not included in the results or discussion.  Figure 6.3 

shows the WSSE for each scenario as a function of calibration iteration.  As a reminder of 

the problem of non-uniqueness in inverse modeling, it is useful to note that the WSSE is not 

necessarily an indicator of relative model accuracy.  For the Stratified_10 scenario the 

UnitPulse method resulted in the lowest WSSE (Figure 6.3h) but the RegVol and WellOnly 

methods resulted in more accurate porosity estimates (Table 6.4) and simulated baseflow 

age (Table 6.5).  For this case, the dispersivity parameter appears to have enabled better fit 

to the noise in the age observations while worsening the estimation of the actual parameter 

set. 
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Table 6.4 Calibrated system porosities for different calibration methods and Synthetic aquifer 
configurations.  The true system porosity is 0.30.  See Table 2 and Figure 2 for descriptions of the 

calibration methods and aquifer configurations, respectively.  

 

 

For all simultaneous scenarios, the WellOnly method was more accurate than the UnitPulse 

method at estimating porosities for zero dispersivity cases and the UnitPulse method was 

more accurate than the WellOnly method at estimates for the highest dispersivity cases.  

The relative performances of those two methods were mixed for the intermediate 

dispersivity cases.  This suggests that as true system dispersivity increases, the capacity of 

kinematic ages to translate the available system information into accurate parameter 

estimates decreases.  It is important to note, however, that for the Lenses scenarios 
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involving dispersion, the sequential use of a kinematic method resulted in a better porosity 

estimate and simulated baseflow age than the simultaneous use of an ADM method (Table 

6.4 and Table 6.5); in fact, for the Lenses scenarios, the Sequential method resulted in a 

more accurate porosity and baseflow age estimate than any of the simultaneous methods.  

This is in contrast with previous literature that has shown that the simultaneous inclusion 

of flow and transport information improves inverse modeling (Anderman et al., 1996; Ginn 

et al., 2009).  The superior performance of the Sequential method in the Lenses scenarios 

here suggests that the benefits of simultaneous inclusion of flow and transport information 

may apply more to some aquifer configurations or calibration routines than others. 

6.2.1.a - Impact of applying kinematic-only methods to dispersive systems 

The effect of dispersion on groundwater age at a point in space is a function of the 

subsurface conductivity field, the direction of flow, the amount of dispersion, and the 

relative location of boundary conditions.  The impact of system dispersion on a kinematic 

calibration method therefore depends on the effect of dispersion at the most influential 

observation points.  The influence of a single observation on a single parameter estimate 

can be quantified with regression statistics such as Cook’s D or DFBETAS (Hill and 

Tiedeman, 2006). 

With the exception of the Stratified_10 scenario, the kinematic WellOnly method resulted in 

porosity estimates and baseflow age predictions that were 30-70% too high when applied 

to dispersive systems (Table 6.4 and Table 6.5).  The Binary_10 scenario illustrates and 

explains the reasons for this general trend.  According to the DFBETAS statistics for the 

Binary_10 cases (not shown), the porosity estimate using the WellOnly method was most 



 141 

strongly influenced by age observations at Obs04 and Obs08 (see Figure 6.2 for locations).  

For each of these locations, the true groundwater age at the observation increased with 

dispersion due to the mixing of older water (Table 6.6).  In an effort to better fit the age at 

those observation locations, but with only kinematic flowpaths available to account for the 

TTD, the WellOnly calibration method overestimated the porosity in order to reduce 

groundwater velocities (and thus simulate older groundwater ages).  In contrast, the 

UnitPulse method was able to account for the older ages through dispersive mixing and 

thus more accurately estimate the porosity (Table 6.4). 

Table 6.5 True and simulated mean base-flow age (years) for different calibration methods and 
Synthetic aquifer configurations.  See Table 6.2 and Figure 6.2 for descriptions of the calibration 

methods and aquifer configurations, respectively. 
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Figure 6.3. WSSE progression for different heterogeneity scenarios and calibration methods.  
Incomplete time series indicate convergence of the calibration process prior to 50th iteration.  

Porosity estimates reported in Table 3 are from iteration with minimum WSSE (not necessarily the 
50th iteration).  Legend in panel (b) applies to all panels. 
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The Stratified_25 case provides a slightly more complicated example and shows the impact 

of ignoring dispersion on both the porosity estimate and the conductivity estimate.  For the 

Stratified_25 WellOnly method, the porosity estimate was most strongly influenced by site 

Obs01 in the upper aquifer (see Figure 6.2).  Because the true dispersive age at Obs01 is 

older than the true kinematic age (Table 6.6), the WellOnly method over-estimated the 

porosity in order to reduce kinematic velocities and increase travel time (Table 6.4).  By 

comparing the WellOnly calibration results for all three Stratified scenarios (Figure 6.4), 

we may note that the upper aquifer conductivity is consistently predicted regardless of the 

magnitude of dispersivity.  Since age varies substantially with dispersivity (see Table 6.6), 

the calibrated upper aquifer conductivity is insensitive to age information and therefore not 

sensitive to dispersive effects on age.  However, this was not true for the estimates of the 

confining layer and lower aquifer conductivities.  For the Stratified_25 scenario, those 

parameters are sensitive to the age information at sites Obs03 and Obs07.  These sites are 

located in the confining layer, where the effect of dispersion is to reduce the groundwater 

age (Table 6.6).  To accommodate these younger ages, the regression raised the 

conductivity estimates for both the confining layer and the lower aquifer in order to 

compensate for the reduced velocities associated with the exaggerated porosity. 
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Table 6.6 True age (years) as a function of dispersivity at select observation sites.  See 
Figure 6.2 for location of sites. 

 

6.2.1.b - Impact of applying dispersive methods 

While the most basic aim of this study was to assess the calibration impacts of kinematic 

assumptions in advective-dispersive systems, we may also consider the impact of applying 

an ADM method to the same scenarios.  As noted, for most scenarios involving actual 

system dispersion, the use of the UnitPulse ADM method improved upon the use of 

kinematic methods.  However, the accuracy of the optimized parameter set that was 

identified using the UnitPulse method varied widely across scenarios.  Both porosity and 

baseflow age predictions were most accurate for the Binary scenarios and least accurate for 

the Lenses scenarios.  For the Lenses scenarios the porosity was overestimated by 36-75% 

(Table 6.4).  For the Lenses_10 and Lenses_25 scenarios this resulted in similar 

overestimates of baseflow age (Table 6.5); for the Lenses_0 scenario the baseflow age 

prediction is more accurate because the calibration compensated for the exaggerated 

porosity by over-estimating the aquifer conductivity by 80% (not shown).  Two particular 
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trends are evident from the porosity estimate and the accompanying dispersivity estimate 

for the UnitPulse methods (Table 6.4): (i) for zero dispersivity scenarios, the calibration 

correctly estimated the system dispersivity parameter but over-estimated system porosity; 

and (ii) for the scenarios with dispersivity, the calibration either over-estimated porosity 

while under-estimating dispersivity or under-estimated porosity while over-estimating 

dispersivity.  Figure 6.3 shows that the UnitPulse had the lowest WSSE for all scenarios 

with dispersivity; in most cases the UnitPulse WSSE was substantially lower.  This suggests 

that the calibration routine used the combination of porosity and dispersivity to improve 

the objective function but was largely unable to accurately represent the system. 
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Figure 6.4 Parameter estimates for the scenarios (a) Stratified_0, (b) Stratified_10, and (c) 
Stratified_25.  Error bars show 95% confidence intervals generated by UCODE.  Dashed line 

indicates true parameter value. 

 

While a full examination of the numerical challenges to transport modeling, and the 

feedbacks between those challenges and the inverse modeling algorithm, is beyond the 

scope of this paper, we may consider the possible effects of numerical dispersion on the 

results of calibrations using the UnitPulse method.  Avoiding or accounting for the presence 
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of numerical dispersion is a well-known challenge to advective-dispersive transport 

simulation (Zheng and Bennett, 2002; Noorishad et al., 1993; Fletcher, 1991).  When using 

the FD solver while calibrating against age information, the effects of dispersivity on age at 

a point may be a function of both numerical dispersion as well as the calibrated value of the 

dispersivity input parameter.  It is difficult to quantify the cumulative effect of numerical 

dispersion on a system (Zheng and Bennett, 2002).  However, in order to estimate this 

effect for our steady state 2D system, we may calculate the one-dimensional (1D) 

dispersivity that is a result of numerical dispersion in both the horizontal and vertical 

directions at each model node.  For the solution method applied in our study, which used an 

implicit approximation of the ADM with upstream weighting, 1D numerical dispersivity 

Dnum is calculated as follows: 

 𝛼  𝑚  
𝑣∆𝑥
2 (1  𝑣∆𝑡∆𝑥 ) (6.1) 

where v is the velocity in the direction of flow; 'x is the grid dimension in direction of flow; 

and 't is the time step (Zheng and Bennett, 2002).  As noted above, for our model 'x was 

equal to 25 m for the horizontal direction and 5 m for the vertical direction.  For all 

scenarios��'t was equal to 10 days.  For the horizontal and vertical velocities associated 

with the ‘true’ parameter sets, the average numerical dispersivity at each node for each 

scenario was less than 0.5 m.  For the Stratified scenarios, Dnum at a point was as high as 4 

m; for the Binary and Lense scenarios, Dnum at a point was as high as 10 m.  Noting that (i) 

these 1D approximations do not account for the cumulative effect of dispersivity on the 

system and (ii) the velocities and therefore the numerical dispersivities change for each 
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iteration of each calibration, we may nonetheless assume that numerical dispersion 

contributed to inaccurate parameter estimates for the zero dispersivity cases.  This is 

because, for each zero dispersivity case, numerical dispersion continued to have dispersive 

effects on age in spite of the fact that UCODE had set the dispersivity input parameter to 0. 

The influence of numerical dispersion may explain, for example, the UnitPulse porosity 

estimate for the Stratified_0 scenario.  Analysis of the regression residuals and the DFBETAS 

statistics (not shown) for the optimized UnitPulse parameter set indicates that the age data 

for the confining layer was the greatest influence on the estimated porosity.  In the presence 

of numerical dispersion, the simulated age of the confining layer was younger than it would 

be without dispersion because of the mixing of younger, upper aquifer water; this in turn 

confounded the identification of porosity, which was estimated too high as a compensatory 

measure meant to reduce advective velocities and thus increase the age. 

In contrast, for the Stratified_10 scenario, the porosity estimate was most influenced by a 

combination of lower and upper aquifer observations (Obs04 and Obs10).  More research is 

needed to assess any numerical reasons that drive the under-estimation of porosity.  It may 

be noted, however, that for the Upper Chester model, with hydrogeology closely resembling 

the Stratified cases here, the use of ADM methods to simulate age resulted in unreasonably 

low calibrated porosities (results not shown).  The low porosity estimates derived from 

ADM inverse modeling at the field site appear to be artifacts of the simulation method 

rather than a true representation of the system.  In contrast, the use of the WellOnly 

method in the field case resulted in porosity estimates that are consistent with the analysis 

of sediment cores and porosity estimates based on further analysis of an extensive set of 
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environmental tracer data (including transport simulations of multiple environmental 

tracers). 

We may conclude from the UnitPulse cases that even in situations where the ADM method 

may accurately estimate the dispersivity (as in the Binary_0, Lenses_0, and Stratified_0 

scenarios), the estimates of the other parameters are not necessarily accurate.  However, 

keeping in mind that we do not necessarily know beforehand that we are applying an ADM 

method to a low dispersivity system, for the zero dispersivity scenarios the ADM 

dispersivity estimate served as a useful signal that kinematic methods should instead be 

used.  In contrast, though, note that the UnitPulse method wrongly estimated zero 

dispersivity for the Lenses_10 scenario.  Interestingly, for the Lenses_10 case both the 

kinematic methods and the UnitPulse estimated nearly identical parameter sets (not 

shown).  This may suggest that, if an ADM method estimates a very low dispersivity system, 

but a kinematic method estimates a very similar parameter set, then both methods are 

wrong, and a sequential method is more appropriate (see Table 6.4 and Table 6.5 and 

discussion above).  More research is required to investigate this further. 

6.2.1.c – Potential benefits of the RegVol method 

For the Lenses_0 scenario, the RegVol method resulted in a more accurate model than the 

WellOnly method as measured by the porosity estimate (Table 6.4) and the baseflow age 

prediction (Table 6.5).  This is a curious result because (i) the WellOnly method was itself 

used to generate the ‘true’ values and (ii) the dimensions of the registration rectangle 

calibrated by the RegVol were effectively zero.  This latter aspect means that at the optimal 

parameter set, the RegVol method was only calculating the simulated age at the well screen 
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– i.e., acting as the WellOnly method – , yet as a method it was more effective than the 

WellOnly method.  Figure 6.3d shows that the Lenses_0 WellOnly method quickly reached 

a local minimum on the WSSE response surface and made little change for the remainder of 

the 50 iterations.  The RegVol method, however, continued to explore the parameter space.  

These contrasting behaviors are perhaps due to the kinematic volatility that Varni and 

Carrera (1998) identified for heterogeneous conductivity fields.  As noted above, for a given 

parameter set, small variations in location may have large implications for a kinematic age.  

Similarly, for a given location, small variations in parameter values may have large 

implications for kinematic age.  This sensitivity of the age to the parameter set is in part a 

function of grid dimensions and the characteristics of the simulated advective velocity field 

(e.g., the number of particles that are used and the interpolation of heads and velocities that 

is required to place the particles on individual advective flow paths).  For a gradient search 

optimization scheme such as UCODE, which uses a sensitivity analysis at each iteration to 

determine the direction of parameter change, the sensitivity of simulated kinematic ages to 

the changes in parameter values may limit the precision with which the calibration can 

approach the true values.  It may be possible to address this using UCODE controls such as 

the amount each parameter is perturbed during the sensitivity analysis.  The RegVol 

method, in contrast, by extending the number of advective pathlines contributing to each 

observation location, appears to dampen this kinematic volatility and allow the 

optimization algorithm to make a more refined search of the parameter space. 
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6.2.2 – Results and Discussion for Case Study 

Figure 6.5 and Figure 6.6 compare the results of (i) flow and transport parameter 

estimation using aggregated interpreted ages as calibration data with (ii) parameter 

estimation using tracer concentrations (see Chapter 3 of this dissertation). 

 

 

Figure 6.5 Sequentially-calibrated parameter estimates for Upper Chester.  Error bars show 95% 
confidence intervals calculated by UCODE.  The porosity values that are displayed are the calibrated 

values (rather than the upper confidence interval). 
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Figure 6.6 Simultaneously-calibrated parameter estimates for Upper Chester.  Error bars show 
95% confidence intervals calculated by UCODE.  The porosity values that are displayed are the 

calibrated values (rather than the upper confidence interval). 
 

With the exception of the sequential Curated Ages method, parameter estimates obtained 

using the aggregated steady state apparent ages were very similar to estimates obtained 

using the full tracer datasets (Figures 6.5 and 6.6).  It is notable that for the simultaneous 

cases, the porosity estimates from both steady state age methods are very close to the 

porosity estimate from the Composite tracer method.  The steady state age methods result 

in larger confidence intervals than the Composite method because they have fewer 

observations.  The general similarity of porosity estimates suggests that the use of apparent 

ages as calibration targets does not appreciably impact the resulting parameter estimates.  

However, this interchangeability of tracer and age calibration targets is likely very sensitive 

to the validity of the transport model as well as the travel time distribution that is assumed 

in the interpretation of ages from tracer data.  That is, for the Upper Chester, the advection-
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only transport model seems to describe the system well, such that advection-only 

assumptions could be invoked both when simulating tracer concentrations and when 

inferring age from individual tracer concentrations.  However, in systems where the tracer 

movement requires a more sophisticated transport model (e.g., ADM or dual domain), it is 

unlikely that the lumped parameter model used to generate age targets and the transport 

model used to describe tracer movement would be as well-coordinated as they are for our 

study site.  

 

It is apparent from Figure 6.5 that the aggregation method (i.e., Curated or Uncurated) 

impacted the sequential steady state methods; the optimized porosity was typical of the 

other methods when calibrated against uncurated age targets but very low (0.26) when 

calibrated against curated age targets.  The reduced porosity estimate derived from the 

curated ages is attributable in part to the greater weight assigned to observations at lower 

depths (Table 6.3); in order to satisfy the younger curated ages reported at sites below the 

confining layer, but with the confining layer conductivity adjusted, the sequential method 

reduced the effective porosity estimate.  It should also here be noted here that the 

conversion of a very low tracer concentration to an age changes the potential impact of that 

site on the objective function during the parameter estimation.  Consider for example, a site 

at which a very low CFC-12 concentration suggests an apparent recharge date of 1950, 

which is at the threshold of groundwater age dateable with the CFC-12 method (Figure 

3.1).  If during a calibration iteration the porosity is overestimated, such that the simulated 

recharge date at that site is 1930, then the simulated CFC-12 concentration will be zero and 

the concentration residual for that site will simply be equal to the sampled concentration, 
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which was small.  If the simulated recharge date for that site is 1910, the residual does not 

change because the simulated CFC-12 concentration is still equal to zero.  In other words, 

for simulation of tracer concentrations, the calibration is insensitive to over-estimation of 

age once the simulated velocity field results in a groundwater age at a site that is older than 

the beginning of the tracer time series.  However, in cases where age, rather than tracer 

concentration, is simulated, the age residual will continue to grow as the simulated velocity 

field gets slower and slower.  This phenomenon may of course be impacted by the relative 

weights placed on age and head data, since the velocity field is a function of conductivity 

and recharge as well as porosity. 

In addition to the influence of older, deeper wells on the porosity estimate from the 

sequential Curated Age method, the reduced influence of CFC information in the curated 

dataset (Table 6.3) may also be a factor.  Though, in contrast to the sequential method, the 

simultaneous inclusion of curated age information resulted in: (i) a much higher porosity 

estimate, which increases the age at lower depths; (ii) a higher confining unit conductivity 

estimate, which reduces the age at lower depths; and (iii) a lower upland recharge estimate, 

which increases the age at lower depths (Figure 6.6).  The aggregation method had less 

impact on the simultaneous steady state method (Figure 6.6).  Relative to the simultaneous 

Uncurated Age method, the simultaneous Curated Age method resulted in a lower porosity 

estimate, which reduces simulated age, and a lower Surficial Aquifer conductivity estimate, 

which increases simulated age.  It is notable, however, that the simultaneous inclusion of 

uncurated age information resulted in essentially the same flow model as when sequential 

calibration was used; the sequential flow parameter values were used as the initial 

estimates of the flow parameter values for the simultaneous calibration. 
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6.3 CONCLUSIONS 

The automated calibrations of several synthetic 2D aquifer configurations were used to 

investigate the impact of model simulation of groundwater age (i.e., whether age was 

simulated as a kinematic or ADM process) on the estimated parameter sets and simulated 

system baseflow age.  As true system dispersivity increased, the capacity of kinematic 

simulations of age to translate the available system information into accurate parameter 

estimates decreased.  With the exception of the Stratified_10 scenario, this resulted in 

estimates of system porosity and mean baseflow age that were too high.  For higher-

dispersivity systems, the UnitPulse ADM method improved on the performance of 

kinematic methods.  However, in general the ADM method did not accurately estimate the 

system porosity or baseflow age.  The ADM calibration methods correctly estimated the 

dispersivity parameter for zero-dispersivity systems.  However, other parameters were not 

correctly estimated, possibly as a result of the numerical dispersion associated with the 

finite difference solution to the ADM.  For some scenarios, the use of a registration volume 

of kinematic ages appeared to assist the calibration algorithm in finding a more accurate 

solution.  We also found for the Upper Chester flow and transport model that parameter 

estimates obtained using the aggregated steady state apparent ages as calibration data 

were very similar to estimates obtained using the full tracer datasets. 
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Chapter 7:  Conclusions and Future Work 

 

In this dissertation we examined a series of questions related to understanding and 

managing nitrogen in agricultural systems, including fundamental methodological 

questions associated with the calibration of groundwater simulation tools as well as the 

application of those tools in the description of nitrate transport and removal processes.  In 

Chapter 3 we used CFC, SF6, and 3H/3He datasets individually and in combination to 

calibrate the groundwater flow and transport model for the Upper Chester targeted 

watershed.  Our study demonstrated that while tracer data can provide necessary 

supplemental information for the calibration of flow and transport models, the use of data 

from a single tracer or from a small tracer set may be insufficient to fully interpret the 

information content of the tracers.  While the use of multiple weighting schemes with 

datasets of individual tracers may be important for suggesting the range of possible models, 

the combined use of multiple tracers is less sensitive to the weighting scheme and results in 

more confident parameter estimates.  Further, we showed that the use of tracer information 

in parameter estimation can help reduce uncertainty in the characterization of important 

hydrogeological features such as the semi-confining unit in the Upper Chester. 

In Chapter 4 we used the travel time distributions generated by the calibrated flow model 

in order to relate land surface loadings to stream responses and resolve the key 

components of the catchment nitrogen budget.  We examined adjacent agricultural 

subcatchments with similar land use histories but disparate nitrate export signatures in 

order to quantify the removal fractions of various removal mechanisms.  We showed that in 
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spite of spatial and temporal uncertainty in loading, multiple calibration scenarios agreed 

that in-stream nitrate removal efficiencies vary significantly between the two streams.  

These site specific findings of disparate removal mechanisms highlighted more general, 

and potentially important, questions about the complexity of predicting and managing 

agricultural nitrate export at a regional scale, including the challenges of integrating 

agricultural catchments with highly heterogeneous nitrogen processing and export 

characteristics into nutrient trading frameworks. 

In Chapter 5 we developed a method for simulating the transient delivery of base-flow age 

from subsurface to receiving stream as a function of seasonal changes in hydrology and 

aquifer storage, and we applied the method to a variety of synthetic two-dimensional (2D) 

aquifers as well as to the Upper Chester site.  We found that the timing of maximum base-

flow age relative to the timing of minimum base-flow discharge varied with both the 

hydraulic conductivity field and the annually averaged recharge, which determines the 

system mean age.  The two assumptions of (i) an aquifer in which ages are vertically well-

mixed and (ii) an aquifer in which ages are strongly stratified provide two end-members 

for estimation of how the base-flow age might respond to seasonal changes in recharge and 

base-flow, and the simulations in this study found that the change that occurs in real 

systems is somewhere in between.  For the cases that we investigated, apparent ages 

inferred from SF6 measurements while assuming piston-flow transport assumptions for the 

SF6 were biased young, with biases especially pronounced with layered hydrogeology in 

which discharge consists of shallow surficial flow mixed with a contrasting regime of much 

older water.  For one of the subcatchments in our Maryland study site we found that 

seasonal changes in recharge may only result in changes in base-flow age of 3 to 4 years, 
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but that SF6 apparent ages based on piston-flow assumptions of tracer transport may 

underestimate the mean base-flow age by 60% and more closely resemble the median 

system age.  The conclusions from Chapter 5 and the further development of the modeling 

methodology developed in that chapter will be important for interpreting water quality 

changes in streams where base-flow delivery of solute is an important component of 

stream solute concentrations and where the system is subject to seasonal changes in the 

hydrogic regime. 

Finally, in Chapter 6 we considered the impact of assumptions about age transport on the 

automated calibration of groundwater flow and transport models.  Specifically, we used the 

automated calibration of several synthetic aquifers to investigate the impact on the 

resulting calibrated model of the assumption that no dispersion is present under a variety 

of heterogeneity and dispersivity scenarios.  We showed that as true system dispersivity 

increases, the capacity of kinematic simulations of age to translate the available system 

information into accurate parameter estimates decreases, and that in general the 

automated calibration routines compensated for the un-modeled dispersivity with elevated 

porosity estimates.  This work provides a cautionary tale that complements the work of 

Chapter 3 and the insights from that chapter into (i) the uncertainty that may accompany 

the integration of groundwater age information into model calibration as well as (ii) the 

benefits of the information when properly employed. 

In sum, the studies in this dissertation collectively illuminate the general task of 

groundwater modeling and the particular task of using groundwater modeling to describe 

nitrogen transport in agricultural systems.  Important future site-specific work includes the 
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integration of improved land use information and more spatially distributed watershed 

monitoring into the description of nitrate transport in the Upper Chester, with the ultimate 

aim of discerning the impact on water quality of management improvements that have 

begun in the last 5-10 years.  Given the lag times between land surface action and stream 

response, several years of water quality monitoring will be required to fully leverage the 

higher resolution land use data now being collected.  However, more immediate further 

investigations should consider whether the emerging land use dataset provides any 

information upon which reconstructions of historical loading may be conditioned, thus 

reducing the loading uncertainty described in Chapter 4. 
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Appendix A: Scripting tools developed for this work 

This dissertation work included the development of several tools that were written in the Python 
language for purposes of: 

i. generating the model framework from geospatial information (e.g., land surface 
elevations and hydrogeological unit locations); 

ii. developing input files for the MODFLOW, MT3DMS, and MODPATH numerical 
simulation engines; 

iii. integrating data from sources such as the US Geological Survey National Water 
Information System into simulation calibration routines; 

iv. post-processing (e.g., summarizing and visualizing) model output; and 
v. coordinating output from and updating input information for simulation engines during 

model calibration. 

 
Documentation for these Python tools is currently being updated in preparation for making the 
tools publicly available through GitHub or a similar distribution method.  Figure A1 illustrates the 
use of some of these scripting tools in the nitrate modeling workflow used in Chapter 4 of this 
dissertation. 
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Figure A1.  Nitrate transport modeling workflow. 

 



B-
1 

  W
el

l 
Id

en
ti

fi
er

 
O

b
se

rv
at

io
n

 
D

at
e 

CF
C-

1
1

 
(p

g/
k

g)
 

CF
C-

1
1

 
st

d
 

(p
g/

k
g)

 
CF

C-
1

2
 

(p
g/

k
g)

 

CF
C-

1
2

 
st

d
 

(p
g/

k
g)

 

CF
C-

1
1

3
 

(p
g/

k
g)

 

CF
C-

1
1

3
 s

td
 

(p
g/

k
g)

 
SF

6
 

(f
m

ol
/L

) 
SF

6
 s

td
 

(f
m

ol
/L

) 

3
H

 
(T

ri
ti

u
m

 
u

n
it

s)
 

3
H

 +
 3

H
e 

(T
ri

ti
u

m
 

u
n

it
s)

 
KE

Be
50

 
11

/1
9/

19
90

 
-- 

-- 
27

9 
15

 
-- 

-- 
-- 

-- 
-- 

-- 
KE

Be
50

 
11

/1
4/

19
91

 
-- 

-- 
33

6 
2 

80
.5

 
2.

6 
-- 

-- 
-- 

-- 
KE

Be
50

 
3/

31
/1

99
2 

-- 
-- 

34
3 

8 
62

.3
 

8.
5 

-- 
-- 

-- 
-- 

KE
Be

50
 

7/
24

/1
99

8 
-- 

-- 
31

3 
0 

83
.3

 
5.

9 
1.

32
 

-- 
-- 

-- 
KE

Be
50

 
12

/1
0/

19
98

 
-- 

-- 
-- 

-- 
-- 

-- 
0.

98
 

0.
01

 
-- 

-- 
KE

Be
52

 
11

/5
/1

99
0 

75
1 

56
 

21
1 

16
 

-- 
-- 

-- 
-- 

15
.3

 
-- 

KE
Be

52
 

11
/5

/1
99

1 
60

7 
11

 
25

0 
4 

36
.2

 
5 

-- 
-- 

16
.6

 
24

.7
 

KE
Be

52
 

3/
31

/1
99

2 
67

1 
6 

26
5 

5 
33

.4
 

2.
2 

-- 
-- 

-- 
-- 

KE
Be

52
 

7/
21

/1
99

3 
63

0 
11

 
27

6 
17

 
-- 

-- 
-- 

-- 
-- 

-- 
KE

Be
52

 
7/

29
/1

99
7 

64
7 

7 
30

7 
0 

69
.5

 
2.

9 
1.

06
 

0.
01

 
-- 

-- 
KE

Be
53

 
4/

2/
19

91
 

77
8 

15
 

26
6 

6 
-- 

-- 
-- 

-- 
16

 
-- 

KE
Be

53
 

7/
21

/1
99

3 
65

8 
2 

29
9 

9 
80

 
0.

9 
-- 

-- 
-- 

-- 
KE

Be
53

 
7/

29
/1

99
7 

65
5 

6 
31

2 
6 

84
.3

 
2.

8 
1.

64
 

0.
25

 
-- 

-- 
KE

Be
59

 
11

/1
9/

19
90

 
-- 

-- 
26

5 
15

 
-- 

-- 
-- 

-- 
14

.8
 

-- 
KE

Be
59

 
12

/1
0/

19
98

 
-- 

-- 
-- 

-- 
-- 

-- 
1.

43
 

0.
01

 
-- 

-- 
KE

Be
61

 
11

/5
/1

99
0 

21
1 

1 
91

 
0 

9.
3 

1.
7 

-- 
-- 

50
 

-- 
KE

Be
61

 
4/

2/
19

91
 

34
4 

10
0 

13
6 

49
 

-- 
-- 

-- 
-- 

60
.3

 
14

7.
2 

KE
Be

61
 

11
/6

/1
99

1 
21

2 
12

 
93

 
2 

6.
1 

3 
-- 

-- 
63

.4
 

15
3.

8 
KE

Be
61

 
7/

21
/1

99
3 

25
1 

3 
12

1 
0 

11
.9

 
0 

-- 
-- 

-- 
-- 

KE
Be

61
 

7/
29

/1
99

7 
48

7 
1 

19
2 

2 
23

.3
 

0.
3 

0.
47

 
0.

15
 

-- 
-- 

KE
Be

62
 

11
/6

/1
99

0 
-- 

-- 
31

0 
34

 
-- 

-- 
-- 

-- 
13

.7
 

-- 
KE

Be
62

 
11

/6
/1

99
1 

70
4 

4 
30

2 
0 

66
.5

 
11

 
-- 

-- 
13

.7
 

16
.2

 
KE

Be
62

 
3/

31
/1

99
2 

74
7 

34
 

29
7 

7 
51

.2
 

3.
5 

-- 
-- 

-- 
-- 

KE
Be

62
 

7/
21

/1
99

3 
67

7 
4 

30
4 

1 
77

.5
 

2.
6 

-- 
-- 

-- 
-- 

KE
Be

62
 

4/
12

/1
99

5 
66

6 
9 

36
6 

10
 

97
.4

 
2.

3 
-- 

-- 
-- 

-- 
KE

Be
62

 
7/

28
/1

99
7 

64
0 

1 
30

3 
2 

81
.2

 
0 

1.
43

 
0.

01
 

-- 
-- 

KE
Be

63
 

11
/6

/1
99

0 
35

0 
7 

10
2 

6 
-- 

-- 
-- 

-- 
38

.5
 

-- 
KE

Be
63

 
7/

29
/1

99
7 

37
2 

2 
13

6 
1 

13
.7

 
0.

3 
0.

21
 

0.
03

 
-- 

-- 
KE

Be
63

 
12

/1
1/

19
98

 
-- 

-- 
-- 

-- 
-- 

-- 
0.

2 
0 

-- 
-- 

KE
Be

64
 

11
/6

/1
99

0 
79

3 
5 

23
1 

17
 

-- 
-- 

-- 
-- 

16
.5

 
-- 

KE
Be

64
 

7/
29

/1
99

7 
60

4 
11

 
25

9 
4 

53
.1

 
0.

1 
0.

69
 

0.
09

 
-- 

-- 

Appendix B: Subsurface environmental tracer observations for the Upper Chester study site 

CFC and SF6 data from Busenberg and Plummer (2000).  Tritium data from Ekwurzel et al. (1994). 
(See Section 3.5 for full references.) 
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Appendix C: Subsurface nitrate observations for the Upper Chester study site 

All observations downloaded from the U.S. Geological Survey National Water Information System 
(NWIS). 

Well 
Identifier 

Nitrate 
Concentration 

(mg N/L) 

 
Observation 

Date 
KEBd150 0.06 3/15/2004 
KEBd151 0.06 3/15/2004 
KEBd151 0.02 5/25/2004 
KEBd152 0.06 3/15/2004 
KEBd153 0.06 3/15/2004 
KEBd153 0.06 5/24/2004 
KEBd153 0.29 9/15/2004 
KEBd154 4.50 3/15/2004 
KEBd155 16.10 3/11/2004 
KEBd156 27.00 3/11/2004 
KEBd156 25.90 5/26/2004 
KEBd156 21.20 9/27/2004 
KEBd157 1.65 3/10/2004 
KEBd158 17.70 3/10/2004 
KEBd158 17.40 5/25/2004 
KEBd158 17.50 9/27/2004 
KEBd159 4.50 3/10/2004 
KEBd160 10.20 3/10/2004 
KEBd160 9.71 5/25/2004 
KEBd160 9.82 7/20/2004 
KEBd160 9.83 9/23/2004 
KEBd161 32.10 3/9/2004 
KEBd162 31.70 3/9/2004 
KEBd162 32.70 5/26/2004 
KEBd162 32.10 7/22/2004 
KEBd162 36.00 9/27/2004 
KEBd163 0.06 3/9/2004 
KEBd163 0.06 5/13/2004 
KEBd163 0.04 7/22/2004 
KEBd163 0.06 9/23/2004 
KEBd164 0.06 3/9/2004 
KEBd164 0.04 5/18/2004 
KEBd164 0.06 9/23/2004 
KEBd165 8.71 3/11/2004 
KEBd165 9.18 5/19/2004 
KEBd165 9.44 7/21/2004 
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Well 
Identifier 

Nitrate 
Concentration 

(mg N/L) 

 
Observation 

Date 
KEBd165 9.34 9/14/2004 
KEBd166 11.80 3/11/2004 
KEBd166 9.55 5/18/2004 
KEBd166 11.60 7/21/2004 
KEBd166 12.60 9/14/2004 
KEBd168 14.50 3/9/2004 
KEBd168 12.70 5/18/2004 
KEBd168 13.20 7/21/2004 
KEBd168 13.30 9/14/2004 
KEBd169 12.30 3/16/2004 
KEBd170 11.30 3/16/2004 
KEBd170 10.80 5/26/2004 
KEBd170 11.00 7/20/2004 
KEBd170 10.10 10/4/2004 
KEBd171 3.62 3/10/2004 
KEBd171 3.89 5/19/2004 
KEBd172 15.70 3/10/2004 
KEBd172 13.50 5/19/2004 
KEBd172 15.00 7/15/2004 
KEBd172 16.00 9/29/2004 
KEBd173 14.20 3/10/2004 
KEBd173 12.00 5/19/2004 
KEBd173 13.10 7/15/2004 
KEBd173 13.60 9/29/2004 
KEBd174 6.87 3/11/2004 
KEBd174 6.56 5/25/2004 
KEBd174 6.37 7/14/2004 
KEBd174 6.24 9/22/2004 
KEBd175 12.50 3/11/2004 
KEBd175 12.70 5/25/2004 
KEBd175 11.60 9/22/2004 
KEBd176 17.50 3/9/2004 
KEBd176 18.50 5/25/2004 
KEBd176 17.30 7/14/2004 
KEBd176 16.90 9/22/2004 
KEBd177 8.05 3/17/2004 
KEBd177 10.60 5/17/2004 
KEBd178 10.80 3/9/2004 
KEBd178 9.46 5/18/2004 
KEBd178 8.52 7/15/2004 
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Well 
Identifier 

Nitrate 
Concentration 

(mg N/L) 

 
Observation 

Date 
KEBd178 10.50 9/23/2004 
KEBd179 14.70 3/9/2004 
KEBd179 13.20 5/18/2004 
KEBd179 14.10 7/14/2004 
KEBd179 14.10 9/23/2004 
KEBd180 7.52 3/15/2004 
KEBd180 7.40 5/24/2004 
KEBd180 7.04 7/20/2004 
KEBd180 7.23 9/15/2004 
KEBe158 14.00 12/5/1991 
KEBe159 1.30 11/7/1990 
KEBe159 0.83 3/5/1991 
KEBe159 0.81 6/4/1991 
KEBe159 1.30 9/9/1992 
KEBe159 1.31 9/1/1999 
KEBe160 3.69 11/19/1990 
KEBe160 3.80 3/5/1991 
KEBe160 3.70 4/23/1991 
KEBe160 3.90 5/28/1991 
KEBe160 3.79 6/25/1991 
KEBe160 3.60 7/22/1991 
KEBe160 3.40 8/20/1991 
KEBe160 3.87 9/16/1991 
KEBe160 3.30 10/15/1991 
KEBe160 3.60 11/13/1991 
KEBe160 3.80 12/9/1991 
KEBe160 3.70 1/6/1992 
KEBe160 3.90 2/3/1992 
KEBe160 3.80 3/2/1992 
KEBe160 4.00 3/31/1992 
KEBe160 6.37 9/1/1999 
KEBe161 9.70 11/7/1990 
KEBe161 9.80 3/5/1991 
KEBe161 9.80 6/4/1991 
KEBe161 9.50 10/15/1991 
KEBe161 12.60 9/1/1999 
KEBe162 3.30 11/6/1990 
KEBe162 3.20 3/4/1991 
KEBe162 3.50 6/5/1991 
KEBe162 3.50 9/9/1992 
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Well 
Identifier 

Nitrate 
Concentration 

(mg N/L) 

 
Observation 

Date 
KEBe162 4.96 9/8/1999 
KEBe163 14.00 11/6/1990 
KEBe163 13.00 3/4/1991 
KEBe163 15.00 6/5/1991 
KEBe163 15.10 9/8/1999 
KEBe164 11.00 11/19/1990 
KEBe164 12.10 9/2/1999 
KEBe165 18.00 11/7/1990 
KEBe165 22.00 10/11/1991 
KEBe166 14.00 11/7/1990 
KEBe167 3.60 11/7/1990 
KEBe167 2.78 10/11/1991 
KEBe169 10.00 3/5/1991 
KEBe169 12.00 5/29/1991 
KEBe170 5.00 3/5/1991 
KEBe170 4.80 5/29/1991 
KEBe170 10.10 9/9/1999 
KEBe189 0.06 7/21/1998 
KEBe189 0.06 3/12/2004 
KEBe189 0.06 5/20/2004 
KEBe192 11.80 7/21/1998 
KEBe195 8.86 7/20/1998 
KEBe195 3.69 3/15/2004 
KEBe195 4.97 5/20/2004 
KEBe206 11.90 7/22/1998 
KEBe207 9.04 7/23/1998 
KEBe207 8.80 5/24/2004 
KEBe207 8.73 7/13/2004 
KEBe207 14.30 9/30/2004 
KEBe208 5.18 7/23/1998 
KEBe210 0.07 7/22/1998 
KEBe212 43.10 7/23/1998 
KEBe218 12.90 3/11/2004 
KEBe218 10.90 5/26/2004 
KEBe218 10.30 7/12/2004 
KEBe218 8.35 9/21/2004 
KEBe219 5.47 3/11/2004 
KEBe219 4.62 5/26/2004 
KEBe219 4.70 9/21/2004 
KEBe50 41.00 11/28/1988 
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Well 
Identifier 

Nitrate 
Concentration 

(mg N/L) 

 
Observation 

Date 
KEBe50 36.00 9/20/1989 
KEBe50 36.00 6/5/1990 
KEBe50 34.00 11/19/1990 
KEBe50 28.00 4/23/1991 
KEBe50 30.00 5/28/1991 
KEBe50 29.00 6/25/1991 
KEBe50 29.00 7/22/1991 
KEBe50 29.00 8/20/1991 
KEBe50 30.80 9/16/1991 
KEBe50 31.00 10/15/1991 
KEBe50 29.00 11/14/1991 
KEBe50 31.00 12/9/1991 
KEBe50 30.00 1/6/1992 
KEBe50 29.00 2/3/1992 
KEBe50 29.00 3/2/1992 
KEBe50 28.00 3/31/1992 
KEBe52 11.00 11/30/1988 
KEBe52 12.00 4/5/1989 
KEBe52 12.00 6/14/1989 
KEBe52 13.00 6/5/1990 
KEBe52 14.00 11/5/1990 
KEBe52 13.00 3/4/1991 
KEBe52 14.00 4/23/1991 
KEBe52 15.00 5/28/1991 
KEBe52 15.00 6/25/1991 
KEBe52 15.00 7/22/1991 
KEBe52 15.00 8/20/1991 
KEBe52 16.20 9/16/1991 
KEBe52 16.00 10/15/1991 
KEBe52 16.00 11/14/1991 
KEBe52 16.00 12/9/1991 
KEBe52 16.00 1/6/1992 
KEBe52 16.00 2/3/1992 
KEBe52 17.00 3/2/1992 
KEBe52 17.00 3/31/1992 
KEBe52 19.10 9/7/1999 
KEBe53 3.08 6/5/1990 
KEBe59 12.00 6/4/1990 
KEBe59 13.00 11/19/1990 
KEBe59 10.30 9/2/1999 
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Well 
Identifier 

Nitrate 
Concentration 

(mg N/L) 

 
Observation 

Date 
KEBe59 6.64 7/12/2001 
KEBe60 3.80 9/20/1989 
KEBe60 5.60 6/7/1990 
KEBe60 14.00 3/6/1992 
KEBe61 9.00 7/6/1989 
KEBe61 7.40 6/5/1990 
KEBe61 7.60 11/5/1990 
KEBe61 7.10 3/4/1991 
KEBe61 8.10 6/5/1991 
KEBe61 10.00 9/7/1999 
KEBe62 15.00 6/6/1990 
KEBe62 15.00 11/6/1990 
KEBe62 14.00 3/4/1991 
KEBe62 15.00 4/23/1991 
KEBe62 16.00 5/28/1991 
KEBe62 18.00 9/16/1991 
KEBe62 17.00 10/15/1991 
KEBe62 18.00 11/14/1991 
KEBe62 17.00 12/9/1991 
KEBe62 17.00 1/6/1992 
KEBe62 16.00 2/3/1992 
KEBe62 17.00 3/2/1992 
KEBe62 17.00 3/31/1992 
KEBe62 12.10 9/8/1999 
KEBe63 4.90 9/7/1989 
KEBe63 5.00 6/6/1990 
KEBe63 5.00 11/6/1990 
KEBe63 9.59 8/31/1999 
KEBe64 11.00 9/7/1989 
KEBe64 12.00 6/6/1990 
KEBe64 13.00 11/6/1990 
KEBe64 13.00 4/23/1991 
KEBe64 13.00 5/28/1991 
KEBe64 12.20 8/31/1999 
KEBe65 1.30 6/13/1989 
QABg62 5.37 2/26/1998 
QABg62 12.30 5/11/2011 

 


