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ABSTRACT

Humans inherently use multimodal data, such as verbal utterances and nonverbal gestures, to
interact with others in shared physical environments. To develop AI systems to seamlessly interact
with humans, it is also essential to understand how people behave and interact in these environ-
ments. Understanding human behavior and interactions (verbal and nonverbal) is paramount to
ensuring seamless interactions between human and AI systems. Most recent approaches to under-
standing human behavior and interactions use unimodal data, such as using only visual data or only
verbal utterances. For example, the majority of existing works solely use verbal utterance to com-
prehend embodied interactions and visual data to perceive human behavior. However, relying on
unimodal data leads to single-point failure and can not ensure a robust perception of human action
and comprehension of human interactions. For example, visual occlusion or visual data from low
light conditions can limit the model to accurately recognize activities. Similarly, a verbal utterance
is insufficient to determine an object if a visual scene contains two identical objects. Therefore, a
robust model of understanding human interactions needs to incorporate multimodal information.

Developing these multimodal models for multiple tasks of perceiving human-embodied in-
teractions requires addressing several fundamental challenges. For example, extracting salient
representations from missing and noisy data modalities. Fusing, aligning, and extracting comple-
mentary representations from multiple heterogeneous modalities is challenging due to the disparate
feature distributions and feedforward learning architecture. Similarly, learning salient representa-
tions from multiple verbal and visual perspectives needs to be addressed to effectively comprehend
multimodal embodied interactions with verbal and nonverbal gestures. In my Ph.D. research, I de-
veloped robust models to perceive human behavior and embodied interaction using multimodal
data to address these challenges.

First, we have developed multimodal learning models to robustly perceive human actions using
multimodal sensor data, such as visual, depth, skeleton, and physical sensor data. These models
can extract salient and complementary representations from heterogeneous modalities. Moreover,
our proposed models can prioritize the modalities and extract salient representations from miss-
ing and noisy sensor modalities, whereas prior models could not effectively extract salient rep-
resentations from heterogeneous and noisy sensor data. Additionally, we have developed a novel
cooperative multitask learning model that can help to extract complementary multimodal represen-
tations using auxiliary information. Our extensive experimental results suggest that our proposed
multimodal learning models outperform state-of-the-art models in recognizing human actions.

Second, comprehending embodied interaction can be studied by designing several fundamental
tasks, such as understanding referring expression, comprehending embodied question answering,
and determining perspective in an interaction. As collecting real-world data is costly and the exist-
ing simulator could not generate human multimodal interactions (verbal and nonverbal gestures),
we have developed an embodied simulator, which we can use to generate synthetic multimodal
human interactions and datasets. We can use these generated datasets to train and diagnose models
for comprehending interactions with verbal utterances and nonverbal gestures.
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The existing models of comprehending human interactions are designed to understand only
verbal interaction from a single perspective and use the visual scene as context. However, people
use multiple verbal and visual perspectives in real-world interactions (speaker and observer per-
spectives). Moreover, our experimental analysis suggests that perspective awareness in the learning
models is crucial to comprehend embodied interactions. We have developed a perspective-aware
learning model to understand human instructions with verbal utterances and non-verbal gestures.
Our experimental analysis suggests that our proposed model can effectively extract salient multi-
modal representations to comprehend embodied interactions.

Additionally, the existing models and datasets of visual question answering use the visual scene
as a context to answer verbal questions. However, humans use multimodal expressions (verbal
utterances and nonverbal gestures) to ask questions in real-world settings. We have developed
an embodied question answering (EQA) dataset and designed new tasks to develop models for
comprehending question-answering interactions in embodied settings. As the existing models are
designed to answer verbal questions, these models are less suitable for comprehending EQA tasks.
We have developed learning models to extract aligned representations from multiple verbal and
visual perspectives to answer questions with multimodal expressions.

While we can generate diverse synthetic interactions using our simulators, these interactions
may differ from real-world human interactions, such as variations in pointing gesture and eye
gaze patterns, different camera angles, object arrangements, and diverse environments. Thus, we
have curated a large-scale embodied interaction dataset with multimodal data (verbal utterances
and nonverbal gestures) in real-world settings. We have evaluated baseline multimodal learning
models on this real-world dataset. The existing multimodal model aligns multiple representations
and thus loses information across modalities. To address this challenge, we have proposed a rein-
forced residual representation-based multimodal learning model for extracting robust multimodal
representations to comprehend human interactions in real-world settings. Our experimental results
suggest that our proposed model with guided attention-based reinforced residual representation
outperforms the baseline visual-language models in various challenging evaluation settings.

Our multimodal learning models and datasets can help to develop and evaluate models for var-
ious tasks, such as embodied question answering, visual-language-based navigation, and human-
robot interactions. These models can be extended to improve human interactions in both virtual
and real-world settings, including providing improved user experiences for people with disabili-
ties. Furthermore, these models can enhance the user experience of AI assistants, like Amazon
Alexa and Microsoft Cortana, strengthening their applications in online shopping, video gaming,
and personalized online learning. Lastly, the findings from our works, proposed models, bench-
marks, datasets, and embodied simulators can serve as a valuable tool for the research community,
fostering the development and evaluation of learning multimodal models for Human-AI Interaction
systems.
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Chapter 1
INTRODUCTION

Humans and most animals utilize a multisensory system (visual, non-visual, and somatosensory) to
discern events, perceive actions, and comprehend interactions [1]–[4]. Multisensory systems pro-
vide complementary stimuli, which allows for a more holistic perception [5], [6]. Similar intuition
guides the multimodal machine learning community to extract comprehensive feature representa-
tions for improving various applications, such as activity recognition [7]–[11], gesture recognition
[12]–[14], affective-states recognition [15], video classification [16], [17], image captioning [18],
[19], referring expression comprehension [20]–[25], and visual question answering [26], [27].

Figure 1.1: (a) Carry-Light and (b) Carry-Heavy activities have similar visual features. (a & b)
However, these activities have distinct gyroscope and acceleration data. Prioritizing salient modal-
ities (Gyroscope and Acceleration, in this case) while extracting complementary multimodal rep-
resentations can help to recognize activities accurately. (c) Similarly, extracting complementary
representation from noisy and non-noisy sensor data modalities can help models to robustly rec-
ognize activities. (Data samples are drawn from MMAct dataset [8]).

Moreover, multimodal data can help to develop robust models for human-AI interaction sys-
tems, such as humans interacting with robots to handover a particular object and humans interact-
ing with an AI assistant to buy a product (e.g., Alexa, Cortana, Google Home, and Siri) [28]. Two
fundamental components of these human-AI interactions (HAI) systems are to perceive human
behavior (i.e., what is human doing?) and comprehend human instructions (i.e., what is human
instructing?). These components enable to development of robust HAI systems and effectively
improve the user experience and the usability of the HAI systems in the embodied settings.

First, perceiving human behaviors enables autonomous systems to understand human actions
and act accordingly to ensure seamless interactions. Although modern autonomous systems, such
as robots, are equipped with various sensors, robust human activity recognition (HAR) remains a
fundamental challenge [29]. This is partly because fusing multimodal sensor data efficiently for
HAR is challenging. Therefore, many researchers have focused on recognizing human activities by
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(a) Multimodal interaction (b) Human-AI assistant interaction using multimodal context

Figure 1.2: Multimodal communication forms, such as verbal utterances and non-verbal gestures
(gaze and pointing gestures), ensures seamless human-AI interaction to improve user experience.
(a) Human is instructing a robot using verbal instruction (Pick up the small mug), pointing gestures,
and gaze. As the environment contains two small mugs, the robot can use pointing gestures to
localize the appropriate objects. (b) A user is trying to find a product with the help of an AI
assistant (e.g., Google Home). The AI assistant may need to utilize multimodal context (verbal
and visual) to understand the user instruction and assist accordingly.

leveraging on a single modality, such as visual, pose or wearable sensors [30]–[34]. However, HAR
models reliant on unimodal data often suffer a single-point feature representation failure. For ex-
ample, visual occlusion, poor lighting, shadows, or complex background can adversely affect only
visual sensor-based HAR methods. Similarly, noisy data modalities can reduce the performance of
HAR methods solely depending on these sensors [9], [35].

Several approaches have been proposed to overcome the weaknesses of the unimodal methods
by fusing multimodal sensor data that can provide complementary information to achieve a robust
HAR [9], [35]–[39]. Distinct activities can be mistakenly classified as the same when relying on
unimodal sensor data that provides similar information. For example, the activities related to car-
rying a light and a heavy object look similar from visual modalities; however, they have distinct
physical sensor data (i.e., Gyroscope & Acceleration) (Fig. 1.1-a & b). Additionally, if a modality
contains noisy data then the non-noisy data modalities can provide complementary information to
accurately recognize activities using multimodal sensor data (Fig. 1.1-c). Thus, extracting salient
and complementary representations from multiple data modalities can help develop a robust per-
ception system to ensure seamless interactions with autonomous systems.

Second, humans inherently use multimodal communication forms in shared physical spaces,
such as verbal and non-verbal (e.g., pointing gestures and gaze) modalities. Understanding multi-
modal human instructions (verbal and non-verbal) enables the development of situated human-AI
interaction (HAI) systems (Fig. 1.2). To ensure seamless interactions between human and AI sys-
tems, we need to develop robust models for HAI systems to comprehensively understand embodied
interactions with multimodal signals (verbal utterance and nonverbal gestures) in the shared physi-
cal space. Several tasks have been designed to comprehend multimodal interactions. For example,
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(a) Early (b) Late (c) Intermediate (d) Recurrent Fusion

Figure 1.3: Comparison between various multimodal fusion approaches (Early, Late and Interme-
diate) and Recurrent Fusion (M1: Modality one, M2: Modality two, and M3: Modality three)

predicting the referred object’s existence in the scene (scene understanding), identifying an object
and its attributes (e.g., color), determining whether verbal utterance and nonverbal gestures refer
to the same object (relation grounding), and comprehending from which perspective (e.g., speaker
or observer) the object has been described (perspective grounding). These diverse sets of tasks
with different complexity help to train robust models to comprehend multimodal instruction in
embodied settings.

1.1 Challenges

Several fundamental challenges must be addressed to develop multimodal models for extracting
salient and complementary representation from heterogeneous, missing, and noisy data modali-
ties. Learning salient multimodal representations enables robust perceiving human actions and
comprehension of human verbal and non-verbal interactions in embodied settings. I have planned
to address these fundamental challenges in my dissertation. I described these challenges in this
section.

1.1.1 Multimodal Representation Learning for Perceiving Human Behavior

Fusing Heterogeneous Multimodal Data: In multimodal representation learning, it is crucial to
fuse relevant features from various heterogeneous modalities (visual, skeleton, and physical sen-
sors) [9], [12], [28], [38], [40], [41]. Predominantly, multimodal fusion has been studied from
three different perspectives: early, intermediate, and late fusion [28], [38], [42] (see Fig. 1.3).
Early fusion combines unimodal raw features, which limits the capturing of distinct feature char-
acteristics, as early-stage fusion loses the unimodal feature distribution [7], [26], [38]. Late fusion
encodes modalities independently, but the absence of cross-modal interaction restricts each modal-
ity from obtaining multimodal context [7], [12], [16], [38]. Intermediate fusion allows cross-modal
interactions to fuse mid-level features for extracting multimodal representation. In addition to its
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advantages over other fusion approaches, intermediate fusion is also manifested in the neural mul-
tisensory system of animals [1], [43], [44].

Although several intermediate fusion approaches have been proposed [3], [7], [8], [28], [40],
there remain crucial challenges in obtaining robust multimodal representation. Most importantly,
heterogeneous modalities representing the same phenomenon may have disparate characteristics,
making it challenging to align them. For example, visual modalities (RGB and Depth) have differ-
ent feature characteristics and distributions than wearable sensor modalities (Acceleration, Gyro-
scope etc.). Similarly, fusing continuous representations from visual modalities to discrete repre-
sentation from language-related modalities is challenge due to the disparate characteristic of data
and unimodal feature encoders.

Learning Complementary Multimodal Representation: In real-world settings, some of
the modalities may provide misaligned or noisy data, making it challenging to obtain a robust
multimodal representation. One approach to resolve these issues is to align multimodal sensor
data. In the literature, learning models have been proposed to align multimodal sensor data in two
ways: explicit and implicit alignment [28]. Explicit alignment approaches temporally align the
raw sensor data, whereas implicit alignment approaches align intermediate feature representations.
However, explicit alignment of raw sensor data in temporal space cannot ensure alignment in
representation space due to the heterogeneity of the modalities, which may lead to sup-optimal
representations [26], [28]. Temporal alignments may not mitigate the impact of noise in the input
data.

On the other hand, in implicit alignment approaches, one modality aligns representation in-
dependently without knowing the representations from other modalities. Thus, these alignment
approaches can lead to sub-optimal multimodal representations. Moreover, state-of-the-art im-
plicit alignment models have predominantly been used deterministic attention methods to extract
salient representations from noisy heterogeneous sensor data [10], [11]. A deterministic attention
approach learns a point estimate for the attention weights, limiting the multimodal learning model
from aligning features and modeling uncertainty which are particularly crucial for extracting fea-
tures from noisy data. However, if we can model the attention weights as a variational distribution,
it can help to implicitly align unimodal representations by imposing the same prior distribution
over the attention weights. Furthermore, learning an attention distribution allows the multimodal
learning approaches to model uncertainty when fusing the unimodal representations and guides the
unimodal learning models to extract salient representations.

Aligning and Refining Multimodal Representations: Moreover, state-of-the-art multimodal
learning approaches combine the information in a feed-forward manner, restricting each modality
from aligning and refining representation. In these approaches, unimodal feature encoders extract
representations independently without observing feature representations from other modalities.
However, if these encoders have information about other modalities, they can utilize that to align
and iteratively refine the unimodal features to generate robust representations. This alignment ap-
proach can iteratively change (refine) the unimodal representations to attain aligned distributions
(Fig. 1.4), which can lead to robust multimodal representations. For example, the representations
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Figure 1.4: Unimodal representation distributions before (top) and after (bottom) the representation
alignment process. Representation alignments process helps to attain similar distributions for all
modalities to produce robust multimodal representations.

from noisy modalities can be iteratively refined to align their distributions to non-noisy modalities’
distributions, which may lead the model to generate robust multimodal representations. More-
over, many state-of-the-art feed-forward fusion approaches [7], [16] utilized short-range spatial-
temporal features, which hinder the performance in several learning tasks, such as activity recog-
nition, that requires capturing long-range temporal multimodal features.

1.1.2 Comprehending Embodied Interactions using Multimodal Data

Comprehending Multimodal Embodied Interactions: Comprehending referring expressions
has been generally studied in the form of the spatial relation grounding task [20], [21], [26], [27],
[45]–[54]. This task involves identifying whether the verbal utterance of the spatial relationships
between objects holds in a visual scene [20], [21]. However, the exclusion of nonverbal signals
in the model makes the problem different from how people interact naturally in shared physical
spaces [55]–[63].

Developing learning models to comprehend multimodal referring expressions requires a large
and diverse dataset, which is time-consuming, laborious, and costly to curate in real-world set-
tings. A few datasets have been developed to capture embodied multimodal referring expressions,
which involve referring to an object using verbal utterances and nonverbal cues (pointing ges-
ture and gaze) [24], [64]. However, these datasets have several crucial limitations. The primary
limitation of existing datasets is that the nonverbal interactions are captured solely from an exo-
centric perspective (exo, ego, and top view denotes perspectives from an actor, the observer, and
overhead, respectively). As comprehending embodied referring expression requires perspective-
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taking, which is the awareness of the actor’s and observer’s point of view in shared interactions,
the lack of perspective-awareness in these datasets can degrade the model’s performance. Addi-
tionally, multiple views can help identify the referred object, which may be partially occluded from
one view but visible from another. Moreover, in human-human interactions, learning perspective
is used innately to attend to salient parts of interactions. Let’s assume an actor is requesting an
observer verbally to “pick up the left apple”. This verbal expression can be interpreted differently
from different perspectives, where the “left apple” from the exo view can be interpreted as the
“right apple” from the ego view. Learning where the actor is looking and pointing can help iden-
tify the appropriate object in these scenarios. These data samples with multiple views enable the
model to learn perspective-taking to ensure seamless and natural interactions in embodied settings.

Comprehending Perspective-aware Multimodal Embodied Interactions: Several recent
works have attempted to address the task of comprehending referring expressions by incorporating
nonverbal gestures with verbal utterances in embodied settings (known as embodied referring ex-
pression comprehension (E-REF)) [24], [64]. However, some crucial issues remain unaddressed in
these recent works. Particularly, most embodied referring expression datasets only capture human
interactions from an observer perspective with exo-centric views. People innately use an under-
standing of perspective, which can be observed in how humans interchangeably use perspectives
from the speaker and the observer when referring to objects during interactions. The existing
models learn to comprehend referring expressions using single verbal and visual perspectives.

Recent works studied REF and E-REF by designing two separate tasks: a relation grounding
task [21], [65]–[67] and an object grounding task [20], [24], [68], [69]. In a non-embodied setting,
the relation grounding task is defined as determining whether a verbal utterance appropriately
describes the spatial relationships between objects in a visual scene. In an embodied setting, this
relation grounding task is defined as determining whether a verbal utterance and nonverbal signals
(gazes and pointing gestures) refer to the same object. The object grounding task aims to identify
a referred object using a verbal utterance and nonverbal gestures. These tasks have many use-cases
in real-world interactions. For example, if a person verbally describes an object but nonverbally
points to another object, an AI-driven agent should identify these incoherent multimodal cues,
using the relation grounding task, and request clarification. In another case, if a person points to
an object and asks, “what is the object to the right of the black hat?”, then the AI agent can use the
object grounding task to identify the referred object. Thus, training models on these two related
tasks (relations and objects grounding) and the previously mentioned perspective grounding task
can enable achieve seamless human-AI interactions (HAI).

Embodied Question Answering (EQA): In the litterateur, EQA is designed in two ways.
First, embodied interactions are defined from an agent’s perspective, such as a virtual robot, where
the agent perceives its environment and navigates it to answer verbal questions [70]. Second,
embodied interaction refers to multimodal human expressions, where a human interacts with the
environment using verbal utterances and nonverbal gestures [24], [25], [71]. Adopting the later
definition, we define EQA tasks as questioning using multimodal human expressions (verbal and
nonverbal gestures) in embodied settings. For example, an EQA task can involve pointing to an
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object and asking “what is that object?”.
We need to have a large and diverse dataset to develop robust models for EQA. Several syn-

thetic and real-world datasets have been developed for Visual Question Answering (VQA) [22],
[23], [72]–[74] and Embodied Question Answering (EQA) [70], [75]–[78]. One of the crucial
drawbacks of these datasets is that these datasets have been developed in non-embodied settings,
where the visual scene does not contain humans, and thus nonverbal gestures (gaze and pointing
gestures) are not used for asking a question. A few embodied question answering datasets have
been developed where an agent (e.g., virtual robot) finds the answer to a verbal question from the
environment. However, in these datasets, humans and nonverbal gestures are not involved in the
interactions. In real-world settings, humans predominantly use nonverbal gestures with verbal ut-
terances to interact with others. Additionally, ample evolutionary evidence indicates that nonverbal
gestures have been predominantly used in real-world settings compared to verbal communication
forms [55]–[63], [79], [80].

Moreover, nonverbal gestures provide complementary information to seamlessly understand-
ing a verbal utterance. Suppose a visual scene contains two balls with different colors, and we
verbally ask a person to find the object’s color. In that case, nonverbal signals can help disam-
biguate this interaction and assist that person in seamlessly determining the referred object’s color.
Similarly, nonverbal gestures can provide complementary information to the model for compre-
hending embodied interactions with multimodal signals (verbal utterance and nonverbal gestures).
Thus, the lack of nonverbal interactions in the VQA and EQA datasets makes these datasets less
suitable for developing and evaluating models for comprehending question-answering (QA) related
interactions with multimodal signals.

1.2 Thesis Statement

Multimodal data, such as visual, verbal, and physical sensors, provide complementary informa-
tion enabling autonomous systems to accurately perceive human actions and interactions in shared
physical settings. While human’s natural communication form involves verbal and nonverbal ges-
tures, state-of-the-art models and datasets solely consider verbal utterances to comprehend human
interactions in the shared physical system. Moreover, developing robust models to extract com-
plementary representations from multimodal sensor data for multiple tasks is challenging due to
the heterogeneous multimodal feature distributions and missing and noisy data modalities. Allow-
ing the models to capture inter-modality interactions, recurrently fusing multimodal information,
and cooperatively training related tasks enables the multimodal machine learning models to learn
salient and complementary multimodal representations and improve the performance of multiple
tasks. These models can ensure robust perception for autonomous systems and enable seamless
interactions with humans.
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1.3 Completed Work

1.3.1 Multimodal Representation Learning

To extract salient and complementary multimodal representations from heterogeneous multimodal
data, we have developed several multimodal machine models [7], [10], [11], [15], [81] and con-
ducted extensive experimental analysis on multimodal human activity datasets.

• We have developed a multimodal human activity recognition algorithm, called HAMLET:
Hierarchical Multimodal Self-attention human-activity recognition algorithm [7]. HAMLET
first extracts the spatial-temporal salient features from the unimodal data for each modality.
HAMLET then employs a novel multimodal attention mechanism, called HAT, for disentan-
gling and fusing the unimodal features. These fused multimodal features enable HAMLET
to achieve higher human-activity recognition accuracy. The modular approach to extract
spatial-temporal salient features from unimodal data allows HAMLET to incorporate pre-
trained feature encoders for some modalities, such as pre-trained ImageNet models for RGB
and depth modalities. This flexibility enables HAMLET to incorporate deep neural network-
based transfer learning approaches. Additionally, the proposed novel multimodal fusion ap-
proach (MAT) utilizes a multi-head self-attention mechanism, which allows HAMLET to
be robust in learning weights of different modalities based on their relative importance in
human-activity recognition from data.

• We have developed a multimodal feature learning method for human-activity recognition,
called Multi-GAT (Graphical Attention-based Hierarchical Multimodal Representation Learn-
ing Approach) [10]. Multi-GAT first extracts modality-specific salient spatial-temporal fea-
tures by utilizing a unimodal attention approach. Multi-GAT then employs a multimodal
mixture-of-experts model, called Multi-MoE, to disentangle and extract salient unimodal
features. The Cross-GAT module, a novel message-passing based multimodal graphical
attention approach, enables inter-modality feature interaction while generating complemen-
tary multimodal features. Most importantly, Cross-GAT captures cross-modal relationships
to extract robust features, which aids a robot in recognizing human activities accurately. Fi-
nally, a task learning network uses the multimodal features for human-activity recognition.

• We have developed a novel Memory-Augmented Variational Attention-based Multimodal
Representation learning approach, called MAVEN [81]. MAVEN aims to learn a comple-
mentary multimodal representation from heterogeneous modalities to perceive human activ-
ities accurately. To extract complementary multimodal representation, MAVEN first incor-
porates feature encoders to produce modality-specific spatial features. These features are
populated into memory banks that are used to capture long-term spatial-temporal feature re-
lationships. MAVEN then employs a novel Recurrent Memory-Augmented Attention-based
Feature Alignment Approach (ReMATE) that iteratively refines and aligns unimodal features
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by observing memory banks from other modalities. To the best of our knowledge, we are the
first to propose a memory-augmented recurrent feature alignment approach for multimodal
fusion. Finally, we introduce a Variational Attention-based fusion approach (VAT), which
fuses the unimodal features to produce a robust multimodal representation. We incorporate
a variational inference loss that helps to align unimodal features in the multimodal feature
space. The final multimodal representation is then used for a given learning task (i.e, activity
recognition).

1.3.2 Multitask Learning-based Guided Multimodal Representation Learning

In the literature, several multitask learning models have been proposed, which have shown promis-
ing results in learning shared representations across different tasks [82]–[86]. For example, Liu
et al. [87] proposed a multitask attention model for learning task-aware shared representations.
Moreover, Sun et al. [88] designed an algorithm to learn feature sharing patterns across tasks for
maximizing shared representations. The overall goal of these approaches is to compress a multitask
model by maximizing the shared representations among the competitive tasks.

Despite these advancements, there is still a need for more effective and efficient methods for
multimodal data fusion and activity recognition using multitask models. To address this gap,
we propose a novel Cooperative Multitask Learning-based Guided Multimodal Fusion Approach
(MuMu) for human-activity recognition [11]. In MuMu, we have designed a multitask learning
approach that involves learning two cooperative tasks: an auxiliary and a target task. First, MuMu
extracts activity-group-specific features for activity-group recognition (auxiliary task). Second, the
activity-group-specific features direct our Guided Multimodal Fusion Approach (GM-Fusion) to
extract robust multimodal representations for recognizing activities (target task). Here, both tasks
work cooperatively, where the auxiliary task guides the target task to extract complementary mul-
timodal representations appropriately. The unique aspect of our approach is the cooperative nature
of multiple-task learning, where the auxiliary task guides the target task to extract complementary
multimodal representations appropriately.

1.3.3 Comprehending Embodied Referring Expressions

We have developed a novel embodied simulator, CAESAR, to generate large-scale datasets of re-
ferring expressions. To the best of our knowledge, CAESAR is the first simulator to generate multi-
modal referring expressions with verbal utterances and nonverbal gestures in a virtual environment.
CAESAR has three novel aspects which differentiate it from other synthetic data generation sys-
tems (e.g., CLEVR [23] and Kubric [89]). First, CAESAR simulates scenarios in which verbal
utterances and nonverbal cues (pointing gesture and gaze) refer to objects in an embodied setting.
We have collected real human pointing gesture data using an OptiTrack motion capture system
[90] and emulated the same behaviors in CAESAR by incorporating a new stochastic deictic ges-
ture generation approach. Second, CAESAR renders multiple views from different perspectives,
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such as ego-, exo-, and top-view, that can aid in training models to learn different perspectives for
comprehending multimodal referring expressions. Third, taking inspiration from previous work
[21], we have designed a module in CAESAR to generate contrastive samples, where the virtual
human is pointing to an object while verbally describing a different object.

One of the primary goals of developing CAESAR is to democratize the data generation pro-
cess so that researchers without simulator development experience can have complete control of
generating a diverse dataset to train and evaluate a learning model. Similar to existing data gener-
ation systems, the development of our simulator requires extensive knowledge of motion planning
and game engine. Thus, to make it accessible to everyone, we have developed a tool that enables
researchers to generate diverse samples without any simulator development experience. Using this
tool, we have developed two large-scale datasets, CAESAR-XL and CAESAR-L, for understand-
ing multimodal referring expression in an embodied virtual environment.

Perspective-aware Embodied Referring Expression Comprehension: we have developed a
novel perspective-aware multitask model, PATRON, for the relation and object grounding task us-
ing multimodal cues. In PATRON, we have designed two cooperative tasks, one for the perspective
grounding (the auxiliary task) and another for the relation and object grounding (the target task). In
the auxiliary task module, PATRON learns disentangled representations, the auxiliary task-specific
and task-guidance representations, to learn perspective grounding. In the target task module, PA-
TRON uses our proposed guided fusion approach that utilizes task-guidance representations from
the auxiliary task as prior information to extract guided multimodal representations. PATRON
uses a self-attention-based fusion approach to extract supplementary target task-specific represen-
tations. Finally, PATRON fuses task-guided and target task-specific disentangled representations
to learn relation and object grounding.

1.3.4 Comprehending Embodied Question Answering

We have extended our embodied simulator (CAESAR) to develop a novel EQA dataset, EQA-
HuMu, for training and diagnosing models in comprehending EQA. We can use our extended
simulator to procedurally generate nonverbal interactions (gaze and pointing gestures) and verbal
utterances in multiple embodied environments for different EQA tasks. EQA-HuMu has four novel
contributions over existing EQA and VQA datasets. First, to the best of our knowledge, we are
the first to use nonverbal gestures (gaze and pointing gestures) and verbal utterances to formulate a
question that needs to be answered using the visual context in the embodied environment. Second,
we have included multiple perspectives in the verbal utterances, which can aid in developing robust
models. Third, we have captured the nonverbal interactions in the embodied setting using multiple
views to reduce the model’s verbal and visual perspective bias. Finally, we have designed eight
new EQA tasks to appropriately understand embodied interaction with multimodal signals (verbal
utterance and nonverbal gestures).

Several visual-language representation learning models have been developed for VQA tasks
[26], [27], [91], [92]. Although these models work adequately for VQA tasks, these models were
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designed to learn from a single visual and verbal perspective. I have developed a multimodal learn-
ing model that can align representations from multiple visual perspectives using vector quantiza-
tion (VQ) to learn a unified concept. Additionally, VQ can disentangle the visual representations
and enable the fusion of discrete verbal representations to produce salient multimodal representa-
tions. Moreover, this model uses a vector quantization approach to disentangle and align multiview
representations. These representations are used to learn EQA tasks. We have developed baseline
models by extending the existing visual-language models. We have evaluated our proposed model
and baseline models on our EQA dataset to compare the performance of EQA tasks.

1.3.5 Comprehending Embodied Interactions in Real-World Environments

We have developed a diverse dataset, REMO, to comprehend human interaction in real-world
settings. We have collected the dataset in diverse indoor and outdoor settings with varying envi-
ronment attributes, such as lighting conditions, object arrangement, and environment appearance.
We have used Azure Kinect DK devices mounted on a mobile robot to capture the embodied in-
teractions from different angles. We installed this device on Ohmni Robotic system to capture
the ego view from the robot. Moreover, we have collected gaze and ego views from a human
perspective using PupilCore SmartGlass. We have collected data in two settings: constrained and
unconstrained settings. In constrained settings, we explicitly give detailed instructions to the par-
ticipants to use gaze, pointing gestures, and verbal utterances to describe an object. However, In
unconstrained settings, we did not instruct the participants to describe an object.

Finally, we have developed a robust model to comprehend human interactions in real-world set-
tings using the insights from training models on synthetic datasets. We have designed a language-
guided multimodal representation learning model to extract salient representation for comprehend-
ing referring expressions from multiple perspectives. We have trained this model on our real-world
dataset and conducted an extensive experimental analysis to investigate whether verbal and nonver-
bal gestures can help to comprehend embodied interactions. Finally, we have investigated whether
the findings from training models on synthetic datasets align with those from training models on
real-world datasets. These experimental analyses give valuable insights into developing models
for comprehending embodied interactions in real-world settings.

1.4 Contributions

My dissertation has two main components: perceiving human behavior and comprehending em-
bodied interactions using multimodal data (Fig. 1.5). First, we have developed several multimodal
representation learning models addressing the issues of perceiving human behavior robustly. For
example, fusing heterogeneous multimodal data (IROS-2020 [7]), learning complementary multi-
modal representations (IEEE RAL-2021 [10] and AAAI-2022 [11]), recurrently fusing multimodal
representations (IEEE Transaction Multimedia-2022), and cooperative multitask based multimodal
representation learning for robustly perceive human actions (AAAI-2023 [11]). Second, we have
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Figure 1.5: dissertation progress in addressing the challenges of perceiving human behavior and
comprehending embodied interactions using multimodal data.

developed a simulator (NeurIPS-2022 [25]), datasets (NeurIPS-2022 [25] and AAAI-2023 [71]),
benchmark models (NeurIPS-2022 [25]), and perspective-aware multimodal multitask represen-
tation learning model (AAAI-2023 [Under Review] [71]) to comprehend embodied interactions
using multimodal signals, such as verbal utterances and nonverbal gestures (gaze and pointing
gestures). Based on these works, we have developed an embodied question-answering model and
datasets to ensure seamless interactions in embodied settings. In this work, we address the chal-
lenge of fusing continuous visual and discrete language representations by discretizing the visual
representations using a vector-quantization approach. Moreover, We have developed embodied
interaction datasets to train and evaluate models for comprehending human embodied interactions
in real-world settings. Finally, we have proposed a novel reinforced residual representation-based
multimodal model to comprehend embodied referring expressions from multiple perspectives.

1.5 Broader Impact

Our proposed multimodal learning models and datasets have a wide range of applicability in dif-
ferent domains, such as embodied question answering, visual-language-based navigation in em-
bodied settings, and human-robot interactions. Our models can be extended to understand human
verbal and nonverbal interactions in virtual and real-world settings. These models will also help
to improve human interactions in virtual settings. Additionally, our developed multimodal learn-
ing models can be extended to understand the instructions from people with disabilities to ensure
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improved user experience and the usability of the assistance systems. As people with disabilities
use various combinations of modalities for interactions and communications, our instruction un-
derstanding approach utilizing multiple modalities (visual, audio, language, and gesture) is crucial
to ensure effective assistance in the healthcare and home environment.

Additionally, our proposed learning framework can aid AI assistants (e.g., Amazon Alexa,
Microsoft Cortana, Google Home, and Apple Siri) with multimodal interactions (voice and vi-
sual) in improving the user experience for various applications, such as online shopping assistants,
video gaming, and personalized online learning assistants for students. For example, in the online
shopping platform, multimodal human instruction and product content understanding can ensure
seamless user interaction and thus strengthen product recommendations. Similarly, the online
educational platform can employ the content understanding approach to gauge the students’ en-
gagement and provide personalized learning recommendations. Finally, we believe our proposed
multimodal human interaction simulator can help the research community to develop and evaluate
learning models for HAI systems and move this research field forward.
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Chapter 2
MULTIMODAL REPRESENTATION LEARNING FOR PERCEIVING HUMAN BEHAV-
IOR

2.1 Attention-based Multimodal Representation Learning

2.1.1 Proposed Modular Learning Method

In this section, we present our proposed multimodal human-activity recognition method, called
HAMLET: Hierarchical Multimodal Self-attention based HAR. We present the overall architec-
ture in Fig. 2.1. In HAMLET, the multimodal features are encoded into two steps, and those
features are then used for activity recognition as follows:

• At first, the Unimodal Feature Encoder module encodes the spatial-temporal features for
each modality by employing a modality-specific feature encoder and a multi-head self-
attention mechanism (UAT).

• In the second step, the Multimodal Feature Fusion module (MAT) fuses the extracted uni-
modal features by applying our proposed novel multimodal self-attention method.

• These computed multimodal features are then utilized by a fully connected neural network
to calculate the probability of each activity class.

2.1.1 Unimodal Feature Encoder

The first step of HAMLET is to compute a feature representation for data from every modality.
To achieve that, we have designed modality-specific feature encoders to encode data from differ-
ent modalities. The main reasoning behind this type of modality-specific modular feature encoder
architecture is threefold. First, each of the modalities has different feature distribution and thus
needs to have a different feature encoder architecture. For example, the distribution and repre-
sentation of visual data differ from the skeleton and inertial sensor data. Second, the modular
architecture allows incorporating unimodal feature encoders without interrupting the performance
of the encoders of other modalities. This capability enables the modality-specific transfer learn-
ing. Thus we can employ a pre-trained feature encoder to produce robust feature representation for
each modality. Third, the unimodal feature encoders can be trained and executed in parallel, which
reduces the computation time during the training and inference phases.

Each of the unimodal feature encoders is divided into three separate sequential sub-modules:
spatial feature encoder, temporal feature encoder, and unimodal attention module (UAT). Before
applying a spatial feature encoder, at first the whole sequence of data Dm = (dm1 , d

m
2 , ..., d

m
T ) from

modality m is converted into segmented sequence Xm = (xm
1 , x

m
2 , ..., x

m
Sm) of size B×Sm×Em,
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Figure 2.1: HAMLET: Hierarchical Multimodal Self-Attention based HAR.

where B is the batch size, Sm and Em are the number of segments and feature dimension for
modality m respectively. In this work, we represent the feature dimension Em for RGB and depth
modality as (channel(Cm) × height(Hm) × width(Wm)), where Cm is the number of channels
in an image.

2.1.1.1.1 Spatial Feature Encoder We used a temporal pooling method to encode segment-
level features instead of extracting the frame-level features, similar to [37]. We have implemented
the temporal pooling for two reasons: first, as the successive frames represent similar features, it is
redundant to apply spatial feature encoder on each frame, which increases the training and testing
time. By Utilizing the temporal pooling, HAMLET reduces its computational time. Moreover,
this polling approach is necessary to implement HAMLET on a real-time robotic system. Second,
the application of recurrent neural networks for each frame is computationally expensive for a long
sequence of data. We used adaptive temporal max-pool to pool the encoded segment level features.

As our proposed modular architecture allows modality-specific transfer learning, we have
incorporated the available state-of-the-art pre-trained unimodal feature encoders. For example,
we have incorporated ResNet50 to encode the RGB modality. We extend the convolutional co-
occurrence feature learning method [93] to hierarchically encode segmented skeleton and inertial
sensor data. In this work, we used two stacked 2D-CNNs architecture to encode co-occurrence fea-
tures: first 2D-CNN encodes the intra-frame point-level information and second 2D-CNN extract
the inter-frame features in a segment. Finally, spatial feature encoder for modality m produces a
spatial feature representation F S

m of size (B × Sm × ES,m) from segmented Xm, where ES,m is
the spatial feature embedding dimension.

2.1.1.1.2 Temporal Feature Encoder After encoding the segment level unimodal features, we
employ recurrent neural networks, specifically unidirectional LSTM, to extract the temporal fea-
ture features Hm = (hm

1 , h
m
2 , ..., h

m
s ) of size (B×Sm×EH,m) from F S

m, where EH,m is the LSTM
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hidden feature dimension. Our choice of unidirectional LSTM over other recurrent neural network
architectures (such as gated recurrent units) was based on the ability of LSTM units to capture
long-term temporal relationships among the features. Besides, we need our model to detect human
activities in real-time, which motivated our choice of unidirectional LSTMs over bi-directional
LSTMs.

2.1.1.1.3 Unimodal Self-Attention Mechanism The spatial and temporal feature encoder se-
quentially encodes the long-range features. However, it cannot extract salient features by employ-
ing sparse attention to the different parts of the spatial-temporal feature sequence. Self-attention
allows the feature encoder to pay attention to the sequential features sparsely and thus produce a
robust unimodal feature encoding. Taking inspiration from the transformer-based multi-head self-
attention methods [94], UAT combines the temporal sequential salient features for each modality.
As each modality has its unique feature representation, the multi-head self-attention enables the
UAT to disentangle and attend salient unimodal features.

To compute the attended modality-specific feature embedding F a
m for modality m using uni-

modal multi-head self-attention method, at first we need to linearly project the spatial-temporal
hidden feature embedding Hm to create query (Qm

i ), key (Km
i ) and value (V m

i ) for head i in the
following way,

Qm
i = HmWQ,m

i (2.1)
Km

i = HmWK,m
i (2.2)

V m
i = HmW V,m

i (2.3)

Here, each modality m has its own projection parameters, WQ,m
i ∈ REH,m×EK

,WK,m
i ∈ REH,m×EK ,

and W V,m
i ∈ REH,m×EV , where EK and EV are projection dimensions, EK = EV = EH,m/hm,

and h is the total number of heads for modality m. After that we used scaled dot-product softmax
approach to compute the attention score for head i as:

Attn(Qm
i , K

m
i , V m

i ) = σ

(
Qm

i K
mT

i√
dmk

)
V m
i (2.4)

headmi = Attn(Qm
i , K

m
i , V m

i ) (2.5)

After that, all the head feature representation is concatenated and projected to produce the
attended feature representation, F a

m in the following way,

F a
m = [headm1 ; ...;head

m
h ]W

O,m (2.6)

Here, WO,m is the projection parameters of size EH,m×EH , and the shape of F a
m is (B×Sm×EH),

where EH is the attended feature embedding size. We used the same feature embedding size
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Figure 2.2: MAT : Multimodal Attention-based Feature Fusion Architecture.

EH for all modalities to simplify the application of multimodal attention MAT for fusing all the
modality-specific feature representation, which is presented in the next section 2.1.1.2. However,
our proposed multimodal attention based feature fusion method can handle different unimodal
feature dimensions. Finally, we fused the attended segmented sequential feature representation F a

m

to produce the local unimodal feature representation Fm of size (B × EH). We can use different
types of fusion to combine the spatio-temporal segmented feature encodings, such as sum, max, or
concatenation. However, the concatenation fusion method is not a suitable approach to fuse large
sequences, whereas max fusion may lose the temporal feature embedding information. As the
sequential feature representations produced from the same modality, we have used the sum fusion
approach to fuse attended unimodal spatial-temporal feature embedding F a

m,

Fm =
∑
s∈Sm

F a
m,s (2.7)

2.1.1 Multimodal Feature Fusion

In this work, we developed a novel multimodal feature fusion architecture based on our proposed
multi-head self-attention model, MAT: Multimodal Atention based Feature Fusion, which is de-
picted in Fig. 2.2. After encoding the unimodal features using the modular feature encoders,
we combine these feature embeddings Fm in an unordered multimodal feature embedding set
FGu

= (F1, F2, ..., FM) of size (B × M × DH), where M is the total number of modalities.
After that, we fed the set of unimodal feature representations FGu into MAT, which produces the
attended fused multimodal feature representation FGa .

The multimodal multi-head self-attention computation is almost similar to the self-attention
method described in Section 2.1.1.1.3. However, there are two key differences. First, unlike en-
coding the positional information using LSTM to produce the sequential spatial-temporal feature
embedding before applying the multi-head self-attention, in MAT, we combine all the modalities
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Table 2.1: Performance comparison (mean top-1 accuracy) of multimodal fusion methods in HAM-
LET on UT-Kinect dataset [96]

Number of Heads Fusion Method
UAT MAT MAT-SUM MAT-CONCAT

1 1 87.97 88.50
1 2 93.50 97.45
2 2 92.50 93.00
2 4 93.50 94.50

feature embeddings without encoding any positional information. Also, MAT and UAT mod-
ules have separate multi-head self-attention parameters. Second, after applying the multimodal
attention method on the extracted unimodal features, we used two fusion approaches to fused the
multimodal features:

• MAT-SUM: extracted unimodal features are summed after applying the multimodal attention

FG =
M∑

m=1

FGa

m (2.8)

• MAT-CONCAT: in this approach the attended multimodal features are concatenated

FG = [FGa

1 ;FGa

2 ; ...;FGa

M ] (2.9)

2.1.1 Activity Recognition

Finally, the fused multimodal feature representation FG is passed through a couple of fully-
connected layers to compute the probability for each activity class. For aiding the learning process,
we applied activation, dropout, batch normalization in different parts of the learning architecture
(see the section 2.1.2.2 for the implementation details). As all the tasks of human-activity recog-
nition, which we addressed in this work, are multiclass classification, we trained the model using
cross-entropy loss function, mini-batch stochastic gradient optimization with weight decay regu-
larization [95].

loss(y, ŷ) =
1

B

B∑
i=1

yi log ŷi (2.10)

2.1.2 Experimental Setup

2.1.2 Datasets

We evaluated the performance of our proposed multimodal HAR method, HAMLET, using three
human-activity datasets: UTD-MHAD [97], UT-Kinect [96], UCSD-MIT [9].
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UTD-MHAD [97] human activity dataset consists of a total of 27 human actions covering
from sports, to hand gestures, to training exercises and daily activities. Eight people repeated each
action for four times. After removing the corrupted sequences, this dataset contains a total of 861
data samples.

UT-Kinect [96] dataset contains a total of ten indoor daily life activities (e.g., walking, standing
up, etc.) with three modalities: RGB, depth, and 3D skeleton. Each activity was performed two
times by each person. Thus there were a total of 200 activity samples in this dataset.

UCSD-MIT [9] human activity dataset consists of eleven sequential activities in an automotive
assembly task. Each assembly task was performed five people, and each person performed the task
for five times. This dataset contains there modalities: 3D skeleton data from a motion capture
system, and sEMG and IMUs data from a wearable sensor.

2.1.2 Implementation Details

Spatial-temporal feature encoder: We incorporated pre-trained ResNet50 for encoding the RGB
and depth data [98]. We applied max pooling with a kernel size of five and stride of three for
pooling segment level features. We extended the co-occurrence [93] feature extraction network
to encode segmented skeleton and inertial sensor features. Finally, for capturing the temporal
features, we used a two-layer unidirectional LSTM. We used embedding size 128 and 256 for
UCSD-MIT [9] and UT-Kinect [96] spatial-temporal features embedding respectively.

Hyper-parameters and optimizer: We utilized the pre-trained ResNet architecture for encod-
ing RGB and depth modality. However, in the case of a co-occurrence feature encoder (skeleton
and inertial sensor), we applied BatchNorm-2D, ReLu activation, and Dropout layers sequentially.
After encoding each unimodal features, we applied ReLu activation and Dropout. Finally, in MAT,
after fusing the multimodal features, we used BatchNorm-1D, ReLu activation, and Dropout se-
quentially. We varied the dropout probability between 0.2 − 0.4 in different layers. In multi-head
self-attention for both unimodal and multimodal feature encoders, we varied the number of heads
from one to eight. We train the learning model using Adam optimizer with weight decay regu-
larization option [95] and cosine annealing warm restarts [99] with an initial learning rate set to
3e−4.

Training environment: We implemented all the parts of the learning model using Pytorch-1.4
deep learning framework [100]. We trained our model in different types of GPU-based computing
environments (GPUs: P100, V100, K80, and RTX6000).

2.1.2 State-of-the-art Methods and Baselines

We designed two baseline HAR methods and reproduce a state-of-art HAR method to evaluate the
impact of attention method in encoding and fusing multimodal features:

• Baseline-1 (NSA) does not use the attention mechanism for encoding unimodal or fusing
multimodal features.
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Table 2.2: Performance comparison (mean top-1 accuracy) of multimodal HAR methods on UT-
Kinect dataset [96]

Method Fusion Type Top-1 Accuracy (%)

NSA
SUM 54.34
CONCAT 52.31

USA
SUM 55.82
CONCAT 54.34

KEYLESS [37] (2018) CONCAT 94.50

HAMLET MAT-SUM 95.56
MAT-CONCAT 97.45

• Baseline-2 (USA) only applies multi-head self-attention to encode unimodal features but
fuses the multimodal embedding without applying attention. This baseline method is similar
to the self-attention based multimodal HAR proposed in [36].

• Keyless Attention [37] employed an attention mechanism to encode the modality-specific
features. However, it did not utilize attention methods to fuse the multimodal features, in-
stead those were concatenated.

2.1.2 Evaluation metrics

To evaluate the accuracy of HAMLET, the Keyless Attention model [37], the NSA, and the USA
algorithms, we performed leave-one-actor-out cross-validation across all the trials for each person
on each dataset. Similar to the original evaluation schemes, we reported activity recognition accu-
racy for the UT-Kinect [96] and the UTD-MHAD datasets [97], and F1-score for the UCSD-MIT
dataset [9]. To evaluate HAMLET, the Keyless attention method, and baseline methods on UT-
Kinect and UTD-MHAD datasets, we used RGB and skeleton data. We leveraged skeleton, IMUs,
and sEMG modalities on the UCSD-MIT dataset.

2.1.3 Experimental Results and Discussion

2.1.3 Multimodal Attention-based Fusion Approaches

We first evaluated the accuracy of two multimodal attention-based feature fusion approaches of
HAMLET: MAT-SUM and MAT-CONCAT. We also varied the number of heads used in UAT and
MAT steps to determine the optimal configuration of these values.

Results: We evaluated UAT and MAT attention methods as well as the fusion approaches
(MAT-SUM and MAT-CONCAT) on the UT-Kinect dataset [96], presented in Table 2.1. We used
the RGB and skeleton modalities and reported top-1 accuracy by following the original evaluation



48

Table 2.3: Performance comparison (mean top-1 accuracy) of multimodal fusion methods on UTD-
MHAD dataset [97]

Method Year Top-1 Accuracy (%)
Kinect & Inertial [97] 2015 79.10

DMM-MFF [101] 2015 88.40
DCNN [102] 2016 91.2

JDM-CNN [103] 2017 88.10
S2DDI [104] 2017 89.04
SOS [105] 2018 86.97

MCRL [106] 2018 93.02
PoseMap [107] 2018 94.51

HAMLET (MAT-CONCAT) - 95.12

scheme. The results suggest that the MAT-CONCAT fusion method showed the highest top-1
accuracy (97.45%), with one and two heads in UAT and MAT methods, respectively.

Discussion: The results suggest the concatenation-based fusion approach (MAT-CONCAT)
performed better than the summation-based fusion approach (MAT-SUM). Because the MAT-
CONCAT allows MAT to disentangle and apply attention mechanisms on the unimodal features to
generate robust multimodal features for activity classification. On the other hand, the sum-based
fusion method merged the unimodal features into a single representation, which makes it difficult
for MAT to disentangle and apply appropriate attention to unimodal features.

The results from Table 2.1 also indicate an improvement in activity recognition accuracy with
the increment of the number of heads in the MAT when keeping the number of heads fixed in
the UAT. However, this relationship does not hold when the number of heads was changed in the
UAT. As a large number of heads reduce the size of feature embedding, increasing the number of
heads in the UAT may result in an inadequate feature representation. Thus, based on the size of the
features used in this work, the results suggest that one head in the UAT and two heads in the MAT
methods display the best accuracy. Thus, we utilized these values for further evaluations.

2.1.3 Comparison with Multimodal HAR Methods

As HAMLET takes a multimodal approach, it is reasonable to evaluate the accuracy against the
state-of-the-art multimodal approaches. Thus, we compare the performance of HAMLET with two
baseline methods (the USA and the NSA, see Sec. 2.1.2.3) and several state-of-the-art multimodal
approaches. We presented the results in Tables 2.2 (UT-Kinect), 2.3 (UTD-MHAD) & 2.4 (UCSD-
MIT).

Results: In the UT-Kinect dataset, RGB and skeleton modalities have been used to train the
learning models. Following the original evaluation scheme, we report the top-1 accuracy in Ta-
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Table 2.4: Performance comparison (mean F1-scores in %) of multimodal HAR methods on
UCSD-MIT dataset [9]

Method Fusion Type F1-Score (%)

NSA
SUM 59.61
CONCAT 45.10

USA
SUM 60.78
CONCAT 69.85

KEYLESS [37] (2018) CONCAT 74.40
Best of UCSD-MIT[9] (2019) Early Fusion 59.0

HAMLET MAT-SUM 81.52
MAT-CONCAT 76.86

(a) Without attention (b) Unimodal attention (c) Unimodal and multimodal attention

Figure 2.3: Comparative impact of multimodal and unimodal attention in HAMLET for different
activities on UT-Kinect dataset.

ble 2.2. The results indicate that HAMLET achieved the highest 97.45% top-1 accuracy across all
other methods.

We also evaluate the performance of HAMLET on the UTD-MHAD [97] dataset. We train
and test HAMLET on RGB and Skeleton data and report the top-1 accuracy while using MAT-
CONCAT in Table 2.3. The results suggest that HAMLET outperformed all the evaluated state-of-
the-art baselines and achieved the highest accuracy of 95.12%.

For the UCSD-MIT dataset, all the learning methods are trained on the skeleton, inertial, and
sEMG data. All the training models have been used late or intermediate fusion except for the
results presented from [9], which used an early feature fusion approach. In Table 2.4, the results
suggest that HAMLET with MAT-SUM fusion method outperformed the baselines and state-of-
the-art works by achieving the highest 81.52% F1-score (in %).

Discussion: HAMLET outperformed all other evaluated baselines across all datasets and met-
rics tested. The results on the UTD-MHAD dataset suggest that HAMLET outperformed all the
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(a) RGB sequence embedding attention (b) Skeleton sequence embedding attention (c) Multimodal fusion attention

Figure 2.4: Multimodal and unimodal attention visualization for different activities on UT-Kinect
Dataset.

state-of-the-art multimodal HAR methods. These methods didn’t leverage the attention-based ap-
proaches to dynamically weighting the unimodal features to generate multimodal features. The
results also suggest that, the other attention-based approaches, such as USA and Keyless [37],
also showed better performance compared to the non-attention based approaches on UT-Kinect
(Table 2.2) and UCSD-MIT (Table 2.2) datasets. The overall results support that our proposed
approach is robust in finding appropriate multimodal features, hence it has achieved the highest
HAR accuracies.

The results indicate that the MAT-CONCAT approach achieved higher accuracy on the UT-
Kinect dataset; however, the MAT-SUM approach delivered higher accuracy on the UCSD-MIT
dataset. One explanation behind this variation is that the modalities (skeleton, sEMG, and IMUs)
in the UCSD-MIT dataset represent similar physical body features, thus summing up the feature
vectors work well. However, as the UT-Kinect dataset modalities have different characteristics,
the visual (RGB) and the physical body (skeleton) features, MAT-CONCAT works better than
MAT-SUM.

Finally, the overall results suggest that HAMLET achieved the mean F-1 score of 81.52%
on the UCSD-MIT dataset, which is lower compared to the highest accuracy on other datasets
(please note that the top-1 accuracies were presented for other datasets). The main reason behind
this performance degradation in UCSD-MIT is that this dataset contains missing data, especially
sEMG, and IMUs data are missing in many instances. However, in the presence of the missing
information, HAMLET showed the best performance compared to all other approaches.

2.1.3 Combined Impact of Unimodal and Multimodal Attention

We evaluated the comparative importance of unimodal and multimodal attention mechanism (pre-
sented in Fig. 2.3). We can observe that the incorporation of unimodal attention (Fig. 2.3-b) can
help to reduce the miss-classification error in comparison to the non-attention based feature learn-
ing method (Fig. 2.3-a). This is because unimodal attention can able to extract the sparse salient
spatio-temporal features. We also can observe an improved accuracy in activity classification when
the multimodal attention based unimodal feature fusion approach was incorporated (Fig. 2.3-c vs.



51

a, b). The results indicate that HAMLET can reduce the number of miss-classification, especially
in the cases of similar activities, such as sitDown and pickUp, which is depicted in the confusion
matrix in Fig. 2.3-c.

2.1.3 Visualizing Impact of Multimodal Attention

We visualize the attention map of the unimodal and multimodal feature encoders to gauge the
impact of attention in local (unimodal) and global (multimodal) feature representation in Fig 2.4.
We used the data of the eighth performer from the UT-Kinect dataset [96] as a sample data to
produce the attention map for different activities, as shown in Fig. 2.4, where we observe that the
unimodal attention is able to detect salient segments of RGB (Fig 2.4-a) and skeleton (Fig 2.4-b)
modalities. For example, the unimodal attention method focuses on the beginning parts of the
sitDown and the pull activities, as these activities have distinguishable actions in the beginning
parts of the activity. On the other hand, the unimodal attention method needs to pay attention
to the full sequence to differentiate the carry and the push activities, as a specific part of these
activities are not more informative than the other parts.

Moreover, we evaluate the impact of MAT by observing the multimodal attention map in
Fig. 2.4-c, which represents the relative attention given to unimodal features. For example, the
pickUp and sitDown may involve similar skeleton joints movements, and thus if we concentrate
only on the skeleton data, it may be challenging to differentiate between these two activities. How-
ever, if we incorporate the complementary modalities, such as RGB and skeleton, it may be easier
to differentiate between similar activities. Thus, MAT pays equal attention to the RGB and skele-
ton data while recognizing the sitDown activity, whereas solely pay attention to the skeleton data
while identifying the pickUp activity (Fig. 2.4-c).

2.1.4 Limitations

Although our proposed learning model, HAMLET, outperforms state-of-the-art multimodal HAR
approaches, HAMLET does not allow the inter-modality interaction to extract complementary
multimodal features. HAMLET uses a self-attention approach that learns weights of different
modalities’ representations and fuses those representations by multiplying those weights. Addi-
tionally, HAMLET fuses those representations at the penultimate task learning layers. Moreover,
many state-of-the-art methods do not allow inter-modality interactions and may not learn com-
plementary multimodal features. Consequently, many of these approaches fail to perform well
on noisy data. Our experimental results also suggest that the performance of HAR approaches
degrades in the presence of noisy data. To address those issues, we have developed, Multi-GAT,
Graphical Attention-based Hierarchical Multimodal Representation Learning Approach [10]. We
present this graphical attention multimodal learning methods in the next section.
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Figure 2.5: Example scenarios of multimodal graphical attention approach applied to a basketball-
shooting activity. Here, RGB modality pays greater attention to visual modalities (RGB and
Depth), whereas Skeleton modality pays greater attention to non-visual modalities (Physical Sen-
sors) for extracting complementary multimodal features.

2.2 Graphical Attention-based Hierarchical Multimodal Representation Learning

Self-attention-based multimodal learning models, such as HAMLET [7] and Keyless [37], do not
allow the modalities to share information and calibrate their representations to extract complemen-
tary multimodal representation. As a result, these models can not extract complementary multi-
modal representations, specifically in the presence of noisy sensor data. To address these issues,
we have developed, Multi-GAT, Graphical Attention-based Hierarchical Multimodal Representa-
tion Learning Approach [10].

2.2.1 Proposed Multimodal Learning Approach

In this section, we present our proposed multimodal feature learning method for HAR, called
Multi-GAT: Graphical Attention-based Hierarchical Multimodal Representation Learning approach
(see Fig. 2.6). Multi-GAT consists of four sequential learning modules:

• Unimodal Feature Encoder: Modality-specific salient features are encoded by using spatial-
temporal feature encoders and a unimodal attention module (Section 2.2.1.2).

• Multimodal Mixture-of-Experts (Multi-MoE) Model: Multimodal mixture-of-experts (MoE)
model factors and extracts salient unimodal features utilizing a conditional attention method
(Section 2.2.1.3).

• Cross-Modal Graphical Attention (Cross-GAT) Approach: A novel message-passing
based graphical attention approach captures the cross-modal relationships to extract com-
plementary multimodal features (Section 2.2.1.4).
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(a) Unimodal Feature Encoder (b) Multimodal Mixture-of-Experts (c) Cross-Modal Graphical Attention

Figure 2.6: Multi-GAT: Graphical Attention-based Hierarchical Multimodal Representation Learn-
ing Framework for HAR. (a) First, unimodal feature encoders extract modality-specific spatial-
temporal features independently. (b) Second, Multimodal Mixture-of-Experts (Multi-MoE) model
disentangles and extracts salient unimodal features by employing the multimodal context. (c)
Third, Cross-Modal Graphical Attention (Cross-GAT) is employed to capture inter-modality rela-
tionships for producing complementary multimodal features. Finally, multimodal features are used
in the task learning network (HAR).

• Task Learning Network: A task learning network uses multimodal feature representation
for HAR (Section 2.2.1.5).

Consider an example scenario where a robot has three sensor modalities (RGB, depth, and
skeleton) and is applying Multi-GAT for HAR (see Fig. 2.5). In this scenario, Multi-GAT will first
employ Unimodal Feature Encoder (Section 2.2.1.2) and Multi-MoE (Section 2.2.1.3) model for
each of the three modalities independently to extract modality-specific salient features. If we only
consider RGB modality, the unimodal feature encoder will extract salient spatial-temporal features
from the RGB modality. Multi-MoE will then use the Self-MoEAT (Section 2.2.1.3.1) module to
factor RGB features to produce a set of experts. Multi-MoE will also produce multimodal context
from the extracted unimodal features from all the three modalities. MMoE-Gate (Section 2.2.1.3.2)
will then utilize the multimodal context to pool the salient features from the RGB experts and
produce the encoded feature for RGB modality.

Multi-GAT will then employ Cross-GAT (Section 2.2.1.4) to extract multimodal features from
the encoded RGB, depth, and skeleton features. If we only consider RGB modality, then RGB
modality will utilize conditional attention to determine the directional relationship from RGB to all
other modalities. Cross-GAT will then use this relationship to extract the complementary features
for RGB modality from all the other modalities. The same procedure will be applied for depth
and skeleton modalities, which resembles the complete cross-modal graphical attention approach.
Finally, the extracted complementary features of RGB, depth, and skeleton modalities will be fused
to produce the multimodal features, which will then be used in the robot for HAR.
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2.2.1 Pre-processing of Data Modalities

Multi-GAT uses a separate data pre-processing approach for each modality m. First, unimodal
raw data is split to produce a sequence of segmented features Xm = (xm,1, ..., xm,Sm) of size
(B × Sm × Dr

m), where B is the batch size, Sm is the segment size, and Dr
m is the raw feature

dimension of the modality m ∈M (r stands for raw feature).

2.2.1 Unimodal Feature Encoder

Multi-GAT employs unimodal feature encoder to extract salient modality-specific features, as each
modality has unique feature characteristics and distributions. This approach allows Multi-GAT to
leverage transfer learning by utilizing pre-trained unimodal encoders. Moreover, the results from
our previous work (see Islam and Iqbal [7] for detail) suggest that this modality-specific feature
encoding approach helps to leverage intermediate fusion and allows inter-modality interactions at
the abstract features space.

In Multi-GAT, each unimodal feature encoder consists of two sequential learning modules:
Spatial-Temporal Feature Encoder and Unimodal Attention Module.

2.2.1.2.1 Spatial-Temporal Feature Encoder In Multi-GAT, we adopt the spatial-temporal
feature encoder architecture, similar to the one used in [7]. Each unimodal feature sequence Xm

is encoded to extract the spatial-temporal features in two sequential steps. First, the modality-
specific spatial encoder is used for encoding each unimodal feature sequence to produce Xs

m =
(xs

m,1, ..., x
s
m,Sm

) of size (B × Sm ×Ds
m), where Ds

m is the spatial feature dimension (s stands for
spatial). Also, we pool the segment-level spatial features. This pooling mechanism reduces the
feature overlaps, noise, and computational complexity [7]. Each unimodal encoder has separate
learning architecture to encode features. For example, we used a ResNet model to encode visual
modalities (RGB and depth) and co-occurrence learning architecture [93] to encode skeleton and
physical sensors modalities.

Second, Multi-GAT employs a long-short-term-memory (LSTM) recurrent neural network
(RNN) on the extracted spatial features to produce the spatial-temporal features X t

m = (xt
m,1, ..., x

t
m,Sm

)
of size (B × Sm ×Df

m), where Df
m is the feature dimension of modality m (t and f stand for tem-

poral and feature, respectively). We used LSTM over the other variations of RNN, as LSTM can
capture the long-term feature dependencies which is crucial for HAR.

2.2.1.2.2 Unimodal Attention Module Although spatial-temporal feature encoders can en-
code unimodal features, it may not sparsely extract the salient sequential features. Recently, the
attention approach has been widely adopted in the literature to extract salient sequential features.
In Multi-GAT, we leverage unimodal self-attention approach to sparsely and adaptively extract the
salient modality-specific features Xa

m (a stands or attention) from the encoded spatial-temporal
feature sequence X t

m in the following way,
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Xa
m =

Sm∑
i=1

αm,iX
t
m,i (2.11)

Here the attention weight αm,i is calculated as follows,

βm,i = W tT

m X t
m,i (2.12)

αm,i =
exp(βm,i)∑Sm

i exp(βm,i)
(2.13)

Here W t
m is the modality-specific learnable parameters. We can represent this self-attention

approach as,

Xa
m = SelfAttn(X t

m,i ,W
t
m) (2.14)

2.2.1 Multimodal Mixture-of-Experts (Multi-MoE) Model

In this section, we present the second learning module of Multi-GAT, called Multi-MoE: Multi-
modal Mixture-of-Experts (Fig. 2.7). In the previous step of Multi-GAT, unimodal feature encoder
may not disentangle and extract the unimodal salient features which can complement the multi-
modal feature. In Multi-GAT, we adopt the Mixture-of-Experts (MoE) model [108] with two key
extensions to extract the complementary multimodal features. First, Self Mixture-of-Experts At-
tention (Self-MoEAT) independently factors unimodal features, which represent the experts set.
Second, Multimodal MoE Gate (MMoE-Gate) employs a conditional gating method for pooling
the salient features from unimodal experts conditioned on the multimodal context.

2.2.1.3.1 Self Mixture-of-Experts Attention (Self-MoEAT) First, each unimodal feature em-
bedding Xa

m is factored using modality-specific set of experts network F e
m to create N e

m experts set
(e stands for experts) for modality m,

Em,i = F e
m,i(X

a
m) , i ∈ N e

m (2.15)

Self-MoEAT allows the interaction among the intra-modality experts through a query-key-
value based conditional attention approach for disentangling the unimodal feature. The conditional
attention weights are calculated over modality-specific experts features Em = {Em,1, Em,2, ..., Em,F e

m
}

condition on each expert i of modality m. At first each expert’s feature is projected into query (Q),
key (K) and value (V ) vectors as follows,
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Figure 2.7: Multimodal Mixture-of-Experts (Multi-MoE).

Qe
m,i = Em,iW

Q
m,i;K

e
m,i = Em,iW

K
m,i;V

e
m,i = Em,iW

V
m,i (2.16)

Here, WQ
m,i ∈ RDf

m×De
m ,WK

m,i ∈ RDf
m×De

m , and W V
m,i ∈ RDf

m×De
m are the learnable parameters,

where De
m is the feature dimension of ith expert. The conditional attention scores are calculated to

produce the fused feature representation for each expert i in the following way,

αe
m,i = σ

(
Qe

m,iK
eT

m√
De

m

)
V e
m , i ∈ N e

m (2.17)

Ea
m,i = αe

m,iW
e
m , i ∈ N e

m (2.18)

Here W e
m ∈ RDe

m×Df
m are the experts feature projection parameters. We represent this condi-

tional attention-based feature extraction approach with learnable parameter set Wm,i = (WQ
m,i,W

K
m,i,W

V
m,i)

as follows,

Ea
m,i = CondiAttn(Qe

m,i ,K
e
m ,V

e
m ,Em ,Wm,i) (2.19)

2.2.1.3.2 Multimodal MoE Gate (MMoE-Gate) In the second step, Multi-MoE uses MMoE-
Gate to sparsely pool the salient features from unimodal experts. Multi-MoE employs self-attention
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(Eq. 2.14) to create multimodal context Ec (c stands for multimodal context) from the encoded uni-
modal features Xa = (Xa

1 , X
a
2 , ..., X

a
M):

Ec = SelfAttn(X a ,W c) (2.20)

MMoE-Gate leverages the conditional attention (Eq. 2.19) with the multimodal context Ec for
sparsely and adaptively gating salient features from unimodal experts Ea

m = (Ea
m,1, E

a
m,2, ..., E

a
m,Ne

m
):

Ec
m = CondiAttn(E c,K c

m ,V
c
m ,E

a
m ,W

g
m) (2.21)

Here, learnable parameter set W g
m is used to produce keys (Kc

m) and values (V c
m). Finally,

MMoE-Gate uses a residual connection from the unimodal spatial-temporal features to produce
the fused unimodal feature representation,

Eu
m = Ec

m +Xa
m , (u : unimodal) (2.22)

This residual connection limits the deviation of unimodal feature space, due to the MMoE-
Gate.

2.2.1 Cross-Modal Graphical Attention (Cross-GAT)

In Multi-GAT, Unimodal Feature Encoder and Multi-MoE module extract the salient modality-
specific features independently. However, these modules do not allow inter-modality interactions
to distill complementary multimodal features. We propose a novel message-passing based cross-
modal graphical attention method, called Cross-GAT, for inter-modality interaction (Fig. 2.8).
Multi-GAT uses Cross-GAT to capture inter-modality relationship for pooling complementary
multimodal features.

In Cross-GAT, the unimodal feature set Eu = (Eu
1 , E

u
2 , ..., E

u
M) is represented by a complete

directed graph G = (V , E). Here, each node m ∈ V represents modality-specific features and
edge set E denotes the directed inter-modality relationships. Each modality m extracts features
from the neighboring modalities Nm based on the relations. Apart from the data-driven approach
to appropriately determine the inter-modality relationship, Cross-GAT also allows incorporating
the domain expert’s knowledge in creating a multimodal relationship graph for determining the
inter-modality relationships. Although domain expert knowledge can be useful in some situations,
it can often be biased and may not represent the appropriate relationships among the modalities.
Therefore, in this implementation of Cross-GAT, we leverage a data-driven approach to determine
the relationships among the modalities for extracting complementary multimodal representation.
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In Cross-GAT, Nm initially contains all modalities except m. Each modality m interacts with
its neighboring modalities Nm using conditional attention to determine inter-modality relation-
ships (edge-weights) for extracting the complementary features (message). At first, each unimodal
feature is projected to produce query, key, and value vectors:

Qx
m = Eu

mW
Qx

m ;Kx
m = Eu

mW
Kx

m ;V x
m = Eu

mW
V x

m (2.23)
KN

m = {Kx
i }, V N

m = {V x
i }, i ∈ Nm (2.24)

Here, (WQx

m ,WKx

m ,W V x

m ) ∈ R3×Df
m×Dx

m are the learnable parameters and Dx
m is the node

feature dimension in graphical attention. Each modality m adapts its feature representation by
extracting the complementary features from its neighbor modalities using the conditional attention.

αx
m = σ

(
Qx

mK
NT√

Dx
m

)
V N
m ,m ∈M (2.25)

Msg(m) = αx
mW

x
m ,m ∈M (2.26)

Here W x
m ∈ RDx

m×Df are the learnable feature projection parameters and Df is the shared
multimodal feature dimension. This attention αx

m represents the directional relations from modality
m to other modalities. The conditionally attentive messageMsg(m) is used to produce cross-
modal complementary feature representation for modality m:

Ex
m = Msg(m) + Eu

m ,m ∈M (2.27)

Finally, Cross-GAT concatenates and projects the cross-modal complementary features Ex =
(Ex

1 , E
x
2 , ..., E

x
M) to produce the fused multimodal feature representation,

Ef = [Ex
1 ;E

x
2 ; ...;E

x
M ]WO (2.28)

Here, WO ∈ RDf×DO are learnable parameters.

2.2.1 Task Learning

The task learning network uses fused multimodal feature representation Ef . In this work, we
used these multimodal features for a human-activity recognition task. The multimodal features are
passed through a task learning network F t to classify the activities. We used a cross-entropy loss
function with stochastic gradient to train the network,

loss(y , ŷ) =
1

B

B∑
i=1

yi log ŷi , y = F t(Ef ) (2.29)
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Figure 2.8: Cross-Modal Graphical Attention (Cross-GAT).

2.2.2 Experimental Setup

2.2.2 Datasets

We evaluated our approach by comparing its performance to several contemporary HAR methods
on two multimodal HAR datasets, MMAct [8] and UTD-MHAD [97]. MMAct dataset consists
of 37 daily life activities recorded with seven modalities, where twenty subjects performed each
activity for five times, resulting in 37K video clips. Many of these demonstrations have visually
occluded data. We used four viewpoints of RGB videos, acceleration, gyroscope, and orientation
data for our analysis. UTD-MHAD consists of 27 activities performed by eight persons for four
times, resulting in 861 daily activities clips recorded with four modalities: RGB, depth, skeleton,
and physical sensors.

2.2.2 Learning Architecture Implementation

We segmented the visual modalities (RGB and depth) with the window size 1 and stride 3. For
skeleton and physical sensors, we used window size 5 and stride 5. We utilized the ResNet-50 to
extract spatial features for visual modalities and the Co-occurrence method [93] for the skeleton
and physical sensors. Each modality is encoded with the feature embedding size of 256. As an
increased number of experts increases the computation cost, we decided to use two experts in each
modality for our evaluations. We applied BatchNorm, ReLU-activation, and dropout (probability
varies in between 0.2−0.5) sequentially after each layer and module. We used two fully connected
layers with ReLU activation after the first layer to represent the task learning network F t.
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Table 2.5: Cross-subject performance comparison (F1-Score) of multimodal learning methods on
MMAct dataset

Method F1-Score (%)
SMD [109] 63.89
Student [8] 64.44

Multi-Teachers [8] 62.67
MMD [8] 64.33

MMAD [8] 66.45
HAMLET [7] 69.35
Keyless [37] 71.83
Multi-GAT 75.24

We used Pytorch deep learning framework to implement the evaluated approaches. We used
Adam optimizer with weight decay regularization [95] and cosine annealing warm restarts with
an initial learning rate set to 3e−4 to train the evaluated methods. We trained the models in a
distributed manner on two RTX-6000 GPUs.

2.2.3 Experimental Results and Discussion

2.2.3 Comparison with Multimodal HAR Methods

Results: We evaluated the performance of Multi-GAT by applying on two multimodal HAR
datasets: MMAct [8] and UTD-MHAD [97]. For the MMAct dataset, we followed the train-test
splits and F1-Score evaluation metric for cross-subject and cross-session based evaluation set-
tings originally proposed by Kong et al.[8]. The results suggest that Multi-GAT outperformed all
other state-of-the-art methods by achieving 75.24% and 91.48% F1-Score values in cross-subject
(Table 2.5) and cross-session (Table 2.6) based evaluation settings, respectively. These perfor-
mances of Multi-GAT on MMAct dataset posit 3.41% and 7.59% improvement on F1-score over
benchmark multimodal learning methods in cross-subject and cross-session evaluation settings,
respectively.

For the UTD-MHAD, we followed a leave-one-subject-out evaluation approach and top-1 ac-
curacy metric by following the evaluation criteria proposed in the original paper [97]. The ex-
perimental results on UTD-MHAD (Table 2.7) suggest that Multi-GAT outperformed all other
state-of-the-art approaches by achieving 97.56% top-1 accuracy with four modalities (RGB, depth,
skeleton, and physical sensor).

Discussion: Multi-GAT outperformed all other evaluated baselines across all datasets and met-
rics tested. The results from Tables 2.5, 2.6 & 2.7 suggest that similar to Multi-GAT, the other
attention-based approaches (HAMLET, MMD and Keyless) exhibit better performance compared
to the non-attention based approaches (PoseMap and TSN). The attention-based approaches ex-
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Table 2.6: Cross-session performance comparison (F1-Score) of multimodal learning methods on
MMAct dataset

Method F1-Score (%)
SVM+HOG [110] 46.52
TSN (RGB) [111] 69.20

TSN (Optical-Flow) [111] 72.57
MMAD [8] 74.58

TSN (Fusion) [111] 77.09
MMAD(Fusion) [8] 78.82

Keyless [37] 81.11
HAMLET [7] 83.89

Multi-GAT [10] 91.48

hibit such improved performance because they allow to attend and fuse the salient features from
heterogeneous modalities adaptively. Although previous attention-based approaches achieve per-
formance gain by extracting salient features, those approaches may not effectively capture the
cross-modal relation, which is crucial for producing robust complementary multimodal features.
The experimental results support that multimodal mixture-of-experts module (Multi-MoE) and
graphical attention approach (Cross-GAT) aid Multi-GAT to disentangle and extract cross-modal
relationships while producing robust multimodal representation. Thus, Multi-GAT has achieved
the highest HAR accuracy.

Although Multi-GAT outperformed all the evaluated methods in cross-subject and cross-session
evaluation settings on the MMAct dataset, there is a performance gap between these two evalua-
tion settings. This performance gap can also be observed for all other state-of-the-art approaches
as the multimodal learning approaches are not generalized enough for the unseen subjects. More-
over, all the approaches performed relatively worse in the cross-subject evaluation setting than in
the cross-session evaluation setting. Thus, there are scopes for developing generalized multimodal
representation learning approaches to improve the HAR performance for unseen subjects in the
future.

2.2.3 Impact of Modalities in Multimodal Learning

Results: To investigate the performance of Multi-GAT in various modality conditions, we com-
pared its accuracy with two state-of-the-art multimodal learning methods, HAMLET [7] and Key-
less [37]. We conducted this study on the UTD-MHAD dataset and varied the types of modalities
(RGB, depth, skeleton, and physical sensors). We presented the results in Table 2.8, which suggest
that Multi-GAT outperformed the other methods for all the variations of the modality types and
numbers tested.
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Table 2.7: Performance comparison (top-1 accuracy) of multimodal learning methods on UTD-
MHAD dataset.

Method Accuracy (%)
MHAD [97] 79.10
SOS [105] 86.97

S2DDI [104] 89.04
DCNN [102] 91.20
Keyless [37] 92.67
MCRL [106] 93.02

PoseMap [107] 94.51
HAMLET [7] 95.12

Multi-GAT [10] 97.56

Discussion: The results from Table 2.8 suggest that the HAR accuracies of Multi-GAT in-
crease with the addition of a modality. This may indicate that Multi-GAT is robust in computing
salient multimodal features as it computes the relationships among various modalities using the
Cross-GAT module, which ensures that the extracted features contain complementary information
captured from multiple modalities. The performance degradation of HAMLET and the Keyless
method in these conditions suggest that the accuracy of these methods is susceptible to variation
in modalities.

2.2.3 Impact of Noisy Modalities

Results: We evaluated the robustness of Multi-GAT in the presence of noisy data by comparing
its performance with two other state-of-the-art multimodal learning approaches: HAMLET and
Keyless on the UTD-MHAD dataset. We randomly dropped raw features from three heterogeneous
modalities (RGB, skeleton, and physical sensors) with a 50% probability of introducing noise. As
we are interested in investigating the impact of noise on heterogeneous modalities, and as the data
from RGB and depth represent the visual modalities, we did not include the depth modality in this
experimental evaluation.

We conducted this study on two evaluation settings: first, imputing noise during both training
and testing phases; second, training the learning models without imputing noise and introducing
noise only in the testing phase. The results in Table 2.9 indicate that Multi-GAT outperformed the
other methods in the presence of noisy data.

Furthermore, the MMAct dataset contains visually occluded and non-occluded data in a real-
world setting. We conducted the experimental evaluations on both cross-subject and cross-session
evaluation settings of the MMAct dataset, presented in Tables 2.5 and 2.6. The results also suggest
that Multi-GAT outperformed all the evaluated baselines in both evaluation settings on the MMAct
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Table 2.8: Performance comparison (Accuracy %) of the impact of modality changes on UTD-
MHAD dataset. R: RGB, D: Depth, S: Skeleton, P: Physical Sensors.

Learning
Methods

Modality Combinations
R+S R+S+P R+D+S+P

Keyless 90.20 92.67 83.87
HAMLET 95.12 91.16 90.09

Multi-GAT 96.27 96.75 97.56

Table 2.9: Performance comparison (Accuracy %) of noisy modalities’ impact on UTD-
MHAD dataset. R: RGB, S: Skeleton, P: Physical Sensors (Depth is not used)

Evaluation
Settings

Learning
Methods

No
Noise

Noisy Modalities
S+P R+S+P

Train & Test
(w/wo Noise)

Keyless 92.67 88.03 85.48
HAMLET 91.16 87.31 84.04

Multi-GAT 96.75 90.23 87.54

Test
(w/wo Noise)

Keyless 92.67 60.04 61.52
HAMLET 91.16 70.59 71.42

Multi-GAT 96.75 77.88 80.02

dataset.
Discussion: The results in Table 2.9, along with the results in Tables 2.5 and 2.6, indicate that

Multi-GAT outperformed other methods in the presence of noisy data on the UTD-MHAD and
MMAct datasets, and provide evidence of the robustness of our method in noisy environments.
Although HAMLET and the Keyless utilize attention mechanisms to extract unimodal and mul-
timodal features, none of these methods allow cross-modal interaction while generating salient
multimodal features. On the other hand, the Cross-GAT module of Multi-GAT can capture cross-
modal relationships, which enables extracting robust complementary multimodal features in the
presence of noisy data. Therefore, Multi-GAT achieved the highest HAR accuracies, even in the
presence of noisy data. The performance of Multi-GAT and all the evaluated methods, however,
degrade with more noisy modalities. Moreover, the accuracy drops when we train the model with-
out noise and introduce noise during testing. Thus, extracting complementary multimodal features
that can perform robustly with unseen noisy data will be an exciting future research direction.

2.2.3 Ablation Study of Learning Modules

Results: We conducted an ablation study to assess the importance of various learning modules
in Multi-GAT. We performed this study on the UTD-MHAD dataset with RGB, skeleton, and
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(a) Non-attention (b) Unimodal attention (c) Cross-GAT

Figure 2.9: Comparative impact of cross-modal graphical attention in Multi-GAT to learn multi-
modal representation for HAR on UTD-MHAD dataset with RGB, Skeleton and Physical Sensor
modalities (t-SNE embeddings).

physical sensor modalities and present the results in Table 2.10. We also evaluated the impact
of cross-modal graphical attention in Multi-GAT by visualizing the feature embeddings in the t-
distributed stochastic neighbor embedding (t-SNE) visualizations (Fig. 2.9).

Discussion: In Table 2.10, the results suggest that the utilization of modality-specific atten-
tion method (MA) for extracting unimodal salient features aids in improving the HAR accuracy.
However, MA alone does not allow the inter-modality interaction, closely resembling two state-
of-the-art works, HAMLET and Keyless. Our proposed novel Multi-MoE (ME) and Cross-GAT
(CG) learning modules allow inter-modality interaction for capturing the cross-modal relations.
This inter-modality interaction and extraction of cross-modal relationships enable Multi-GAT to
compute complementary multimodal features, which improves HAR accuracy by 6% compared to
the non-attention based approach. In Multi-GAT, residual connections help to prevent the vanish-
ing and exploding gradients issues.

The t-SNE visualization in Fig. 2.9-a indicates that when unimodal and multimodal features are
extracted without applying the attention mechanism (Non-attention), the feature learning method
can not produce distinguishable representations. Although incorporating the unimodal attention
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Table 2.10: Ablation study of Multi-GAT learning modules on UTD-MHAD dataset. Here, MA:
Modality-Specific Attention, R: Residual Connection, ME: Multi-MoE, MC: Multimodal Context,
CG: Cross-GAT

Learning Modules Top-1 Accuracy (%)
Non-Attention 90.44

MA 92.30
MA+ME+R 93.25

MA+ME+R+MC 95.04
MA+CG+R 95.09

MA+ME+R+MC+CG+R 96.75

method can cluster the multimodal features better than the non-attention mechanism (in Fig. 2.9-
b), that mechanism alone can not produce well-separated clusters of multimodal features. The t-
SNE plot in Fig. 2.9-c indicates that our proposed cross-modal graphical attention approach helps
the Multi-GAT to produce distinguishable and well-spaced clusters of multimodal feature repre-
sentations. The reasoning behind this well-spaced clustered multimodal feature extraction is that
Multi-GAT utilizes multimodal graphical attention, which allows inter-modality interaction for
capturing the cross-modal relationships while extracting the distinguishable multimodal features.

2.2.4 Limitations

Although Multi-GAT achieved improved HAR performance compared to our other multimodal
learning model, HAMLET, specifically in the presence of missing and noisy data modalities, there
are two primary limitations of Multi-GAT. First, Multi-GAT uses a mixture-of-experts and graphi-
cal attention approaches to extract multimodal representations, which are resource-intensive learn-
ing modules. Graphical attention approach creates a complete graph of interactions among the
data modalities, which computationally expensive. For example, four data modalities create 16
interactions among the modalities, and each interaction uses a multi-head attention module to cal-
ibrate each modality’s representations. Additionally, Multi-GAT use mixture-of-experts modules
on each unimodal representations which create added computational burden. Second, Multi-GAT
uses feed-forward fusion approach, which does not allow unimodal feature encoders to calibrate
unimodal representations. As a result, the unimodal encoders can not update their representations
and align with the other multimodal representations. This bottleneck limits the learning model to
extract salient multimodal representations.
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(a) Unimodal Feature Encoder (b) ReMATE (c) VAT (d) Task
Learning

Figure 2.10: MAVEN : Memory-Augmented Recurrent Approach for Multimodal Fusion . (a)
MAVEN employs Unimodal Feature Encoders to encode modality-specific features. (b) Recurrent
Memory-Augmented Attention-based Feature Alignment Approach (ReMATE) iteratively aligns
unimodal features by leveraging memory banks. (c) Multimodal Variational Attention-based Fu-
sion Approach (VAT) fuses multimodal features. (d) A task learning network uses fused multi-
modal representations to determine the outcome. MAVEN is trained end-to-end for HAR using
joint task learning and variational inference losses.

2.3 Recurrent Multimodal Fusion

State-of-the-art multimodal learning approaches combine information in a feed-forward manner,
which prevents each modality from aligning and refining representation. In these approaches,
unimodal feature encoders extract features independently without observing features from other
modalities. However, if these encoders have information about other modalities, they can utilize
that information to align and iteratively refine the unimodal features to generate robust representa-
tions from the noisy sensor data. Prior works in machine learning [112], [113] and neuroscience
on human perception [114], [115] suggest that recurrent information processing aids task learning
over feed-forward learning approaches. To address these issue, we have developed a recurrent
multimodal fusion approach, MAVEN, to recurrently calibrate and fuse unimodal representations
and extract complementary multimodal representations.

2.3.1 Proposed Multimodal Learning Approach

In this section, we describe our proposed approach, MAVEN: Memory-Augmented Recurrent Ap-
proach for Multimodal Fusion. The four main components of MAVEN are depicted in Fig. 2.10
and are as follows:
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• Unimodal Feature Encoder: MAVEN extracts spatial features from each modality to cap-
ture the distinct feature characteristics (Section 2.3.1.1).

• Recurrent Memory-Augmented Attention-based Feature Alignment Approach (ReMATE):
ReMATE iteratively aligns and refines the modality-specific features by leveraging the uni-
modal feature memory banks (Section 2.3.1.2.1 and Algorithm 1).

• Multimodal Variational Attention-based Fusion Approach (VAT): VAT aligns unimodal
features in the multimodal feature space to produce fused multimodal feature representation
(Section 2.3.1.2.2).

• Task Learning Network: MAVEN utilizes the multimodal features for task-specific learn-
ing (Section 2.3.1.3).

2.3.1 Unimodal Feature Encoder

In MAVEN, the raw feature sequence of each modality m is pre-processed and segmented to
produce, XR

m = (x(m,1), x(m,2), ..., x(m,NR
m)) of size (B ×NR

m ×FR
m). Here, B, NR

m, and FR
m are the

batch size, sequence length, and raw feature dimension, respectively (R stands for raw feature).
In the subsequent sections, we use the notations’ superscript to denote the type of variables and
subscripts for indexing.

MAVENr MAVEN employs state-of-the-art unimodal encoders to extract spatial features from
each segment, XS

m = (x(m,1), ..., x(m,NS
m)) of size (B × NS

m × F S
m). Here, NS

m and F S
m are the

spatial feature sequence length and dimension, respectively, of modality m (S represents spatial
features). The reasoning behind the modality-specific spatial feature encoding approach is twofold.
First, as each modality has its unique feature characteristics, it is best to implement modality-
specific encoders to capture the salient representation appropriately. Moreover, interaction among
the unimodal features at early layers may prevent the encoders from capturing modality-specific
feature characteristics [7], [12], [26], [42]. Second, this unimodal feature learning approach allows
the use of transfer learning by leveraging the state-of-the-art feature encoders.

2.3.1 Multimodal Feature Alignment and Fusion

Ideally, multiple modalities should have aligned features that capture the same phenomena. Hav-
ing aligned representations is key to providing a robust multimodal representation for a given
downstream task. However, these modalities may represent different semantic concepts due to the
heterogeneous feature characteristics. Thus, MAVEN iteratively aligns the unimodal features prior
to the fusion for producing a robust multimodal representation. This unimodal feature alignment
is also observed in the animals’ multisensory cognition systems [1], [116].

Furthermore, noisy or incomplete data from a modality may not provide relevant information
compared to other modalities. For example, in low light environments, visual modalities may not
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contain the relevant salient information compared to physical sensors. This discrepancy among
unimodal representations can lead to negative knowledge transfer in the multimodal feature space,
whereby a lack of information from one modality may weaken the representation of other modali-
ties. In these scenarios, aligning the features can help the weak representation of some modalities
to recalibrate based on the information from other modalities.

MAVEN hierarchically aligns and fuses the multimodal features in two steps. First, MAVEN
employs Recurrent Memory-Augmented Attention-based Feature Alignment Approach (ReMATE)
to align unimodal features (Section 2.3.1.2.1). Second, MAVEN leverages our proposed Multi-
modal Variational Attention-based Fusion Approach (VAT) to fuse the converged salient unimodal
features to produce a robust multimodal representation (Section 2.3.1.2.2).

2.3.1.2.1 Recurrent Memory-Augmented Attention-based Feature Alignment Approach (Re-
MATE) As each modality has unique characteristics, such as feature distribution and sampling
rate, MAVEN utilizes ReMATE to incrementally align the unimodal features. MAVEN recurrently
applies the following three sub-learning modules of ReMATE: Unimodal Feature Memory Bank,
Unimodal Attention, and Memory-Augmented Multimodal Attention, to align unimodal features
for extracting relevant multimodal information. The procedure of ReMATE is summarized in Al-
gorithm 1 and depicted in Fig. 2.10.

Unimodal Feature Memory Bank: ReMATE produces a memory bank (β) of spatial-temporal
features, Xβ

m = fR(XS
m, X

C
m′ ) of size (B×Nβ

m×F β
m) for each modality m. Here, Nβ

m and F β
m are

the memory bank lengths and feature dimensions of each memory bank entry, respectively. Re-
MATE leverages recurrent neural network, fR, to produce memory bank from spatial features XS

m,
previously extracted by unimodal feature encoders (Section 2.3.1.1). Although we can use several
learning architectures to design fR, such as transformers, GRU or LSTM, we have used LSTM
to reduce the complexity and capture long-range spatial-temporal features. At the first iteration
of ReMATE, as there is no prior multimodal contextual information, XC

m′ is set to NULL. In sub-
sequent iterations, Xβ

m is refined using multimodal contextual information, XC
m

′ , in the following
way,

Xβ
m = fR(Xβ

m, X
C
m′ ) (2.30)

Here, XC
m′ contains the multimodal contextual information (C) of all modalities except modal-

ity m. ReMATE employs the Memory-Augmented Multimodal Attention module to extract XC
m′ ,

described later in this section. ReMATE uses the multimodal context to align and refine modality-
specific features and memory banks based on the observed information from other modalities.
At the first iteration of ReMATE, as XC

m′ is empty, unimodal memory bank Xβ
m contains only

modality-specific spatial-temporal features, which is the output from fR at each timestamp. Thus,
the sequence of spatial-temporal features is stored in the memory bank using a write operation.
At subsequent iterations, fR reads the contents from the memory bank, Xβ

m, and uses multimodal
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context XC
m′ to iteratively refine Xβ

m and align the spatial-temporal unimodal latent features with
the other modalities (Algorithm 1, Line 5). These refined spatial-temporal features replace the old
contents of memory banks.

ReMATE utilizes unimodal attention to extract the salient modality-specific features from the
memory bank. The memory banks can store long-term temporal context, which helps to capture
the relationship among modalities. The long-term relationship helps the modality-specific feature
encoder to iteratively re-calibrate the spatial-temporal features in a fine-grained manner, thus ob-
taining an aligned representation by observing information in memory banks of other modalities.
This feature alignment approach also helps a noisy modality to obtain relevant salient representa-
tion by aligning its features to the representations from other less-noisy modalities. Moreover, the
aligned unimodal features help the variational attention module (Section 2.3.1.2.2) to produce a
fused complementary multimodal representation.

Unimodal Attention: In the second step, ReMATE employs a unimodal attention approach to
extract salient modality-specific features, XU

m ∈ RB×FU
m (Algorithm 1, Lines 6-7). Here, FU

m is the
unimodal (U) feature embedding size. The unimodal attention approach attends each entry of the
feature memory bank Xβ

m to extract salient representation XU
m of modality m. The attention weight

α(m,i) of each memory bank entry i can be calculated in the following way,

γ(m,i) = WUT

m Xβ
(m,i) (2.31)

α(m,i) =
exp(γ(m,i))∑NM
m

i exp(γ(m,i))
(2.32)

Here, WUT

m is a learnable parameter. Subsequently, α(m,i) is used to fuse memory bank features
and extract salient unimodal representation,

XU
m =

Nβ
m∑

i=1

α(m,i)X
β
(m,i) ,m ∈M (2.33)

In ReMATE, we determine the attention weights by leveraging a lightweight 1D-CNN with a
filter size of 1.

Memory-Augmented Multimodal Attention Module: ReMATE utilizes unimodal represen-
tation XU

m to extract the multimodal context XC
m′ from memory banks of all modalities except

modality m. XC
m′ is used to iteratively align and refine unimodal features and memory banks.

First, ReMATE projects XU
m and produces a query vector (Qβ

m) for each modality m (Algo-
rithm 1, Line 8),

Qβ
m = XU

mW
QB

m , m ∈M (2.34)
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Algorithm 1: ReMATE(XS,M, T F )
Input: XS : spatial feature, M : modalities, TF : total ReMATE iterations
Output: XU : salient unimodal features

1 XC
m′ ← ∅ ▷ Multimodal context set to empty

2 Xβ
m ← fR(XS

m), ∀m ∈M ▷ Initialize memory bank
3 for k ← 1 to TF do
4 Repeat steps 4-9 for each modality m ∈M

5 Xβ
m ← fR(Xβ

m, XC
m′ ) ▷ Memory bank (Eq. 2.30)

6 Calculate attention α(m,i) for each entry of Xβ
m

7 ▷ (Eqs. 2.31 & 2.32)

8 XU
m =

∑Nβ
m

i=1 α(m,i)X
β
(m,i) ▷ Unimodal feature (Eq. 2.33)

9 Project query feature Qβ
m from XU

m ▷ (Eq. 2.34)
10 Project key (Kβ

m′ ) and value (V β

m′ ) features from other modalities memory bank ▷ (Eqs. 2.35 &
2.36)

11 XC
m′ = σ

(
Qβ

mKβT

m
′√

Fβ
m

)
V β

m′ ▷ Multimodal context (Eq. 2.37)

12 XC
m′ = GRU(XC

m′ , XC
′

m′ ) ▷ (Eq. 2.38)
13 end
14 XU ← (XU

m),∀m ∈M
15 return salient unimodal features XU

Here, WQβ

m is a learnable parameter for query projection. Similarly, ReMATE projects the
memory bank Xβ

m to produce key (Kβ
m) and value (V β

m) feature vectors for each modality m in the
following way (Algorithm 1, Line 9),

Kβ
m = XU

mW
Kβ

m ;V β
m = XU

mW
V β

m ,m ∈M (2.35)

Kβ

m′ = {Kβ
i }, V

β

m′ = {V β
i } , i ∈ {M \m},m ∈M (2.36)

Here, WKβ

m and W V β

m are learnable parameters for key and vector projections. ReMATE then
uses the query feature Qβ

m to extract the multimodal context, XC
m′ , for modality m (Algorithm 1,

Line 10). Additionally, we have used GRU to capture the correlation of XC
m′ in the subsequent

iterations.

XC
′

m′ = σ

(
Qβ

mK
βT

m′√
F β
m

)
V β

m′ ,m ∈M (2.37)
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XC
m′ = GRU(XC

m′ , XC
′

m′ ) (2.38)

Finally, ReMATE sends XC
m′ to the first module (Unimodal Feature Memory Bank, Eq. 2.30)

T F times for aligning and refining the unimodal feature and memory bank of modality m. These
steps are summarized in Algorithm 1.

The primary reason for incorporating our proposed recurrent feature alignment approach in
the multimodal learning model, MAVEN, is to extract aligned representations by incrementally
aligning modality-specific representations. ReMATE aligns modality-specific representations by
observing representations from other modalities. The information from other modalities can help
a modality refine its own feature representation. On the other hand, many state-of-the-art mul-
timodal learning approaches use feed-forward feature fusion, where the modalities cannot align
their representations before fusion by observing other modalities’ representations. To the best of
our knowledge, we are the first to propose a recurrent feature representations alignment approach,
where each modality can iteratively refine the unimodal representation by observing the other
modalities.

2.3.1.2.2 Multimodal Variational Attention-based Fusion Approach (VAT) In MAVEN, we
propose a multimodal variational attention approach (VAT) to fuse the aligned unimodal features
for extracting salient multimodal representation. In VAT, we consider multimodal attention as a
random variable following a prior distribution, in line with prior work on sequence-to-sequence
learning [117], [118]. The parameters of this random variable are obtained using amortized vari-
ational inference [119], which approximates the evidence lower bound (ELBO) over the attention
weights.

We model the attention weights as the posterior distribution over the concatenated multimodal
representation, XUC

= (XU
1 ;X

U
2 ; ...;X

U
M):

αV
m ∼ qθm(α

V
m|XUC

) (2.39)

Here, αV
m represents variational (V) attention weights, sampled from the posterior distribution

q(·|XUC
) for each modality m. The posterior distribution can be matched to a prior distribution,

using Kullback-Leibler (KL) divergence loss. The sampled attention weights help to fuse features
by capturing relationships among the modalities.

Finally, MAVEN uses this multimodal variational attention weights to fuse features, XU =

(XU
1 , X

U
2 , ..., X

U
M), for producing the multimodal representation, XF

′
,

XF
′

m = αV
mX

U
m (2.40)

XF
m = [XF

′

1 ;XF
′

2 ; ....;XF
′

M ]WO (2.41)
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Moreover, MAVEN samples the multimodal attention weights T V times to tighten the decision
boundaries. Thus, MAVEN produces a set of multimodal representation XM = (XF

1 , X
F
2 , ..., X

F
TV )

of size (T V × FM), where FM is the dimension of the multimodal feature.
Although several approaches have been proposed in the literature to fuse the features by em-

ploying concatenation or deterministic attention-based fusion approach, these approaches can not
ensure the alignment among the unimodal feature representations in the multimodal representation
space. Moreover, due to the absence of explicit feature alignment, these deterministic attention
models suffer in aligning and fusing relevant features from noisy data modalities. In these scenar-
ios, our proposed variational attention-based feature fusion can help to extract robust multimodal
representations for two reasons. First, VAT learns a distribution over attention weights for each
unimodal representation. This results in their implicit alignment as VAT imposes the same prior
distribution over the attention weights. The variational attention approach has been widely stud-
ied to align the latent representations in sequence-to-sequence based learning models [117], [118].
However, to the best of our knowledge, we are the first to effectively incorporate the variational
attention approach for multimodal latent representation alignment and fusion. Second, learning
a distribution allows VAT to model uncertainty when fusing the unimodal features. VAT learns
to sample attention weights from different parts of the distribution space for noisy and non-noisy
signals to fuse multimodal features and thus produce robust representation.

2.3.1 Task Learning

The task learning network utilizes multimodal features to make decisions for various tasks. In this
work, we use the multimodal features for the task of activity recognition. Each multimodal feature
representation is passed through a task learning network ft to produce the outputs of task t,

y =
TV∑
i=1

ft(X
M
i ) (2.42)

Learning Losses: To train the learning architecture for a particular task t, we design a com-
bined training loss. First, we use a cross-entropy loss to ensure MAVEN learns the task-specific
multimodal features,

Lt(y, ŷ) =
1

B

B∑
i=1

yi log ŷi (2.43)

Here, B is the batch size. Second, we include KL-divergence loss between the posterior dis-
tribution of the attention weights and a prior distribution. This KL-loss enforces a prior on the
attention weights of each modality, thus ensuring that the unimodal latent representations align in
the multimodal feature space.
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Ld =
∑
m∈M

DKL

[
qθm(α

V |XUC

)||p(αV )
]

(2.44)

We model p(αV ) as a Normal distribution, N (µa
m, σ

a
m), using the reparameterization trick

[119], where µa
m and σa

m are obtained by a recognition neural network, with parameters θm. The
reparameterization trick introduces a random variable ϵ ∼ N (0, 1), which is multiplied by the µa

m

and σa
m in order to sample from the Normal distribution. The random variable ϵ allows us to model

stochasticity, whereas the recognition network allows us to train end-to-end and backpropagate
through a distribution.

Finally, the task-specific loss and KL-divergence-based distribution alignment loss are com-
binedly utilized to train the learning architecture for the target task.

L(y, ŷ) = Lt(y, ŷ) + γKLLd (2.45)

Here, γKL is the weight of KL-divergence loss.

2.3.2 Experimental Setup

We evaluated MAVEN by comparing its performance to several state-of-the-art multimodal fusion
approaches for the task of human activity recognition. Furthermore, we conducted experiments
with noisy data to evaluate the robustness of MAVEN for HAR.

2.3.2 Human Activity Datasets

We evaluated the performance of MAVEN by applying on three widely used Human Activity
Recognition datasets: UTD-MHAD [97], MMAct [8], and UCSD-MIT[9].

UTD-MHAD consists of 27 human actions covering sports, hand gestures, training exercises
and daily activities. Each action was performed by eight people and repeated over four trials. The
dataset is comprised of skeleton, depth, inertial, and RGB data modalities. In our experiments, we
used the RGB, skeleton and inertial modalities.

MMAct dataset consists of 37 daily life activities, with each activity performed by 20 people
and repeated over five trials. The dataset is comprised of seven modalities, spanning from RGB
data to acceleration and gyroscope. We used the two available viewpoints of RGB videos, ac-
celeration, gyroscope, and orientation data in our experiments. MMAct dataset contains visually
occluded data samples, which helps us to evaluate the multimodal learning approaches in extract-
ing complementary multimodal features for activity recognition.

UCSD-MIT dataset contains nine automotive and block assembly activities from 2 groups.
The gross activity-group contains four activities (e.g., walking, receiving part, and attaching part),
and the fine activity-group contains five activities (e.g., palmar grab, pincer grab, and ulnar pinch
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grab). Five people performed each activity five times. UCSD-MIT dataset uses data from three
modalities: 3D joint positions from motion capture system, sEMG, and IMUs data from wearable
sensors. In our experimental evaluations, we have used all the available modalities.

2.3.2 Implementation Details

Learning Architecture: We segmented the visual modalities (RGB and depth) with the window
size = 1 and stride = 3. For skeleton and physical sensors, we segmented using a window size =
5 and stride = 5. We set the maximum raw sensor feature sequence length before segmentation
to 100. We employed modality-specific spatial feature encoders to extract unimodal features. We
utilized the ResNet-50 learning model [98], which is pre-trained on ImageNet, to extract the RGB
features. The extracted ResNet features from both the RGB and Depth modalities are then passed
through a fully connected neural network to produce feature embeddings of size 128. We leveraged
a two-layer Convolutional Neural Network (CNN) based co-occurrence learning model [93] to
encode the physical sensor modalities (skeleton, accelerometer, gyroscope, and orientation). In
this two-layer CNN, we used 64 and 32 channels with (1×1) and (3×3) kernel sizes, respectively.
We also applied BatchNorm after each convolutional layer. The extracted CNN features are then
passed through a fully connected neural network to produce 128 sized feature embeddings. After
extracting the modality-specific features, we applied BatchNorm, ReLu and Dropout (50% features
dropout probability) sequentially in each unimodal feature encoder.

The extracted unimodal features are passed through a modality-specific LSTM layer (fR) with
the hidden feature dimension of 128 to capture temporal features and produce a spatial-temporal
memory bank for each modality. The encoded spatial-temporal features from memory banks are
passed through a self-attention module to extract salient unimodal features, which are then fused
(summed) to produce a spatial-temporal representation. We used 1-D convolutional neural network
to implement the self-attention module. The spatial-temporal features are then passed through
ReLu and Dropout (50% dropout probability) layers sequentially in each unimodal feature encoder.
We recurrently applied ReMATE, as stated in Algorithm 1, to iteratively refine unimodal features
and memory banks. We have empirically found that recurrent iteration 3 provides the best trade-off
between computational time and performance. Thus, we have used 3 recurrent iteration in all the
experimental evaluations.

Finally, we employed VAT to combine the unimodal features. We used a fully connected
network, which has an input dimension of (128 × total number of modalities) and an out-
put dimension of 128, to produce fused multimodal features. The extracted multimodal fea-
tures are then passed through BatchNorm, ReLu, and Dropout (50% dropout probability) lay-
ers. Finally, these multimodal features are fed into a fully connected neural network with 128
and total number of activities as input and output dimensions, respectively, to produce activity
recognition probabilities.

Training details: We trained the model end-to-end by employing our proposed combined loss
(Eq. 2.43). We set the KL-divergence loss weight, γKL = 0.3. We used Pytorch [100](version:



75

1.6) and Pytorch-Lightning [120] (version: 0.9.1rc3) as deep learning framework. We utilized
Adam optimizer with weight decay regularization and cosine annealing warm restarts with an
initial learning rate set to 3e−4 to train the evaluated methods [99]. In cosine annealing warm
restarts learning scheduler, we set the cycle length (T0) and cycle multiplier (Tmult) to 100 and 2,
respectively, to train the learning model on the UTD-MHAD dataset. For the MMAct dataset, we
set the cycle length (T0) and cycle multiplier (Tmult) to 30 and 2, respectively.

We trained each evaluated models for 80, 210, and 210 epochs on MMAct, UTD-MHAD, and
UCSD-MIT datasets, respectively. The batch size used in all our experiments was 2. We held-out
10% validation data from the training dataset of UTD-MHAD and MMAct datasets to select the
best performing model, which is then evaluated on the test datasets. We used Pytorch-Lightning
wrapper implementation of Pytorch distributed-data-parallel library to train the models in a dis-
tributed manner. We also fix the random seed in Pytorch-Lightning deep learning framework to
ensure reproducibility of the training process and the experiment results. To learn more about the
detailed implementation, we highly encourage the reader to look at our submitted source code and
documentations.

2.3.3 Experimental Results and Discussion

2.3.3 Comparison with Multimodal HAR Methods

Results: We evaluated the performance of MAVEN by applying it on three multimodal HAR
datasets, UTD-MHAD [97], MMAct [8], UCSD-MIT [9]. For state-of-the-art HAR methods, we
followed the original implementation details to evaluate the performance or reported results from
the original paper when available.

For MMAct dataset [8], we followed the original subject and session-based evaluation set-
tings and reported the F1-score. The experimental results suggest that MAVEN outperformed all
state-of-the-art multimodal HAR approaches in both subject and session-based evaluation settings
(Tables 2.11 & 6.9). MAVEN achieved the highest F1-score of 76.76% (Table 2.11) and 95.38%
(Table 6.9) in the subject and session-based evaluations, respectively.

For our experiments on the UTD-MHAD dataset [97], we followed the leave-one-subject-out
cross-validation evaluation approach and reported average top-1 accuracy (Table 2.13). The results
indicate that MAVEN outperformed all the evaluated multimodal HAR approaches by achieving
96.45% top-1 accuracy (Table 2.13).

For UCSD-MIT dataset [9], we followed the leave-one-subject-out cross-validation evaluation
setting and reported average top-1 accuracy (Table 2.14). The results indicate that MAVEN out-
performed all the evaluated multimodal HAR approaches by achieving 63.68% top-1 accuracy.

Discussion: The experimental results indicate that MAVEN outperformed all the evaluated
baselines across all the datasets and metrics tested for human activity recognition (Tables 2.11, 6.9,
2.13 & 2.14). MAVEN achieved 4.93% and 11.49% performance improvement over state-of-the-
art results on cross-subject and cross-session based evaluations of MMAct dataset, respectively.
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Table 2.11: Cross-subject performance comparison (F1-Score) of multimodal learning methods on
MMAct dataset [8] in cross-subject evaluation setting.

Method F1-Score (%)
SMD [109] 63.89
Student [8] 64.44
Multi-Teachers [8] 62.67
MMD [8] 64.33
MMAD [8] 66.45
HAMLET [7] 69.35
Keyless [37] 71.83
Multi-GAT [10] 75.24
MuMu [11] 76.28
MAVEN [81] 76.76

Table 2.12: Cross-session performance comparison (F1-Score (%)) of multimodal learning meth-
ods on MMAct dataset [8] in cross-session evaluation setting.

Method F1-Score (%)
SVM+HOG [110] 46.52
TSN (RGB) [111] 69.20
TSN (Optical-Flow) [111] 72.57
MMAD [8] 74.58
TSN (Fusion) [111] 77.09
MMAD (Fusion) [8] 78.82
Keyless [37] 81.11
HAMLET [7] 83.89
MuMu [11] 87.50
Multi-GAT [10] 91.48
MAVEN [81] 95.38

Moreover, MAVEN shows performance gain on leave-one-subject-out cross-validation evaluation
on UTD-MHAD and UCSD-MIT datasets. Although MAVEN outperforms all the approaches on
the UCSD-MIT dataset, the performance of all the evaluated approaches degrades on the challeng-
ing UCSD-MIT dataset with the leave-one-subject-out evaluation setting compared to the cross-
subject evaluations on UTD-MHAD and MMAct datasets. The reasoning behind this performance
degradation is that UCSD-MIT contains only wearable sensors data, which varies considerably
across subjects. These performance improvements posit the generalized multimodal representa-
tion learning capabilities of MAVEN.
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Table 2.13: Performance comparison (top-1 accuracy) of multimodal learning methods on UTD-
MHAD dataset [97] in leave-one-subject-out evaluation setting.

Method Accuracy (%)
MHAD [97] 79.10
SOS [105] 86.97
JDM-CNN [103] 88.10
DMM-MFF [101] 88.40
S2DDI [104] 89.04
DCNN [102] 91.20
Keyless [37] 92.67
MCRL [106] 93.02
PoseMap [107] 94.51
HAMLET [7] 95.12
Multi-GAT [10] 97.56
MuMu [11] 97.60
MAVEN [81] 97.81

Table 2.14: Performance comparison (F1-Score) of multimodal learning methods on UCSD-MIT
dataset [9] in leave-one-subject-out evaluation setting.

Learning Methods Merge Types F1-Score (%)

Non-Attention SUM 52.35
CONCAT 50.92

HAMLET [7] SUM 50.04
CONCAT 48.26

Keyless [37] SUM 51.68
CONCAT 54.48

Best of UCSD-MIT [9] Early Fusion 51.00
Multi-GAT [10] - 56.77
MuMu [11] - 61.34
MAVEN [81] - 63.68

The results imply that attention-based modality-specific feature extraction approaches, such
as MAVEN, Keyless [37], and HAMLET [7], show better performance compared to other eval-
uated feature fusion approaches (Tables 2.11-2.14). MAVEN differentiates from state-of-the-art
approaches with regards to feature alignment and fusion. In general, state-of-the-art multimodal
learning approaches fuse features in a feed-forward manner, restricting each modality from refining
its representation when observing other modalities’ features.
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The experimental results (Table I-IV) suggest that MAVEN outperformed state-of-the-art mod-
els which use early [9], late [8], [37], [111] or intermediate [7], [10], [11] fusion approaches. The
primary difference between MAVEN and state-of-the-art fusion approaches is that these fusion
approaches do not allow cross-modal interaction to re-calibrate the unimodal representations for
multimodal fusion. For example, Keyless [37] extracts salient unimodal representations, which
are concatenated to produce multimodal representations. This late fusion approach does not al-
low cross-modal interaction to re-calibrate the unimodal representations. Although intermediate
fusion approaches allow cross-modal interactions, these approaches incrementally fuse the rep-
resentations and do not allow unimodal feature encoders to re-calibrate the representations after
observing the complete representations from other modalities. Additionally, although early fusion
approaches have been used in some learning models, these approaches are not applicable when
the feature distributions across modalities are considerably different, such as fusing representa-
tions from visual and wearable sensor data modalities. For this reason, we have compared the
performance of MAVEN with the early fusion approach [9] on UCSD-MIT dataset. The results
in Table IV suggest that MAVEN outperformed the early fusion approach, which does not allow
cross-modal interaction to recalibrate and align unimodal representations.

In contrast to state-of-the-art multimodal learning models, MAVEN employs recurrent fea-
ture alignment, which allows to refine and align the unimodal representations by observing the
representations of other modalities. Moreover, MAVEN uses variational attention-based fusion
approach (VAT) to align multimodal representation to extract complementary representations for
robust activity recognition. The performance gains of MAVEN suggest the importance of incorpo-
rating our proposed ReMATE and VAT modules to align and fuse salient multimodal representation
for HAR. Additionally, the performance improvement of MAVEN on visually occluded data sam-
ples of the MMAct dataset suggests that our proposed multimodal fusion approach can extract
complementary multimodal representations to recognize activities accurately.

2.3.3 Evaluation on Noisy Data

It is often unrealistic in real-world settings to assume that a learning model can get only non-noisy
data from all modalities for training and inference. To investigate how various algorithms perform
in the presence of noisy data, we randomly injected noise in the data of various modalities. We
randomly choose a modality with 50% probability and randomly drop 20% or 50% of the raw
features. We evaluated the performance of MAVEN on noisy data from the MMAct dataset in
cross-subject evaluation setting.

We compare the performance of MAVEN against Keyless [37], HAMLET [7], and Non-
Attention baseline approach. Non-Attention baseline approach extracts unimodal features without
utilizing attention and feature alignment mechanism and concatenates features to obtain multi-
modal representation. These baselines use feed-forward architecture whereas MAVEN uses our
proposed recurrent feature alignment based multimodal representation learning approach. The re-
sults in Table 2.15 indicate that MAVEN shows robust performance even in the presence of noisy
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Table 2.15: Performance comparison (F1-Score (%)) on noisy data modalities of MMAct dataset
in cross-subject evaluation setting.

Method Noisy Level
None 20% 50%

Non-Attention 69.90 59.81 59.37
Keyless [37] 71.83 69.51 67.24
HAMLET [7] 69.35 69.94 69.00
MAVEN without VAT 73.83 72.50 72.17
MAVEN [81] 76.76 74.15 72.27

data compared to other evaluated baselines.
Results and Discussion: The results in Table 2.15 suggest that MAVEN achieved better per-

formance on noisy data compared to other multimodal HAR approaches. Our proposed recurrent
feature alignment approach (ReMATE) aligns the representations from noisy modalities to non-
noisy modalities to obtain salient representations. Moreover, our proposed variational attention-
based fusion approach (VAT) forces each modality to follow a prior distribution in the multimodal
feature representations space, which helps the non-noisy modalities to restrict the noisy modalities
from deviating the multimodal representation. For example, if the visual modality provides noisy
data, ReMATE and VAT use other less-noisy modalities, such as physical sensors, to guide visual
modalities for obtaining relevant and robust features. Furthermore, the results suggest that our re-
current feature alignment-based multimodal learning approach, without variational attention-based
fusion, can outperform the state-of-the-art learning models on noisy data that uses a feed-forward-
based multimodal learning model. Thus, this performance improvement shows the importance
of our recurrent feature alignment technique to extract complementary multimodal representation
from noisy sensor data over the feed-forward learning models.

2.3.3 Ablation Studies

We conducted several ablation studies to assess the impact of different learning modules and recur-
rent learning parameters of MAVEN. We conducted the following ablations studies: quantitative
ablation study of MAVEN’s learning components, the impact of memory bank, significance and
qualitative analysis of MAVEN by applying on the MMAct dataset [8].

2.3.3.3.1 Quantitative Ablation Study of Various Components of MAVEN We first ablated
different learning modules such as Unimodal Attention (UA), recurrent feature alignment (Re-
MATE), and variational attention-based multimodal fusion (VAT), to investigate their impact on
the overall performance. First, we evaluate the efficacy of VAT. To this end, we developed a trans-
former [94] style deterministic self-attention models for multimodal fusion, called DMA. We de-
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Table 2.16: Ablation study of MAVEN learning modules on MMAct dataset in cross-subject eval-
uation setting. UA: Unimodal Attention, DMA: Deterministic Multimodal Attention.

Learning Modules F1-score (%)
Non-Attention 69.90
UA 71.83
UA+DMA(H-1, L-1) 69.35
UA+DMA(H-2, L-2) 72.84
UA+DMA(H-4, L-2) 70.95
Transformer 71.18
Transformer+DMA(H-1, L-1) 71.95
UA+ReMATE (T F = 3) 73.83
UA+ReMATE (T F = 3)+DMA(H-1, L-1) 74.72
UA+ReMATE (T F = 3)+DMA(H-2, L-2) 73.39
UA+ReMATE (T F = 10) 75.56
MAVEN: UA+ReMATE (T F = 3)+VAT 76.76

veloped different DMA models by varying the number of heads and layers in the attention model.
For example, DMA(H − 2, L− 2) denotes DMA attention model with two heads and two layers
of attention model. For the DMA-based learning model, we have extracted features from each
modality independently using self-attention based unimodal feature encoder. The extracted uni-
modal features are then fused using a deterministic self-attention model. Second, we developed
another model using Transformer model [94], where we replaced the LSTM model with this Trans-
former model to design temporal encoder fR. After extracting the unimodal representations using
the Transformer model, we concatenated unimodal representations for activity recognition. Addi-
tionally, we developed another Transformer-based learning model where the extracted unimodal
features using the Transformer model are fused using DMA. The experimental results of these
ablation studies are presented in Table 2.16 (ablation study of MAVEN learning modules).

Third, we evaluate the efficacy of our recurrent feature alignment (ReMATE) approach, by
varying the recurrent alignment iterations of ReMATE in between 1 and 10. The experimental
results of this ablation study are presented in Table 2.17.

Results and Discussion: The results in Table 2.16 suggest that using unimodal attention (UA)
to extract modality-specific features results in a performance improvement over a Non-Attention
approach. When we use a deterministic multimodal attention model with one head and one layer
of self-attention model (DMA(H − 1, L − 1)) for feature fusion, along with UA, we noticed a
marginal performance degradation compared to when only UA was used. Although increasing the
number of heads and attention layer from one to two in the DMA model leads to performance
improvement, increasing the number of heads from two to four degrades the learning model’s per-
formance. During training time, we noticed that DMA with four heads and two layers of attention
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Table 2.17: Impact of recurrent iteration of ReMATE in MAVEN (without VAT) on cross-subject
evaluation of MMAct dataset.

Recurrent Iterations F1-score (%)
1 70.45
3 73.83
7 73.56

10 75.56

model leads to the model overfitting, which is the primary reason for the performance degradation.
Thus, increasing the multimodal attention model parameters (head and layer in the self-attention
model) does not guarantee performance improvement.

Next, we investigated the impact of our proposed recurrent feature alignment approach, Re-
MATE, by extending UA with ReMATE. From the results in Table VI, we can observe a per-
formance improvement over both UA and UA+DMA. This performance improvement can be at-
tributed to ReMATE’s ability to align unimodal feature representations by observing the other
modalities’ memory banks, effectively reducing the misalignment brought about by the heteroge-
neous feature characteristics of different modalities. We have attained further performance gain by
incorporating UA+DMA with ReMATE. Interestingly, we have noticed significant performance
improvement by only increasing the recurrent feature alignment iteration in ReMATE, even with-
out using any attention-based multimodal fusion models, such as DMA or VAT (Table VI). How-
ever, increasing the number of heads and self-attention layer in the DMA model does not help to
improve the performance of the learning model. Thus, the results suggest that recurrent feature
alignment plays a vital role in fusing heterogeneous multimodal representations.

Additionally, we investigated whether a Transformer based learning model can result in a per-
formance improvement compared to our proposed recurrent fusion approach. The results in Table
VI suggest that the Transformer model helps to improve the performance over the unimodal at-
tention and deterministic multimodal attention-based feed-forward fusion baselines. However, the
self-attention based Transformer model failed to outperform MAVEN in recognizing activities ac-
curately. Additionally, we observed that using the DMA model to fuse the extracted unimodal
representations from the Transformer models slightly increased the performance of Transformer
models, which concatenates the extracted representations. As the Transformer model uses a self-
attention approach to extract salient representation, additional attention layer (DMA) to fuse multi-
modal representations can not help to effectively improve the performance. In contrast, using only
our proposed recurrent feature alignment approach, ReMATE, without our variation attention-
based fusion approach, VAT, outperforms Transformer-based learning models. This performance
improvement provides additional evidence regarding the importance of our proposed recurrent
alignment approach (ReMATE) and the variational attention-based multimodal fusion approach
(VAT).
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Table 2.18: Ablation study of MAVEN memory length on MMAct dataset in cross-subject evalu-
ation setting.

Memory Bank Length F1-score (%)
10 65.85
20 73.61
40 74.89
60 74.92
100 76.76

Additionally, the experimental analysis in Table 2.17 suggests that increasing the an increment
in the iteration of ReMATE results in improved performance. However, increasing the recurrent it-
erations results in memory and computation overhead brought about by each iteration. Apart from
aligning representations using ReMATE, we also developed a lightweight variational attention-
based multimodal fusion approach, VAT, which allows explicit alignment of latent feature distri-
bution from unimodal representations. We incorporated VAT to align and fuse unimodal feature
representations, which requires less recurrent iterations to achieve improved performance. The
experimental results in Table 2.16 suggest that ReMATE with VAT helps MAVEN to obtain robust
multimodal representation, achieving the best performance.

2.3.3.3.2 Impact of Memory Banks We investigated the impact of the length of memory banks
in ReMATE on the activity recognition performance of MAVEN. We varied the memory bank
length between 10 and 100. We conducted this experimental analysis on the MMAct dataset in
cross-subject evaluation setting. The results of this experimental evaluation are presented in Ta-
ble 2.18.

Results and Discussion: The results in Table 2.18 suggest that the increased memory bank
size helps ReMATE to align unimodal features better and obtain a robust multimodal representa-
tion. We achieved the highest F1-Score of activity recognition with a memory bank length of 100.
This further supports our reasoning for using memory banks to refine and temporally align cross-
modal feature representations. In general, state-of-the-art learning approaches fuse multimodal
representations in a feed-forward manner without an explicit feature representation alignment.
These approaches do not incorporate a memory bank to align and fuse multimodal features by ob-
serving the representation from other modalities. On the other hand, ReMATE utilizes a long-term
spatial-temporal memory bank to refine and temporally align cross-modal features in a fine-grained
manner iteratively. This recurrent multimodal representation alignment results in improved perfor-
mance compared to the state-of-the-art feed-forward-based multimodal fusion approaches.

2.3.3.3.3 Significance Analysis Following the procedure proposed by Dror, Shlomov, and Re-
ichart [121], we conducted a significance analysis to assess the importance of MAVEN over the
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Table 2.19: Significance analysis of multimodal learning models on MMAct Dataset in cross-
subject evaluation setting.

Learning Models Average
F1-Score (%)

Standard
Deviation

Significant
Over §

B1: Non-Attention 68.48 1.26 None
B2: Keyless [37] 70.52 0.98 B1 & B3
B3: HAMLET [7] 69.19 0.72 B1
B4: Multi-GAT [10] 74.66 0.51 B1-B3
B5: MuMu [11] 75.97 0.29 B1-B4
MAVEN 76.29 0.47 B1-B5

§ We conduct significance analysis at α = 0.05 (Following Dror et al. [121])

state-of-the-art learning models (HAMLET [7], Keyless [37], Multi-GAT [10], and MuMu [11]).
We conducted this significance analysis at level α = 0.05 on the MMAct dataset in cross-subject
evaluation settings. We trained and evaluated all the multimodal learning approaches five times for
the significance analysis. The results of the significance analysis are presented in Table 2.19.

Results and Discussion: In this anylsis, all the evaluated baselines use feed-forward multi-
modal fusion approaches to extract representation for activity recognition, whereas MAVEN uses
recurrent representation alignment-based multimodal fusion approach. The results of the signifi-
cance analysis in Table 2.19 suggest that MAVEN significantly outperformed (p < 0.05) all the
evaluated baselines. The primary difference between the baseline models and MAVEN is that
these baseline models do not align unimodal representations before fusion. Moreover, all the eval-
uated baselines use deterministic attention approaches to fuse multimodal representations. On the
other hand, MAVEN recurrently aligns unimodal feature representation before fusion which helps
to improve the activity recognition performance significantly (p < 0.05). Furthermore, MAVEN
samples different sets of attention weights from a variational attention distribution to fuse multi-
modal representation compared to the deterministic point estimate of the attention weights, which
is a common approach in the state-of-the-art multimodal learning models. Thus, our proposed
recurrent feature alignment with variational attention-based multimodal fusion can help to extract
complementary multimodal representation to attain robust activity recognition performance.

2.3.3.3.4 Qualitative Analysis We conducted a qualitative analysis of the alignment capabil-
ities of MAVEN. For these experiments, we randomly misaligned one or more of the modalities
by dropping a sub-sequence of their input and shifting the input sequence in the temporal domain.
The results in Fig. 2.11 illustrates MAVEN can align and refine multimodal features by attaining
aligned unimodal attention distributions. Finally, we assessed the impact of ReMATE and VAT by
visualizing t-SNE embeddings (Fig. 2.12). We compared the unimodal and multimodal embed-
dings of four learning models: (a) MAVEN without ReMATE and VAT; (b) MAVEN without VAT;
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(a) Carry Light (Non-noisy data) (b) Carry Light (Noisy data)

Figure 2.11: Qualitative analysis of MAVEN’s feature alignment. (a) Carry Light with aligned in-
put, (b) Carry Light with misaligned and noisy data for all modalities, except orientation. MAVEN
can align variational attention distributions for each modality, even if they are misaligned or noisy.

(c) MAVEN without ReMATE; (d) MAVEN. Additionally, we evaluated MAVEN’s ability to align
and refine the representation from misaligned input modalities (Fig. 2.11).

Results and Discussion: The results in Fig. 2.11(b) show that MAVEN ensures implicit feature
alignment, which enforces each modality to have aligned variational attention distributions. This
aligned distribution helps MAVEN to extract complementary multimodal features from noisy and
misaligned data effectively. Thus, the results demonstrate MAVEN’s robustness to noisy and mis-
aligned inputs, which implies its effectiveness of MAVEN in real-world settings.

Additionally, we evaluated MAVEN’s ability to align and refine the representation from dif-
ferent input modalities. For this, we explicitly misaligned the input modalities by performing a
translation on the temporal dimension as well as dropping part of the input. The results in Fig. 2.11
illustrates the distribution of attention weights for each modality for the case of an aligned input
sample (top row) as well as a misaligned input sample (bottom row). As can be observed, the



85

(a) MAVEN without ReMATE and VAT (b) MAVEN without VAT (c) MAVEN without ReMATE (d) MAVEN

Figure 2.12: Comparative impact of recurrent feature alignment and variational attention in
MAVEN to learn robust unimodal and multimodal representations (t-SNE embeddings).

ReMATE and VAT modules of MAVEN ensures implicit alignment in the feature space, which en-
forces each modality to have overlapping distributions. The results further demonstrate MAVEN’s
robustness to misaligned inputs and underlines the efficacy of the memory banks in ReMATE to
align features.

Finally, in Fig. 2.12, we visualized the manifolds of unimodal and multimodal representations
obtained using MAVEN without ReMATE and VAT (Fig. 2.12(a)) and MAVEN (Fig. 2.12(b)). In
Fig. 2.12(a), one can observe fractured manifolds for the visual modalities (both views), leading to
sparse multimodal representation in the absence of ReMATE. Although, as shown in Fig. 2.12(b),
incorporating ReMATE in MAVEN helps to cluster the unimodal and multimodal representations,
the clusters are overlapped (Fig. 2.12(b)). Similarly, although incorporating only VAT in MAVEN
can cluster the representations, the clusters are not well-separated (Fig. 2.12(c)). However, as
shown in Fig. 2.12(d), employing ReMATE and VAT for multimodal fusion in MAVEN can better
align the unimodal features, resulting in a clustered manifold that suggests that the latent space
is compact and well-spaced [122]. When sampling the attention weights from these clustered
manifolds for multimodal fusion, we observed that the manifold for multimodal feature space
is also clustered. These findings further validate the benefit of ReMATE for aligning unimodal
features and VAT for subsequent fusion in multimodal space.

2.3.3 Model Complexity Analysis

The number of parameters of MAVEN with five modalities (acceleration, gyroscope, orientation,
and two visual modalities) is 25.67M . On the other hand, the size of the best performing evaluated
baseline learning models MuMu, HAMLET, and Keyless are 25.08M , 24.97M , and 24.90M , re-
spectively. The unimodal feature encoders of MAVEN, MuMu, HAMLET, and Keyless have simi-
lar model architectures, which include spatial-temporal feature encoder and self-attention model to
extract salient unimodal representations. The primary differences between MAVEN and the eval-
uated baseline learning models are a representation alignment module (ReMATE) and multimodal
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fusion models (VAT). Although baseline learning models use a multimodal fusion approach, such
as multimodal attention-based fusion approach (HAMLET), these models do not use a represen-
tation alignment module. However, the number of parameters of ReMATE and VAT modules in
MAVEN are 758.9K and 6.41K, respectively. Thus, our proposed learning modules (ReMATE
and VAT) do not increase the number of parameters of MAVEN considerably compared to the
state-of-the-art multimodal learning models.

Additionally, MAVEN, with three recurrent iterations in ReMATE, takes approximately 1.20s
to process each batch of size 2 in RTX − 6000 GPU. If we increase the number of iterations in
ReMATE, it slightly increases the processing time. Although increasing the recurrent iterations
result in improved accuracy, the experimental results suggest that the gains drop beyond recurrent
iterations of more than 3. Additionally, MAVEN’s use of separate unimodal feature encoders
processing data independently in the distributed computing environment, which further reduces the
computational time. On the other hand, MuMu, HAMLET, and Keyless models take approximately
1.21s, 1.15s, and 1.14s to execute a batch of size 2, respectively. Therefore, despite MuMu using a
recurrent feature alignment approach with multiple alignment iterations, it takes a similar amount
of time to process the multimodal sensor data compared to the feedforward learning models.

2.3.4 Findings

In this paper, we have presented a recurrent feature representation alignment and variational attention-
based fusion approach to extract complementary multimodal features. We conducted extensive ex-
periments to evaluate the efficacy of our proposed recurrent representation alignment-based mul-
timodal learning approach, MAVEN, over the state-of-the-art multimodal fusion approaches. Our
findings from the experimental analysis are four-folds.

First, we found that most of the state-of-the-art learning models use feed-forward multimodal
fusion approaches, where the unimodal feature representations are not calibrated to align these
unimodal representations before fusion. However, aligning unimodal representations before fusion
can help to produce robust multimodal representation. Our experimental analysis suggests that the
feed-forward fusion approaches can not ensure robust performance, specifically in the presence of
noisy sensor data (Table 2.15).

Second, the experimental evaluations suggest that our recurrent feature alignment-based mul-
timodal representation learning approach (ReMATE) helps MAVEN to extract robust representa-
tions and improve the activity recognition performance (Table 2.16 - 2.18). ReMATE allows each
unimodal feature encoder to calibrate their representations by observing the representations from
other modalities. MAVEN iteratively uses ReMATE to align unimodal representations. Moreover,
our recurrent unimodal representation alignment approach aids in extracting complementary mul-
timodal features, even from noisy sensor data. However, this recurrent feature alignment can not be
incorporated in the feed-forward learning models to extract robust multimodal representation. To
the best of our knowledge, we are the first to propose a recurrent latent representations alignment
approach to extract robust multimodal representation.
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Third, the experimental analysis suggests that our variational attention-based multimodal fu-
sion approach, VAT, outperforms the deterministic attention-based multimodal fusion approaches.
Specifically, our qualitative experimental analysis in Fig. 2.11 suggests that MAVEN can align
the representations of the noisy modalities to the non-noisy modalities’ representations to extract
robust multimodal features. For example, in Fig. 2.11 we can observe that VAT can attain similar
multimodal attention weights distribution in both noisy and non-noisy scenarios. The reasoning
behind the distribution alignment is that our VAT explicitly aligns the latent representations from
both noisy and non-noisy sensor modalities prior to fusing them by employing a KL-divergence
based distribution alignment loss (Eq. 2.44). On the other hand, deterministic attention-based
multimodal fusion approaches calculate a point estimate of attention weights to fuse multimodal
features without explicitly aligning latent representations. Thus, these deterministic approaches
can not ensure robust performance in the presence of noisy sensor data.

Finally, according to Dror, Shlomo, and Reichart [121] it is not suitable to compare the signifi-
cance of various learning models using only point metric estimates, such as accuracy and F1-Score.
However, most of the multimodal learning approach uses only point estimate to compare the per-
formance. Following the procedure presented by Dror, Shlomo, and Reichart [121], we conducted
the significance analysis to evaluate the efficacy of our proposed multimodal learning approach,
MAVEN. Our significance analysis suggests that MAVEN significantly outperforms (p < 0.05) the
feed-forward fusion approaches. Thus, our extensive experimental analysis posits the significance
of our recurrent feature alignment-based multimodal fusion approach to extract complementary
multimodal representation over the state-of-the-art learning models.
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Chapter 3
MULTIMODAL AND MULTITASK MODEL FOR PERCEIVING HUMAN BEHAVIOR

Understanding human activity ensures effective human-autonomous-system collaboration in var-
ious settings, from autonomous vehicles to assistive living to manufacturing [123]–[129]. For
example, accurate activity recognition could aid collaborative robots in assisting a worker by bring-
ing tools or autonomous vehicles in requesting to take over the controls from a distracted driver
to ensure safety [130], [131]. Human activity recognition (HAR) has been extensively studied by
utilizing unimodal sensor data, such as visual [132]–[134], skeleton [31], [32], [135], [136], and
wearable sensors [30], [137]. However, unimodal HAR methods struggle to recognize activity
in various real-world scenarios for multiple reasons. First, distinct activities can be mistakenly
classified as the same when relying on visual sensors [8]. For example, the activities related to
carrying a light and a heavy object look similar from visual modalities; however, they have distinct
physical sensor data (i.e., Gyroscope & Acceleration) (Fig. 3.1-a & b). Second, HAR algorithms
relying on unimodal sensor data may fail to recognize activities when the sensor data is noisy
(Fig. 3.1-c). Thus, in these cases, using multiple modalities can compensate for the weaknesses of
any particular modality in recognizing an activity.

Several multimodal learning approaches have been proposed to accurately recognize human
activities by fusing data from multiple sensors, such as visual, motion capture, and wearable sen-
sors [7], [8], [12], [16], [17], [36], [138], [139]. Although these approaches work adequately
in many scenarios, some crucial challenges remain in achieving robust recognition performance,
particularly when data from multiple sensors are missing or misaligned.

First, disparate activity-groups require different modalities to accurately recognize activities
(an activity-group consists of a set of activities, that exhibit similar characteristics). For example,
Kubota et al. [9] found that data from the motion capture system helps to recognize gross-motion
activities involving arm and leg movements (e.g., walking). Moreover, they found that data from
wearable sensors helps to recognize fine-grained motion activities involving hand or finger move-
ments (e.g., grasping). Thus, if a learning model can exploit the characteristics of activity-groups
while extracting the multimodal representations, then that model can extract robust representation
to improve HAR performance. Moreover, in many existing datasets, activities are grouped into
major categories based on shared characteristics [8], [9], [97], [140]. For example, [8] grouped
daily human activities into three groups: complex (e.g., carrying, talking), simple (e.g., kicking,
jumping), and desk (e.g., using PC). Surprisingly, apart from grouping the activities, these labels
of auxiliary activity-groups have not been utilized in extracting multimodal representations.

Second, most existing multimodal learning approaches assume non-noisy and time-aligned
multimodal sensor data during training and testing phases. These assumptions limit the applica-
bility of the existing multimodal learning approaches in real-world settings, as the presence of
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(a) Carry-Light (Non-noisy data) (b) Carry-Heavy (Non-noisy data) (c) Carry-Heavy (Noisy data)

Figure 3.1: (a) Carry-Light and (b) Carry-Heavy activities have similar visual features. (a & b)
However, these activities have distinct gyroscope and acceleration data. (a & b: bottom-row) Our
proposed method, MuMu, utilizes a guided multimodal fusion approach to appropriately prioritize
salient modalities (Gyroscope and Acceleration, in this case) while extracting multimodal repre-
sentations. (c) MuMu can adaptively adjust attention weights when data is noisy. For example,
MuMu pays more attention to the non-noisy data (Orientation) than the noisy data (Gyroscope and
Acceleration) or misaligned data (View-1 & 2). (Data samples are drawn from MMAct dataset
[8]).

misaligned and noisy sensor data is not uncommon due to occlusion and sensor noises (Fig. 3.1-c).
Thus, we need to develop and evaluate the multimodal learning approaches in the presence of noisy
and misaligned sensor data to ensure their applicability in real-world settings.

To address the aforementioned challenges, we propose a novel Cooperative Multitask Learning-
based Guided Multimodal Fusion Approach (MuMu) for HAR. In MuMu, we have designed a
multitask learning approach that involves learning two cooperative tasks: an auxiliary and a target
task. First, MuMu extracts activity-group-specific features for activity-group recognition (auxiliary
task). Second, the activity-group-specific features direct our Guided Multimodal Fusion Approach
(GM-Fusion) to extract robust multimodal representations for recognizing activities (target task).
Here, both tasks work cooperatively, where the auxiliary task guides the target task to extract com-
plementary multimodal representations appropriately.

We compared the performance of MuMu to several state-of-the-art HAR algorithms on three
multimodal activity datasets (MMAct [8], UTD-MHAD [97] and UCSD-MIT [9]). The results
from our extensive experimental evaluations suggest that MuMu outperforms all the state-of-the-
art approaches in all evaluation conditions. MuMu achieved an improvement of 4.45% and 3.61%
(F1-score) on the MMAct dataset for the cross-subject and cross-session evaluation conditions,
compared to the state-of-the-art approaches, respectively. Additionally, MuMu achieved an im-
provement of 6.86% and 2.48% (top-1 accuracy) on the UCSD-MIT and the UTD-MHAD datasets
for leave-one-subject-out evaluation settings, compared to the state-of-the-art approaches, respec-
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tively. Furthermore, our qualitative analysis of multimodal attention weights suggests that our
proposed guided multimodal fusion approach can appropriately prioritize the modalities while ex-
tracting complementary representations, even in the presence of noisy and misaligned sensor data
(Fig. 3.1 & 3.4). Moreover, our extensive ablation study suggests that our proposed approach
significantly outperforms the baseline multimodal learning approaches (p < 0.05), which do not
use guided fusion.

3.1 Cooperative Multitask Learning-Based Guided Multimodal Fusion

3.1.1 Problem Formulation

We define a cooperative multitask learning problem, which involves learning the auxiliary and the
target tasks cooperatively for multimodal fusion. Similar to the multi-class activity recognition
problem, we aim to recognize a set of K activities, A = (A1, . . . , AK), by extracting multimodal
representations (Xc) from M heterogeneous modalities, Xr = (Xr

1 , . . . , X
r
M) (r stands for raw

feature). We have termed this activity recognition (Ai ∈ A) as the target task.
Activity datasets defined activity-group in various ways. For example, UCSD-MIT uses human

motion to define activity-group (gross & fine), whereas the MMAct dataset uses the complexity of
the activities (complex, simple & desk). As different activity-groups share disparate characteristics,
they require different modalities for recognizing activities [9]. Thus, we divide the activity set A
into N activity-groups (G), where G = (G1, . . . , GN). Here, each activity-group (Gi), consists of
Ji unique activities that share similar characteristics, where Gi = (Ai

1, . . . , A
i
Ji
), and Ai

j ∈ A. We
have termed the activity-group recognition (Gi ∈ G) as the auxiliary task.

3.1.2 Approach Overview

Our proposed Cooperative Multitask Learning-based Guided Multimodal Fusion Approach (MuMu)
consists of three learning modules (Fig. 3.2):

• Unimodal Feature Encoder (UFE) encodes modality-specific spatial-temporal features.

• Auxiliary Task Learning (ATL) Module extracts activity-group-specific multimodal represen-
tations.

• Target Task Learning (TTL) Module utilizes the activity-group-specific features from the aux-
iliary task as prior information to appropriately fuse and extract multimodal representations for
activity recognition.
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Figure 3.2: MuMu: Cooperative Multitask Learning-based Guided Multimodal Fusion Approach.
The Unimodal Feature Encoder encodes unimodal spatial-temporal features. The Auxiliary Task
module fuses the unimodal features to extract the activity-group-specific features. The activity-
group features guide the Target Task module to fuse and extract complementary multimodal rep-
resentations by employing a Guided Multimodal Fusion Approach. We have designed a multitask
learning loss for end-to-end training.

3.1.3 UFE: Unimodal Feature Encoder

We have adopted the Unimodal Feature Encoder (UFE) architecture from the work by HAMLET
model [7]. In our implementation, UFE independently encodes salient unimodal features of each
modality m ∈M in four steps. First, UFE segments the raw unimodal features and produces Xr

m =
(xr

m,1, x
r
m,2, . . . , x

r
m,Sm

) ∈ RB×Sm×Dr
m , where B is the batch size, Sm is the segment size, and Dr

m

is the raw feature dimension of the modality m. Second, UFE encodes the spatial features of each
segment of modality m ∈M . Third, UFE utilizes an LSTM, a variant of recurrent neural network,
to encode unimodal spatial-temporal features. Fourth, a self-attention approach has been employed
to extract salient unimodal features, Xu = (xu

1 , x
u
2 , . . . , , x

u
M) ∈ RB×M×Du , from the extracted

spatial-temporal features (Du is the unimodal (u) feature embedding size). Instead of utilizing a
resource intensive multi-head self-attention approach [94], which was used by HAMLET model
[7], in this work, we have adopted a lightweight self-attention model from Keyless model [37].
MuMu uses the unimodal features, Xu, in the subsequent learning modules to produce robust
multimodal representations.
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3.1.4 ATL: Auxiliary Task Learning Module

In the auxiliary task learning step, MuMu fuses the unimodal features to extract activity-group-
specific multimodal representation for classifying the activity-groups in two steps:

3.1.4 Self Multimodal Fusion Approach (SM-Fusion):

We have designed a Self Multimodal Fusion Approach (SM-Fusion) for extracting activity-group-
specific salient features. SM-Fusion assigns attention weight (αm) to each modality for fusing
unimodal features, Xu, and extracting multimodal auxiliary representation, Xaux. The attention
weight, αm, is calculated in the following way,

γm = (W aux)TXu
m (3.1)

αm =
exp(γm)∑

m∈M
exp(γm)

(3.2)

Here, W aux is a learnable parameter. We have utilized a 1D-CNN with a filter size of 1 to
calculate αm. Finally, this weight is used to fuse the unimodal features and extract multimodal
auxiliary representation, Xaux:

Xaux =
∑
m∈M

αmX
u
m (3.3)

3.1.4 Activity-Group Classification:

The auxiliary representation, Xaux, is passed through a auxiliary task learning network, F aux, to
classify the activity-group:

yaux = F aux(Xaux) (3.4)

3.1.5 TTL: Target Task Learning Module

In MuMu, we have designed a target task to extract multimodal representations and classify ac-
tivities in two steps. First, MuMu uses activity-group features from the auxiliary task to direct
our proposed Guided Multimodal Fusion Approach (GM-Fusion) to extract multimodal represen-
tations. Because activity-group features can help to prioritize the salient modalities to extract
multimodal representations appropriately. Second, MuMu uses fused representations to classify
the activities. In MuMu, the auxiliary and the target tasks work cooperatively to extract comple-
mentary multimodal representations for recognizing activities accurately.
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3.1.5 Guided Multimodal Fusion Approach (GM-Fusion):

GM-Fusion uses the extracted activity-group-specific features from auxiliary task as prior infor-
mation, Xaux, to extract multimodal representations for activity recognition.

First, GM-Fusion projects the extracted unimodal features, Xu, to produce unimodal key (Ku)
and value (V u) feature vectors in the following way:

Ku = XuWK ;V u = XuW V (3.5)

Here, WK and W V are learnable parameters. These unimodal key and value vectors are used
to extract the multimodal representation. Second, GM-Fusion projects multimodal auxiliary rep-
resentation, Xaux, to produce auxiliary query feature vector (Qaux).

Qaux = XauxWQ (3.6)

Here, WQ is a learnable parameter. This auxiliary query feature vector (Qaux) is used as a prior
to extract complementary multimodal representation, Xc, by utilizing the unimodal key (Ku) and
value (V u) feature vectors:

Xc
′

= σ

(
QauxKuT

√
Du

)
V u (3.7)

Xc = W oXc
′

(3.8)

Here, W o is a learnable projection parameter.

3.1.5 Activity Classification:

Multimodal representation, Xc, is concatenated with activity-group-specific features, Xaux, for
activity classification. Xc is passed through a target task learning network, F t, to classify the
activities:

Xf = W f [Xc;Xaux] (3.9)
yt = F t(Xf ) (3.10)

Here, W f is a learnable projection parameter.

3.1.6 Multitask Learning Loss

We have designed a multitask learning loss for end-to-end training of MuMu. This loss is used to
train the auxiliary and the target tasks jointly. First, we use cross-entropy auxiliary loss, Laux, to
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train the auxiliary task for activity-group classification. Laux enforces the auxiliary task branch to
learn the activity-group-specific multimodal representations.

Laux(yaux, ŷaux) =
1

B

B∑
i=1

yauxi log ŷauxi (3.11)

Second, we calculate the cross-entropy loss, Lt, to train the target task for activity classifica-
tion. This loss ensures that the target task learns the robust multimodal representations for activity
recognition.

Lt(yt, ŷt) =
1

B

B∑
i=1

yti log ŷ
t
i (3.12)

Finally, the auxiliary and target task losses are combined for end-to-end training of MuMu:

loss = Lt(yt, ŷt) + βauxLaux(yaux, ŷaux) (3.13)

Here, βaux is the weight of auxiliary task learning loss.

3.2 Experimental Setup

3.2.1 Datasets

We evaluated the performance of our proposed approach, MuMu, by applying it on three multi-
modal activity datasets: UCSD-MIT [9], UTD-MHD [97] and MMAct [8].

MMAct dataset contains 37 activities which are categorized into 3 groups: 16 complex ac-
tivities (e.g., carrying, exiting), 12 simple activities (e.g., kicking, talking on the phone, jumping),
9 desk activities (e.g., using PCs, sitting). Twenty people performed each activity five times, re-
sulting in 37k data samples. The MMAct dataset uses data from seven modalities: four RGB
views, acceleration, gyroscope, and orientation. We used data from two opposing RGB views,
acceleration, gyroscope, and orientation modalities to train and test. MMAct dataset contains vi-
sually occluded data samples, which allows evaluating the effectiveness of HAR approaches for
real-world settings.

UCSD-MIT dataset contains nine automotive and block assembly activities from 2 groups.
The gross activity-group contains four activities (e.g., walking, receiving part, and attaching part),
and the fine activity-group contains five activities (e.g., palmar grab, pincer grab, and ulnar pinch
grab). Five people performed each activity five times. UCSD-MIT dataset uses data from three
modalities: 3D joint positions from motion capture system, sEMG, and IMUs data from wearable
sensors.

UTD-MHAD contains 27 activities which are categorized into 4 groups: 9 hand gesture (e.g.,
draw X, draw circle), 9 sports (e.g., bowling, tennis serve), 5 daily (e.g., door knock, sit to stand),
and 4 training exercises (e.g., lunge, squat). Eight people performed each activity five times. UTD-
MHAD uses data from four modalities: RGB, depth, skeleton, and physical sensors.
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Table 3.1: Cross-subject performance comparison (F1-Score) of multimodal learning methods on
MMAct dataset

Method F1-Score (%)
SMD [109] 63.89
Student [8] 64.44

Multi-Teachers [8] 62.67
MMD [8] 64.33

MMAD [8] 66.45
HAMLET [7] 69.35
Keyless [37] 71.83
MuMu [11] 76.28

Table 3.2: Cross-session performance comparison (F1-Score) of multimodal learning methods on
MMAct dataset

Method F1-Score (%)
SVM+HOG [110] 46.52
TSN (RGB) [111] 69.20

TSN (Optical-Flow) [111] 72.57
MMAD [8] 74.58

TSN (Fusion) [111] 77.09
MMAD (Fusion) [8] 78.82

Keyless [37] 81.11
HAMLET [7] 83.89
MuMu [11] 87.50

3.2.2 Learning Architecture Implementation

We segmented the data from visual modalities (RGB and depth) with a window size of 1 and a
stride of 3. For the data from other sensor modalities, we used a window size of 5 and a stride
of 5. To encode segmented spatial features, we used ResNet-50 model [98] for data from visual
modalities (RGB and depth) and Co-occurrence approach [93] for data from other sensors modali-
ties (sEMG, Acceleration, Gyroscope, and Orientation). The unimodal feature of each modality is
encoded to 128 sized feature embedding. We used two fully connected layers with Re-LU activa-
tion after the first layer for activity-group classification in auxiliary task learning. We used similar
task learning architecture for the activity classification in target task learning.
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Table 3.3: Performance comparison (F1-Score) of multimodal learning methods on UCSD-MIT
dataset [9].

Learning Methods Merge Types F1-Score (%)

Non-Attention SUM 52.35
CONCAT 50.92

HAMLET [7] SUM 50.04
CONCAT 48.26

Keyless [37] SUM 51.68
CONCAT 54.48

MuMu [11] - 61.34

3.3 Experimental Results and Discussion

3.3.1 Comparison with Multimodal Approaches

Results: We evaluated MuMu’s performance by comparing it against the state-of-the-art HAR
approaches on three datasets: MMAct, UTD-MHAD, and UCSD-MIT. For MMAct dataset, we
followed originally proposed cross-subject and cross-session evaluation settings and reported F1-
scores (Tables 3.1 & 3.2). The results suggest that MuMu outperforms state-of-the-art approaches
on both cross-subject and cross-session evaluation settings with improvements of 4.45% and 3.61%
in F1-score, respectively. For UTD-MHAD and UCSD-MIT datasets, we followed leave-one-
subject-out cross-validation and reported top-1 accuracies (Tables 3.4 & 3.3). The results suggest
that MuMu outperforms the best performing baselines with improvements of 6.86% and 2.48% in
top-1 accuracy on UCSD-MIT and UTD-MHAD datasets, respectively.

Discussion: The experimental results on these activity datasets (Tables 3.1, 3.2, 3.4 & 3.3)
suggest that MuMu outperforms all the state-of-the-art approaches in all evaluation conditions.
Moreover, the results indicate that attention-based HAR methods (i.e., MuMu, Keyless [37] and
HAMLET [7]) outperform Non-Attention-based methods (i.e., PoseMap [107] and TSN [111]).
Unlike MuMu, the other attention-based methods do not consider the activity-group-specific infor-
mation to extract multimodal representations. In our implementation, MuMu utilizes the activity-
group-specific information to extract complementary multimodal representations by utilizing our
proposed Guided Multimodal Fusion approach (GM-Fusion). GM-Fusion allows the prioritiza-
tion of different modalities based on the activity-group information extracted by the auxiliary task
learning module. Thus, the experimental results posit that incorporating activity-group informa-
tion allows the extraction of complementary multimodal representations effectively to improve the
HAR accuracy.

Although state-of-the-art multimodal HAR approaches show comparatively better performance
on cross-session evaluation settings (Tables 3.2 & 3.4), the performance degrades on challenging
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Table 3.4: Performance comparison (top-1 accuracy) of multimodal learning methods on UTD-
MHAD dataset.

Method Accuracy (%)
MHAD [97] 79.10
SOS [105] 86.97

S2DDI [104] 89.04
DCNN [102] 91.20
Keyless [37] 92.67
MCRL [106] 93.02

PoseMap [107] 94.51
HAMLET [7] 95.12

MuMu 97.60

cross-subject evaluation conditions for all evaluated baselines (Tables 3.1 & 3.3). The perfor-
mance degrades because MMAct and UCSD-MIT datasets contain data samples that enforce the
utilization of the wearable sensors to recognize activities accurately, where the wearable sensor
data vary considerably across subjects (see Fig. 3.1). To address this challenge, MuMu utilizes
activity-group features to guide GM-Fusion to extract salient multimodal representations for rec-
ognizing activities accurately. On the other hand, state-of-the-art approaches fused unimodal fea-
tures without considering activity-group information. Additionally, in the cross-subject evalua-
tion conditions, MuMu outperforms the F1-score of state-of-the-art approaches on MMAct and
UCSD-MIT datasets with an improvement of 4.45% and 6.86%, respectively. These performance
improvements indicate that MuMu can generate robust multimodal representation by prioritizing
the salient modalities than other approaches.

3.3.2 Impact of Supplementary Modalities

To investigate whether additional modalities help to improve the performance of learning models,
we evaluated the performance of MuMu and two baseline approaches (Keyless [37]) and HAMLET
[7]) with various combinations of modalities. We conducted this study on the UTD-MHAD dataset
with RGB, Depth, Skeleton, Physical sensors modalities. The experimental results suggest that
MuMu outperformed the evaluated baselines on all the combinations of modalities tested (see
Table 3.5).

Results & Discussion: In Table 3.5, the results suggest that incorporating additional modal-
ities helps MuMu to improve the HAR accuracy. However, additional modalities do not always
improve the performance of two baselines. For example, incorporating the depth modality degrades
the accuracy of the baseline methods, whereas the HAR accuracy of MuMu improves slightly with
this additional modality.
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Table 3.5: Performance comparison (Accuracy %) of the impact of modality changes on UTD-
MHAD dataset. R: RGB, D: Depth, S: Skeleton, P: Physical Sensors.

Learning
Methods

Modality Combinations
R+S R+S+P R+D+S+P

Keyless [37] 90.20 92.67 83.87
HAMLET [7] 95.12 91.16 90.09

MuMu 96.10 97.44 97.60

The performance of the baselines degrades, as additional modalities may not provide salient
information to recognize a set of activities accurately. For example, visual modality may not pro-
vide salient information for gesture recognition (e.g., wave, swipe), whereas physical sensors can
help recognize those activities accurately. The baseline methods either concatenated or used a self-
attention approach to fuse unimodal features without considering the characteristics of activity-
group, which results in performance degradation with supplementary modalities. However, MuMu
uses activity-group information from the auxiliary task to guide the target task for prioritizing and
fusing the additional modalities to extract complementary multimodal representations for recogniz-
ing activities accurately. Therefore, it is essential to prioritize the salient modalities for extracting
robust representation to recognize activities accurately.

3.3.3 Impact of Noisy Modalities

We conducted both quantitative and qualitative experiments to evaluate the performance of MuMu
and three baselines (Non-Attention, HAMLET, and Keyless) in the presence of noisy and mis-
aligned sensor data. We developed the Non-Attention method for evaluation purposes, where we
extract unimodal features using CNN+LSTM model without using an attention mechanism. The
extracted unimodal features are concatenated to classify activities.

We conducted this study in cross-subject evaluation setting on MMAct dataset with two visual
modalities (RGB View 1 & 2) and three non-visual modalities (Gyroscope, Orientation & Acceler-
ation). We randomly selected either visual or non-visual modalities with 50% probability and then
dropped raw features to introduce noise. The quantitative and qualitative experimental results are
presented in Table 3.6 and Fig 3.4, respectively.

Results & Discussion: The experimental results suggest that MuMu outperforms the eval-
uated baselines in the presence of noisy data (Table 3.6). In MuMu, our proposed Guided Mul-
timodal Fusion Approach (GM-Fusion) appropriately prioritizes the modalities and extracts the
robust multimodal representation from noisy sensor data for accurate activity recognition. How-
ever, the baseline multimodal learning approaches either use Non-Attention or self-attention based
multimodal fusion, which may not effectively extract complementary multimodal representations.

Additionally, the qualitative results of multimodal attention visualization (Fig. 3.4-Bottom row)
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Table 3.6: Performance comparison (F1-Score %) of the impact of noisy data on MMAct dataset.
Visual: RGB (View 1 & 2), Non-visual: Gyroscope, Orientation & Acceleration.

Learning
Methods

No Noisy
Modality

Noisy Modalities
Visual Non-Visual

Non-Attention 68.29 66.30 66.02
HAMLET [7] 69.35 64.10 67.57
Keyless [37] 71.83 67.94 68.29

MuMu 76.28 74.22 73.78

indicate the same phenomenon that MuMu can prioritize the salient modalities to extract comple-
mentary multimodal representations from noisy and misaligned sensor data. For example, although
the gyroscope and acceleration data provide distinctive features for carry-heavy activity, MuMu
adjusts the multimodal attention weights when we introduce noise in those modalities (Fig. 3.4-
Bottom row), by paying more attention to the non-noisy modality (Orientation) and less attention
to noisy modalities (Gyroscope and Acceleration), which contribute to better HAR performance
on noisy data (Table 3.6). In Fig. 3.4-Center row, it can be observed that HAMLET, which uses a
self-attention based fusion approach, increased the attention weight to the noisy sensor data (i.e.,
Acceleration in Fig 3.4-Right) compared to the attention weight assigned on the non-noisy data
samples (Fig 3.4-Left). These qualitative results indicate that self-attention based fusion may not
appropriately prioritize the noisy sensor data to extract robust multimodal representations (Fig. 3.4-
Center row), which also reflects in the quantitative results in Table 3.6.

3.3.4 Ablation Study and Significance Analysis

To investigate the importance of various modules of MuMu, we developed three single-task-based
baseline models by removing the auxiliary task learning branch in MuMu (Fig. 3.2). The Non-
Attention model (B1) does not employ any attention approach in extracting unimodal or fusing
multimodal features. The Unimodal Attention model (B2) employs an attention approach to extract
unimodal features and concatenate multimodal features (similar to Keyless [37]). The Unimodal +
Multimodal Attention model (B3) uses an attention approach to extract unimodal and fuse multi-
modal features (similar to HAMLET [7]). We trained and tested all these baselines and MuMu five
times with different initialization of the learning parameters. Additionally, we conducted the sig-
nificance analysis at level α = 0.05 by following the procedure proposed by [121]. We conducted
this experimental analysis on MMAct dataset in cross-subject evaluation setting.

Results and Discussion: The experimental results in Table 3.7 suggest that the baseline B3,
which uses an attention approach to prioritize the modalities, fails to outperform B2 significantly.
Here, B2 uses the attention approach only to extract unimodal and concatenate the multimodal
features. These results indicate that how a multimodal learning approach fuses the information is
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Table 3.7: Ablation study of MuMu components on MMAct Dataset.

Model
Type

Learning
Models

Average
F1-Score (%)

Standard
Deviation

Significant
Over §

Single Task
B1 68.48 1.26 None

B2 † 70.52 0.98 B1 & B3
B3 † 69.19 0.72 B1

Multitask MuMu ∗ 75.97 0.29 B1, B2 & B3
B1: Non-Attention, B2: Unimodal Attention, B3: Uni + Multimodal Attention

† Self-Attention based Multimodal Fusion, ∗ Guided Multimodal Fusion
§ We conduct the significance analysis at α = 0.05 (Following Dror et al. (2019))

Figure 3.3: The t-SNE visualization of unimodal and multimodal representations. (Left) HAMLET
with Self-Attention based Fusion, (Right) MuMu with Guided Multimodal Fusion.

crucial in improving the HAR performance.
Moreover, the experimental results in Table 3.7 indicate that MuMu significantly outperforms

all the baseline models and improves the HAR accuracy. The primary difference between MuMu
and the baseline models is that MuMu uses activity-group features to guide the target task for
extracting multimodal representations. Thus, this experimental analysis indicates that MuMu, with
the help of our guided multimodal fusion approach, can appropriately fuse multimodal features to
improve the HAR accuracy significantly.
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Carry-Heavy Activity: (left) Non-noisy data (right) Noisy data (except Orientation)

Figure 3.4: Comparative impact of guided multimodal attention in MuMu to extract complemen-
tary multimodal representations from noisy sensor data (Multimodal attention weights visualiza-
tion).

3.3.5 Qualitative Analysis

We conducted two qualitative analyses to evaluate the effectiveness of our guided multimodal fu-
sion approach. First, we visualized the attention weights to evaluate whether MuMu can prioritize
the salient modalities (Fig. 3.1 & 3.4). Second, we visualized t-SNE embeddings of unimodal
and multimodal representations obtained using MuMu (Fig. 3.3-Right) and HAMLET with self-
attention based fusion [7] (Fig. 3.3-Left). We conducted these studies on the MMAct dataset in
cross-subject evaluation setting.

Attention Visualization: Our experimental analysis (Fig. 3.1 & 3.4) suggests that appro-
priately prioritizing the relevant modalities aids in improved HAR performance. The results in
Fig. 3.1-a & b indicate that MuMu can appropriately prioritize the salient modalities (Gyroscope
and Acceleration) in extracting complementary representations to distinguish visually similar ac-
tivities (i.e., carry-light and carry-heavy). Additionally, when the data from these modalities are
noisy, MuMu adjusts the attention weights to the non-noisy modalities (i.e., visual and orientation)
to extract complementary multimodal representations (Fig. 3.4). These results indicate that MuMu
can adjust attention weights based on the extracted unimodal features to produce complementary
representations. On the other hand, the self-attention based multimodal fusion approach can not
appropriately prioritize the relevant modalities (Fig. 3.4), which results in performance degradation
(Table 3.7).

Feature Visualization (t-SNE):
In Fig. 3.3-(Right), t-SNE visualization of unimodal and multimodal features suggests that
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MuMu with guided multimodal fusion approach can cluster the unimodal and multimodal features.
Therefore, the results indicate that MuMu can extract salient unimodal features to produce com-
plementary multimodal representations. On the other hand, in Fig. 3.3-(Left), the results suggest
that HAMLET with self-attention based multimodal fusion [7] introduces sparse clusters, which
may indicate self-attention based multimodal fusion approach may not extract salient multimodal
features for activity recognition (Fig. 3.3 & 3.4).

3.4 Broader Impact

The broader impact of our work lies in its potential to significantly advance the field of human ac-
tivity recognition (HAR) and its many applications. We proposed a robust model to the challenges
posed by the heterogeneous characteristics of data from multimodal sensors and disparate human
activities.

In healthcare, accurate HAR can be crucial for patient monitoring, early detection of health
issues, and personalized treatment plans. For instance, MuMu could be used to monitor the ac-
tivities of elderly individuals living alone, providing valuable data for fall detection systems or
for tracking the progression of conditions like Parkinson’s disease. In rehabilitation, it could help
track a patient’s recovery and adapt exercises to their current capabilities.

Moreover, in the realm of sports and fitness, MuMu could be used to analyze athletes’ per-
formance, providing detailed feedback that could help them improve their techniques or prevent
injuries. For everyday fitness enthusiasts, it could be used in wearable devices to provide more
accurate activity tracking and personalized workout recommendations.

In Human-Computer Interaction (HCI), accurate HAR can enable more intuitive and responsive
interfaces. For example, MuMu could be used in virtual or augmented reality systems to allow
users to interact with the virtual environment through natural movements. It could also be used in
smart home systems to automate user activity responses.

Furthermore, in surveillance and security, MuMu could help to detect unusual or suspicious
activities, enhancing the capabilities of security systems and contributing to safer public spaces.
Additionally, in industrial settings, MuMu could be used to monitor workers’ activities, helping to
ensure safety protocols are followed and identifying areas where efficiency could be improved.

In addition to these direct applications, our work could also stimulate further research in multi-
modal learning and fusion techniques, potentially leading to new methods and applications. How-
ever, it’s important to note that using HAR technologies also raises important ethical and privacy
considerations, which must be carefully addressed as these technologies are developed and de-
ployed.

3.5 Limitations

While our proposed MuMu approach has demonstrated promising results in human activity recog-
nition (HAR) using multimodal sensor data, several limitations to our study can be addressed in



103

future work to ensure robust performance in diverse settings.
Our approach relies heavily on the quality of the sensor data. While we have shown that MuMu

is robust to noisy and misaligned sensor data, its performance may be significantly affected by ex-
treme noise or severe misalignment, which were not fully explored in this study. For example, if
the sensors are being used outdoors, they may be exposed to harsh environmental conditions such
as heavy rain, snow, or high winds. These conditions can introduce extreme noise into the sensor
data. For example, a visual sensor might have difficulty accurately capturing images in a heavy
rainstorm due to water droplets on the lens or rapid changes in lighting conditions. Moreover, If
the sensors themselves malfunction, they may produce extremely noisy data. This could be due to
hardware issues, software bugs, or problems with the power supply. For example, a wearable sen-
sor might start producing erratic data if its battery is running low or if it’s experiencing a hardware
failure. Furthermore, sensors can sometimes pick up interference from other electronic devices,
which can introduce extreme noise into the data. For example, a wearable sensor might pick up
electromagnetic interference from a nearby smartphone or Wi-Fi router. Additionally, if the person
wearing the sensors is making abrupt or unusual movements, this could introduce extreme noise
into the data. For example, if the person falls down or starts dancing suddenly, the sensor data
might become very noisy and difficult to interpret.

Three datasets used in this study were chosen for their diversity and relevance to the field of
human activity recognition (HAR). However, they may not encompass the full spectrum of human
activities or the variety of contexts in which these activities occur. The datasets may not include
all types of human activities. For instance, they might focus on common activities like walking,
running, or sitting, but not include less common or more complex activities like rock climbing or
performing manual labor. As a result, it’s unclear how well MuMu would perform when applied
to these untested activities.

Heterogeneity of Sensor Data: Although MuMu is designed to handle heterogeneous sensor
data, the current study mainly focused on visual, non-visual, and wearable sensors. The perfor-
mance of MuMu when applied to other types of sensors, such as audio data.

Despite these limitations, our work represents a significant step forward in the field of human
activity recognition (HAR) using multimodal sensor data. The proposed MuMu approach intro-
duces a novel cooperative multitask learning-based guided multimodal fusion technique, which
has demonstrated superior performance compared to existing state-of-the-art methods on three di-
verse activity datasets. Future work should aim to address these limitations and further improve
the performance and applicability of the MuMu approach.
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Chapter 4
MULTIMODAL REFERRING EXPRESSION DATASETS AND BENCHMARKS

Natural communication forms of humans are inherently multimodal with verbal and nonverbal
(gestures and gaze) signals [24], [55]–[57], [141]. People use multimodal cues with their interac-
tion partners for the joint focus of attention on salient objects and events, specifically when they
share a physical space in an environment [24], [57], [141]–[145]. As humans use multimodal
communication forms for interactions, we need AI-driven agents interacting with us to understand
multimodal referring expressions to generate seamless interactions [24], [126], [128], [146].

Comprehending referring expressions has been generally studied in the form of the spatial re-
lation grounding task [20], [21], [26], [27], [45]–[54]. This task involves identifying whether the
verbal utterance of the spatial relationships between objects holds in the visual scene [20], [21].
However, the exclusion of nonverbal signals in the model makes the problem different from how
people interact naturally in shared physical spaces, as people start to use multimodal signals very
early in their developmental phase [55]–[63]. To address this gap, in this work, we have designed
an embodied spatial relation grounding task, which involves identifying whether a person is ver-
bally and nonverbally (pointing gesture and gaze) referring to the same objects in the visual scene.
This task can help develop learning frameworks to understand multimodal referring expressions in
embodied settings.

A few datasets have been developed to capture embodied multimodal referring expressions,
which involve referring an object using verbal utterances and nonverbal cues (pointing gesture and
gaze) [24], [64]. However, these datasets have several crucial limitations. The primary limitation
of existing datasets is that the nonverbal interactions are captured solely from an exocentric per-
spective (exo, ego, and top view denotes perspectives from an actor, the observer, and overhead,
respectively (Fig. 4.1)). As comprehending embodied referring expression requires perspective-
taking, which is the awareness of the actor’s and observer’s point of view in shared interactions,
the lack of perspective-awareness in these datasets can degrade the model’s performance. Addi-
tionally, multiple views can help identify the referred object, which may be partially occluded from
one view but visible from another. Moreover, in human-human interactions, learning perspective
is used innately to attend to salient parts of interactions. Let’s assume an actor is requesting an
observer verbally to “pick up the left apple” (Fig. 4.1). This verbal expression can be interpreted
differently from different perspectives, where the “left apple” from the exo view can be interpreted
as the “right apple” from the ego view. Learning where the actor is looking and pointing can help
identify the appropriate object in these scenarios. These data samples with multiple views en-
able the model to learn perspective-taking to ensure seamless and natural interactions in embodied
settings.

Additionally, contrastive verbal and nonverbal expressions are common in many real-world
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Figure 4.1: Embodied referring expressions generated using, CAESAR, with verbal and nonverbal
modalities from multiple views. Top: verbal utterance and nonverbal gestures both referring to the
same object (i.e., Apple). Bottom: verbal utterance refers to the Apple; however, the nonverbal
gestures refer to the Blender.

settings. For example, humans often mistakenly describe one object while pointing to another ob-
ject. People are adept at identifying these scenarios and involve themselves in a conversation to
complete the communication. Similarly, an intelligent AI-agent should identify inconsistent inter-
actions from multimodal referring expressions. However, existing datasets only contain congruent
and complete verbal and nonverbal interaction signals. Therefore, to train a robust model, we need
a dataset with contrastive data samples, enabling the agent to request additional information from
human partners in cases of incongruent signals.

To address the shortcomings of the existing datasets, we have developed a novel embodied
simulator, CAESAR, to generate large-scale datasets of referring expressions. To the best of our
knowledge, CAESAR is the first simulator to generate multimodal referring expressions with ver-
bal utterances and nonverbal gestures in a virtual environment. CAESAR has three novel aspects
which differentiate it from other synthetic data generation systems (e.g., CLEVR [23] and Kubric
[89]). First, CAESAR simulates scenarios in which verbal utterances and nonverbal cues (pointing
gesture and gaze) refer to objects in an embodied setting (Fig. 4.1). We have collected real human
pointing gesture data using an OptiTrack motion capture system [90] and emulated the same behav-
iors in CAESAR by incorporating a new stochastic deictic gesture generation approach. Second,
CAESAR renders multiple views from different perspectives, such as ego-, exo-, and top-view, that
can aid in training models to learn different perspectives for comprehending multimodal referring
expressions. Third, taking inspiration from previous work [21], we have designed a module in
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CAESAR to generate contrastive samples, where the virtual human is pointing to an object while
verbally describing a different object.

One of the primary goals of developing CAESAR is to democratize the data generation pro-
cess so that researchers without simulator development experience can have complete control of
generating a diverse dataset to train and evaluate a learning model. Similar to existing data gener-
ation systems, the development of our simulator requires extensive knowledge of motion planning
and game engine. Thus, to make it accessible to everyone, we have developed a tool that enables
researchers to generate diverse samples without any simulator development experience. Using this
tool, we have developed two large-scale datasets, CAESAR-XL and CAESAR-L, for understand-
ing multimodal referring expression in an embodied virtual environment. A comparison of our
developed datasets and other existing datasets for referring expression understanding is listed in
Table 4.1. We have developed the simulator and generated data under an approved IRB (protocol
number: 4627, Title: Understanding Multimodal Human Instruction in Embodied Environment).

Although several state-of-the-art visual-language models have been proposed for different
tasks, such as spatial relation recognition [20], [21], [51], referring expression comprehension
and visual question answering [26], [27], [46], these approaches use nonverbal embodied inter-
actions from only an exocentric perspective. Thus, we have adopted state-of-the-art models and
benchmarked on our datasets for grounding embodied spatial relations using multiple views and
multimodal data. Our experimental results suggest that these models’ performance varies with
perspective, and nonverbal cues can improve it. Moreover, the results also indicate that we need to
develop models that extract salient nonverbal cues and effectively fuse verbal utterances for robust
performance.

The key contributions of this work are listed below:

• We have developed a novel embodied simulator, CAESAR, to generate referring expressions
with verbal uttrances and nonverbal gestures captured from multiple perspectives.

• We have generated two large-scale and one small datasets of multimodal referring expres-
sions in an embodied setting using CAESAR.

• We have benchmarked various models on our dataset. The results suggest these models
cannot effectively learn perspective-taking, which opens new research directions to develop
robust models for embodied referring expression comprehension.

• CAESAR allows researchers to tune the simulator’s parameters without any development
experiences to generate customized samples for training and diagnosing their models.

4.1 CAESAR: An Embodied Simulator

In this section, we present CAESAR, an embodied simulator capable of automatically generating
multimodal referring expressions with verbal utterances and nonverbal cues (pointing gesture and
gaze) to refer to an object. Generated embodied referring expressions are depicted in Fig. 4.1.
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Table 4.1: Comparison of the datasets of referring expression comprehension. V, NV, E, C, and
A denote verbal, nonverbal, embodied, contrastive samples, and ambiguous samples, respectively.
∗Average number of words.

Datasets V NV E
Views

C A
No. of
Images

No. of
Samples

Object
Categories

Avg.
Words∗Exo Ego Top

PointAt [147] ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 220 220 28 -
ReferAt [64] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 242 242 28 -
IPO [148] ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 278 278 10 -
IMHF [149] ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 1716 1716 28 -
RefIt [69] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 19,894 130,525 238 3.61
RefCOCO [150] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 19,994 142,209 80 3.61
RefCOCO+ [150] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 19,992 141,564 80 3.53
RefCOCOg [151] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 26,711 104,560 80 8.43
Flickr30k [152] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 31,783 158,280 44,518 -
GuessWhat? [153] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 66,537 155,280 - -
Cops-Ref [154] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 75,299 148,712 508 14.40
CLEVR-Ref+ [22] ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 99,992 998,743 3 22.40
YouRefIt [24] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 497,348 4,195 395 3.73
CAESAR-L ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11,617,626 124,412 61 5.56
CAESAR-XL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 841,620 1,367,305 80 5.32

For CAESAR we have created an environment where an embodied agent (an avatar) refers
to various objects distributed on a table top through nonverbal gestures and verbal utterances by
exploiting spatial relation with other objects in the scene. CAESAR generates the environment by
dynamically loading various avatars, objects, walls, and tables.

4.1.1 Observer-Aware Object Generator

To ensure plenty of variation across data samples while limiting clutter, CAESAR randomly spawns
between four to ten objects from our pre-populated object library. Among these spawned objects,
CAESAR randomly chooses one object as the referred object, which will later be described through
nonverbal cues and verbal utterances. We apply some constraints to an object to be declared prop-
erly generated. First, objects can only occur in a scene at most three times. Second, objects must
be partially visible from both the ego and exo views. To promote object diversity, CAESAR varies
spawned objects in rotation, color, size, and position. CAESAR does not vary some object colors,
such as oranges, to ensure proper object appearance.
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Figure 4.2: Comparison of real (top) and synthetic motion generated from CAESAR (bottom).
We used real human motion using an OptiTrack motion capture system to synthesize gestures in
our simulator. The results suggest that our synthetic generated motion are very similar to the real
motion.

4.1.2 Embodied Referring Expression Generator

CAESAR generates both verbal and nonverbal referring expressions for each embodied interaction.
To vary nonverbal expressions, different cues are used interchangeably by the human avatar to refer
to objects. Nonverbal data consists of procedurally generated pointing gestures and a gaze that
refers to an object. To achieve this, we dynamically calculate musculo-skeletal motion for eight
different avatars [155], [156]. Additionally, verbal expressions are generated randomly from a set
of templates.

Pointing Gesture Synthesis: One of the primary goals of the CAESAR simulator is to gen-
erate realistic pointing gestures that match the amount of variability in real human gestures. To
accomplish this, we have researched prior works for procedural pointing gesture synthesis and
developed a novel synthetic pointing gesture synthesis algorithm. Past algorithms generally fall
under three categories: data-driven algorithms that use motion-capture data to fit constraints [157],
physics-driven algorithms that build motion using a musculo-skeletal simulation [158], and hybrid
algorithms combine aspects of the prior two. Our method of synthesizing motion [155] is a hybrid
algorithm that synthesizes a motion path for pointing gestures based on motion-capture data (using
similar timing and arc-like motion). We also determine joint rotations based on inverse kinemat-
ics to fit this motion path, and subsequently applies a physical simulation to account for gravity,
momentum, and self-collision. We have used real human motion data using an OptiTrack motion
capture system to synthesize human pointing gestures in CAESAR (Fig. 4.2).

Our gesture generation algorithm has five phases: rest, preparation, stroke, hold, and retraction.
The rest phase consists of a static idle animation; the subsequent phases are layered onto this to
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Table 4.2: Verbal referring expression generation templates. Here, <Obj>: Referred object name,
<Obj-1>: Reference object name, <Obj-n Prop.>: Color or Size of object n, <SR>: Spatial rela-
tion. Note that spatial relations/locations are relative to either the observer (exo view) or embodied
agent (ego view).

No. Template of Verbal Referring Expression Example Instance
1 <Obj> The apple
2 <Obj-Prop.><Obj> The red apple
3 <Spatial Location><Obj Prop.><Obj> The center small apple
4 <Obj><SR><Obj-1 Prop.><Obj-1> The apple to the left of the big cutting board
5 <Obj Prop.><Obj><SR><Obj-1 Prop.><Obj-1> The small apple next to the brown cutting board

simulate the micro-movements that occur while muscles are under tension. For the preparation,
stroke, and hold phases of the gesture, the motion path is determined by constructing a Catmull-
Rom curve [159] through a set of three points: one at the rest-coordinates of the pointing hand, one
at the peak-coordinates, where the hand is most extended in a pointing gesture, and a third point at
the midpoint of the previous points, with a varying displacement as to randomly alter the shape of
the motion. This curve is then converted into a Bezier Curve [160]. To allow human hands to travel
along paths we used 3D Bezier Curves [161]. We also added a Cubic Easing function along the path
and a basic physical particle simulation to the path-following object as a basis for our Two-Joint
Inverse Kinematics (IK) target when creating the arm animation. To implement the IK and physical
simulation, we used the Unity Animation Rigging [162] and Dynamic Bone [163] packages. The
retraction phase of the gesture is implemented by easing off the IK constraint’s strength, allowing
for gravity to swing the limb back into its rest position, directly under the shoulder joint.

Gaze Synthesis: Our avatars’ head and body orientation is calculated through a set of IK
targets, also using the Unity Animation Rigging package [162]. They are layered on top of each
other: first, the body is applied, and then the head is applied. The IK target weights are eased in
according to a timing parameter shared between the pointing and gaze systems. This constraint
ensures that when both gaze and pointing gestures are generated, the avatar will look towards the
target and change their body’s orientation before pointing.

Verbal Referring Expression Generation: Taking inspiration from previous works [22],
[68], [164], we have developed five compositional templates to generate verbal referring expres-
sion, presented in Table 4.2. In these templates, the target object is referred to by verbal and
nonverbal cues, a reference object is used to add context to the target object’s location, and the
object’s properties, such as color, size, and spatial location (left, right, corner), are varied. For
example, using Template-5, we can generate the verbal message ”the red apple to the right of the
black kettle”, depicted in Fig. 4.1. We also varied the spatial relation/location of the target object
by referring to it from either the observer’s or the actor’s perspectives, resulting in twelve verbal
expressions formulated from the five templates.
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4.1.3 Rendering Nonverbal Referring Expressions from Multiple Views

CAESAR generates nonverbal referring expressions in three scenarios - a person gazing at an
object, a person pointing to an object, and a person gazing and pointing at an object. There is
another setting where no human avatar is rendered and the scene only contains objects, named no
human scenario. Nonverbal cues in three of the scenarios are captured from three camera views:
ego, exo and top. We have also generated skeletal poses of a simulated human avatar using the
Vectrosity package [165].

4.1.4 Contrastive Sample Generator

CAESAR generates contrastive embodied referring expressions where the given embodied refer-
ring expressions are insufficient to successfully ground an object. As described in Section 4.1.3,
there are four different scenarios our simulator generates; CAESAR generates contrastive embod-
ied referring expressions for all four of these different scenarios. In the situations of only gaze,
only pointing gesture, and both gaze and pointing gesture, the human avatar points, gazes or both
at an object that it is not verbally describing. This is made apparent in Fig. 4.1, where the humanoid
verbally and nonverbally describing two different objects results in contrastive expressions. For the
scenarios with no human avatar, CAESAR generates a verbal expression that describes an object
not in the scene. These contrastive data samples can help to train models to ground embodied
spatial relations. While generating these contrastive scenarios, we apply several constraints to en-
sure non-ambiguity in whether a scenario is contrastive or not. For example, a chosen object’s
proximity to different copies of that object is checked to ensure that a referred object can be dis-
tinguished from other referred objects. Additionally, the contrastive object selected for nonverbal
expression is checked for being adequately spaced from the chosen object and of a different cat-
egory. These constraints ensure the person’s gaze or gesture is sufficiently different to make the
sample contrastive.

4.1.5 Data Annotation

CAESAR generates detailed annotations of each data sample, including bounding box coordinates
for all the generated objects from all three views, object attributes (color, size, absolute location),
and their relative locations from the actor (ego view) and the observer (exo view). We found that
using Unity’s object mesh renderer for bounding box calculations provided large overestimates, so
we calculate the position (x and y coordinates) of each vertex of an object relative to each camera,
which leads to accurate bounding box annotations. Additionally, as the ego view camera constantly
changes position and rotation (the other cameras remain static), we dynamically calculate bounding
boxes during videos for the ego camera to effectively track where each object is relative to the
moving camera. Moreover, CAESAR annotates each verbal referring expression according to
object attributes and spatial relations. It also records environmental parameters, such as lighting
conditions (number of lights, position, intensity) and background color.
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4.1.6 Configurable Data Generation Interface

One of the challenges of many simulators that generate datasets is a lack of configurability or
a requirement of extensive development experiences using certain libraries. We have developed
a tool to configure CAESAR without programming or game engine experience through simply
clicking buttons in the Unity inspector window to toggle features. This tool uses serialized fields
inside our main manager, directly allowing users to configure different features that will be used
internally. These configurable features include the ability to specify whether video should be
recorded, activate different cameras (i.e., the skeletal camera), and designate the number of scenes
to generate in parallel.

4.2 Dataset Analyses

Using CAESAR, we have generated two datasets. The first dataset, CAESAR-L, consists of
124, 412 data samples created from 11, 617, 626 images at a resolution of 480× 320 pixels. These
data samples are divided into train, validation, and test data splits with 74, 760, 24, 779, and 24, 873
data samples, respectively. The second dataset, CAESAR-XL, consists of 1, 367, 305 data samples,
which were created from 841, 620 images by varying verbal expressions in the five different set-
tings described in Section 4.1.3. These data samples are divided into train, validation, and test
data splits with 1, 123, 886, 122, 157, and 121, 262 data samples, respectively. These images were
rendered with a resolution of 720 × 480 pixels using an object pool of size 80. The lower sample
to image ratio in CAESAR-L dataset when compared to CAESAR-XL can be explained by the
CAESAR-L dataset containing images, videos (rendered at 15 fps), and a skeletal pose. Table
4.1 shows an in-depth comparison between CAESAR-L, CAESAR-XL, and other similar datasets
from the literature.

Similar to previous works [21], [51], one of the primary goals of CAESAR is to reduce the
spatial location bias in generated data. For example, if the terms “on the left” and “on the right”
always refer to objects located on the left or right side of the scene from the actor’s perspective,
models will exploit this bias to ground spatial relations. If actors give utterances such as “on the
left” and “on the right” but from the view of the observer, instead of the view of the actor, these
models will not be able to complete the perspective taking necessary to successfully ground these
utterances. To address the issue, we randomly select verbal expressions from either the ego (actor)
or exo (observer) perspective. We visualize the referred object location in each view (ego, exo,
and top) for left and right spatial locations (Fig. 4.3(a)). These visualizations suggest that referred
objects of these two locations are spread across both sides of the three views, meaning the object
locations are not identifiable through solely verbal cues. This analysis indicates that our datasets
are not biased in generating spatial locations, and thus, can force models to utilize nonverbal cues to
succeed in embodied spatial relation grounding by recognizing which perspective given utterances
come from.

As shown in Fig. 4.3(b), our datasets contain verbal utterances from multiple perspectives (ego,
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(a) Referred object locations in different views. (b) Distribution of perspectives. (c) Distribution of templates.

Figure 4.3: Analysis of CAESAR-XL dataset. (a) CAESAR-XL has little to no bias as spatial-
visual cues of object locations are less separable for a given left and right spatial location in verbal
utterances. Note that the color being purple is a result of overlapping left and right points. (b)
CAESAR-XL contains referring expressions from all the perspectives: ego (actor), exo (observer),
and neutral (expressions that do not depend on perspective-taking). (c) CAESAR-XL generates
verbal utterances using the templates described in Table 4.2. (T − n denotes the n− th template).

exo, neutral). Neutral utterances do not depend perspective to ground relations. For example, the
term “the red apple” does not contain any spatial relation/location terms and thus does not require
perspective to ground. The relatively equal distribution of multiple perspectives in our datasets
promote the ability for models to learn perspective-taking in embodied settings. Fig. 4.3(c) shows
the distribution of each verbal expression template presented in Table 4.2, where template three
(the template involving spatial location, an object property, and then an object) was about twice
as common as all other templates. This was done to ensure spatial relations and spatial locations
were used at the same frequency (as templates four and five both use spatial relations). Thus, our
dataset is not biased towards verbal expressions.

4.3 Embodied Relation Grounding Models

Existing models use verbal utterance and an exocentric view to recognize spatial relations. How-
ever, our dataset contains both verbal and nonverbal modalities captured from three views. Thus,
we have adopted visual-language models to develop three representations learning models for the
embodied spatial relation grounding task: a CLIP Model [92], a Dual-Encoder (ViT [166] + BERT
[167]) model and a Late Fusion (ResNet [98] + BERT [167]) model (Fig. 6.8).

CLIP-based Model: CLIP model excels at aligning visual and language modalities [92].
Thus, we use the CLIP model to detect whether nonverbal cues and verbal utterances of an embod-
ied expression refer to the same object. However, CLIP can take an image-text pair and produce
verbal and visual representations. For this reason, we pair the verbal expression, T , to each of the
views of the nonverbal expression (Ego (Vego), Exo (Vexo), and Top (Vtop)) and pass each modal-
ity pair to CLIP models: Ev

i , E
t
i = CLIP (Vi, T ), i ∈ (ego, exo, top). Here, Ev

i ∈ RB×S and
Et

i ∈ RB×S are the visual and verbal embeddings from CLIP models, respectively. (B is the batch
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size and S is the embedding dimension)
Visual-Language Transformer Models: We have extended two visual-language transformer

models, ViLT [91] and VisualBERT [26], for grounding embodied relations. As these models
were designed to produce representations from a single visual scene and a verbal utterance, we
extend these models to extract visual-language representations from multiple visual scenes. First,
we extract visual representations from multiple visual scenes using ResNet-50. Finally, we pass
these visual tokens and tokenized verbal utterance to these visual-language transformer models.
These models process these visual and verbal tokens using a single transformer model to extract
combined visual-language representation. This representation is then used for grounding embodied
relations.

Figure 4.4: Embodied relation grounding
model. Data from each pair of verbal and
visual modalities is passed through a shared
visual language models to extract representa-
tions, which are then fused for embodied spa-
tial relation grounding.

Dual-Encoder Model: Like CLIP models,
we pass each pair of visual and verbal modalities
to Dual-Encoder models to extract verbal and non-
verbal representations. We use ViT and BERT in
Dual-Encoder models to encode visual and verbal
modalities, respectively. Both of these encoders
(ViT and BERT) use a Transformer to extract rep-
resentations.

Late Fusion Model: In the Late Fusion
model, all the visual and verbal modalities are
encoded independently using ResNet-50 [98] and
BERT [167] models. We projected the extracted
verbal and visual modalities representations to a
fixed-sized embedding. Although Dual-Encoder
and Late-Fusion models have similar architec-
tures, as both of these models use separate en-
coders for visual and verbal modalities, there are
two main differences. First, Dual-Encoder models
use Transformers to design both visual and verbal
encoders. This contrasts from how Late-Fusion
models use different architectures for these two
types of modalities, such as ResNet for the visual
encoder and BERT for the verbal encoder. Sec-
ond, in the Late-Fusion model, we first extract visual representations for all three views and fuse
the visual and verbal representations using a Transformer-style multi-head attention approach [94].
This differs from the Dual-Encoder model, where we pair the verbal utterances with each view and
pass each visual-verbal pair through the model to extract pairwise representations, which are con-
catenated to produce multimodal representations.

Multimodal Fusion: We fused the extracted verbal and visual representations from the above-
mentioned models to produced multimodal representations, which are used to detect embodied
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spatial relation. We used four fusion approaches: SUM, CONCAT, Self-Attention, and Cross-
Attention. The first two fusion approaches summed and concatenated the verbal and visual rep-
resentations. The self-Attention approach is similar to the Transformer-style self-attention [94]
which attends each of the verbal and visual representations and sums the attended representations.
We have also employed a Cross-Attention approach, which is similar to the co-attention approach
from ViLBERT [27]. Cross-Attention is essentially a query-key-value style attention approach,
where verbal embeddings are used as query and visual embeddings are used as key and values.
Finally, the fused embedding is passed through a multilayer perceptron to detect embodied spatial
relations.

Model Training Environment Setup: We projected the visual and verbal embeddings from
CLIP, Dual-Encoder, Late Fusion models to 512, 768, and 768 sized embeddings, respectively. We
fused all the embeddings from multiple views and pass them through a multilayer perceptron to
classify whether verbal and nonverbal expressions refer to the same object. We trained the model
using Cross-entropy loss on the CAESAR-XL dataset for four epochs. To train our model we
used PyTorch-Lightning [100] and HuggingFace [168] to implement models and used the Adam
optimizer with weight decay regularization [95]. An initial learning rate set to 3e−4 to train the
models. We trained all the models in a distributed GPU cluster environment, where each node
contains 4-8 GPUs.

4.4 Experimental Results and Discussion

We evaluated several models on our dataset CAESAR-XL by varying modalities, perspectives,
and fusion methods. To evaluate the impact of modalities (verbal and nonverbal), we used all
the views (ego, exo, and top) and employed the CONCAT fusion method. Moreover, we used
the CONCAT fusion method to evaluate the impact of various perspectives using verbal, gaze,
and pointing gesture data. Additionally, we used the verbal utterances from ego, exo, and neutral
perspectives to evaluate whether the baseline models can effectively learn perspective to ground
embodied referring relation. Finally, to evaluate the impact of the fusion methods, we used all the
views with verbal, gaze, and pointing gesture data. The results are presented in Table 4.3.

Impact of modalities: The results in Table 4.3(a) suggest that verbal models without any
nonverbal signals (e.g., BERT [167]) can not perform better than random guessing at the relation
grounding task. The reasoning behind this performance is that we generated contrastive nonverbal
data samples for the same verbal utterance. Additionally, incorporating nonverbal modalities (gaze
and pointing gesture) improve embodied spatial relation grounding accuracy. For example, incor-
porating only gaze cues improved the model’s performance compared to models that use verbal and
visual modalities only. This performance improvement indicates the necessity of nonverbal modal-
ities to ground embodied spatial relations. However, the performance degrades when models use
both gaze and gesture cues, when compared to models using only gaze or gesture. As the evaluated
baseline models encode the visual modalities to extract combined representation for pointing ges-
tures and gaze feature representations, these models may not disentangle pointing gesture and gaze
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Table 4.3: Embodied spatial relation grounding accuracy of baseline models. The results suggest
that nonverbal cues increase embodied spatial relation grounding accuracy. However, the model’s
performance depends on how nonverbal interactions are captured and how representations from
multiple views and modalities are fused. (V: Verbal, NH: Visual without Human, G: Gaze, P: Point-
ing Gesture, SA: Self-Attention, CA: Cross-Attention, LF: Late Fusion, DE: Dual-Encoder).

(a) Impact of Modalities
Model V V+NH V+G V+P V+G+P

BERT 50.00 - - - -
LF - 78.44 81.51 81.18 76.00
DE - 62.55 72.26 63.09 74.87
CLIP - 64.78 83.01 77.31 75.21
ViLT - 64.86 82.54 84.43 79.90
VisualBERT - 68.07 80.07 77.94 75.61

(b) Impact of Multi-Perspectives
Model Ego Exo Top All
LF 60.72 76.51 88.37 76.00
DE 59.75 68.84 71.04 74.87
CLIP 59.12 78.97 78.86 75.21
ViLT 85.43 62.47 52.12 79.90
VisualBERT 57.75 70.16 66.32 75.61

(c) Impact of Fusion Methods
Model SUM CONCAT SA CA

LF 69.20 76.00 69.04 51.81
DE 77.02 74.87 72.50 74.89
CLIP 82.85 75.21 80.63 75.51

representation to comprehend referring cues accurately. Thus, we must carefully design the model
architecture and training procedure to extract cues from nonverbal modalities and effectively fuse
these representations to verbal modality to accurately recognize embodied spatial relation.

Impact of multiple perspectives: The results in Table 4.3(b) suggest that the models’ per-
formance varies with the perspectives. For example, the top view improves the performance of
Late Fusion and Dual Encoder models compared to models using the exo view. These findings un-
derscore that the exo view is not always the optimal perspective for ensuring robust performance.
Additionally, although the performance of the single view-based models fluctuates, incorporating
multiple perspectives helps achieve consistent performance across the models. In our experiments,
we found that multiview models cannot outperform single view-based models, unlike findings
from previous works [7], [8], [10], [11], [15], [28], [42], [81]. The reasoning behind this perfor-
mance degradation is that nonverbal cues can be interpreted differently from multiple views. For
example, a person pointing and verbally describing an object as the “left apple” can be visually in-
terpreted by an observer as the “right apple”. Thus, extracting synchronized cues across modalities
is essential to validating an embodied spatial relation. Moreover, the evaluated baseline models
do not explicitly learn to ground perspective to comprehend referring expressions. As the refer-
ring expressions in our datasets are generated from multiple perspectives, our datasets can be used
to diagnose whether a model can effectively learn perspective-taking to comprehend embodied
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referring expressions.
Impact of multimodal fusion: The results in Table 4.3(c) suggest that simple SUM and

CONCAT fusion approaches performed better than more complex attention-based fusion methods.
For example, CONCAT fusion model outperforms attention-based fusion models in almost all the
evaluated settings. This performance degradation is likely because nonverbal cues are interpreted
independently from different perspectives. Moreover, as attention-based fusion approaches try to
align multiview representations, the conflicting nonverbal cues from different perspectives lead
to sub-optimal representations in these baseline models. We can develop models that can jointly
consider multiple perspectives in extracting complementary representations from multiview data
to address this issue.

Results from human-subject study: We sampled 300 data samples of the exo view from the
testing split of CAESAR-XL to conduct a human-subject study on Amazon Mechanical Turk under
IRB Protocol: 4627. In this study, we showed the data samples to participants and asked them to
indicate whether a virtual avatar was pointing, gazing, and verbally describing the same object.
Each sample was shown to three participants, and we took the majority voting to determine the
label of a sample. In this study, 397 participants took part where each participant’s task approval
ratting was at least 95%, and they were compensated for their time. The results suggest that the
participants correctly validated the relations in 80.66% of the times.

4.5 Broader Impact

We have developed an easy-to-use simulator for researchers to generate datasets for different pur-
poses. We believe that datasets generated using our simulator can also be used to train and eval-
uate models for various tasks in embodied settings, such as embodied question answering, object
grounding, and conversational human-AI interactions. Moreover, researchers can use Unity plu-
gins to generate other modalities (e.g., a depth map, point clouds, and object segmentation) and
annotations (e.g., 3D object spatial locations/rotations) for developing novel multimodal learning
models. We expect researchers to be able to generate datasets according to their needs - which
CAESAR’s configurable parameters allow for. Additionally, CAESAR-generated datasets can be
used to pre-train models for embodied instruction comprehension, which can be transferred to
robots for comprehending instructions in real-world human-robot interactions. Finally, the find-
ings from our experimental results open some exciting research directions to develop robust models
for embodied referring expression comprehension.

4.6 Limitations

Although we developed a 3D embodied environment in our simulator, we have rendered 2D image
data in this work. In our future work, we will extend our simulator to render 3D data, such as point
clouds. Using this 3D data we can develop models for multimodal instruction understanding in 3D
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embodied environments. Moreover, our experimental results from baseline methods suggest room
for improvements in embodied referring expression understanding by using multimodal and multi-
view data. In the future, we plan to develop a model to extract complementary representations from
multiple views and extract salient representations for nonverbal interactions to recognize embod-
ied spatial relations accurately. Although we have developed and evaluated several visual-language
transformer models, in future works, it will be an interesting avenue to investigate whether other
visual-language models can effectively comprehend the embodied referring expressions. Specif-
ically, as visual-language models take visual and verbal data as input together, it will be worth
investigating whether these models can disentangle the nonverbal cues from the visual scene data
and fuse the verbal data to produce salient multimodal representations.
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Chapter 5
PERSPECTIVE-AWARE MULTITASK MODEL FOR REFERRING EXPRESSION GROUND-
ING

Humans naturally use multimodal cues, such as verbal utterances and non-verbal signals (gazes
and pointing gestures), to refer to objects and events, known as referring expressions [55]–[57],
[141]–[144], [146]. In prior work, understanding referring expressions has been generally modeled
as grounding relations and objects in visual scenes using verbal utterances, which is known as
referring expression comprehension (REF) [45], [52], [53], [150]. These models are often trained
in non-embodied settings, where the visual scenes contain objects but disregard human nonverbal
signals. Consequently, these models cannot generalize well in comprehending real-world human
interactions.

Several recent works have attempted to address the task of comprehending referring expres-
sions by incorporating nonverbal gestures with verbal utterances in embodied settings (known as
embodied referring expression comprehension (E-REF)) [24], [64]. However, some crucial is-
sues remain unaddressed in these recent works. Particularly, most embodied referring expression
datasets only capture human interactions from an observer perspective with exo-centric views.
People innately use an understanding of perspective, which can be observed in how humans inter-
changeably use perspectives from the speaker and the observer when referring to objects during
interactions. For example, a person can refer to an object as “the red lamp to the left of the
black hat” from the speaker’s perspective or “the red lamp to the right of the black hat” from the
observer’s perspective (Fig. 5.1). Thus, understanding perspectives can help a model to ground
relations and objects. However, the existing datasets do not contain data from other perspectives
(e.g., speaker, observer, neutral) and visual views (e.g., exo, ego, top) to train such a model.

Figure 5.1: Comprehending embodied referring expressions requires an understanding of the per-
spective, i.e., whether an object is verbally described from the speaker’s or observer’s perspective.
In these scenarios, nonverbal signals (gaze and pointing gesture) can complement verbal utterance
to ground an object (a & c). However, sometimes people verbally describe an object and point to
or gaze at another object (b & d). Thus, it is also crucial to ground relation for comprehending
referring expressions.
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Recent works studied REF and E-REF by designing two separate tasks: a relation grounding
task [21], [65]–[67] and an object grounding task [20], [24], [68], [69]. In a non-embodied setting,
the relation grounding task is defined as determining whether a verbal utterance appropriately
describes the spatial relationships between objects in a visual scene. In an embodied setting, this
relation grounding task is defined as determining whether a verbal utterance and nonverbal signals
(gazes and pointing gestures) refer to the same object. The object grounding task aims to identify
a referred object using a verbal utterance and nonverbal gestures. These tasks have many use-cases
in real-world interactions. For example, if a person verbally describes an object but nonverbally
points to another object, an AI-driven agent can identify these incoherent multimodal cues, using
the relation grounding task, and request clarification. In another case, if a person points to an object
and asks, “what is the object to the right of the black hat?”, then the AI agent can use the object
grounding task to identify the referred object (presented in Fig. 5.1). Thus, training models on
these two related tasks (relations and objects grounding) and the previously mentioned perspective
grounding task can enable achieve seamless human-AI interactions (HAI).

To address these challenges, we have developed a novel perspective-aware multitask model,
PATRON, for the relation and object grounding task using multimodal cues. In PATRON, we have
designed two cooperative tasks, one for the perspective grounding (the auxiliary task) and another
for the relation and object grounding (the target task). In the auxiliary task module, PATRON learns
disentangled representations, the auxiliary task-specific and task-guidance representations, to learn
perspective grounding. In the target task module, PATRON uses our proposed guided fusion ap-
proach that utilizes task-guidance representations from the auxiliary task as prior information to
extract guided multimodal representations. PATRON uses a self-attention-based fusion approach
to extract supplementary target task-specific representations. Finally, PATRON fuses task-guided
and target task-specific disentangled representations to learn relation and object grounding.

Additionally, to overcome the shortcomings of the existing datasets, we have developed a
dataset, called CAESAR-PRO, to train and evaluate models for comprehending embodied refer-
ring expressions. In CAESAR-PRO, each embodied referring expression is captured from three
visual views (ego, exo, and top), and the verbal utterances are generated from three perspectives:
speaker, observer, and neutral. We have evaluated the performance of PATRON and state-of-the-
art visual-language models by applying on the CAESAR-PRO dataset for perspective and relation-
object grounding tasks. Our extensive experimental analysis suggests that perspective learning can
improve the performance of visual-language models, including PATRON, for the relation-object
grounding task. Moreover, our proposed perspective-aware guided fusion approach helps PATRON
to outperform all the evaluated models by achieving the highest accuracy of 74.13% and 81.15%
in relation-object and perspective grounding tasks, respectively. Moreover, our ablation study in-
dicates that disentangling multitask representations can help extract salient multimodal features
and significantly improve the performance of the relation-object grounding task. Our proposed
perspective-aware E-REF model, the dataset, and the insights from our studies open new research
directions in HAI.
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5.1 PATRON: Perspective-aware Multitask Model

In PATRON, we have designed two tasks: an auxiliary task (perspective grounding) and a target
task (relations and objects grounding). We combine relation and object grounding task in a single
task (relation-object grounding), where the models identify the referred object if the verbal and
nonverbal cues refer to the same object; otherwise, it will report a failed condition. In PATRON,
the auxiliary task learns disentangled representations, auxiliary task-specific and task-guidance,
where task-guidance representations are used to guide the target task to extract complementary
representations. PATRON also learns disentangled representations for target tasks, task-guided
and target task-specific, where task-guided representations are learned using task-guidance repre-
sentations from the auxiliary task. In the following subsections, we present different modules of
PATRON.

5.1.1 Unimodal Feature Encoders

PATRON uses modality-specific encoders to encode data from visual and verbal modalities. Visual
modalities capture nonverbal gestures in three image views (Xego, Xexo, and Xtop). Verbal utter-
ances (Xverbal) refer to an object from a perspective (ego, exo, and neutral). As different modalities
have different feature characteristics, PATRON uses separate encoders to encode visual and verbal
modalities. This architecture design enables PATRON to utilize state-of-the-art models (Fm) to
extract salient unimodal representations (Em). In our implementation of PATRON, we use ResNet
and DistilBERT to extract unimodal representations:

Em = Fm(Xm) , m ∈ (ego, exo, top, verbal) (5.1)

Here, Em ∈ R(B×Dm), B is the batch size, and Dm is the representation dimension of modality
m.

5.1.2 Auxiliary Task Module

In PATRON, the auxiliary task module extracts task-specific and task-guidance disentangled rep-
resentations from unimodal representations Eu = (Eego, Eexo, Etop, Everbal) (u indicates for uni-
modal). These disentangled representations are used together to learn perspective grounding,
whereas task-guidance representations are also used to guide the target task module to extract
perspective-aware complementary representations for relations and objects grounding.

5.1.2 Auxiliary Task-Specific Representation Learning:

In PATRON, we have designed a guided fusion approach to fuse unimodal representations. In
the auxiliary task module, PATRON uses verbal representation (Everbal) as queries to fuse visual
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Figure 5.2: PATRON: Perspective-aware Multitask Learning Model. PATRON learns disentangled
representations (i.e., auxiliary task-specific and task-guidance representations) for the auxiliary
task (perspective grounding) and disentangled representations (i.e., task-guided and target task-
specific) for the target task (relation and object grounding). Here, the proposed guided fusion
approach extracts the task-guided representations using the task-guidance representations as prior
information from the auxiliary task.

modalities (Evisual = (Eego, Eexo, Etop)) and produce task-specific representations. At first, PA-
TRON projects (Everbal) to produce queries (Q) and projects Evisual to produce key (K) and value
(V ) representations:

Q = EverbalW
Q;K = EvisualW

K ;V = EvisualW
V (5.2)

Here, WQ, WK , and W V are learnable parameters. Finally, queries are used to extract multi-
modal representations from keys and values in the following way:

E
′

= σ

(
QKT

√
Du

)
V (5.3)

Eaux
task specific = W oE

′
(5.4)

Du is the unimodal representation dimension and W o is a learnable parameter. As we also use
guided fusion approach in the target task module, we can summarize this as,
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Eaux
task specific = Guided Fusion(Query, Eu) (5.5)

5.1.2 Task-Guidance Representation Learning:

PATRON uses self-attention approaches to fuse unimodal representations and extract task-guidance
representations (Eaux

task guidance), which is disentangled from Eaux
task specific:

Eaux
task guidance = Self Attn(Eu) =

∑
m∈M

αmEm (5.6)

αm =
exp(βm)∑

m∈M
exp(βm)

, m ∈M (5.7)

βm = (W aux)TEm , m ∈M (5.8)

Here, M is the modality list (ego, exo, top, verbal), W aux is a learnable parameter, and αm is the
attention score which is calculated using a 1D-CNN with a filter size of 1.

5.1.2 Perspective Grounding Task:

PATRON fuses disentangled representations ([Eaux
task specific;E

aux
task guidance]) using a self-attention

approach (Self Attn: Eq. 5.6) to learn perspective. PATRON uses Eaux
task guidance to learn perspec-

tive for ensuring that it contains perspective-aware information, which PATRON uses in the target
task module:

Eaux
fused = Self Attn([Eaux

task specific;E
aux
task guidance]) (5.9)

yP = FPerspective(E
aux
fused) (5.10)

Here, Fperspective is a multi-layer perceptron to learn perspective grounding.

5.1.3 Target Task Module

In PATRON, the auxiliary task module (perspective grounding) guides the target task module to ex-
tract salient multimodal representations for grounding relations and objects. PATRON uses Guided
and Self Fusion modules to extract representations for target task learning.
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5.1.3 Task-Guided Representation Learning:

PATRON uses our Guided Fusion approach (Section: Task-Specific Representation Learning and
Eq.5.5), to fuse unimodal representations (Eu). In the target task module, the guided fusion ap-
proach aims to extract perspective-aware multimodal representations that can be used for ground-
ing relations and objects. PATRON utilizes the guidance representations (Eaux

task guidance) from the
auxiliary task module as prior information to extract salient multimodal representations:

Etarget
guided = Guided Fusion(Eaux

task guidance, Eu) (5.11)

5.1.3 Target Task-Specific Representation Learning:

Although a guided fusion approach helps PATRON to extract perspective-aware representations
(Etarget

guided), verbal and visual modalities can provide additional information to Etarget
guided. PATRON uses

Self Attn (described in Section Task-Guidance Representation Learning and Eq. 5.6) to extract
supplementary representations for relation-object grounding: Etarget

task specific = Self Attn(Eu).

5.1.3 Relation-Object Grounding Task:

PATRON grounds relations and objects together. PATRON identifies the target object that is re-
ferred to by multimodal cues - verbal utterances and nonverbal gestures (gazes and pointing ges-
tures). If the verbal utterance and nonverbal gestures refer to two different objects, then the model
should identify these inconsistencies (invalid embodied referring relations) and should not ground
any objects. To accomplish this, PATRON fuses guided representations (Etarget

guided) and target task-
specific representations (Etarget

task specific) through a self-attention approach (Self Attn: Eq. 5.6):

Etarget
fused = Self Attn([Etarget

task guided;E
target
task specific]) (5.12)

yOR = FOR(E
target
fused ) (5.13)

Here, FOR is a multi-layer perceptron to learn grounding relations and objects.

5.1.4 Multitask Learning

We use a multitask learning loss to train PATRON for jointly learning auxiliary (perspective
grounding) and target tasks (relations and objects grounding). We use cross-entropy to calculate
the loss for auxiliary (LP ) and target (LRO) tasks:
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LP (yP , ŷP ) =
1

B

B∑
i=1

y(P,i) log ŷ(P,i) (5.14)

LRO(yRO, ŷRO) =
1

B

B∑
i=1

y(RO,i) log ŷ(RO,i) (5.15)

Lmultitask = γpLP + γROLRO (5.16)

Here, γp and γOR are task loss weights. LP helps to learn perspective-aware representa-
tions for grounding the perspective. This loss is also used to learn disentangled representation
(Eaux

task guidance) for guiding the target task to learn perspective-aware multimodal representations.

5.2 CAESAR Dataset

We have used an embodied simulator, CAESAR [25] to develop a dataset of embodied referral
expression. CAESAR allows to automatically generate datasets and synthesizing human gaze
and gestures from multiple perspectives (ego, exo, and top). Moreover, CAESAR can generate
contrastive situations where the person verbally and nonverbally referring two different objects.

5.2.1 New Environment Creation in CAESAR

We have developed an additional embodied environment in CAESAR, called a shelf environment,
where various objects are located on a shelf (Fig. 5.1-right), whereas the original CAESAR sim-
ulator contains only a table-top environment (Fig. 5.1-left). These two environments allow us to
generate diverse data samples with more spatial relations, such as above and below, enabling the
model to understand spatial relations in three dimensions. In contrast, models trained only on the
table-top environment can only understand spatial relations on the 2D plane of the table. More-
over, due to the locations of cameras in the shelf environment, the observer’s point of view differs
from the table-top environment (Fig. 5.1). The camera angle and perspective variation are signif-
icant as this new environment offers diversity from the contrasting perspectives of the table-top
environment, where the observer is always placed in front of the speaker. Additionally, we have
generated the depth map visual modality and segmentation mask of objects which can be used in
other E-RFE tasks, such as scene segmentation.

5.2.2 Dataset Generation

To accomplish a realistic and sufficiently variable synthesis of human gaze and pointing gestures,
we have used the CAESAR simulator, which uses a gesture synthesis algorithm on real-world data
collected using a motion capture system. CAESAR uses inverse kinematics applied to both the



125

Figure 5.3: A visualization of referred object locations from different views in the table-top en-
vironment is presented here. These locations indicate that the CAESAR-PRO dataset has little to
no bias toward object locations in visual scenes and is evenly distributed for a given left and right
spatial relations in verbal utterances.

chest and head of the human to generate gestures. To construct verbal referring expressions, we
used several templates from CAESAR. We have also included additional spatial relations, such as
the above and below relation, which allows for generating more diverse data samples and training
models to learn 3D spatial relations. The general structure of these templates: <referred object
location><referred object properties><spatial relation>< reference object location><reference
object properties>. We have varied this template structure and created eight unique sub-templates.
Additionally, we have varied the object names, colors, sizes, locations, and spatial relations to
generate diverse verbal expressions to identify one of up to ten objects in a scene from multiple
perspectives.

5.2.3 Dataset Analyses

The CAESAR-PRO dataset consists of 128, 100 samples, with a train (79, 431), validation (24, 597),
and test split (24, 072). The CAESAR-PRO dataset is composed of 229, 036 images, which are
mixed with different verbal expressions from multiple perspectives. Images are rendered at a res-
olution of (480 × 320) pixels, and an object library of 61 objects is used. We randomly sampled
10 objects which are used as referred objects. Each data sample consists of RGB images, skele-
tal images, depth map images, and object segmentation mask images for three camera views and
a verbal utterance. We also generated task labels for perspective, relation, and object grounding
tasks.

We aim to generate a dataset that is not biased to object locations and spatial relations. For
example, the term “on the left” always refers to objects on the left side of the scene from the
observer’s perspective would cause trained models to bias towards only using verbal cues, resulting
in a model not being aware of the perspective-taking necessary to ground real-world referring
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expressions with verbal and nonverbal signals. In Fig. 5.3, it is evident that the object locations in
CAESAR-PRO (table-top environment) are not tied to the spatial relations in the verbal utterances.
These diverse data ensure that models use nonverbal cues to ground objects rather than solely
relying on verbal cues.

5.3 Experimental Setup

We have evaluated the performance of PATRON by comparing its performance against the fol-
lowing models for the perspective and relation-object grounding tasks: MuMu [11], VisualBERT
[26], CLIP [92], Dual-Encoder (similar to Lit model [169]), and Late-Fusion (similar to HAMLET
model [7]). These models take a visual image and a verbal utterance to produce visual-language
representations for learning downstream tasks. We extend these models to process multiple vi-
sual views with a verbal utterance in our evaluation settings, as there are multiple visual views
(ego, exo, and top) capturing nonverbal gestures. For VisualBERT, we extract visual representa-
tions of multiple views using ResNet-101 and pass these representations with a verbal utterance to
learn visual-language representations. For the CLIP and Dual-Encoder models, we pair the ver-
bal utterance to each visual view and pass each visual-verbal pair through the model to extract
visual-language representations, which are later concatenated. For the Late-Fusion and MuMu
models, we extract visual and verbal representations using ResNet-101 and DistillBERT [170],
respectively. Late Fusion model fuses these representations using the Multi-Head Self-Attention
approach [94], whereas MuMu uses a guided fusion approach.

We have evaluated these models’ performances by applying on the CAESAR-PRO dataset. As
some classes contain more data samples than others, we used macro-accuracy metrics to evaluate
perspective, object, and relation grounding tasks. We trained each model for eight epochs with a
learning rate set to 1e−5 in a distributed cluster environment with eight A100 GPUs in each cluster
node. We train all the models using Pytorch-lightning [120] environment with a fixed seed to
ensure reproducibility.

5.4 Experimental Results and Discussion

5.4.1 Comparison of Multitask Learning Approaches

We evaluated the performance of PATRON and other models by applying on the CAESAR-PRO
dataset in single and multitask learning settings. In these experiments, a model takes multiple vi-
sual views (ego, exo, and top) and a verbal utterance from multiple perspectives (speaker, observer,
and neutral) to learn two tasks: (i) perspective grounding task and (ii) relation-object grounding
task. In the multitask model, we chose either perspective or relation-object grounding task as the
auxiliary task (the first task in the model architecture) and another task as the target task (the sec-
ond task in the model architecture). For example, in Task Order I, we chose perspective grounding
as the auxiliary task and relation-object grounding as the target task. In Task Order II, we chose
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(a) Single task models trained separately
Models Perspective (Pers.) Relation-Object (RO)
Late Fusion 74.90 65.50
Dual Encoder 77.87 54.47
CLIP 71.23 65.26
VisualBERT 77.20 66.53

(b) Multitask models with different task order in model

Models
Task Order I Task Order II

Pers → RO RO → Pers
Late Fusion 72.30 61.80 65.40 75.12
Dual Encoder 75.67 64.99 43.66 75.77
CLIP 74.52 68.14 56.82 73.02
VisualBERT 74.52 65.90 62.15 69.44
MuMu 73.65 67.48 63.22 75.27
PATRON 79.85 74.13 67.63 81.15

Table 5.1: Top-1 macro accuracy of various models of perspective and relation-object grounding
tasks.

relation-object grounding as the auxiliary task and perspective grounding as the target task. We
have also evaluated state-of-the-art visual-language models in single-task learning settings, where
we trained perspective and relation-object grounding tasks using two separate models. We did not
evaluate MuMu and PATRON in single-task learning settings, as these models are designed for
multitask learning. We present the results of single task and multitask models in Table 5.1 (a) &
(b), respectively.

Results: The results in Table 5.1 suggest that PATRON outperforms all the single and multitask
models for grounding perspective and relation-object tasks by achieving 81.15% and 74.13% in
macro-accuracy, respectively. Among the other visual-language multitask models, CLIP and Dual
Encoder achieve the next highest accuracy for relation-object and perspective grounding tasks by
achieving 68.14% and 75.77%, respectively. However, among the single task models, VisualBERT
and Dual Encoder achieve the next highest accuracy for relation-object and perspective grounding
tasks by achieving 66.53% and 77.87%, respectively.

Discussion: The results in Table 5.1 indicate that for both Task Orders (I & II), the perfor-
mance of PATRON improves compared to the single and multitask models. Although MuMu uses
a guided fusion approach and outperforms single task models for relation-object grounding, it
fails to outperform PATRON. However, when considering the task order, some multitask models
show improved results compared to their single task models. For example, when Task Order I
was considered, the CLIP model showed better accuracy than its single task counterpart for both
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Models
Non-Embodied Embodied
V V+NH V+G V+P V+G+P

BERT 26.44 - - - -
Late Fusion - 56.33 54.91 55.30 61.80
Dual Encoder - 51.53 53.51 56.93 64.99
CLIP - 52.63 57.38 60.67 68.14
VisualBERT - 54.45 58.87 57.05 65.90
PATRON - 54.24 65.24 66.65 74.13

Table 5.2: Impact of nonverbal signals (gaze and pointing gesture) on the performance (Top-1
macro accuracy) of the multitask models in the relation and object grounding task. The results
suggest that nonverbal signals improve the performance of the models. (V: Verbal, NH: Visual
without Human, G: Gaze, P: Pointing Gesture).

grounding tasks. Similarly, for Task Order II, the CLIP model showed improved performance for
the perspective grounding task; however, the performance degrades for the relation-object ground-
ing task compared to the single task model. One can also observe performance degradation of
several models in some multitask settings compared to single task settings. For example, the ac-
curacy of the perspective grounding task degrades for the Dual Encoder and VisualBERT models,
whereas the accuracy of the relation-object grounding task degrades for the Late Fusion and the
VisualBERT models.

The reasoning behind the performance degradation of the multitask models compared to their
single-task counterparts is that the baseline models try to learn a shared representation for all tasks
in the multitask setting. As multiple tasks compete to maximize their task-specific representations,
a shared representation can discard salient representations of individual tasks. On the other hand,
PATRON extracts task-specific and task-guidance disentangled representations. In this process,
PATRON uses the task-guidance representations to guide other tasks using our proposed guided
fusion approach to extract salient multimodal representations. In the same way, PATRON also
learns to extract disentangle representations for the target task and trains these tasks cooperatively,
whereas most of the other models train these tasks independently. These findings indicate that a
multitask model can improve the tasks’ performance if the model can disentangle visual-language
representations while training the model in a cooperative learning setting, where one task can guide
the learning of other tasks.

5.4.2 Impact of Nonverbal Gestures

We aim to investigate how nonverbal cues impact the performance of the models in the relation-
object grounding task. We have conducted this analysis in different settings by varying nonverbal
gestures: two non-embodied settings (only verbal (no visual), verbal + visual (scenes without
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Models Training Perspectives
Speaker Observer Neutral All

Late Fusion 60.42 53.71 60.53 61.80
Dual Encoder 59.43 45.23 57.95 64.99
CLIP 62.36 58.04 60.99 68.14
VisualBERT 55.71 43.46 49.68 65.90
PATRON 60.36 47.23 57.85 74.13

Table 5.3: Top-1 macro accuracy of the multitask learning models when trained on data samples
from single and multiple verbal perspectives and tested on data samples from multiple visual and
verbal perspectives.

human)), and three embodied settings (verbal + gaze, verbal + pointing gesture, and verbal +
gaze + pointing gesture). We trained the models in a multitask learning setting (auxiliary task:
prospective grounding, target task: relation-object grounding). We used visual scenes captured
from multiple views (ego, exo, and top) and multiple verbal perspectives (speaker, observer, and
neutral) to train the models. Table 5.2 shows the top-1 macro accuracy of the target task.

Results and Discussion: The results in Table 5.2 suggest that PATRON outperforms all the
baseline models in all the evaluated settings for the target task (achieving the highest accuracy of
74.13%). The results also indicate that PATRON achieves the highest accuracy when both gaze
and pointing gestures were used, compared to when only gaze or only pointing gestures were
used in the embodied setting, and only verbal + visual (scenes without humans) were used in the
non-embodied setting. Similarly, other baseline models’ performances were also improved when
nonverbal cues were used compared to the same model trained with a partial set of nonverbal
cues or without any nonverbal cues. Additionally, when only verbal utterances were used, without
visual scene (i.e., BERT model), the model achieved only 26.44% accuracy. As the dataset con-
tains verbal expressions that can be interpreted differently from different perspectives, nonverbal
gestures can help the models disambiguate and accurately perform the relation-object grounding
task. These findings suggest that using nonverbal gestures can improve a model’s performance in
comprehending E-REF.

5.4.3 Importance of Multi-Perspectives

Here, we investigate how varying verbal perspectives (speaker, observer, and neutral) can impact
the performance of the models. We trained PATRON and baseline models on the CAESAR-PRO
dataset by varying the verbal perspectives while utilizing all the visual views (ego, exo, and top).
During testing, we used all the verbal perspectives and visual views. These models are trained in
a multiple-task learning setting (auxiliary task: prospective grounding, target task: relation-object
grounding). We have reported the top-1 macro accuracy of the target task in Table 5.3.
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Models
Auxiliary

Task
Target
Task

Guided
Fusion

Accuracy
Std.
Dev.

Significant
Over §

M1 ✗ ✗ ✗ 61.38 0.97 None
M2: MuMu ✗ ✗ ✓ 64.21 2.27 M1
M3 ✗ ✓ ✓ 64.25 1.07 M1
M4 ✓ ✗ ✓ 70.38 0.72 M1-3
PATRON ✓ ✓ ✓ 74.09 0.56 M1-4

Table 5.4: The results (Top-1 macro accuracy) of the ablation study, where various components of
the model are evaluated on the relation-object grounding task. The results of five runs with different
initial parameters are presented. ✓and ✗ denote whether a task learns disentangled representations
or not, respectively. § Significance analysis at level α = 0.05 (Following Dror et al. [121]).

Results and Discussion: The results in Table 5.3 suggest that all the models demonstrated
the highest performance in comprehending E-REF when the models were trained utilizing the data
with all the perspectives. For example, training PATRON on multiple perspectives improves the
performance of relation-object grounding tasks (achieved 74.13% accuracy) compared to training
the same model only on a single perspective. Baseline models also gain similar performance im-
provement when training the models with data from multiple perspectives. These findings indicate
that training models on data samples from multi-perspective can help the models to comprehend
E-REF more accurately.

5.4.4 Ablation Study and Significance Analysis

We have conducted ablation studies to evaluate whether our proposed disentangle representation-
based guided fusion approach can significantly improve the performance of the relation-object
grounding task. We evaluated PATRON and the baseline models on our CAESAR-PRO dataset in
the multitask setting (auxiliary task: prospective grounding, target task: relation-object grounding).
These models disentangle representations for auxiliary task (task-specific and task-guidance) and
target task (task-guided and task-specific). We have conducted a significance analysis (α = 0.05)
by evaluating these models five times with different parameters initialization (Following Dror et
al. [121]). The results are presented in Table 5.4.

Results and Discussion: The results in Table 5.4 suggest that the models with guided fusion
can improve the performance of relation-object grounding tasks compared to the model that does
not use guided fusion. For example, MuMu (M2) can improve the performance of relation-object
grounding by 2.83% compared to a model which does not use guide fusion (M1). Additionally, the
models can significantly improve performance if they can disentangle the representation for auxil-
iary and target tasks (e.g., M3, M4, and PATRON) compared to the models that cannot (e.g., M1).
For example, PATRON improves the performance of relation-object grounding tasks by 12.71%
by disentangling multiple task representations and using these representations in the guided fusion
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approach compared to M1. The reasoning behind this significant performance improvement is that
learning disentangled representations allows these models to learn task-specific and task-guidance
salient representations, which can be used to guide other tasks. On the other hand, models learning
non-disentangle representations need to use the same representations for task learning and guiding
other tasks. Consequently, the shared representations neglect task-specific salient representation
for learning generalized representations for all tasks and degrade the task performance.

5.5 Broader Impact

The broader impact of this work extends beyond the immediate field of multimodal deep learn-
ing and into various applications that could benefit from an improved understanding of embodied
referring expressions.

Firstly, the development of PATRON, a perspective-aware multitask learning model, could
significantly enhance the performance of AI systems in tasks that involve understanding and in-
terpreting human communication. This includes applications in robotics, where robots need to
understand human instructions to perform tasks accurately, and in assistive technologies, where
understanding the user’s perspective is crucial for providing appropriate assistance.

Secondly, creating the synthetic dataset, CAESAR-PRO, provides a valuable resource for re-
searchers in the field. This dataset could facilitate further advancements in developing models that
can understand and interpret embodied referring expressions, thereby contributing to the overall
progress in the field.

Finally, the insights gained from this study regarding the importance of perspective grounding
can have implications for the design of future AI systems. By highlighting the need for models to
learn perspective grounding, this work could guide the development of more effective and intuitive
AI systems that can interact with humans in a more natural and understanding manner.

However, it’s important to note that while this work has the potential for a significant positive
impact, it also raises ethical considerations. As AI systems become more capable of understanding
and interpreting human communication, issues related to privacy, consent, and the potential misuse
of these technologies become increasingly relevant. Therefore, ethical considerations must guide
future work in this area and include measures to mitigate potential risks.

5.6 Limitations

We have proposed a perspective-aware multitask learning model designed for relation and object
grounding tasks in embodied settings. PATRON leverages verbal utterances and nonverbal cues
and introduces a novel guided fusion approach, where perspective grounding guides the grounding
tasks. Additionally, we present CAESAR-PRO, a synthetic dataset of embodied referring expres-
sions with multimodal cues, to facilitate further research in this area. However, this work has some
limitations in different real-world settings, which can be addressed to develop a robust model.
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Firstly, the primary limitation of this study is the use of a synthetic dataset, CAESAR-PRO, for
training and evaluating our model, PATRON. Although this dataset has been carefully curated to
include a variety of embodied referring expressions with multimodal cues, it may not fully capture
the complexity and diversity of human nonverbal and verbal expressions in real-world settings.
Synthetic datasets, by their nature, are simulations and may lack the nuances, variability, and
unpredictability inherent in human behavior.

Secondly, the model’s performance in real-world settings remains untested. While PATRON
outperforms other state-of-the-art visual-language models in our synthetic dataset, its effectiveness
in real-world applications is yet to be determined. The transition from a controlled, synthetic
environment to a dynamic, unpredictable real-world setting may pose challenges that were not
encountered during the training phase.

Lastly, while our model has shown promise in understanding and grounding embodied referring
expressions, it is currently limited to the specific tasks of relation and object grounding, such as
question answering in the embodied settings.

In the future work, we aim to address these limitations. This involves testing and refining
the model using real-world data, expanding the model’s capabilities to include a broader range
of tasks, and exploring ways to simulate better the complexity of human nonverbal and verbal
expressions in synthetic datasets. Despite these limitations, we believe that our study provides a
valuable foundation for future research in this area.
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Chapter 6
EMBODIED QUESTION ANSWERING USING MULTIMODAL EXPRESSION

For an autonomous agent to seamlessly collaborate with people, it is vital for agents to comprehen-
sively understand human instructions [24], [25], [71], [146]. To develop models to comprehend
human instructions, several tasks have been designed, such as referring expression comprehen-
sion [45], [52], [53], [150], [171], spatial relations grounding [20], [21], [51]–[54], [68], [164],
[172], [173], and visual question answering [22], [23], [174]–[181]. Among these tasks, visual
question answering (VQA) has been widely studied, as it requires complex reasoning of several
sub-tasks, such as answering verbal questions revolving around an object’s presence and category
using visual context [20], [176], [182].

Although many synthetic and real-world datasets have been developed for VQA, one of the
crucial shortcomings of these datasets is that the questions are solely based on verbal utterances.
This differs from how people naturally use multimodal expressions (verbal utterances and nonver-
bal gestures) while asking questions. Additionally, many studies indicate that nonverbal gestures
often provide complementary information to seamlessly understand a verbal question [24], [25],
[55]–[63], [71], [79], [80]. For instance, in a visual scene containing two balls with different col-
ors, a pointing gesture can provide additional information to answer questions such as “what is the
color of that ball?” Thus, the lack of nonverbal interactions in prior VQA datasets makes them
less suitable for developing models to comprehend question-answering (QA) tasks in real-world
interactions.

Following VQA, embodied question-answering (EQA) tasks have recently been studied in the
literature [70], [75]–[78]. Based on the definition of embodied interactions, EQA can be designed
in two ways. The first type of embodied interaction is defined from an agent’s perspective, such
as a virtual robot, where the agent navigates in an environment to answer verbal questions [70].
These works solely incorporate verbal questions. The second type of embodied interaction refers
to multimodal expressions, where a human interacts with the environment using verbal utterances
and nonverbal gestures [24], [25], [71]. Adopting the latter definition, we have designed embodied
question-answering (EQA) tasks as comprehending questions by utilizing multimodal expressions
(verbal utterances and nonverbal gestures) in embodied settings. For example, an EQA task can
involve pointing to an object and asking “what is that object?” In this context, the EQA task
requires reasoning over multimodal expressions to answer the question.

Another crucial shortcoming in most existing VQA and EQA datasets is that verbal utterances
are from a single perspective (speaker or observer). This differs from real-world interactions where
people use both perspectives interchangeably. Consider a question from the speaker’s perspective,
“What is the object to the right of red mug?” In this question, right of red mug can be considered as
the left of red mug from the observer’s perspective. The absence of data from multiple perspectives
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Datasets V NV E EQA MT MV Views C A No. of
Images

No. of
Samples

Object
Categories

Avg.
Words∗Exo Ego Top

PointAt [147] ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 220 220 28 -
ReferAt [64] ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 242 242 28 -
IPO [148] ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 278 278 10 -
IMHF [149] ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 1716 1716 28 -
RefIt [69] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 19,894 130,525 238 3.61
RefCOCO [150] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 19,994 142,209 80 3.61
RefCOCO+ [150] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 19,992 141,564 80 3.53
RefCOCOg [151] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 26,711 104,560 80 8.43
Flickr30k [152] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 31,783 158,280 44,518 -
GuessWhat? [153] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 66,537 155,280 - -
Cops-Ref [154] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 75,299 148,712 508 14.40
CLEVR-Ref+ [22] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 99,992 998,743 3 22.40
DAQUAR [183] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 1449 124,68 37 11.5
FM-IQA [177] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 157,392 316,193 - 7.38
Visual Madlibs [178] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 107,38 360,001 - 6.9
Visual Genome [180] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 108,000 1,445,332 37 5.7
DVQA [181] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 300,000 3,487,194 - -
VQA (COCO) [176] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 204,721 614,163 80 6.2
VQA (Abs.) [176] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 50,000 150,000 100 6.2
Visual 7W [179] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 47,300 327,939 36,579 6.9
KB-VQA [184] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 700 5826 23 6.8
FBQA [185] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 2190 5826 32 9.5
VQA-MED [186] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 2866 6413 - -
DocVQA [187] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 12,767 50,000 - -
YouRefIt [24] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 497,348 4,195 395 3.73
GRiD-3D [20] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 8,000 445,000 28 -
EQA † [70] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 5,000 5,000 50 -
MT-EQA † [70] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ 19,287 19,287 61 -
CAESAR-L [25] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ 11,617,626 124,412 61 5.56
CAESAR-XL [25] ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ 841,620 1,367,305 80 5.32
EQA-MX ‡ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 750, 849 8, 243, 893 52 11.45

Table 6.1: Comparison of the QA datasets. Existing VQA and EQA datasets do not contain non-
verbal human gestures (NV), multiple verbal perspectives (MV), contrastive (C) and ambiguous
(A) data samples. ‡ Embodied (E) interactions refer to humans interacting with multimodal expres-
sions. † Embodied interactions refer to an agent navigating in an environment. ∗Average number
of words in questions. V: Verbal and MT: Multitasks.

in the existing datasets hinders the development of robust QA models.
Existing models for VQA and EQA tasks answer verbal questions from a single verbal and vi-

sual perspective [26], [27], [91], [188]. As multiple views can provide complementary information
and interactions can be captured from different camera angles, aligning these visual representations
before fusing them with verbal representations can help to learn generalized representations and
comprehend interactions from different camera views robustly. Furthermore, existing models fuse
continuous visual representations with discrete verbal representations. This inconsistency of em-
bedding structures can lead to sub-optimal representations.

To address the shortcomings of existing VQA and EQA datasets, we have extended an embod-
ied simulator to develop a large-scale novel dataset, EQA-MX, for training and diagnosing models
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Figure 6.1: EQA tasks for sample data from EQA-MX. Top-row: data distribution for each task
in EQA-MX (left) and an embodied interaction with multiple visual perspectives (right). Bottom-
row: name of the task (left), example questions and answers for the given task based on the visual
scene above (middle), and the set of possible answers (right).

for comprehending EQA tasks (Table 6.1). Our simulator can be used to procedurally generate
nonverbal interactions (gaze and pointing gestures) and verbal utterances in multiple embodied
environments for different EQA tasks. We have generated and annotated data under an approved
IRB (protocol number: 4627, Title: Understanding Multimodal Human Instruction in Embodied
Environment). We have addressed the limitations of existing multimodal fusion approaches and de-
veloped a multimodal learning model for EQA tasks, VQ-Fusion, using vector quantization (VQ)
[189], [190]. The VQ-based bottleneck plays a key role in disentangling the continuous visual
representations into discrete embeddings and enables salient fusion with discrete verbal represen-
tations. We use a shared codebook in VQ to align multiview representations and learn the unified
concept shared among multiple views. We highlight our key contributions below:

• We have developed a large-scale novel dataset (EQA-MX) that includes questions with mul-
timodal expressions from multiple verbal perspectives.

• We have captured the nonverbal interactions from multiple visual perspectives to reduce the
model’s verbal and visual perspective bias.

• We have designed 8 new EQA tasks involving questions with multimodal expressions (verbal
utterances and nonverbal gestures) that need to be answered using the visual context in an
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embodied environment.

• To address the issue of fusing two different embedding structures (continuous visual and
discrete verbal representations), we have developed a VQ-based multimodal learning model
to learn salient representations from multiple visual and verbal perspectives.

• Our extensive experimental analyses indicate that our proposed model, VQ-Fusion, can help
to improve the performance of EQA tasks up to 13%.

6.1 Embodied Question Answering Tasks

We have created 8 novel EQA tasks: Existence Prediction (EP), Object Grounding (OG), Perspective-
Aware Object Grounding (POG), Object Counting (OC), Object Attribute Query (OAQ), Object
Attribute Compare (OAC), Perspective Grounding (PG), and Relation Grounding (RG). Similar
tasks have been developed in prior works [20], [150], [174], [176], [179], [185], however, those
tasks involve only verbal questions. We are the first to design QA tasks in embodied settings where
a human avatar asks questions using verbal utterances and nonverbal gestures in a virtual environ-
ment. Each of these tasks has multiple sub-templates for variation. In Fig. 6.1, we provide samples
of these EQA tasks.

Existence Prediction (EP): Naturally, humans are able to determine what objects are present
in a given scene. In scenarios where humans are interacting and an actor mistakenly references an
object not in the scene, this allows observers to request more information. Created to mimic this
situation, the existence prediction task involves determining whether the scene contains a particular
object with some specific attributes, such as color.

Object Grounding (OG): Understanding which objects a human refers to using verbal and
nonverbal cues is key to successful human-AI interaction. A model successfully able to ground
objects has use cases such as assisting surgeons during a procedure by handing surgeons the correct
tools. Thus, we design the object grounding task around this scenario, where models must identify
the name of the object being referred to by verbal and nonverbal expressions.

Perspective-Aware Object Grounding (POG): Similar to the object grounding task, Perspective-
Aware Object Grounding involves determining which object is being referred to, but this task
includes the verbal perspective (either ego, exo, or neutral). Although real-world human-AI inter-
actions will not always contain the perspective of a given relation, including the perspective allows
us to determine whether or not understanding perspective can help in grounding objects.

Object Counting (OC): As understanding what object a human is referring to in a scene in-
volves interpretation of the different number of objects inside that scene, understanding the number
of objects in a scene can serve as an auxiliary task for the object grounding task. If models are able
to create salient multimodal representations to attend to all the objects in a given scene, is is likely
they will be able to ground particular objects better. Thus, in the object counting task the number
of objects in a scene is asked based on different spatial relations.
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Figure 6.2: Sample data demonstrating the shelf environment vs. the table environment

Object Attribute Query (OAQ): It is often important in human-human interactions to identify
particular attributes of objects. Additionally, this information can be used as auxiliary information
for tasks such as the Object Grounding task, where the goal is to identify objects. We design the
Object Attribute Query task around this particular situation, where the color of a given object is
queried for.

Object Attribute Compare (OAC): Humans often exchange information throughout conver-
sations through the use of comparison of different object attributes. This exchange of information
can assist in understanding the different objects an actor is referring to. Thus, we design the object
attribute compare task, where the attributes of two different objects in the scene are compared.

Perspective Grounding (PG): Understanding human verbal perspective is integral to success-
ful human-AI communication, as humans interchangeably describe objects from their perspective
as well as the perspective of others. We simulate this in the perspective grounding task using three
different perspectives - neutral, egocentric (speaker), and exocentric (observer).

Relation Grounding (RG): As described in [25], the relation grounding task involves deter-
mining whether the supplied verbal and nonverbal signals align with respect to describing the same
object. Understanding whether or not a human is accurately verbally and nonverbally referring to
an object can enable the identification of human mistakes. We add complexity to this task through
the variation of verbal perspective in the question.

6.1.1 EQA Task Templates

In this work we presented 8 EQA tasks. Each of these tasks has multiple sub-templates, which
we present in more detail in Table 6.2. Each sub-template has multiple degrees of freedom from
which to vary, ensuring generated embodied questions are diverse. For example, since most sub-
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Task Name Template Task Example
Existence
Prediction

Is there any/a/an <object name> in the scene? Is there any cucumber in the scene?
Is there any/a/an <object color> <object name> in the scene? Is there any green cucumber in the scene?

Object Grounding
What is the name of that object/thing? What is the name of that object?
What is the name of the <object color> object/thing? What is the name of that yellow thing?
What is the name of that <object absolute location>
<object color> object/thing? What is the name of that right yellow object?

What is the name of that <selected object absolute location>
<selected object color> object/thing to the <spatial relation>
of the <relational object absolute location>
<relational object color> <relational object name>?

What is the name of that right yellow object
to the right of the yellow cheese?

Perspective-Aware
Object Grounding

Considering the <observer’s/speaker’s> perspective, what
is the name of that object/thing?

Considering the observer’s perspective, what
is the name of that object?

Considering the <observer’s/speaker’s> perspective, what
is the name of the <object color> object/thing?

Considering the observer’s perspective, what
is the name of that yellow thing?

Considering the <observer’s/speaker’s> perspective, what is
the name of that <object absolute location> <object color>
object/thing?

Considering the speaker’s perspective, what is
the name of that right yellow object?

Object Counting
How many objects are <spatial relation> of the object/thing? How many objects are above the object?
How many objects are <spatial relation> of the <object color>
object/thing? How many objects are left of the yellow thing?

Object Attribute
Query

What it the color of that object/thing? What it the color of that object/thing?
What is the color of the <object name>? What is the color of the hand soap dispenser?

Object Attribute
Compare

Is the color of that object/thing
the same color as the <relational object name>?

Is the color of that thing
the same color as the cheese?

Is the color of that <selected object name>
the same color as the <relational object name>?

Is the color of that hand soap dispenser
the same color as the soda bottle?

Perspective
Grounding

<Referring expressions using the templates from CAESAR>.
From which perspective is the object described?

The hand soap dispenser above the soda bottle.
From which perspective is the object described?

Relation
Grounding

<Referring expressions using the templates from CAESAR>,
is the object referred to appropriately?

The hand soap dispenser above the cucumber,
is the object referred to appropriately?

Considering the observer’s perspective, <Referring
expressions using the templates from CAESAR>,
is the object referred to appropriately?

Considering the observer’s perspective,
the hand soap dispenser below the cucumber,
is the object referred to appropriately?

Considering the speaker’s perspective, <Referring
expressions using the templates from CAESAR>,
is the object referred to appropriately?

Considering the observer’s perspective,
the hand soap next to the coffee maker,
is the object referred to appropriately?

Table 6.2: Templates for all 8 tasks in the EQA-MX dataset. The answers for these templates are
based on the environment in the first row of Figure 6.2.

templates use the absolute location of an object, this absolute location can often times be described
from either the observer or speaker perspective.

6.1.2 New Environments in EQA-MX

To increase dataset generalizability, we have added a shelf environment into the CAESAR simula-
tor, and thus into the EQA-MX dataset. We visualize the three views (ego, exo, and top) for this
and the table environment in Fig. 6.2. Because the exo and ego views in the table environment
are on different sides of the table, the verbal perspectives differ. However, in the shelf environ-
ment, the exo and ego views are aligned meaning the verbal perspective is aligned. We created
this environment in this way to ensure models have differing situations with regards to views and
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Splits EP OG POG OC OAQ OAC PG RG
Train 1060k 1060k 1060k 1060k 1060k 218k 785k 349k
Valid 126k 126k 126k 126k 126k 27k 93k 41k
Test 126k 126k 126k 126k 126k 28k 93k 42k

Table 6.3: EQA-MX dataset splits for 8 EQA tasks.

perspective. Additionally, since the shelf has objects below/on top of one another, it adds diversity
with respect to spatial relations/locations, ensuring models understanding these relations/locations
in all 3 dimensions.

6.2 Dataset Generation with EQA Simulator

In this work, we have extended the CAESAR simulator [25] to generate data for different EQA
tasks. CAESAR is used to randomly generate environments where an actor simulates nonverbal
expressions through a pointing gesture and gaze in a scene (Fig. 6.3). Verbal expressions are cre-
ated based on the visual scene. To increase the dataset’s generalizability, we have used multiple
environments. These environments differ in terms of camera views, object locations, and nonver-
bal/verbal expressions. In each visual scene, we generated four different situations, 1) a situation
with no human and therefore no nonverbal expressions, 2) a situation with a human head gaze, 3)
a situation with a human pointing gesture, and 4) a situation involving a human using a head gaze
and a pointing gesture.

Generated nonverbal expressions consist of a pointing gesture and gaze. Pointing gestures
are procedurally generated using inverse kinematics through the Unity engine. We create these
pointing gestures based on random noise added onto real-world data of human pointing gestures
captured using an Optitrack motion capture system [90]. Similarly, we have simulated human
head gazes using inverse kinematics and an object location within the scene as a target. Ver-
bal questions are generated based on different templates for each EQA task. The nonverbal and
verbal expressions may describe the same object, or be contrastive, meaning the nonverbal and
verbal expressions describe different objects. We use these contrastive instructions for the Rela-
tion Grounding task. Additionally, the absence of nonverbal gestures in situations with no humans
generates ambiguous data samples.

6.3 Dataset Analysis

We have generated a novel large-scale dataset, EQA-MX, containing 8, 243, 893 samples across
the 8 tasks described in Sect. 6.1. The training, validation, and test set splits for each of these tasks
is shown in Table 6.3. We removed some data samples to generate balanced dataset splits for the
OAC, PG, and RG tasks.
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(a) Lengths in words of all questions. (b) Verbal perspective (PG task). (c) Object locations with respect to spatial relations.

Figure 6.3: Dataset Analyses for the EQA-MX dataset. (a) demonstrates how the EQA-MX dataset
contains questions with different lengths in words and thus amounts of contextual information for
all the EQA tasks. (b) shows the ratios of data samples with different verbal perspectives for the
perspective grounding (PG) task. (c) shows the object locations with respect to different spatial
relations. As the object locations are not separable, the EQA-MX dataset is non-biased with respect
to verbal and visual perspectives.

Our designed EQA tasks vary in terms of the goals (Fig. 6.1) and visual-verbal contextual
information in the questions. This is made apparent by the variance in question lengths in words
(Fig. 6.3(a)). Questions are as short as 6 words for the EP task and as long as 34 words for the OG
task. Additionally, one of the main focuses of the EQA-MX dataset is to introduce data that varies
in verbal and visual perspectives. Fig. 6.3(b) demonstrates the PG task’s outcome of different
verbal perspectives.

Similarly, Fig. 6.3(c) shows the location of objects based on spatial relations in questions from
verbal perspectives. Fig. 6.3(c) also demonstrates how objects being referred to as on the left (blue)
and right (red) are not linearly separable through the use of spatial relations, as different verbal per-
spectives use different relations to describe an object. For example, consider a speaker describing
the red table lamp in Fig. 6.1. The speaker could state “the red lamp on the left”. However, from
the observer’s perspective (exo view) the table lamp is on the right. Thus, given the verbal per-
spectives, spatial relations are non-separable in EQA-MX (Fig. 6.3(b)). This reduced verbal and
visual perspective biases in EQA-MX dataset can help train robust models for comprehensively
comprehending EQA tasks.

6.3.1 Task Output Distributions

As shown in Figs. 6.4,6.6 we balance outputs of our task distributions where possible in order to
ensure the EQA-MX dataset is not biased. For the OG and POG tasks, the output distribution of
all 52 categories is balanced to ensure models do not bias a particular object.

Additionally, in Fig. 6.4, all binary tasks (EP, OAC, and PG) contain a 50/50 split between
yes and no answers. Because the CAESAR simulator randomly generates scenes populated with
objects, the OC and OAC tasks do not have even task distributions. This can be explained by these



141

(a) Existence Prediction Task (b) Object Attribute Compare Task (b) Relation Grounding Task

Figure 6.4: Distributions of task outputs in the existence prediction (EP), object attribute compare
(OAC), and relation grounding (RG) tasks. All these tasks have balanced binary outputs

(a) OC task spatial relations (b) Distribution of OC task output (c) Distribution of OAC task output

Figure 6.5: Distribution of task outputs in the object counting and object attribute compare tasks.
Both distributions are not completely even due to different observed scene probabilities. For the
object counting (OC) task, lower numbers have higher probabilities of occurring due to the number
of objects in the scene ranging from 4 - 10, hence the imbalance in distributions. Similarly, in the
object attribute compare task different object colors are queried for, and since the colors of objects
is not completely balanced, the task distribution is imbalanced.

tasks involving observed characteristics in scenes where some characteristics are more common
than others. For example, since the max number of objects that can be generated in a scene is 10,
the probability of an object have 9 objects to the left of it is much lower than the probability of an
object having 2 objects to the left of it. Similarly, certain colors are more common in objects inside
of the CAESAR simulator. These distributions are made more apparent in Fig. 6.5 (we report
macro accuracy for models trained on these tasks).

6.3.2 Object Locations Analyses

We visualize object locations inside the EQA-MX dataset to show how different spatial relations
have/don’t have bias (Fig. 6.7). Particularly, since one of our contributions is the creation of the
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(a) Wordcloud based on all verbal expressions

(b) Distribution of outputs for the OG task (c) Distribution of outputs for the POG task

Figure 6.6: A verbal expression Wordcloud for the EQA-MX dataset, as well as the output distri-
bution for the object grounding (OG) and perspective-aware object grounding (POG) tasks. In the
Wordcloud the size of words represents the frequencies that they occur in the verbal utterances.
Therefore, the most frequent words describe general properties of objects or are general words
inside questions - such as color, perspective, and spatial relations/locations. In the diagrams for
object frequencies for the object grounding and perspective-aware object grounding tasks, the most
referred objects all have the same frequencies (these tasks have the same object distributions).

shelf environment, we show how since its visual views are aligned certain visual cues have bias.

6.4 VQ-Fusion: VQ-based Multimodal Fusion

We develop a vector quantization-based multimodal fusion approach, VQ-Fusion, to learn visual-
language representations. As EQA tasks in EQA-MX involve multiple visual views, VQ-Fusion
extracts visual representations from multiple visual views (Xego, Xexo, and Xtop) and verbal ques-
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Figure 6.7: Object locations visualized for different spatial relations/locations across the EQA-MX
dataset. The object locations are not easily separable based on spatial relations/locations that vary
based on perspectives. (a & b) demonstrates how the shelf environment has more non-separable
locations/relations due to the fact that verbal perspective in the shelf environment does not vary
based on visual perspective. c is generally linearly separable, as expected, as the center of a given
scene is objective. d demonstrates how opposing corners (i.e. front left and back right) are non-
separable due to varying based on verbal perspectives).

tions (Xq) for different EQA tasks (Fig. 6.8 and Sect. 6.1). Following the existing adapter-based
learning models [191]–[196], we design VQ-Fusion as an adapter model that can be used in exist-
ing models without significantly changing the existing model architecture.

Visual and Language Representation Learning: At first, VQ-Fusion extracts visual and
language representations using a state-of-the-art visual encoder (e.g., ResNet [98] and ViT [166])
and language model (e.g., BERT [167]). VQ-Fusion uses shared models to extract the visual
representations from multiple views independently:

Em = Fm(Xm) , m ∈ (ego, exo, top, verbal) (6.1)

Here, Fm is the visual or verbal encoders, Em ∈ RDm , and Dm is the representation dimension
of modality m.

Discretization and Multimodal Fusion: Language models create discretized representations,
whereas visual encoders produce continuous representations of visual scenes. Fusing these repre-
sentations with different embedding structures can lead to sub-optimal multimodal representations
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Figure 6.8: VQ-Fusion: Vector Quantization (VQ) based multimodal learning model architecture.
VQ-Fusion extracts multiview visual representations using visual encoders, which are then dis-
cretized using shared codebooks. The shared codebooks’ bottleneck allows the model to learn
unified concepts across multiple views. Finally, discretized visual representations are fused with
discrete verbal representations to produce multimodal representation.

[197]. For this reason, we discretize the visual representations before multimodal fusion.
In VQ-Fusion, we adopted the vector quantization (VQ) method from VQ-VAE [189] and

Discrete-Value Neural Communication [190] works to discretize multiview visual representations,
Em ∈ (Eego, Eexo, Etop). Previous works use VQ to discretize a representation using codebooks,
whereas we use shared codebooks to discretize and align multiview representations to learn uni-
fied concepts across visual views for extracting salient multimodal representations. First, VQ-
Fusion divides each Em into G continuous segments (s(m,1), s(m,2), . . . , s(m,G)), where Em =
CONCAT(s(m,1), s(m,2), . . . , s(m,G)) and s(m,i) ∈ RDm/G. Second, VQ-Fusion independently maps
continuous segment s(m,i) to discrete latent code cj ∈ RL×(Dm/G) using shared codebooks C, where
L is codebooks size (i.e., number of categorical codes in each codebook). We can find the optimal
code for each continuous segment s(m,i) from the codebooks in the following way:

e(m,oi) = FD(s(m,i)), oi = argmax
j∈1...L

||s(m,i) − cj|| (6.2)
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Here, FD is the discretization (D) method. Finally, we concatenate the discretized codes to
produce discretized visual representation ED

m in the following way:

ED
m = CONCAT(FD(s(m,1)), . . . , F

D(s(m,G))) (6.3)

Following the training procedure in [190] and [189], we calculate VQ loss to learn the code-
books:

LV Q align =
β

G

G∑
i

||si − sg(coi)||22 (6.4)

Here, sg is the stop-gradient operator that blocks gradients from flowing into coi , and β is a
hyperparameter that controls reluctance to change the code. We train the discretization module to
learn codebooks using gradient descent with the other parts of VQ-Fusion. Additionally, as VQ-
Fusion uses shared codebooks to discretize visual representation for multiple views, LV Q align loss
also guides the model to align multiview representations and learn unified concepts across views.
This shared codebooks approach allows aligning multiview representation to answer the question
with multimodal expressions effectively.

Finally, VQ-Fusion fuses these discretized visual and verbal representations using a self-attention
approach to produce task representation Efused:

Efused =
∑

m∈M
αmEm (6.5)

αm = exp(γm)∑
m∈M

exp(γm)
,m ∈M (6.6)

γm = (W )TEm,m ∈M (6.7)

Here, M is the modality list (ego, exo, top, verbal), W is a learnable parameter, and αm is the
attention score which is calculated using a 1D-CNN with a filter size of 1.

6.4.1 Task Learning

We use the fused representation, Efused, to learn different EQA tasks Tk:

yTk
= FTk

(Efused) (6.8)

Ltask,Tk
(yTk

, ŷTk
) =

1

B

B∑
i=1

y(Tk,i) log ŷ(Tk,i) (6.9)
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Models
EP OG POG OC

✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Dual Encoder 53.46 55.78 48.31 49.96 83.91 84.28 12.28 12.38
CLIP 53.17 54.72 54.06 65.49 70.92 82.70 09.65 13.14
VisualBERT 50.00 54.51 53.39 54.50 86.09 87.09 14.09 14.35
ViLT 90.24 91.50 59.74 61.04 86.10 87.42 11.14 12.54

Models
OAQ OAC PG RG

✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

Dual Encoder 63.71 66.90 57.92 61.45 66.72 66.77 75.78 89.36
CLIP 70.85 74.32 58.59 70.59 66.64 66.99 85.84 89.93
VisualBERT 51.43 54.45 58.56 59.98 66.37 79.11 89.13 89.26
ViLT 55.96 59.47 58.93 60.16 80.36 81.23 87.36 88.68

Table 6.4: Comparisons of VL models performance for EQA tasks. The results suggest that in-
corporating VQ-Fusion in VL models can improve the performance of EQA tasks. ✓: VL models
with VQ-Fusion, and ✗: VL models without VQ-Fusion.

Here, FTk
is the task learning module, which can be designed based on the EQA task proper-

ties. For example, we use a multi-layer perceptron for the object existence task (SectionSe 6.1).
Moreover, Ltask,Tk

is the task learning loss of task Tk. Finally, we combine the task learning loss
(Ltask,Tk

) with the VQ loss (LV Q align) using task learning weights (WV Q andWtask) to train the
VQ-Fusion model:

L = WV QLV Q align +WtaskLtask,Tk
(6.10)

Variations of VQ-Fusion: VQ-Fusion allows to use state-of-the-art VL models (e.g., Visual-
BERT [26] & ViLT [91]) to extract these representations. As the architecture of these VL trans-
former models is limited to processing a single visual and verbal input, we need to pair the verbal
question to each visual view and pass through these models to extract multiview visual and ver-
bal representations. We use these representations in VQ-Fusion to discretize and fuse to produce
multimodal representations.

6.5 Experimental Analysis

In this section, we have presented experimental analyses on our EQA-MX dataset to evaluate the
impact of VQ-Fusion in VL models for EQA tasks. We have also conducted additional ablation
studies and experimental analyses for human activity recognition task to evaluate the significance
of VQ-Fusion for multimodal representation learning.
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6.5.1 Baseline Models

Existing visual-language (VL) models for QA tasks are designed to answer a question using a sin-
gle visual context. Since our proposed EQA tasks involve three visual views, we extend four VL
models to learn multiview representations: Dual-Encoder (ViT+BERT) [166], [167], CLIP [92],
VisualBERT [26], and ViLT [91]. For the Dual-Encoder (ViT+BERT) model, we independently
extract visual representations for each view using a shared ViT model and verbal representations
using a BERT model. We fuse these visual and verbal representations to produce task representa-
tions. For the CLIP models, we pair each visual view to a verbal question and pass this through
the model to extract multiple visual and verbal representations and fuse them to produce task rep-
resentations. For VisualBERT and ViLT, we use ResNet-101 [98] to extract visual representations
that are passed through the model with verbal embeddings to produce task representations.

6.5.2 Training Setup

We developed all the models using the Pytorch (version: 1.12.1+cu113) [100] and Pytorch-Lightning
(version: 1.7.1) [120] deep learning frameworks. We also used HuggingFace library (version:
4.21.1) for pre-trained models (BERT 1 [167], ViT 2 [166], VisualBERT 3 [26], Dual Encoder 4,
ViLT 5[91], and CLIP 6 [92]). For the Dual-Encoder and CLIP models, we used an embedding size
of 512, and for VisualBERT and ViLT, we used an embedding size of 768. We train models using
the Adam optimizer with a weight decay regularization [95] and cosine annealing warm restarts at
an initial learning rate: 3e−4, cycle length (T0): 4, and cycle multiplier (Tmult): 2. We used batch
size 128 and trained models for 8 epochs. We used the same fixed random seed (33) for all the
experiments to ensure reproducibility. Lastly, all models are trained in distributed GPU clusters,
where each node contains 8 A100 GPUs.

6.5.3 Comparison of Multimodal Learning Models

We evaluated state-of-the-art visual-language (VL) models with and without our VQ-Fusion to
learn VL representations for 8 EQA tasks. We varied the number of codebooks to {2, 4, 8, 16}
in VQ for each task and reported the best performance. We trained and evaluated these models
independently for each task as a single-task model on our EQA-MX dataset. We used data samples
with varying nonverbal gestures: gaze and pointing gestures, only gaze, and only pointing gestures.
All the visual views (ego, exo, and top) and verbal perspectives (speaker, observer, and neutral) are
used to train models and evaluate whether the models can learn generalized representation from

1https://huggingface.co/docs/transformers/model_doc/bert
2https://huggingface.co/docs/transformers/model_doc/vit
3https://huggingface.co/docs/transformers/model_doc/visual_bert
4https://huggingface.co/docs/transformers/model_doc/vision-text-dual-encoder
5https://huggingface.co/docs/transformers/model_doc/vilt
6https://huggingface.co/docs/transformers/model_doc/clip

https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/model_doc/vit
https://huggingface.co/docs/transformers/model_doc/visual_bert
https://huggingface.co/docs/transformers/model_doc/vision-text-dual-encoder
https://huggingface.co/docs/transformers/model_doc/vilt
https://huggingface.co/docs/transformers/model_doc/clip
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diverse data. We report macro-accuracy across all tasks to accurately gauge whether models can
effectively understand EQA tasks and are not biased toward a particular class (Table 6.4).

Results: The results in Table 6.4 suggest that incorporating VQ-Fusion in VL models helps to
successfully fuse extracted salient multiview representations with verbal representations, and thus
improves model performance on EQA tasks. For example, the CLIP model without VQ-Fusion
achieves 54.06% accuracy in the object grounding task (OG), whereas incorporating VQ-Fusion in
the CLIP model increases the OG task’s performance to 65.49%. Similarly, VQ-Fusion improved
the CLIP model’s performance on the object attribute query task (OAQ) by 12%, the VisualBERT
model’s performance on the perspective grounding task by 12.74%, the ViLT model’s performance
on the object attribute comparison (OAC) task by 3.5%, and the DualEncoder model’s performance
on the relation grounding task (RG) by 13.58%. These performance improvements validate the
significance of VQ-Fusion in extracting salient multimodal representations from multiple visual
and verbal perspectives for effectively learning EQA tasks.

Discussion: The primary reasoning behind the performance improvement by incorporating
VQ-Fusion in VL models is that VQ-Fusion discretizes the multiview representations before fus-
ing with the discrete verbal representations. VQ-Fusion uses codebooks to discretize the visual
representations to be similar to the discrete verbal representation structure. On the other hand,
existing VL models extract continuous wrappings of monolithic visual representations and fuse it
to the discrete verbal representations. This structural mismatch of representations leads to sup-
optimal multimodal fusion, resulting in poor extraction of salient task representations and thus
degraded task performance.

Moreover, as VQ-Fusion uses shared codebooks in the VQ information bottleneck to learn
multimodal representations, this codebook sharing enables models to align the multiview repre-
sentations and learn unified concepts. Learning unified concepts from multiple views is crucial,
as multiple views capture the same interaction. Existing models are designed to learn visual and
language representations from a single visual perspective. Thus, these models do not have any
mechanisms to extract unified concepts from multiple visual views. VQ-Fusion enables these
models to learn this unified concept using shared codebooks-based VQ.

Our experimental results also indicate that incorporating additional perspective-related infor-
mation can help models to successfully ground objects. This is made apparent by the model per-
formance on the perspective-aware object grounding (POG) task being consistently higher then
the model performance on the object grounding (OG) task. This is particularly notable as the only
difference between these tasks is the presence of the question’s verbal perspective (Fig. 6.1). Thus,
these results suggest models need to understand verbal perspective for successfully grounding ob-
jects in situations with multiple verbal perspectives.

Although all the VL models presented can achieve considerable performance for most of the
EQA tasks, these models perform slightly better than random-guessing for the object counting
(OC) task. As these models do not use object location-specific information, the models suffer at
locating and counting objects given a spatial relation. One possible extension of these models
to improve performance for the OC task is the incorporation of object locations in representation
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G PG EQA Tasks
EP OG POG OC OAQ OAC PG RG

✗ ✗ 51.03 26.65 52.79 09.94 24.01 51.22 48.95 56.75
✗ ✓ 53.87 60.66 71.08 11.51 64.69 60.63 66.31 90.01
✓ ✗ 53.51 63.49 70.90 12.29 69.43 61.25 66.67 87.23
✓ ✓ 54.38 68.61 79.68 11.86 72.62 60.74 66.68 89.59

Table 6.5: Impact of gaze (G) and pointing gestures (PG) in learning EQA tasks. The results
suggest that incorporating gestures improves EQA task performance. G (✗) and PG (✗) indicate
visual scenes that do not include humans.

learning. Our EQA-MX dataset contains rich annotations of object locations, which can easily be
incorporated in developing new models.

6.5.4 Impact of Nonverbal Gestures

We evaluated the impact of nonverbal gestures on learning EQA tasks. We evaluated VQ-Fusion
with CLIP models and 8 codebooks on the different splits of EQA-MX dataset: data samples with
gaze and gestures, only gaze, only gestures, and without gaze and gestures (this data split contains
visual scenes without human).

Results and Discussion: The results in Table 6.5 suggest that the model performs worse
for EQA tasks if we train the model using data without nonverbal gestures. For example, the
model trained using data without nonverbal gestures achieved only 26.65% accuracy for the ob-
ject grounding (OG) task, whereas the model trained using data with gaze and pointing gestures
achieved 68.61% accuracy for the OG task. This is a trend for all other tasks where the perfor-
mance improved when gaze and/or pointing gestures were incorporated compared to when it only
relied on the verbal message. The performance degradation indicates that the models must learn
nonverbal gestures to answer questions with multimodal expressions for EQA tasks.

6.5.5 Impact of VQ Codebooks

We evaluated VQ-Fusion with the CLIP model for 8 EQA tasks by varying the number of code-
books in VQ: {2, 4, 8, 16}. We evaluated these models on our EQA-MX with varied nonverbal
gestures (gaze and pointing gestures, only gaze, and only pointing gestures). We trained these
models with multiple visual and verbal perspectives.

Results and Discussion: The results in Table 6.6 suggest that different codebooks help the
model achieve the highest performance for different tasks. For example, VQ-Fusion with 8 code-
books can achieve the highest performance in existence prediction (EP), object grounding (OG),
and object attribute compare (OAC) tasks, whereas VQ-Fusion with 2 codebooks can achieve
the highest performance for perspective-aware object grounding (POG) and object counting (OC)



150

VQ
CBs

EQA Tasks
EP OG POG OC OAQ OAC PG RG

2 53.46 64.86 82.70 13.14 61.39 57.43 61.39 88.24
4 52.15 61.12 73.94 11.35 69.42 70.59 60.30 89.93
8 54.72 65.49 73.97 11.92 70.85 60.68 66.82 88.23

16 53.19 55.12 71.32 11.43 69.35 60.37 66.99 84.36

Table 6.6: Impact of the number of VQ codebooks (VQ CBs) in VQ-Fusion with the CLIP model
in learning EQA tasks.

tasks. The number of codebooks depends on the task complexity of how many concepts need to
be learned. As the OG task requires learning verbal perspective, the model requires more code-
books to learn perspective-related concepts. On the other hand, as perspective is already given in
the POG task, VQ-Fusion requires fewer codebooks. Our results also show similar phenomena,
where VQ-Fusion achieves 82.70% accuracy for the POG task with only 2 codebooks, whereas it
achieves 65.49% accuracy for the OG task with 8 codebooks.

However, increasing codebooks more than optimal leads to decreasing task performance. For
example, the object attributes compare (OAC) task accuracy degrades if we increase the number of
codebooks by more than 4. As the OAC task involves whether two objects have the same attribute,
the model can learn these simple concepts using fewer codebooks. Increasing the number may
lead to sparsity in codebooks, i.e., many codes are left unutilized, limiting the models to extract
salient representations. On the other hand, using a few codebooks for complex tasks, such as OG
and OAQ, leads to tight bottlenecks, which limits the models to learning salient concepts. Hence
task performance degrades. These results indicate that an optimal number of codebooks based on
the task characteristics is required to achieve the highest performance for each task.

6.5.6 Impact of Multiple Visual Perspectives and Modalities

In real-world settings, robots are typically equipped with multiple camera views. Several studies
have emphasized the significance of multiview data in accurately comprehending human actions
and instructions[8], [11]. To further validate the importance of multimodal data (nonverbal ges-
tures captured through visual views and verbal utterances) in understanding embodied question
answering (EQA) tasks, we conducted extensive ablation studies with varying visual views (ego,
exo and top) and verbal utterances (verbal utterance templates described in Table 6.2).

In the first setting, we used only verbal utterances for all eight EQA tasks (Table 6.7: Top).
We used BERT [167] for learning the EQA tasks. The results suggest models using only a verbal
modality can not effectively learn these EQA tasks. Conversely, if we utilized both verbal and
nonverbal data, then the performance of these EQA tasks improved (Table 6.7). This degraded
performance using only verbal data emphasizes the importance of utilizing both verbal and non-
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l EP OG POG OC OAQ OAC PG RG
40.64 8.90 45.46 7.45 7.69 29.49 45.23 44.82

Train Test EP OG POG OC OAQ OAC PG RG
Ego Ego 53.86 59.92 70.98 10.60 68.56 61.86 64.41 87.54
Ego Exo 52.61 17.28 62.45 8.96 15.06 56.62 63.39 82.33
Exo Exo 53.67 39.46 69.96 11.24 56.76 60.20 66.39 88.58
Exo Ego 52.84 21.39 69.70 10.78 25.03 58.68 64.49 88.20
All All 54.72 65.49 82.70 13.14 74.32 70.59 66.99 89.93
All Ego 54.32 60.63 82.31 12.22 69.84 60.89 66.71 89.03
All Exo 54.17 59.14 78.02 12.55 61.71 62.25 66.53 89.26

Table 6.7: We trained CLIP models with VQ-Fusion using different combinations of modalities
on the 8 tasks described in Figure 2 in the paper. Top Table: only verbal questions. Bottom
Table: different visual modalities and verbal questions. The results suggest that multimodal models
outperform those using only verbal data (Top Table). Additionally, training models with multiview
data leads to robust performance, while using a subset of views results in performance degradation
if the views change during testing (Bottom Table). Existence Prediction (EP), Object Grounding
(OG), Perspective-Aware Object Grounding (POG), Object Counting (OC), Object Attribute Query
(OAQ), Object Attribute Compare (OAC), Perspective Grounding (PG), Relation Grounding (RG).

verbal data modalities for appropriately learning EQA tasks. Additionally, it also indicates that our
proposed EQA-MX dataset is less biased towards verbal data for comprehending EQA tasks.

In the second setting, we used verbal utterances and nonverbal gestures to learn EQA tasks. We
varied the visual perspectives during training and testing through the use of different camera views
(ego, exo, and top) to capture the nonverbal interactions. We used CLIP model to learn EQA tasks
involving verbal utterances and visual views. The results suggest that models trained using multiple
visual perspectives perform better than models trained using a single visual perspective (Table,6.7:
Bottom). The reasoning behind this performance improvement is that models using multiple visual
views can learn generalized multiview representations, which can improve the performance at
inference time when visual views are varied.

6.5.7 Comparison of Single and Multitask Models

We evaluated the impact of learning multiple tasks in a visual-language model. We conducted this
experimental analysis in two settings. In both settings, we used verbal utterances and multiple
visual modalities to learn EQA tasks. In the first setting, we trained CLIP models for each EQA
task separately. In the second setting, we trained CLIP models for a subset of EQA tasks. Finally,
we used the extracted representation in each EQA task head, where these task heads are designed
using an MLP.
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ST
EP OG POG OC OAQ OAC PG RG

54.72 65.49 82.70 13.14 74.32 70.59 66.99 89.93

MT
EP OG EP POG EP PG

53.25 40.76 52.68 73.90 52.62 49.86

MT
EP OAQ OG EP PG OAQ PG EQ OAQ

54.24 68.70 55.56 53.17 66.92 66.61 66.80 53.26 69.01

Table 6.8: We train CLIP models with VQ-Fusion in single task (ST) and multitask (MT) set-
tings. We reported accuracy of these tasks. Tasks trained in an MT setting are grouped to-
gether. The results suggest that the performance of these models with multiple tasks degrades
compared to models learning these tasks separately. Existence Prediction (EP), Object Ground-
ing (OG), Perspective-Aware Object Grounding (POG), Object Counting (OC), Object Attribute
Query (OAQ), Object Attribute Compare (OAC), Perspective Grounding (PG), Relation Ground-
ing (RG).

The results in Table 6.8 suggest that the performance of models learning multiple tasks de-
grades compared to the models learning these tasks separately. As these tasks have different
characteristics, learning these tasks together can compete in the representation learning space and
degrades these tasks’ performance. For example, training the CLIP model for the Existence Pre-
diction (EP) and Object Grounding (OG) tasks together degrades the Object Grounding task per-
formance to 40.76% compared to an accuracy of 65.49% for a separately trained CLIP model for
OG task. Previous studies have observed similar performance degradation when learning multiple
competing tasks. The primary reason behind the performance degradation is that the competing
tasks have conflicting gradients among different tasks that introduce negative knowledge transfer
and thus degrade these tasks’ performance. Thus, an exciting future research direction would be
to design novel multitask model architectures and training approaches where training on multiple
tasks using multiple modalities improves the performance of every task in a shared model.

6.5.8 Generalizability of VQ-Fusion

To evaluate the generalizability of VQ-Fusion for another task involving multimodal representa-
tion learning, we incorporate VQ-Fusion in an existing multimodal learning model (HAMLET [7])
for human activity recognition tasks with multimodal sensor data (RGB videos, acceleration, gy-
roscope, and orientation). We have evaluated this modal on the MMAct dataset [8]. The MMAct
dataset comprises 37 common daily life activities, each performed by 20 individuals and repeated
five times. The dataset includes seven modalities, ranging from RGB data to acceleration and gy-
roscope measurements. Our experiments focused on utilizing two available viewpoints of RGB
videos, as well as acceleration, gyroscope, and orientation data. Notably, the MMAct dataset also
includes visually occluded data samples, providing an opportunity to evaluate the effectiveness of
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Table 6.9: Cross-session performance comparison (F1-Score) of multimodal learning methods on
MMAct dataset

Method F1-Score (%)
SVM+HOG [110] 46.52
TSN (RGB) [111] 69.20

TSN (Optical-Flow) [111] 72.57
MMAD [8] 74.58

TSN (Fusion) [111] 77.09
MMAD (Fusion) [8] 78.82

Keyless [37] 81.11
HAMLET [7] 83.89
MuMu [11] 87.50

VQ-Fusion(HAMLET) 87.69

multimodal learning approaches in extracting complementary features for activity recognition.
In our experimental analyses, we adhered to the original session-based evaluation settings and

reported the F1-score. The results indicated that the HAMLET model, which utilizes our pro-
posed VQ-Fusion approach, outperformed all existing state-of-the-art multimodal human activity
recognition (HAR) approaches in session-based evaluation settings on the MMAct dataset (Ta-
ble 6.9). Specifically, the inclusion of VQ-Fusion enabled HAMLET to improve its F1-score by
4.2%, resulting in the highest reported F1-score of 87.69% (Table 6.9). These findings suggest that
VQ-Fusion can effectively aid existing models in extracting salient multimodal representations,
thereby enhancing the performance of downstream tasks in the field of HAR.

6.6 Broader Impact

Our dataset contains rich annotations of visual scenes, such as object locations, spatial relations,
and multiple visual and verbal perspectives. These can be used to design new tasks to robustly
comprehend embodied interactions. Moreover, our EQA-MX dataset can be used for diverse tasks
in embodied settings, such as scene segmentation and conversational human-AI interactions with
multimodal expressions. Additionally, our dataset can be used to develop and evaluate models
that can be transferred to robots for comprehending embodied human instructions in real-world
settings. Lastly, our experimental analysis provides valuable insights that can be used in designing
robust VL models, such as using similar embedding structures for fusing continuous and discrete
representations leading to performance improvements.

Limitations and Future Works As we developed separate models for different EQA tasks, there
are several fascinating research avenues we can pursue in the future, such as developing robust mul-
titask learning models, developing a mechanism to transfer multiple tasks from sim to real-world
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settings, and developing a training mechanism to incorporate new tasks in the trained models. Due
to the limited resource, we generated visual scene with image data. Thus, one possible extension
can be generating video data and other modalities (depth, point cloud, and human 3D skeleton). We
can use third-party Unity extensions to generate these modalities. As the visual-language models
fail to perform better in the object-counting task, we can develop task-specific models to improve
the performance.

In real-world settings, people’s gestures and non-verbal interactions can vary greatly, which
may not be fully captured in the simulated settings used to collect the EQA-MX dataset. This
could limit the model’s ability to interpret and respond to these cues in real-world applications
accurately. Additionally, the complexity and texture of objects and scenes in the real world can
also vary significantly, which may not be adequately represented in the synthetic dataset. This
could affect the model’s performance when applied to real-world scenarios. Although we have
used a synthetic dataset with some limitations, we open several impactful research directions that
can move the embodied human-AI interactions research field forward, such embodied-question
answering with multimodal cues (verbal and nonverbal gestures) tasks and fusing continuous visual
and discrete language representation can lead salient multimodal representations.

6.7 Limitations

In this work, we have designed novel embodied question-answering tasks, benchmarks, and novel
visual-language models to comprehend these embodied question-answering tasks. This work has
some limitations, which can be addressed to develop robust models for comprehending human-
embodied interactions.

The primary limitation of this study is the use of a synthetic dataset, EQA-MX, for training
and evaluating our model, VQ-Fusion. While this dataset has been carefully curated to include a
variety of embodied QA data samples involving multimodal expressions from multiple visual and
verbal perspectives, it may not fully capture the complexity and diversity of human interactions in
real-world settings. Synthetic datasets, by their nature, are simulations and may lack the nuances,
variability, and unpredictability inherent in human behavior.

The model’s performance in real-world settings is tested on our Real-MADRID dataset which
is presented in the next section. While VQ-Fusion shows promising results in our synthetic dataset,
its effectiveness in real-world applications is yet to be determined. The transition from a controlled,
synthetic environment to a dynamic, unpredictable real-world setting may pose challenges that
were not encountered during the training phase.
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Chapter 7
OBJECT GROUNDING USING MULTIMODAL EMBODIED INTERACTION CUES

Comprehending embodied interactions enables the AI assistants to ensure seamless with humans.
Several tasks have been designed to develop models for comprehending embodied interactions,
such as scene grounding thorough target object bounding box prediction, embodied path planning,
referring expression grouding, and embodied question answering. Grounding objects through em-
bodied interaction presents a challenge for extracting salient visual-language representations. This
task necessitates the interpretation of verbal descriptions and nonverbal cues, such as gaze and
pointing gestures and using this information to predict the bounding box of the object being re-
ferred to in a visual scene.

Current visual-language models predominantly utilize a cross-attention mechanism to merge
visual and language representations. This method aligns the visual and language representations,
enabling the model to identify key features from both modalities. However, this enforced alignment
introduces a significant challenge. While the cross-attention mechanism streamlines the model
architecture, it inherently aligns visual and language modalities to the task, potentially leading to
less than optimal performance in tasks that demand a more salient balance between the modalities.
For example, in tasks that require rich visual information, such as bounding box detection, the
enforced alignment could result in the loss of crucial visual information. This loss leads to less
than optimal multimodal fused representations and substandard task performance. Conversely,
reinforcing the language representation can boost the model’s performance in tasks where the
language modality outweighs the visual information.

Thus, the challenge is to develop a model capable of identifying the key modalities and rein-
forcing the corresponding representation in the downstream task to enhance performance. This
necessitates a model that can dynamically adjust the balance between visual and language modal-
ities based on the specific requirements of the task at hand.

We have introduced a novel reinforced residual representation-based multimodal learning model
designed to comprehend referring expressions in embodied interactions. This model is designed
to extract and integrate multimodal representations from visual and language modalities, thereby
enabling a comprehensive understanding of human verbal and nonverbal interactions. We aim to
address the limitations of existing models, which often struggle to extract aligned and complemen-
tary representations for downstream task learning. We have developed a guided residual represen-
tation learning approach, which aids the model in extracting complementary representation to the
aligned visual-language representations.

To evaluate the effectiveness of our model, we trained our proposed models and baseline on our
CAESAR-PRO dataset. We conduct an extensive experimental analysis. Our experimental results,
presented in Table 7.1, demonstrate the impact of reinforced representations in object bounding
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box prediction. The inclusion of visual reinforced representation improves performance, from
46.60% to 51.60% for IOU-25, emphasizing the importance of visual cues in object grounding.
Furthermore, when both visual and language representations are used as reinforced representations,
the performance of the object grounding task is further enhanced. Our proposed model, ReReP,
which incorporates both visual and language representation, outperforms the baseline model by a
substantial 8.91% for IOU-25, underscoring the multimodal nature of the task and the need for a
balanced approach to visual and language cues.

Moreover, our proposed model, ReReP, with reinforced representations, consistently surpasses
the baseline across all IOU thresholds, validating its effectiveness and the importance of reinforced
representations in object grounding tasks. The results also suggest that multimodal reinforced
representations can complement the aligned representations extracted using the self-attention ap-
proach, improving task performance. Thus, our experimental analysis showcases the potential of
reinforced representations in enhancing the performance of object grounding tasks and highlights
the need for models that can dynamically adjust the balance between visual and language modal-
ities based on task requirements. These findings provide a solid foundation for future research in
this field of visual-language representation learning.

7.1 Problem Formulation

The task we are addressing involves grounding objects referred to by embodied interaction (verbal
utterances and nonverbal gestures) in a visual scene. Embodied interaction combines verbal utter-
ances and nonverbal cues such as gaze and pointing gestures. This complex task requires a model
to effectively integrate and interpret both language inputs and visual scene data with nonverbal
cues and scene descriptions.

Given a visual input V and a language input L, the model’s task is to predict the bounding
box of the object referred to by the embodied interaction. The visual input V can be an image or
a video frame, and the language input L can be a spoken or written description of the object. In
our work, we have used visual as an image from a video of an interaction, and language input is
the text transcription of the verbal utterance in audio format. The task of bounding box prediction
stands as a pivotal challenge within the realm of object detection, a cornerstone issue in the field
of computer vision. This task, however, is further amplified in complexity due to the necessity
of integrating language input. The model must recognize the object in the visual scene data and
understand the language input and correctly associate it with the object in the visual input.

The bounding box is defined by coordinates (x1, y1, x2, y2), where (x1, y1) are the coordinates
of the lower left corner of the box and (x2, y2) are the coordinates of the upper right corner of the
box. The model’s output is a prediction of these coordinates.

The challenge lies in designing a model that can effectively fuse the visual and language inputs
to make accurate bounding box predictions. This requires the model to understand the language
input in the context of the visual scene and vice versa. The model must also be robust to varia-
tions in the visual and language inputs, such as different camera view perspectives (egocentric and
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exocentric), lighting conditions, object orientations, and language descriptions.

7.2 Reinforced Residual Representations for Robust Visual-Language Representation Learn-
ing

Existing visual-language models typically use a cross-attention mechanism to fuse visual and lan-
guage representations. This approach aligns the visual and language representations, allowing
the model to extract salient features from both modalities. However, this forced alignment also
presents a significant challenge. The cross-attention mechanism inherently aligns visual and lan-
guage modalities to the task. While using cross-attention simplifies the model architecture, this
assumption can lead to suboptimal performance in tasks requiring a more nuanced balance be-
tween the modalities. For instance, in tasks that require more visual information, the forced align-
ment can result in the loss of valuable visual information, leading to suboptimal multimodal fused
representations. The loss of visual representation can lead to suboptimal task performance where
the visual information is more prominent than language modality in the downstream tasks, such
as bounding box detection requires visual information and language as auxiliary information. In
these cases, reinforcing visual information can help the model improve the downstream tasks’
performance. Conversely, if language modality is more prominent than visual information in the
downstream task, then reinforcing the language representation can help the model improve the task
performance. Thus, we need a model which can identify the salient modalities and reinforce the
corresponding representation in the downstream task to improve the performance.

Our proposed model, Reinforced Residual Representations (ReReP ) is motivated by the need
to overcome the above-mentioned challenges. The ReReP model is designed to allow for a more
flexible fusion of visual and language representations, thereby preserving more information from
both modalities and improving the performance on tasks that require a more nuanced balance be-
tween visual and language information. In the following sections, we will detail the architecture
and mechanisms of the ReReP model, demonstrating how it addresses the aforementioned chal-
lenges and improves upon existing visual-language models.

7.2.1 Visual-Language Representation

The first step in our proposed model involves the extraction of visual and language representations
from the given inputs. This is accomplished by passing the visual and language data through a
visual-language model. The visual-language model is designed to process and understand both
visual and language data. This model is trained to extract meaningful representations from visual
and language data, which can then be used for various tasks. We can use a pretrained visual-
language models, such as CLIP [92], DualEncoder [198], ViLT [91], VisualBERT [26], LXMERT
[46], and VilBERT [27].

Given a visual scene Vinput and a language input Linput, the visual-language model processes
these inputs and outputs visual-language representations, denoted as V and L, respectively. We
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can formulate this process in the following way:

V, L = VL-Model(Vinput, Linput) (7.1)

The visual representation V is a high-dimensional vector representation that captures the im-
portant visual features of the input, such as the shapes, colors, and spatial relationships of the ob-
jects in the image or video frame. Similarly, the language representation L is a high-dimensional
vector representation that captures the semantic and syntactic features of the language input.

These representations are the result of a complex transformation process that involves multiple
layers of cross-attention modules. The visual-language model learns to extract these represen-
tations during training by optimizing its parameters to minimize the difference between visual-
language representations or using pretrained tasks, such as masked visual or language tasks. The
extracted visual and language representations serve as the basis for the subsequent steps in our
proposed model, which involve further processing and fusion of these representations to perform
the task of object bounding box prediction.

7.2.2 Self-Attention based Multimodal Fusion

The next step in our proposed model involves the application of self-attention to fuse the extracted
visual and language representations. The self-attention allows for a more flexible and context-
aware fusion of visual and language representations. The self-attention works by assigning differ-
ent levels of attention to different parts of the visual and language representations based on their
relevance to the task at hand. This is accomplished by treating the visual and language representa-
tions as both the query and the key-value pairs in the self-attention computation.

Given the visual representation V and the language representation L, the self-attention mecha-
nism computes attended visual and language representations, denoted as V a and La, respectively:

V a, La = Self-Attention(query = {V ;L}, key = {V ;L}, value = {V ;L}) (7.2)

The attended visual and language representations V a and La are enhanced versions of the
original representations, with more emphasis on the task’s most relevant parts. This is achieved
by weighting the original representations with attention scores, which are computed based on the
similarity between the query and the key-value pairs.

The self-attention mechanism allows our model to focus on the most relevant parts of the visual
and language inputs, thereby improving the quality of the fused representation. This is particularly
important for tasks that require a nuanced balance between visual and language information.

7.2.3 Reinforcing Representation Using Guided Attention

We introduce guided attention to enhance our visual-language representation’s robustness further.
This module reinforces the attended visual and language representations by focusing on the most
relevant parts of the visual or language representations.



159

Guided attention is similar to self-attention but has a crucial difference in input representations.
In the guided attention, we use the original visual representation V as the query and the attended
visual and language representations V a and La as the key and value:

V g, Lg = Guided-Attention(query = {V a;La}, key = {V a;La}, value = {V a;La}) (7.3)

This design allows the guided attention mechanism to focus on the parts of the visual input that
are most relevant to the language input, thereby reinforcing the visual-language representation.
This guided attention works as an information bottleneck to extract and reinforce task-specific
representations.

The outputs of the guided attention, denoted as V g and Lg, are then fused with the outputs of the
self-attention mechanism to form the final representation. This fusion is performed by summation:

V f , Lf = V a + V g, La + Lg (7.4)

The fused representation V f and Lf combines the strengths of the self-attention and guided
attention mechanisms, providing a robust and flexible representation that can be used for the down-
stream task of object bounding box prediction or grounding. Using self-attention and guided atten-
tion mechanisms, our model can extract and emphasize the most relevant features from visual and
language inputs, thereby improving the performance of tasks requiring a nuanced balance between
visual and language information.

7.2.4 Training Model

We train our model for object bounding box prediction task. The model is trained by minimizing
a loss function, which measures the difference between the predicted and ground truth bounding
boxes. We have used data from multiple visual perspectives to train a robust model. Specifically,
we use both egocentric and exocentric visual data. Egocentric visual data is captured from the
first-person perspective, providing a view of the scene as seen by the person performing the task.
Exocentric visual data, on the other hand, is captured from a third-person perspective. By using
data from different visual perspectives, we can train a more robust model that can handle a wider
range of scenarios and the model is not biased towards a single perspective.

The loss function we employ is the Mean Squared Error (MSE) loss, which is a standard choice
for regression tasks such as bounding box prediction. The MSE loss is defined as the average of
the squared differences between the predicted bounding box Bpred and the ground truth bounding
box Bgt. The equation for the MSE loss can be written as:

L =
1

n

n∑
i=1

(Bpredi −Bgti)
2 (7.5)
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In this equation, n is the total number of elements in the bounding box (usually 4: lower-left-
corner: (x1, y1) and upper-right-corner: (x2, y2)), and i indexes these elements. The MSE loss
is suitable for minimization, with a lower MSE indicating a closer match between the predicted
and ground truth bounding boxes. During training, the model learns to extract and fuse visual and
language representations in a manner that is effective for the task of object bounding box prediction
or grounding.

7.3 Experimental Setup

We developed all the models using the Pytorch (version: 1.12.1+cu113) [100] and Pytorch-Lightning
(version: 1.7.1) [120] deep learning frameworks. Additionally, we used HuggingFace library (ver-
sion: 4.21.1) for pre-trained models (BERT 1 [167], ViT 2 [166], and Dual Encoder 3. For the
Dual-Encoder model, we used an embedding size of 512.

The models were trained using the Adam optimizer with weight decay regularization set to 0
[95] and cosine annealing warm restarts with an initial learning rate of 3e−4, cycle length (T0) of
2, 4, 6, and cycle multiplier (Tmult) of 2. We utilized a batch size of 32 and trained the models for
14 epochs. To ensure reproducibility, we used the same fixed random seed (33) for all experiments.
Finally, all models were trained on distributed GPU clusters, with each node equipped with 4 A100
GPUs.

7.4 Experimental Analysis

We conducted experimental analysis on the CAESAR-PRO dataset [71]. Through this detailed
experimental analysis, we aimed to evaluate the effectiveness of our proposed model and its vari-
ations compared to the baseline model. We trained several variations of our proposed model by
varying the reinforced representation of visual and language representations. We explored three
distinct variations in the reinforced representation:

1. Visual-Only Reinforced Representation: In this variant, we solely used the visual rep-
resentation as the reinforced representation. This approach emphasizes the importance of
visual cues in the task of object bounding box prediction.

2. Language-Only Reinforced Representation: In this variant, we exclusively used the lan-
guage representation as the reinforced representation. This approach underscores the signif-
icance of language cues in the task.

3. Visual and Language Reinforced Representation: In this variant, we used both visual
and language representations as the reinforced representation. This approach recognizes the

1https://huggingface.co/docs/transformers/model_doc/bert
2https://huggingface.co/docs/transformers/model_doc/vit
3https://huggingface.co/docs/transformers/model_doc/vision-text-dual-encoder

https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/model_doc/vit
https://huggingface.co/docs/transformers/model_doc/vision-text-dual-encoder
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Models
Reinforced Representations

Guided Reinforcement
Metrics

Visual Language IOU-25 IOU-50 IOU-75
Baseline ✗ ✗ ✗ 46.60 13.84 1.26
ReReP ✓ ✗ ✗ 51.60 20.40 2.30
ReReP ✓ ✓ ✗ 55.51 21.70 2.70

Table 7.1: Comparisons of VL models performance for object grounding task of bounding box
detection. The results suggest that reinforcing visual and language representation in VL models
can improve the performance of object ground task. We evaluated several variations of ReReP by
varying the reinforced representations.

multimodal nature of the task and attempts to balance the contributions of both visual and
language cues.

In some variations, we employed guided attention to extracting the reinforced representations.
Guided attention helps the model focus on the most relevant parts of the input, thereby improving
the quality of the reinforced representations.

As a baseline, we trained the Dual-Encoder model on the CAESAR-PRO dataset. We used a
pretrained Dual-Encoder model from the HuggingFace library4 to extract the visual and language
representations. These representations were then summed to produce the task representation for
the bounding box detection task.

We trained all the models following the similar setup presented in Section 7.3. Following the
prior work [24], we have reported IOU accuracy with various thresholds values (25%, 50%, 75%).
The experimental results are presented in Table 7.1.

Results and Discussion: The experimental results, as presented in Table 7.1, show the effec-
tiveness of reinforced representations for object bounding box prediction task. The results indicate
that including visual reinforced representation enhances the task performance, improving from
46.60% to 51.60% for IOU-25. This enhancement underscores the importance of visual cues in
object grounding and suggests that reemphasizing visual representation can lead to better perfor-
mance.

Interestingly, the results also show that using both visual and language representations as re-
inforced representations can further boost the performance of the object grounding task. For in-
stance, with both visual and language representation, our proposed model, ReReP, improves the
baseline model performance by a substantial 8.91% for IOU-25. This finding highlights the mul-
timodal nature of the task and suggests that a balanced consideration of both visual and language
cues can lead to more accurate object grounding. Moreover, our proposed model ReReP with
reinforced representations consistently outperforms the baseline across all IOU thresholds. This
result validates our proposed model’s effectiveness and emphasizes the importance of reinforced

4https://huggingface.co/docs/transformers/model_doc/vision-text-dual-encoder

https://huggingface.co/docs/transformers/model_doc/vision-text-dual-encoder
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representations in extracting salient features for object grounding tasks.
The experimental results also suggest that multimodal reinforced representations complement

the aligned representations extracted using the self-attention approach. This finding indicates that
while the self-attention mechanism effectively aligns visual and language modalities, the addition
of reinforced representations complements the aligned representations, leading to improved task
performance.

In conclusion, our experimental analysis demonstrates the potential of reinforced represen-
tations in improving the performance of object grounding tasks. It also highlights the need for
models that can dynamically adjust the balance between visual and language modalities based on
the specific requirements of the task at hand. These insights pave the way for future research in
this exciting field of comprehending embodied interactions.

7.5 Findings

Our experimental analysis has led to several key findings that contribute to the field of visual-
language representation learning, particularly in the context of comprehending embodied interac-
tions:

1. Significance of Reinforced Representations: Our results highlight the importance of re-
inforced representations in the task of object bounding box prediction. This finding under-
scores the essential role of visual cues in object grounding and indicates that emphasizing
visual representation can enhance performance.

2. Advantages of Multimodal Reinforced Representations: Utilizing both visual and lan-
guage representations as reinforced representations further enhance the performance of the
object grounding task. This finding emphasizes the multimodal nature of the task and sug-
gests that a balanced approach to visual and language cues can lead to more precise object
grounding.

3. Efficacy of Proposed Model: Our proposed model, ReReP, with reinforced representa-
tions, consistently surpasses the baseline across all IOU thresholds. This result validates our
proposed model’s efficacy and underscores the importance of reinforced representations in
extracting salient features for object grounding tasks.

4. Complementarity of Multimodal Reinforced Representations and Self-Attention: The
experimental results indicate that multimodal reinforced representations can complement the
aligned representations extracted using the self-attention approach. This finding suggests
that while the self-attention mechanism effectively aligns visual and language modalities,
the addition of reinforced representations can provide a more nuanced balance between the
modalities, leading to improved task performance.
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These findings lay a solid groundwork for future research in this field and underscore the poten-
tial of reinforced representations in enhancing the performance of object-grounding tasks. They
also highlight the need for models that can dynamically adjust the balance between visual and
language modalities based on task requirements.

7.6 Limitations

While our research has yielded promising results, it is important to acknowledge its limitations.
Our experimental analysis was conducted on the CAESAR-PRO dataset containing synthetic data.
The use of synthetic data presents a potential limitation as it may not fully capture the complexity
and variability of real-world human interactions.

Human gaze, pointing gestures, and verbal utterances can vary from synthetic to real-world
environments. For instance, the synthetic data may not accurately represent the nuances of the
human gaze and pointing gestures, which are influenced by many factors, including cultural norms,
personal habits, and situational context. Similarly, verbal utterances in synthetic data may lack the
diversity and complexity of real-world language use, including variations in accent, dialect, and
speech patterns.

Training a model on synthetic data may therefore limit its performance on real-world datasets.
While our proposed model, ReReP, demonstrated impressive performance on the synthetic CAESAR-
PRO dataset, its effectiveness in real-world scenarios remains to be fully evaluated. While promis-
ing, the model’s ability to dynamically adjust the balance between visual and language modalities
based on task requirements may be challenged by the increased complexity and variability of real-
world data.

Furthermore, while our model outperformed the baseline across all IOU thresholds in our ex-
periments, it’s important to note that the performance was evaluated based on a specific task (object
bounding box prediction) and a specific metric (IOU). The model’s performance may vary when
evaluated on different tasks or metrics.

Thus, while our findings provide valuable insights into the potential of reinforced representa-
tions in visual-language representation learning, further research is needed to validate these find-
ings in real-world settings and across different tasks and evaluation metrics.
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Chapter 8
COMPREHENDING EMBODIED REFERRING EXPRESSIONS IN REAL-WORLD SET-
TINGS

Comprehending embodied interactions is essential for developing robust models that can function
effectively in real-world settings. However, the diversity and complexity of real-world interactions
often exceed the capabilities of existing synthetic datasets and simulators, such as our CAESAR
simulator and the accompanying synthetic datasets (CAESAR-XL [25], CAESAR-L [25], and
CAESAR-PRO [71]). While these have been instrumental in developing and diagnosing learning
models, they may not fully capture the nuances of real-world human interactions.

In the literature, a few datasets have been developed to capture real-world embodied inter-
actions, such as YouRefIt [24] and MoGaze [146]. However, these datasets have three crucial
limitations that limit these datasets to develop robust models for understanding embodied inter-
actions comprehensively. Some of these limitations are similar to the existing synthetic datasets
described in Chapter 05. First, these datasets contain verbal utterances either from the speaker’s
or observer’s perspective. For example, the verbal utterance “left ball” from the speaker’s perspec-
tive can be interpreted as “right ball” from the observer’s perspective. This perspective bias can
create bias in the datasets; thus, the model developed using these datasets can comprehensively
understand embodied interactions.

Second, embodied interactions in the existing datasets are captured using the exo or ego view.
This single-view dependency creates view bias in the datasets, and the model trained on these
datasets can not comprehend embodied interaction in diverse environments. For example, a re-
ferred object can not be viewed from one view due to the obstacle. However, in these settings,
another view can observe an object occluded from one view. In the same way, the interactions
(nonverbal gestures) occluded by one view can be captured by others. Thus, capturing the embod-
ied interaction and scene is crucial using multiple views (ego, exo, and top).

Third, existing datasets partially capture nonverbal gestures. These datasets either capture
pointing gestures or gaze. However, in embodied interactions, both signals provide complementary
information to comprehend an interaction robustly. Fourth, existing datasets are collected indoors,
mostly lab and at home. This drawback limits to training models to comprehend interactions in
diverse settings, such as indoor (store, office, and home) and outdoor (e.g., store). Additionally,
these datasets are collected from a stationary camera from a fixed angle. As a result, these datasets
are biased to particular system settings. Thus, models trained with existing datasets can not be
utilized to develop perception systems of autonomous systems, specifically mobile systems, to
comprehend human interaction in diverse real-world settings.

To address these issues, we curated a diverse dataset, REMO, to comprehend human interac-
tion in real-world settings. We collected the dataset in diverse indoor and outdoor settings with
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Figure 8.1: Real embodied data collection system and sample data. Left: Data collection system to
collect embodied interaction in real-world settings. We have collected data using Azure Kinect DK
mounted on the Ohmni robot and ego camera view and eye gaze using pupil smart glass. Right: A
sample data collected using our data collection system is depicted.

varying environment attributes, such as lighting conditions, object arrangement, and environment
appearance. We have used an Azure Kinect DK [199] device to capture the embodied interactions
from different angles. This device was installed on the Ohmni Robotic system [200] to capture
the ego view from the robot. Moreover, we have collected gaze and ego views from a human
perspective using PupilCore Smart Glass (Invisible) [201]. Our data collection system has been
depicted in Fig. 8.1. Finally, we have annotated these interactions using expert human annotators
and curated verbal referring expressions. We have collected and annotated data under an approved
IRB (protocol number: 4627, Title: Understanding Multimodal Human Instruction in Embodied
Environment).

By providing a robust and diverse dataset that captures embodied interactions in real-world
settings, we are enabling the development of more comprehensive and effective AI models. The
dataset’s diversity, in terms of environmental attributes and nonverbal signals, offers a rich re-
source for training and testing AI systems. This will allow researchers and developers to create
models that can better understand and interact with the world, thereby enhancing the performance
of AI systems in a wide range of applications, from autonomous vehicles to assistive technologies.
Additionally, our proposed model’s ability to extract and integrate multimodal representations of-
fers a more comprehensive understanding of human interactions. This can help the AI systems
seamlessly interact with humans, leading to more natural and effective communication. Further-
more, the insights gained from our experimental analysis could guide future research in the field,
contributing to the development of more robust and effective models for understanding embodied
interactions in real-world settings.
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8.1 Data Collection

8.1.1 Data Collection System

We have developed a data collection system to synchronously collect data from different sensors.
This system incorporates the Azure Kinect, which provides a multitude of sensory data, including
visual, depth, infrared (IR), skeletal tracking using Azure SDK, and inertial measurement unit
(IMU) data. In addition, we have integrated the Pupil Smart Glasses, which offer visual, IR, gaze
tracking, and gesture recognition capabilities. To facilitate data collection in real-world scenarios,
we have mounted these devices onto the Ohmi Lab’s telepresence robot. This setup enhances
the practicality of our system and encourages natural interactions with subjects, particularly when
providing object-referential instructions to the robot. A visual representation of our integrated data
collection system can be found in Figure 8.2.

The Azure Kinect DK sensor, a key component of our system, boasts the following specifica-
tions:

– RGB Camera (Heighest Resolution: 3840 x 2160 px @30 fps)

– Depth Camera (Method: Time-of-Flight, Highest Resolution: 640 x 576 px @30 fps )

– Motion Sensor (An LSM6DSMUS as an inertial measurement unit (IMU) with an accelerom-
eter and a gyroscope with a sampling rate of 1.6 Hz.)

– Microphone (USB audio class 2.0, Channel: 7, Sensitivity: −22 dBFS (94 dB SPL, 1 kHz),
Signal to noise ratio > 65 dB, Acoustic overload point: 116 dB)

The participant in our study was equipped with the Pupil Lab’s Pupil Invisible Eye Tracker.
This device is accompanied by an Android smartphone responsible for recording the participant’s
eye-tracking data. The data is subsequently transmitted to the Pupil Cloud via the Pupil Invisible
Android application. This seamless hardware and software integration ensures efficient and reli-
able data collection and transmission. The Pupil Invisible Eye Tracker is a state-of-the-art device
with a range of features designed to capture precise and accurate eye-tracking data. This device, in
conjunction with the Azure Kinect and other sensors, forms a comprehensive system for embodied
data collection, enabling us to gather a rich dataset for our research. The specifications of the Pupil
eye tracker are as follows:

– Eye Cameras (200Hz @ 192x192 px IR illumination)

– Scene Camera (Detachable scene camera, 30Hz @1088 x 1080px, 82x82 FOV)

The participant stands before the Ohmin robot and provides instructions that may involve both
verbal and non-verbal object-referencing gestures (Figure 8.2 (a)). The Azure Kinect DK’s RGB
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Figure 8.2: Real embodied data collection system

camera captures a continuous stream of RGB data that provides an external or exo-centric perspec-
tive of the participant. Moreover, the depth camera of Azure Kinect records depth and infrared
data streams, further enriching the exo view of the participant. The system also allows to collect
IR data using Azure Kinect’s IR sensor. Additionally, we used the Azure Kinect Body Tracking
SDK to capture the skeletal data streams. This SDK allows us to track 32 body joints, providing
3D coordinates and orientation information for each joint. The Kinect’s microphone also records
audio data from the user.

The Pupil Invisible Eye Tracker complements the data collected by the Azure Kinect by record-
ing an RGB data stream that provides an ego-centric perspective of the participant. This combi-
nation of exo-centric and ego-centric views provides a comprehensive understanding of the par-
ticipant’s interactions. An Alienware m15 R4 laptop powers the entire system with an i7-10870H
RTX processor. This high-performance machine serves as the backbone of our system, integrating
all sensor components and ensuring their smooth operation.

We developed a Python-based application to facilitate coordination and synchronization among
all system components. This application is central to the operation of our data collection system,
ensuring that all components work together seamlessly to collect synchronized data from multiple
sensors. We used this system to capture video from each camera, the time series data from the IMU
and skeleton joints, and session metadata. We employed the pyKinectAzure library to interface
with the Azure Kinect SDK sensor, while the Pupil Labs’ Realtime API was used to communicate
with the Pupil Eye camera.

One of the significant challenges we encountered was the synchronization of various data
streams captured by different devices. To overcome this, we implemented a time-based synchro-



168

nization method. This method records the UNIX timestamps of different data capture events and
data streams, enabling synchronization during post-processing. This synchronization is crucial
to align the data streams captured from different devices. Our approach involved recording the
timestamp at both the start and end of each interaction and the timestamp of the event when the
participant pointed to an object. This was achieved using our Python-based system, operated by
the individual recording the data collection sessions. We utilized different keystrokes on a stan-
dard keyboard to denote different events. The “Space” key was pressed at the start and end of
an interaction, while the “G” key was pressed to indetify the canonical moment of an interaction.
The canonical moment indicates when the participant point to an object using gaze or pointing
gestures. Moreover, The “G” keystroke event time was used to identify the canonical frame, i.e.,
the frame where the participant actually pointed to an object. When the participant used cues other
than pointing, such as gaze, the “G” key was pressed when the gaze event occurred. The “Space”
keystroke event time was used to identify the start and end of an interaction, thereby facilitating
the segmentation of interactions. The “Q” key was used to terminate a session. The corresponding
UNIX timestamp for these keystroke events was recorded for both the Azure Kinect and Pupil Lab
Eye tracker.

We stored the Azure Kinect recordings and the corresponding keystroke event time locally as
MP4 and JSON files, respectively. For the Pupil eye tracker, the recordings of the participants’
ego view and keystroke events were saved in the Pupil Cloud using the Pupil Lab Android app and
Pupil API, respectively.

It’s important to note that while our current system utilizes a time-based synchronization
method to synchronize between two different devices (the Azure Kinect Sensor and Pupil Eye
Tracker), it is designed to be extensible. For example, our system can be expanded to incorporate
multiple Azure Kinect devices to capture multiple views of the participant during interaction rather
than just the ego and exo views.

We use three different environments for collecting data: home indoor, home outdoor, and a
laboratory environment. An indoor home environment includes living rooms, bedrooms, kitchens,
etc.; an outdoor one includes balconies, parking lots, front yards, etc. The collaborative robotics
lab (CRL) of the University of Virginia was chosen as the laboratory environment. While choosing
objects, we prioritize those usually available in these environments. A complete list of the objects
used in the dataset can be found in Appendix 1.

8.1.2 Data Collection Protocol and Procedure

The data collection process began with a comprehensive introduction to the subjects about the
data collection system, the purpose of the dataset, and the protocol to be followed during data
collection. Prior to participating in the data collection sessions, subjects were required to complete
a demographic survey.

Each session involved subjects providing instructions that referenced objects in their surround-
ings, using both language and nonverbal gestures (gaze and pointing gestures). These instructions
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were designed to facilitate natural interaction between the subject and a robot capable of inter-
preting verbal and nonverbal human instructions. We have two instructions for collecting data in
constrained and unconstrained settings. In the constrained setting, subjects were briefed on the
format of instructions and how they could employ various modalities (verbal and nonverbal) to
make the interaction as natural as possible. We also suggested the participants use both verbal and
nonverbal gestures to describe an object. In the unconstrained setting, we did not suggest whether
to use verbal or nonverbal gestures to describe an object. We instruct the participant to describe an
object to the robot.

The ultimate goal of this dataset is to enhance the ability of social robots to accurately inter-
pret object referencing instructions. This involves identifying the object uniquely, which requires
extracting the object’s location and other attributes from the instruction. This task presents a chal-
lenge as humans often use diverse formats when providing verbal instructions, and these instruc-
tions may sometimes lack the necessary features for object identification. Incorporating nonverbal
cues, such as pointing or referencing the object in relation to another object, can significantly
improve the efficiency of interpreting object referencing instructions. Furthermore, object refer-
encing instructions can be given from multiple perspectives, such as the subject’s or the robot’s
perspective, which must be resolved for accurate object comprehension.

The participants were given the flexibility to choose any perspective (subject, robot, or neutral)
when providing instructions. This approach allowed us to diversify our dataset by including object-
referencing instructions with varied spatial referencing and perspectives. For instance, an object
could be referenced in relation to another object, such as “The black box on top of the brown
table.” The object reference in the verbal instruction could be from the subject’s perspective, e.g.,
“The couch to my right,” or it could be from the robot’s perspective, e.g., “The lamp to your left.”
To further diversify the dataset, some participants were not given any specific guidance on the
interaction mode, allowing us to capture natural human instincts when providing instructions. This
approach also helped eliminate biases that might be introduced by pre-guidance on the format of
the instructions, allowing subjects to be flexible in their instruction delivery.

Each subject participated in multiple sessions, each lasting approximately one hour. During
each session, the subject performed several interactions. Using our data collection system, we
recorded the subject’s ego view, exo view, IMU, skeleton, and audio data stream for each session.
Upon completion of the sessions, subjects were asked to complete a post-task survey and sign a
consent form to give permission to release the dataset. We compensated each participant with $15
dollars for one hour of their time.

8.1.3 Data Post-processing

Each data collection session resulted in generating an Azure Kinect video file in MP4 format,
generated by using our Python-based data collection application. We used the recorded timestamps
to split each session’s video data. This MP4 file encapsulates three data streams from the Azure
Kinect’s camera sensor: RGB, Depth, and Infrared. Accompanying JSON files contain the time
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Figure 8.3: Dataset folder structure

series data for the IMU and skeleton joints, along with pertinent session metadata. We employed
the FFmpeg library to separate the Kinect video streams into individual MP4 files and to extract
the recording audio as an MP3 file. The IMU time series was divided into two distinct files for
the accelerometer and gyroscope readings. Concurrently, the Pupil eye tracker generated an MP4
video file for each session, which was saved to the Pupil Cloud. We used the recorded timestamps
from the Pupil Cloud to split each session video. We also compared the Azure Kinect and Pupil
Cloud timestamps to determine the time lag and synchronize the video streams.

The primary challenge in post-processing the data was segmenting the interactions and syn-
chronizing the data from the Azure Kinect and Pupil Lab. To segment each interaction from the
Azure Kinect data streams, we identified the start and end times of that interaction. We also pin-
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pointed the canonical frames, i.e., frames where the subject precisely points to an object. We used
the FFmpeg library to split each interaction and canonical frame. Subsequently, we located the
corresponding Pupil recording for the Azure Kinect recording in the Pupil Cloud using the Python
Pupil Cloud API. We used the recording-start timestamp saved in the metadata file to find the
matching Pupil recording. After downloading the Pupil video, we applied the same procedure as
with the Azure Kinect recording to split the interactions and canonical frames at the timestamps
recorded during data collection. Finally, we employed the OpenAI Whisper library to transcribe
the Kinect audio data into corresponding text. It’s important to note that we manually verified the
synchronization and segmentation with the help of five human experts.

Our dataset comprises numerous data collection sessions and the results of data post-processing.
Each session is organized in a specific folder structure which is depicted in FIgure 8.3. Here, ’tran-
scription.txt’ is the text transcription of ’audio.mp3’. In the ’Videos’ subfolder, ’exo.mp4’ and
’ego.mp4’ refer to the videos from the Azure Kinect SDK camera and Pupil Eye Camera, respec-
tively. Similarly, In the ’Frames’ subfolder, ’exo.jpg’ and ’ego.jpg’ refer to the canonical frame
from the Azure Kinect SDK camera and Pupil Eye Camera, respectively. We stored the IMU sen-
sor data in the acceleration.json and gyron.json files. The skeleton data of the whole interaction is
stored in skeleton.json file.

8.1.4 Participants

We recruited a total of 66 participants for our study from Charlottesville, Virginia, United States.
The participant group was balanced in terms of gender, with 53.03% males (n = 35) and 46.97%
females (n = 31). The majority of our participants were students from various academic levels
and disciplines at the University of Virginia. To ensure the diverse verbal utterance data, the
participants were not required to be native English speakers. The average age of the participants
was 26.66 years, with a standard deviation of 3.36 years. Participants were asked to rate their
level of experience with robots on a Likert scale ranging from “no experience” (1) to “expert-level
experience” (5), resulting in a mean score of 2.25 and a standard deviation of 0.96. The majority
of participants, 93.94% (n = 62), were right-handed, while 6.06% (n = 4) were left-handed. One
participant did not consent to the publication of the data. Therefore, we have restricted the use of
their data and excluded it from our dataset.

8.1.5 Dataset Statistics

We collected data in both constraiedn and unconstrained setting. Some sample data from our
dataset has been shown in Figure. A detailed statistical breakdown of the dataset is presented in
Table 8.1. The data collection phase involved 392 sessions split between home and lab environ-
ments. A total of 13,990 interactions were recorded, with 3,176 occurring at home and 10,814 in
the lab. The total video time recorded was 17.62 hours, with 4.14 hours coming from at-home ses-
sions and 13.48 hours from lab sessions. A total of 14,368 frames were captured. Each interaction
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Verbal utterance: Cycle in front of me

Verbal utterance: The whiteboard to your left
(a) Sample data from constrained setting.

Verbal utterance: A container with three pingpong balls in it

Verbal utterance: On the top shelf is a three-drawer container with some papers on it
(b) Sample data from unconstrained setting.

Figure 8.4: Sample data from REMO dataset in both constrained and unconstrained settings.

lasted 4.53 seconds on average, and there were approximately 36.65 frames in each session. The
average session length was 2.69 minutes. These statistics provide valuable insights into the scale
and nature of the data collected and will serve as a solid foundation for subsequent analysis and
interpretation.
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Attribute Value
Number of Sessions 392 (Home: 194, Lab: 198)
Number of Interactions 13990 (Home: 3176, Lab: 10814)
Total Number of Frames 14368
Total Video Time (hrs) 17.62 (Home: 4.14, Lab: 13.48 )
Avg. Interaction Length (sec) 4.53
Avg. frames per session 36.65
Avg. Session Length (min) 2.697

Table 8.1: Dataset Statistics

8.1.6 Post Task Survey Analysis

We conducted a post-task survey to gain a deeper understanding of participants’ preferences when
instructing a robot. In this survey, participants were asked to indicate their preferred method of
object referencing. The options provided were: using only verbal instructions, only gestures, or a
combination of verbal and gestures.

The survey results revealed that a significant majority of participants, 96.97% (n = 63), pre-
ferred using both verbal and nonverbal gestures (gaze and pointing gesture). A small fraction of
participants, 3.03% (n = 2), preferred using only verbal instructions. One participant did not permit
to release the data, so we did not include that participant’s response in this analysis. Additionally,
none of the participants chose nonverbal gestures as their sole preferred method of communication.

These findings underscore the perception among humans that a combination of verbal and non-
verbal forms of instruction is the most efficient way to convey object-referencing expressions. This
aligns with our motivation to develop a dataset for object-referencing instructions that incorporates
both language and visual cues. The results of this survey provide valuable insights into human
communication preferences, which can inform the design and development of more intuitive and
effective human-robot interaction systems.

8.2 Experimental Setup

We developed all the models using the Pytorch (version: 1.12.1+cu113) [100] and Pytorch-Lightning
(version: 1.7.1) [120] deep learning frameworks. We also used HuggingFace library (version:
4.21.1) for pre-trained models (BERT 1 [167], ViT 2 [166], Dual Encoder 3, and CLIP 4 [92]). For
the Dual-Encoder and CLIP models, we used an embedding size of 512. We train models using

1https://huggingface.co/docs/transformers/model_doc/bert
2https://huggingface.co/docs/transformers/model_doc/vit
3https://huggingface.co/docs/transformers/model_doc/vision-text-dual-encoder
4https://huggingface.co/docs/transformers/model_doc/clip

https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/model_doc/vit
https://huggingface.co/docs/transformers/model_doc/vision-text-dual-encoder
https://huggingface.co/docs/transformers/model_doc/clip
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the Adam optimizer with a weight decay regularization set to 0 [95] and cosine annealing warm
restarts at an initial learning rate: 3e−4, cycle length (T0): {2, 4, 6}, and cycle multiplier (Tmult):
2. We used batch size 32 and trained models for 14 epochs. We used the same fixed random seed
(33) for all the experiments to ensure reproducibility. Lastly, all models are trained in distributed
GPU clusters, where each node contains 4 A100 GPUs.

8.3 Experimental Analysis

We performed our experimental analysis on our REMO dataset. This comprehensive analysis
aimed to assess the performance of our proposed model and its variations compared to the baseline
model. We trained multiple variations of our proposed model, each differing in the type of rein-
forced representation of visual and language modalities. We examined three distinct variations:

1. Visual-Only Reinforced Representation: This variant solely leverages the visual represen-
tation as the reinforced representation. This method emphasizes the crucial role of visual
cues in the task of object bounding box prediction.

2. Language-Only Reinforced Representation: This variant solely utilizes the language rep-
resentation as the reinforced representation. This method highlights the importance of lan-
guage cues in the task.

3. Visual and Language Reinforced Representation: This variant employs both visual and
language representations as the reinforced representation. This method acknowledges the
multimodal nature of the task and strives to balance the contributions of both visual and
language cues.

In some variations, we incorporated guided attention to extracting the reinforced representa-
tions. Guided attention enables the model to concentrate on the most pertinent parts of the input,
thereby enhancing the quality of the reinforced representations.

For the baseline, we trained the Dual-Encoder model on the REMO dataset. We utilized a
pretrained Dual-Encoder model from the HuggingFace library5 to extract the visual and language
representations. These representations were then summed to generate the task representation for
the bounding box detection task.

All models were trained following the similar setup outlined in Section 7.3. We reported IOU
accuracy with various threshold values (25%, 50%, 75%). The experimental results are presented
in Table 8.2.

Results and Discussion: The experimental results, as presented in Table 8.2, provide valuable
insights into the effectiveness of reinforced representations for the task of object bounding box pre-
diction. The results indicate that including visual reinforced representation significantly enhances

5https://huggingface.co/docs/transformers/model_doc/vision-text-dual-encoder

https://huggingface.co/docs/transformers/model_doc/vision-text-dual-encoder
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Models
Reinforced Representations

Guided Reinforcement
Metrics

Visual Language IOU-25 IOU-50 IOU-75
Baseline ✗ ✗ ✗ 70.05 41.03 10.40
ReReP ✓ ✗ ✗ 70.30 42.50 11.70
ReReP ✓ ✓ ✗ 70.30 43.60 12.30
ReReP ✓ ✗ ✓ 72.01 45.79 12.80
ReReP ✓ ✓ ✓ 73.49 51.63 21.21

Table 8.2: Comparisons of VL models performance for object grounding task of bounding box
detection. The results suggest that reinforcing visual and language representation in VL models
can improve the performance of object ground task. We evaluated several variations of ReReP by
varying the reinforced representations.

task performance, with an improvement from 70.05% to 72.05% for IOU-25. This enhancement
underscores the importance of visual cues in object grounding and suggests that reemphasizing
visual representation can lead to better performance.

The results further indicate that incorporating both visual and language representations as re-
inforced representations can significantly enhance the performance of the object grounding task.
For example, our proposed model, ReReP, which utilizes both visual and language representation,
boosts the baseline model performance by a notable 3.45% for IOU-25. This outcome underscores
the multimodal aspect of the task and implies that a balanced approach to both visual and lan-
guage cues can result in more precise object grounding. Furthermore, equipped with reinforced
representations, our proposed model ReReP consistently surpasses the baseline across all IOU
thresholds. This experimental result validates our proposed model’s effectiveness and highlights
the significance of reinforced representations in extracting pertinent features for object grounding
tasks.

While our proposed model, ReReP, shows modest improvements in task performance at lower
IOU thresholds (25% and 50%), it demonstrates a significant performance boost at higher IOU
thresholds. Specifically, ReReP achieves a 10.81% improvement in the bounding box prediction
task at higher IOU thresholds. This is particularly noteworthy as achieving high performance
at higher IOU thresholds is challenging. IOU, or Intersection over Union, is a metric used to
evaluate the accuracy of an object detector on a specific dataset. Higher IOU thresholds are more
challenging because they require the predicted bounding box to match the ground truth bounding
box more closely. In other words, a model must correctly identify the objects with high precision
to achieve a high score at these thresholds. The significant improvement achieved by ReReP at
these thresholds suggests that our model is particularly effective at accurately identifying objects,
even under stringent evaluation criteria.

However, our analysis also reveals the crucial role of guided reinforcement in our model’s
performance. Without the use of guided reinforcement, our model’s performance drops by 8.91%
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for IOU-75. This drop in performance underscores the importance of guided reinforcement in our
proposed approach. Guided reinforcement helps the model focus on the most relevant parts of
the input, thereby improving the quality of the reinforced representations. It essentially guides
the learning process, helping the model to better leverage the reinforced representations for the
task at hand. Our detailed analysis highlights the effectiveness of our proposed model, ReReP,
particularly at higher IOU thresholds. It also emphasizes the importance of guided reinforcement
in enhancing the model’s performance. These findings provide valuable insights for developing
effective visual-language representation learning models.

The experimental results also indicate that multimodal reinforced representations can effec-
tively supplement the aligned representations derived using the self-attention approach. This ob-
servation suggests that while the self-attention mechanism is adept at aligning visual and language
modalities, incorporating reinforced representations can offer a more refined balance between these
modalities, leading to enhanced task performance.

Therefore, our experimental analysis showcases the potential of reinforced representations in
augmenting the performance of object grounding tasks. It also underscores the necessity for models
capable of dynamically adjusting the balance between visual and language modalities, contingent
on the specific requirements of the task at hand.

8.4 Limitations

While our work has made significant strides in understanding embodied interactions in real-world
settings, it is not without its limitations. Firstly, our study relies heavily on the REMO dataset,
which, while diverse and robust, may not capture all the nuances of human interactions in every
conceivable real-world setting. The dataset was collected in a variety of indoor and outdoor envi-
ronments with varying attributes, such as lighting conditions, object arrangement, and environment
appearance. However, there are other environmental factors or settings not covered in our dataset
that could influence embodied interactions. For example, our dataset does not contain data from
very dark environments where the depth RGB data may not capture the embodied interactions
appropriately.

Secondly, our proposed model’s ability to extract and integrate multimodal representations,
while effective, may not perfectly capture the complexity of human interactions. Human inter-
actions are incredibly nuanced and can vary greatly between individuals and contexts. Thirdly,
while our model has shown promise in enhancing the performance of AI systems in a wide range
of applications, from autonomous vehicles to assistive technologies, its real-world applicability
and scalability have yet to be fully tested. Further research and testing are needed to determine
how well our model can be integrated into different systems and how it performs in large-scale,
real-world applications.

Lastly, our work is limited by the inherent challenges of working with embodied interactions,
such as the difficulty of accurately capturing nonverbal gestures and the potential for perspective
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bias in verbal utterances. Despite our best efforts to mitigate these issues, they remain inherent
challenges in this field of research.

Despite these limitations, we believe our work represents a significant step forward in the field
of artificial intelligence, particularly in understanding embodied interactions in real-world settings.
We hope that our findings will inspire further research in this area, and we look forward to seeing
how our work can be built upon and improved in the future.

8.5 Broader Impact

The broader impact of our work lies in its potential to significantly enhance the understanding of
embodied interactions in real-world settings. By providing a robust and diverse dataset, REMO,
that captures embodied interactions in various indoor and outdoor settings, we are enabling the
development of more comprehensive and effective AI models. These models can be trained and
tested using our dataset, which offers a rich resource of environmental attributes and nonverbal
signals. This will allow researchers and developers to create models that can better understand
and interact with the world, thereby enhancing the performance of AI systems in a wide range of
applications.

For instance, in the field of autonomous vehicles, our work can contribute to the develop-
ment of more sophisticated perception systems that can comprehend human interaction in diverse
real-world settings. This can lead to safer and more efficient autonomous vehicles that can better
navigate complex environments and interact with humans. Similarly, in the field of assistive tech-
nologies, our work can help develop more intuitive and responsive systems that can understand
and respond to human interactions effectively. This can significantly improve the quality of life for
individuals who rely on these technologies.

Furthermore, our proposed model’s ability to extract and integrate multimodal representations
offers a more comprehensive understanding of human interactions. This can help AI systems
seamlessly interact with humans, leading to more natural and effective communication. This is
particularly important in the development of AI assistants, which need to understand and respond
to human interactions in a natural and intuitive manner.

Finally, the insights gained from our experimental analysis could guide future research in the
field, contributing to the development of more robust and effective models for understanding em-
bodied interactions in real-world settings. This can lead to significant advancements in the field of
artificial intelligence, pushing the boundaries of what AI systems can understand and achieve.
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Chapter 9
RELATED WORK

9.1 Multimodal Representation Learning

Multimodal Learning: Prior neuroscience studies suggest that multisensory animal cognition
systems align unimodal features before their fusion [1], [116]. For example, a study on adult
cats conducted by Meredith and Stein [1] found that multisensory stimuli (visual, auditory and
somatosensory) converge in the deep laminae superior colliculus cell. In another study, Meredith et
al. [116] found that multisensory interactions and convergence occur in deep laminae cells. Several
studies also found that animals’ multisensory systems inherently employ recurrent [115], [202],
[203] and hierarchical [203], [204] information processing approaches to combine multimodal
information. Similarly, in the analysis of the human visual system, Lamme et al. [114] found
that feed-forward information processing is responsible for the unconscious vision and recurrent
processing is responsible for attentive vision and visual awareness.

Several multimodal feature fusion approaches have been proposed in the multimodal learning
literature, such as early, intermediate, and late fusion [35], [38]. Early fusion approaches combine
raw sensor data and extract feature representation from this combined raw multimodal sensor data
[7], [9]. Late fusion approaches extract unimodal feature representations and determine the task
output by utilizing the unimodal representation separately. These approaches fuse the prediction
from each modality independently [38]. However, intermediate fusion allows cross-modal inter-
action to fuse mid-level features for extracting complementary multimodal representation. Recent
works in multimodal machine learning predominantly employ intermediate fusion over early and
late fusion, as it allows to fuse mid-level features to obtain complementary multimodal represen-
tation [12], [28], [38], [42].

Intermediate fusion approaches create lateral connections among unimodal feature encoders
to fuse mid-level features [12], [16], [40], [205]. For example, Feichtenhofer et al. [16] utilized
directed lateral connections from audio to visual modality to fuse intermediate features. More-
over, Joze et al. [12] proposed squeeze and excitation operations to recalibrate and fuse the mid-
level feature fusion. However, the interactions among heterogeneous modalities are chosen based
on human intuition, which may introduce biases and limit the performance of feature encoders.
Another approach is to employ attention mechanism to combine different unimodal features [7],
[37]. For instance, Long et al. [37] proposed an attention approach to obtain unimodal features,
which are concatenated for multimodal representation. While the aforementioned approaches have
made significant advances, they all fuse features in a feed-forward manner, limiting the modality-
specific encoders from aligning and refining their representations when observing features from
other modalities.

Representations Alignment and Refinement: In recent years, representations alignment
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and refinement approaches have been studied in the literature for various tasks, such as audio-
video localization [198], [206], [207], answer prediction [208], text-video retrieval [209], and
activity recognition [11]. For example, Wang et al. proposed a model for local feature alignment
and temporally aggregated global feature alignment between text and video modalities [209]. The
cross-modal similarities are used to train the model for the text-video retrieval task. Similarly, Wu
et al. developed a Dual Attention Matching (DAM) module to model high-level event information
and a global cross-check mechanism to extract local temporal information for audio-visual event
localization tasks [198]. Apart from the feature alignment, several approaches have been proposed
to use the fused multimodal representations to refine the task-specific representation. For example,
in our prior work, we proposed a guided multimodal fusion approach that extracts activity-group
specific representation to prioritize and fuse multimodal representations for activity recognition
[11]. Similarly, Hu et al. proposed a multimodal transformer model to fuse the multimodal rep-
resentations, which is then used for iterative answer decoding [208]. In the decoding step, the
fused representations are used to refine the representation for answer decoding iteratively. More-
over, Ramaswamy and Das developed Audio-Visual Fusion Block (AVFB) to fuse audio-video
features used by Segment-Wise Attention Block (SWAB) to match temporal feature segments for
sound source localization [206]. Additionally, Wu and Yang developed a label refinement-based
audio-visual joint representations learning model where modality-specific refined labels are used
as a weakly supervised signal for cross-modal audio-visual contrastive learning [207]. One of
the common properties of these learning architectures is that these architectures align or refine
representations after extracting unimodal features.

Although several approaches have addressed the representation alignment and refinement re-
lated challenges for various tasks [11], [198], [206]–[209], there are some crucial issues we need to
address to develop a robust multimodal learning model. First, these approaches align and/or refine
multimodal representations after extracting unimodal representations and do not allow the uni-
modal learning models to observe the extracted representations from other modalities. Although
some of these approaches match the local and global representations, these approaches do not allow
the unimodal learning models to use the global representations to refine the local representations.
Second, most of these learning architectures are constrained to two modalities, such as text and
visual, or audio and visual modalities. Additionally, most of these works used a pair-wise feature
representation matching approach to align multimodal representations. Thus, we need to develop
and evaluate learning models which can align and refine representations from multiple modalities.

9.2 Perceiving Human Behavior

Multimodal Human-Activity Recognition: Activity recognition using a single data modality
has been extensively studied with work using visual data [16], [134], [210], skeleton [31], [32] and
physical sensor data [30]. However, relying on only one modality may lead to poor performance
of activity recognition [35]. For example, in a low light environment, the physical sensor can pro-
vide a richer representation to recognize the activities than visual modality [7]. Thus, multimodal
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sensors can provide complementary information to recognize activities accurately.
To overcome the limitations brought about by relying on a single modality, several works have

taken a multimodal learning perspective to extract complementary features for activity classifica-
tion [7]–[9], [12], [36], [37], [97], [211]–[213]. For example, Kong et al. [8] designed a knowledge
distillation-based feature alignment approach to obtain complementary multimodal representation
for HAR. Kazakos et al. [41] proposed a temporal window-based multimodal intermediate feature
fusion approach for egocentric activity recognition. Moreover, Islam et al. [7] proposed a hier-
archical attention-base fusion approach to extract and fuse multimodal representation for activity
recognition. While prior approaches have achieved exemplary results, aligning and fusing relevant
representations from heterogeneous modalities to obtain robust multimodal representation remains
a challenging problem.

To address the aforementioned challenges in multimodal fusion, we have introduced a recurrent
multimodal fusion approach by incorporating key insights from neuroscience studies. Our pro-
posed method aims to overcome the limitations of state-of-the-art multimodal learning approaches
that fuse feature in a feed-forward manner.

Unimodal Human-Activity Recognition: Human activity recognition has been extensively
studied by analyzing and employing the unimodal sensor data, such as skeleton, wearable sensors,
and visual (RGB or depth) modalities [214]. As generating hand-crafted features is found to be
a difficult task, and these features are often highly domain-specific, many researchers are now
utilizing the deep neural network-based approaches for human activity recognition.

Deep learning-based feature representation architectures, especially convolutional neural net-
works (CNNs) and long-short-term memory (LSTM), have been widely adopted to encode the
spatio-temporal features from visual (i.e., RGB and depth) [16], [31], [93], [215]–[217] and non-
visual (i.e., sEMG and IMUs) sensors data [9], [30], [218]. For example, Li et al. [93] developed
a CNN-based learning method to capture the spatio-temporal co-occurrences of skeletal joints.
To recognizing human activities from video data, Wang et al. proposed a 3D-CNN and LSTM-
based hybrid model to detect compute salient features [219]. Recently, the graphical convolutional
network has been adopted to find spatial-temporal patterns in unimodal data [32].

Although these deep-learning-based HAR methods have shown promising performances in
many cases, these approaches rely significantly on modality-specific feature embeddings. If such
an encoder fails to encode the feature properly because of noisy data (e.g., visual occlusion or
missing or low-quality sensor data), then these activity recognition methods suffer to perform
correctly.

Attention mechanism for Human-Activity Recognition: Attention mechanism has been
adopted in various learning architectures to improve the feature representation as it allows the
feature encoder to focus on specific parts of the representation while extracting the salient features
[18], [19], [27], [37], [220]–[223]. Recently, several multi-head self-attention based methods have
been proposed, which permit to disentangle the feature embedding into multiple features (multi-
head) and to fuse the salient features to produce a robust feature embedding [94].

Many researchers have started adopting the attention mechanism in human activity recogni-



181

tion [36], [37]. For example, Xiang et al. proposed a multimodal video classification network,
where they utilized an attention-based spatio-temporal feature encoder to infer modality-specific
feature representation [37]. The authors explored the different types of multimodal feature fusion
approaches (feature concatenation, LSTM fusion, attention fusion, and probabilistic fusion), and
found that the concatenated features showed the best performance among the other fusion meth-
ods. To date, most of the HAR approaches have utilized attention-based methods for encoding the
unimodal features. However, the attention mechanism has not been used for extracting and fusing
salient features from multiple modalities.

9.3 Comprehending Human Interactions

Spatial Relation Grounding Datasets: Several synthetic datasets of various images of objects are
generated for spatial relations grounding tasks using game engines, such as Unity [20]–[22], [172],
[173]. For example, Goyal et al. [21] uses Blender to generate synthetic dataset, Rel3D, for spatial
relationship recognition. However, in this dataset, the visual scene only contains two objects which
simplifies the task. Lee et al. [20] addresses issues of Rel3D by generating multiple objects in the
scene. Unlike these synthetic datasets, other datasets use real-world images [69], [150], [151].
For example, SpatialSense [51] uses real-world images for spatial relationship detection. In these
datasets, verbal referring expressions are generated using either template-based methods [22], [68],
[164] or human annotators [51], [68], [69], [150], [180]. For example, the ReferIt3D dataset [68]
uses a compositional template (< target >< spatial − relation >< reference >) to generate
verbal utterances. However, one of the limitations of these datasets is the absence of the nonverbal
cues (pointing gestures and gaze).

Datasets Generator: Existing synthetic data generation tools [20]–[23] work adequately for
generating referring expressions in non-embodied settings. For example, the GRiD-3D dataset [20]
uses Blender [224] to generate referring expressions for relation grounding, object identification,
and visual question answering. However, these tools were not designed to generate nonverbal
gestures in embodied settings. Moreover, it is non-trivial to extend the existing simulators [20]–
[23] and procedurally generate non-verbal gestures. In our previous work [155], we found that a
template-based approach produces pointing gestures that deviate from realistic gesture.

Embodied Spatial Relation Grounding Datasets: A few datasets have been developed for
embodied referring expression comprehension [24], [64], [147]–[149]. For example, the YouRefIt
[24] dataset was developed in a real-world setting, which has several advantages over synthetic
data. However, this dataset is limited in sample size and lack detailed annotations, which only con-
tains 4,195 unique visual scenes. Moreover, the nonverbal interactions in the existing datasets have
been captured only from the exocentric view, which may limit the model’s ability to learn multiple
perspectives. Although prior works have shown the importance of contrastive data samples to train
models [21], the existing datasets of embodied referring expressions do not include contrastive
data samples. Furthermore, the existing datasets do not include ambiguous expressions, which
can be used to develop conversational embodied agents to ensure seamless human-AI interactions.
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Additionally, the existing datasets do not explicitly consider generating samples with the occluded
objects from a particular view, which can help diagnose the model’s robustness to ground embod-
ied spatial relations. A comparison of various referring expression datasets has been presented in
Table 4.1.

Visual Question Answering Datasets: Many datasets have been developed to study visual
question answering tasks [20], [22], [23], [72], [174]–[181], [183]–[187], [225]–[235]. These
datasets primarily involve answering verbal questions using the visual scene as a context. For
example, Antol et al. [176] developed a VQA dataset and introduced QA tasks involving an im-
age and verbal questions about the image. This dataset contains both real-world images from
the MS-COCO dataset [236], and the synthetic virtual scene contains clipart. Ren et al. [174]
generated synthetic QA pairs using an algorithm that converts image description into QA form.
The primary drawback of these datasets is that questions are formed using only verbal expression,
whereas humans naturally use verbal and nonverbal gestures to questions in real-world settings.
This limits these datasets from being used in embodied settings to comprehend questions with
verbal and nonverbal gestures. Additionally, these datasets are curated from a single visual and
verbal perspective, whereas humans use multiple perspectives interchangeably (e.g., speakers and
observers). This single perspective dependency can create perspective biases in the dataset and
limit the model to robustly comprehend questions and context.

Embodied Question Answering Datasets: In the literature, embodied question answering
(EQA) tasks are designed as agents (e.g., virtual robots) navigate an environment to answer a
verbal question [70], [75]–[78]. For example, Das et al. [70] developed a synthetic EQA dataset
in a virtual House3D environment, where a robot navigates the environment and gathers visual
information from an egocentric view to answer a verbal question. Yu et al. [75] extend this
dataset and incorporate questions with multiple visual targets, such as finding multiple objects
by navigating the environment. The primary limitation of these datasets is that questions include
verbal expression, whereas in real-world embodied settings, humans use verbal and nonverbal
gestures to question.

Although these works define embodied interaction as a virtual agent interacting with the envi-
ronment, in another research thrust, embodied interaction refers to humans interacting with mul-
timodal expressions. Recently, a few datasets have been developed with multimodal expressions
[24], [64]. For example, Chen et al. developed a dataset, YouRefIt, with multimodal expressions
for referring expression tasks. However, YouRefIt dataset contains data samples from a single
visual and verbal perspective. Most importantly, as comprehending EQA tasks differs from refer-
ring expression tasks and requires complex reasoning of question and multimodal context, these
datasets are less suitable for understanding QA-related tasks.

Visual-Language Model for VQA: Several visual-language representation learning models
have been developed for VQA tasks [26], [27], [91], [92]. For example, Liunian et al. [26] devel-
oped VisualBERT to learn multimodal representation from a visual scene and a verbal expression
to answer a question using the visual scene as a context. Kim et al. [91] designed Vision-and-
Language Transformer model (ViLT) with monolithic processing of visual input to learn visual-
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language representations without regional supervision of object detection. Although these models
work adequately for VQA tasks, these models were designed to learn from a single visual and
verbal perspective. In our work, EQA tasks involve answering a question with multimodal expres-
sions from multiple visual and verbal perspectives. Thus, the existing models can not effectively
align and learn salient representations from multiple visual and verbal perspectives to answer EQA
tasks.
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Chapter 10
CONCLUSION

My dissertation has two primary goals: perceiving human behavior and comprehending embodied
interactions. We have developed multimodal learning models to extract salient and complemen-
tary multimodal representations from heterogeneous, missing, and noisy multimodal data. We
developed Multi-GAT, a novel graphical attention-based multimodal feature learning approach for
human activity recognition. Moreover, we have developed a cooperative multitask learning-based
guided multimodal fusion approach, MuMu. As most of the existing multimodal models fuse rep-
resentation in a feedforward way that limits the model to learn salient multimodal representations,
we have developed MAVEN, a recurrent multimodal fusion approach to learning complementary
multimodal representations. Our extensive experimental evaluations on three state-of-the-art mul-
timodal human activity datasets suggest that our proposed models can help to improve human
activity recognition performance.

To facilitate the research on comprehending embodied interactions, we have introduced a novel
embodied simulator, CAESAR, to generate referring expressions with verbal utterances and non-
verbal cues. Our simulator captures nonverbal interactions from multiple views and generates
verbal expressions from multiple perspectives (actor and observer). Using CAESAR, we have de-
veloped two large-scale datasets of embodied referring expressions. Our experimental results sug-
gest that nonverbal cues improve model performance and that existing models cannot effectively
learn multiple perspective-taking to ground embodied spatial relations accurately. We believe that
our simulator will help generate situated interactional datasets and training models for diverse tasks
in embodied settings. Moreover, We developed a perspective-aware multitask learning model, PA-
TRON, for comprehending referring expressions in embodied settings. We also curated a dataset of
embodied referring expressions, CAESAR-PRO, to develop and evaluate learning models. Our ex-
tensive experimental results suggest that our perspective-aware guided fusion approach can extract
salient multimodal representations for relation and object grounding.

We have extended our simulator to develop embodied question-answering datasets to facilitate
developing and diagnosing multimodal models for comprehending question-answering interaction
in embodied settings. To develop models for comprehending embodied interactions, we designed
8 novel EQA tasks requiring comprehension of questions with multimodal expressions (verbal and
nonverbal gestures). To train and diagnose models for these EQA tasks, we developed a novel
large-scale dataset, EQA-MX, which contains questions with multimodal expressions from mul-
tiple verbal and visual perspectives. Moreover, we developed a vector quantization-based multi-
modal representation learning model, VQ-Fusion, to learn salient multimodal representation from
multiple visual and verbal perspectives. Our extensive experimental analyses suggest that VQ-
Fusion can effectively fuse continuous multiview visual and discrete verbal representation, which
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helps to improve the visual-language model’s performance for all EQA tasks up to 13%.
While synthetic datasets have been instrumental in our previous works, they can not fully cap-

ture the nuances of real-world human-embodied interactions. To bridge this gap, we have curated
a diverse and comprehensive dataset with multimodal embodied interactions in real-world settings.
We have also introduced a novel model, Reinforced Guided Residual Representation (ReRep). The
ReRep model is designed for a more flexible fusion of visual and language representations, pre-
serving more information from both modalities and improving performance on tasks requiring a
nuanced balance between visual and language information. This approach enhances the compre-
hension of embodied interactions, paving the way for more robust and effective AI systems capable
of understanding and interacting with the world in a more natural and effective manner.

10.1 Summary of Contributions

Development of Multimodal Representation Learning Models: We have developed several
multimodal representation learning models to robustly perceive human behavior. These models
address the challenge of fusing heterogeneous multimodal data, as demonstrated in our IROS-
2020 paper [7]. These models can extract complementary multimodal representations, as shown
in our IEEE RAL-2021 [10] and AAAI-2022 [11] papers. Furthermore, these models recurrently
fuse multimodal representations to produce robust task representation, as detailed in our IEEE
Transaction Multimedia-2022 paper [81].

Cooperative Multitask-Based Multimodal Representation Learning: We have proposed
a cooperative multitask-based multimodal representation learning approach to robustly perceive
human actions. This approach, presented in our AAAI-2023 paper [11], allows the model to
learn salient and complementary multimodal representations, thereby improving the performance
of multiple tasks.

Development of a Simulator and Datasets for Embodied Interactions: We have developed
a simulator (NeurIPS-2022 [25]) and datasets (NeurIPS-2022 [25] and AAAI-2023 [71]) to com-
prehend embodied interactions using multimodal cues, such as verbal utterances and nonverbal
gestures. These tools provide a platform for training and evaluating models for comprehending
human embodied interactions.

Benchmark Models for Embodied Interactions: We have proposed benchmark models (NeurIPS-
2022 [25]) for embodied interactions. These models serve as a standard for evaluating the perfor-
mance of other models in comprehending embodied interactions.

Perspective-Aware Multimodal Multitask Representation Learning Model: We have de-
veloped a perspective-aware multimodal multitask representation learning model (AAAI-2023
[71]). This model is designed to comprehend embodied interactions from multiple perspectives,
thereby addressing the challenge of perspective bias in existing models.

Embodied Question-Answering Model and Datasets: We have developed an embodied
question-answering model and datasets to ensure seamless interactions in embodied settings. This
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model addresses the challenge of fusing continuous visual and discrete language representations
by discretizing the visual representations using a vector-quantization approach.

Development of a Real-World Embodied Interaction Dataset: In contrast to previous datasets
that contain synthetic data in simulated settings, we have developed a real-world embodied inter-
action dataset. This dataset captures embodied interactions in various indoor and outdoor settings,
offering a rich resource for training and evaluating models for comprehending embodied interac-
tions in real-world settings. The diversity of this dataset, in terms of environmental attributes and
nonverbal signals, allows for a more comprehensive understanding of embodied interactions in
real-world settings.

Reinforced Guided Residual-Based Multimodal Representation Model: Finally, we have
proposed a novel reinforced guided residual-based multimodal representation model to compre-
hend embodied referring expressions. This model allows for a more flexible fusion of visual and
language representations, thereby preserving more information from both modalities and improv-
ing the performance on tasks that require a more nuanced balance between visual and language
information.

10.2 Lesson Learned

I have distilled the key insights and learnings I gathered throughout my Ph.D. journey. Each lesson
presents a crucial aspect of the researcher’s journey, potentially serving as a roadmap for others
who embark on this path in the future.

10.2.1 Applying Transfer Learning from Simulated to Real-World Environments

Transfer learning is a critical technique in machine learning that allows for knowledge acquired
from one domain, usually a richly resourced one, to be applied to another, potentially less-resourced
domain. I leveraged this approach to train a model on synthetic data from the PATRON dataset
[71] and subsequently applied it to real-world datasets, namely REMO and YouRefIt. However,
the transition from simulated to real-world environments highlighted some significant challenges
and resulted in performance degradation.

The core issue stemmed from the considerable difference in object textures and properties
of the simulated environment compared to the real-world setting. The synthetic data lacked the
complexity and the variability intrinsic to real-world data, such as nuanced human gestures or
differing lighting conditions. This discrepancy meant the model was inadequately equipped to
handle real-world data, leading to a dip in performance when applied to the REMO and YouRefIt
datasets.

A critical distinction between the simulated and real-world settings was human behavior. For
instance, in a real-world setting, people sometimes opt to physically interact with an object, such
as touching it, instead of using indicative gestures, such as pointing. This contrast in behavior was
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not well-represented in the synthetic dataset, and thus, the model was ill-prepared to interpret such
scenarios.

The experience of applying transfer learning from simulated to real-world environments un-
derscored the importance of considering the generalizability of a model during the design phase. It
highlighted that synthetic data, while valuable for initial training, might not capture the full breadth
of variability present in real-world scenarios. Therefore, for future work, there is a need to incorpo-
rate a more diverse range of scenarios, behaviors, and environmental factors in synthetic datasets
to enhance their realism. Alternatively, refining our transfer learning techniques to better adapt
models from synthetic to real-world data could be another promising direction. This experience
illustrates the continuous process of learning and adaptation required in machine learning and will
inform the approach to similar challenges in the future.

10.2.2 Developing Robust Models Using Multi-Domain Datasets

Constructing a robust model capable of performing across different environments is a cornerstone
of advanced machine learning research. I discovered that harnessing datasets collected across
diverse settings, such as laboratory environments, indoor and outdoor scenarios, aids in the creation
of more robust models. A broader dataset can better represent the variability and complexity found
in real-world situations, improving a model’s capacity to generalize.

While incorporating more diverse data enhances a model’s robustness, my experimental anal-
yses also indicated that performance could degrade when training a model using multiple domain
data. This degradation arises from the inherent differences between domains, such as varying
scales, lighting conditions, object textures, and human behaviors. When combined into a single
model, these disparate characteristics can introduce noise and confusion, hindering learning.

The principal lesson learned from this experience was the nuanced balance required in lever-
aging multi-domain datasets for model training. While diverse data undoubtedly improves model
robustness by ensuring the representation of a wide range of scenarios, care must be taken when
integrating data from different domains.

In the future, advanced strategies might need to be employed to effectively incorporate multi-
domain data, such as domain adaptation techniques or specialized architectures that can handle
the diverse characteristics inherent in such data. This could involve creating separate components
or layers in the model for each domain or employing techniques like normalization or feature
extraction to reduce the differences between domains.

This experience has broadened my understanding of the complex dynamics of training robust
models. The challenge of successfully integrating multi-domain data is a rich area for future re-
search and exploration, reminding us that the path to creating robust models is both a scientific and
an artful pursuit.
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10.2.3 The Complex Dynamics of Multitask Learning

Multitask learning can enhance the robustness and generalizability of a model by training it on
multiple tasks simultaneously. A model with multiple tasks can gain a more holistic and diverse
representation of the data, improving its performance on individual tasks.

During the experimental analysis, I found a potential competition for representation in the
shared learning space when multiple tasks are trained concurrently. Essentially, different tasks may
require different representations, and when trained together, they could interfere with each other,
leading to performance degradation. This is particularly noticeable when the tasks are unrelated or
have divergent objectives, as the model can struggle to find a shared representation that effectively
addresses all tasks.

We can follow two potential solutions based on my experiences to counteract these challenges.
Firstly, we should consider the compatibility of tasks before deciding to train them together. Tasks
that share similar objectives or data representations are likely to benefit more from multitask learn-
ing. Secondly, devising an effective training approach that minimizes the potential negative impact
of multitask learning is crucial. This could involve strategies such as alternating between different
tasks during training or assigning different weights to the tasks based on their compatibility or
importance.

10.2.4 Multimodal Learning and Mitigating Negative Knowledge Transfer

Using multiple modalities in representation learning offers a more comprehensive understanding
of complex data, bolstering the robustness of learned representations. Different modalities, such as
RGB images, depth information, and infrared (IR) data, can provide complementary perspectives
that enrich a model’s understanding of the task.

However, during my research, I encountered an intriguing paradox. While training on multi-
ple modalities often bolstered representation learning, in certain instances, it introduced negative
representation learning. This phenomenon essentially refers to instances where incorporating cer-
tain modalities into the learning process hampers, rather than enhances, the performance of down-
stream tasks. An example of this issue came when I attempted to train a model on RGB, depth, and
IR images concurrently. Instead of enhancing the model’s performance on tasks such as human
activity recognition and embodied question answering this multimodal approach degraded task
performance. Although, we have addressed this issue in our prior works [11], [81], more thorough
studies will be required to learn generalized representations from a diverse set of modalities.

These experiences highlighted the importance of developing a more nuanced approach to mul-
timodal learning. Specifically, designing a training approach that can identify the most salient
modalities for a given task and focus on extracting robust representations from those modalities is
paramount. This lesson underscores the importance of thoughtful modality selection and a strategic
approach to training when working with multi-modal data. Future work might focus on devising
strategies or mechanisms to identify and counteract negative knowledge transfer during training.
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10.3 Future Work

This dissertation opens up several avenues for future research. Some potential future directions are
outlined below:

10.3.1 Developing Multimodal Foundation Models For Robustly Perceiving Human Behav-
ior and Interactions

Our multimodal learning models have shown promising results in perceiving human behavior and
comprehending embodied interactions. Future work could focus on extending these models to
understand human verbal and nonverbal interactions in both virtual and real-world settings. This
could involve incorporating additional modalities or refining the fusion mechanisms to better cap-
ture the nuances of human interactions. Moreover, pretraining on large-scale multimodal data can
help models learn generalizable representations that can be fine-tuned for robustly perceiving hu-
man behavior and interactions. Future work could focus on designing new pretraining tasks that
can better capture the complexities of multimodal interactions.

Most of our current models rely on labeled data for training. However, labeled data is of-
ten expensive and time-consuming to collect. Future work could explore unsupervised or semi-
supervised learning methods that can learn from unlabeled data. This could involve techniques
such as self-supervised learning, contrastive learning, or generative modeling. Developing a mul-
timodal foundation model using these techniques and unlabeled data will be an exciting future
avenue of research for perceiving human behavior and interactions.

10.3.2 Continually Learn New Modalities and Domains

AI systems may need to learn and incorporate new modalities as they become available contin-
ually. Future work could explore extending our models to incorporate new modalities over time
without disrupting the representations learned from existing modalities. This could involve modu-
lar architectures, dynamic routing, or multimodal meta-learning techniques for robust perception.

Our models are also trained and evaluated on specific datasets and domains. However, AI
systems often need to adapt to new domains or tasks in the real world. Future work could ex-
plore domain adaptation or transfer learning methods that can adapt our models to new settings to
effectively perceive dynamically changing human behavior and diverse interaction patterns.

10.3.3 Deploying in Real-World Settings

As virtual settings become increasingly prevalent, improving human interactions in these envi-
ronments is a crucial challenge. Our models could be adapted to better understand and respond
to human behaviors in virtual environments, thereby enhancing user experience and engagement.
Moreover, Our multimodal learning models could be extended to understand instructions from
people with disabilities, ensuring improved usability of assistance systems. This could involve
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developing models that can interpret a wider range of modalities, including non-standard forms of
communication used by individuals with specific disabilities.

Additionally, our proposed learning framework could be utilized to improve the user experi-
ence of AI assistants, such as Amazon Alexa, Microsoft Cortana, Google Home, and Apple Siri.
Integrating our models into these systems could enable more effective multimodal interactions.
Our models could be applied to various domains, such as online shopping and education. For ex-
ample, multimodal human instruction and product content understanding could be used to enhance
user interaction and product recommendations in online shopping platforms. Similarly, online ed-
ucational platforms could use content understanding approaches to gauge student engagement and
provide personalized learning recommendations.

Finally, we believe that our proposed multimodal human interaction simulator can help advance
the Human-AI Interaction field. Future work could focus on using this simulator to develop and
evaluate learning models for Human-AI Interaction systems, thereby contributing to advancing this
important research field.
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Appendix A

In real-world embodied data collection, we conduct surveys in two stages: demographic and post-
task surveys. In the demographic survey, we intended to gather basic demographic information
from participants. This information includes age, gender, the highest level of education, level of
experience with robots, and dominant hand (Figure A.1). The survey was administered in person,
prior to the participant performing the task.

We conducted a post-task survey to delve deeper into the preferences of participants when
guiding a robot. This questionnaire requested that participants disclose their favored method of
interaction (Figure A.2). They had the potential to choose from exclusively using spoken directives,
solely employing gestures, or utilizing a blend of both verbal instructions and gestures.

This survey aimed to understand better how people would prefer to interact with a robot when
they need to reference an object. The three options offered to the participants represented the
broad categories of communication techniques (Figure A.2). The first one, ’using only verbal in-
structions’, means that participants would give directions to the robot using language only, without
any physical movement or hand signals.

The second option, ’only gestures’, implies that the participants would refer to the object using
physical gestures like pointing without using any words. This could be a more intuitive way for
some people, especially in noisy environments or when a more visual representation is helpful.

The third option was ’a combination of verbal and gestures’. This means the participants
would use words and physical gestures to instruct the robot. This could increase the clarity of the
instructions and ensure a better understanding of the robot. This combination might be preferred
when the tasks are complex or when precision is needed in the instructions.

The participants’ preferences could greatly inform how we design robot interaction in the fu-
ture. If one method is preferred over the others, it could potentially improve robotic systems’
effectiveness and user satisfaction.



216

Figure A.1: Demographic Survey
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Figure A.2: Post Task Survey
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