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Automated algorithm for measurement of spontaneous adenosine 
transients in large electrochemical data sets 
 
 

Abstract 

 Spontaneous adenosine release events have been discovered in the brain that 

last only a few seconds.  The identification of these adenosine events from fast-scan 

cyclic voltammetry data has been performed manually and is difficult due to the random 

nature of adenosine release.  In this study, we develop an algorithm that automatically 

identifies and characterizes adenosine transient features, including event time, 

concentration, and duration.  Automating the data analysis reduces analysis time from 

10-18 hours to about 40 minutes per experiment.  The algorithm identifies adenosine 

based on its two oxidation peaks, the time delay between them, and their peak ratios.  In 

order to validate the program, 4 data sets from 3 independent researchers were 

analyzed by the algorithm and then verified by an analyst.  The algorithm resulted in 10 

± 4% false negatives and 9 ± 3% false positives.  The specificity of the algorithm was 

verified by comparing calibration data for adenosine triphosphate, histamine, hydrogen 

peroxide, and pH changes and these analytes were not identified as adenosine. 

Stimulated histamine release in vivo was also not identified as adenosine.  The code is 

modular in design and could be easily adjusted to detect features of spontaneous 

dopamine or other neurochemical transients in FSCV data. 
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Chapter 1: Introduction 

1.1.  Adenosine overview 

1.1.1 Adenosine biological role 

 Adenosine is an important biological nucleoside that is involved in many 

metabolic processes including cell signaling1, neuromodulation1,2, and neuroprotection1,2.  

Adenosine is a constituent of all cells since it is a byproduct of ATP catabolism1 and is 

found in many regions of the brain including the caudate-putamen3, hippocampus4, 

nucleus accumbens3, and cortex5.  Endogenous adenosine acts as a neuromodulator 

and plays an active role in the regulation of cerebral blood flow6,7.  Neuromodulators 

have been typically thought to act on slow time scales, minute to hours, by volume 

transmission.  Volume transmission happens within the brain extracellular fluid and can 

include both short and long distances8.  Adenosine modulates by binding to one of four 

G protein-coupled receptors to cause either an inhibitory or stimulatory regulation of 

neurotransmitters 6.  Release of adenosine has been shown to protect heart cells during 

ischemia, where there is a deficiency in oxygen delivery9.  The ability to measure 

adenosine is important in understanding the role it plays in neuromodulation and 

homeostatic regulation.  Furthermore, since it is pervasive throughout the central 

nervous system and found in every cell, understanding the function adenosine plays in 

physiological disorders like hypoxia and ischemia could help with new treatments for 

these disorders.  Adenosine traditionally has been studied as a slow acting molecule but 

recent evidence suggests a more rapid spontaneous mode of signaling7.  The discovery 

of rapid spontaneously released adenosine in the brain on the minute timescale has 

generated a need for automatic feature detection due to hundreds of events being 

released in a single animal experiment.  In this study a straightforward algorithm was 
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designed to identify and characterize random adenosine transients from FSCV color 

plots.   

1.1.2 Adenosine production 

 The production and regulation of adenosine is a highly complex system involving 

both intracellular and extracellular formation mechanisms (Figure 1.1).  Adenosine can 

be formed intracellularly in the central nervous system by the catabolism of AMP, due to 

metabolic stress, or by cytosolic 5’-nucleotidase.  The intracellular formation of 

adenosine can also be formed from the hydrolysis of s-adenosylhomocysteine (SAH in 

Figure 1.1)2. Adenosine can be released to the extracellular space by two different 

Figure 1.1:  Mechanism for adenosine production.  Intracellularly adenosine  
can be formed from ATP.  Alternatively, adenosine can be formed from  
metabolism of ATP extracellularly.  Modified by Pajeski et al. 3 
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mechanisms: bi-directional nucleoside transporters or exocytosis of ATP that 

metabolizes to adenosine. 

1.1.3 Adenosine regulation and function 

 There are four adenosine receptors expressed in the brain, which are A1, A2A, A2B, 

and A3.  A1 and A2A are high affinity for adenosine with binding affinities in the 1-30 nM 

range10. A1 and A2A receptors are thought to be active at normal physiological conditions 

since the basal level of adenosine is at low nanomolar concentrations1.  The A1 receptor 

is an inhibitory G-protein coupled receptor (Gi).  Alternatively, A2A is an excitatory G-

protein coupled receptor (Ge). The A2B and A3 receptors have lower binding affinities; in 

the 1-20 μM range11.  The activation of A2B and A3 receptors is thought to occur under 

stressful physiological conditions like hypoxia or ischemia due to higher concentrations 

of adenosine6.  Overall, adenosine is a highly complex signaling molecule in the brain 

and many questions are still unanswered on how adenosine is regulated.  

1.1.4 Adenosines physiological role 

 Adenosine modulates numerous important physiological functions including 

sleep12, breathing13, and heart rate14.  Furthermore, adenosine is directly involved in 

pathologies like inflammation and cerebral ischemia.  A2A adenosine receptors increase 

immunosuppressive cAMP in the immune cells of mice and play a role in the attenuation 

of inflammation and tissue damage in vivo15.  Moreover, adenosine has been studied for 

it role as a neuroprotectant against damage in cerebral ischemia and as a possible 

therapeutic for stroke16.  In response to energy depletion induced by ischemia, 

extracellular concentrations of adenosine can increase 1000 fold.  During pathological 

events like cerebral ischemia and inflammation the increase of adenosine typically lasts 
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minutes to hours5.  Recently, adenosine was shown to rapidly modulate stimulated 

dopamine release in the caudate-putamen by A1 receptors8. 

1.1.5 Adenosine release 

 Metabolic processes and the breakdown of ATP during energy consumption can 

cause a buildup of adenosine in the extracellular space.  Typically, these extracellular 

adenosine concentrations have been studied use techniques with only minute to hour 

temporal resolution.  One group used electrophysiological techniques to explore a rapid 

modulatory role for adenosine in the brain4.  Electrically stimulated adenosine regulates 

glutamate receptor-mediated excitatory postsynaptic potentials (EPSPs) in the 

hippocampus.  The measured duration of the EPSPs were 2 seconds, suggesting that 

adenosine causes changes at sub-minute timescales.  This suggests that traditional 

measurement of adenosine, formerly delegated as a slow acting molecule, does not 

sufficiently describe adenosines role in rapid signaling. 

 Subsecond adenosine changes have also been directly measured from electrical 

stimulations in striatal rat brain slices by fast-scan cyclic voltammetry17.  The results 

suggest that adenosine release is activity-dependent.  Stimulated adenosine has been 

studied in vivo using carbon-fiber microelectrodes as adenosine sensors6.  The purpose 

of this experiment was to determine stimulated adenosine release in rat caudate-

putamen, after electrical stimulation.  Results show that adenosine increased in the 

extracellular space and was cleared in about 15 seconds.   

Recently, a new form of adenosine release has been found for the first time5.  An 

adenosine transient is a non-stimulated occurrence of adenosine with event duration on 

the order of seconds.  Spontaneous release of adenosine was measured in rat caudate-

putamen and the prefrontal cortex.  Average concentrations of adenosine release were 
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0.18 μM and had a range of 0.04-3.2 μM, in both brain regions.  The study illustrates that 

adenosine is rapidly released and cleared in the brain, which suggests that adenosine is 

involved in rapid neuromodulation in addition to the longer term neuromodulation 

described above.  The frequency of spontaneous adenosine events for a single transient 

was every 2–3 minutes.  This study demonstrates that adenosine events are 

spontaneous and do not follow any regular pattern and therefore are random events5.   

 Due to these adenosine transients being spontaneous and random, an analyst 

must find each adenosine transient by “hand”, which is very time consuming.  Depending 

on the type of experiment (i.e. brain slice/in vivo models and pharmacological/stroke 

experiments), 2–4 hours of data are obtained and the number of adenosine transients 

varies widely.  Furthermore, the more transients in a data set the longer time it takes for 

data processing.  A user who is experienced in data analysis can find one adenosine 

transient approximately every 1.5 minutes, therefore a data set containing 700 transients 

will take a user 18 hours to analyze.  Automation of the data analysis process will allow 

an analyst to more than double their experimental production when high transient counts 

are measured. 

1.2.  Techniques for measuring adenosine 

1.2.1 Measuring adenosine by microdialysis 

 Historically, microdialysis coupled with HPLC has been one of the most 

employed techniques for measuring adenosine12,18,19.  Microdialysis is a sampling 

technique that is used frequently in neurobiology because it is minimally invasive, has 

the ability to sample continuously, and measures basal levels of analytes.  During 

ischemia, acutely implanted microdialysis probes (300 μm in outer diameter), measured 

an increase in the dialysate levels of adenosine compared to chronically implanted 
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probes19.  Acute and chronic measurements of adenosine were taken at 2 and 24 hours, 

respectively.  Microdialysis probes are relatively large and therefore can disrupt the 

accuracy of the measurement of adenosine.  

1.2.2 Measuring adenosine with biosensors 

 Enzyme based sensors are used for measuring adenosine at sub-minute 

temporal resolution.  The Dale group developed a three enzyme biosensor for the 

detection of adenosine20.  It works by breaking down adenosine to inosine via adenosine 

deaminase, subsequently to hypoxanthine via purine nucleoside phosphorylase, finally 

to xanthine, urate, and hydrogen peroxide via xanthine oxidase.  These enzymes work to 

metabolize adenosine to a final product of hydrogen peroxide, which is amperometrically 

detected.  Adenosine biosensors are 25 – 100 μm in diameter, have a detection limit of 

12 nM, and have a temporal resolution of 2 seconds. A null sensor that does not contain 

adenosine deaminase is positioned next to the biosensor to measure any interfering 

downstream metabolites.  The null detector signal can be subtracted from the biosensor 

to obtain the biosensors response to adenosine7.  Adenosine biosensors are smaller 

than typical microdialysis probes, have low detection limits, and sub-minute temporal 

resolution.  An alternative to biosensors for the detection of adenosine is fast-scan cyclic 

voltammetry, an electrochemical technique that directly measures adenosine at carbon-

fiber microelectrodes. 
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1.2.3 Measuring adenosine by fast-scan cyclic voltammetry 

 Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that was 

developed to measure real-time changes in dopamine levels in vivo21.  FSCV is similar 

to traditional cyclic voltammetry but FSCV has faster temporal resolution. With FSCV, a 

carbon-fiber microelectrode (CFME) is scanned from a negative holding potential to a 

positive switching potential and 

immediately ramped back down. 

(Figure 1.2) The total length of the 

scan is about 10 ms, and data is 

collected at 10 Hz, which gives 100 ms 

temporal resolution.  Background 

charging currents are stable with 

CFMEs, which allows for accurate 

background subtraction.  Charging 

currents result from the formation of a double layer of ions at the CFME interface that act 

similar to a capacitor22.  Background subtracted cyclic voltammograms provide a 

selective fingerprint for each analyte of interest.  The CFME has a diameter of 7 μm, 

which allows it to be placed in specific brain regions while minimizing potential tissue 

damage compared to larger microdialysis electrodes or enzyme biosensors.  An 

advantage of FSCV is its ability to measure rapid changes in electroactive 

neurotransmitters.  To measure adenosine by FSCV a triangle waveform is applied to a 

CFME that scans from a holding potential of -0.4 V to a switching potential of 1.45 V 

versus a Ag/AgCl reference electrode at a scan rate of 400 V/s.  The limit of detection for 

fast-scan cyclic voltammetry at a carbon-fiber microelectrode is 15 nM, which is similar 

to detection limits at enzyme biosensors of 12 nM7. 

Figure 1.2: The applied potential waveform for in vivo 
adenosine measurement.  The waveform is scanned from 
-0.4 V to 1.45 V at a scan rate of 400 V/s.  Each scan is 10 
ms and scans are repeated every 100 ms  
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  Adenosine is an electroactive molecule that can go through three successive, 

two-electron oxidations (Scheme 1.1)23.  When a triangle waveform is applied to a CFME, 

an adenosine molecule undergoes a two-electron primary oxidation to form product II in 

Scheme 1.1.  This primary oxidation product is observed at 1.4 V.  Subsequently, a 

secondary oxidation occurs to form product III at 1.0 V.  These first two oxidation steps 

are irreversible and no reduction peak is observed in its corresponding cyclic 

voltammograms (CV) as can be seen in Figure 1.3B.  Typically, the tertiary oxidation 

product III is not detected using FSCV at our CFMEs.   

 

 

 

 The oxidation of adenosine at our carbon-fiber microelectrodes is a two-step 

process.  The primary product is produced in an irreversible oxidation and further 

oxidizes to a secondary product at our CFMEs5.  This can be visualized in a color plot of 

in vivo spontaneous transient adenosine release (Figure 1.3A).  During FSCV cyclic 

voltammograms are taken 10 times per second.  A color plot displays cyclic 

voltammograms as a function of time with current represented in false color. As can be 

visualized the color plot, the start of the primary peak and secondary peak are not at the 

same time point.  The dashed lines in the color plot represent times where CVs were 

taken for adenosine at three different time points (Figure 1.3B).  The first CV, taken at 

the start of the primary peak, shows the primary peak forming and the secondary peak 

absent.  In the second CV, taken at the primary peak maximum, the secondary peak has 
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Scheme 1.1: Adenosine (I) undergoes a two-electron primary oxidation at 1.4 V to form product II.  
Subsequently, product II is involved in a secondary oxidation at 1.0 V to form product III.  Product IV is 
normally not observed in FSCV.  In this scheme R is ribose. 
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started to form.  In the third CV, the primary peak is waning and the secondary peak is at 

a maximum.  Adenosines signal changes as a function of time with the secondary peak 

evolving only after the primary peak is produced.  The lag time between the primary and 

secondary peak max can be utilized to identify spontaneous adenosine transients. 

 

 

 

 

 

  

 

 

 

 

 

 

  

Figure 1.3:  in vivo Spontaneous transient release of adenosine.  (A) The top shows current versus 
time traces of adenosine at 1.4 V for the primary oxidation (orange) and 1.2 V for the secondary 
oxidation (black).  The bottom is a false color plot with dashed lines showing where the CVs were 
taken.  (B) Cyclic voltammograms taken at different time intervals.  The top CV was taken at the 
start of the primary oxidation, the middle CV was taken at the primary peak maximum, and the 
bottom CV was taken at the secondary peak maximum. Figure taken from Nguyen et al. 5 
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 Adenosines primary oxidation peak starts before the secondary oxidation peak is 

produced (Figure 1.4).  This is a necessary condition for the identification of adenosine 

at CFMEs and basis is established in the redox chemistry of adenosine24.  Current 

versus time traces of the primary (Peak 1, triangles) and secondary (Peak 2, circles) 

peak maximums, in Figure 1.4, show a lag time between the production of the first and 

second oxidation product.  In the inset of Figure 1.4 a plot of normalized current versus 

time shows a rise in primary peak at 3.5 seconds and the secondary peak rising at 3.6 

seconds.  In large data sets it is very time consuming to identify adenosine transients 

and many hours are devoted to identifying and characterizing these transients in our lab.  

The oxidation voltages for the primary and secondary peaks are specific to adenosine 

and the difference in time between these peaks is a way to identify adenosine. 

Figure 1.4:  Current versus time traces for primary peak, taken at 1.5 V, in triangles, and 
secondary peak, taken at 1.0 V, in circles of adenosine in flow injection analysis experiment.  The 
rise of the primary peak occurs before the rise of secondary peak.  Inset :  At 3.5 seconds the 
rise of the primary peak starts and the rise of the secondary peak starts at 3.6 seconds.  
Therefore, the primary oxidation product must be produced before the secondary product is able 
to be formed.  Figure taken from Swamy et al. 9 
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1.3.  Automating adenosine identification 

 The ability to automate recognition of spontaneous adenosine transients would 

have two major advantages: (1) avoiding large amounts of time and labor involved in 

data analysis and (2) making data analysis consistent within and between different 

experiments and researchers.  It takes about 1.5 minutes for an experienced analyst to 

identify an adenosine transient and a typical animal experiment can have as many as 

700 transients.  It is possible that multiple researchers, performing data analysis on a 

single data set, could arrive at different conclusions with that data.  It is more likely that 

data analysis is performed on different experimental data and researchers are interested 

in comparing independent data sets.  Cyclic voltammograms are ideal for automating 

identification of adenosine transients since adenosine’s oxidation potentials for primary 

and secondary peaks are at specific voltages.  Having a fully automatic computer aided 

algorithm that determines adenosine features like event time, concentration, and 

duration of adenosine transients, will enable researchers to compare differing data sets 

and draw more accurate conclusions upon these data with less time spent counting 

transients by hand.  One existing technique for peak identification is principal 

components regression (PCR) but it is not fully automated in identifying transient peaks 

and their features. 

1.3.1 Principal components analysis 

 Principal components analysis (PCA) is a multivariate statistical technique that 

reduces dimensionality by retaining relevant and discarding non-relevant information 

provided in large data sets.  The combination of principal components analysis with 

inverse least-squares regression is known as principal components regression (PCR)25.  

PCA is used to determine relevant information from non-relevant noise.  PCR then can 
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use residual analysis and remove noise from unknown data.  Succinctly, residuals are 

the difference between an observed value and an estimated value, which is the value of 

interest.  If the summed square of residual current at any applied potential of a CV (Qt) 

exceeds the threshold value in a training set (Qα) then a source of variation is not 

accounted for in the PCA model and the value should be retained25,26.  An example of 

PCR can be observed in Figure 1.5 for dopamine and pH.  When dopamine and pH are 

included in the PCR training set they are removed from the residual currents as seen in 

Figure 1.5B27.  Essentially the CVs included in the training set are removed, which 

suggests the training set accurately describes dopamine and pH.  This is a way of 

showing how well a training set’s PCs describe the unknown data.  The Q trace in Figure 

1.5C displays no significant current contributions other than dopamine and pH in the 

residual plot.  The dotted line in Figure 1.5C refers to the threshold Qα at the 95% 

significance level.  The resulting color plot in Figure 1.5B can be attributed to noise and 

be removed from the original color plot.  Similarly, if only dopamine is in the training set, 

the residual color plot and Q trace displays pH only, which can be seen in Figure 1.5D 

and 1.5E, respectively.  PCR is a good method for removing spurious noise and 

interferents from color plot data but it is not a fully automated method for adenosine 

transient finding.  Moreover, since the shape of adenosines CV changes with time PCR 

has difficulties discriminating the secondary peak.  When dealing with large amounts of 

data a completely automated method, which accurately finds spontaneous adenosine 

transients is necessary. 

 

 

 



 

 

Borman | 13 

 

1.3.2 Other peak identification techniques 

 The ability to automate identification of spontaneous adenosine transients is 

advantageous for two reasons:  (1) experimental throughput, since data analysis 

requires considerable labor (2) accuracy of data analysis within data sets and between 

researchers.  Principal components regression is useful in accurately determining 

concentrations and using residuals to remove non-relevant data from color plots but is 

Figure 1.5:  Residual plots from in vivo stimulation of dopamine in freely moving rats. (A) in vivo color 
plot.  (B) Residual plot when dopamine and pH are in training set.  (C) Q trace of residual plots where 
the dashed line represents Qα at the 95% significance. All Q scores are below this threshold, 
therefore the training set accurately describes all relevent data.  (D) Residual plot with only dopamine 
in training set.  (E)  pH is above the Qα threshold and is retained in the Q trace.  Figure taken from 
Keithley et al 27 
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not completely automated.  Other groups have developed methods for automating 

identification of peaks in chromatography but normally use retention times in analyte 

recognition28,29.  In one study retention times were expanded and contracted to fit a 

target chromatogram.  Then the Pearson correlation coefficient was used to determine 

the degree in which the target and test chromatogram were linearly related30.  However, 

spontaneous adenosine release does not produce consistent time markers that enable 

this type of automation.  Furthermore, data from in vivo FSCV contains more noise and 

baseline drift than chromatographic techniques.  Finally, since the brain is a complex 

matrix, unexpected analytes would further muddle these types of automated 

identification.  In this thesis, I describe a computer program that automatically identifies 

and characterizes adenosine transients, which minimizes labor for data analysis and 

maximizes accuracy of resulting data. 

1.3.3 Automatic identification of adenosine features 

 In this thesis a straightforward algorithm was designed to identify and 

characterize random adenosine transients from FSCV color plots.  Typically, analysts 

tabulate adenosine transient features and this process is very tedious and time 

consuming, often taking 10-18 hours per experiment for a skilled analyst.  In a single 

animal experiment 700 transients can be found and characterized and 24 experiments 

are needed in order to be statistically relevant and this amounts to 14,400 transients per 

publication.  If an in vivo researcher performs 3 experiments per week the data analysis 

time will be approximately 30-54 hours, which is a significant amount of time.  The 

developed adenosine transient program automatically reads, analyzes, and creates a 

report of adenosine features in 40 minutes per in vivo animal experiment. This thesis 

demonstrates the reliability of the automated identification program in determining 

adenosine features and speed of compiling these features.  Automatically identifying 
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analytes in FSCV data will allow researchers to analyze adenosine and is customizable 

to study other electroactive molecules like dopamine, since the algorithm is modular in 

design, with fast non-bias computer processing.  In conclusion, this thesis will describe a 

new method for automatically identifying spontaneous adenosine transients, with 

minimal analyst input, and show how an algorithm can be developed for neurotransmitter 

identification in in vivo FSCV analysis. 
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Chapter 2:  Building an algorithm to automatically identify spontaneous adenosine 
transients 

2.1 Introduction 

 Adenosine is a byproduct of ATP catabolism and important biological nucleoside 

involved in cell signaling1, neuromodulation1,2, and neuroprotection1,2.  In the brain, 

adenosine regulates cerebral blood flow and modulates neurotransmission3,4.  The ability 

to measure adenosine is important in understanding the roles it plays in 

neuromodulation and homeostatic regulation.   Recently, direct measurements of 

spontaneous transient adenosine release in vivo have been made by fast-scan cyclic 

voltammetry (FSCV)5.  These events are spontaneous, rather than stimulated, and last 

only a few seconds.  Several hundred transients can occur in the four hour data 

collection typical of an in vivo experiment.  Current data analysis requires a human to 

pick the transients by hand; a human experienced in analyzing the data can identify a 

transient approximately every 1.5 minutes. Therefore, if a data set contains 700 

transients, then it would take about 18 hours to analyze.  Adenosine transient events are 

seemingly random and do not follow any redily identifible pattern so all the data must be 

painstakingly analyzed.  In addition to being slow, identification by an analyst could be 

potentially biased.  Automating identification of adenosine transients would save time 

and normalize data analysis between researchers. 

  Algorithms have been developed to automate identification of molecules in 

chemical data6–16.  For in vivo electrochemical data, peak identification has used the 

cyclic voltammogram (CV) as a chemical fingerprint to identify which peak is detected.  

However, there are 144,000 CVs collected in a four hour voltammetry experiment so 

they cannot be individually examined.  Principal components regression (PCR) uses 

those cyclic voltammograms to identify compounds in mixture and remove noise from 
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the data17.  In particular, PCR has proven to be a powerful tool to separate dopamine 

from pH shifts.  This method was used previously to identify adenosine and create 

concentration vs time traces that are analyzed by an analyst to identify adenosine 

transients.  The problem with PCR for adenosine is that the cyclic voltammogram of 

adenosine changes over time, with a primary peak that is large in the first few cyclic 

voltammograms and a secondary peak that grows in over time.  Thus, it is hard to select 

a representative training set, the residuals (i.e. noise) are large, and the residual noise 

(Q) is often above Qa, denoting the training is not sufficient to predict the concentration 

of the neurochemical.  The other major problem for finding adenosine transients is that 

they are random events, with no unique time markers.  While many dopamine events are 

linked to behaviors or cues, finding adenosine transients requires an algorithm that does 

not use time as a rule for identification.   

 In this study an algorithm was designed to identify and characterize random 

adenosine transients from FSCV data.  Our program automatically reads, analyzes, and 

creates a report characterizing the duration, concentration, and event time for each 

adenosine transient.  This automated analysis takes only about 40 minutes to analyze 

an in vivo data set.  The program was validated with 4 data sets from 3 independent 

researchers and compared to the results of human analysts.  The program resulting in 

10 ± 4% false negatives (FN), due to multiple peaks and high thresholds, and 9 ± 3% 

false positives (FP), due to random noise that occurs in biological experiments. The 

algorithm was tested against ATP, histamine, hydrogen peroxide, and pH, known 

interferents in the brain, and only generated one false positive in 82 measurements.  

This study demonstrates the reliability of the automated identification program for 

adenosine and the program is customizable to study other electroactive analytes in the 
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future.  Automated analysis of FSCV data will allow faster data analysis and less analyst 

bias for identifying and characterizing adenosine in vivo.   

2.2.  Methods 

2.2.1 FSCV Transient 

 The adenosine feature detection algorithm, FSCV Transient, was written in 

Matlab 2014b (The MathWorks Inc, Natick, MA, USA).  First, non-background subtracted 

and non-filtered FSCV color plot data were exported from High Definition Cyclic 

Voltammetry (HDCV), a program developed in the Wightman lab 18.  A typical in vivo 

FSCV experiment has files with 80–180s of data and the FSCV transient program 

individually reads each file for analysis.   After the files are exported an analyst defines 

three user inputs:  maximum (1) primary and (2) secondary oxidation voltage, pmax and 

smax, respectively, and a background subtraction (3) increment value.  Then FSCV data 

is read into the program and convoluted with a 2-D Gaussian filter (size=7, σ=7), which 

is a low-pass blurring filter.  If the algorithm finds adenosine events, then features 

including event time, concentration, and duration are written to a comma separated 

value file (Figure 2.1, Step 7) until all files are read and analyzed.  The program was run 

on a 3.4 GHz PC computer with Windows 10 for data analysis. 

2.2.2 Incremental background subtraction 

 In the first part of the algorithm (Figure 2.1, Steps 1-3), incremental background 

subtraction is performed by choosing several times for the background and then 

subtracting the background charging current.  The analyst sets the peak voltages for the 

primary and secondary peaks of adenosine, then i vs t data is searched for peaks.  For 

example, an initial background subtraction occurs at t = 1.0 s and then the two i vs t 
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traces are scanned for adenosine peaks (Step 2).  Every peak above a set threshold is 

compiled and concatenated until the end of file.  Because you cannot know a prior if the 

chosen time for background subtraction is during a peak and background drift occurs on 

the order of 90 s, it is best to choose several times and perform background subtraction 

in order to identify all possible peaks.  The program has an analyst-defined increment 

value, so an increment value of 10.0 s would result in 17 incremented background 

subtractions in a 180 s file. After all possible adenosine peaks are amassed and 

duplicates are removed, the algorithm imposes a constraint that a peak must be 

detected at both the primary and secondary adenosine peak voltages and that the 

primary adenosine peak maximum has to occur before the secondary peak maximum. 

The final set of event times identified during incremental background subtraction is 

subsequently used as seeds during the second part of the program, adjacent 

background subtraction.  
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Figure 2.1:  Algorithm for FSCV transient.  Files are read into the program for incremental background 
subtracted (1).  Analyst defined primary and secondary oxidation voltages are scanned for adenosine peaks 
(2).  Lag time filter is applied to detected peaks to remove spurious peaks (3) and resultant peaks are 
background subtracted adjacent to the peak (4) then identified similarly to steps 2 and 3 (5).  Signal-to-noise 
and ratio filter are applied to detected peaks to remove spurious peaks (6).  Event time, concentration, and 
duration are written to file until all peaks are investigated (7). 

2.2.3 Adjacent background subtraction 

 During the first part of the algorithm increment background subtraction is 

performed, which background subtracts the FSCV file at evenly spaced time steps.  In 

the second part of the algorithm (Steps 4-7), adjacent background subtraction is 

accomplished by performing background subtraction approximately 10 s before, i.e. 

adjacent, to each individual peak found during incremental background subtraction.  

Adjacent background subtraction is standard procedure in FSCV because of baseline 

drift and leads to more accurate measures of adenosine peak characteristics.  Some 

peaks found during the first part of the program are spurious and are rejected as 
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adenosine during adjacent background subtraction because the two peaks are not 

identified or the primary peak doesn’t precede the secondary peak.   

2.2.4 Spurious peak filtering (in vivo) 

 Peaks are filtered in Step 5 (Step 5 is similar to Step 2 and 3) at analyst-defined 

thresholds for concentration, duration, and prominence.  The minimum concentration 

that can be detected is usually around 40 nM and the minimum duration for an 

adenosine transient is 1.0 s.  Prominence is the minimum peak height between two 

consecutive, possibly overlapping peaks.  Thresholds are determined from running 5 

FSCV data sets in the program and finding the minimum value for concentration that 

minimizes false negatives and positives.  Duration and prominence thresholds are 

constant and are determined in the same way as concentration but do not need to be 

adjusted per experiment.  Additionally, a signal-to-noise filter is applied to the data and 

only peaks that have a S/N > 3 are kept, with the noise defined as the SD of the baseline 

taken adjacent to the peak.  Finally, another filter is applied which compares the ratio of 

the secondary peak max current to primary peak max current, Sp,i / Pp,i with an 

empirically determined value for adenosine.  The minimum secondary to primary peak 

ratio for adenosine measured in vivo is 0.49, which was determined empirically from 100 

in vivo adenosine transients.  Thus, any peak with a ratio below the threshold of 0.49 is 

rejected as an adenosine peak.  If peaks pass the S/N and ratio filter, they are accepted 

as adenosine peaks.  Programmatic details of background subtraction, data filtering, 

threshold setting, and peak finding can be found in the Appendix at the end of this thesis.   

2.2.5 Chemicals 

 The chemicals used to make phosphate buffered saline (PBS) were all 

purchased from Fisher Scientific (Fair Lawn, NJ, USA) unless otherwise stated.  PBS 
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buffer was used to test interferents using a flow-injection system19 and contained (in 

mM) 131.25 NaCl, 3.0 KCL, 10.0 NaH2PO4, 1.2 MgCl2, 2.0 Na2SO4, and 1.2 CaCl2.  

Calcium chloride was purchased from Sigma Aldrich (St. Louis, MO, USA).  All aqueous 

solutions were prepared with deionized water (Milli-Q Biocel; Millipore, Billerica, MA, 

USA).  Adenosine, histamine, and adenosine triphosphate were purchased from Sigma 

Aldrich and hydrogen peroxide was purchased from Macron (Center Valley, PA, USA).  

The interferent pH was tested by adjusting pH=7.4 PBS buffer to pH=7.3 or pH=7.5.   

2.2.6 Carbon-fiber microelectrodes and FSCV 

 Carbon-fiber microelectrodes (CMFEs) were prepared with standard fabrication 

techniques20.  A single 7 μm T-650 carbon-fiber was aspirated (Cytec Engineering 

Materials, West Patterson, NJ, USA) into a glass capillary (1.2 mm × 0.68mm; A-M 

Systems, Inc.,Seqium, WA, USA) which was pulled by a vertical puller (model PE-21; 

Narishige, Tokyo, Japan) into two microelectrodes.  The extended fiber was cut to 

between 50-150 μm for all data sets.  For data sets S1 the interface between the glass 

and fiber was sealed with epoxy (Epon resin 828; Miller-Stephenson Chemical Co. Inc.; 

Danbury, CT, USA) and 14% wt. m-phenylenediamine hardener (Acros Organics, Morris 

Plains, NJ, USA).  For Data sets S2, S3, and S4, in Table 2.1, and all flow-injection 

experiments the fibers were not epoxied. 

 Fast-scan cyclic voltammetry (FSCV) was used to monitor electroactive species 

in animal and flow-injection experiments.  The waveform and data collection was 

computer controlled by High Definition Cyclic Voltammetry (HDCV) (gift of Mark 

Wightman, UNC at Chapel Hill)18.  A Dagan ChemClamp potentiostat (Dagan 

Corporation; Minneapolis, MN, USA) was used to apply voltage to the CFME.  All 

electrodes were scanned from a holding potential of -0.40 V and scanned to a switching 



 Borman | 25 

potential of 1.45 V and back at 10 Hz versus a Ag/AgCl reference electrode, at a scan 

rate of 400 V/s.  All data was background subtracted to remove any non-Faradic 

currents by taking the mean of 10 CVs and background subtracting that vector from the 

data set.  All in vitro interferent tests were performed using flow-injection analysis by 

comparing 1.0 μM adenosine to 1.0 μM interferent in PBS buffer.   

2.2.7 Data sets analyzed 

 In vivo data set (S1) was measured in the caudate putamen and data sets (S2 

and S3) were measured in the hippocampus according to procedures previously 

described5.  The brain slice data was measured in the prefrontal cortex according to 

procedures previously described21. 

2.2.8 Error analysis 

 Sensitivity, precision, and accuracy were calculated from true positive (TP), false 

positive (FP), and false negative (FN) values determined from analyst validation of 

FSCV transient algorithm results (Results and discussion 3.2.3.).  Sensitivity or recall is 

the fraction of relevant peaks that are returned by the algorithm from the data set. 

!"
!"#$%

  (1) 

Precision or positive predictive value is the fraction of peaks returned by the algorithm 

from the data set that are relevant peaks. 

!"
!"#$"

  (2) 

Accuracy was calculated from the F1 score, which is the harmonic mean of sensitivity 

and precision.  The harmonic mean weights sensitivity and precision equally. 
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  2 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	×	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   (3) 

The F1 score was calculated because the amount of true negatives, or the number of 

times the algorithm missed a spurious peak, is unable to be calculated.  Values 

calculated from equations (1-3) are between 0 and 1.0, with 1.0 being maximum 

sensitivity, precision, and accuracy for analyst validation.  Data are presented as mean ± 

standard deviation. 

2.3.  Results and discussion 
 

2.3.1 Adenosine feature detection (algorithm) 

 To publish a paper for an in vivo experiment many animal experiments are 

needed and analyzing the resulting data sets takes much more time than collecting the 

data.  Typically, researchers collect 4 hours of data from a single animal experiment but 

spend 10-18 hours identifying transients and calculating the event time, concentration 

and duration of the transients by hand.  With FCSV cyclic voltammograms are taken 10 

times per second, and multiple CVs are often viewed as a color plot, with data stacked 

as a function of time.  The resulting color plot (Figure 2.2B) forms a three-dimensional 

plot of voltage and current as a function of time.  Data files are typically 180s worth of 

data, 20-80 files per experiment. Thus, 36,000-144,000 individual cyclic voltammograms 

are collected and must be analyzed per experiment. Thus, an automated, unbiased 

method of analyzing thousands of cyclic voltammograms to identify hundreds of 

adenosine transients is needed.  Building a computer program will automate this process, 

normalize data analysis between researchers and allow more time to conduct 

experiments and interpret experimental results. 
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In the brain, spontaneous adenosine release is a random process so the time 

they will occur cannot be predicted.  Electrochemical properties of adenosine must be 

exploited to identify adenosine transients.  Adenosine is irreversibly oxidized22 around 

1.4 V and forms a primary product, which is subsequently irreversibly oxidized around 

1.0 V to form a secondary product in FSCV experiments4.  The peak oxidation voltage 

for both products is constant at a singular electrode and therefore these peaks are used 

to identify adenosine.  The primary product is the precursor for the secondary product so 

there is a lag time between peak maximum, which is seen in current versus time traces 

in Figure 2.2A23.  The peak maximums are marked as diamonds and the primary peak 

Figure 2.2:  in vivo spontaneous adenosine transients from the hippocampus brain region.  A) i vs t trace 
with 5 transients detected.  The primary peak maximums (black trace) occur before secondary peak 
maximums (red trace) and is the basis for the lag time filter.  The Sp,i / Pp,i ratio is > 0.50, thus this peaks 
would be accepted as adenosine transients.  B) False color plot of adenosine transients with white lines 
representing the primary and secondary oxidation voltages. 
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always occurs before the secondary.  Additionally, as seen in the false color plot in 

Figure 2.2B, there is lag time between primary and secondary peak formation with the 

primary occurring before the secondary. 

Lag time and peak oxidation voltage provides enough information for the 

algorithm to successfully identify adenosine transients.  Primary and secondary max 

voltages, pmax and smax, respectively, are analyst-defined and i vs t traces at these 

voltages are scanned for peaks above a threshold, illustrated by the white lines in the 

color plot in Figure 2.2B.  For a peak to be identified as adenosine it must have a peak 

both at the primary and secondary voltages and the secondary peak must lag the 

primary peak by at least 0.1 s but be within 2.5 s of the primary peak.  Additionally, 

another filter is applied which compares the ratio of adenosines secondary peak max 

current to primary peak max current, Sp,i / Pp,i.  If peaks pass the threshold, lag time 

criteria, and secondary-to-primary peak ratio, then the signal-to-noise ratio (SNR) is 

calculated for each adenosine peak. If the resultant peak is above 3 × SD of baseline 

noise, the program saves the event time, peak concentration, duration, and SNR.  This 

identification algorithm is the basis for automatically identifying and tabulating 

spontaneous adenosine transients, in large data sets with many peaks. 

2.3.2 Background Subtraction 

 In FSCV experiments, stable non-faradaic currents occur due to background 

charging of the surface of the CFME and these background currents are subtracted to 

study Faradaic redox reactions.  Because the location of adenosine transients is not 

known a priori, the program first picks several places for background subtraction, at 

defined increments, and then background subtracts each data set at these times.  By 

examining the same data set background subtracted from different places, we correct for 
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2 fundamental problems.  First, if we only picked one background subtraction time, it 

may inadvertently be during an adenosine peak and the results would not be 

interpretable.  Second, the background current drifts over time so background 

subtraction should be performed as near to a peak as possible to accurately identify and 

define all possible adenosine peak characteristics.  Practically, the algorithm 

accomplishes this by first reading in a non-background subtracted data file into the 

program.  Next, the program background subtracts at the start of the file, completely 

scans pmax and smax for peaks, and then uses the identification algorithm to determine if 

any adenosine transients are present in the data set.  After the initial background 

subtraction, the program iterates at the analyst-defined increment value (usually 10 s) 

(Figure 2.3A-C) repeating the procedure of doing a background subtraction and 

identifying adenosine transients using that background file.  This iteration continues at 

the defined times until the end of the file.  All potential adenosine transients are identified 

by event time and are saved for later use.  Since the program is deterministically 

incrementing and adenosine transients are random, the program will detect spurious 

peaks, which need to be further explored.  The purpose of this part of the identification 

algorithm is to tabulate all possible adenosine transient times for each color plot file. 

 During the incrementing part of the program the algorithm casts a wide net in 

order to obtain all possible adenosine events.  This strategy works in gathering all peaks, 

real and spurious, but in order to determine if a peak is adenosine, it more standard to 

do background subtraction directly adjacent to the peak5.  The transient event times, 

obtained in the first part of the program, are used in the second part of the algorithm 
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where each location is background subtracted adjacent to the peak.  Adjacent 

background subtraction is performed approximately 2.5 s before each peak.  By 

subtracting the background adjacent to a presumed adenosine peak, the concentration 

change and duration of adenosine can be more accurately determined.  If spurious 

peaks are collected during the increment part of the algorithm, they are often rejected 

when adjacent background subtraction is performed.  Thresholds, in both the increment 

and adjacent background subtraction are set according to experimental conditions. The 

incrementing part of the program has wide scope for peak detection and threshold 

values are set lower to collect all potential transients.  However, during the adjacent 

background subtraction, threshold values should be higher and therefore more 

discriminating.  The goal of adjacent background subtraction is to accurately probe each 

probable peak location and positively identify adenosine transients by removing any 

spurious noise peaks. 

 

A) B)

C)

Figure 2.3:  Incremental background subtraction of in vivo adenosine transients from 
the hippocampus brain region.  A-C) Incrementally background subtracted FSCV data 
every 50 seconds. The white vertical lines in the files show when the background was 
taken.  
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2.3.3 Analyst validation of adenosine transient program 

 An additional way of determining the robustness of the adenosine transient 

program is to run the data sets through the programs algorithm and validate the output 

data by an analyst.  This comparison helps to verify the algorithm success at identifying 

adenosine transients, and test how the algorithm performs compared to analysts.  The 

goal is to minimize the amount of false negatives (FN) and positives (FP) obtained from 

the adenosine algorithm.  Using the event time output from the program, an analyst 

verified each peak identified as adenosine with High Definition Cyclic Voltammetry 

(HDCV), a program developed in the Wightman lab18.  The results are tabulated in Table 

2.1.  If the algorithm selects a peak that was not identified as adenosine by the analyst, it 

is counted as a FP.  Moreover, if the analyst determines that the program missed an 

adenosine peak it is counted as FN.  Each data set was measured in an independent 

animal experiment and the data sets were obtained from three independent 

experimenters.  The first data set (S1), an in vivo measurement in the caudate putamen, 

an analyst determined 41 adenosine transients and the algorithm resulted in 5% FN and 

2% FP.  In data set S2, an in vivo measurement in the hippocampus, an analyst 

determined 397 adenosine transients and the algorithm resulted in 10% FN and 10% FP.  

In data set S3, another in vivo measurement in the hippocampus, the algorithm resulted 

in 8% FN and 9% FP.  Finally, in data set S4, a brain slice experiment from the 

prefrontal cortex, the algorithm resulted in 16% FN and 7% FP.  The reason for S4 

having a higher FN percentage than the other sets is due to thresholds being adjusted to 

minimize the selection of FP.  Overall, analyst validation of the adenosine algorithm 

resulted in 10 ± 4% FN and 9 ± 3% FP in a total of 640 confirmed adenosine transients.  

These results suggest that the adenosine algorithm is able to discern adenosine, with a 

high degree of certainty, from noise that is present during animal experiments.   
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 Any automated method for measurement and identification is subject to false 

negatives and false positives.  Since many common interferents found in the brain have 

been rejected by flow-injection analysis experiments (vide infra), FP are mainly 

generated from random noise in the data.  The main reason the adenosine transient 

algorithm will generate FN is due to multiple peak maximums occurring in a single peak.  

False negatives due to multiple peaks can be corrected for in the program by adjusting 

the prominence threshold, which is the minimum peak height between two consecutive, 

possibly overlapping peaks.  However, it will always be difficult to measure the 

concentration and duration of multiple peaks that do not go back to baseline in between. 

Alternatively, the transient program will reject peaks if the data is noisy and the threshold 

is set above the level of small adenosine transients.  If thresholds are high during the 

incremental background subtraction, adenosine transients are rejected and cannot be 

measured during adjacent background subtraction.  One strategy for setting up 

thresholds in both the incremental and adjacent background subtraction is to minimize 

the amount of FPs but this will ultimately increase FN, as seen in the brain slice 

experiment.  Alternatively, setting thresholds properly in both background subtraction 

parts of the adenosine algorithm can achieve the minimization of both FP and FN.  

Overall, analyst validation of adenosine transient program had a mean precision of 0.91 

± 0.01, sensitivity of 0.90 ± 0.04, and accuracy of 0.90 ± 0.02.  An accuracy of 0.90 is 

sufficient for the FSCV transient algorithm because analysts also fail to detect adenosine 

transients in data when counting.   

Table 2.1:  Analyst validation of adenosine transient data sets.  
S1 is an in vivo measurement in the caudate putamen.  S2 and 
S3 are in vivo measurements in the hippocampus.  S4 is a 
brain slice experiment from the prefrontal cortex.  Each data 
set is an independent experiment 
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2.3.4 Testing biologically relevant interferents (in vitro) 

 The brain is a complex organ with multiple electroactive molecules that could 

interfere with adenosine detection. During adjacent background subtraction, the 

algorithm checks if peaks exist at pmax and smax voltages and that a lag time exists 

between these peaks.  In order to test the robustness of the algorithm, adenosine and 

possible interferents were measured in a flow cell.  Adenosine was measured in a flow-

injection system to determine pmax and smax, the voltages for the primary and secondary 

peaks.  Since the oxidation voltage of adenosine remains constant during animal 

experiments, pmax and smax are scanned for potential adenosine peaks.  In order for an 

interferent to be counted as adenosine transient, the interferent must have oxidation 

potentials near the pmax and smax of adenosine, a sp,i /pp,i ratio above adenosines 

threshold, and importantly the primary peak must occur before the secondary.  

Adenosines sp,i /pp,i ratio, determined from in vitro analysis to be 0.34, was calculated 

from 20 injections of 1 μM adenosine at 5 electrodes, which was the minimum ratio 

calculated  (mean=0.6±0.2, range=0.3%-1.02%, 20 injections, 5 electrodes). The reason 

for the large standard deviation and upper range being above 1.0 is due to electrode 

noise.   

 To determine if the algorithm generates false positives (FP) (Figure 2.4) 

adenosine triphosphate, histamine, hydrogen peroxide, and pH were tested as possible 

adenosine interferents.  First, 1 μM ATP (Figure 2.4B) was tested with the algorithm 

values for adenosine (Figure 2.4A) in order to try to generate FP and no data was 

omitted from analysis.  ATP differs from adenosine by only three phosphate groups and 

has the same electrochemical moiety23.  As seen in the i vs t trace for ATP, there are 

primary and secondary peaks.  However, the max sp,i /pp,i ratio is 0.27 (mean=0.18±0.05, 
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range=0.07-0.27, 15 injections, 6 electrodes), which is below the threshold for adenosine 

and the secondary occurs before the primary maximum.  Thus, ATP fails to be identified 

as adenosine.  Furthermore, comparing adenosines cyclic voltammogram with ATP’s, 

adenosine displays a more pronounced secondary peak than ATP.  The algorithm also 

rejected histamine, a molecule whose cyclic voltammogram is similar to adenosine24. 

The secondary peak for histamine is at 0.76V compared to 1.06V for adenosine.  Thus, 

the i vs t trace for 1 μM histamine (Figure 2.4C) displays the smax occurring before pmax 

and a max sp,i /pp,i ratio of 0.24 (mean=0.15±0.07, range=0.03-0.24, 20 injections, 6 

electrodes), which is below the threshold for adenosine of 0.34.  Setting pmax and smax 

constant exploits adenosines intrinsic oxidation potentials.  Hydrogen peroxide (Figure 

2.4D) is another possible interferent of adenosine21, and is rejected as a transient from 

the computer algorithm because the max sp,i /pp,i ratio of 0.18 (mean=0.08±0.05, 

Figure 2.4:  in vitro testing of biologically relevant interferents.  i vs t traces, cyclic voltammograms, and false 
color plots for A) adenosine, B) ATP, C) histamine, D) hydrogen peroxide, E) pH 7.3 shift, F) pH 7.5 shift.  
Interferents are rejected by the algorithm due to smax occurring before pmax and an interferent max sp,i /pp,i 
ratio below adenosines minimum sp,i /pp,i ratio. 
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range=0.03-0.18, 19 injections, 6 electrodes), is below adenosines threshold and 

because it has no secondary peak.  The sp,i /pp,i ratio can be calculated with no 

secondary peak from noise present in the data.  Finally, pH changes of ±0.1 of pH 7.4 

PBS buffer (Figure 2.4E and 2.4F) were tested with the algorithm. The max sp,i /pp,i ratio 

for pH 7.3 and pH 7.5 are below adenosines ratio threshold and have max ratio values of 

0.30 (mean=0.19±0.09, range=0.06-0.30, 13 injections, 6 electrodes) and 0.37 

(mean=0.20±0.09, range=0.07-0.37, 15 injections, 6 electrodes), respectively.  The smax 

occurs before pmax in both pH shifts.  Only one sample of pH 7.5 resulted in a sp,i /pp,i 

ratio of 0.37, which is above adenosines in vitro minimum threshold of 0.34, the other 

three runs on this electrode were below the threshold and therefore rejected.  

Biologically relevant interferents do not result as false positives for adenosine during in 

vitro experiments, which demonstrates the robustness of the adenosine identification 

algorithm.   

2.3.5 in vivo testing of stimulated histamine 

 Oxidation voltages in animal experiments can differ from voltages observed 

during in vitro experiments.  To further check the robustness of the adenosine algorithm, 

pmax and smax generated from adenosine transients were verified against stimulated 

histamine data to determine if in vivo histamine would be counted as adenosine.  

Measurements were made in the premammillary nucleus with a stimulating electrode in 

the medial forebrain bundle region.  Histamine has been suspected as a possible 

interferent in the identification of adenosine due to the similarity in cyclic voltammograms 

and histamine’s secondary oxidation peak formation24.  The flow-injection experiment 

demonstrated that pmax for both adenosine and histamine are similar but the smax in 

histamine occurs 0.3 V below the smax of adenosine.  In order to test for a FP, the pmax 

and smax obtained from adenosine transients, at 1.41 V and 1.18 V, respectively, were 
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input into the program and stimulated histamine data was analyzed.  The adenosine 

identification algorithm did not generate a FP for stimulated histamine (Figure 2.5).  The 

pmax of histamine and adenosine are nearly identical but the smax of histamine has a 

difference of 0.07 V from the smax of adenosine.  However, the reason  

that histamine fails the algorithm is due to the primary peak max occurring at the same 

time secondary peak max (Figure 2.5A); therefore, no time-lag exists between peaks. 

Histamines in vitro data (Figure 2.4C) displays the secondary peak occurring before the 

primary, which also fails the lag time filter.  Viewing the color plot for stimulated 

histamine in Figure 2.5B, the secondary peak formation is barely visible and is slightly 

below adenosines smax voltage vector.  The adenosine algorithm in both in vitro and 

Figure 2.5:  in vivo stimulated histamine from the premammillary nucleus.  A) Primary (black) and secondary 
(red) oxidation peak i vs t traces of stimulated histamine fail lag time filter because maximums occur at the 
same time.  B) False color plot white lines are pmax and smax generated from adenosine transients in data set 
2 (S2).   
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animal experiments does not detect histamine and it is concluded that during in vivo 

experiments detected transients are not histamine. This validation shows the algorithm is 

good at distinguishing histamine as an interferent both during in vitro calibration 

experiments and in vivo. 

2.4.  Conclusion 

 The ability to automate the identification of adenosine transient features will 

reduce the hours researchers spend on monotonous data analysis and normalize results 

between researchers.  The first iteration of the algorithm was building a structure to 

acquire all possible adenosine peaks by incrementing background subtraction.  Next, to 

maximize accuracy of adenosine feature detection adjacent background subtraction was 

added to the algorithm.  Moreover, signal-to-noise, ratio filters, and analyst-defined 

thresholds can be adjusted to analyze independent data sets from multiple researchers.  

In summary, this program can save more than two hundred hours of repetitive data 

analysis per publication. This accumulated time can be used to conduct more 

experiments and therefore increase laboratory throughput. 

2.5.  Future directions 

 The initial development of the algorithm generated promising result for identifying 

adenosine transients in FSCV data sets.  Since CFMEs are manufactured in our lab and 

have different sensitivities, adjusting thresholds is expected for independent animal 

experiments.  After a CFME is equilibrated in tissue the resulting noise is stable and is 

relativity constant during animal experiments.  One way to automatically calculate 

threshold values is by calculating 3 × SD of the primary peak noise and set the peak 

concentration threshold with this value.  Determining the concentration threshold is 

probably the most time consuming step for this algorithm to work and automatically 
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setting this value would be advantageous. 

 This software is modular and has the ability to be programmed to identify 

numerous analytes detected in FSCV data other than adenosine.  Moreover, the 

strategy for detecting adenosine transients could be extended to other analytes like 

oxygen and dopamine.  For instance, oxygen and adenosine release are correlated, so 

the program could scan the reduction voltage for oxygen in a window after an adenosine 

peak is detected to scan for oxygen transients25.  Additionally, the algorithm could scan 

oxidation and reduction voltages for dopamine, with the time-lag threshold set to zero, 

and automatically detect spontaneous dopamine transients.  To make a dopamine 

algorithm more robust a reduction to oxidation ratio threshold would be empirically 

calculated.  This ratio would help reduce possible FP from being accepted by the 

program and make the program more robust.  Alternatively, dopamine could be pre-

processed by PCR to remove noise from the color plot data and subsequently post-

processed by the dopamine transient algorithm.  Thus, as long as there is enough 

information to make rules about detection from the electrochemical data, there are 

limitless possibilities for this modular spontaneous transient program in analyzing 

electroactive species.  An automated analyte identification algorithm saves hundreds of 

hours of time in tedious peak feature detection and will normalize data between animals, 

researchers, and institutions. 
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Appendix:  Programming Details 
 
 
Code for incremental background subtraction 
 
All code was written in Matlab version 2016a. 
 

A non-background subtracted file (xyz) is read into the program.  A 10 column vector 
(bd) is taken from this matrix from lower (ll) and upper (ul) limits, which are incremented by the 
code.   
 
CODE: 
bd=xyz(:,ll:ul); 
 
 

The column vector (bd) is then averaged at each row (r) to create a single vector 
(mnbd). 
 
CODE: 
for j=1:r 
    mnbd(j,:)=sum(bd(j,:))/(ul-ll); 
end 
 
 
 Each column (c) of the non-background subtracted file (xyz) is subtracted by the single 
vector (mnbd) to create a background subtracted file (d). 
 
CODE: 
for j=1:c 
    d(:,j)=xyz(:,j)-mnbd; % d=difference 
end 
 
 
 The lower and upper limits, ll and ul, respectively, are deterministically incremented 
during incremental background subtraction by an analyst defined incrementation value.   
 
Code for adjacent background subtraction 
 
 

During adjacent background subtraction the “seed” values found during incremental 
background subtraction (singleData) are used to accurately background subtract close to each 
peak.  The same code provided above is used for background subtraction but each background 
subtraction is performed adjacent to each seed peak.  Therefore, the lower (ll) and upper (ul) 
limits are more accurately defined by subtracting a singleData value by 25 (2.5 seconds at 10 
Hz) to determine the upper limit for background subtraction.  The lower limit is taken by 
subtracting the upper limit by 9.   
 
CODE: 
ul=singleData(i)-25; 
ll=ul-9; 
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Code for convoluting background subtracted data 
 
 
 The data used for adjacent background subtraction is convoluted with a Gaussian filter 
(size 7´7, s=2), which acts as a low-pass blurring filter.  This is performed to blur the 2D data 
(M) and prevent multiple peaks from being detected, due to noisy biological data. 
 
CODE: 
filt=(fspecial('gaussian',7,2)); 
C=conv2(single(M),filt,'same') ; 
 
 
Code for smoothing data for peak detection of final data 
 

 
No data smoothing was applied to the primary peak for final peak detection. 

 
 
Code for peak finding and feature detection (Matlab function findpeaks) 
 
  

Matlab has a function that searches a single vector (primary) for local maxima.  Analyst 
defined thresholds for minimum peak height (MinPeakHeight), minimum (MinPeakWidth) and 
maximum (MaxPeakWidth) peak width with width reference at one-half peak height 
(halfheight), and minimum peak prominence (MinPeakProminence) are set.  Thresholds for 
minimum and maximum peak width are at 10 Hz.  Thresholds for minimum peak height are set 
for each animal experiment and all other thresholds remain constant for all experimental 
datasets.  Function outputs for peak currents (PKS1), event time (LOCS1), duration (WDTH1), 
and current prominences (PROM1), are determined for each dataset primary max vector. 
 
CODE: 
[PKS1,LOCS1,WDTH1,PROM1]=findpeaks(primary,'MinPeakHeight',1.0000,... 
    'MaxPeakWidth',150,'MinPeakWidth',6,'MinPeakProminence',0.6390,... 
    'WidthReference','halfheight'); 
 
 
Code for identification of final peaks during adjacent background subtraction 
 
 
 First, the program takes the seed from incremental background subtraction’s 
singleData. 
 
CODE:  
seed=singleData(iteration); 
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Next, the final event time data, acquired from adjacent background subtraction, is stored 
in loc1 of dataFinal. 
 
CODE: 
dataFinal=[loc1;loc2;pks1;pks2;prom1;prom2;... 
    wdth1;wdth2;sn1z;sn2z;CUtime;FILE]; 
 
 
 Finally, the event time location (dataFinal(1,i)) is subtracted from the seed value and 
the resulting difference must be less than 2.2 seconds (data is taken at 10 Hz) of each other.   
 
CODE: 
seed-dataFinal(1,i) <= 22; 
 
 The value of 2.2 seconds was used due to multiple peaks being present in the data.  
This value can be adjusted to suit experimental needs. 


