
SHORTER AND FASTER POST-QUANTUM DESIGNATED-VERIFIER

ZKSNARKS FROM LATTICES

A THESIS

PRESENTED TO

THE FACULTY OF THE SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA

IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE

MASTER OF SCIENCE

Hang Su

April 2021

APPROVAL SHEET

This thesis is submitted in partial fulfillment of the requirements for the

degree of Masters of Science

Hang Su

This thesis has been read and approved by the Examining Committee:

(David J. Wu) Principal Advisor

(David Evans)

(Mohammad Mahmoody)

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, Dean, School of Engineering and Applied Science

April 2021

ii

Abstract

Zero-knowledge succinct argument of knowledge (zkSNARK), a non-interactive zero-knowledge proof of

knowledge protocol, enables efficient privacy-preserving proofs of memberships for general NP languages.

Nowadays, zkSNARKs have become important build blocks in numerous applications, and a growing number

of works have focused on optimizing different properties of the proof system.

This work is focusing on minimizing concrete proof size for post-quantum zkSNARKs. At a high-level, our

construction follows the blueprint of Bitansky et al. [BCI+13] and Boneh et al. [BISW17] of combining a

linear probabilistically checkable proof (linear PCP) together with a linear-only vector encryption scheme.

We developed a concretely-efficient lattice-based instantiation by considering quadratic extension fields Fp2
with moderate characteristic and using linear-only vector encryption over rank-2 module lattice. To our

knowledge, it is plausibly the first system that uses linear PCPs over extension fields. Moreover, applying

linear-only encryption over extension fields reduces the lattice parameters, and thus improves the concrete

efficiency of our lattice-based zkSNARK significantly.

Before our work, there is a 1000× gap in the proof size between the best pre-quantum constructions

and the best post-quantum ones. Here, we develop and implement new lattice-based zkSNARKs in the

designated-verifier preprocessing model. After an initial preprocessing step, verifying an NP relation of

size 220 requires a 16 KB proof, 68 s of prover time, and 1.2 ms of verifier time. Our proofs are 10.3×
shorter than existing post-quantum candidates. Compared to previous lattice-based zkSNARKs (also in the

designated-verifier preprocessing model), we obtain a 39.4× reduction in proof size and a 60.2× reduction in

prover time, all while achieving a much higher level of soundness.

iii

To my family, my teachers, and my friends.

青青陵上柏，磊磊涧中石。
人生天地间，忽如远行客。

—《青青陵上柏》

街灯的光穿窗而入，屋子里显出微明。
我大略一看，熟识的墙壁，壁端的棱线，熟识的书堆，堆边的未订的画集，

外面的进行着的夜，无穷的远方，无数的人们，都和我有关。
我存在着，我在生活，我将生活下去。

—鲁迅《这也是生活》

当人们无法选择自己的未来时，就会珍惜自己选择过去的权利。

时间呈现为透明的灰暗，所有一切都包孕在这隐藏的灰暗之中。
我们并不是生活在土地上，事实上我们生活在时间里。
田野、街道、河流、房屋是我们置身时间之中的伙伴。
时间将我们推移向前或者向后，并且改变着我们的模样。

我是那样崇拜生命在我体内流淌的声音。
除了生命本身，我再也找不出活下去的另外理由了。

我们都是忘记了对方的模样以后，在路上相遇。

—余华《在细雨中呼喊》

I like the peace in the backseat
I don’t have to drive, I don’t have to speak

I can watch the countryside, and I can fall asleep

My family tree’s losing all it’s leaves
Crashing towards the driver’s seat

The lightning bolt made enough heat
To melt the street beneath your feet

I’ve been learning to drive, my whole life

— Arcade Fire, In the Backseat

Acknowledgements

I would like to begin by thanking my advisor, David Wu, for his advice and mentorship throughout the past

two years. This thesis would not have been possible without his guidance. Two years ago, when I was young

and ignorant, I had the good fortune of meeting him and then taking his Introduction to Cryptography class.

David drew me into this field with his great passion towards both cryptography and mentorship. I can not

be more grateful for David’s kindness and patience, and I am always impressed by his helpful and insightful

advice. Working and researching with David has been (somewhat) annoying and (extremely) fruitful. David

is always a few steps ahead, pushing me to think clearly and write precisely. It might be arrogant, but I still

want to say: David, you are a standard in research that I hope I can reach some day in the future.

Before I entered UVA, I was fortunate to know and work with many incredibly talented friends in my

undergraduate years. I would like to especially thank Yue “Tripack” Yao and Yifan “Evan” Zhao. Yue, you

were the one who led me on the road to programming and computer science. Without you, I would not

be who I am today. I really miss the hours we spent talking about computer science research and all the

insightful ideas you provided. Yifan, I am very fortunate to have had you as a friend for these years. It is

always fun to work with you on random programming language related projects. Our discussions on research,

gaming, and everything else were a highlight of my undergraduate years. You two are both amazing friends,

and I look forward to seeing what you accomplish in your research career.

Finally, I want to thank my family for all their unconditional love and support.

2020 was a year of great challenge, “Une Année Sans Lumière”. I can not be more grateful for my uncle

and aunt taking me in after learning of my father’s serious illness. Most of this work, including coding, was

finished in their place. They are the toughest people I have ever met. They have all been greatly supportive

and have carried me through the darkest hours.

My cousins, Jessica and Sarah Lao, have always been uplifting, talented, and unfailingly loyal. Both of

you got into Harvard, and I can never be more proud of that. You guys have set a level of excellence that I

will always look up to. Jessica, thank you for the recipe book and for making sure I always eat on schedule.

Your (too-sugary) desserts pair so well with my triple-strong coffee. Sarah, thank you for sitting beside me,

going through my writing (including this acknowledgement) to ensure everything is grammatically correct,

and tolerating my lame pink guy jokes. It is calming to talk with you during these dark days.

vi

It would be impossible to adequately appreciate my parents, Lihong Pan and Zhilong Su, for the role they

played in my life. Mom, thank you for tolerating my stubbornness, laziness, and arrogance during my youth,

spending countless hours on my education. Dad, thank you for believing in me, encouraging me to make the

most out of my talent, and reminding me to be on schedule. I know it has always been your long-time dream

to study in the US, but due to a tight budget, it did not work out. Now I am stepping in your old boots to

realize your dream. I hope you are proud of me. I don’t know how best to commemorate your life. I guess

the only way is for me, as your legacy, to make the most out of my own life, thus extending yours. We all

miss you so much. This thesis is for you.

vii

Contents

Abstract iii

Acknowledgements vi

1 Introduction 1

1.1 Background . 2

1.2 Technical Overview . 4

1.3 Contributions . 7

1.4 Related Work . 9

1.5 Works Contained in this Thesis . 10

2 Preliminaries 12

2.1 Circuit Satisfiability Problems . 14

2.2 Succinct Non-Interactive Arguments . 14

2.3 Linear PCPs . 16

3 Lattice-Based Succint Arguments 23

3.1 Linear PCPs over Extension Fields . 23

3.2 Linear-Only Vector Encryption . 24

3.3 Candidate Linear-Only Vector Encryption . 27

3.4 zkSNARKs from Linear-Only Encryption . 37

4 Implementation and Evaluation 43

4.1 Linear PCP Implementation . 43

4.2 Lattice-Based zkSNARK Implementation . 48

4.3 Experiment Evaluation . 51

5 Conclusion 57

A The Power Diffie-Hellman Assumption over Small Fields 59

Bibliography 61

viii

List of Tables

1.1 Concrete performance comparison of our zkSNARK to the pairing-based construction of Groth [Gro16]

and several recent post-quantum zkSNARKs with polylogarithmic-size proofs. For each scheme, we

report the running time and parameter sizes for an R1CS instance with 216 and 220 constraints. We

measure the running times for an R1CS instance over each scheme’s preferred field. With the exception

of the Gennaro et al. [GMNO18] construction, all measurements are taken on the same system (see

Section 4.3 for details of our setup). For our scheme, we consider two different parameter settings. The

“Shorter Proofs” setting operates over the field Fp2 where p = 213 − 1) and the “Shorter CRS” setting

operates over the field Fp2 where p = 219 − 1. The “PQ” column specifies whether the construction

is post-quantum () or pre-quantum (), the “TP” column specifies whether the construction has a

transparent setup () or relies on a trusted setup (), and the “PV” column specifies whether the

scheme is publicly-verifiable () or designated-verifier (). 8

1.2 Comparison with recent zkSNARKs for verifying an NP statement of size N constraints and statements

of length |x|. For brevity, we focus on schemes that have sublinear proof size and sublinear verification

for general NP relations. Asymptotic running times and parameter sizes are given up to multiplicative

poly(λ) factors (where λ is the security parameter). For the “Concrete Proof Size” column, we report

the approximate size of a proof for verifying an NP relation of size N ≈ 220 at the 128-bit security

level (as reported in the respective works unless noted otherwise). The “PQ” column specifies whether

the construction is post-quantum secure () or only classically secure (). The “TP” column denotes

whether the scheme is transparent (), relies on a trusted setup for a universal CRS (), or relies on a

trusted sampling of a language-dependent CRS (). The “PV” column specifies whether the argument

is publicly-verifiable () or designated-verifier (). The “Crypto. Structure” column describes the

primary (algebraic) structure underlying the construction. We distinguish between pairing groups and

pairing-free groups by using “Groups” to denote the latter. We write “RO” to denote a construction

based on random oracles. 11

ix

4.1 Lattice parameters for zkSNARK instantiations obtained by combining the linear PCP ΠLPCP from

Theorem 2.10 and Remark 2.12 with the linear-only vector encryption scheme ΠEnc from Construc-

tion 3.11. Here, λq is the estimated bits of quantum security, λc is the estimated bits of classical

security, p is the plaintext modulus, d is the module rank, n is the module dimension, q is the ciphertext

modulus, s is the width parameter for the discrete Gaussian noise distribution, ` is the dimension of

the plaintext space, and τ is the sparsification parameter. Parameters shown are based on supporting

an R1CS system with 220 constraints and for the smallest plaintext fields we consider in our evaluation. 50

4.2 Time and effective rate to compute 1010 multiplications between an n-bit integer (n = 64, 128, 192, 256)

and a 64-bit integer using different big-integer implementations on a 64-bit architecture. This models

the primary cost in the prover’s homomorphic evaluation. 51

4.3 Performance comparison of zkSNARKs instantiated using parameters for 128-bits of classical vs.

128-bits of post-quantum security (denoted “PQ”). For all measurements, we consider R1CS instances

over Fp2 with 220 constraints and compile using linear-only vector encryption over Fp2 56

x

List of Figures

4.1 Performance comparison for different instantiations of our scheme for supporting R1CS instances of

different sizes. The solid lines correspond to our primary instantiations using a linear PCP over Fp2 in

conjunction with vector encryption over Fp2 . The dashed lines represent alternative instantiations

using a vector encryption over the base field Fp. In the case where the linear PCP is over the extension

field and the vector encryption is over the base field, we apply Construction 3.1 to first obtain a linear

PCP over the base field. We also consider a direct compilation from a linear PCP over Fp using a

vector encryption scheme over Fp. 53

4.2 CRS size and proof size as a function of the field size |F|, where F is either a quadratic extension

Fp2 or a base field Fp. The characteristic p is chosen so F has the prescribed size. Parameters based

on instantiating Construction 3.22 over F for an R1CS system with 220 constraints. For the F = Fp
setting, we also consider the case where each coefficient in the linear PCP is represented by two digits,

each of size
√
p (see Remark 3.20). Elements with a non-filled marker (and a dotted line) denote

parameter settings where the modulus q exceeds 128 bits. 54

4.3 Cost breakdowns for CRS setup and prover for different R1CS instances. Measurements are based on

instantiating Construction 3.22 with a linear PCP and a vector encryption scheme over Fp2 where

p = 213 − 1. 55

4.4 Cost breakdowns as a function of the zero-knowledge parameter κ (i.e., the zero-knowledge distin-

guishing advantage of any poly(λ) adversary is bounded by 2−κ + negl(λ)). All measurements taken

for an R1CS instance over Fp2 with 220 constraints (and compiled using vector encryption over Fp2). 56

xi

Chapter 1

Introduction

On a high level, a proof system for a language L ⊆ {0, 1}∗ is a two-party protocol between a prover P and a

verifier V . The goal of the prover is to convince the verifier of some statement x ∈ {0, 1}∗ is a member of the

language L (namely x ∈ L). This give rise to two basic properties: completeness, which roughly indicates an

honest prover will be able to convince an honest verifier of any true statement x ∈ L, and soundness, which

roughly says a plausibly honest prover will not be able to prove a fales statement x /∈ L to an honest verifier.

In the case of the NP languages, we notice that the NP class of languages can be efficiently checked in

polynomial time. Namely, if a language L ⊆ {0, 1}∗ is in NP, there exists a polynomial time algorithm R
(referred as an NP relation) such that for every x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃w ∈ {0, 1}poly(|x|) : R(x,w) = 1.

In this way, all NP languages have an efficient non-interactive proof system: to prove a statement x ∈ {0, 1}∗

is in L, the prover sends the witness the NP witness w, and the verifier computes if R(x,w) = 1.

For an NP relation R, a zero-knowledge proof of knowledge [GMR85] enables a prover to convince a

verifier of x ∈ L without revealing anything about the NP witness w. In this work, we are focusing on

zero-knowledge succinct argument of knowledge (zkSNARK) [Kil92, Mic00, GW11]. In a zkSNARK, we

additionally require the proof containing only a single message π from prover to verifier, while the length of π

and the verification complexity are sublinear (ideally, polylogarithmic) in the size of the circuit computing

R. Zero-knowledge SNARKs have applications to delegating and verifying computations [WB15] and for

constructing privacy-preserving cryptocurrencies [BCG+14]. In the last few years, there have been numerous

works studying constructions from different assumptions and on optimizing the asymptotic and concrete

efficiency of zkSNARKs (e.g., [PHGR13, BCI+13, BCC+16, Gro16, ZGK+17, AHIV17, BBHR18b, WTS+18,

GMNO18, BBB+18, BCR+19, CHM+20, BFS20, SL20, COS20]).

1

CHAPTER 1. INTRODUCTION 2

1.1 Background

The basis of our work is the compiler of Bitansky et al. [BCI+13] (also implicit in the work of Gen-

naro et al. [GGPR13]), and more specifically, the vector generalization by Boneh et al. [BISW17]. They

provided a general template for constructing SNARKs in the preprocessing model by combining a “linear

PCP” with a “linear-only” encryption scheme.

A linear PCP [IKO07] for an NP language L is defined by a linear oracle π : F` → F over a finite field F.

On input a statement x, a verifier can submit a query matrix Q ∈ F`×k to the oracle and obtain the responses

a← QTπ ∈ Fk. Based on the responses, the verifier decides whether to accept or reject. We refer to k as the

number of queries and ` as the query length of the linear PCP. The linear PCP is sound if for a false statement

x /∈ L and any proof vector π ∈ F`, the probability that the verifier accepts is negligible (where the probability

is taken over the sampling of Q). Concretely-efficient 4-query linear PCPs for R1CS can be constructed using

the quadratic arithmetic programs (QAPs) introduced by Gennaro et al. [GGPR13]. QAPs are the basis for

the most succinct pairing-based preprocessing zkSNARKs [PHGR13, GGPR13, BCI+13, BCG+13, Gro16].

To obtain a preprocessing zkSNARK for L from a linear PCP for L, the Bitansky et al. compiler encrypts

the linear PCP queries (i.e., the entries of Q) using a “linear-only” encryption scheme and publishes the

resulting ciphertexts as part of the common reference string (CRS). A linear-only encryption scheme is an

encryption scheme that only supports linear homomorphism (i.e., it is possible to add ciphertexts, but no

other homomorphic operation on ciphertexts is supported). Given the encrypted queries, the prover can

homomorphically compute the encrypted responses a = QTπ. Here, the linear-only property restricts the

prover to linear strategies and by semantic security, the prover’s choice of linear combination is independent

of the linear PCP queries. This binds the prover to respect the constraints of the linear PCP model. To

verify the proof, the verifier decrypts the encrypted responses and applies the linear PCP verification. This

yields a designated-verifier preprocessing SNARK. For zero-knowledge, it suffices that the linear PCP be

honest-verifier zero-knowledge and the linear-only encryption scheme be “re-randomizable” (i.e., ciphertexts

output by the homomorphic evaluation are computationally indistinguishable from fresh ciphertexts).

Post-quantum zkSNARKs. Many existing constructions of zkSNARKs rely on group-based and pairing-

based assumptions [Gro10, PHGR13, GGPR13, BCI+13, Gro16, BCC+16, BBB+18, MBKM19, CHM+20,

Set20, SL20] with only pre-quantum security. Several recent works have introduced new concretely-efficient

post-quantum zkSNARKs based on cryptographic hash functions [AHIV17, BBHR18b, BCR+19, COS20,

BFH+20] or lattice-based assumptions [GMNO18]. However, compared to the pre-quantum ones, current post-

quantum constructions have substantially longer proofs: proofs in the most succinct pre-quantum construction

(Groth [Gro16]) are just 128 bytes, while those in the most succinct post-quantum constructions [BCR+19,

COS20, BFH+20] are over 1000× longer (i.e., at least 130 KB for verifying circuits of size 220). The increase in

parameter sizes is caused by the gap between the sizes of group-based pre-quantum signatures [Sch80, BLS01]

and hash-based [BHH+15, CDG+17] or lattice-based post-quantum signatures [DKL+18, FHK+20].

CHAPTER 1. INTRODUCTION 3

Lattice-based instantiations of Bitansky et al. Gennaro et al. [GMNO18] and Boneh et al. [BISW17,

BISW18] introduced candidate linear-only encryption schemes based on lattices. In these works, the underlying

linear-only encryption scheme is adapted from basic Regev encryption [Reg05]. For our purposes, a Regev-

based encryption of a value x ∈ Zp is a pair (a, c) where a ∈ Znq and c = sTa + pe+ x ∈ Zq, where s ∈ Znq is

the secret key, e ∈ Zq is an error term, and n, q are lattice parameters. Observe that this scheme is linearly

homomorphic: if (a1, c1) and (a2, c2) encrypt values x1, x2, respectively, then (a1 + a2, c1 + c2) encrypts the

value x1 + x2 mod p, albeit with slightly larger error. As long as the error magnitude in the final ciphertext

is less than q/p, decryption succeeds.

Gennaro et al. [GMNO18] provided the first lattice-based implementation of the Bitansky et al. compiler

using Regev encryption.1 Compared to the best pairing-based constructions that followed a similar methodol-

ogy [Gro16], the lattice-based instantiation is significantly less efficient. For an instance of size 216, the proof

size is 640 KB, over 5000× larger than the pairing-based construction of Groth [Gro16]; similarly, the prover

time for a similar-sized instance is roughly 40× slower than the pairing-based analog. In fact, as we discuss

in Appendix A, because Gennaro et al. consider linear PCPs over a small field F (log |F| = 32), the specific

parameter instantiation they consider provides at most 15 bits of provable soundness. Working over a larger

field or using parallel repetition for soundness amplification would incur even more overhead.

Lattice parameter sizes. The main obstacle to the concrete efficiency of lattice-based zkSNARKs following

the Bitansky et al. compiler [BCI+13] is the size of the lattice parameters. The length of a QAP for an

R1CS instance with N constraints over a finite field F is O(N), and the soundness error is O(N/ |F|). This

means we need to work over a field F where |F| > N , and we need a linear-only encryption scheme over F
that supports O(N) homomorphic operations. In the Gennaro et al. construction [GMNO18], they consider

a prime field Fp where p > N . For correctness then, the modulus q for a Regev-based encoding must satisfy

q > p2N . Zero-knowledge adds a further multiplicative factor of 2κ where κ is a statistical security parameter.

For 128 bits of soundness then, we need p > 2128N . If we take q ≈ 2300 (and a typical error distribution),

then the lattice dimension n needs to be at least 104 at the 128-bit security level (based on [APS15]). A

single ciphertext is over 350 KB in this setting. This is a lower bound on the proof size since in the basic

instantiation, the proof contains at least one ciphertext for each linear PCP response.

Alternatively, instead of working over a large field, we can work over a small field Fp where p ≈ N

and amplify soundness through parallel repetition. For instance, if we take p ≈ 220 and q ≈ 2100, then a

single Regev ciphertext is roughly 45 KB. However, soundness amplification increases the proof size (and all

other metrics), again leading to parameter sizes worse than non-lattice-based zkSNARKs. The scheme of

Gennaro et al. [GMNO18] considers a finite field of size 232 without soundness amplification, and so their

concrete instantiation provides very few bits of soundness (see Appendix A and Remark A.4). But even with

this limited level of security, the proof size in their construction is already 640 KB.

1Gennaro et al. used square span programs [DFGK14] instead of QAPs as the underlying linear PCP, but this distinction is not
important for the main discussion here.

CHAPTER 1. INTRODUCTION 4

1.2 Technical Overview

Two things primarily enable our lattice-based zkSNARKto be concretely-efficient: (1) using vector encryp-

tion [PVW08] instead of vanilla Regev encryption as our linear-only encryption scheme; and (2) working over

extension fields of moderate characteristic. We provide an overview of our techniques and construction here.

Vector encryption. Our starting point in this work is the adaptation of the Bitansky et al. compiler

using linear-only vector encryption introduced by Boneh et al. [BISW17]. A vector encryption scheme (over a

field F) supports encrypting a vector of field elements. Instead of encrypting each entry in the linear PCP

query matrix Q ∈ F`×k separately, the Boneh et al. compiler encrypts rows of Q. The proof then consist of a

single ciphertext encrypting the vector of linear PCP responses. The advantage of this approach is that we

can reduce the cost of ciphertext expansion for lattice-based vector encryption by amortization. With vanilla

Regev encryption, the overhead of encrypting a single Zp value is O(n), where n is the lattice dimension.

Using the extension by Peikert et al. [PVW08], we can encrypt a vector of ` Zp-values with a ciphertext

containing (n+ `) Zq-elements. This approach confers several improvements for concrete efficiency:

• Soundness amplification: We can amplify soundness of the linear PCP using parallel repetition (i.e.,

using multiple independent sets of linear PCP queries). This increases the dimensions of the vectors we

encrypt, but using the Peikert et al. vector encryption scheme, the overhead is additive in the dimension

rather than multiplicative (as with vanilla Regev encryption).

• Number of lattice ciphertexts: Using vector encryption based on the construction of Peikert et al.,

we can encrypt a vector of plaintext values in a single lattice ciphertext. We note though that for

an encryption scheme to plausibly satisfy the necessary “linear-only” property, the ciphertext space

must be sparse, or an adversary can obliviously sample a valid ciphertext without the knowledge of

the corresponding plaintext. The heuristic from earlier works [GGPR13, BCI+13, BISW17] is to use

“double encryption” where a valid ciphertext encrypting a message x consists of a pair of independent

ciphertexts encrypting x (Gennaro et al. [GMNO18] also use a variant of this encoding method). Directly

applying “double encryption” would incur a doubled ciphertext size. In Section 3.3, we describe an

alternative route where we increase the vector dimension (essentially by concatenating a tag to each

message) that achieves the same effect. The advantage of our approach is that it incurs a small additive

overhead on ciphertext size or proof size rather than a multiplicative one.

• Modulus switching: We can decrease the proof size of the zkSNARK using modulus switching

technique in [BGV12]. The slack between the modulus q and lower bound of the modulus allows us

to apply this trick. With modulus switching, after prover homomorphically computes its response

ciphertext (a vector of a large ring elements), the prover rescales each component of the ciphertext to

a much smaller modulus. The actual decryption is then applied over the rescaled ciphertext. In our

CHAPTER 1. INTRODUCTION 5

construction, modulus switching decreases the modulus q by more than a factor of 2, which translate to

a same factor of decrease in concrete proof size. We describe this in Theorem 3.21.

Instantiating our vector encryption scheme over Fp using a 23-bit p yields a zkSNARK where the proof size

is 27 KB (and a 19 GB CRS); with a 28-bit prime, the proof size increases to 29 KB with a CRS of size 5.5

GB (for R1CS instances with 220 constraints). This is already an improvement over previous post-quantum

zkSNARKs, but comes at the cost of having a large CRS.

Extension fields of moderate characteristic. Considering linear PCPs over extension fields of moderate

characteristic is a way to reduce the lattice parameters. The key observation we make is that the size of the

modulus q (and other lattice parameters) scale with the plaintext modulus (i.e., the field characteristic) but

not necessarily the size of the field. To take advantage of this, we first note that the linear PCPs based on

QAPs is agnostic to the choice of the field, and works equally well over extension fields Fpk . We develop two

instantiations of this approach:

• Compile linear PCPs over Fpk to Fp: Our first instantiation shows how to compile a linear PCP

over Fpk to a zkSNARK using linear-only vector encryption over the base field Fp (i.e., the same

encryption scheme from above). We first show how to transform a linear PCP over Fpk to a linear PCP

over Fp. The transformation increases the query length and the number of queries by a factor of k, and

relies on the the efficiently-computable isomorphism between Fpk -operations and linear transformations

over the vector space Fkp. We describe our construction in Section 3.1. For concrete efficiency reasons,

we focus exclusively on quadratic extensions, where k = 2 (see Remark 3.19). We obtain a construction

from one instantiation of this approach with shorter proofs (21 KB) and a shorter CRS (3.8 GB)

compared to working over the prime field. 2 With a longer CRS (10.5 GB), we can bring the proof size

down to 16 KB (over 40% reduction from working over a prime field).

• Vector encryption over extension fields. We next consider a direct compilation from linear PCPs

over the extension field to a zkSNARK using a linear-only vector encryption scheme whose plaintext

space coincides with the extension field. We generalize our variant of the Peikert et al. [PVW08]

encryption scheme to operate over the cyclotomic ring R = Z[x]/(x2 + 1). In this case, the plaintext

space is Rp = R/pR, and Rp ∼= Fp2 when p = 3 mod 4. This gives a direct compilation from a linear

PCP over a quadratic extension Fp2 to a zkSNARK over Fp2 , under the conjecture that the vector

encryption scheme is linear-only over Rp. By relying on linear PCPs and linear-only vector encryption

over the quadratic extension, we obtain a zkSNARK with similar proof size as the above construction,

but with a 2× reduction in the CRS size (previously incurred by transforming the linear PCP from

Fp2 to Fp). We show the concrete performance in Table 1.1 and in Section 4.3. Leveraging encryption

2Even though the linear PCP transformation doubles the query length of the linear PCP, working over the extension field allows
us to achieve the same level of soundness with less parallel repetitions, and reduces the overall size of the CRS.

CHAPTER 1. INTRODUCTION 6

schemes over extension fields and higher-rank modules has also been useful for improving the asymptotic

and concrete efficiency of other lattice-based constructions [GHS12a, GHS12b, Gen09].

Parameter selection. We consider quadratic extension fields with two different characteristics in this

work: (1) p = 213 − 1 which yields a construction with shorter proofs but a longer CRS; and (2) p = 219 − 1

which yields a construction with a shorter CRS and slightly longer proofs. We choose p of the form 2t − 1

so that F∗p2 has a multiplicative subgroup of order 2t+1 (i.e., the subgroup of 2t+1-th roots of unity). This

enables us to take advantage of fast Fourier transforms (FFT) to implement the linear PCP prover [BCG+13].

Note that when p is small (e.g., p = 213− 1), the extension field does not contain a sufficiently-large subgroup

of roots of unity to directly apply power-of-two FFTs for the linear PCP. In Section 4.1, we describe a simple

approach using multiple small power-of-two FFTs on different cosets of the roots of unity that still enables

an efficient implementation of the linear PCP prover.

Another consideration that underlies our choise of prime modulus in this work is the magnitude of the

lattice modulus q needed to instantiate the lattice-based lattice-based encryption scheme over Fp or Fp2 .

When q < 2128, we can use compiler intrinsic types to implement the 128-bit arithmetic, which is significantly

faster than using multi-precision arithmetic or even fixed-precision arithmetic over slightly larger integers.

We provide more discussion and microbenchmarks in Section 4.2 and Table 4.2.

Zero-knowledge and circuit privacy. As noted above, the Bitansky et al. compiler yields a zero-

knowledge SNARK if the underlying linear PCP is honest-verifier zero-knowledge and the linear-only encryption

scheme is re-randomizable. Due to the noise accumulation through homomorphic operations, the lattice-based

schemes are not directly re-randomizable. In this work, we show that a weaker notion of circuit privacy [Gen09]

(i.e., the result of computing a linear combination of ciphertexts hide the coefficients of the linear combination)

suffices to argue zero-knowledge for the SNARK. Using noise smudging [Gen09, AJLA+12, MW16] and

the module learning with errors assumption (MLWE) [BGV12, LS15], it is straightforward to augment

our linear-only vector encryption scheme to provide circuit privacy. We describe the details in Section 3.3.

Moreover, we note in Remark 3.27 that even without circuit privacy, a direct compilation can still heuristically

provide zero-knowledge.

Implementation and evaluation. In Chapter 4, we describe our implementation of our lattice-based

zkSNARK. We provide a comprehensive evaluation of the different trade-offs in parameter sizes and compute

time for the different settings described here. We also give fine-grained microbenchmarks of the different

components of our system in Section 4.3. Finally, we conclude with additional comparisons against other

zkSNARK candidates in Table 1.2 and Section 1.4.

CHAPTER 1. INTRODUCTION 7

1.3 Contributions

Our main contribution is a new designated-verifier zkSNARK from lattice-based assumptions where the proof

size (for verifying an R1CS instance of size 220) is under 17 KB. This is a 10.3× reduction in proof size

compared to Aurora [BCR+19], a post-quantum IOP-based SNARK with short proofs. If we restrict our

attention to post-quantum zkSNARKs with sublinear verification, our construction is 13.1× shorter than

Fractal [COS20]. Compared to the lattice-based construction of Gennaro et al. [GMNO18], our zkSNARKs are

39.4× shorter. However, there remains a large gap (128×) compared to the shortest pre-quantum zkSNARK

by Groth [Gro16]. We refer to Table 1.1 for the full comparison and describe our experimental setup in detail

in Section 4.3.

The prover and verifier complexities of our new zkSNARK also compare favorably against other post-

quantum schemes. Our construction is 4.6–6.3× faster for the prover compared to Aurora and Fractal on R1CS

instances of similar size. Compared to the Gennaro et al. [GMNO18] lattice-based candidate, our construction

is 60.2× faster for the prover and 5.1× faster for the verifier. Moreover, our main constructions (with provable

zero-knowledge) are 1.1–1.6× faster for the prover and about 2.7–7.9× faster for the verifier compared to

pre-quantum pairing-based construction of Groth [Gro16]. In fact, the prover in one of our instantiations (see

Section 4.3) is 2.3× faster than the construction of Groth. The caveat is that this instantiation does not

provide provable zero-knowledge, but may still do so in a heuristic sense (see Remark 3.27). This makes it

more suitable for use in verifiable computation scenarios that do not require zero-knowledge.

Compared to other post-quantum constructions based on “MPC-in-the-head” [IKOS07, AHIV17, BFH+20]

or the “GKR” approach [GKR08, ZXZS20, ZWZZ20], our prover times are generally higher. Compared to

Ligero [AHIV17], our prover is about 1.8× more expensive, but our proof sizes and verification times are over

874× better (see Table 1.1). In general, these alternative approaches typically enjoy lower prover costs, but

either have longer proofs or higher verification costs for verifying general, unstructured computations. We

provide more details and comparisons with other zkSNARKs in Section 1.4.

The IOP-based constructions have the advantage of being publicly-verifiable and transparent. Our scheme is

designated-verifier and requires an expensive trusted setup. For verifying R1CS systems with 220 constraints,

we need to sample a CRS of size 5.3 GB which takes 37 minutes. An alternative instantiation of our

construction using a different base field reduces the CRS size to 1.9 GB and the setup time to 15 minutes.

This leads to a modest increase in proof size from 16.4 KB to 20.8 KB (see Table 1.1).

CHAPTER 1. INTRODUCTION 8

Scheme Structure PQ TP PV R1CS Size Time
Size CRS Proof Setup Prover Verifier

[Gro16] Pairings
216 12.4 MB 128 B 5.6 s 5.5 s 3.3 ms
220 199 MB 128 B 72.0 s 78.6 s 3.4 ms

[GMNO18] ∗ Lattices 216 17.3 MB† 640 KB 167 s 235 s 3.46 ms

Ligero [AHIV17]
Random 216 — 4.3 MB — 2.5 s 1.3 s
Oracle 220 — 14 MB — 37.6 s 21.6 s

Aurora [BCR+19]
Random 216 — 121 KB — 17.8 s 380 ms
Oracle 220 — 169 KB — 304 s 6.3 s

Fractal [COS20]‡
Random 216 1.4 GB 178 KB 11.6 s 21.3 s 8.3 ms
Oracle 219 11 GB 215 KB 115.8 s 184.3 s 9.5 ms

This work
Lattices

216 191 MB 15.2 KB 88.3 s 3.9 s 0.69 ms
(Shorter Proofs) 220 5.3 GB 16.4 KB 2240 s 68 s 1.23 ms

This work
Lattices

216 104 MB 19.9 KB 53.0 s 3.4 s 0.37 ms
(Shorter CRS) 220 1.9 GB 20.8 KB 877 s 56 s 0.43 ms

∗As we discuss in Appendix A (Remark A.4), the parameter instantiation proposed in Gennaro et al. [GMNO18] only provides
15 bits of soundness. If we use parallel repetition to amplify to 128-bits of soundness, then all of the parameters should be scaled
by a factor of 9×. In the table, we report the numbers as they were presented in the original paper. Their work also does not
provide measurements for instances with more than 216 gates.
†Gennaro et al. [GMNO18] do not report the CRS size for an instance of size 216. We estimate the size by doubling the size of
the CRS for an instance of size 215.
‡The “Setup” time and “CRS” size for Fractal refers to the running time of the indexer and the size of the resulting proving
state. Our system ran out of memory when running Fractal on an R1CS instance of size 220. Thus, we report the results for an
instance of size 219 instead.

Table 1.1: Concrete performance comparison of our zkSNARK to the pairing-based construction of Groth [Gro16]
and several recent post-quantum zkSNARKs with polylogarithmic-size proofs. For each scheme, we report the running
time and parameter sizes for an R1CS instance with 216 and 220 constraints. We measure the running times for an
R1CS instance over each scheme’s preferred field. With the exception of the Gennaro et al. [GMNO18] construction,
all measurements are taken on the same system (see Section 4.3 for details of our setup). For our scheme, we consider
two different parameter settings. The “Shorter Proofs” setting operates over the field Fp2 where p = 213 − 1) and
the “Shorter CRS” setting operates over the field Fp2 where p = 219 − 1. The “PQ” column specifies whether the
construction is post-quantum () or pre-quantum (), the “TP” column specifies whether the construction has
a transparent setup () or relies on a trusted setup (), and the “PV” column specifies whether the scheme is
publicly-verifiable () or designated-verifier ().

CHAPTER 1. INTRODUCTION 9

1.4 Related Work

There has recently been a flurry of works studying the asymptotic and concrete efficiency of succinct argument

systems. We survey several families of constructions here and also include a comparison with several

representative schemes in Table 1.2. In the following, we use N to denote the size of the NP relation being

verified.

Linear PCPs and QAP-based constructions. Gennaro et al. [GGPR13] and Bitansky et al. [BCI+13]

described general frameworks for constructing constant-size zkSNARKs from linear PCPs (specifically, QAPs).

Several works have built upon and extended these frameworks [DFGK14, Gro16, BISW17, GMNO18, BISW18,

BIOW20]. These constructions are the basis of numerous systems and implementations [PHGR13, BCG+13,

BFR+13, BCTV14b, BCTV14a, FGP14, WSR+15, BBFR15, CTV15, DFKP16, FFG+16, BCG+14]. These

constructions offer the best succinctness, but this comes at the expense of needing an expensive, trusted, and

language-dependent setup, as well as a quasilinear-time prover.

Interactive oracle proofs. Following the seminal works of Kilian [Kil92] and Micali [Mic00], a recent line

of works [BCGV16, BBC+17, BCF+17, BBHR18b, BBHR18a, BCR+19, CHM+20, COS20, BCG20, BCL20,

LSTW21] have shown how to construct zkSNARKs from short PCPs [BS08], and their generalization, interac-

tive oracle proofs (IOPs) [BSCS16, RRR16]. These constructions rely on the Fiat-Shamir heuristic [FS86] to

obtain a non-interactive argument in the random oracle model. Many IOP constructions have a transparent

(i.e., non-trusted) setup, and moreover, are plausibly post-quantum. Proof sizes for IOP-based constructions

typically range in the hundreds of kilobytes.

Bünz et al. [BFS20] introduced polynomial IOPs, a generalization of linear PCPs to the IOP setting,

where on each round, the verifier has oracle access to a bounded-degree polynomial. Polynomial IOPs can

be compiled into succinct arguments [MBKM19, GWC19, CHM+20, SL20] via polynomial commitments.

These schemes have excellent concrete succinctness (a few hundred bytes to a few kilobytes), a universal or

transparent setup, but generally rely on pre-quantum assumptions.

MPC-in-the-head. Ishai et al. [IKOS07] introduced the “MPC-in-the-head” paradigm for building zero-

knowledge proofs from general multiparty computation. The Ligero system [AHIV17] was the first argument

with
√
N size proofs in this framework. Bhadauria et al. [BFH+20] combined Ligero with IOPs to reduce

the proof size to polylog(N). Both constructions support sublinear verification for structured circuits, but

verification is linear for general circuits.

GKR-constructions. Another line of work starts from the succinct interactive argument for verifying

arithmetic circuits by Goldwasser, Kalai, and Rothblum (GKR) [GKR08] A sequence of works [CMT12,

Tha13, WTS+18, ZGK+17, Set20, XZZ+19, ZXZS20] have built on GKR to obtain efficient non-interactive

CHAPTER 1. INTRODUCTION 10

arguments for (layered) circuits (and often tailoring to special structures for better concrete efficiency). In

these constructions, the size of the proof (and the verifier complexity) typically scale with the depth of the

circuit. An appealing feature of these constructions is their low prover complexities: namely, the cost of the

prover scale linearly in the size of the NP relation (over large fields). Zhang et al. [ZWZZ20] recently showed

how to leverage GKR to verify general arithmetic circuits while retaining a linear-time prover and sublinear

verification (for structured circuits). The proof size in their construction scales with the depth of the circuit.

Inner product arguments. Building on works by Bayer and Groth [Gro09, BG12], Bootle et al. [BCC+16]

introduced zero-knowledge arguments for arithmetic circuit satisfiability based on inner product arguments.

Bünz et al. [BBB+18] improved the construction to achieve shorter proofs and verification times. While the

proofs are short, the verification time scales linearly with the circuit size and these constructions rely on

pre-quantum assumptions.

Lattice-based constructions. In the lattice-based setting, there have been several instantiations in the

designated-verifier model based on linear PCPs [GMNO18, BISW17, BISW18]. Baum et al. [BBC+18]

gave the first publicly-verifiable argument from standard lattice assumptions with Õ(
√
N)-size proofs.

Bootle et al. [BLNS20] reduced the proof size further to polylog(N). In both these cases, the verifier is not

succinct and runs in linear time.

1.5 Works Contained in this Thesis

The results and description in this thesis are based on the material that originally appeared in the following

publication:

• Shorter and Faster Post-Quantum Designated-Verifier zkSNARKs from Lattices with Yuval Ishai, and

David J. Wu (ACM CCS, 2021) [ISW21].

CHAPTER 1. INTRODUCTION 11

PQ TP PV Proof Size Runtime Crypto.
Asymptotic Concrete Prover Verifier Structure

Groth [Gro16] 1 128 B N logN |x| Pairings
Marlin [CHM+20] 1 704 B N logN |x|+ logN Pairings
Sonic [MBKM19] 1 1.1 KB N logN |x|+ logN Pairings
Xiphos [SL20] logN 61 KB N |x|+ logN Pairings

Spartan [Set20]
√
N 142 KB N |x|+

√
N Groups

Fractal [COS20] log2N 215 KB† N logN |x|+ log2N RO
[GMNO18]∗ 1 640 KB‡ N logN |x| Lattices
STARK [BBHR18b] log2N 3.2 MB Npolylog(N) |x|+ log2N RO

This work∗ 1 16 KB N logN |x| Lattices

∗For the asymptotic estimates for the lattice-based constructions, we consider an instantiation over a field of size 2Ω(λ) (i.e.,
similar to the field sizes in the group-based and pairing-based constructions). For concrete efficiency, it is advantageous to
work over smaller fields. When instantiated over a field F, the lattice-based parameters scale with polylog(|F|).
†Proof sizes for Fractal measured using the implementation from libiop [Lab21b] with the default configuration over a
181-bit prime field. The largest R1CS instance we could measure has 219 constraints, so this is the proof size we report here.
‡This number is for a circuit with 216 gates since the paper does not provide measurements for larger circuit sizes.

Table 1.2: Comparison with recent zkSNARKs for verifying an NP statement of size N constraints and statements
of length |x|. For brevity, we focus on schemes that have sublinear proof size and sublinear verification for general
NP relations. Asymptotic running times and parameter sizes are given up to multiplicative poly(λ) factors (where
λ is the security parameter). For the “Concrete Proof Size” column, we report the approximate size of a proof for
verifying an NP relation of size N ≈ 220 at the 128-bit security level (as reported in the respective works unless
noted otherwise). The “PQ” column specifies whether the construction is post-quantum secure () or only classically
secure (). The “TP” column denotes whether the scheme is transparent (), relies on a trusted setup for a universal
CRS (), or relies on a trusted sampling of a language-dependent CRS (). The “PV” column specifies whether the
argument is publicly-verifiable () or designated-verifier (). The “Crypto. Structure” column describes the primary
(algebraic) structure underlying the construction. We distinguish between pairing groups and pairing-free groups by
using “Groups” to denote the latter. We write “RO” to denote a construction based on random oracles.

Chapter 2

Preliminaries

We begin by introducing the basic notation that we use throughout this thesis. For a positive integer n ∈ N,

we write [n] to denote the set of integers {1, . . . , n}. We write {xi}i∈[n] to denote the ordered multi-set of

variables x1, . . . , xn. For a finite set S, we write x
r← S to denote that x is sampled uniformly at random

from S. For a distribution D, we write x← D to denote that x is sampled from D.

Throughout this work, we use λ to denote a computational security parameter and κ to denote a statistical

security parameter. We say a function f is negligible if f(λ) = o(1/λc) for all c ∈ N; we denote this

f(λ) = negl(λ). We use poly(λ) to denote a quantity that is upper-bounded by a fixed polynomial on input λ.

We say an event happens with negligible probability if the probability that the event occurs is negligible,

and an event happens with overwhelming probability if the probability of its complement occurs is negligible.

We say a function A is efficient if it runs in probabilistic polynomial time at the length of the input. We

denote A(x; r) the output of A on the input of x and randomness r. In typical cases where we do not specify

the randomness explicitly, we use A(x) to denote the output distribution of A on the input of x, where the

randomness is drawn from the uniform distribution.

We say two families of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N are computationally indistin-

guishable if no efficient adversary can distinguish samples from D1 and D2 except with negligible probability.

We say D1 and D2 are statistically indistinguishable if the statistical distance between D1 and D2 are

upper-bounded by a negligible function negl(κ).

Vectors and Matrices. We will typically use bold lowercase letters (e.g., v, c) to denote vectors and use

bold uppercase letters (e.g., S,T) to denote matrices. For a vector v ∈ Znp , we use non-boldface letters to

refer to its components, namely we write v = (v1, . . . , vn). For a vector v ∈ Rn, we write ‖v‖p to denote

the `p norm of v. For a matrix A ∈ Zh×wp , we write ai where i ∈ [h] to denote the ith row of matrix A. For

i ∈ [h], j ∈ [w], we use ai,j to denote the entry in ith row and jth column.

12

CHAPTER 2. PRELIMINARIES 13

Field and Field Extensions. We will typically use F to denote finite fields. We write Fp to denote a finite

field of order p, and we write the degree-d field extension of Fp as Fpd . Recall that Fpd is a d-dimensional vector

space over Fp. For a field element s ∈ Fpd , we write vs ∈ Fdp to denote its representation in Fdp, and there is

an efficiently-computable isomorphism between s ∈ Fpd and vs ∈ Fdp. For all s, t ∈ Fpd , vs + vt = vs+t ∈ Fdp.
Moreover, we refer Ms ∈ Fd×dp to the linear transformation over Fdp by s: ∀s, t ∈ Fpd , Msvt = vst.

Polynomial Ring. We will typically use R to denote rings. In this work, we work over R = Z[x]/(xd + 1),

where d is a power of 2. We specifically consider the case where d = 1 (R = Z) and d = 2 (R = Z[x]/(x2 + 1)).

For a positive integer p ∈ N, we write Rp = R/pR. We present an element r ∈ R as an array of coefficients

vr ∈ Zd. For an element r ∈ R, we denote ‖r‖∞ to be the `∞-norm of the vector of coefficient corresponding

to r. For a vector r ∈ Rn, we write ‖r‖p to denote the `p-norm of the vector of coefficient vr ∈ Zdn formed

by concatenating vri ∈ Zd for each i ∈ [n]. We write γR to denote the expansion constant where any r, s ∈ R,

we have ‖rs‖∞ ≤ γR ‖r‖∞ ‖s‖∞. For d = 1, γR = 1 and for d = 2, γR = 2.

Discrete Gaussian and Tail Bounds. We recall some preliminaries on the Discrete Gaussian distribution.

For a real number s > 0, the Gaussian function ρs : R→ R+ with width s is ρs(x) := exp(−πx2/s2). The

discrete Gaussian function DZ,s over Z with mean 0 and width s is the distribution that

Pr[X = x : X ← DZ,s] =
ρs(x)∑
i∈Z ρs(i)

. (2.0.1)

A real random variable X is subgaussian with parameter s if for every t ≥ 0, Pr[|X| > t] ≤ 2 exp(−πt2/s2).

The following two facts will be useful in our analysis.

• If X is subgaussian with parameter s, and a ∈ R, then aX is subgaussian with parameter |a|s.

• If X1, . . . , Xm are independent subgaussian random variables with parameters s1, . . . , sm, respectively,

then
∑
i∈[m]Xi is also subgaussian with parameter ‖s‖2 where s = (s1, . . . , sm).

Smudging Lemma. We recall the smudging lemma, which “smudge out” any small values with large noise.

Lemma 2.1 (Smudging Lemma [AJLA+12, MW16]). Let B,B′ be integers. Fix any value e1 ≤ |B| and

sample e2
r← [−B′, B′]. The statistical distance between the distributions of e1 + e2 and e2 is at most B′/B.

Schwartz-Zippel Lemma. We recall the Schwartz-Zippel Lemma [Zip79, Sch80], which we use throughout

the thesis.

Lemma 2.2 (Schwartz-Zippel Lemma [Zip79, Sch80]). Let f ∈ F[x1, . . . , xn] be a multivariate polynomial of

total degree d, not identically zero. Then for any subset S ⊂ F,

Pr[f(α1, . . . , αn) = 0 | α1, . . . , αn
r← S] ≤ d

|S|
.

CHAPTER 2. PRELIMINARIES 14

2.1 Circuit Satisfiability Problems

The circuits that we discuss in this thesis are not boolean but arithmetic. An arithmetic circuit defined over

a finite field F takes elements in F as inputs, outputs elements in F, and contains only bilinear gates.

Rank-1 Constraint Satisfiability. We recall the definition of the NP-complete language rank-1 constraint

satisfiability (R1CS) that was introduced implicitly by Gennaro et al. [GGPR13] and formalized more explicitly

in [SBV+13, BCG+13, BCR+19].

Definition 2.3 (Rank-1 Constraint Satisfiability [SBV+13, BCG+13, GGPR13, BCR+19]). A rank-1 con-

straint satisfiability (R1CS) system over a finite field F is specified by a tuple S = (n,Ng, Nw, {ai,bi, ci}i∈[Ng])

where n,Ng, Nw ∈ N, n ≤ Nw, and ai,bi, ci ∈ FNw+1. The system S is satisfiable for a statement x ∈ Fn if

there exists a witness w ∈ FNw such that

• x = (w1, . . . , wn) and

• [1 | wT]ai · [1 | wT]bi = [1 | wT]ci for all i ∈ [Ng].

We denote this by writing S(x,w) = 1 and refer to n as the statement size, Nw as the number of variables

and Ng as the number of constraints. Given an R1CS system S, we define the corresponding relation

RS = {(x,w) ∈ Fn × FNw : S(x,w) = 1}.

Remark 2.4 (Boolean and Arithmetic Circuit Satisfiability). As is shown in [BCI+13, GGPR13, BCTV14b],

the language R1CS capture Boolean and arithmetic circuit satisfiability as special cases. Let n, h, l denote

the input, witness and output size respectively. A Boolean circuit satisfiability instance for a Boolean

circuit C : {0, 1}n × {0, 1}h → {0, 1} with α wires and β bilinear gates yields an R1CS instance with

Nw = α and Ng = β + h+ 1 [BCI+13]. An arithmetic circuit satisfiability instance for an arithmetic circuit

C : Fn×Fh → F`, where ` denotes the output size, with α wires and β bilinear gates yields an R1CS instance

with Nw = α and Ng = β + ` [BCTV14b].

2.2 Succinct Non-Interactive Arguments

We review the formal definition of zkSNARKs for R1CS.

Definition 2.5 (Succinct Non-Interactive Argument of Knowledge [BCI+13, adapted]). Let S = (n,Ng, Nw,

{ai,bi, ci}i∈[Ng]) be a family of R1CS over a finite field F, let RS be the associated relation, and let LS be

the associated language. A succinct non-interactive argument of knowledge (SNARK) in preprocessing model
1 for RS is a tuple ΠSNARK = (Setup,Prove,Verify) with following properties:

1In the preprocessing model, we allow for a statement-independent setup algorithm that runs in polynomial time in the size of S.
In “fully-succinct” SNARK, the setup and prover are required to run in sublinear (or polylogarithmic) in the size of S [BCI+13].
Using recursive composition [BCCT13], it is possible to obtain fully-succinct SNARKs from preprocessing SNARKs.

CHAPTER 2. PRELIMINARIES 15

• (crs, st) ← Setup(1λ): On input the security parameter λ, the setup algorithm outputs a common

reference string crs and verification state st.

• π ← Prove(crs,x,w): On input a common reference string crs, a statement x, and a witness w, the

prove algorithm outputs a proof π.

• b ← Verify(st,x, π): On input the verification state st, a statement x and a proof π, the verification

algorithm outputs a bit b ∈ {0, 1}.

Moreover, ΠSNARK should satisfy all the following properties:

• Completeness: For all λ ∈ N and all (x,w) ∈ RS ,

Pr[Verify(st,x,w) = 1] = 1,

where (crs, st)← Setup(1λ) and π ← Prove(crs,x,w).

• Knowledge: For all polynomial-sized prover P∗, there exists a polynomial-sized extractor E such that

for all security parameters λ ∈ N and for all auxiliary inputs z ∈ {0, 1}poly(λ),

Pr[Verify(st,x, π) = 1 ∧ (x,w) /∈ RS] = negl(λ),

where (crs, st)← Setup(1λ), (x, π)← P∗(1λ, crs; z),w← E(1λ, crs, st,x; z).

• Efficiency: There exists an universal polynomial p (independent of S) such that the Setup and Prove

run in time p(λ+ |S|), Verify runs in time p(λ+ |x|+ log |S|), and the proof size |π| is p(λ+ log |S|).

Remark 2.6 (Public Verification vs. Designated Verifier). We say a SNARK is publicly-verifiable if the

verification state st is allowed to be public. Alternatively, a designated-verifier SNARK holds security only

when the verification state st is kept secret, and only the holder of st can check proof.

Definition 2.7 (Zero-Knowledge [BCI+13, adapted]). A SNARK ΠSNARK = (Setup,Prove,Verify) is compu-

tational zero-knowledge (i.e., zkSNARK) if there exists an efficient simulator SSNARK = (S1,S2) such that for

all efficient and stateful adversaries A and auxiliary input z ∈ {0, 1}poly(λ) such that

Pr[ExptZKΠSNARK,A,SSNARK(1λ) = 1] ≤ 1

2
+ negl(λ), (2.2.1)

where the experiment ExptZKΠSNARK,A,SSNARK
is defined as follows:

1. The challenger samples b
r← {0, 1}.

(a) If b = 0, the challenger computes (crs, st)← Setup(1λ) and sends (crs, st) to A.

(b) If b = 1, the challengers computes (c̃rs, s̃t, stS)← S1(1λ) and sends (c̃rs, s̃t) to A.

CHAPTER 2. PRELIMINARIES 16

2. The adversary A outputs a statement x and a witness w.

3. If (x,w) /∈ R, then the experiment halts with output 0. Otherwise, the experiment proceeds as follows:

(a) If b = 0, the challenger replies with π ← Prove(crs,x,w).

(b) If b = 1, the challenger replies with π ← S2(stS ,x).

4. At the end of the experiment, A outputs a bit b′ ∈ {0, 1}. The output of the experiment is 1 if b′ = b

and is 0 otherwise.

When the probability in Eq. (2.2.1) is bounded by 1/2+ε, we say the scheme is ε-computational zero-knowledge.

2.3 Linear PCPs

We now recall the notion of a linear PCP (LPCP) from Bitansky et al. [BCI+13].

Definition 2.8 (Linear PCP [BCI+13, adapted]). Let R : Fn × Fh → {0, 1} be a binary relation 2 (with

associated language L) over a finite field F. A k-query input-independent linear PCP for R with query length

` and soundness error ε is a tuple of algorithms ΠLPCP = (QLPCP,PLPCP,VLPCP) with the following properties:

• (st,Q)← QLPCP(): Query-generator outputs a query matrix Q ∈ F`×k and a verification state st.

• π ← PLPCP(x,w): On the input of a statement x ∈ Fn and a witness w ∈ Fh, the prove algorithm

outputs a proof π ∈ F`.

• b← VLPCP(st,x,a): On input the verification state st, the statement x, and a vector of responses a ∈ Fk,

the verification algorithm outputs a bit b ∈ {0, 1}.

Moreover, ΠLPCP should satisfy the following properties:

• Completeness: For all x ∈ Fn and w ∈ Fh where R(x,w) = 1,

Pr[VLPCP(st,x,QTπ) = 1] = 1,

where (st,Q)← QLPCP() and π ← PLPCP(x,w).

• Knowledge: There exists an efficient extractor ELPCP such that for every π∗ ∈ F`, if

Pr[VLPCP(st,x,QTπ∗) = 1 | (st,Q)← QLPCP()] > ε,

then

Pr[R(x,w) = 1 | w← E〈π
∗,·〉

LPCP (x)] = 1.

2We can also define linear PCPs for infinite family of relations R =
⋃
κ∈NRκ. In this case, the inputs to the query-generation

and proving algorithms would take the relation index 1κ as input, and the parameters n, h, k, `, ε can all be functions of κ.

CHAPTER 2. PRELIMINARIES 17

We refer to ε as the knowledge error of the linear PCP.

• Perfect honest-verifier zero-knowledge (HVZK): There exists an efficient simulator SLPCP =

(S1,S2) such that for all (x,w) ∈ R,

{(st,Q,QTπ)} ≡ {(s̃t, Q̃, ã)},

where (st,Q) ← QLPCP(), π ← PLPCP(x,w), (s̃t, Q̃, stS) ← S1(), and ã ← S2(stS ,x). When the

statistical distance between these two distributions is δ, we say that ΠLPCP is δ-statistical HVZK. 3

Linear PCP for R1CS. The quadratic arithmetic programs (QAPs) introduced by Gennaro et al. [GGPR13]

imply a 4-query linear PCP for R1CS [BCG+13]. Note that Ben-Sasson et al. [BCG+13] described the

construction as a 5-query linear PCP with statistical HVZK (over large fields); however, it is straightforward

to adapt the construction to obtain a 4-query LPCP with perfect HVZK (over any field). These changes incur

a slight increase in the verification complexity and the knowledge error.

Construction 2.9 (Linear PCP for R1CS [GGPR13, BCG+13, adapted]). Let S = (n,Ng, Nw, {ai,bi, ci}i∈[Ng])

be an R1CS system over a finite field F, where ai,bi, ci ∈ FNw+1 (indexed from 0 to Nw). We additionally

define the following components:

• S = {α1, . . . , αNg
} ⊂ F be an arbitrary subset of F.

• For each i ∈ {0, . . . , Nw}, let Ai, Bi, Ci : F → F be the unique polynomials of degree Ng − 1, where

j ∈ [Ng],

Ai(αj) = aj,i, Bi(αj) = bj,i, Ci(αj) = cj,i.

• Let ZS : F→ F be the polynomial ZS(z) :=
∏
j∈[Ng](z − αj), namely ZS is the polynomial whose roots

are the elements of S.

The 4-query linear PCP ΠLPCP = (QLPCP,PLPCP,VLPCP) is defined as follows:

• QLPCP(): Sample τ
r← F \ S. Let a = (A1(τ), . . . , An(τ)), b = (B1(τ), . . . , Bn(τ)), and c =

(C1(τ), . . . , Cn(τ)). Output the state st = (A0(τ), B0(τ), C0(τ),a,b, c, Zs(τ)) and the query matrix Q

shown as follows:

Q =


ZS(τ) 0 0 An+1(τ) · · · ANw

(τ) 0 0 · · · 0

0 ZS(τ) 0 Bn+1(τ) · · · BNw(τ) 0 0 · · · 0

0 0 ZS(τ) Cn+1(τ) · · · CNw
(τ) 0 0 · · · 0

0 0 0 0 · · · 0 1 τ · · · τNg


T

∈ F(4+Nw+Ng−n)×4.

(2.3.1)

3In particular, this definition separates the simulator SLPCP into a statement-independent algorithm S1 and a statement-dependent
algorithm S2. This separation is important for arguing adaptive zero-knowledge of our zkSNARKs (where the adversary’s
statement can depend on the common reference string).

CHAPTER 2. PRELIMINARIES 18

• PLPCP(x,w): On the input (x,w) ∈ RS , sample δ1, δ2, δ3
r← F. Construct polynomials A,B,C : F→ F,

each with degree Ng, where

A(z) := δ1ZS(z) +A0(z) +
∑
i∈[Nw]

wiAi(z)

B(z) := δ2ZS(z) +B0(z) +
∑
i∈[Nw]

wiBi(z)

C(z) := δ3ZS(z) + C0(z) +
∑
i∈[Nw]

wiCi(z)

(2.3.2)

Let H(z) = (A(z)B(z)−C(z))/ZS(z) and let h = (h0, . . . , hNg
) ∈ FNg+1 be the coefficients of H. Parse

wT = [xT | w̃T]. Output the proof vector π = (δ1, δ2, δ3, w̃,h) ∈ F4+Nw+Ng−n.

• VLPCP(st,x,a): On the input st = (a0, b0, c0,a,b, c, z), x ∈ Fn, and a ∈ F4, the verifier computes

a′1 = a0 + a1 + xTa, a′2 = b0 + a2 + xTb, and a′3 = c0 + a3 + xTc. It accepts if

a′1a
′
2 − a′3 − a4z = 0. (2.3.3)

Theorem 2.10 (Linear PCP for QAP). Construction 2.9 is complete, has knowledge error 2Ng/(|F| −Ng),
and is perfect HVZK.

Proof. Let S = (n,Ng, Nw, {ai,bi, ci}i∈[Ng]) be an R1CS system over F. We prove the properties separately:

• Completeness: Take any (x,w) ∈ RS , and let (st,Q) ← QLPCP(), π
r← PLPCP(x,w), a ← QTπ.

Consider the value of VLPCP(st,x,a). Let a′1, a
′
2, a
′
3 be the values computed by VLPCP. By definition,

a′1 = a1 + a0 + xTa

= δ1ZS(τ) +A0(τ) +
∑
i∈[n]

xiAi(τ) +
∑

i∈[Nw−n]

wn+iAn+i(τ)

= δ1ZS(τ) +A0(τ) +
∑
i∈[Nw]

wiAi(τ)

= A(τ),

since wi = xi for all i ∈ [n], A is the polynomial in Eq. (2.3.2), and τ ∈ F \ S is the element sampled

by QLPCP. Similarly, we have that a′2 = B(τ) and a′3 = C(τ). Finally a4 = h0 +
∑
i∈[Ng] hiτ

i = H(τ),

where H(z) = (A(z)B(z)− C(z))/ZS(z) is the polynomial constructed by the prover. The verification

procedure now computes

a′1a
′
2 − a′3 − a4z = A(τ)B(τ)− C(τ)−H(τ)ZS(τ) = 0,

CHAPTER 2. PRELIMINARIES 19

by definition of the polynomial H. Completeness follows.

• Knowledge: Define E〈π
∗,·〉

LPCP to be the algorithm that on input a statement x and given linear access to

a proof vector π∗ = (δ∗1 , δ
∗
2 , δ
∗
3 , w̃

∗,h∗), outputs wT = [xT | (w̃∗)T] ∈ FNw . To show that the extractor

works, take any π∗ = (δ∗1 , δ
∗
2 , δ
∗
3 , w̃

∗,h∗) where

Pr[VLPCP(st,x,QTπ∗) = 1 : (st,Q)← QLPCP()] >
2Ng
|F| −Ng

.

We use π∗ and S to define polynomials A,B,C,H : F→ F:

A(z) = δ∗1ZS(z) +A0(z) +
∑
i∈[n]

xiAi(z) +
∑

i∈[Nw−n]

w̃∗iAn+i(z)

B(z) = δ∗2ZS(z) +B0(z) +
∑
i∈[n]

xiBi(z) +
∑

i∈[Nw−n]

w̃∗iBn+i(z)

C(z) = δ∗3ZS(z) + C0(z) +
∑
i∈[n]

xiCi(z) +
∑

i∈[Nw−n]

w̃∗iCn+i(z)

H(z) = h∗0 +
∑
i∈[Ng]

h∗i z
i

Let Q be the query matrix output by QLPCP, a← QTπ∗ and a′1, a
′
2, a
′
3 be the components computed

by VLPCP. By construction, we have a′1 = A(τ), a′2 = B(τ), a′3 = C(τ) and a4 = H(τ). Define the

polynomial P : F→ F where P (z) = A(z)B(z)− C(z)−H(z)ZS(z). By construction, deg(P) ≤ 2Ng.

VLPCP accepts if a′1a
′
2 − a′3 − a4z = 0, where z = Z(τ), or equivalently, if

0 = A(τ)B(τ)− C(τ)−H(τ)ZS(τ) = P (τ). (2.3.4)

Suppose Eq. (2.3.4) holds with probability ε > 2Ng/(|F| −Ng); namely, the verifier accepts π∗ with

probability greater than ε. Since QLPCP samples τ uniformly from F\S and deg(P) ≤ 2Ng, we conclude

by the Schwartz-Zippel lemma (Lemma 2.2) that P ≡ 0. Noticing ZS(αj) = 0 for all j ∈ [Ng], this

means A(αj)B(αj) = C(αj). By construction of A,B,C, let uT = [1 | xT | (w̃∗)T], we have

uTaj · uTbj = uTcj

for all j ∈ [Ng]. Since this holds for all j ∈ [Ng], we have that (x, w̃∗) ∈ RS , thus knowledge holds.

• HVZK: We first construct the simulator SLPCP = (S1,S2):

– S1(): The statement-independent algorithm samples (s̃t, Q̃)← QLPCP(), outputs s̃t, Q̃, stS = s̃t.

– S2(stS ,x): On input the state stS = (ã0, b̃0, c̃0, ã, b̃, c̃, z̃) and the statement x, the statement-

dependent algorithm samples ã1, ã2, ã3
r← F, and computes ã′1 = ã1 + ã0 +xTã, ã′2 = ã2 + b̃0 +xTb̃,

CHAPTER 2. PRELIMINARIES 20

and ã′3 = ã3 + c̃0 + xTc̃. Compute ã4 = z−1(ã′1ã
′
2 − ã′3). It outputs ã = (ã1, ã2, ã3, ã4).

To prove HVZK, it suffices to show that the distribution of the simulation and the real one are identical,

for any (x,w) ∈ RS . By construction, the verification state and query matrix (output by S1) are

identically distributed in the two cases. On the distribution of the responses, let (st,Q)
r← QLPCP(),

π ← PLPCP(x,w), and a← QTπ. Write st = (a0, b0, c0,a,b, c, z). First, z = ZS(τ) for some τ ∈ F \ S.

Since ZS(x) =
∏
α∈S(x− α) and τ /∈ S, we have that z = ZS(τ) 6= 0. Then the following holds:

– In the real distribution, Eq. (2.3.3) holds (by completeness). Since z 6= 0, the value of a4 is uniquely

defined given a1, a2, a3 and st. The value of a4 that satisfies Eq. (2.3.3) precisely coincides with

the value ã4 sampled by SLPCP (based on the choice of ã1, ã2, ã3 chosen by the simulator).

– In the real distribution a1 = δ1ZS(τ) +
∑
i∈[Nw−n] wn+iAn+i(τ), where δ1 is uniform over F and

independent of all other components. Since ZS(τ) 6= 0, this means a1 is uniform over F. Similarly,

such argument holds for a2 and a3 (by appealing to the randomness of δ2 and δ3, respectively).

This is precisely the distribution of ã1, ã2, ã3 in the simulation.

Thus, the simulated response is identically distributed as the real response, and perfect HVZK holds.

Remark 2.11 (Knowledge against Affine Srategies). While our compiler only requires a linear PCP with

knowledge against linear strategies (Theorem 3.23), we can easily modify the linear PCP from Construction 3.1

to provide knowledge against affine prover strategies without increasing the query complexity. This means

that we can base security on the weaker conjecture that Construction 3.11 is “affine-only.” Using the modified

linear PCP comes at a very slight increase in the concrete cost of the verifier, and has no effect on the prover

complexity. Since we believe that Conjecture 3.17 holds, we do not use this modified linear PCP in our

concrete implementation; we mainly present the observation below for completeness.

Bitansky et al. [BCI+13] provide a generic approach that compiles any linear PCP with soundness (resp.,

knowledge) against linear strategies into a 2-message linear interactive proof with soundness (resp., knowledge)

against affine strategies. This compiler introduces an extra linearity check, i.e., an additional query that

is a random linear combination of the remaining queries. While this technique can be applied directly to

Construction 2.9, the number of queries of the linear PCP will increase. By expoliting the specific structure

of the linear PCP in Construction 2.9, we can remove the need for an extra query. We describe the approach

generally for any linear PCP whose query matrix QT contains one of its columns as an elementary basis

vector (or a scaled version thereof) and whose verification procedure is a low-degree algebraic circuit. Both

properties hold for Construction 2.9.

• Let m be the query length of the linear PCP, k be the number of queries, and (π,b) be an affine

strategy where π ∈ Fm, b ∈ Fk, In this case, given the query matrix Q ∈ Fm×k, the responses are

computed as a← QTπ + b.

CHAPTER 2. PRELIMINARIES 21

• Suppose that the jth column of QT ∈ Fk×m is a basis vector ej ∈ Fk. In this case, an affine strategy

of the form (π, δej) is equivalent to a linear strategy π′ where π` = π′` for all ` 6= j and π′j = πj + δ.

Since the linear PCP has knowledge soundness against linear strategies, it must also have knowledge

soundness against affine strategies of the form (π, δej).

• To extend such a linear PCP to provide soundness (resp., knowledge) against arbitrary affine strategies,

we embed a random linear combination of other queries into the ith query. In detail, let q1, . . . ,qk be

the linear PCP queries sampled by QLPCP (i.e., the rows of QT ∈ Fk×m). The modified query-generation

algorithm first samples γ`
r← F for ` ∈ [k] and ` 6= i, then computes q′i = qi +

∑
` 6=i γ`q` and outputs

(q1, . . . ,qi−1,q
′
i,qi+1, . . . ,qk) as its updated set of queries. Random coefficients γ1, . . . , γk are included

as part of the verification state st.

• Given a set of responses a ∈ Fk, the modified verification algorithm first computes a′i ← ai −
∑
` 6=i γiai,

then runs the original verification algorithm VLPCP on (a1, . . . , ai−1, a
′
i, ai+1, . . . , ak).

Completeness of the above construction is immediate. To see that the modified linear PCP also provides

soundness (resp., knowledge) against arbitrary affine strategies, we use the assumption that the linear PCP

has an algebraic verifier. In this case, the verification procedure can be described by checking whether a

multivariate polynomial p in the responses is nonzero or not. 4 Consider an arbitrary affine strategy (π,b),

and let a1, . . . , a` be the responses for the modified linear PCP defined above, we have a` = qT
` π + b` for

` 6= i and ai = (q′i)
Tπ + bi. The verification relation first computes

a′i = ai −
∑
` 6=i

γiai = qT
i π + bi −

∑
` 6=i

γ`b`,

then checks the polynomial relation

p(a1, . . . , ai−1, a
′
i, ai+1, . . . , ak)

?
= 0.

Fixing q1, . . . ,qk, π, and b (all of which are independent of the γ`’s), we can view p as a polynomial in

the variables γ1, . . . , γk for ` 6= i. Since γi’s are sampled uniformly and independently over F by QLPCP, by

Lemma 2.2 (Schwartz-Zippel Lemma) we conclude that the probability that the verifier accepts is at most

d/ |F|, where d is the degree of ai in p. Thus, the only possible strategies (π,b) where the prover can have

advantage better than d/ |F| are those where b` = 0 for all ` 6= i.

Moreover, by our previous observation that soundness (resp., knowledge) against strategies of affine

form (π, δej) is implied by soundness (resp., knowledge) against linear strategies when the query matrix

QT ∈ Fk×m contains one of its columns as a basis vector ej (or a scaled version thereof).

4The verification procedure may check multiple such polynomial relations (and may more generally be modeled as an arithmetic
circuit over F). The analysis described here directly extends to this setting.

CHAPTER 2. PRELIMINARIES 22

In the case of Construction 2.9, by observing QT ∈ Fk×m in Eq. (2.3.1) (i = 4 in this case) that one of its

columns is an elementary basis vector. The degree d of ai in the verification relation (Eq. (2.3.3)) is d = 1, so

the soundness error (resp., knowledge error) of the modified construction described above is max(ε, 1/ |F|),
where ε is the soundness (resp., knowledge) error of the original construction (see Theorem 2.10).

Remark 2.12 (Soundness Amplification for Linear PCPs). Construction 2.9 gives a 4-query linear PCP

for any R1CS system with Ng constraints that has knowledge error 2Ng/(|F| −Ng). To achieve statistical

soundness, the straightforward method is to work over a field of superpolynomial size, while it is more efficient

to work over smaller fields (and of small characteristic). We can use standard parallel amplification to amplify

soundness, namely, for a k-query LPCP with query length m and knowledge error ε, we can obtain a kρ-query

LPCP with same query length and knowledge error ερ. The setup algorithm samples ρ sets of query matrices

Q1, . . . ,Qρ ∈ Fm×k and construct a query matrix Q = [Q1 | . . . | Qρ] ∈ Fm×kρ. The verifier accepts a

response a = [a1 | . . . | aρ] only if all the responses are valid.

Chapter 3

Lattice-Based Succint Arguments

We introduce the underlying components of zkSNARKS in this chapter: the information-theoretic compiler

(linear PCPs over extension fields) and the cryptographic compiler (linear-only vector encryption). We show

how to combine these components together to obtain our designated-verifier zkSNARK by invoking the

Bitansky et al. [BCI+13, BISW17] compiler. (see Section 1.2)

3.1 Linear PCPs over Extension Fields

Construction 2.9 gives a linear PCP for R1CS over any sufficient large field F. In this work, we consider

linear PCPs over quadratic extensions Fp2 . As mentioned in Section 1.2, we consider compilers based on

vector encryption over the extension Fp2 as well as over the base field Fp. For the latter one, we need to

transform a linear PCP from Fp2 to a linear PCP over Fp. We describe this transformation here.

Construction 3.1 (Fpd-Linear PCP to Fp-Linear PCP). Let Π′LPCP = (Q′LPCP,P ′LPCP,V ′LPCP) be a k-query

linear PCP for a relation R over an extension field Fpd with query length `. We construct a (dk)-query

linear PCP ΠLPCP = (QLPCP,PLPCP,VLPCP) for R with query length d` over the base field Fp with following

properties:

• QLPCP: The query algorithm runs (st,Q′)← Q′LPCP(), where Q′ ∈ F`×k
pd

. Let Q ∈ Fd`×dkp be the matrix

constructed by replacing each entry q′i,j ∈ Fpd in Q′ with the transpose of “multiply-by-q′i,j” matrix

MT
q′i,j
∈ Fd×dp . Namely,

Q′ =


q′1,1 · · · q′1,k

...
. . .

...

q′`,1 · · · q′`,k

 and Q =


MT

q′1,1
· · · MT

q′1,k
...

. . .
...

MT
q′`,1

· · · MT
q′`,k

 .

23

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 24

Output the query matrix Q ∈ Fd`×dkp and the verification state st.

• PLPCP: The prover algorithm computes π′ ← PLPCP(x,w). Let π ∈ Fd`p be the vector constructed by

replacing each π′i ∈ Fpd with the vector representation vπ′i ∈ Fdp of π′i. Out the proof vector π.

• VLPCP: The verifier algorithm parses a = [va′1 | . . . | va′k] and constructs a′ by replacing each va′i ∈ Fdp
with a′i ∈ Fpd . Output V ′LPCP(st,x,a′).

Theorem 3.2 (Fpd-Linear PCP to Fp-Linear PCP). If Π′LPCP is complete, has knowledge error ε and is

prefect HVZK, then the same holds for ΠLPCP from Construction 3.1.

Proof. We prove the properties separately:

• Completeness: Take any (x,w) ∈ R, compute (st,Q′) ∈ Q′LPCP(), π′ ← P ′LPCP(x,w). Let Q ∈ Fd`×dkp

and π ∈ Fd`p be as specified in QLPCP and PLPCP and let a ← QTπ. We write a = [a1, . . . ,ak]. By

construction, for all i ∈ [k],

ai =
∑
j∈[`]

Mq′j,i
vπ′j =

∑
j∈[`]

vq′j,iπ′j = v(q′·,i)
Tπ′ ∈ Fdp,

where q′·,i ∈ F`pd corresponds to the ith column of Q′. This means that the vector a′ computed by VLPCP
satisfies a′ = (Q′)Tπ′. Thus, completeness of ΠLPCP holds by following the completeness of Π′LPCP.

• Knowledge: Compute (st,Q′)← Q′LPCP() and let Q be the matrix QLPCP constructs from Q′. Take

any π ∈ Fd`p and let π′ ∈ F`pd be the vector obtained by viewing π as ` blocks of d elements. By

construction, VLPCP(st,x,QTπ) = 1 if and only if V ′LPCP(st,x, (Q′)Tπ′) = 1. The extractor ELPCP for

ΠLPCP can invoke the extractor E ′LPCP for Π′LPCP, since any linear query q′ that E ′LPCP makes to 〈π′, ·〉
can be simulated via a linear query to (·)Tπ by expanding each component in q′ into a matrix of Fd×dp .

The knowledge of ΠLPCP now follows the knowledge soundness of Π′LPCP.

• Perfect HVZK: On the input x, the SLPCP runs the simulator S ′LPCP(x) for Π′LPCP by outputs (st, Q̃′, ã′)

where Q̃′ ∈ F`×k
pd

and ã′ ∈ F`pd . The simulator SLPCP constructs Q̃ ∈ Fd`×dkp by replacing each entry

q̃′i,j ∈ Fpd in Q̃′ with MT
ã′i,j
∈ Fd×dp and constructs ã ∈ Fdkp by replacing each element ã′i ∈ Fpd in ã′

with vã′i ∈ Fdp. SLPCP outputs (st, Q̃, ã). Perfect HVZK of ΠLPCP follows by perfect HVZK of Π′LPCP.

3.2 Linear-Only Vector Encryption

We begin by the definition of a vector encryption scheme (adapted from [BISW17]), and then define the

linear-only [BCI+13, BISW17] property we rely on our zkSNARK construction.

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 25

Definition 3.3 (Vector Encryption). Let F be a finite field. A secret-key additively-homomorphic vector

encryption scheme over a vector space F` consists of a tuple of algorithms ΠEnc = (Setup,Encrypt,Decrypt,

Add) with following properties:

• (pp, sk) ← Setup(1λ, 1`): On the input of security parameter λ and plaintext dimension `, the setup

algorithm outputs public parameters pp and a secret key sk.

• ct← Encrypt(sk,v): On the input of the secret key sk and a plaintext vector v ∈ F`, the encryption

algorithm outputs a ciphertext ct.

• v/⊥ ← Decrypt(sk, ct): On the input of the secret key sk and a ciphertext ct, the decryption algorithm

either outputs a vector v ∈ F` or a special symbol ⊥.

• ct∗ ← Add(pp, {cti}i∈[n], {ci}i∈[n]): On input the public parameters, a collection of ciphertexts

ct1, . . . , ctn and scalars c1, . . . , cn ∈ F, the addition algorithm outputs a new ciphertext ct∗.

Moreover, ΠEnc should satisfy the following properties:

• Additive Homomorphism: For all security parameter λ ∈ N, a collection of plaintext vectors

v1, . . . ,vk ∈ F`, and scalars y1, . . . , yk ∈ F, where k = k(λ),

Pr[Decrypt(sk, ct∗) =
∑
i∈[k]

yivi] = 1− negl(λ), (3.2.1)

where (sk, pp)← Setup(1λ, 1`), cti ← Encrypt(sk,vi) for all i ∈ [k], and ct∗ ← Add(pp, {cti}i∈[k], {yi}i∈[k]).

We say ΠEnc is additively-homomorphic with respect to S ⊆ Rkp if Eq. (3.2.1) holds for all (y1, . . . , yk) ∈ S.

Note that additive-homomorphism implies the correctness in decryption.

• CPA Security: For all security parameters λ ∈ N and efficient adversaries A,

Pr[AOb(sk,·,·)(1λ, pp) = b] =
1

2
+ negl(λ), (3.2.2)

where (sk, pp)← Setup(1λ, 1`), Ob takes sk and v1,v2 ∈ F` as input, and output ctb ← Encrypt(sk,vb).

We say ΠEnc is Q-query CPA secure if Eq. (3.2.2) holds against at most Q queries from Ob,

Definition 3.4 (Linear-Only Vector Encryption [BCI+13, adapted]). A vector encryption scheme ΠEnc =

(Setup,Encrypt,Decrypt,Add) over F` is strictly linear-only if for any polynomial-size adversary A, there is a

polynomial-size extractor E such that, for all security parameter λ ∈ N, any auxiliary input z ∈ {0, 1}poly(λ),

and any efficient plaintext generator M,

Pr[ExptLinearExtΠEnc,A,M,E,z(1
λ) = 1] = negl(λ),

where the experiment ExptLinearExtΠEnc,A,M,E,z(1
λ) is defined as follows:

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 26

• The challenger begin by computing (sk, pp)← Setup(1λ, 1`) and sampling (v1, . . . ,vm)←M(1λ, pp).

It computes cti ← Encrypt(sk,vi) for i ∈ [m] and runs A(pp, ct1, . . . , ctm; z) to obtain a tuple of new

ciphertexts (ct′1, . . . , ct
′
k).

• The challenger computes Π← E(pp, {cti}i∈[m]; z), V′ ← Π · (v1, . . . ,vm)T, where Π ∈ Fk×m and V′ ∈
Fk×`. The output of the experiment is 1 if for any i ∈ [k], Decrypt(sk, ct′i) 6= ⊥ and Decrypt(sk, ct′i) 6= v′i.

Otherwise, the output of the experiment is 0.

Circuit Privacy. In additional to the previous properties, we additionally require a circuit privacy

property [Gen09]. Circuit privacy says that the ciphertext output Add can be simulated given only the

underlying plaintext value, without knowledge of the linear combination used to construct the ciphertext.

This is important to argue zero knowledge (see Section 3.4 and Theorem 3.26).

Definition 3.5 (Circuit Privacy [Gen09, adapted]). Let ΠEnc = (Setup,Encrypt,Decrypt,Add) be a secret-key

vector encryption scheme over F`. We say ΠEnc satisfy circuit privacy if for all efficient and stateful adversaries

A, there exists an efficient simulator S such that for all security parameters λ ∈ N,

Pr[ExptCircuitPrivΠEnc,A,S(1λ) = 1] =
1

2
+ negl(λ), (3.2.3)

where the experiment ExptCircuitPrivΠEnc,A,S(1λ) is defined as follows:

• The challenger computes (sk, pp)← Setup(1λ, 1`) and gives (pp, sk) to the adversary. The adversary A
replies with a collection of vectors v1, . . . ,vk ∈ F`.

• The challenger constructs ciphertexts cti ← Encrypt(sk,vi) for i ∈ [k] and sends (ct1, . . . , ctk) to A.

The adversary replies with a collection of coefficients y1, . . . , yk ∈ F.

• The challenger computes ct∗0 ← Add(pp, {cti}i∈[k], {yi}i∈[k]) and ct∗1 ← S(1λ, pp, sk,
∑
i∈[k] yivi), and

samples a random bit b
r← {0, 1} and replies the adversary A with ct∗b .

• The adversary A replies a bit b∗ ∈ {0, 1}. The output of the experiment is 1 if b = b∗ and 0 otherwise.

We also consider a weaker form of circuit privacy in this thesis where we additionally constrain the

adversary to choose the coefficients from a priori specified S ⊆ F. Int this case, we say ΠEnc satisfies circuit

privacy with respect to S. Moreover, when the probability of Eq. (3.2.3) is bounded by 1/2 + ε, we say ΠEnc

is ε-circuit privacy.

Remark 3.6 (Multi-Query Circuit Privacy). We can define a multi-query variant of Definition 3.5 where the

adversary can adaptively choose multiple collections of coefficients y1, . . . , yk ∈ Rp and on each query, learn

either homomorphically-evaluated ciphertext from Add or simulated ciphertext from S. The multi-query

notion is useful to argue multi-theorem zero-knowledge when compiling a linear PCP into a preprocessing

SNARG [BCI+13]. Definition 3.5 implies the multi-query variant by a standard hybrid argument.

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 27

Remark 3.7 (Linear vs. Affine Strategies.). Definition 3.4 requires that all adversarial strategies which

produce a valid ciphertext correspond to taking a linear combination of the given ciphertexts. Previous

definitions [BCI+13, BISW17] considered a weaker requirement (linear targeted malleability) that allows the

extractor to explain the adversary’s strategy using an affine function. Indeed, in the public-key setting, the

encryption scheme can at best be affine-only, since the adversary can always encrypt an arbitrary vector v

of its choosing (using the public key) and add it to the ciphertext. However, in the secret-key setting, it is

plausible that the adversary cannot even produce new ciphertexts on messages of its choosing. In this case,

we can conjecture that the only way the adversary can construct valid ciphertexts is by computing linear

combinations of existing ciphertexts. To distinguish between our more stringent notion and the previous

notion, we refer to ours as strict linear-only encryption. Making this stronger linear-only conjecture for a

secret-key encryption scheme enables a direct compiler from a linear PCP with knowledge against linear

strategies (Remark 2.11 shows how to construct linear PCPs with knowledge against affine strategies).

Remark 3.8 (Auxiliary Input Distributions.). Definition 3.4 requires the extractor succeed for an arbitrary

auxiliary input z. While the formulation is convenient for the purpose of definition, it might be too strong in

certain settings (e.g., when z encodes a hard cryptographic problem that the extractor must solve to explain

the adversary’s behavior [BCPR14]). In such case, it suffices to consider a relaxiation where Definition 3.4

holds only for auxiliary inputs sampled from “benign” distributions (e.g., in our applications, it suffices to

consider auxiliary inputs that are uniformly random). We refer to [BCTV14b, BCI+13] for more discussion.

3.3 Candidate Linear-Only Vector Encryption

(Module) learning with errors. Security of our construction relies on the module learning with errors

(MLWE) assumption [BGV12, LS15] (in addition to our linear-only conjecture). We state the MLWE

assumption in “normal form” where the secret is sampled from the error distribution. This form of the

problem is as hard as the version where the secret key is sampled uniformly at random [ACPS09].

Definition 3.9 (Module Learning With Errors [BGV12, LS15]). Fix a security number n, sample number

m = m(λ), integers n = n(λ), q = q(λ), d = d(λ) where d is a power of 2. Let R = Z[x]/(xd + 1), Rq = R/qR,

and χ = χ(λ) be an error distribution over Rq. The (decisional) module learning with errors (MLWE)

assumption MLWEn,m,d,q,χ states that for A
r← Rn×mq , s ← χn, e ← χm and u

r← Rmq , the following two

distributions are computationally indistinguishable:

(A, sTA + eT) and (A,u).

Remark 3.10 (Relation to LWE and RLWE). The MLWE assumption generalizes both the classic learning

with errors (LWE) assumption [Reg05] and the ring learning with errors (RLWE) assumption [LPR10]: LWE

is MLWE instantiated with d = 1 and RLWE is MLWE instantiated with n = 1.

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 28

Vector Encryption Construction. We now describe our vector encryption scheme. Our scheme is an

adaptation of the Regev-based [Reg05] scheme of Peikert et al. [PVW08], generalized to modules and with

the following additions/modifications:

• Secret-key encryption: Since a secret-key vector encryption suffices for our designated-verifier

zkSNARK,1 we consider a secret-key version of the scheme. This reduces the concrete cost for

encryption (we can substitute a random vector in each ciphertext in place of a matrix-vector product

with the public key). Note that there are still public parameters in our scheme used for re-randomization

of homomorphically-evaluated ciphertexts. These parameters are not used for encryption.

• Message encoding: We encode the message in the least significant bits of the ciphertext rather than

the most significant bits. When the plaintext modulus p and ciphertext modulus q are coprime, these

approaches are equivalent up to scaling [AP13]. In our implementation, encoding a value k in the least

significant bits of the ciphertext is more convenient and efficient since we avoid the need to compute

bk · q/pe mod q (which if implemented improperly, can overflow our integer representation).

• Ciphertext re-randomization: For zero-knowledge, we require an additional circuit privacy property.

Ciphertexts in this scheme consist of pairs of vectors ct = (a, c). Homomorphic operations on

ciphertexts correspond to computing component-wise linear combinations. In our construction, we

include a public MLWE matrix as part of the public parameters to re-randomize the vector a, and we

use standard noise smudging techniques (see Lemma 2.1) to re-randomize the vector c. Previously,

Gennaro et al. [GMNO18] suggest that the first component a is already random by appealing to

the leftover hash lemma; unfortunately, this only applies in the setting where the coefficients of the

linear combination have sufficient min-entropy (which is not necessarily the case in the zkSNARK

construction). We show that in our case and under the MLWE assumption, 2 our construction provably

satisfies circuit privacy without needing any additional assumption on the choice of linear combination.

• Ciphertext sparsification: Our linear-only definition (Definition 3.4) essentially requires that the

only way an efficient adversary can generate a valid ciphertext is by taking linear combinations of

valid ciphertexts. This means that the set of valid ciphertexts must be sparse (to prevent oblivious

sampling of a valid ciphertext). Previous works [GGPR13, BCI+13, BISW17] suggest double encryption

to realize this property. With double encryption, valid ciphertexts ct = (ct1, ct2) are defined as pairs of

ciphertexts that both encrypt identical messages. While this approach is applicable in our setting, it

doubles the length of the ciphertexts.

We propose a similar, but more efficient, approach tailored for vector encryption. Namely, if our goal

is to encrypt elements from a vector space F`, we enlarge the plaintext space to F`+τ , where τ is a

1Note that using a public-key encryption scheme does not imply a publicly-verifiable zkSNARK in this setting. There is no
advantage to using a public-key encryption scheme to instantiate the underlying encryption scheme.

2We could make this step statistical by relying on the leftover hash lemma, but this requires much larger parameters. Instead,
we rely on MLWE and settle for computational circuit privacy (which translates to computational zero-knowledge).

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 29

sparsification parameter. During setup, we sample a random matrix T
r← F`×τ as part of the secret

key. Then, to encrypt a vector v ∈ F`, we instead encrypt the vector uT = [vT | (Tv)T]. During

decryption, after recovering uT = [uT
1 | uT

2], the decryption algorithm outputs ⊥ if u2 6= Tu1. Semantic

security of the vector encryption scheme ensures that the secret transformation T is computationally

hidden from the view of the adversary. By setting the sparsification parameter τ accordingly, we can

ensure that for any fixed vector uT = [uT
1 | uT

2], the probability that u2 = Tu1 is negligible (over the

randomness of T). We conjecture that our approach also yields an encryption scheme that satisfies the

linear-only assumption. The advantage of this approach is that the ciphertext size in the underlying

vector encryption scheme grows additively with the plaintext dimension (i.e., the resulting ciphertext

size is n+ `+ τ rather than 2(n+ `) as with “encrypting twice”).

We now describe our vector encryption scheme:

Construction 3.11 (Vector Encryption). Let d = d(λ) be a power of 2 and let R = Z[x]/(xd + 1). Fix

lattice parameter p = p(λ), q = q(λ), n = n(λ) and an error distribution χ = χ(λ) over Rq. Moreover, we

define:

• `: the plaintext dimension

• τ : the sparsification parameter

• B: the noise smudging bound

Let `′ = `+ τ . We construct a secret-key vector encryption scheme ΠEnc = (Setup,Encrypt,Decrypt,Add) over

Rp as follows:

• (sk, pp) ← Setup(1λ, 1`): Sample A
r← Rn×nq , S ← χn×`

′
,T

r← Rτ×`q , and E ← χn×`
′
. Compute

D← STA + pET ∈ R`′×nq . Output the secret key sk = (S,T) and the public parameters pp = (A,D).

• ct ← Encrypt(sk,v): On the input of secret key sk = (S,T) and plaintext vector v ∈ R`p, construct

the concatenated vector uT = [vT | (Tv)T] ∈ R`
′

p . Sample a ← Rnq , e ← χ`
′

and compute c ←
STa + pe + u ∈ R`′q . Output the ciphertext ct = (a, c).

• ct∗ ← Add(pp, {cti}i∈[k], {yi}i∈[k]): On the input of the public parameters pp = (A,D), ciphertexts

cti = (ai, ci) for i ∈ [k], and scalars yi ∈ Rp, sample r← χn, ea ← χn, ec
r← [−B,B]`

′
and outputs

ct∗ =
(∑
i∈[k]

yiai + Ar + pea,
∑
i∈[k]

yici + Dr + pec

)
. (3.3.1)

• v/⊥ ← Decrypt(sk, ct): On the input of the secret key sk = (S,T) and ciphertext ct = (a, c), compute

z ← c − STa ∈ R`′q . Compute u = z mod p, and parse uT = [vT
1 | vT

2] where v1 ∈ R`p and v2 ∈ Rτp .

Output v1 if v2 = Tv1, otherwise ⊥.

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 30

Correctness and Security Analysis. Below, we describe the main theorems and formal analysis on the

correctness and security of Construction 3.11.

Theorem 3.12 (Additive Homomorphism). Let λ be a security parameter, and p, q, n, χ, `′, B be as defined

in Construction 3.11. Suppose χ is subgaussian 3 with parameter s. If n, `′, s, d, γR = poly(λ), then for all

k = k(λ), there exists q = (pB + kp2) · poly(λ) such that Construction 3.11 is additively homomorphic with

respect to Rkp.

Concretely, let C be a correctness parameter, B1, B2 be bounds, S = {y ∈ Rkp : ‖y‖1 ≤ B1 and ‖y‖2 ≤ B2}.
If `′, n > 8, and

q > 2p(B + γRB2Cs+ γRB1/2 + 2γRnC
2s2) + p, (3.3.2)

then Eq. (3.2.1) holds with probability 1− (4n+ 2)d`′ exp(−πC2) for all (y1, . . . , yk) ∈ S.

Proof. We begin with the concrete statement. Take any collection of plaintext vectors v1, . . . ,vk ∈ R`p and

scalars y1, . . . , yk ∈ Rp. Let (pp, sk) ← Setup(1λ, 1`), cti ← Encrypt(sk,vi) for i ∈ [k]. Define ciphertext

ct∗ ← Add(pp, {cti}i∈[k], {yi}i∈[k]). Here, pp = (A,D), sk = (S,T), cti = (ai, ci) and ct∗ = (a∗, c∗). By

construction, D = STA + pET,

a∗ =
∑
i∈[k]

yiai + Ar + pea, and c∗ =
∑
i∈[k]

yici + Dr + pec.

For i ∈ [k], we also have ci = STai + pei + ui, where uT
i = [vT

i | (Tvi)
T]. Thus,

c∗ =
∑
i∈[k]

(
yiS

Tai + yipei + yiui
)

+ STAr + pETr + pec. (3.3.3)

Consider the output of Decrypt(sk, ct∗). The decryption algorithm starts by computing (over Rq)

z∗ = c∗ − STa∗ =
∑
i∈[k]

yiui + p

∑
i∈[k]

yiei + ETr + ec − STea

 .

We write
∑
i∈[k] yiui = pũ + ũ′ ∈ R`′ where ũ, ũ′ ∈ R`′ and ‖ũ′‖∞ < p/2. Then,

z∗ =
∑
i∈[k]

yiui mod p+ p

ũ +
∑
i∈[k]

yiei + ETr + ec − STea


︸ ︷︷ ︸

e′

∈ R`
′

q . (3.3.4)

If e′ satisfies ‖e′‖∞ < q/(2p) − 1/2, then Eq. (3.3.4) holds over R (and not just modulo q). Then, the

3When d > 1, we assume that χ is the concatenation of d independent subgaussian distributions over Z, each with parameter at
most s. This is true for discrete Gaussian distributions over a power-of-two cyclotomic ring.

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 31

decryption algorithm computes

uT =
∑
i∈[k]

yiu
T
i =

∑
i∈[k]

yiv
T
i

∣∣∣∣∣ ∑
i∈[k]

yi(Tvi)
T

 ∈ R`′p ,
and outputs

∑
i∈[k] yivi, as required. Thus, it suffices to argue that ‖e′‖∞ < q/(2p)− 1/2. We analyze each

term in e′ separately.

• By definition, ũ = 1/p · (
∑
i∈[k] yiui−

∑
i∈k yiui mod p). This means that ‖ũ‖∞ ≤ 1/p ·

∥∥∥∑i∈[k] yiui

∥∥∥
∞

.

Since ui ∈ R`
′

p , this means ‖ui‖∞ ≤ p/2, so ‖ũ‖∞ ≤ γR ‖y‖1 /2.

• The entries of ei ∈ R`
′

q are sampled from χ, which by assumption, is the product of d independent

subgaussian distributions over Z, each with parameter at most s. Since R = Z[x]/(xd + 1), each

component of
∑
i∈[k] yiei is subgaussian with parameter γR ‖y‖2 s. Thus, the magnitude of each

component of
∑
i∈[k] yiei is bounded by γR ‖y‖2 Cs with probability at least 1− 2 exp(−πC2). By a

union bound,
∥∥∥∑i∈[k] yiei

∥∥∥
∞
≤ γR ‖y‖2 Cs with probability at least 1− 2d`′ exp(−πC2).

• Since the entries of E ∈ Rn×`′q and r ∈ Rnq are sampled from χ, the magnitude of each element in E and

r is bounded by Cs with probability at least 1−2d exp(−πC2). By a union bound,
∥∥ETr

∥∥
∞ ≤ γRnC

2s2

with probability 1− 2dn`′ exp(−πC2).

• Since ec is sampled from [−B,B]d`
′
, ‖ec‖∞ ≤ B.

• Since the entries of S ∈ Rn×`′q and ea ∈ Rnq are sampled from χ, we have that
∥∥STea

∥∥
∞ ≤ γRnC

2s2

with probability at least 1− 2dn`′ exp(−πC2).

Again by a union bound, with probability at least 1− (4n+ 2)d`′ exp(−πC2),

‖e′‖∞ ≤ B + γR ‖y‖2 Cs+ γR ‖y‖1 /2 + 2γRnC
2s2.

Taking q > 2p ‖e′‖∞ + p thus suffices for correctness. For the asymptotic statement, it suffices to consider

C = ω(log λ).

Theorem 3.13 (CPA Security). Fix a security parameter λ and let p, q, n, `′, χ be as defined in Construc-

tion 3.11. Take any Q = poly(λ) and suppose that p, q are coprime. Under the MLWEn,m,d,q,χ assumption

with m = n+Q, Construction 3.11 is Q-query CPA secure.

Proof. By a standard hybrid argument, the MLWEn,m,d,q,χ assumption implies that the following two

distributions are computationally indistinguishable:

(
A′,STA′ + (E′)T

)
and

(
A′, (U′)T

)
, (3.3.5)

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 32

where A′
r← Rn×mq , S ← χn×`

′
, E′ ← χm×`

′
, and U′

r← Rm×`
′

q (for any `′ = poly(λ)). Semantic security

follows immediately from this assumption. Formally, we use a hybrid argument:

• Hyb0: This is the real semantic security experiment.

(a) The challenger samples A
r← Rn×nq , S← χn×`

′
, E← χn×`

′
, T

r← Rτ×`p , b
r← {0, 1} and computes

D← STA + pET. The challenger sends pp = (A,D) to A.

(b) On the ith oracle query (vi,0,vi,1), the challenger samples ai
r← Rnq , ei

r← χ`
′
, computes uT

i =

[vT
i,b | (Tvi,b)

T], ci ← STai + pei + ui, and sends cti = (ai, ci) to A.

(c) After Q queries, A outputs a bit b′.

The output of the experiment is 1 if b′ = b, otherwise 0.

• Hyb1: Same as Hyb0, except the challenger samples D
r← R`

′×n
q in the public parameters, and for each

adversary’s oracle queries, the challenger computes ci ← pri + ui where ri
r← R`

′

q .

We first argue that the outputs of Hyb0 and Hyb1 are computationally indistinguishable under the MLWEn,m,d,q,χ

assumption. Let (A′,Z′) be the MLWE challenge and write A′ = [A | a1 | · · · | aQ], where A ∈ Rn×nq

and a1, . . . ,aQ ∈ Rnq . Analogously, write Z′ = [Z | z1 | · · · | zQ]. Consider a CPA-security experiment

where we set pp = (pA, pZ) and respond to the adversary’s oracle queries (vi,0,vi,1) with the ciphertext

cti = (pai, pzi + ui). In this case, if Z′ = STA′ + (E′)T, then this perfectly simulates Hyb0. If Z′
r← R`

′×m
q ,

this perfectly simulates Hyb1. (In particular, if A is uniform over Rn×nq , then so is pA since gcd(p, q) = 1,

and likewise for pai for i ∈ [Q]). Thus, the outputs of Hyb0 and Hyb1 are computationally indistinguishable

by MLWEn,m,d,q,χ assumption.

Noticing that in Hyb1, the advantage of distinguishing ciphertext is exactly 1/2 since each ri for i ∈ [Q] is

uniform and independent over R`
′

q and gcd(p, q) = 1. Thus, the challenge ciphertexts perfectly hide vi’s.

Theorem 3.14 (Circuit Privacy). Let λ be a security parameter and p, q, n, `′, χ be as defined in Construc-

tion 3.11. Suppose that χ is subgaussian with parameter s. If n, `′, s, d, γR = poly(λ), and B = 2ω(log λ) · kp2,

then under the MLWEn,m,d,q,χ assumption with m = n, Construction 3.11 is circuit private with respect to

the set S = Rkp.

Concretely, let C be a correctness parameter, B1, B2 be bounds, S = {y ∈ Rkp : ‖y‖1 ≤ B1 and ‖y‖2 ≤ B2}.
Then under the MLWEn,m,d,q,χ assumption with m = n, for every efficient adversary A restricted to strategies

in S, there exists an efficient simulator S where

Pr[ExptCircuitPrivΠEnc,A,S(1λ) = 1] ≤ 1/2 + ε+ negl(λ),

and

ε = (4n+ 2)d`′ exp(−πC2) +
d`′(γRB2Cs+ γRB1/2 + 2γRnC

2s2)

B
. (3.3.6)

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 33

Proof. We first construct a simulator S. On input the security parameter λ, the public parameters pp = (A,D),

the secret key sk = (S,T), and a vector v ∈ R`p, the simulator proceeds as follows:

1. Sample a
r← Rnq and ẽ← [−B,B]d`

′
.

2. Compute uT = [vT | (Tv)T] ∈ R`′p and output the ciphertext ct∗ = (a,STa + pẽ + u).

We show that the output of the above simulator is computationally indistinguishable from the output of the

Add algorithm. We proceed with a hybrid argument:

• Hyb0: This is the real circuit privacy experiment.

(a) The challenger begins by sampling (pp, sk) ← Setup(1λ, 1`) where pp = (A,D) and sk = (S,T),

then sends pp and sk to A.

(b) A outputs a collection of vectors v1, . . . ,vk.

(c) The challenger computes cti ← Encrypt(sk,vi) for i ∈ [k], where cti can be written as cti = (ai, ci),

for ci = STai + pei + ui, ei ∈ R`
′

q and uT
i = [vT

i | (Tvi)
T]. Challenger sends ct1, . . . , ctk to A.

(d) Adversary A outputs a set of coefficients y1, . . . , yk ∈ Rp.

(e) The challenger computes ct∗0 and ct∗1 as follows:

– For ct∗0, the challenger uses the Add algorithm: It samples r← χn, ea ← χn, ec ← [−B,B]d`
′
,

computes a∗0 ←
∑
i∈[k] yiai+Ar+pea and c∗0 ←

∑
i∈[k] yici+Dr+pec, and sets ct∗0 = (a∗0, c

∗
0).

– For ct∗1, the challenger uses the simulator S: It samples a∗1
r← Rnq , ẽ← [−B,B]d`

′
, computes

c∗1 ← STa∗1 +pẽ+u, where uT = [
∑
i∈[k] yiv

T
i |
∑
i∈[k] yi(Tvi)

T] ∈ R`′p , and sets ct∗1 = (a∗1, c
∗
1).

(f) The challenger samples b
r← {0, 1} and sends ct∗b to A.

(g) A outputs b′ ∈ {0, 1}.

The output of the experiment is 1 if b′ = b, otherwise 0.

• Hyb1: Same as Hyb0, except the challenger computes uT = [
∑
i∈[k] yiv

T
i |

∑
i∈[k] yi(Tvi)

T] ∈ R`′p and

c∗0 ← STa∗0 + pec + u.

• Hyb2: Same as Hyb1 except the challenger samples a∗0
r← Rnq .

For an adversary A, we write Hybi(A) to denote the output distribution of Hybi with adversary A. We

argue that the output distribution of each pair of adjacent hybrids are computationally (or statistically)

indistinguishable. Finally, we show that for all adversaries A, Pr[Hyb2(A) = 1] = 1/2.

Lemma 3.15. For all adversaries A (restricted to strategies in S), the statistical distance between Hyb0(A)

and Hyb1(A) is ε (see Eq. (3.3.6)).

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 34

Proof. The only difference between Hyb0 and Hyb1 is how c∗0 is constructed. As in the proof of Theorem 3.12

(see Eq. (3.3.3)), in Hyb0,

c∗0 =
∑
i∈[k]

(
yiS

Tai + yipei + yiui
)

+ STAr + pETr + pec

= STa∗0 + p

ũ +
∑
i∈[k]

yiei + ETr− STea + ec

+ u,

where
∑
i∈[k] yiui = pũ + ũ′ ∈ R`′ , ‖ũ′‖∞ < p/2 and ũ′ = u mod p. Let e′ = ũ +

∑
i∈[k] yiei + ETr− STea.

From the proof of Theorem 3.12, with probability at least 1− (4n+ 2)d`′ exp(−πC2),

‖e′‖∞ ≤ γR ‖y‖2 Cs+ γR ‖y‖1 /2 + 2γRnC
2s2.

In Hyb1, c∗0 = STa∗0 + pec + u. By Lemma 2.1 and a union bound, the statistical distance between the

distributions of ec and e′ + ec is at most d`′ ‖e′‖∞ /B. The claim follows.

Lemma 3.16. Suppose that p, q are coprime. Under the MLWEn,m,d,q,χ assumption with m = n, for all

efficient adversaries A, Hyb1(A) and Hyb2(A) are computationally indistinguishable.

Proof. The only difference between Hyb1 and Hyb2 is that in Hyb1, a∗0 ←
∑
i∈[k] yiai + Ar + pea while in

Hyb2, a∗0
r← Rnq . This follows from the MLWE assumption. To see this, suppose there is an adversary A where

|Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]| ≥ ε′. We use A to construct an algorithm B for MLWE. Let (A, z) be

the MLWE challenge where A ∈ Rn×nq and z ∈ Rnq . Algorithm B simulates an execution of Hyb1 or Hyb2 as

follows:

• Sample S← χn×`
′
, E← χn×`

′
and T

r← Rτ×`p . Let D← ST(pAT) + pET, and set pp = (pAT,D) and

sk = (S,T). Since A is uniform and gcd(p, q) = 1, the matrix pAT is also uniform.

• Let a∗0 ←
∑
i∈[k] yiai + pz. Construct the remaining components c∗0, a∗1, and c∗1 as in Hyb1 and Hyb2.

• Sample b
r← {0, 1} and give ct∗b to A.

• Let b′ ∈ {0, 1} be the adversary’s output. Output 1 if b′ = b and 0 otherwise.

If zT = sTA + eT, then a∗0 =
∑
i∈[k] yiai + pATs + pe where s ← χn and e ← χn. This is precisely the

distribution in Hyb1. Conversely, if z
r← Rnq , then a∗0 is uniform (since gcd(p, q) = 1 and z is uniform and

independent of the distribution of yi and ai). This is precisely the distribution in Hyb2. Thus, B breaks

MLWE with advantage ε′.

To conclude the proof, observe that ct∗0 and ct∗1 are identically distributed in Hyb2. Thus, for all adversaries

A, Pr[Hyb2(A) = 1] = 1/2. Together with Lemmas 3.15 and 3.16, this means that for all efficient adversaries A,

Pr[Hyb0(A) = 1] ≤ 1/2+ε+negl(λ). For the asymptotic statement, we set C = ω(log λ) and B1, B2 = pk.

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 35

Conjecture 3.17 (Linear-Only). Fix a security parameter λ, and let p, d, τ be defined as in Construction 3.11.

If |Rp|τ = pτd = λω(1), then Construction 3.11 is strictly linearly-only (Definition 3.4).

Remark 3.18 (Plausibility of Linear-Only Conjecture). We make a few remarks on the plausibility of

Conjecture 3.17.

• Affine Strategies: The linear-only definition (Definition 3.4) rules out the possibility of the adversary

implementing affine strategies. In particular, the adversary should not be able to obliviously sample a

valid ciphertext (for a non-zero vector) nor should the adversary be able to craft a valid encryption of

a (non-zero) vector that is not the result of applying a linear function on existing ciphertexts. The

approach we take in Construction 3.11 to implement this is to sparsify the ciphertext space by defining

valid ciphertexts to be those that encrypt vectors of the form uT = [vT | (Tv)T], where T is a uniformly

random matrix that is computationally hidden from the view of the adversary.

• General homomorphic operations: Regev-based encryption schemes are the basis of many somewhat

and fully homomorphic encryption (FHE) schemes, which are certainly not linear-only. However, all

existing constructions of FHE rely on making some algebraic modifications to either the message

encoding, homomorphic evaluation, or decryption operations, and it is not known that vanilla Regev-

style encryption (like Construction 3.11) supports higher-degree homomorphisms. Evaluating whether

Construction 3.11 supports more general homomorphic operations without modification is an intriguing

open question and has a win-win flavor: either the linear-only conjecture holds and we can use it as the

basis of zkSNARKs, or we discover new homomorphic capabilities on standard Regev encryption.

Extensions and Variants. We will describe an extension of Construction 3.11 to higher-degree extensions

(Remark 3.19) and an alternative approach based on bit decomposition to decrease noise growth (Remark 3.20).

Remark 3.19 (Higher-Degree Extensions). Construction 3.11 naturally extends to general cyclotomic rings

R = Z[x]/Φm(x), where Φm(x) is the mth cyclotomic polynomial. The prime p can then be chosen so that

Rp is isomorphic to one or more copies of Fpk for some k ≥ 1. This allows us to directly compile linear PCPs

over a higher-degree extension field into preprocessing zkSNARKs.

In addition, much like the case with fully homomorphic encryption based on RLWE [SV10, GHS12a, SV14],

when Rp splits into ` copies of Fpk (i.e., when the polynomial Φm(x) splits into ` irreducible factors

F1(x), . . . , F`(x) mod p), it is possible to pack ` sets of queries (for different R1CS systems) into a single

ciphertext (i.e., by associating each R1CS system with an irreducible factor Fi(x)). Likewise, the prover can

now homomorphically compute encrypted responses to all ` R1CS systems. In this way, a single ciphertext

contains packed responses to ` different statements across ` different (and independent) R1CS systems.

When working with a module R of rank d > 1, homomorphic operations map to polynomial additions

and multiplications over Rq. For efficiency (discussed in Section 4.3), we set the modulus q to be a power

of two. As such, it is more challenging to use fast polynomial multiplication algorithms (based on FFT) to

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 36

implement the homomorphic operations. 4 In this thesis, we focus on modules of rank 1 and 2 where the

additional cost of the polynomial (when d = 2) is small. Extending to modules of higher rank and taking

advantage of batching in a concretely-efficient manner is an interesting direction for further exploration.

Remark 3.20 (Reducing Coefficient Magnitudes). In Theorems 3.12 and 3.14, the magnitude of q grows

with the `1 and `2 norms of the vector of coefficients in the prover’s linear combination. When R = Z,

we can reduce the magnitude of the individual coefficients in the linear combination over Rp from p to

p1/m at the expense of increasing the number of ciphertexts (and the length of the linear combination)

by a factor of m. In particular, an encryption of a vector v ∈ R`p now consists of the encryptions of the

vectors v, p1/mv, . . . , p(m−1)/mv ∈ R`p. To compute αv, the evaluator then computes
∑
i∈[m] αi−1p

(i−1)/mv,

where α = αm−1 · · ·α1α0 is the value of α expressed in base p1/m. In this case, a linear combination with k

coefficients from Rp translates to a linear combination of mk elements, each of magnitude p1/m. Then, the `1

norm of the coefficients decreases from kp to mkp1/m; the `2 norm decreases from
√
kp to

√
mkp1/m.

Modulus switching. The size of the ciphertext in Construction 3.11 is determined by three main pa-

rameters: the ring dimension d, the module dimension n, and the ciphertext modulus q. According to

Theorem 3.12, the modulus q must be sufficiently large to support the requisite number of homomorphic

operations. However, the modulus switching technique developed in the context of fully homomorphic

encryption [BV11, BGV12, CNT12, AP14, DM15] provides a way to reduce the size of the ciphertexts after

performing homomorphic operations. More precisely, modulus switching allows one to take a ciphertext

over Rq and convert it to one over Rq′ where q′ < q while preserving the correctness of decryption. This

technique applies to most Regev-based encryption schemes, including Construction 3.11. Reducing the size

of the ciphertexts after homomorphic evaluation translates to a reduction in the proof size of the resulting

zkSNARK. We begin by defining the ciphertext rescaling operation Scale from Bitansky et al. [BGV12]:

• x′ ← Scale(x, q, q′, p): On input integers q > q′ > p and a vector x ∈ Rnq , the scale operation outputs

the vector x′ ∈ Rnq′ that is closest to (q′/q) · x such that x′ = x (mod p).

Theorem 3.21 (Modulus Switching [BGV12, adapted]). Let λ be a security parameter and p, q, n, d, `′, χ

be as defined in Construction 3.11. Let C be a correctness parameter. Suppose that χ is subgaussian with

parameter s. Let q′ < q be a positive integer where q′ = q (mod p). Take any vector a ∈ Rnq , c ∈ R`′q , and let

a′ ← Scale(a, q, q′, p), c′ ← Scale(c, q, q′, p). Sample S← χn×`
′
. Let z = c− STa ∈ R`′q and suppose that

‖z‖∞ < q/2− (1 + nγRCs) · (p/2) · (q/q′). (3.3.7)

Then, with probability 1− 2dn`′ exp(−πC2), z = z′ (mod p), where z′ = c′ − STa′ ∈ R`′q′ .
4Systems for fully homomorphic encryption that take advantage of batching [GHS12a, HS14] work over a modulus q that splits
into a product of many small primes p1, . . . , pt; the primes pi are moreover chosen so that F∗pi has sufficiently many roots of
unity to invoke standard FFT algorithms for polynomial multiplication. These optimizations do not directly extend to the
setting where q is a power of two.

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 37

Proof. Since z = c− STa (mod q), we can write z = c− STa + qṽ ∈ R`′ , where ṽ ∈ R`′ . Define the vector

z̃ = c′ − STa′ + q′ṽ ∈ R`′ . Then,

‖z̃‖∞ =
∥∥c′ − STa′ + q′ṽ

∥∥
∞

=
∥∥∥c′ − STa′ + q′ṽ + (q′/q) ·

(
(c− STa + qṽ)− (c− STa + qṽ)

)∥∥∥
∞

≤ ‖c′ − (q′/q) · c‖∞ +
∥∥∥ST

(
a′ − (q′/q) · a

)∥∥∥
∞

+ (q′/q) · ‖z‖∞ .

We analyze each term separately:

• Since c′ ← Scale(c, q, q′, p), by definition of the Scale operation, ‖c′ − (q′/q) · c‖∞ ≤ p/2.

• Similarly, since a′ = Scale(a, q′, q, p), we have that ‖a′ − (q′/q) · a‖∞ ≤ p/2. The entries of S ∈ Rn×`′q

are sampled from χ. Since χ is subgaussian with parameter s, the magnitude of each entry in S is

bounded by Cs with probability at least 1− 2d exp(−πC2). By a union bound over the components of

S, we have that
∥∥∥ST

(
a′ − (q′/q) · a

)∥∥∥
∞
≤ γRnCs(p/2) with probability 1− 2dn`′ exp(−πC2).

• By assumption, ‖z‖∞ < q/2− (1 + nγRCs) · (p/2) · (q/q′). Thus,

(q′/q) · ‖z‖∞ < q′/2− (1 + nγRCs) · (p/2).

Thus, with probability 1 − 2dn`′ exp(−πC2), ‖z̃‖∞ < q′/2. Now, z′ = c′ − STa′ = z̃ (mod q′). But if the

entries of z̃ are all bounded by q′/2, then it must be the case that z′ = c′ − STa′ + q′ṽ = z̃ ∈ R. Here, the

relation is taken over the ring and not modulo q′. Working now modulo p, we have the following:

z′ = c′ − STa′ + q′ṽ = c− STa + qṽ = z (mod p),

since c = c′ (mod p), a = a′ (mod p), and q′ = q (mod p) by construction or by assumption.

3.4 zkSNARKs from Linear-Only Encryption

We state the result of Bitansky et al. [BCI+13] for construction zkSNARKs from linear PCPs and linear-only

vector encryption. We specifically state the variant by Boneh et al. [BISW17] based on linear-only vector

encryption.

Construction 3.22 (SNARK from Linear-Only Vector Encryption). Let F be a finite field, S be an R1CS

system over F, and let RS be the associated relation. The construction has following building blocks:

• Let ΠLPCP = (QLPCP,PLPCP,VLPCP) be a k-query input-oblivious linear PCP for RS .

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 38

• Let ΠEnc = (Setup,Encrypt,Decrypt,Add) be a secret-key additively-homomorphic vector encryption

scheme for Fk.

We construct a single-theorem designated-verifier zkSNARK ΠSNARK = (Setup,Prove,Verify) for RS as follows:

• Setup(1λ, 1`): On input the security parameter λ and the circuit family parameter `, run (stLPCP,Q)←
QLPCP() where Q ∈ Fm×`. Write qT

i ∈ F` to denote the ith row of Q for i ∈ [m]. Then compute

(pp, sk) ← SetupEnc(1
λ, 1k) and cti ← EncryptEnc(sk,q

T
i) for i ∈ [m]. Output the common reference

string crs = (pp, ct1, . . . , ctm) and the verification state st = (stLPCP, sk).

• Prove(crs,x,w): On input the common reference string crs = (pp, ct1, . . . , ctm), a statement x, and a

witness w, the prover first construct an LPCP proof π ← PLPCP(x,w). The prover then homomorphically

computes the linear PCP response ct∗ ← AddEnc(pp, {ct1, . . . , ctm}, {π1, . . . , πm}), and outputs π = ct∗.

• Verify(st,x, π): On input the verification state st = (stLPCP, sk), the statement x, and the proof π = ct∗,

the verifier decrypts a← DecryptEnc(sk, ct
∗). Then it outputs 0 if a = ⊥, otherwise VLPCP(stLPCP,x,a).

Completeness and Knowledge. Completeness of Construction 3.22 follows immediately from the com-

pleteness of the underlying linear PCP and the completeness of the additively-homomorphic encryption scheme.

Knowledge follows from the linear-only property and the knowledge of the underlying linear PCP. Our analysis

follows closely from the corresponding analysis from Bitansky et al. [BCI+13] and Boneh et al. [BISW17], we

simply state the theorem here.

Theorem 3.23 (SNARKs from Linear-Only Vector Encryption [BCI+13, BISW17]). If ΠLPCP is statistical

sound against linear prover and ΠEnc is CPA-secure (for up to m messages) and strictly linear-only, then

ΠSNARK from Construction 3.22 is a designated-verifier SNARK for RS in the preprocessing model.

Remark 3.24. The only difference between Theorem 3.23 and the corresponding statements in previous

works [BCI+13, BISW17] is that the previous works consider linear-only encryption with support for affine

strategies, and thus, they require a linear PCP (or linear interactive proof) that provide soundness against

affine strategies. In this work, we make the stronger (but still plausible) conjecture that our secret-key vector

encryption scheme is strictly linear-only (without support for affine strategies), which allows us to rely on a

simpler information-theoretic primitive. We do note that it is straightforward to augment our linear PCP to

provide soundness against affine strategies with small overhead (see Remark 2.11).

Remark 3.25 (Reusability). A limitation of Construction 3.22 is that it only provides one-time soundness

in designated-verifier model. Reusable soundness is a much stronger notion, where soundness holds even a

malicious prover has access to the verification oracle. Bitansky et al. [BCI+13] showed that combining linear

PCP satisfying reusable soundness (also known as “strong soundness”) with an encryption scheme satisfying

an interactive linear-only assumption yields a designated-verifier SNARK with reusable soundness. Under

this stronger security notion, the adversary has access to an oracle that can check the well-formedness of

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 39

ciphertexts. 5 While it is straightforward to realize strong soundness for the linear PCP, our vector encryption

scheme (Construction 3.11) does not satisfy the stronger linear-only assumption. Moreover, the ciphertext

well-formedness oracle enables a key-recovery attack (similar to how a decryption oracle enables a CCA-1

key-recovery attack on Regev-based encryption schemes [LMSV11, CT14]). A similar issue arises in the

previous lattice-based zkSNARK by Gennaro et al. [GMNO18]. Note though that single-theorem soundness

(as we consider here) does imply soundness for logarithmically-many proofs.

In cases where the the malicious prover does not learn the verifier’s decision, the same CRS can be reused

to check proofs of multiple statements. Even in the setting where the malicious prover has access to the

verification oracle, the “verifier rejection” attack needed to break soundness is always detectable; namely, to

break soundness, the malicious prover has to first submit multiple proofs that cause the verifier to reject

(i.e., a super-constant number of rejections). Thus, the zkSNARK still provides “covert” security [AL07] if

the CRS is reused and the prover can observe the verifier’s decisions. This is sufficient in many practical

applications where there are out-of-band consequences when malicious behavior is detected. Another way to

mitigate the impact of the verifier rejection attack is to have the verifier check multiple proofs and only reveal

a single aggregate decision for all of the proofs in the batch. This reduces the leakage on the secret key from

any single verification query.

Zero Knowledge. Bitansky et al. [BCI+13] showed that combining a linear PCP satisfying HVZK with

re-randomizable linear-only encryption yields a zkSNARK. An encryption scheme is re-randomizable if there is

a public procedure that transforms any valid encryption of m into a fresh encryption of m. Our lattice-based

vector encryption does not satisfy this property due to the variability amount of noise in ciphertexts. Instead,

we show that the weaker property of circuit privacy suffices to argue zero-knowledge.

At a high-level, the argument goes as follows. By HVZK of the linear PCP, we can simulate the linear

PCP responses given only the statement. By Circuit Privacy, we can say the encrypted linear PCP responses

can be simulated given only the simulated linear PCP response.

Theorem 3.26 (Zero-Knowledge from Circuit Privacy). Let ΠLPCP and ΠEnc be as defined in Theorem 3.23.

If ΠLPCP satisfies perfect honest-verifier zero-knowledge and ΠEnc is CPA-secure (for up to m message) and

computationally (resp., statistically) circuit private, then ΠSNARK from Construction 3.22 is computationally

(resp., statistically) zero-knowledge. More precisely, if ΠLPCP is δ-HVZK and ΠEnc is ε-circuit private, then

ΠSNARK from Construction 3.22 is 2(δ + ε)-zero-knowledge.

Proof. Let SLPCP = (SLPCP,1,SLPCP,2) be the simulator for ΠLPCP, and SEnc be the circuit privacy simulator

for ΠEnc. We use SLPCP and SEnc to construct a simulator S = (S1,S2) for ΠSNARK:

• S1(1λ, 1`): On the input of λ and `, run (s̃tLPCP, Q̃, stLPCP,S)← SLPCP,1(), where Q̃ ∈ Fm×k. Compute

(p̃p, s̃k) ← SetupEnc(1
λ, 1k) and c̃ti ← EncryptEnc(s̃k, q̃

T
i) for i ∈ [m]. Output c̃rs = (p̃p, c̃t1, . . . , c̃tm),

5More precisely, the adversary has oracle access to the extractor; that is, on input a ciphertext, the oracle responds with either a
linear combination that explains the adversary’s query or ⊥ if the ciphertext is invalid.

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 40

verification state s̃t = (s̃tLPCP, s̃k), and the simulation state stS = (stLPCP,S , pp, sk).

• S2(stS ,x): On the input of stS = (stLPCP,S , pp, sk) and the statement x, compute ã← SLPCP,2(stLPCP,S ,x)

and output the simulated proof π̃ = SEnc(1λ, pp, sk, ã).

To complete the proof, we argue that the real distribution and the simulated distributions are computationally

indistinguishable. This follows by a hybrid argument:

• Hyb0: This is the real game. The challenger first samples a bit b
r← {0, 1}, (crs, st) ← Setup(1λ, 1`),

and (c̃rs, s̃t, stLPCP,S) ← S1(1λ, 1`). If b = 0, it gives (crs, st) to the adversary, and otherwise, it gives

(c̃rs, s̃t) to the adversary. After the adversary outputs a statement x and witness w, the challenger first

checks that R(x,w) = 1 (aborting the experiment otherwise), then computes π ← Prove(crs,x,w) and

π̃ ← S1(stS ,x). It gives π to A if b = 0 and π̃ if b = 1. At the end of the experiment, the adversary

outputs a bit b′ ∈ {0, 1}, and the output of the experiment is 1 if b′ = b.

• Hyb1: Same as Hyb0 except the challenger constructs π using the circuit privacy simulator (in place

of Prove(crs,x,w)). Let Q ∈ Fm×k be the query matrix the challenger sampled to construct crs =

(pp, ct1, . . . , ctm) and let st = (stLPCP, sk) be the corresponding verification state. To construct π, the

challenger now computes π ← PLPCP(x,w) and sets π ← SEnc(1λ, pp, sk,a), where a = QTπ.

• Hyb2: Same as Hyb1, except the challenger uses the linear PCP simulator to construct the CRS and the

proof. Specifically, instead of running QLPCP to obtain stLPCP and Q, the challenger instead samples

(stLPCP,Q, stLPCP,S)← SLPCP,1(). When constructing the proof, the challenger substitutes the simulated

response a← SLPCP,2(stLPCP,S ,x) in place of the value a = QTπ from Hyb1.

Let Hybi(A) be the output of an execution of experiment Hybi. We now analyze the distribution of each pair

of adjacent hybrid distributions as well as the distribution in Hyb2:

• The only difference between Hyb0 and Hyb1 is the challenger computes π using the simulator SEnc (with

target value a = QTπ) instead of using AddEnc(pp, {ct1, . . . , ctm}, {π1, . . . , πm}), where each cti is an

encryption of qT
i (in which case

∑
i∈[m] πiq

T
i = QTπ). If ΠEnc is δ-circuit private, then

|Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]| ≤ 2δ.

• The only difference between Hyb1 and Hyb2 is the challenger uses the linear PCP simulator SLPCPto

sample the queries Q, the verification state st, and the responses a instead of using QLPCP and PLPCP.

If ΠLPCP is ε-HVZK, then

|Pr[Hyb1(A) = 1]− Pr[Hyb2(A) = 1]| ≤ 2ε.

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 41

• Finally, in Hyb2, the behavior of the challenger is the same regardless of the bit b (i.e., the challenger

computes crs, st, and π according to the specification of S). This means that for all adversaries A,

Pr[Hyb2(A) = 1] = 1/2, and the claim holds.

Remark 3.27 (Leakage-Resilient Linear PCPs). While circuit privacy played a central role in the analysis

of Theorem 3.26, augmenting our linear-only vector encryption scheme (Construction 3.11) with circuit

privacy incurs a non-trivial concrete cost. As shown in Fig. 4.4, instantiating the encryption scheme in a

setting without circuit privacy (corresponds to the setting where κ = 0), we can achieve a 40% reduction

in prover time and a 52% reduction in proof size for the resulting zkSNARK. In fact, for this parameter

setting, the prover time of our lattice-based instantiation is 2.3× faster than the pairing-based construction

of Groth [Gro16]. A natural question to ask is whether we can still hope to argue zero-knowledge for the

resulting zkSNARK without relying on full circuit privacy. Consider a variant of Construction 3.11 where we

modify Eq. (3.3.1) to instead output

ct∗ = (a∗, c∗) =
(∑
i∈[k]

yiai,
∑
i∈[k]

yici

)
. (3.4.1)

Namely, we remove all of the re-randomization that the prover applies. Following the same notation and

analysis as in the proof of Theorem 3.12, in this case, we have that

c∗ = STa∗ +
∑
i∈[k]

yiui mod p+ p

ũ +
∑
i∈[k]

yiei

 ,

where ũ, ũ′ ∈ R`′ , ‖ũ′‖∞ < p/2, and
∑
i∈[k] yiui = pũ + ũ′ ∈ R`′ . In the standard circuit-privacy setting,

the simulator is only given
∑
i∈[k] yiui mod p (i.e., the value of the linear combination modulo p) and must

be able to simulate the ciphertext ct∗ given only this information. However, if we consider a relaxed version

of circuit privacy where we additionally give the simulator some additional “hints” about the coefficients yi:

namely, the value of
∑
i∈[k] yiai ∈ Rnq and the value of ũ +

∑
i∈[k] yiei ∈ R`

′
(technically, the second relation

is also over R`
′

q , but for our parameter settings, all of the terms in the sum are small that no reduction

modulo q occur).

If we now consider a “leakage-resilient” linear PCP where HVZK holds with respect to this partial leakage

on the linear PCP coefficients, then we can still apply the Bitansky et al. [BCI+13] compiler to obtain a

zkSNARK. It is interesting to analyze whether the QAP-based linear PCPs we consider in this work remain

statistical HVZK in the presence of this leakage. A positive result would yield an improvement to the concrete

efficiency of our zkSNARK. The main source of leakage is the verifier learns a linear combination (over R)

of (Gaussian-distributed) vectors ei with coefficients drawn from the linear PCP. In this case, the length

k of the linear PCP is significantly larger than the dimension `′ of the error vectors, so this is a severely

under-determined linear system.

CHAPTER 3. LATTICE-BASED SUCCINT ARGUMENTS 42

In the zkSNARK construction, the underlying linear PCP is randomized, and it is not clear that leaking

a small number of linear combinations will allow a malicious verifier to efficiently extract even a single

coefficient from the linear PCP. Based on this analysis, it seems plausible that instantiating the zkSNARK

with this variant of the linear-only vector encryption scheme still provides some degree of zero-knowledge in a

heuristic sense. We emphasize though that all of our evaluation and benchmarks we consider in this work use

the circuit-private version of Construction 3.11 and ensures provable zero-knowledge. But understanding

leakage-resilience for linear PCPs may provide further improvements to the concrete efficiency of lattice-based

zkSNARKs.

Chapter 4

Implementation and Evaluation

In this section, we provide an overview of our lattice-based zkSNARK implementation constructed by

combining Construction 2.9 with Construction 3.11.

4.1 Linear PCP Implementation

The prover’s computation in zkSNARK from Construction 3.22 consists of two main components:

• Computing the linear PCP proof (in Construction 2.9 and Theorem 2.10).

• Homomorphically compute the encrypted linear PCP responses.

Computing the linear PCP responses (over a finite field F) requires the prover to compute the coefficients

of a polynomial H(z) := (A(z)B(z)− C(z))/Z(z), where A,B,C are polynomials of degree Ng − 1 (over F)

determined by the R1CS system (which has Ng constraints), the statement, and the witness, and Z is a fixed

polynomial. We refer to Section 2.3 for the full details of this construction.

Ben-Sasson et al. [BCG+13] described an efficient approach to compute the coefficients of H using fast

Fourier transforms (FFTs) over F. To use standard Cooley-Tukey FFTs for powers of two [CT65] (which

we will refer to as “radix-2 FFTs”), we require that F contains a multiplicative subgroup of order 2d where

2d > Ng. The construction of Ben-Sasson et al. use a specially-chosen elliptic curve group whose order is

divisible by a large power of 2, while in our setting, we consider linear PCPs over a quadratic extension Fp2 ,

whose order is p2 − 1 = (p + 1)(p − 1). In the best case, Fp2 has a subgroup of order 2d+1 if p = 2d ± 1.

However, if Ng > 2p, Fp2 will never have a sufficiently large subgroup for a direct usage of radix-2 FFTs. 1

1While more general algorithms for FFT can be used for multipoint evaluation and interpolation over a domain whose size is a
prime power [Rad68] or a product of coprime values [Goo58, Tho63], these algorithms are more complex to implement and
worse in terms of concrete efficiency compared to basic radix-2 FFTs. We show how to implement our approach using a small
number of radix-2 FFTs.

43

CHAPTER 4. IMPLEMENTATION AND EVALUATION 44

Our Approach. When the field F contains a multiplicative subgroup whose order is moderately large power

of two (e.g., 2d), we can still leverage multiple radix-2 FFTs to eficiently implement multipoint polynomial

evaluation and interpolation over a domain D ⊂ F, where |D| = k · 2d for some small positive integer k > 1.

We use this approach to implement the linear PCP prover when working over fields with insufficient roots of

unity to support a standard radix-2 FFT.

We follow noatations from [BCG+13], for a polynomial A(z) of degree less than |D|, we write FFTD(A(z))

to denote the vector of evaluations {A(α)}α∈D. Similarly, we write FFT−1
D ({A′(α)}α∈D) to denote the

coefficients of the polynomial A(z) of degree less than |D|, such that for all α ∈ D, A(α) = A′(α).

Let ω ∈ F be a primitive 2d-th root of unity and let H = H1 = 〈ω〉 ⊂ F be the subgroup of order 2d

generated by ω. Let ξ1 = 1 and take ξi ∈ F∗ \H1 for i ∈ {2, . . . , k}, such that Hi = ξiH are pairwise disjoint

cosets of H1. We define the domain D = ∪i∈[k]Hi for multipoint evaluation and interpolation. For a set

S ⊂ F, let VS ∈ F|D|×|D| be the Vandermonde matrix associated with evaluating a polynomial of degree up

to |D| − 1 on the points in D. Let V̂H ∈ F2d×2d

be the Vandermonde matrix associated with evaluation a

polynomial of degree up to 2d on H (i.e., the roots of unity). Then, we have that

VS =


V̂H V̂H · · · V̂H

V̂H · Ξ2 V̂H · ξ2d

2 Ξ2 · · · V̂H · ξ(k−1)2d

2 Ξ2

...
...

. . .
...

V̂H · Ξk V̂H · ξ2d

k Ξk · · · V̂H · ξ(k−1)2d

k Ξk

 =


V̂T
H

V̂T
H

...

V̂T
H


T

·


I2d I2d · · · I2d

Ξ2 ξ2d

2 Ξ2 · · · ξ
(k−1)2d

2 Ξ2

...
...

. . .
...

Ξk ξ2d

k Ξk · · · ξ
(k−1)2d

k Ξk


︸ ︷︷ ︸

B

,

where Ξi = diag(1, ξi, ξ
2
i , . . . , ξ

2d−1
i) and B ∈ F(k·2d)×(k·2d). Take any input a ∈ Fk×2d

and let âi =

(a(i−1)2d+1, . . . , ai·2d) ∈ F2d

for i ∈ [k]. We describe an algorithm to compute a′ = VS · a:

• Let b = B ·a ∈ Fk·2d

and â′i = (a′(i−1)2d+1, . . . , a
′
i·2d) ∈ F2d

. By construction, b̂i =
∑
j∈[k] ξ

(j−1)2d

j Ξj · âj
and

â′i = V̂H ·

∑
j∈[k]

ξ
(j−1)2d

j Ξj · âj


︸ ︷︷ ︸

b̂i

.

Since V̂H is a Vandermonde matrix, on input b̂i ∈ F2d

, computing â′i = V̂H · b̂i with standard radix-2

FFT takes O(d · 2d) time.

• Näıvely, we can compute b̂i in O(k ·2d) time with brute force since Ξi is a diagonal matrix, so computing

all of the entries b =
[
b̂T

1 | . . . | b̂T
k

]T
∈ Fk·2d

takes O(k2 · 2d) time. However, we can compute more

efficiently as follows. By construction,

b̂i,j =
∑
`∈[k]

ξ
(`−1)2d

i ξj−1
i â`,j .

CHAPTER 4. IMPLEMENTATION AND EVALUATION 45

We define b̃j = (b̂1,j , . . . , b̂k,j) ∈ Fk and ãj = (â1,j , . . . , b̂k,j) ∈ Fk. Then,

b̃j = diag(ξj−1
1 , . . . , ξj−1

k) ·


1 1 · · · 1

1 ξ2d

2 · · · ξ
2d(k−1)
2

...
...

. . .
...

1 ξ2d

k · · · ξ
2d(k−1)
k


︸ ︷︷ ︸

Ξ′

ãj .

Observe now that Ξ′ ∈ Fk×k is itself a Vandermonde matrix corresponding to evaluating a degree

(k − 1) polynomial on the points ξ2d

1 , . . . , ξ2d

k . While ξ2d

1 , . . . , ξ2d

k are not roots of unity (so standard

FFTs cannot be used here), we can still solve this problem efficiently if ξ1, . . . , ξk form a geometric

sequence (i.e., ξi = αξi−1 for some fixed α ∈ F) [BS05].

In particular, using the Bostan-Schost algorithms, multipoint evaluation on k values in a geometric

sequence requires computing 2 degree-k polynomial multiplications and O(k) additional work. In

the case where k < 2d−1, we can use standard radix-2 FFTs to implement the degree-k polynomial

multiplications in O(k log k) time. Thus, computing each b̃j can be done in just O(k log k) time.

Repeating this for all j ∈ [2d] yields an algorithm to compute b in O(2dk log k) time.

The overall running time of this algorithm is O(2dk(d + log k)), which matches the running time of a

standard FFT over a domain of size k · 2d. While the concrete efficiency of the algorithm is worse than a

standard radix-2 FFT, in fields where there are insufficient roots of unity (such as the ones we consider),

this provides an efficient algorithm to implement the linear PCP prover. In all of our experiments, k ≤ 64.

We show in Fig. 4.3 that the computational cost of the linear PCP prover implemented using this approach

represents a small fraction of the overall prover running time in the zkSNARK (i.e., less than 10% of the cost

for the parameter settings in Fig. 4.3, and at most 16% across all of our experiments).

LPCP Query Computation. The complexity of computing QLPCP is dominated by the complexity of

evaluating each Ai, Bi, Ci at the random element τ . We show how to compute Ai efficiently in a general way;

a similar approach holds for the Bi and Ci for i ∈ [Nw].

Recall the previous definition of domain S ⊂ Fp2 in our approach, where we let ω ∈ Fp2 be a primitive 2d+1-

th root of unity and let H = H1 = 〈ω〉 ⊂ Fp2 be the subgroup of order 2d+1 generated by ω. Additionally, we let

g ∈ F∗p2 be the multiplicative generator of the Fp2 . We take {ξ1, . . . , ξk} ⊂ F∗p2 \H, where ξi = g2i−2 ∈ F∗p2 \H
for i ∈ [k], such that Hi = ξiH are pairwise disjoint cosets of H. Let S = {αi}i∈[Ng] = ∪i∈[k]Hi ⊂ Fp2 be the

domain for multipoint evaluation interpolation.

Recall the formula for Lagrange interpolation, on the input z ∈ Fp2 \ S:

Ai(z) :=
∑
j∈[Ng]

aj,i · Lj(z),

CHAPTER 4. IMPLEMENTATION AND EVALUATION 46

where

Lj(z) :=
∏

m∈[Ng]
j 6=m

z − αm
αj − αm

=
∏
r∈[k]

Lj,r(z),

Lj,r(z) :=
∏

t∈[2d+1]

j 6=(r−1)·2d+1+t

z − ξr · αt
αj − ξr · αt

=


z2d+1 − ξ2d+1

r

ξ2d+1

dj/2d+1e − ξ2d+1

r

j /∈ [(r − 1) · 2d+1 + 1, r · 2d+1]

L′t(ξ
−1
r z) j ∈ [(r − 1) · 2d+1 + 1, r · 2d+1]

,

L′t(z) :=
∏

h∈[2d+1]
t 6=h

z − αt
αh − αt

.

Since L′t is the standard radix-2 FFT polynomial interpolation over the subgroup of order 2d+1, we can

efficiently evaluate {Lj(z)}j∈[Ng] as follows.

1. For i ∈ [k],

i. We compute {θi}i∈[k], where

θi =
∏
r∈[k]
r 6=i

Lj,r(z) =
∏
r∈[k]
r 6=i

z2d+1 − ξ2d+1

r

ξ2d+1

i − ξ2d+1

r

.

ii. Evaluate all the radix-2 FFT Lagrange interpolation polynomials {L′t(·)}t∈[2d+1] on ξ−1
i z.

iii. For t ∈ [2d+1], let k = (i− 1) · 2d+1 + t, and compute Lk(z) = θi · L′t(ξ−1
i z).

2. Output {Li(z)}i∈[Ng].

Then, after computing {Li(z)}i∈[Ng], computing {Ai(z)}i∈[Ng] only requires taking linear combination over

{Li(z)}i∈[Ng], which is determined by the coefficients vectors {ai}i∈[Ng].

LPCP Prover Computation. The complexity of computing PLPCP is partly dominated by the computation

of the coefficients of the Ng-degree polynomial H(z). We generally follow the footsteps described by [BCG+13].

Since we cannot compute the coefficients of H(z) via a direct use of radix-2 FFTs, we show how to apply our

approach as follows.

We begin by introducing the notation for multipoint interpolation and evaluation. Given a domain

D ⊆ Fp2 and a polynomial A(z) of degree less than |D|, we use extFFTD(A(z)) to denote the evauated

results {A(α)}α∈D from the extended radix-2 FFTs over cosets. Similarly, we use extFFT−1
D ({A(α)}α∈D) to

denote the inversion operation, namely, given |D| points, return the polynomial of degree less than |D| that

interpolates between these points on D.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 47

We now decribe how to perform the computation for PLPCP in terms of the notations above. Below, we let

T be a subset of Fp2 with |T | = Ng and S ∩T = ∅. Let T = gS in our setting, and we denote T = {βi}i∈[Nw],

so that T = ∪i∈[k](g ·Hi) ⊂ Fp2 , where g ·Hi and Hi are pairwise disjoint.

1. Sample δ1, δ2, δ3
r← Fp2 .

2. For j ∈ [Ng], compute

A′(αj) := A0(αj) +
∑
i∈[Nw]

wiAi(αj) = aj,0 +
∑
i∈[Nw]

wiaj,i

B′(αj) := B0(αj) +
∑
i∈[Nw]

wiBi(αj) = bj,0 +
∑
i∈[Nw]

wibj,i

C ′(αj) := C0(αj) +
∑
i∈[Nw]

wiCi(αj) = cj,0 +
∑
i∈[Nw]

wicj,i

3. Compute the coefficients for A′(z) by invoking extFFT−1
S ({A′(αj)}j∈[Ng]).

Compute the coefficients for B′(z) by invoking extFFT−1
S ({B′(αj)}j∈[Ng]).

Compute the coefficients for C ′(z) by invoking extFFT−1
S ({C ′(αj)}j∈[Ng]).

4. Compute the pointwise evaluation {A′(βi)}i∈[Ng] over T by invoking extFFTT (A′(z)).

Compute the pointwise evaluation {B′(βi)}i∈[Ng] over T by invoking extFFTT (B′(z)).

Compute the pointwise evaluation {C ′(βi)}i∈[Ng] over T by invoking extFFTT (C ′(z)).

5. Compute the pointwise evaluation {H ′(βi)}i∈[Ng] over T for H ′(z) = (A′(z)B′(z)− C ′(z))/ZS(z).

6. Compute the coefficients for H ′(z) by invoking extFFT−1
T ({H ′(βi)}i∈[Ng]).

7. Compute the Ng coefficients of polynomial H(z) = H ′(z) + δ1B
′(z) + δ2A

′(z) + δ1δ2ZS(z)− δ3.

8. Output the Ng coefficients of polynomial H(z).

Choosing T to be the multiplicative coset of S simplifies the computation in Step 3, 4, 5, 6 as follows:

- Since ZS(z) =
∏
i∈[k]

(
(gξj)

2d+1 − ξ2d+1

i

)
everywhere on gHj for j ∈ [k], evaluating ZS(z) over T for

{ZS(βi)}i∈[Ng] in step 5 requires O(dk2) field operations.

- For extFFTT in step 4, extFFT−1
T in step 6, and extFFT−1

S in step 2, all of them require O(Ng logNg)

field operations. Moreover, letting Ξg = diag(1, g, g2, . . . , gNg−1), it holds that

extFFTT (·) = (extFFTS ◦ Ξg)(·)

extFFT−1
T (·) = (Ξ−1

g ◦ extFFT−1
S)(·).

CHAPTER 4. IMPLEMENTATION AND EVALUATION 48

4.2 Lattice-Based zkSNARK Implementation

In this section, we describe our overall zkSNARK implementation. We begin by describing our methodology

for setting the lattice parameters n, q, χ for our lattice-based vector encryption scheme (Construction 3.11).

We then describe a few optimizations to improve the concrete efficiency of the resulting construction.

Lattice parameter selection. In the following description, let Ng denote the number of constraints in the

R1CS system, p denote the plaintext modulus, and κ be the statistical security parameter for zero-knowledge.

We set κ = 40 for our primary experiments. We choose the parameters as follows:

• The plaintext modulus p is chosen so that F∗p2 has a large power-of-two subgroup. In our specific

instantiations, we choose p = 213 − 1 (just large enough so the linear PCP from Construction 3.1

supports R1CS systems with over 220 constraints without needing too many repetitions) and p = 219− 1

(a larger field so F∗p2 contains 220-th roots of unity).

• The module rank d is chosen based on whether we are working with a linear PCP over Fp2 (d = 2) of if

we are working over a linear PCP over Fp (d = 1). Since we work over R = Z[x]/(xd + 1), γR = 1 if

d = 1 and γR = 2 if d = 2.

• The plaintext dimension ` is the query length of the linear PCP for the R1CS system (Theorem 2.10

and Remark 2.12). The query length of the linear PCP is chosen to achieve knowledge error at most

2−128. For a linear PCP over Fp2 , the linear PCP from Theorem 2.10 has knowledge error 2Ng/(p
2−Ng).

This is repeated ρ times to amplify soundness (ρ is chosen such that (2Ng/(p
2 −Ng))ρ ≤ 2−128). The

number of queries is then ` = 4ρ. In the case where we first apply Construction 3.1 to obtain a linear

PCP over the base field Fp, then ` = 8ρ.

• The sparsification parameter τ is chosen based on Conjecture 3.17: namely, we choose τ to be the

smallest value where p−τd ≤ 2−128.

• The noise smudging bound B is chosen so that ε = 2−κ in Eq. (3.3.6) of Theorem 3.14 (which ensures

roughly κ bits of zero-knowledge). We set the constant C = 6, in which case exp(−πC2) < 2−163. We

use an upper bound for the module dimension n < 212 (the module dimension will be set (later) based

on the security parameter and the modulus q, and in all of our cases, n < 212).

In Construction 3.22, the number of homomorphic operations the prover performs is equal to the length

k of the linear PCP query. From Theorem 2.10, we set k = 2Ng when considering a linear PCP over

Fp2 and k = 4Ng if we first apply Construction 3.1 to obtain a linear PCP over Fp; recall that we take

the number of variables Nw to roughly coincide with the number of constraints Ng in our evaluation.

The coefficients the prover uses are elements from Rp, so we set the bounds B1 = dkp and B2 =
√
dkp.

In Remark 3.20, we describe a trade-off where we replace each Rp coefficient with z coefficients, each of

magnitude p1/z for any constant z > 1. In this case, B1 = dkzp1/z and B2 =
√
dkzp1/z.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 49

The value of ε in Eq. (3.3.6) is essentially determined by γRB2Cs+ γRB1/2 + 2γRnC
2s2. This term is

effectively dominated by the first two terms γRB2Cs + γRB1/2 = γR(
√
kpCs + pk/2). We take our

noise distribution to be a discrete Gaussian distribution with noise rate s, and we choose s to balance

the terms
√
kpCs and pk/2. Since the security of LWE is determined by the modulus-to-noise ratio,

using a larger noise rate reduces the lattice dimension; balancing these two terms allow us to use a

higher noise rate without needing to increase the modulus size needed for correctness.

• We choose the modulus q to be the smallest power of two that satisfies Eq. (3.3.2). In all the cases we

consider, q ≤ 2128, so a power-of-two modulus allows us to implement all of the arithmetic using 128-bit

integer arithmetic without needing to perform modular reductions after each arithmetic operation. As we

elaborate below, compiler intrinsics on 64-bit architectures enable highly-optimized 128-bit arithmetic

and is critical to reducing the prover cost.

• Given the modulus q and noise rate s for the discrete Gaussian distribution, we use the LWE Estimator2

by Albrecht et al. [APS15] to determine the smallest module dimension n that provides 128-bits of

security against the best-known quantum attacks. For our MLWE instantiation, we work under the

assumption here that the best attack on MLWE over (Zq[x]/(x2 + 1))n coincides with the best attack

on LWE on a lattice of dimension 2n.

• As is discussed previously, applying modulus switching (Theorem 3.21) to Construction 3.11 reduces the

size of the modulus q. In Table 4.1, we show that this technique reduces q by a facor of 2.5× to 2.7×,

which translates to a same factor of reduction in the concrete proof size of our zkSNARK construction.

We provide some example parameters we use in Table 4.1. The classical hardness estimates are based

on the estimated cost of the Chen-Nguyen algorithm [CN11] and the Becker et al. [BDGL16] algorithm.

The quantum hardness estimate is based on the estimated cost of the quantum sieving algorithm by

Laarhoven et al. [LMvdP15].

Reducing the CRS size. Like most Regev-based encryption schemes, the ciphertexts in Construction 3.11

have the form ct = (a, c) where a ∈ Rnq is uniformly random and c ∈ R`′q encodes the message. For typical

parameter settings, the module dimension n is much larger than the (extended) plaintext dimension `′.

A heuristic approach to reduce the ciphertext size is to derive the random vector a as the output of a

pseudorandom function (PRF) and include the PRF key in place of the vector a (or alternatively, take them

to be the outputs of a public hash function). Security of these heuristics can be justified in the random

oracle model [Gal13]. We adopt this approach in our implementation. Namely, instead of including the

ciphertexts ct1 = (a1, c1), . . . , cN = (aN , cN) in the CRS, the setup algorithm samples a PRF key k and sets

ai ← PRF(k, i). The sequence of ciphertexts in the CRS is then (k, c1, . . . , cN). In our implementation, we

use AES (in counter mode) as the underlying PRF. Similar approaches for reducing the size of the public

2https://lwe-estimator.readthedocs.io/en/latest/

https://lwe-estimator.readthedocs.io/en/latest/

CHAPTER 4. IMPLEMENTATION AND EVALUATION 50

Fields∗ λq λc p (n, d) log q log q′ s ` τ

Fp, Fp 128 138 5 · 225 + 1 (4700, 1) 123 49 80 82 5
Fp2 , Fp 128 138 213 − 1 (3585, 1) 97 35 66 208 10
Fp2 , Fp2 128 138 213 − 1 (1815, 2) 98 35 64 104 5

∗The first field listed is the base field for the linear PCP ΠLPCP and the second is the plaintext
field for the linear-only vector encryption scheme ΠEnc.

Table 4.1: Lattice parameters for zkSNARK instantiations obtained by combining the linear PCP ΠLPCP from
Theorem 2.10 and Remark 2.12 with the linear-only vector encryption scheme ΠEnc from Construction 3.11. Here, λq
is the estimated bits of quantum security, λc is the estimated bits of classical security, p is the plaintext modulus,
d is the module rank, n is the module dimension, q is the ciphertext modulus, s is the width parameter for the
discrete Gaussian noise distribution, ` is the dimension of the plaintext space, and τ is the sparsification parameter.
Parameters shown are based on supporting an R1CS system with 220 constraints and for the smallest plaintext fields
we consider in our evaluation.

components of lattice-based cryptosystems has been used for both lattice-based key-exchange [BCD+16] as

well as previous lattice-based zkSNARKs [GMNO18].

In our implementation, q ≈ 2100 and each Rnq element can be represented by roughly 50 KB (see Table 4.1

for one specific set of parameters). The number of ciphertexts in the CRS is proportional to the size of the

R1CS system. For a system of 220 constraints, the CRS would contain around 221 ciphertexts; in this case,

the a’s in the CRS would be roughly 100 GB in size. Deriving these components from a PRF (or random

oracle) is necessary for concrete efficiency.

Noise distribution. We take our noise distribution χ to be a discrete Gaussian distribution χ = χs with

mean 0 and width s (Eq. (2.0.1)). Note that in the case of the ring R = Z[x]/(x2 + 1), the discrete Gaussian

distribution decomposes into the product of two independent discrete Gaussian distributions over the integers.

To efficiently sample from the discrete Gaussian distribution, we first truncate the distribution to the interval

[−6s, 6s]∩Z; with probability 1− 2−163, a sample from χs will fall into this interval. We then pre-compute a

table of the cumulative density function for the truncated discrete Gaussian distribution χ̃s. We use inversion

sampling to sample from χ̃s given a uniformly-random 64-bit value. This is similar to the approach used in

lattice-based key-exchange [BCD+16].

Big integer support. In our implementation, the ciphertext modulus q is around 100 bits. We implement

all of the homomorphic operations (over the ring Rq) using 128-bit arithmetic. Since we choose q to be a

power-of-two, we can just compute over Z2128 and defer the modular reduction to the end of the computation.

Moreover, the modular reduction just corresponds to dropping the (128− log q) most significant bits.

We use the compiler intrinsic type uint128 t for 128-bit arithmetic on a 64-bit architecture. Internally,

each 128-bit value is represented by two 64-bit words. Multiplication of a 128-bit value and a 64-bit value (i.e.,

scaling a ciphertext in Rq by a plaintext coefficient in Rp) requires just three x86-64 arithmetic operations

(2 multiplications and 1 addition). Our microbenchmarks for performing multiplications (Table 4.2) indicate

CHAPTER 4. IMPLEMENTATION AND EVALUATION 51

Time (s) Rate (muls/s)

Native (uint64 t) 2.1 4.68 · 109

Compiler Intrinsic (uint128 t) 6.8 1.47 · 109

Boost Fixed Precision (128-Bit) 6.8 1.47 · 109

Boost Fixed Precision (192-Bit) 53.6 0.19 · 109

Boost Fixed Precision (256-Bit) 61.9 0.16 · 109

GMP Multi-precision (mod 2128) 114.9 0.087 · 109

Table 4.2: Time and effective rate to compute 1010 multiplications between an n-bit integer (n = 64, 128, 192, 256)
and a 64-bit integer using different big-integer implementations on a 64-bit architecture. This models the primary cost
in the prover’s homomorphic evaluation.

that using the compiler intrinsic representation for 128-bit arithmetic is over 16× faster than using a general-

purpose multi-precision arithmetic library such as GMP for the same computation. Similarly, there is a

large increase in concrete cost (around 8-9×) when going from 128-bit arithmetic to 192-bit or 256-bit fixed

precision arithmetic (implemented in the Boost C++ libraries). Thus, being able to rely solely on 128-bit

arithmetic to implement our scheme confers considerable advantages when working on a standard 64-bit

architecture, and plays an important role for reducing the prover cost.

For instance, based on the cost breakdowns for CRS setup and prover complexity in Fig. 4.3 and taking

into consideration these microbenchmarks for elementary arithmetic operations, using a modulus even slightly

larger than 2128 would increase the prover cost by a factor of 2× to 3×. 3 An even larger penalty would

be incurred in CRS setup, where for the larger R1CS systems, the query encryption time (consisting of

matrix-vector products over Rq) is over 99% of the overall setup time. Using larger integers would increase

this by at least 8× to 9× based on our microbenchmarks.

4.3 Experiment Evaluation

We describe our implementation and experimental evaluation of our lattice-based zkSNARK from Section 3.4.

System implementation. We implemented our construction in C++. We use libsnark [Lab21c] and

libfqfft [Lab21a] to implement the linear PCP for R1CS satisfiability (Theorem 2.10). In particular,

we use the linear PCP implementation from libsnark (with the minor changes from Section 2.3), and

the implementation of the standard radix-2 FFT [CT65] (over a finite field) as well as the Bostan-Schost

algorithms for multipoint evaluation and interpolation on points from a geometric sequence [BS05] from

libfqfft. These building blocks suffice to implement our approach described in Section 4.1.

3This penalty is only from the increased cost of arithmetic operations. The actual overhead will be even higher due to the need
for larger lattice parameters to accommodate the larger modulus.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 52

Metrics and evaluation methodology. Following previous works [BCR+19, COS20, SL20], we measure

the performance of our system on R1CS systems with different number of constraints m (ranging from

m = 210 to m = 220). Like previous works, we keep the number of variables n in each R1CS system to be

roughly m (i.e., n ≈ m), and we consider statements of a fixed length k = 100. The statement length only

has a mild effect on the verification complexity (which is already very fast) and we do not focus on it in our

evaluation.

We run all of our experiments on an Amazon EC2 c5.4xlarge instance running Ubuntu 20.04. The

machine has 16 vCPUs (Intel Xeon Platinum 8124M at 3.0 GHz) and 32 GB of RAM. The processor supports

the AES-NI instruction set. We compile our code using gcc 9.3.0 for a 64-bit x86 architecture (which supports

the uint128 t compiler intrinsic for 128-bit integer arithmetic). All of our measurements are taken in

single-threaded setting.

General benchmarks. In Fig. 4.1, we compare the performance of different instantiations of our zkSNARK

on R1CS instances of varying sizes. We consider two instantiations using linear PCPs and vector encryption

over the extension field Fp2 (for p = 213 − 1 and p = 219 − 1), as well as two alternative instantiations

where we use a vector encryption over the base field Fp. For the latter instantiations, we consider both

the setting where we first compile a linear PCP over the extension field to a linear PCP over the base field

(Construction 3.1) and a second instantiation where we directly construct a linear PCP over the base field.

Across the board, the verifier time is small so we focus our discussion on the other metrics.

For our main instantiations (working over the extension field), the field size provides a trade-off in CRS

size vs. proof size. Using a larger field decreases the CRS size (fewer repetitions needed for soundness

amplification at the linear PCP level), but leads to longer proofs (due to larger parameters). Concretely, for

R1CS systems with 220 constraints, increasing the characteristic from p = 213 − 1 to p = 219 − 1 decreases

the CRS size by 2.8× (with a corresponding decrease in setup time), but increases the proof size by 1.2×.

The prover complexity is essentially the same in the two cases.

Turning to the case where we take a linear PCP over Fp2 and first apply Construction 3.1 to obtain a

linear PCP over Fp, we see that the proof size still remains comparable to the case where we work exclusively

over Fp2 . However, the CRS size is doubled (since Construction 3.1 increases the query length by the degree

of the field extension), as is the prover complexity. The advantage of this construction is that it is based on

standard lattices as opposed to module lattices, and thus, plausibly has better security.

Finally, if we consider the direct compilation of a linear PCP over the base field Fp, the proof size is

1.4–1.5× longer than the constructions that use the extension field.

Extension field vs. base field. To highlight the concrete performance improvement enabled by extension

fields, we compare our zkSNARKs over Fp2 with an instantiation over Fp (i.e., compile the linear PCP from

Theorem 2.10 over Fp using Construction 3.11 over Fp). The results are summarized in Fig. 4.2. We first

note that most of the instantiations over Fp require working over a ring Rq with q > 2128. As discussed in

CHAPTER 4. IMPLEMENTATION AND EVALUATION 53

210 212 214 216 218 220

100

101

102

103

104

105

R1CS Instance Size

C
R

S
S

iz
e

(M
B

)

210 212 214 216 218 220

15

20

25

30

R1CS Instance Size

P
ro

o
f

S
iz

e
(K

B
)

210 212 214 216 218 220

101

102

103

104

R1CS Instance Size

C
R

S
S

et
u

p
T

im
e

(s
)

210 212 214 216 218 220

10−1

100

101

102

103

R1CS Instance Size

P
ro

v
er

T
im

e
(s

)

210 212 214 216 218 220
0

0.5

1

1.5

R1CS Instance Size

V
er

ifi
er

T
im

e
(m

s)

p = 219 − 1 (LPCP over Fp2 ; Encrypt over Fp2) p = 213 − 1 (LPCP over Fp2 ; Encrypt over Fp2)

p = 219 − 1 (LPCP over Fp2 ; Encrypt over Fp) p = 5 · 225 + 1 (LPCP over Fp; Encrypt over Fp)

Figure 4.1: Performance comparison for different instantiations of our scheme for supporting R1CS instances of
different sizes. The solid lines correspond to our primary instantiations using a linear PCP over Fp2 in conjunction
with vector encryption over Fp2 . The dashed lines represent alternative instantiations using a vector encryption over
the base field Fp. In the case where the linear PCP is over the extension field and the vector encryption is over
the base field, we apply Construction 3.1 to first obtain a linear PCP over the base field. We also consider a direct
compilation from a linear PCP over Fp using a vector encryption scheme over Fp.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 54

Section 4.2 (and Table 4.2), this will incur considerable computational overhead for the big-integer arithmetic.

Even disregarding the added computational overhead, we see that for every choice of field size, working over

an extension field reduces both the CRS size and the proof size. Compared to the instantiation over Fp, the

CRS is 1.2× to 1.4× shorter and the proof is 1.5× to 2× shorter. Compared to an instantiation where we

rewrite elements of Fp as two digits of magnitude
√
p (Remark 3.20), the CRS is 2.2× to 2.4× shorter and

the proof is 1.2× to 1.5× shorter.

26 32 38 44 50 56
0

2

4

6

8

10

12

log |F|

C
R

S
S

iz
e

(G
B

)

26 32 38 44 50 56
0

40

80

120

160

log |F|
P

ro
o
f

S
iz

e
(K

B
)

F = Fp2 F = Fp F = Fp (two digits)

Figure 4.2: CRS size and proof size as a function of the field size |F|, where F is either a quadratic extension Fp2
or a base field Fp. The characteristic p is chosen so F has the prescribed size. Parameters based on instantiating
Construction 3.22 over F for an R1CS system with 220 constraints. For the F = Fp setting, we also consider the case
where each coefficient in the linear PCP is represented by two digits, each of size

√
p (see Remark 3.20). Elements

with a non-filled marker (and a dotted line) denote parameter settings where the modulus q exceeds 128 bits.

Microbenchmarks. For the setup and prover algorithms, we measure the concrete cost of each subcompo-

nent. We show the breakdown for the construction over Fp2 where p = 213 − 1 in Fig. 4.3 (the breakdowns

for other parameters are similar). For CRS generation, the cost is dominated by the time needed to encrypt

the linear PCP queries. Namely, for an R1CS system with 220 constraint, linear PCP query encryption

constitutes 99% of the CRS generation time.

For the prover computation, we consider the cost of the FFT (to compute QAP coefficients), the time

spent on CRS expansion (i.e., deriving the random ciphertext components a ∈ Rnq from the PRF key), and

the cost of the homomorphic operations for computing the encrypted response. The microbenchmarks show

that the majority (between 30% and 45%) of the time is spent on CRS expansion. For an instance of size

220, the expanded CRS is around 90 GB, and CRS expansion takes about 28s (note that we generate the

vectors on an as needed basis and do not need to store the full CRS in memory). Here, we can consider a

time-memory trade-off where part of the CRS is stored in memory and the rest dynamically derived from the

PRF. This can reduce the concrete prover costs by over 2×, but at the expense of needing significantly more

memory. The homomorphic operations represent about 28% of the prover cost and for the larger instances,

the FFTs represent about 30%. There is a jump in the cost of the FFTs when we switch to our modified FFT

procedure (Section 4.1) for implementing the prover computation (for settings where Fp2 cannot directly use

CHAPTER 4. IMPLEMENTATION AND EVALUATION 55

210 212 214 216 218 220
10−3

10−2

10−1

100

101

102

103

104

R1CS Instance Size

T
im

e
(s

)

CRS Setup (Total)

Key Generation

LPCP Query Gen.

LPCP Query Enc.

210 212 214 216 218 220

10−3

10−2

10−1

100

101

102

103

R1CS Instance Size

T
im

e
(s

)

Prover Time (Total)

LPCP Prover

CRS Expansion

Homomorphic Eval.

Figure 4.3: Cost breakdowns for CRS setup and prover for different R1CS instances. Measurements are based on
instantiating Construction 3.22 with a linear PCP and a vector encryption scheme over Fp2 where p = 213 − 1.

standard power-of-two FFTs because of lacking in primitive roots of unity). By extrapolating the performance,

our approach is about 7× slower than the basic radix-2 FFT. 4 When consider an R1CS system with 220

constraint over Fp2 where p = 219 − 1 (where there are sufficient roots of unity to invoke standard FFTs), the

FFTs, homomorphic operations, and CRS expansion account for 6% (3.2 s), 38% (21.4 s), and 56% (31.7 s)

of the total prover cost, respectively.

Zero-knowledge. We also measure the concrete performance of our zkSNARKs for different choices of

the zero-knowledge parameter κ. We provide the results in Fig. 4.4. In particular, when we work over Fp2
with p = 219 − 1, and consider the setting without zero-knowledge (i.e., setting κ = 0), the prover time

(for an R1CS instance of size 220) is just 34 s, which is 2.3× faster than the pairing-based construction of

Groth et al. [Gro16]; the proof size is 11.1 KB, which is 89× longer than the construction of Groth. Working

over a smaller base field, we can bring the proof size down to 8 KB, which is around 20× shorter than other

post-quantum candidates. This comes at the expense of a longer CRS (2.7 GB).

Classical vs. post-quantum security. If we instead instantiate our scheme to provide 128-bits of

classical security (instead of post-quantum security), we obtain about a 7% reduction in proof size. Realizing

post-quantum security requires using a larger module dimension n, but does not affect the modulus q. As

such, the size of the CRS is unaffected (since we are deriving the random component of each ciphertext from

4When p = 213 − 1, the field Fp2 contains a 214-th root of unity, so we can use standard radix-2 FFTs for R1CS instances

with up to 214 constraints. For instances of size 215, we use the approach from Section 4.1, but directly inline the multipoint
evaluation and interpolation on two points. For instances larger than 215, we use the general Bostan-Schost algorithms [BS05],
which introduces the 7× overhead.

CHAPTER 4. IMPLEMENTATION AND EVALUATION 56

0 20 40 60
0
1
2
3
4
5
6
7

ZK Parameter κ

C
R

S
S

iz
e

(G
B

)

0 20 40 60
0

8

16

24

32

ZK Parameter κ
P

ro
o
f

S
iz

e
(K

B
)

0 20 40 60
0

600

1,200
1,800
2,400
3,000
3,600

ZK Parameter κ

C
R

S
S

et
u

p
T

im
e

(s
)

0 20 40 60

30

60

90

ZK Parameter κ

P
ro

v
er

T
im

e
(s

)

p = 213 + 1 p = 219 + 1

Figure 4.4: Cost breakdowns as a function of the zero-knowledge parameter κ (i.e., the zero-knowledge distinguishing
advantage of any poly(λ) adversary is bounded by 2−κ + negl(λ)). All measurements taken for an R1CS instance over
Fp2 with 220 constraints (and compiled using vector encryption over Fp2).

a PRF). We provide more details in Table 4.3.

p Setting Size Time
CRS Proof Setup Prover

213 − 1
PQ 5.3 GB 16.4 KB 2215 s 68 s

Classical 5.3 GB 15.2 KB 2225 s 69 s

219 − 1
PQ 1.9 GB 20.8 KB 877 s 56 s

Classical 1.9 GB 19.2 KB 865 s 56 s

Table 4.3: Performance comparison of zkSNARKs instantiated using parameters for 128-bits of classical vs. 128-bits
of post-quantum security (denoted “PQ”). For all measurements, we consider R1CS instances over Fp2 with 220

constraints and compile using linear-only vector encryption over Fp2 .

Comparison with other schemes. Finally, we compare the performance of our scheme with the most

succinct pairing-based zkSNARK of Groth [Gro16] as well as several recent post-quantum zkSNARKs:

Ligero [AHIV17], Aurora [BCR+19], Fractal [COS20], and Gennaro et al. [GMNO18]. With the exception of

the lattice-based scheme of Gennaro et al. [GMNO18], we measure the performance on each scheme on the

same system. We use libsnark [Lab21c] for the implementation of Groth’s pairing-based construction [Gro16]

and libiop [Lab21b] for the implementations of Ligero [AHIV17], Aurora [BCR+19], and Fractal [COS20].

For each scheme, we consider the default implementation provided by the library. We note that these schemes

export different base fields for the R1CS which makes a direct comparison challenging. In our benchmarks,

we measure the performance of each scheme over their preferred field for an R1CS system with a fixed number

of constraints. We give our results in Table 1.1 and refer to Chapter 1 for further discussion.

Chapter 5

Conclusion

The work described in this thesis presents a new construction of lattice-based zkSNARK in the designated-

verifier preprocessing model, with a focus on shortening the concrete proof size. To briefly recall, our

construction followed the blueprint of Bitansky et al. [BCI+13] and Boneh et al. [BISW17]. We developed a

concretely-efficient lattice-based zkSNARK over Fp2 by combining a linear PCP with a linear-only vector

encryption scheme. We started by observing that the size of the modulus q scales with the plaintext modulus

p rather than the field size. By working over quadratic extension fields, we achieved a smaller q size, which

translates to a smaller proof size. We provided two instantiation by directly working over Fp2 or compiling

the underlying linear PCP over Fp2 to Fp and work over base field Fp. Relying on the linearly-only vector

encryption introduced by Boneh et al. [BISW17] and Peikert et al. [PVW08], we reduced the cost of expanding

the lattice ciphertexts, sparsified the valid ciphertexts, and enabled the linear PCP soundness amplification

with additive overhead rather than multiplicative one. We achieved zero-knowledge property from circuit

privacy by relying on the MLWE assumption (Definition 3.9) and the smudging lemma (Lemma 2.1). Moreover,

we used the modulus switching technique (Theorem 3.21) to decrease the size of q, which shorten the concrete

proof size by more than a factor of 2×. Finally, we implemented all instantiations of our constructions and

experiments with C++ using 128-bit arithmetic on a 64-bit architecture. We now propose some directions for

future research as follows:

Publicly-Verifiable zkSNARKs from Lattices. A limitation of our construction is that it does not

provide public verifiability, while our construction at the same time fail to imply a reusable soudness. As is

discussed in Remark 3.25, while the strong soundness property holds for our the underlying linear PCP, our

encryption scheme does not sastisfy the interactive linear-only assumption proposed by Bitansky et al. [BCI+13].

However, a publicly-verifiable zkSNARK is automatically guaranteed with multi-theorem soundness. Moreover,

publicly-verifiable zkSNARKs have a wider range of real world application (e.g., blockchain, digital currency)

than the designated-verifier ones. Designated-verifier zkSNARK is more focusing on the verifiable computation

57

CHAPTER 5. CONCLUSION 58

and computation oursourcing. Constructing publicly-verifiable zkSNARKs from standard lattice assumption

still remains to be an open problem, and it would be interesting to see follow up works focusing on a

concretely-efficient publicly-verifiable lattice-based zkSNARK.

Appendix A

The Power Diffie-Hellman

Assumption over Small Fields

In this section, we briefly recall the q-power Diffie-Hellman assumption introduced by Groth [Gro10] and

subsequently used as the basis for both pairing-based SNARKs [GGPR13, PHGR13] as well as lattice-based

SNARKs [GMNO18]. Following [GMNO18], we formulate the assumption with respect to a linear encoding

scheme, which captures both the pairing-based instantiation as well as the lattice-based instantiation.

Definition A.1 (Linear Encoding Scheme). A (secret-key) linear encoding scheme ΠEnc over a finite field F
is a tuple of algorithms ΠEnc = (Setup,Encode,Add) with the following properties:

• Setup(1λ)→ (pk, sk): On input the security parameter λ, the setup algorithm outputs a public evaluation

key pk and a secret encoding key sk.

• Encode(sk, x)→ encx: On input the secret key sk and an element x ∈ F, the encoding algorithm outputs

an encoding encx of x.

• Add(pk, (enc1, . . . , encd), (α1, . . . , αd))→ enc′: On input the public key pk, encodings enc1, . . . , encd and

coefficients α1, . . . , αd ∈ F, the add algorithm outputs a new encoding enc′.

The encoding scheme is d-linear if for all values k ≤ d, values x1, . . . , xk ∈ F, and all scalars α1, . . . , αk ∈ Fd,

Pr[Add(pk, (enc1, . . . , enck), (α1, . . . , αk)) ∈ S] = 1− negl(λ),

where (pk, sk)← Setup(1λ), enci ← Encode(sk, xi) for all i ∈ [k], and S denotes the support of Encode(sk,
∑
i∈[k] αixi).

Definition A.2 (q-Power Diffie-Hellman Assumption [Gro10, GMNO18]). Fix a parameter q ∈ N. A linear

encoding scheme ΠEnc = (Setup,Encode,Add) over a field F satisfies the q-power Diffie-Hellman assumption

59

APPENDIX A. THE POWER DIFFIE-HELLMAN ASSUMPTION OVER SMALL FIELDS 60

(q-PDH) if for all efficient adversaries A,

Pr[A(1λ, σ) ∈ S] = negl(λ),

where (pk, sk)← Setup(1λ), s
r← F, enci ← Encode(sk, si) for all i ∈ {0, . . . , 2q}, σ ← (pk, enc0, . . . , encq, encq+2, . . . , enc2q),

and S is the set of encodings in the support of Encode(sk, sq+1).

Lemma A.3 (q-PDH Assumption over Small F). Let ΠEnc = (Setup,Encode,Add) be a d-linear encoding

scheme over a finite field F. If d ≥ 2q, there exists an adversary that runs in time poly(q, log |F|) and wins

the q-PDH security game for ΠEnc with advantage 2q/ |F|.

Proof. The adversary A starts by choosing 2q distinct points z1, . . . , z2q ∈ F, and forms the polynomial

f(x) =
∏
i∈[2q](x− zi). Write this as f(x) =

∑2q
i=0 αix

i. Then, for all i ∈ [2q], zq+1
i = −α−1

q+1

∑
j 6=q+1 αjz

j
i .

Let (pk, enc0, . . . , encq, encq+2, . . . , enc2q) be the q-PDH challenge. Here, enci is an encoding of si, where

s ∈ F is sampled by the q-PDH challenger at the beginning of the experiment. Since d ≥ 2q, the adversary

can homomorphically compute an encoding of −α−1
q+1

∑
i6=q+1 αis

i. By the above analysis, if s ∈ {z1, . . . , z2q},
then this quantity is exactly sq+1. Since s is uniform and independent of z1, . . . , z2q, the probability that

s ∈ {z1, . . . , z2q} is exactly 2q/ |F|, which proves the claim.

Remark A.4 (q-Power Diffie-Hellman Assumption over Small F). When the q-PDH assumption is used for

constructing pairing-based zKSNARKs [Gro10, PHGR13, GGPR13], the size of the underlying field F is

super-polynomial (i.e., |F| = 2Ω(λ)). In this case, the attack in Lemma A.3 has negligible advantage. Indeed,

the q-PDH assumption plausibly holds over standard pairing-based groups, and holds unconditionally in the

generic (bilinear) group model [Gro10].

In the lattice-based zkSNARK of Gennaro et al. [GMNO18], they consider fields of polynomial size.

Unfortunately, Lemma A.3 shows that the q-PDH assumption is false for encoding schemes over fields of

polynomial size. For the specific instantiation proposed by Gennaro et al., q ≈ 216 and |F| ≈ 232, so

Lemma A.3 gives an attack on q-PDH with advantage 2q/ |F| = 2−15. Since their zkSNARK relies on hardness

of the q-PDH assumption for soundness, this means that their suggested parameters provide 15 bits of

soundness at best. To obtain 128-bits of soundness, they would either need to apply soundness amplification

(which increases all parameters by a factor of 128/15 ≈ 8.5) or instantiate their Regev-based encoding scheme

over a super-polynomial size field (which would also incur significant overhead).

In this work, we work over small (polynomial-size) fields and use parallel repetition (at the linear PCP

level) for soundness amplification (see Remark 2.12). This increases the number of linear PCP queries, but

since we encrypt vectors of queries, the overhead for parallel amplification is additive rather than multiplicative

in the number of repetitions. This yields a significantly more efficient construction over small fields compared

to the Gennaro et al. construction (see Table 1.1).

Bibliography

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives

and circular-secure encryption based on hard learning problems. In CRYPTO, pages 595–618,

2009.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:

Lightweight sublinear arguments without a trusted setup. In ACM CCS, pages 2087–2104, 2017.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and

Daniel Wichs. Multiparty computation with low communication, computation and interaction

via threshold fhe. In EUROCRYPT, pages 483–501, 2012.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols

for realistic adversaries. In TCC, pages 137–156, 2007.

[AP13] Jacob Alperin-Sheriff and Chris Peikert. Practical bootstrapping in quasilinear time. In CRYPTO,

pages 1–20, 2013.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In

CRYPTO, pages 297–314, 2014.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with

errors. J. Math. Cryptol., 9(3):169–203, 2015.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Gregory

Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In IEEE Symposium

on Security and Privacy, pages 315–334, 2018.

[BBC+17] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan Hamilis,

Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars Virza.

Computational integrity with a public random string from quasi-linear pcps. In EUROCRYPT,

pages 551–579, 2017.

61

BIBLIOGRAPHY 62

[BBC+18] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and Vadim

Lyubashevsky. Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits. In

CRYPTO, pages 669–699, 2018.

[BBFR15] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk. ADSNARK: nearly

practical and privacy-preserving proofs on authenticated data. In IEEE Symposium on Security

and Privacy, pages 271–286, 2015.

[BBHR18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive

oracle proofs of proximity. In ICALP, pages 14:1–14:17, 2018.

[BBHR18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and

post-quantum secure computational integrity. IACR Cryptol. ePrint Arch., 2018:46, 2018.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient

zero-knowledge arguments for arithmetic circuits in the discrete log setting. In EUROCRYPT,

pages 327–357, 2016.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and

bootstrapping for SNARKS and proof-carrying data. In STOC, pages 111–120, 2013.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko,

Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantum-secure

key exchange from LWE. In ACM CCS, pages 1006–1018, 2016.

[BCF+17] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev, and

Nicholas Spooner. Zero knowledge protocols from succinct constraint detection. In TCC, pages

172–206, 2017.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for

C: verifying program executions succinctly and in zero knowledge. In CRYPTO, pages 90–108,

2013.

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,

and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In IEEE

Symposium on Security and Privacy, pages 459–474, 2014.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with sublinear

verification from tensor codes. In TCC, pages 19–46, 2020.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasi-linear size zero

knowledge from linear-algebraic pcps. In TCC, pages 33–64, 2016.

BIBLIOGRAPHY 63

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct

non-interactive arguments via linear interactive proofs. In TCC, pages 315–333, 2013.

[BCL20] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-knowledge succinct arguments with a

linear-time prover. IACR Cryptol. ePrint Arch., 2020:1527, 2020.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable

one-way functions. In STOC, pages 505–514, 2014.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and

Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In EUROCRYPT, pages

103–128, 2019.

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge

via cycles of elliptic curves. In CRYPTO, pages 276–294, 2014.

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive

zero knowledge for a von neumann architecture. In USENIX Security Symposium, pages 781–796,

2014.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor

searching with applications to lattice sieving. In SODA, pages 10–24, 2016.

[BFH+20] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venkitasubramaniam,

Tiancheng Xie, and Yupeng Zhang. Ligero++: A new optimized sublinear iop. In ACM CCS,

pages 2025––2038, 2020.

[BFR+13] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty, Andrew J. Blumberg,

and Michael Walfish. Verifying computations with state. In SOSP, pages 341–357, 2013.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks from DARK compilers. In

EUROCRYPT, pages 677–706, 2020.

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a shuffle.

In EUROCRYPT, pages 263–280, 2012.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryp-

tion without bootstrapping. In ITCS, pages 309–325, 2012.

[BHH+15] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen, Louiza

Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn. SPHINCS:

practical stateless hash-based signatures. In EUROCRYPT, pages 368–397, 2015.

BIBLIOGRAPHY 64

[BIOW20] Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu. On succinct arguments and witness

encryption from groups. In CRYPTO, pages 776–806, 2020.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Lattice-based SNARGs and their

application to more efficient obfuscation. In EUROCRYPT, pages 247–277, 2017.

[BISW18] Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. Quasi-optimal snargs via linear

multi-prover interactive proofs. In EUROCRYPT, pages 222–255, 2018.

[BLNS20] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. A non-pcp

approach to succinct quantum-safe zero-knowledge. In CRYPTO, pages 441–469, 2020.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In

ASIACRYPT, pages 514–532, 2001.

[BS05] Alin Bostan and Éric Schost. Polynomial evaluation and interpolation on special sets of points.

J. Complex., 21(4):420–446, 2005.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short pcps with polylog query complexity. SIAM J. Comput.,

38(2):551–607, 2008.

[BSCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In TCC,

pages 31–60, 2016.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from

(standard) LWE. In FOCS, pages 97–106, 2011.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian

Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures

from symmetric-key primitives. In ACM CCS, pages 1825–1842, 2017.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas P.

Ward. Marlin: Preprocessing zksnarks with universal and updatable SRS. In EUROCRYPT,

pages 738–768, 2020.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation with

streaming interactive proofs. In Innovations in Theoretical Computer Science 2012, Cambridge,

MA, USA, January 8-10, 2012, pages 90–112, 2012.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In ASIACRYPT,

pages 1–20, 2011.

BIBLIOGRAPHY 65

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and

modulus switching for fully homomorphic encryption over the integers. In EUROCRYPT, pages

446–464, 2012.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and transparent

recursive proofs from holography. In EUROCRYPT, pages 769–793, 2020.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex

fourier series. Mathematics of computation, 19(90):297–301, 1965.

[CT14] Massimo Chenal and Qiang Tang. On key recovery attacks against existing somewhat homomor-

phic encryption schemes. In LATINCRYPT, pages 239–258, 2014.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. Cluster computing in zero knowledge. In

EUROCRYPT, pages 371–403, 2015.

[DFGK14] George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs

with applications to succinct NIZK arguments. In ASIACRYPT, pages 532–550, 2014.

[DFKP16] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno. Cinderella:

Turning shabby X.509 certificates into elegant anonymous credentials with the magic of verifiable

computation. In IEEE Symposium on Security and Privacy, pages 235–254, 2016.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,

and Damien Stehlé. Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans.

Cryptogr. Hardw. Embed. Syst., 2018(1):238–268, 2018.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic encryption in less than

a second. In EUROCRYPT, pages 617–640, 2015.

[FFG+16] Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga Ohrimenko, and Bryan

Parno. Hash first, argue later: Adaptive verifiable computations on outsourced data. In ACM

CCS, pages 1304–1316, 2016.

[FGP14] Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable computation on encrypted

data. In ACM CCS, pages 844–855, 2014.

[FHK+20] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin,

Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon:

Fast-fourier lattice-based compact signatures over ntru (specification v1.2). 2020.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and

signature problems. In CRYPTO, pages 186–194, 1986.

BIBLIOGRAPHY 66

[Gal13] Steven D Galbraith. Space-efficient variants of cryptosystems based on learning with errors.

2013.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

crypto.stanford.edu/craig.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs

and succinct nizks without pcps. In EUROCRYPT, pages 626–645, 2013.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog

overhead. In EUROCRYPT, pages 465–482, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit. In

CRYPTO, pages 850–867, 2012.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: interac-

tive proofs for muggles. In STOC, pages 113–122, 2008.

[GMNO18] Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. Lattice-based zk-snarks

from square span programs. In ACM CCS, pages 556–573, 2018.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive

proof-systems (extended abstract). In STOC, pages 291–304, 1985.

[Goo58] Irving John Good. The interaction algorithm and practical fourier analysis. Journal of the Royal

Statistical Society: Series B (Methodological), 20(2):361–372, 1958.

[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In CRYPTO, pages

192–208, 2009.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASIACRYPT,

pages 321–340, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT, pages

305–326, 2016.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable

assumptions. In STOC, pages 99–108, 2011.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: permutations over

lagrange-bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint

Arch., 2019:953, 2019.

[HS14] Shai Halevi and Victor Shoup. Algorithms in helib. In CRYPTO, pages 554–571, 2014.

crypto.stanford.edu/craig

BIBLIOGRAPHY 67

[IKO07] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short pcps. In

CCC, pages 278–291, 2007.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure

multiparty computation. In STOC, pages 21–30, 2007.

[ISW21] Yuval Ishai, Hang Su, and David J. Wu. Shorter and faster post-quantum designated-verifier

zksnarks from lattices. In ACM CCS, 2021.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In

STOC, pages 723–732, 1992.

[Lab21a] SCIPR Lab. libfqfft: C++ library for FFTs in finite fields. https://github.com/scipr-lab/

libfqfft/, 2021.

[Lab21b] SCIPR Lab. libiop: a c++ library for iop-based zksnarks. https://github.com/scipr-lab/

libiop, 2021.

[Lab21c] SCIPR Lab. libsnark: a c++ library for zkSNARK proofs. https://github.com/scipr-lab/

libsnark/, 2021.

[LMSV11] Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. On cca-secure somewhat

homomorphic encryption. In Selected Areas in Cryptography, pages 55–72, 2011.

[LMvdP15] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest lattice vectors faster

using quantum search. Des. Codes Cryptogr., 77(2-3):375–400, 2015.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors

over rings. In EUROCRYPT, pages 1–23, 2010.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices.

Des. Codes Cryptogr., 75(3):565–599, 2015.

[LSTW21] Jonathan Lee, Srinath Setty, Justin Thaler, and Riad Wahby. Linear-time zero-knowledge

SNARKs for R1CS. IACR Cryptol. ePrint Arch., 2021, 2021.

[MBKM19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge

snarks from linear-size universal and updateable structured reference strings. IACR Cryptol.

ePrint Arch., 2019:99, 2019.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key fhe. In

EUROCRYPT, pages 735–763, 2016.

https://github.com/scipr-lab/libfqfft/
https://github.com/scipr-lab/libfqfft/
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libsnark/
https://github.com/scipr-lab/libsnark/

BIBLIOGRAPHY 68

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical

verifiable computation. In IEEE Symposium on Security and Privacy, pages 238–252, 2013.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and compos-

able oblivious transfer. In CRYPTO, pages 554–571, 2008.

[Rad68] Charles M Rader. Discrete fourier transforms when the number of data samples is prime.

Proceedings of the IEEE, 56(6):1107–1108, 1968.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC,

pages 84–93, 2005.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs

for delegating computation. In STOC, pages 49–62, 2016.

[SBV+13] Srinath T. V. Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno, and Michael

Walfish. Resolving the conflict between generality and plausibility in verified computation. In

EuroSys, pages 71–84, 2013.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.

ACM, 27(4), 1980.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup. In

CRYPTO, pages 704–737, 2020.

[SL20] Srinath T. V. Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zksnarks. IACR

Cryptol. ePrint Arch., 2020:1275, 2020.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small

key and ciphertext sizes. In PKC, pages 420–443, 2010.

[SV14] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Des. Codes

Cryptogr., 71(1):57–81, 2014.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO, pages 71–89,

2013.

[Tho63] Llewellyn H Thomas. Using a computer to solve problems in physics. Applications of digital

computers, pages 44–45, 1963.

[WB15] Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting them.

Commun. ACM, 58(2):74–84, 2015.

BIBLIOGRAPHY 69

[WSR+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael Walfish.

Efficient RAM and control flow in verifiable outsourced computation. In NDSS, 2015.

[WTS+18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish. Doubly-efficient

zksnarks without trusted setup. In IEEE Symposium on Security and Privacy, pages 926–943,

2018.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn Song.

Libra: Succinct zero-knowledge proofs with optimal prover computation. In CRYPTO, pages

733–764, 2019.

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos

Papamanthou. A zero-knowledge version of vsql. IACR Cryptol. ePrint Arch., 2017:1146, 2017.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, 1979.

[ZWZZ20] Jiaheng Zhang, Weijie Wang, Yinuo Zhang, and Yupeng Zhang. Doubly efficient interactive

proofs for general arithmetic circuits with linear prover time. IACR Cryptol. ePrint Arch.,

2020:1247, 2020.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polynomial

delegation and its applications to zero knowledge proof. In IEEE Symposium on Security and

Privacy, pages 859–876, 2020.

	Abstract
	Acknowledgements
	Introduction
	Background
	Technical Overview
	Contributions
	Related Work
	Works Contained in this Thesis

	Preliminaries
	Circuit Satisfiability Problems
	Succinct Non-Interactive Arguments
	Linear PCPs

	Lattice-Based Succint Arguments
	Linear PCPs over Extension Fields
	Linear-Only Vector Encryption
	Candidate Linear-Only Vector Encryption
	zkSNARKs from Linear-Only Encryption

	Implementation and Evaluation
	Linear PCP Implementation
	Lattice-Based zkSNARK Implementation
	Experiment Evaluation

	Conclusion
	The Power Diffie-Hellman Assumption over Small Fields
	Bibliography

