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Introduction

When looking at cancer globally, it is the second leading cause of death. When it

comes to low and middle income countries, it accounts for more than half of all deaths.

Why are these areas with minorities suffering more than those that are more privileged?

There is a system in place that makes groups that are underprivileged and

underrepresented invisible to the standards of medical care being given to more privileged

areas. As this issue continues to grow, researchers are looking for ways to put medical

attention back on the groups who need it.

The goal of the technical Capstone project is to utilize machine learning clustering

algorithms to classify groups of cells as cancerous or benign. The technical research project

walks through this process with a database of p53 gene somatic mutations in human

tumors and cell lines. This was done entirely individually. The motivation behind this

research is to learn more about machine learning algorithms and create a foundational

basis as the world progresses towards a primarily ML environment. This research is

important because it can be used to determine if a person has cancer with a high accuracy

without performing extremely invasive procedures. Further, without invasive procedures,

this method of classification would allow those of lower socioeconomic groups to save

money on medical fees and save time that would have gone to recovery.

The STS topic being explored is loosely related to the technical research project that

was already completed. It discusses cancer and how it comes about in unfair manners

when looking at different types of people. It further evaluates how human created

environmental toxins overwhelmingly cause cancer in minority groups. The connection

here is the discussion of cancer in both projects. This topic is important in that it starts the

conversation on how to make minority groups visible when it comes to illnesses and how
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the illnesses are caused. It also allows for conversation around reform in the standards of

environmental toxin disposal.

Technical Topic

Clustering is a type of unsupervised learning that does not utilize the ground truth.

It is a way to group unlabeled samples. Similarity is measured in the data and then clusters

are formed where the data points in each collection have some like features that caused

the algorithm to place them together. Using clustering, the ground truth of a dataset can be

derived. This ground truth can in turn be used to make predictions based on the similar

features. The following research walks through this process with a database of p53 gene

somatic mutations in human tumors and cell lines. The motivation behind this research is

to learn more about machine learning algorithms and create a foundational basis as the

world progresses towards a primarily ML environment.

The first step of the technical research process was to determine which dataset to

use for this research project. I was interested in bioinformatics, so it was ideal for me to

use a dataset with some biological relationship. This ended up being a dataset on p53

cancer cells. Initially I had decided to use the p53 Mutants Data Set in the UCI Machine

Learning Repository (Lathrop, 2010), however this dataset did not have descriptive

attribute information which made it difficult to understand. I then moved to a Database of

p53 gene somatic mutations in human tumors and cell lines (Hainut et al., 1997). This

dataset, on the other hand, did not have a ground truth attribute which would describe

whether or not the tumor was cancerous. This is where the idea of doing clustering instead

of directly going to a machine learning algorithm came about.
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The most difficult part of this research project was formatting the data in a way that

could be easily read by the feature selection and machine learning algorithm, also known

as preprocessing. To format the data, a label encoder was utilized

(“sklearn.preproccessing”, n.d.). This normalized the labels and transformed non-numerical

labels to numerical labels so that the algorithm could process the data. This was done to

every attribute with non-numerical data.

Next, feature selection (Brownlee, 2014) was performed. The method chosen was

the Chi-Squared statistical test. This test belongs to a class of filter methods, a process to

assign a score to each feature and then rank the features by that particular score (Paul,

2020). The Chi-Squared test was run on all of the attributes and the scores were printed

out. The higher the score, the more important the attribute (“sklearn.feature_selection”,

n.d.). The following is a list of the features listed out from most important to least

important: Mutation_ID (column 0), Morphology (column 16), Sub-topography (column 15),

Topography (column 14), Topo_code (column 17), Putative stop (column 12), Mutant_codon

(column 5), Codon (column 3), WT_codon (column 4), Description (column 6), WT _AA

(column 8), Source (column 13), Mutant_AA (column 9), CpG (column 7), Frameshift (column

11), Splice (column 10), Location (column 2), Type (column 1).

After feature selection, a clustering algorithm was researched. I decided to perform

k-means clustering. To begin, the optimal number of clusters for the dataset needed to be

determined. I knew that I wanted the dataset to be split into two clusters to represent

cancerous and benign, however, I wasn’t sure if that would be efficient. To get around this

issue, the elbow method was performed (Dhiraj, 2019). This would plot a graph between

the number of clusters and the error value corresponding to that. Wherever the shape of
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the elbow was formed, was determined to be the optimal number of clusters for the

dataset. The elbow graph is shown below:

It is evident that the number of clusters the dataset should be split into, is two. This

is in accordance with the prediction that I had made. From here, k-means clustering was

carried out using a few lines of python code. This was done in a few ways - with all of the

features, the top ten features, the top eight features, and the top five features. As stated

earlier, the top features were determined through feature selection and the Chi-Square

test. The following are the cluster graphs for each k-means algorithm carried out:
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The last portion of this research assignment was to perform the Random Forest

machine learning algorithm using the data from the clustering as the ground truth (Navlani,

2018). What I did is add another column to the data representing which cluster each

sample belonged to. The ground truth in this case was taken from the k-means clustering

results that used all features. The data was split into training and testing sets. 70% of the

data was allotted for training and the remaining 30% was separated for testing. A gaussian

classifier was made and the model was trained using the ground truth data that was

already given. Then, predictions were made for the ground truth for the testing data, using

the trained model. After this, the accuracy of the model was calculated. It came out to be a

1.0 accuracy, meaning the trained model perfectly predicted which cluster the testing data

belonged to.

An issue that arose was the difficulty of understanding whether or not the Random

Forest algorithm was working correctly. It was assumed that it wasn’t because usually

datasets do not give an accuracy as high as was found for the Database of p53 gene

somatic mutations in human tumors and cell lines. To further determine if this was the

case, Random Forest was performed a couple more times on other datasets. The first of

which being the original p53 Mutants Data Set in the UCI Machine Learning Repository, as
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this included the ground truth already. Next, Random Forest was performed on the same

p53 Mutants Data Set with clustering results as the ground truth. Finally, it was performed

on the very well known Iris dataset (Fisher, 1988) to determine if the results of the previous

findings were significant.

The process of performing the Random Forest algorithm on the p53 Mutants Data

Set in the UCI Machine Learning Repository was very similar to what was done so far. First,

feature selection was performed with the Chi Square test, then clustering, and finally the

algorithm was used to make predictions. The top ten features of the UCI dataset turned out

to be columns 2522, 2972, 3580, 4477, 4616, 4105, 4476, 2548, 4819, and 4098. As stated

earlier, this dataset did not have in-depth attribute information, so the columns are being

referred to by numbers instead of names. After this, clustering was performed to see

where the data points would lie if there was no information on the ground truth given. The

graph is below:

It can be seen that the clusters are somewhat overlapping. The purple points belong

to one cluster, while the red points belong to another. It is not clear which cluster means

that the p53 mutants are active or inactive. The results from the clustering were later used

as a ground truth for the Random Forest algorithm. It was predicted that the accuracy of
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the algorithm would decrease due to the overlapping points. However, after using

clustering as the ground truth, when 70% of the samples were trained and the other 30%

were tested, the Random Forest algorithm still gave 98% accuracy in its prediction. When

the given ground truth in the p53 Mutants Data Set was used, the accuracy of the

prediction under the same constraints (70% trained and 30% were tested) was 99%.

Because these accuracies were so high, I needed to perform Random Forest on a

known dataset with a known accuracy to determine whether the algorithm was working

correctly. I decided to use the Iris dataset. With the Random Forest algorithm, it is known

that this dataset has a 93% accuracy. After running Random Forest on my machine with the

dataset using 70% of the samples for training and 30% for testing, the accuracy was indeed

93%.

This led me to believe that the Random Forest algorithm does work. It can also be

concluded that the data in the Database of p53 gene somatic mutations in human tumors

and cell lines is extremely well separated. This is the same idea for the p53 Mutants Data

Set in the UCI Machine Learning Repository. Meaning, the algorithm itself is not faulty, it is

simply the nature of the datasets which allowed the algorithm to make predictions at such

a high accuracy. Therefore, it is important to note that all previous findings stated in this

paper are valid and correct.

Throughout this research, I have learned a large amount of information on machine

learning. I came into this project with very limited knowledge on what machine learning is,

how it works, and why it is performed. Now I can answer these three questions and more

with a very in-depth approach. By performing feature selection, clustering, and the Random

Forest algorithm in my own environment, my understanding was furthered in a very

significant way. Prior to this project, I had not even realized that many machine learning

8



algorithms were already written and it is simply a few lines of code that need to be written

to actually apply the algorithm to a dataset. Moreover, it is now evident that the hardest

part of machine learning is modifying the dataset in a way that it is uniform. This in itself

took me a couple of days to carry out. I am confident that I can use machine learning in the

future whether it is in a job or a school project. I am very grateful to have had the

opportunity to pursue this and learn more about a very interesting field of computer

science with the mentorship of Professor Basit.

Other uses that may come of this research is using the same model to perform

random forest on the different types of k-means clustering. Meaning, using feature

selection and the ground truth that was found from k-means clustering of 10, 8, and 5

features, how does the accuracy of the model differ? I am also interested in using different

machine learning algorithms such as logistic regression, association rule mining, and more

to determine which is a more accurate predictor. Further, I can see what difference k-fold

cross validation makes on the model.

STS Topic

Social injustice can come about in many different ways. In a world so greatly

emphasizing equality, it is difficult not to see ways that the system put in place ostracizes

different types of people, while empowering other ones.

There are some groups that are more greatly affected by harmful environmental

variables that may lead to higher rates of cancer. This contributes to the thesis of what

groups of people take on the burdens of toxins leading to cancer and how certain

groups are made invisible when it comes to medical diagnoses.

The framework being looked at through this research project is that of risks and
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standards. This framework helps us understand how standards and risks benefit those of

more powerful social groups, or the upper class, as compared to the underprivileged by

treating the goals of the underprivileged as insignificant. In this case, there is an invisibility

of risks because the standards to test for certain groups are nonexistent. This is

agnotology, an intentional creation of ignorance.

There are health care disparities when it comes to people of color and lower-income

families compared to others. Individuals that belong to these groups have a high risk of

being uninsured and therefore unable to afford cancer treatment. With this lack of

affordability comes poorer quality of care. For example, Black adults are more likely to have

negative healthcare experiences than White adults. All of this combined plays into the fact

that people of color have higher rates of illnesses than Whie people (Ndugga, 2021).

In particular, with respect to cancer in the early 2000’s, African American women

were found to be three times more likely than Whites to present advanced stages of Breast

cancer. Further, Blacks with Colorectal cancer were more than 25% less likely to undergo

major procedures as compared to their White counterparts. Another study showed that

with lung cancer, almost 50 excess Black deaths (as compared to Whites) could be

attributed to differences in surgery rates. It was concluded that in many of these cases,

there was an absence of physician recommendation for surgery (Geiger, n.d.). Although

these figures are somewhat outdated, the trend continues in today’s time. This leads to a

discussion of agnotology. When it comes to testing and diagnoses, physicians are

intentionally creating ignorance. There are no standards that physicians are being held to,

meaning people of color are suffering due to lack of testing and a decrease in quality care.

This creates an invisibility of risks.  For example, people of color are being diagnosed later

on in the course of their illness, the risks are invisible up until that point due to the lack of
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standards addressing racial and ethnic disparities.

How these illnesses are caused is another problem. One example of this is in

Canada’s Sydney Tar Ponds, the home place of the indigineous Mi''kmaw people and a

waste site for coal, tar, and cancer causing PCBs. Because of this, the cancer rate of the

Mi''kmaw people was 45% higher than the average in Nova Scotia (Waldron, 2018). There

was a lack of standards, allowing corporations to dump in a region with no pollution

control. This greatly comes about because the indigineous people did not have a large say

in the government. They were made invisible. Later on, the Mi''kmaw people were made

visible through public effort, although it was through association. Meaning, the issue wasn’t

addressed due to the higher cancer rate, but it was acknowledged because lobsters in the

harbor contained large amounts of toxic materials. After this, millions of dollars were put in

to clean the Tar Ponds. It is interesting to see that the struggle of the indigenous people

wasn't directly addressed.

Further, in Louisiana's “cancer Alley,” also known as Donaldsonville, contaminants

make it so that those who drink from the Mississippi River have a 2.1 times chance of

getting rectal cancer and those who live within a mile of chemical facilities have a 4.5 times

chance of getting lung cancer. The majority of people getting cancer in Donaldsonville from

oil spills, dumping, shuck burning, chemical leaks, and more, are extremely low income,

high poverty, and high illiteracy African Americans. Much of the toxin dumping in this area

comes from the ease in which waste discharge applications are approved by the

Environmental Control Commision. Residents of Donaldsonville have also noted that while

trying to organize in opposition to the environmental condition, chemical industries have

been known to buy out those that are protesting. Residents have no choice but to accept

due to the poverty they live in (Singer, 2011). This is notable because it shows the power of
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corporations in Louisiana when it comes to the law. Standards are bent to accommodate

the priorities of industries, while overlooking the residents of Donaldsonville due to their

lack of resources, funding, education, and political power. Moreover, the industries and

government have downplayed the effect of human made toxins on the health of residents

in the “cancer Alley.” Sickness has been attributed to the lifestyle choices of residents,

including eating habits, smoking, exercise, etc. It is evident that this divide has swayed

residents into believing that the environmental risk they face is a natural feature, it is

normal and there is no large danger to it. This has created additional ignorance in the

community, making the underprivileged living in Donaldsonville even more invisible to risks

they are facing due to a lack of standards (Singer, 2011).

With all of these issues in healthcare from environmental injustice to the unfair

treatment of minorities, it is difficult to create change and combat the wrongs being carried

out by more privileged groups. A very important way to do this is through education and

increasing awareness. Many people lack knowledge in these areas and are therefore

ignorant and part of the problem. By educating the public, bigger actors can take part and

speak on behalf of those who are overlooked. Furthermore, problems where residents

themselves are in denial of risk, like with “cancer Alley”, will be less prevalent. When it

comes to medical disparities, education of physicians accomplishes the same thing. By

making sure all physicians are aware of racial biases, they can then work towards

mitigating prejudice when it comes to their work. More than this, it is important for the

standards to be changed at the base. Through education, people will be able to band

together and press the government and controlling corporations to put in the effort to

push for better standards, or at least compensate the people affected by injustice. More

specific to racial disparities in health care, education may not be enough. One solution to
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this is to push physicians to individuate - share power with the patient, develop a

relationship, and see them as an individual (Penner et al., 2014). There should also be a

very large emphasis on clear communication. Lastly, the issue comes back to knowledge.

Information within health care systems should be aggregated to make clear what bias is

really taking place. This information should be analyzed and released to the public, so that

all parties know and can work towards a benchmark to decrease the bias.

Next Steps

Since the technical research capstone project was already completed, the next steps

will apply only to the STS research topic. The following steps will be taken:

● Evaluate Prospectus after submission (look for problem areas)

● Complete a draft of the research paper by February/March 2022

● Submit the research paper by April/May 2022

Besides this tentative schedule, with my further research I will be looking into more

solutions to the issues of environmental injustice and racial healthcare disparity. These will

be elaborated on and will allow for a more concrete response/action to the research

questions stated above. I may also choose to look into other illnesses besides cancer to see

if there is a correlation between causes through human-made toxins. Some resources that

can be used for this are in the References section below - (Geiger, n.d.), (Taylor & Francis,

n.d.), and (Dillon, 2016).
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