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Abstract

Compositional data consists of proportions or percentages of compositions,

which are usually positive vectors, with the relevant information being the

ratios between their components (Egozcue and Pawlowsky-Glahn (2006)).

The unique feature of compositional data is that the observed values of com-

positional variables sum to 1 for each subject, and this feature makes the

selection for informative variables challenging when dimensionality is high

since many of the existing variable selection methods cannot accommodate

this data structure. Compositional data appears in a wide range of applica-

tions such as geology, consumer demand analysis, forensic science, etc., and

an effective variable selection method for such data is highly desired. In this

work, we developed a variable selection method for compositional data in a

linear regression model. The developed method is based on the deletion of

the subsets of the variables and the corresponding changes in the coefficient

of determination. The deletion method was computed efficiently. The nu-

merical performance of the developed method is satisfactory in simulation

studies. This variable selection method for compositional data can also be

generalized for more complicated models.
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Chapter 1

Introduction to Compositional

data

According to Greenacre (2019), compositional data are samples of non-negative

multivariate data that have been expressed relative to a fixed total, usually

as propositions or compositions summing to 1 or percentages summing to

100%. In Egozcue and Pawlowsky-Glahn (2006), compositions are defined as

positive vectors with relevant information in the ratios between their com-

ponents. The idea behind it is as follows (Aitchison and Shen (1980)).

Let Rp denote p-dimensional real space and Sp−1 its positive simplex such

that it is represented as

Sp−1 = {(x1, ..., xp) : xi > 0, i = 1, ..., p,

p∑
i=1

xi = 1}.
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The symbol x and y are reserved for vectors in Sp−1 and Rp, respectively.

Any vector or point x in Sp−1 is termed a composition and any collection of

such vectors, compositional data.

The simplex plays a vital role as a sample space in many practical situ-

ations where compositional data analysis results, in the form of proportions

of some whole, require interpretation. Statistical analysis of such data has

proved difficult because of a lack of both concepts of independence and rich

enough parametric classes of distributions in the simplex (Aitchison (1982)).

Hence, Aitchison (1982) came up with a variety of interrelated independence

hypotheses and new classes of transformed-normal distributions in the sim-

plex that are provided where the independence hypotheses can be tested

through the standard theory of parametric hypothesis testing. These new

concepts and statistical methodology are illustrated by a number of applica-

tions such as geology and consumer demand analysis.

Geological literature has many problems interpreting rock and sediment

specimens’ chemical, mineral, and fossil compositions. Each composition of

each specimen is a set of 3 to 20 proportions that sum to unity and thus can

be represented by a point in an appropriately dimensional simplex. Hence,

compositional data is used to find classes of parametric models for describing

the experienced pattern of variability, investigating the adequacy of such

models, and testing several independence hypotheses for the pertinent sets

of proportions.

An essential aspect of the study of consumer demand is the analysis of
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household budget surveys. Attention is focused on several expenditures on

mutually exclusive and exhaustive commodity groups and their relations to

total expenditure, income, household compositions, etc. Hence, composi-

tional data is used to determine the role of the composition of expenditures

and the proportion of total expenditure allocated to such commodity groups

in a form of a budget-share approach to the analysis.

There are a lot of practical problems where the simplex Sp−1 forms the

whole, or even a significant part, of the sample space. For such problems,

concepts of independence play a key role (Aitchison (1982)). However, the

simplex has proved too awkward to handle statistically due to the difficul-

ties appearing in the scarcity of both meaningful definitions of independence

and measures of dependence and in the absence of satisfactory parametric

classes of distributions on Sp−1 (Aitchison (1982)). Also, due to the unit-

sum constraint, the p components of a composition cannot vary freely (Lin

et al., 2014). Hence, traditional methodology often requires the omission of

specific components to ensure identifiability and, thus, results in intrinsic dif-

ficulties in proving meaningful interpretations for the regression parameters.

Since the seminal work of Aitchison (1982), methodological developments for

compositional data analysis have given rise to groundbreaking and effective

research to deal with such problems in linear regression, principal components

analysis, and missing data.

Beginning with Aitchison and Bacon-Shone (1984), much research was de-

voted to finding a useful transformation for compositional data in the context
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of principal component analysis (PCA). The centred logratio (clr) transfor-

mation turned out to be a preferable option (Aitchison and Greenacre (2002))

which is defined as

clr(x) = [ln(
x1
g(x)

), ln(
x2
g(x)

), ..., ln(
xp
g(x)

)] = ln(
x

g(x)
)

with x = (x1, x2, ..., xp) such that x ∈ Sp and g(x) =
√∏p

i=1 xi is the geo-

metric mean of the compositions of x. It is based on dividing each sample

by the geometric mean of its values and taking the logarithm. The princi-

pal components (PCs) are then aimed at summarizing the multivariate data

structure and subsequently can be used for dimension reduction. The goal

of keeping the most important data information with only a few PCs can

fail for data containing outliers because these can spoil the estimation of the

PCs (Maronna et al. (2019)). This artifact arises for classical PCA, where

the estimation of the PCs is based on the classical sample covariance ma-

trix. As a solution, robust PCA uses a robust estimation of the covariance

matrix, and the PCs will still point in directions of the main variability of

the majority of data (Filzmoser (1999)). However, this procedure does not

work with clr transformed data due to robust covariance estimators usually

needing a full rank data matrix. Hence, Filzmoser et al. (2009) solved this

problem by taking the isometric logratio transformation (ilr) instead, where
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the ilr transformation is defined as

ilr(x) = V tclr(x) (1.1)

with clr(x) being the centred log ratio transformation of x and V ∈ Sp−1 is

a matrix whose columns form an orthonormal basis of the clr-plane. How-

ever, the ilr transformation has the disadvantage that the resulting new vari-

ables are no longer directly interpretable in terms of the originally entered

variables. Hence, Filzmoser et al. (2009) proposed a technique on how a

robust PCA’s resulting scores and loadings on ilr transformed data can be

back-transformed and interpreted. Their procedure is demonstrated using

a real data set from regional geochemistry and compared to results from

non-transformed and non-robust versions of PCA. Their procedure using

ilr-transformed data and robust PCA yielded superior results to all other

approaches. Hence, the examples show that due to the compositional nature

of geochemical data, PCA should not be carried out without an appropriate

transformation.

Multivariate statistics methods, including regression analysis, have been

adopted to model compositional data, but the existing research is still scat-

tered and fragmented (Wang et al. (2013)). Hence, Wang et al. (2013) con-

tributed to the linear regression modeling for compositional data, which pro-

vided an innovative way for parameter estimation, model evaluation, and

interpretation. From the modeling viewpoint, operators of compositional
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data vectors, such as perturbation operation, power transformation, and in-

ner product, are proposed in Aitchison geometry. Also, Wang et al. (2013)

established a regression model in orthonormal coordinates after transforming

the compositional data into real vectors by the ilr transformation. It turned

out that these two modeling methods are entirely equivalent in essence and

highly efficient, as evidenced by the results from Wang et al. (2013). Hence,

their inner product definition for compositional data is reasonable.

When working with actual data, using values lower than the maximum

limit will not introduce much distortion in the data structure (Real et al. (2011)).

However, if the data must be transformed into logarithms before the analysis,

the effects on the data structure can be significant. If the imputed values

are between 0 and 1, the smaller the value, the larger the negative value

from transformation. The smallest possible value, zero, is useless due to its

undefined logarithm. As mentioned, data adding to a fixed constant like one,

like proportions, are known as compositional data. The methods designed

for their analysis are based on logarithms of ratios among the variables (Real

et al. (2011)). Hence, compositional data are susceptible to the problem of

missing values, and imputing these values is a delicate procedure. Applying

standard statistical methods like correlation analysis, imputation methods, or

principal component analysis directly to compositional data would give mis-

leading results. Hron et al. (2010) introduced a new imputation algorithm

for missing values in compositional data by proposing an iterative model-

based imputation technique. The method is based on iterative regressions,
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accounting for multivariate data information. The regressions must be per-

formed in a transformed space, and classical or robust regression techniques

can be employed depending on the data quality. Their proposed method is

tested on real and simulated data sets; the results show that it outperforms

standard imputation methods. In the presence of outliers, the model-based

method with robust regression is preferred.

1.1 Review of variable selection in linear re-

gression

Assume that we have p predictor variables X1, X2, ..., Xp. Then, a multiple

linear regression model takes the form

Y = β0 + β1X1 + β2X2 + . . .+ βpXp + ε (1.2)

where Y is the response variable, Xj is the jth predictor variable, βj is the

average effect on Y of a one unit increase in Xj, holding all other predictors

fixed, and ε is the error term. The values for β0, β1, β2, ..., βp are estimated

using the least squares method, which minimizes the sum of squared residuals

(RSS)

RSS =
n∑
i=1

(yi − (β0 + ...+ βpxip))
2
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where yi is the observed response value for the ith observation. For such a

model, we are interested in performing variable selection to choose the per-

tinent subset of X that has an effect on Y . Some variable selection methods

that are used in multiple linear regression include but are not limited to

forward, backward, stepwise, and penalized (Lasso, etc.) selection.

1.1.1 Forward selection

In this method, we build a regression model from a set of predictor variables

by entering predictors until there is no statistically valid reason to enter

anymore. The steps for this procedure are as follows.

1. Let M0 denote the null model, which has no predictor variables.

2. For k = 0, 2, ..., p− 1:

• Fit all p − k models that increase the predictors in Mk with one

additional predictor variable.

• Choose the best among these p−k models and call itMk+1. Define

the "best" model as that with the highest R2 or lowest RSS.

3. Select a single best model from among M0,M1, ...,Mp using the lowest

cross-validation prediction error, lowest Cp, lowest BIC, lowest AIC, or

highest adjusted R2
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1.1.2 Backward selection

In this method, we build a regression model from a set of predictor variables

by removing predictors until there is no statistically valid reason to remove

any more. The steps for this procedure are as follows.

1. Let Mp denote the full model, which has all p predictor variables

2. For k = p, p− 1, ..., 1:

• Fit all k models that contain all but one of the predictors in Mk,

for a total of k − 1 predictor variables.

• Choose the best among these k models and call it Mk−1. Define

the "best" model as that with the highest R2 or lowest RSS

3. Select a single best model from among M0,M1, ...,Mp using the lowest

cross-validation prediction error, lowest Cp, lowest BIC, lowest AIC, or

highest adjusted R2

1.2 Stepwise selection

We can use this procedure to build a regression model from a set of predictor

variables by entering and removing predictors stepwise into the model until

there is no statistically valid reason to enter or remove any more. It combines

both forward and backward selection to choose the "best" model by the end.

The steps for this procedure are as follows.
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1. Fit an intercept-only model

2. Add predictors to the model sequentially, just like in forward selection.

However, after adding each predictor, we removed any predictors that

no longer improved the model, just like in backward selection.

3. Repeat Steps 1-2 until a single best model is reached by way of the

lowest cross-validation prediction error, lowest Cp, lowest BIC, lowest

AIC, or highest adjusted R2

One benefit of this procedure is that it is more computationally efficient

than best subset selection below. Given p predictor variables, the best subset

selection must fit 2p models, while stepwise selection only has to fit 1+ p(p+1)
2

models. For instance, for p = 10 predictor variables, best subset selection

must fit 1024 models, while stepwise selection only fits 56. Furthermore, one

drawback to the stepwise procedure is that it is not guaranteed to find the

best possible model out of all 1 + p(p+1)
2

potential models. For instance, let

there be a dataset with p = 4 predictors. The best possible one-predictor

model may contain x1, and the best possible two-predictor model may instead

contain x1 and x3. Hence, stepwise selection will fail to select the best possible

two-predictor model because M1 will contain x1, so M2 must also contain x1

along with some other variable.
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1.3 Penalized regression

In general, the optimization problem in penalized linear regression is given

by

β̂pen = argmin
β

(‖y −Xβ‖2 + λφ(β))

= argmin
β

((yi − β0 −
p∑
j=1

xijβj)
2 + λφ(β1, ..., βp))

where the parameter λ ≥ 0 is a tuning parameter that controls the shrinkage

amount, the intercept β0 is generally not shrunken, and the function φ is the

penalty function on β.

1.3.1 Lasso

When φ(β) = ‖β‖1 =
∑p

j=1 |βj|, then the penalized regression becomes the

least absolute shrinkage and selection operator (lasso). The optimization

problem in lasso is given by

β̂Lasso = argmin
β

(‖y −Xβ‖22 + λ‖β‖1)

= argmin
β

((yi − β0 −
p∑
j=1

xijβj)
2 subject to

p∑
j=1

|βj| ≤ t.

Like before, the parameter λ ≥ 0 is the tuning parameter that controls the

amount of shrinkage, and the intercept β0 is not shrunken. If t is sufficiently

small, then some of the coefficients will be exactly zero whereas if t is larger
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than t0 =
∑p

j=1 |β̂j|, then β̂Lasso are the OLS estimates β̂j. Note that β̂Lasso

cannot be given in closed form, but efficient algorithms, such as coordinate

descent, are used to compute the entire path of solutions as λ is varied. The

coordinate descent algorithm is described in details in the next paragraph.

For any fixed λ, given the current value β̃(t) in the tth iteration. For

t=0,1,..., the algorithm for determining β̂ is

1. Calculate

z̃j = n−1
n∑
i=1

xijri + β̃
(s)
j

where ri = yi − ỹi is the current residual

2. Update β̃(s+1)
j using β̃j = S(z̃j;λ) such that

S(z;λ) =


z − λ, z > λ

0, |z| < λ

z + λ, z < −λ

3. Update ri → ri − (β
(s+1)
j − β(s)

j )xij for all i

One benefit that the lasso has lies in the bias-variance tradeoff. Recall

that the MSE (mean-squared error) is used to measure the accuracy of a

given model and is calculated as MSE=Variance+Bias2+irreducible error.

With lasso, we want to introduce a slight bias so that the variance can be
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substantially decreased, leading to a lower MSE overall. Furthermore, one

drawback to this method is that it tends to omit covariates with small coeffi-

cients (Bühlmann et al. (2011)). This problem arises because lasso minimizes

prediction error subject to the constraint that the model is not too complex,

and lasso measures complexity by the sum of the absolute values of the co-

efficients. Covariates with small coefficients tend to be entrapped by the

constraint. Small coefficients of covariates that belong in the model look like

small coefficients of variables that do not. That bias is not solely a function

of the coefficient’s size.

1.3.2 Other Penalized Regression methods

Remember that one can use other penalized regression methods to achieve

the desired result. Some of these methods include but are not limited to,

the adaptive lasso, smoothly clipped absolute deviation (SCAD), and min-

imax concave penalty (MCP). For adaptive lasso, the penalty function is

φ(β) =
∑p

j=1wj|βj| such that wj = |β̃j|−1. For this method, note that

smaller weights lead to larger β̂ whereas wj = ∞ leads to β̂j = 0. Further-

more, when λφ(β) =
∑p

j=1 P (βj|λ, γ) such that

P (x|λ, γ) =


λ|x|, |x| ≤ λ

2γλ|x|−x2−λ2
2(γ−1) , λ < |x| < γλ

λ2(γ+1)
2

, |x| ≥ γλ,
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it is the smoothly clipped absolute deviations (SCAD) method. For such a

method, note that SCAD first coincides with the lasso until |x| = λ, then

smoothly transitions to a quadratic function until |x| = γλ, after which it

remains constant for all |x| > γλ. Lastly, the minimax concave penalty

(MCP) specifies the penalty function λφ(β) =
∑p

j=1 P (βj|λ, γ) such that

P (x|λ, γ) =


λ|x| − x2

2γ
, |x| ≤ γλ

1
2
γλ2, |x| ≥ γλ.

For such a method, just like the SCAD, it starts by applying the same rate of

penalization as the lasso, then smoothly relaxes the rate down to zero as the

absolute coefficient value increases. Compared to SCAD, MCP relaxes the

penalization rate automatically, while with SCAD, the rate remains constant

for a while before decreasing.

1.4 Review of variable selection in compositional

data

Variable selection is one particular area for high dimensional compositional

data to alleviate the collinearity. Recent works, such as Hron et al. (2013), Lin

et al. (2014) and Susin et al. (2020), proposed methods to perform variable

selection for compositional data.

Most statistical methods are designed for the usual Euclidean geometry,



15

and hence, compositional data first needs to be transformed from the sim-

plex to the real space. Hron et al. (2013) considered the so-called log-ratio

transformation for such a purpose. The centred logratio (clr) transforma-

tion is an isometric mapping between Sp and a hyperplane of Rp. Due to

its construction, the clr variables lead to collinear data due to
∑p

i=1 yi = 0.

This had consequences if the statistical methods required data with full rank,

which was required for computing an inverse covariance matrix. Despite this

dilemma, clr variables are still frequently used due to their intuitive inter-

pretation and relation to a particular choice of the ilr transformation.

The ilr transformation represents an isometric mapping from Sp to Rp−1,

and has an additional advantageous feature in that it represents compositions

in coordinates of an orthonormal basis on the simplex. On the contrary, the

clr transformation results in coordinates with respect to a generating sys-

tem (note that the dimension of the simplex equals p − 1). Consequently,

the resulting ilr data matrix has full rank, and possible numerical problems

may be avoided. There are many possible ways to construct the ilr coordi-

nates. A pertinent choice was to use sequential binary partition (Egozcue

and Pawlowsky-Glahn (2005)), wherein each of the p − 1 steps of the pro-

cedure the compositional parts are divided into two nonoverlapping groups;

the resulting p − 1 ilr variables represent balances between these groups.

An alternative interpretation of ilr coordinates is based on a decomposition

of their covariance structure (Fišerová et al. (2011)): each balance explains

log-ratios between compositional parts in both groups that come from the
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corresponding step of a sequential binary partition.

Consequently, the resulting balances uniquely represent all log ratios in

the composition. Furthermore, properly choosing the balances makes it pos-

sible to proceed from the full composition to a subcomposition, which is a

subset of a composition. Thus, a stepwise procedure was derived to obtain

such a subcomposition, where the effect of the change of the information that

had the resulting subcomposition is rather negligible. More details on how

this procedure was constructed will be explained in the following paragraphs.

Consider a composition x = (x1, ..., xp)
′ and yi =

√
p−1
p
z
(i)
1 , i = 1, ..., p

such that z(l)i =
√

p−i
p−i+1

ln(
x
(l)
i

p−i
√∏p

j=i+1 x
(l)
j

), i = 1, ..., p−1, l = 1, ..., p. Without

loss of generality, let

var(y1) ≥ ... ≥ var(yp)

which is equivalent to

p∑
k=1

var(ln(
x1
xk

)) ≥
p∑

k=1

var(ln(
x2
xk

)) ≥ ... ≥
p∑

k=1

var(ln(
xp
xk

)).

Since yp has the smallest variance, its contribution to the compositional data

set’s overall variance, totvar(x), is defined as

totvar(x) =
1

2p

p∑
i=1

p∑
j=1

var(ln(
xi
xj

)),

is minimal. This is equivalent to the statement that the log-ratios’ aggre-
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gated variances with the part xp have the smallest contribution to the overall

variance. Consequently, the part xp does not determine the multivariate data

structure, and it can be omitted from the composition. Hence, we have the

subcomposition x1 = (x1, ..., xp−1)
′ . In the next step, we perform a clr trans-

formation on x1, calculating the variances of the clr transformed variables

and omitting the part corresponding to the clr variable with the smallest

variance. Then, we continue until a certain number of parts is obtained, and

we stop at the latest after p− 2 steps.

Practitioners are often interested in reducing the number of compositional

variables for statistical analysis because this simplifies the analysis and the

interpretation of results (Hron et al. (2013)). An intuitive selection of vari-

ables based on expert knowledge of subject matter specialists may lead to

significant changes in the multivariate statistical analysis results. For exam-

ple, experts may be interested in analyzing specific geochemical processes

and selecting elements for the statistical analysis that are somehow related

to these processes. In this selection, they may miss variables responsible for

substantial information to the multivariate information, and their omission

changes the statement about the resulting subcomposition. Note that this se-

lection is against the general definition of compositional data as multivariate

observations where the only relevant information is contained in the ratios

between the parts (Egozcue and Pawlowsky-Glahn (2006)).

Regarding compositional data, there are intrinsic difficulties in providing

sensible interpretations for the regression parameters. To solve such diffi-
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culties, Aitchison and Bacon-Shone (1984) considered applying the log-ratio

transformation (Aitchison (1982)) to compositional covariates, resulting in

the linear log-contrast model.

y = Zpβ∗−p + ε, (1.3)

where Zp = {log(
xij
xip

)} is the n x (p−1) log-ratio matrix whose pth component

is the reference component, β∗−p = (β∗1 , ..., β
∗
p−1) is the corresponding (p− 1)-

vector of regression coefficients, and ε is a n-vector of independent noise

distributed as N(0, σ2). By having a new coefficient β∗p = −
∑p−1

j=1 β
∗
j , model

(1.3) can be expressed as

y = Zβ∗ + ε, subject to
p∑
j=1

β∗j = 0 (1.4)

where Z = (z1, ..., zp) = (log(xij)) is the n x p design matrix and

β∗ = (β∗1 , ..., β
∗
p)
T is the p-vector of regression coefficients.

Applying the l1 regularization approach to model (1.4), the constrained

convex optimization problem

β̂ = argmin
β

(
1

2n
‖y − Zβ‖22 + λ ‖β‖1), subject to

p∑
j=1

βj = 0, (1.5)

is considered where β = (β1, ..., βp)
T , λ > 0 is a tuning parameter, and ‖.‖2

and ‖.‖1 denote the l2 and l1 norms, respectively. The zero-sum constraint

in problem (1.5) is critical for the resulting estimator to have the following
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desirable properties (Lin et al. (2014)).

1. Scale invariance: the estimator does not change under the transfor-

mation X 7→ TX for an arbitrary diagonal matrix T = diag(t1, ..., tn)

with all ti > 0.

2. Permutation invariance: the estimator is invariant under any permu-

tation π of the p components, meaning that it does not change if π is

applied to both the columns of X and the components of β̂.

3. Selection invariance: the estimator does not change if one knew ahead

of time which components would be estimated as 0 and applied the

procedure to the subcomposition formed by the components that re-

main.

Upon eliminating the constraint (
∑p

j=1 βj = 0) by using βp = −
∑p−1

j=1 βj,

problem (1.5) is rewritten as the unconstrained problem

β̂−p = argmin
β

(
1

2n
‖y − Zpβ−p‖2 + λ ‖Dβ−p‖1),

where β−p = (β1, ..., βp−1)
T and D = (Ip−1,−1p)

T ∈ Rpx(p−1), with Ir, 1r

denotes the rxr identity matrix and the r-vector of ones, respectively (Lin

et al. (2014)). However, Lin et al. (2014) found out that existing results did

not specialize in their case to give an appropriate algorithm or theory for

several reasons. First, getting rid of one arbitrary component and using a

generic algorithm to the (p− 1)-dimensional problem generally did not yield
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numerical solutions that followed the permutation invariance property. Next,

a version of the coordinate descent algorithm that is fast and applicable to a

prespecified set of λ values was not yet available. Lastly, the generalized lasso

problem theory did not provide useful insights into the compositional con-

straint and its effect on variable selection. The previous three limitations call

for developing computational methods. One such method is the coordinate

descent algorithm. These algorithms are known to be very efficient for solv-

ing large-scale l1 regularization problems (Friedman et al. (2007)). However,

they do not apply to problem (1.5) because the nondifferentiable l1 terms are

inseparable under the zero-sum constraint. Hence, Lin et al. (2014) proposed

an efficient, easily implemented algorithm based on an iterative modification

of coordinate descent that involves combining it with the method of multi-

pliers or the augmented Lagrangian method (Bertsekas (2014)). Under their

algorithm, the tuning parameter λ can be selected by the generalized infor-

mation criterion (GIC) for high-dimensional penalized likelihood proposed

by Fan and Tang (2013).

As mentioned before, Susin et al. (2020) focused on three methods for

variable selection that acknowledged the compositional structure of micro-

biome data: selbal, clr-lasso, and coda-lasso. The method of selbal is a

forward selection approach for the identification of compositional balances.

Let X = (X1, ..., Xp) be the microbial composition of p taxa. Among these,

we consider two disjoint subgroups of taxa, groups A and B, with pA and

pB taxa indexed by IA ⊂ {1, ..., p} and IB ⊂ {1, ..., p}, respectively, that do
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not share taxa (IA ∩ IB = ∅). The abundance balance between A and B,

denoted by B(A,B), is defined as the log ratio between the geometric mean

abundances of the two groups of taxa:

B(A,B) = C ∗ log(
(
∏

i∈IA Xi)
1/pA

(
∏

j∈IB Xj)1/pB
),

where C is a normalization constant such that C =
√

pApB
pA+pB

. Selbal seeks

for the two groups of taxa A and B whose relative abundances or balance

B(A,B) is most associated with the outcome of interest Y according to the

following generalized linear model:

g(E(Y )) = β0 + β1B(A,B) + γ
′
Z,

where β0 is the intercept, β1 is the regression coefficient for the balance

score, Z = (Z1, Z2, ..., Zr) are additional noncompositional covariates, γ is

the vector of regression coefficients for Z and B(A,B) is defined as before.

The optimal balance B(A,B) relies on identifying taxa that belong to either

group A or B. The first step of this algorithm evaluates all possible taxa

pairs to select the pair whose balance is most associated with the response.

A forward selection process is performed where, at each step, a new taxon is

added to the current balance, either in group A or B of the balance to improve

the optimization criterion. The objective criterion is defined as the area under

the receiver operating characteristic (ROC) curve, AUC, or the proportion
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of explained deviance for a binary response and the mean squared error for

a linear response. The algorithm stops when there is no remaining variable

that improves the optimization criterion or when the maximum number of

components in the balance, established with a cross-validation procedure, is

reached.

Finally, clr-lasso and coda-lasso are two penalized regression models for

compositional data analysis. For (yi, x1i, ..., xpi), i = 1, ..., n, where yi is the

response and xi = (x1i, ..., xpi) is the composition of p taxa for sample i,

clr-lasso is defined as

yi = β0 + β1clr(x1i) + ...+ βkclr(xpi) + εi. (1.6)

The regression coefficients β = (β0, ..., βk) are estimated to minimize

n∑
i=1

(yi − β0 − β1clr(x1i)− ...− βkclr(xpi))2

subject to
∑
j≥1

|βj| < t (1.7)

for a given constant t. Coda-lasso is formulated as

yi = β0 + β1log(x1i) + ...+ βklog(xki) + εi,

with constraint
∑

j≥1 βj = 0, where the regression coefficients β = (β0, ..., βk)
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are estimated to minimize

n∑
i=1

(yi − β0 − β1log(x1i)− ...− βklog(xki))
2

+λ
∑
j≥1

|βj| subject to
∑
j≥1

βj = 0.

The minimization process is performed in two iterative steps based on soft

thresholding and projection.

To summarize the results for Hron et al. (2013), Lin et al. (2014) and

Susin et al. (2020), we have the following.

Omitting variables in compositional data analysis may lead to an enor-

mous change in results from multivariate statistical analysis. In particular,

this is the case for principal component analysis and the compositional bi-

plot, where both the interpretation of loadings and scores of the remaining

subcomposition are affected. The subcomposition is easier to handle and

interpret. Hence, Hron et al. (2013) constructed a stepwise procedure that

reduced the original composition to a subcomposition by avoiding a sub-

stantial change of the information, like those carried by the compositional

biplot.

Motivated by research problems in analyzing gut microbiome and metage-

nomic data, Lin et al. (2014) considered variable selection and estimation in

high-dimensional regression with compositional covariates, and proposed an

l1 regularization method for the linear log-contrast model that aligns with

compositional data’s unique features. Moreover, they formulated the pro-
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posed procedure as constrained convex optimization and introduced a coor-

dinate descent method of multipliers for efficient computation.

Though variable selection is one of the most relevant tasks in microbiome

analysis, such as identifying microbial signatures, many studies still rely on

methods that ignore the compositional nature of microbiome data. The

applicability of compositional data analysis methods has been dampened by

the availability of software and the difficulty in interpreting their results.

Hence, Susin et al. (2020) came up with three methods for variable selection

that acknowledge the compositional structure of microbiome data: selbal (a

forward selection approach for the identification of compositional balances),

and clr-lasso, coda-lasso (two penalized regression models for compositional

data analysis).

Before moving into the main idea of this thesis, some advantages and

disadvantages are highlighted here for each of the recently discussed works.

For Hron et al. (2013), their stepwise procedure for excluding compositional

parts allows for arriving at a subcomposition that retains the important in-

formation in the multivariate data structure. Their procedure aims to retain

the total variance from one step to the next, which is stopped before a signif-

icant reduction occurs. In Lin et al. (2014), their model was shown to work

in a plethora of scenarios (different (n,p and Σ combinations) and was illus-

trated to be useful in a microbiome study relating human body mass index

to gut microbiome composition. On the contrary, they adopted their model-

ing approach in their microbiome data analysis because the total amount of
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the microbiome data could not be reliably measured in experiments. If such

measurements were available, it would be worth assuming a more flexible

model where the total amount also plays a part in the response variable.

Lastly, in Susin et al. (2020), clr penalized regression is not subcomposi-

tionally consistent, meaning that different subcompositions will rise to differ-

ent data transformations. Hence, results are not easily transferable from one

study to another. Also, microbial signatures obtained from their approach

can be challenging to implement on an independent dataset as it raises the

question of how the variable from the new dataset should be clr-transformed

and based on which components. It may be the case that the new dataset

may include different components. On the contrary, penalized regression

with coefficients restricted to a sum equal to zero, coda-lasso is an elegant

and appropriate compositional data analysis approach. Computation time is

efficient, and the results can be interpreted as balances between two groups

of taxa with weights. Overall, for all three works, they had to use some trans-

formation on X to get any meaningful result (Hron et al. (2013): clr, Lin

et al. (2014): linear log, Susin et al. (2020): linear log), which motivated us

to develop a transformation-free variable selection method for compositional

data in this thesis.

For this thesis, we are particularly interested in a variable selection for

compositional data in a linear regression setting. Given the compositional

structure, removing any single compositional covariate, including those from

the true underlying model, and performing linear regression on the remain-
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ing covariates will not change the model fitting, including the coefficient of

determination. Hence, to mitigate such a problem, we introduce a deletion

done on pairs of covariates so the coefficient of determination is different from

that of the original model. By implementing such a method, we can break

the association among compositional covariates with the response variable

and obtain more accurate results.

When the informative covariates have the same coefficients in the under-

lying true linear regression model, then the coefficient of determination of the

original model will not differ from that of the model with the deleted pair of

covariates, which skews the results. This is due to the unit-sum constraint

placed on compositional covariates. Hence, we propose a deletion method

on at least two covariates to help make our variable selection more efficient.

For this method, we perform variable selection by focusing on two cases: 1)

choosing a set of variables that show no difference in the coefficient of deter-

mination as compared to that of the original model, and 2) choosing a set of

variables that show a decreased coefficient of determination as compared to

that of the original model. We focused on the 1st case for convenience since

it avoids over-selecting variables. We formulate this method as an algorithm

to see how variable selection is carried out. We finish this thesis by carrying

out simulation studies to show the effectiveness of our proposed algorithm in

some instances and by illustrating the application of the proposed deletion

method to a real data analysis.
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Chapter 2

The proposed deletion method

In this chapter, we present the proposed deletion method to perform variable

selection for compositional data. More specifically, first, we will delve into

the important notation that will be used throughout the thesis. Next, we

will detail how our proposed deletion method is constructed, starting with

deleting two variables, etc. Finally, we develop an algorithm based on our

theorem that will be used for simulation studies to evaluate the numerical

performances of the developed method.

Suppose that we observe a n× 1 vector y of responses and a n× p matrix

X = (X1, X2, ..., Xp) of covariates with each row of X being compositional

and lying in Sp−1, which is defined in chapter 1. Suppose that the model

without any deleted variables is

y = β0 +Xβ + ε, ε ∼ N(0, σ2) (2.1)
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where β = (β1, ..., βp)
′ and ε is the random error term. Furthermore, let

an informative covariate be defined as a covariate with a nonzero coefficient

(βi 6= 0 for i = 1, ..., p). From here, we are interested in performing vari-

able selection to select the informative covariates for compositional data by

seeing how the coefficient of determination behaves when we delete different

variables in compositional data.

As a first step, we wanted to see how the coefficient of determination

changes when we take away one compositional covariate at a time. Let X1

represent the deleted covariate. Then, we have

y = β0 + β1X1 + β2X2 + ...+ βpXp + ε (2.2)

= β0 + β1(1−
p∑
i=2

Xi) + β2X2 + ...+ βpXp + ε

= β0 + β1 − β1
p∑
i=2

Xi + β2X2 + ...+ βpXp + ε

= β0 + β1 + (β2 − β1)X2 + (β3 − β1)X3 + ...+ (βp − β1)Xp + ε. (2.3)

If we let β∗0 = β0 + β1, β
∗
2 = β2 − β1, β∗3 = β3 − β1, ..., β∗p = βp − β1, then we

have that

y = β∗0 + β∗2X2 + β∗3X3 + ...+ β∗pXp + ε (2.4)

Hence, the model fitting of (2.4) does not change from the model fitting

of (2.2). Thus, this leads to the R2 remaining the same. If we were to
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delete X2, X3,..., Xp individually, the same thing would happen. Thus, when

deleting one covariate at a time from the original model, the coefficient of

determination remains the same. Hence, we propose to start with deleting

a pair of covariates instead. More details on this proposed approach will be

explained in the next section.

2.1 Proposed method

Remember that an informative covariate is a covariate that is part of the true

model with a nonzero regression coefficient, while a non-informative covariate

has zero coefficients in the model. Again, when we focus on deleting one

covariate at a time, we see that the coefficient of determination remained the

same, as shown in the previous subsection.

As explained above, we could perform this variable selection by either

(1) choosing a group of covariates that deleting them in pairs results in a

difference in R2 close to 0 or (2) choosing a group of covariates that delet-

ing them in pairs results in a difference in R2 that is far from 0. For this

thesis, we went with the first option since we know both variables in option

(1) are noninformative, and we only know one in option (2) is informative,

but we cannot know which one is. Keep in mind that if the original linear

regression model contains no intercept, we should have a deletion method on

one covariate since we do not have the collinearity problem regardless of the∑p
i=1 xi = 1 constraint. In contrast, if the original data matrix Xn×p contains
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an intercept, we perform the deletion method on at least two covariates given

the reason derived in Equations (2.2)-(2.4).

2.2 Implementation algorithm for Xn×p

Given the covariate matrix Xn×p and the response vector yn×1, the developed

algorithm proceeds as follows.

• Step 0: remove any column in X, and run linear regression of y on the

remaining p− 1 columns of X with intercept. The resulting coefficient

of determination is denoted as R2
O.

• Step 1: Let Ω1 be an empty set.

• Step 2: Let k = 2.

• Step 3: For each subset of k columns of X, Xk
i = (Xi1 , . . . Xik) for

i = 1, 2, . . . , Cp
k , delete X

k
i in X, and denote the resulting covariate

matrix as X∗i . Regress y on X∗ with intercept, and denote the resulting

coefficient of determination as R2
pi
.

• Step 4: Compute the difference dki = R2
pi
−R2

O, for i = 1, 2, . . . , Cp
2 .

• Step 5: Select the non-informative variable set

Ωk = {Xk
i : |dki | ≤ δ for i = 1, 2. . . ., Cp

k}, where δ is a small threshold

value.

• Step 6: If Ωk = Ωk−1, go to Step 8.
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• Step 7: Let k = k + 1 and repeat Steps 2-5 till k = p.

• Step 8: Stop.

The final selected non-informative covariate set is Ωk, and the selected in-

formative set is the complement set Ωc
k. In the algorithm above, we increase

the size of the deleted subsets to accommodate the cases where some nonzero

coefficients have the same value. In the underlying linear model (??). If the

coefficients of the informative variables are all different, the developed al-

gorithm above should stop at k = 3 and Ω2 = Ω3 is the set of selected

non-informative variables. When only two nonzero coefficients are the same,

the algorithm will stop at k = 4 and Ω3 = Ω4 is the set of selected non-

informative variables. The trend continues with more nonzero coefficients

having the same value.

Keep in mind that if we were to introduce another algorithm but focusing

on Xn×p not having an intercept column, then all of the steps would remain

the same, except step 3 would involve deleting one covariate instead since

under solving forXi by the unit-sum constraint,Xi (regular ith compositional

covariate) and X∗i (deleted ith compositional covariate) would not be the

same.

More details on how the optimal δ is chosen are explained in the following

section.
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2.3 Choosing the optimal δ criterion

Two measures of model selection accuracy that we use are FP (number of

false positives) and FN (number of false negatives). In our variable selec-

tion setting, an FP corresponds to a noninformative variable identified as

an informative variable, and an FN corresponds to an informative variable

identified as a noninformative variable. We want to see how these accuracy

measures relate to the tuning parameter δ, which, as shown later, is chosen

by the BICc.

Keep in mind that δ is used by way of |di| ≤ δ to identify the pairs of

noninformative compositional variables, where di denotes the R2-difference

between the models with and without the corresponding subset of composi-

tional variables. This selection tool says that if the associated absolute value

of the R2−difference is less than δ, then the ith deleted subset of variables

is selected as noninformative variables. This signifies that if we have a large

enough δ, we choose mainly the informative variables. More specifically, as

the δ increases, all the noninformative variables will be identified correctly,

which, in turn, causes the FP to decrease. However, if we have a small enough

δ, we choose all the variables as informative variables. More specifically, as

the δ decreases, all variables will be selected as informative variables, which,

in turn, causes the FN to decrease.

The optimal δ is chosen using the corrected Bayesian Information Crite-

rion (BICc) to balance FN and FP. The idea of it is as follows. We first carry
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out the variable selection on all possible δ values as a sequence of quantiles

of the R2 differences from all possible deletions. We do this so that there are

100 different δ values (1st δ corresponds to 1%, 2nd δ corresponds to 2%,

etc.). Then, from there, for each δ value, we implement the above algorithm

(with intercept column) and calculate the BICc for each model considering

the final chosen important variables. The BICc is defined as follows (Mc-

Quarrie (1999)).

BICc = log(σ̂2
p) + log(n)

p

n− p− 2
(2.5)

where n is the sample size, p is the number of coefficients (including intercept)

and σ̂2
p = RSS

n
such that RSS =

∑n
i=1 (yi − ŷi)2 is the residual sum of squares.

We choose the δ value with the lowest BICc value.

Recall that the BIC is defined as

BIC = log(σ̂2
p) + log(n)

p

n
(2.6)

where n, p and σ̂2
p are defined as before. For the BIC, log(σ̂2

p) decreases

much faster than log(n)p/n increases leading to a global minimum at the

saturated model, which in turn leads to a higher probability of overfitting

(McQuarrie (1999)). On the contrary, for the BICc, log(σ̂2
p) decreases much

slower than log(n)p/(n− p− 2) increases, leading to a general balance at the

saturated model which in turn leads to a lower probability of overfitting (Mc-

Quarrie (1999)). Moreover, in small samples, the BIC can overfit more than
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the BICc (McQuarrie (1999)) due to their signal-to-noise ratios. Remember

that a weak signal-to-noise ratio for overfitting indicates a higher probability

of overfitting. Refer to McQuarrie (1999) for more details.

2.4 Proposed method for n < p case

Our developed variable selection procedure for compositional data is pre-

sented above, assuming n > p. For high dimensional compositional data

with n < p or ultra-high dimensional data with n << p, we used the Sure

Independence Screening (SIS) method (Fan and Lv (2008)) to reduce the

data dimensionality first before carrying out our proposed method. The

idea behind this method is the following. We initially center and scale the

columns x1, x2, ..., xp from X such that the mean is 0 and sample standard

deviation is 1 (Fan and Lv (2008)). Let M∗ = {1 ≤ i ≤ p : βi 6= 0} be

the true sparse model with nonsparsity rate s = |M∗| (Fan and Lv (2008)).

The other p − s variables can be correlated with y by linkage to the pre-

dictors in the model. Let ω = (ω1, ω2, ..., ωp)
T be a p-vector obtained by

ω = XTy, where the n × p data matrix X is first standardized by column.

For any given γ ∈ (0, 1), the p componentwise magnitudes of the vector ω

are sorted in decreasing order and we define a submodel Mγ = {1 ≤ i ≤

p : |ωi| is among the first [γn] largest of all}, where [γn] denotes the integer

part of γn.

By the end, we shrink the model {1, 2, ..., p} down to a submodelMγ with
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size d = [γn] < n (Fan and Lv (2008)) where n > d. Its computational cost

is multiplying a p×n matrix with an n-vector plus getting the largest d com-

ponents of a p-vector, which signifies that SIS has computational complexity

O(np). We specify that d is below the sample size n. We let d = k∗n/log(n).

To ensure that all informative variables were initially selected, we consider

k = 1, k = 2, and k = 3.

SIS has the property that all the informative variables survive after vari-

able selection, with probability tending to one, which, in turn, narrows down

the search for informative predictors. Furthermore, SIS can reduce dimen-

sionality from high up to an exponential growth (e.g., exp(O(nξ)) for some

ξ > 0) to a relatively large scale d (e.g., o(n)) that is below sample size. It

can not only speed up variable selection rapidly but also improve the esti-

mation accuracy when the dimensionality is ultra-high. SIS combined with

well-developed lower dimensional techniques such as the SCAD, Lasso, or

adaptive Lasso provides a powerful tool for high dimensional variable selec-

tion (Fan and Lv (2008)). As shown later in this thesis, it proves to be quite

helpful in our simulation studies.
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Chapter 3

Imputed KNN algorithm

3.1 Missing Data

Most statistical methods cannot be directly applied to data sets with missing

observations. Even though the observations with missing information could

be deleted in the univariate case, this can result in a severe loss of informa-

tion in the multivariate case (Hron et al. (2010)). Multivariate observations

usually form the rows of a data matrix, and deleting an entire row implies

that cells carrying available information are lost for the analysis. In both

the univariate and multivariate case, the problem remains that valid infer-

ences can only be made if the missing data are missing completely at random

(MCAR) (Little et al. (2019)). Instead of deleting observations with missing

values, filling in the missing cells with appropriate values is also considered.

For the multivariate case, this is only possible provided additional informa-
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tion is available. Once all missing values have been imputed, the data set

can be analyzed using the standard techniques for complete data.

Many different methods for imputation have been developed over the last

few decades. While univariate methods replace the missing values with the

coordinate-wise mean or median, the more appropriate methods are based on

similarities among the objects and/or variables (Hron et al. (2010)). A typical

distance-based method is k-nearest neighbor (KNN) imputation, where the

information of the nearest k ≥ 1 complete observations is used to estimate

the missing values. Another well-known procedure is the expectation maxi-

mization (EM) algorithm (Dempster et al. (1977)), which uses the relations

between observations and variables to estimate the missing cells in a data

matrix. These methods can deal with both MCAR and missing at random

(MAR) missing values mechanisms (Little et al. (2019)). Furthermore, one

usually assumes that the data originates from a multivariate normal distri-

bution, which is no longer valid when outliers are present in the data. Hence,

the classical methods can give very biased estimates for the missing values,

and it is more advisable to use robust methods, being less influenced by out-

lying observations (Béguin et al. (2008); Serneels et al. (2008)). It turned out

that classical or robust imputation methods worked well for standard multi-

variate data, i.e. for data with a direct representation in the Euclidean space

(Yucel et al. (2010)). Unfortunately, this is not the case with compositional

data. Hence, we need a method that can handle such data.

In the following paragraphs, we revisit and apply the KNN imputation
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method to compositional data, focusing on single and multiple imputation

cases. Section 3.2 focuses on the single imputation case. In contrast, Section

3.3 focuses on the multiple imputation case, as later on, we evaluated the

improvements of the multiple imputation upon the single imputation.

3.2 Single Imputation

We implemented an imputed k nearest neighbors (KNN) algorithm for our

second project on our full dataset. In the past, KNN imputation was proved

to be successful for standard multivariate data (Troyanskaya et al. (2001)).

We adapt the KNN technique on multivariate compositional data with miss-

ing observations. The idea is to find the k most similar observations to a miss-

ing composition by an appropriate distance measure and then replace these

missing compositions with the available variable information of the identified

nearest neighbors. We chose Aitchison’s distance (Aitchison (1986)) as the

distance measure in this scenario. For two compositions x = (x1, ..., xp)
t and

y = (y1, ..., yp)
t, the Aitchison’s distance is defined as

dA(x,y) =

√√√√1

p

p−1∑
i=1

p∑
j=i+1

(ln(
xi
xj

)− ln(
yi
yj

))2. (3.1)

Replacing the Euclidean distance with the Aitchison distance is crucial be-

cause the simplex space has a different geometrical structure than the classi-

cal Euclidean space. Principles on this geometry were introduced in Aitchi-
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son (1986), and the resulting so-called Aitchison geometry holds the vector

space as well as Hilbert space properties (Egozcue and Pawlowsky-Glahn (2006)).

This allows the construction of a basis on the simplex, and consequently,

standard statistical methods designed for the Euclidean space can be ap-

plied. One such basis that came to mind was the isometric logratio (ilr)

transformation (Egozcue, Pawlowsky-Glahn et al. (2003)). The ilr transfor-

mation results in a p−1 dimensional real space, offering good theoretical and

practical properties (Egozcue and Pawlowsky-Glahn (2005)). One important

property is the isometry, meaning the Aitchison distance of two compositions

x and y is the same as the ordinary Euclidean distance dE for their ilr images

ilr(x) and ilr(y), i.e.

dA(x,y) = dE(ilr(x,y)). (3.2)

Thus, the ilr transformation allows to represent compositional data in terms

of the standard Euclidean geometry, and therefore standard statistical meth-

ods can be applied.

For our KNN algorithm, the imputation can be done sequentially (one

observation after the other) within a composition with several missing obser-

vations by searching the k-nearest neighbors among observations where all

information corresponding to the non-missing observations and that in the

variable to be imputed is available. We use this approach instead of imput-

ing simultaneously for all observations because, in general, the k observations
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can change during sequential imputation as compared with simultaneous im-

putation, as this approach uses the information of the same k observations.

Furthermore, more neighbors will be considered for imputation, and request-

ing more information per observation will lead to more reliable imputation

results. Our KNN algorithm is explained in more detail in the following

paragraph.

Let us consider a composition xi = (xi1, ..., xip)
t, i = 1, ..., n, with n being

the number of observations and p be the total number of variables in xi.

Then, More specifically, our KNN imputation algorithm goes as follows.

1. Let O = Cc ∪ Rc such that Cc = {1, ..., p}\C and Rc = {1, ..., n}\R

where C ⊂ {1, ..., p} and R ⊂ {1, ..., n} denote the column and row,

respectively, indices of the missing cells for xi

2. For any i ∈ R and j ∈ C, consider among all the remaining composi-

tions those which have non-missing parts at positions i, j and O, and

compute the k-nearest neighbors xi1 , ..., xik to the composition xi using

the Aitchison distance.

3. The jth cell of all k-nearest neighbors is of interest for imputation.

Hence, the imputed value replacing the missing cell xij is x∗ij = median(xi1j, ..., xikj).

4. To make sure the unit-sum constraint is satisfied, we set

x∗∗ij = (1−
∑

o∈O xio)
x∗ij∑

i∈R,j∈C x
∗
ij
where x∗∗ij represents our final imputed

value.
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As mentioned above, for step 1, we use the distance measure of the Aitchison

distance instead of the Euclidean distance because the simplex sample space

has a different geometrical structure than the classical Euclidean space. Fur-

thermore, again, note that the Aitchison distance of two compositions is the

same as the ordinary Euclidean distance for their ilr images. Next, in step

3, we used the median instead of the mean of the k-nearest neighbors as the

median mitigates the effect of outliers compared with the mean. Moreover,

we do not have enough information to justify that our data comes from a

symmetric distribution. With the imputed values for missing data using this

algorithm, we then proceed with our proposed deletion method.

3.3 Multiple Imputation

Unfortunately, there are problems with using single imputation. Using this

method often results in an underestimation of the variability because each un-

observed value carries the same weight in the analysis as the known, observed

values Jakobsen et al. (2017). Furthermore, the validity of this method does

not depend on whether data are MCAR but instead on specific assumptions

that the missing values, for example, are identical to the last observed value

Jakobsen et al. (2017). These assumptions are often unrealistic, and hence,

single imputation is often a potentially biased method and should be used

with great caution. Hence, we aim to improve the results by using multiple

imputation to our algorithm from before.
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The idea of the multiple imputation algorithm is as follows. Assume the

same setup as before. Then:

1. For l=1,2,..,N

(a) sample the non-missing parts of X by row and call it Xl where Xl

is the lth sampled non missing version of X.

(b) For Xl, run the single imputation as before where we are imputing

a missing cell xij(l) instead.

(c) We impute the missing cell xij by the median (i.e. x∗ij(l) = median(xi1j(l), ..., xikj(l))).

2. By the end, we impute xij by the mean (i.e. x∗∗ij = mean(x∗ij(1), ..., x
∗
ij(N))).

3. Set x∗∗∗ij = (1 −
∑

o∈O xio)
x∗∗ij∑

i∈R,j∈C x
∗∗
ij

to make sure the unit-sum con-

straint is satisfied where x∗∗∗ij represents our final imputed value.

For step 1 (a), we sampled only the non-missing parts of X while keeping

the positions of the missing parts of X the same, as we wanted to make sure

that the positions of the missing parts remained the same for each imputation

so the single imputation algorithm can stay consistent for each imputation.

In step (2), we took the mean of the medians of the k-nearest neighbors for

all missing observations in terms of all imputations, as we wanted to make

sure that our final imputed value depended on a range of values instead of

on the values of its closest non-missing observations.

Multiple imputation is a feasible, credible, and powerful approach to han-

dling missing data that helps reduce bias in several scenarios (Enders (2017)).
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Multiple imputation attempts to minimize the impact of nonresponse bias on

the analysis by using available information about individuals to adjust the

parameter estimates (Woods et al. (2021)). Using multiple imputation thus

approximates what results would look like with complete observations while

allowing for representation of uncertainty in the results and maximizing the

dataset’s statistical power (Cheema (2014); Dong et al. (2013))
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Chapter 4

Simulation Studies

We conducted simulation studies on our developed deletion method to eval-

uate its numerical performance on variable selection and compare it with

other methods for compositional data under various settings. The methods

that we focused on were Lin et al. (2014) and Susin et al. (2020).

We generated the covariate variables in the following way. We first gener-

ated a n×p data matrixW = (wij) by generating n random observations from

a multivariate normal distribution Np(0,Σ), and then obtained the covari-

ate matrix X = (xij) by the transformation xij = exp(wij)/
∑p

k=1 exp(wik)

where 0 is the p × 1 zero vector, and Σ = (ρ|i−j|) with ρ = 0.2, 0.5 or

0.9. We generated the responses according to model (??) where β0 = 3 and

β∗ = (1,−0.8, 0.6, 0, 0,−1.5,−0.5, 1.2, 0, ..., 0)T . Additionally, for the im-

puted data, we set k = 30, the percentage of missing rows to (5%, 10%, 15%, 20%),

and the number of missing covariates per observation to (4, 5, 6, 7).
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We set (n, p) = (50, 30), (100, 200) and (100, 1000), and repeated 100 sim-

ulations for each setting. When n < p, we proceeded with the SIS method

using d = j ∗(n/log(n)) as described in section 3.3 where j = 1, 2 or 3, before

implementing the developed method. The tuning parameter δ in the devel-

oped method was selected by the corrected Bayesian Information Criterion

(BICc) as described in section 3.2. We used two performance measures for

our comparisons: the total number of false negatives (FN) and false positives

(FP), where positives and negatives refer to nonzero and zero coefficients, re-

spectively. The random errors were generated from the normal distribution

N(0, σ2) where σ2 was specified to control the varied signal noise ratio (SNR)

(Johnson (2006)), which is defined as

SNR =
V ar(Xβ)

σ2
.

where σ2 is the variance of ε. The means and standard errors of these per-

formance measures for this model are in Tables (4.1)-(4.4).

Table 4.1: means and standard errors (in parentheses) of FP/FN for the
developed deletion, Lin et al. (2014) and Susin et al. (2020) methods based
on 100 full datasets for (n, p) = (50, 30) where the mean and SE of the SNR
are, respectively, 15.41 and 0.67

method technique FP FN
delet. NA 1.32 (0.29) 0.44 (0.09)
Lin NA 3.80 (0.29) 0.00 (0.00)
Susin selbal 2.37 (0.36) 1.71 (0.16)
Susin clr-lasso 6.37 (0.50) 0.85 (0.14)
Susin coda-lasso 8.19 (0.60) 0.73 (0.14)
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Table 4.2: means and standard errors (in parentheses) of FP/FN for the
developed deletion method based on 100 full datasets for (n, p) = (100, 200),
d = (21, 42, 63) where the mean and SE of the SNR are, respectively, 18.32
and 0.84

d FP FN
FP
(SIS)

FN
(SIS)

21 0.78 (0.12) 0.85 (0.08) 15.85 (0.08) 0.85 (0.08)
42 1.20 (0.15) 0.48 (0.06) 36.47 (0.06) 0.47 (0.06)
63 1.10 (0.20) 0.40 (0.06) 57.36 (0.06) 0.36 (0.06)

Table 4.3: means and standard errors (in parentheses) of FP/FN for the
developed deletion and Lin et al. (2014) methods based on 100 full datasets
for (n, p) = (100, (200, 1000)), d = 63, ρ = (0.2, 0.5, 0.9) where the mean and
SE of the SNR are, respectively, 18, and between 0.70 and 1.33

method n p ρ FP FN
FP
(SIS)

FN
(SIS)

delet. 100 200 0.2 1.39 (0.19) 0.54 (0.07) 57.48 (0.06) 0.48 (0.06)
Lin 100 200 0.2 3.17 (0.20) 0.00 (0.00) NA (NA) NA (NA)

delet. 100 200 0.5 1.47 (0.19) 1.23 (0.11) 57.94 (0.08) 0.94 (0.08)
Lin 100 200 0.5 5.88 (0.26) 0.00 (0.00) NA (NA) NA (NA)

delet. 100 200 0.9 1.38 (0.19) 2.04 (0.15) 58.28 (0.10) 1.28 (0.10)
Lin 100 200 0.9 17.20 (0.53) 0.00 (0.00) NA (NA) NA (NA)

delet. 100 1000 0.2 3.25 (0.40) 1.53 (0.10) 58.38 (0.09) 1.38 (0.09)
Lin 100 1000 0.2 1.52 (0.19) 0.00 (0.00) NA (NA) NA (NA)

delet. 100 1000 0.5 4.51 (0.47) 2.64 (0.10) 59.06 (0.08) 2.06 (0.08)
Lin 100 1000 0.5 7.40 (0.45) 0.00 (0.00) NA (NA) NA (NA)

delet. 100 1000 0.9 4.10 (0.39) 2.97 (0.16) 59.06 (0.13) 2.06 (0.13)
Lin 100 1000 0.9 3.26 (0.43) 4.60 (0.14) NA (NA) NA (NA)
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Table 4.4: means and standard errors (in parentheses) of FP/FN for my
deletion and Lin et al. (2014) methods based on 100 imputed datasets for
(n, p) = (100, 200), d = 63 where the SNR ranges between 18.20 and 18.32

method RM% CM FP FN
FP
(SIS)

FN
(SIS)

delet. 5 4 1.05 (0.19) 0.39 (0.06) 57.35 (0.06) 0.35 (0.06)
delet. 5 5 1.08 (0.19) 0.40 (0.06) 57.36 (0.06) 0.36 (0.06)
delet. 5 6 1.22 (0.23) 0.39 (0.06) 57.35 (0.06) 0.35 (0.06)
delet. 5 7 1.15 (0.21) 0.40 (0.07) 57.36 (0.06) 0.36 (0.06)
delet. 10 4 1.13 (0.18) 0.39 (0.06) 57.35 (0.06) 0.35 (0.06)
delet. 10 5 1.29 (0.21) 0.40 (0.06) 57.37 (0.06) 0.37 (0.06)
delet. 10 6 1.26 (0.19) 0.41 (0.06) 57.36 (0.06) 0.36 (0.06)
delet. 10 7 1.14 (0.21) 0.40 (0.06) 57.36 (0.06) 0.36 (0.06)
delet. 15 4 1.02 (0.17) 0.39 (0.06) 57.36 (0.06) 0.36 (0.06)
delet. 15 5 1.26 (0.23) 0.40 (0.06) 57.35 (0.06) 0.35 (0.06)
delet. 15 6 1.04 (0.18) 0.37 (0.06) 57.34 (0.06) 0.34 (0.06)
delet. 15 7 1.11 (0.20) 0.45 (0.07) 57.39 (0.06) 0.39 (0.06)
delet. 20 4 1.35 (0.21) 0.38 (0.07) 57.35 (0.06) 0.35 (0.06)
delet. 20 5 1.20 (0.19) 0.39 (0.06) 57.36 (0.06) 0.36 (0.06)
delet. 20 6 1.06 (0.17) 0.37 (0.06) 57.34 (0.06) 0.34 (0.06)
delet. 20 7 1.07 (0.16) 0.37 (0.06) 57.33 (0.06) 0.33 (0.06)
Lin 5 4 2.78 (0.23) 0.00 (0.00) NA (NA) NA (NA)
Lin 5 5 2.80 (0.24) 0.00 (0.00) NA (NA) NA (NA)
Lin 5 6 2.67 (0.22) 0.00 (0.00) NA (NA) NA (NA)
Lin 5 7 2.72 (0.23) 0.00 (0.00) NA (NA) NA (NA)
Lin 10 4 2.69 (0.21) 0.00 (0.00) NA (NA) NA (NA)
Lin 10 5 2.76 (0.24) 0.00 (0.00) NA (NA) NA (NA)
Lin 10 6 2.82 (0.23) 0.00 (0.00) NA (NA) NA (NA)
Lin 10 7 2.75 (0.22) 0.00 (0.00) NA (NA) NA (NA)
Lin 15 4 2.49 (0.22) 0.00 (0.00) NA (NA) NA (NA)
Lin 15 5 2.59 (0.24) 0.00 (0.00) NA (NA) NA (NA)
Lin 15 6 2.70 (0.22) 0.00 (0.00) NA (NA) NA (NA)
Lin 15 7 2.80 (0.22) 0.00 (0.00) NA (NA) NA (NA)
Lin 20 4 2.74 (0.21) 0.00 (0.00) NA (NA) NA (NA)
Lin 20 5 2.79 (0.23) 0.00 (0.00) NA (NA) NA (NA)
Lin 20 6 2.71 (0.22) 0.00 (0.00) NA (NA) NA (NA)
Lin 20 7 2.58 (0.22) 0.00 (0.00) NA (NA) NA (NA)

RM% = % of rows missing
CM= # of columns missing
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4.1 Lin et al. (2014) vs. Susin et al. (2020) vs.

deletion method

First, we compared our proposed deletion method with both Lin et al. (2014)

and Susin et al. (2020) methods under the (n, p) = (50, 30) setting. The re-

sults for this comparison are summarized in Table (4.1). For this comparison,

we set σ2 = 6.4× 10−4, leading to the mean and standard error of the SNR

to be 15.41 and 0.67, respectively. Our proposed deletion and Lin’s methods

performed much better than Susin’s method as our deletion method’s and

Lin’s FN are much smaller than their FN. Hence, we decided not to present

further simulation results with Susin’s method to save space. Compared with

the method of Lin et al. (2014), our method had a lower FP. However, since

we cared more about the FN due to the presence of important variables,

Lin’s method performed better than our proposed deletion method due to

the FN for Lin’s method being 0 and our FN being close to 0.45. Hence, we

performed more simulations on Lin’s method to get a bigger idea of how well

or worse Lin’s method performs against our deletion method.

4.2 Comparing our deletion method when vary-

ing d from SIS

Next, we focused on our deletion method using the full dataset by varying the

parameter d in SIS to see how the FN changes and later choosing the optimal



49

d under the (n, p) = (100, 200) setting. The results for this comparison are

in Table (4.2). For this comparison, we set σ2 = 4.4× 10−5, resulting in the

SNR’s mean and standard error being 18.32 and 0.84, respectively. Note that

since the FN after performing both SIS and our deletion method is similar

to the FN after performing SIS, the final FN is mainly caused by SIS, not by

our developed deletion method. Initially, we focused on d = 21. However,

seeing that the FN was close to 1, we gradually increased to d = 42 and

d = 63. The case of d = 63 proved to be good enough as the FN was close to

0. By the end, we noticed that the FN was lower as the d increased, meaning

that our deletion method performed better. Since d = 63 had the best FN

out of all d values we tried, we later chose d = 63 for further simulation

comparisons under the n < p case.

4.3 Lin et al. (2014) vs. deletion methods

when varying ρ

For our third comparison, we varied the value of ρ in Σ to see when our

deletion method performed better than Lin’s method using the complete

dataset for both the (n, p) = (100, 200) and (100, 1000) cases. The results for

this comparison are in Table (4.3). For (n, p) = (100, 200), we set σ2 to be

1.24×10−5, 1.06×10−5 and 3.07×10−5 representing ρ being 0.2, 0.5 and 0.9,

respectively. For (n, p) = (100, 1000), we set σ2 to be 5.01×10−7, 4.38×10−7

and 1.25× 10−7 corresponding to ρ being 0.2, 0.5 and 0.9, respectively. For
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both cases, these σ2 values lead to the mean and standard error of the SNR

to be 18 and [0.70,1.33], respectively. For the (n, p) = (100, 200) case, as the

ρ increased, our method’s FP remained between 1.40 and 1.50 while Lin’s FP

got progressively worse, whereas our FN got worse while Lin’s FN remained

at 0. Hence, our deletion method performed better than Lin’s regarding the

FP. Furthermore, for the (n, p) = (100, 1000) case, as the ρ increased, our

method’s and Lin’s FN increased to the point where our method’s FN was

lower than Lin’s FN, indicating our deletion method performed better than

Lin’s method in this setting. Overall, Lin’s method performed worse for both

cases when ρ got near 1. Moreover, as the ρ increased, our deletion method

performed better than Lin’s.

4.4 Full vs. imputed datasets for deletion method

We compared our full and imputed datasets against each other using our

deletion method. Looking at Tables (4.2) and (4.4) under d = 63, we see

that the FN for the imputed dataset regardless of what setting is used is

slightly lower than that for the full dataset. Hence, our imputed dataset

performed better than our full dataset under our deletion method.
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4.5 Lin et al. (2014) vs. deletion methods for

imputed dataset

Lastly, we compared our deletion method against Lin’s using the imputed

dataset and d = 63 for the (n, p) = (100, 200) setting. The results for this

comparison are in Table (4.4). We set σ2 = 4.4× 10−5, resulting in the mean

and standard error of the SNR to be [18.20,18.32] and 0.84, respectively.

Looking at the first half of Table (4.4), our deletion method performed ex-

ceptionally well since it ended with an FN close to 0 regardless of the set-

ting. Even though Lin’s method performed better than our deletion method

in terms of the FN, our deletion method had an FN, again, close to 0 and

performed better than Lin’s method for the FP.

Looking at all comparisons, overall, our deletion method performed better

than Susin’s method, whereas, under specific settings, our deletion method

performed better than Lin’s method. Note that the FN for Lin’s method

always was 0 unless we go to an extreme setting as demonstrated in Table

(4.3). However, our deletion method, in general, performed better on FP

than Lin’s method.

4.6 Single vs. Multiple KNN Imputation

To refine our deletion method when applied to data with missing observa-

tions, we also show how well our deletion method performed with both single
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and multiple KNN imputations to see if, by the end, multiple imputation

improved the results further. We used the same setting as before, where

(n, p) = (50, 30), (100, 200). Also, we used 1, 3, 5, and 7 imputations where

1 corresponds to single imputation and 3, 5, and 7 correspond to multiple

imputations. We focused on 15% rows and four missing observations for each

subject for our data and other missing settings yield similar results, and thus

were omitted. Moreover, for (n, p) = (100, 200), we used d = 63 since this d

value performed the best according to Table (4.2). For our comparisons, we

used the same performance measures as before. Table (4.5) summarizes the

means and standard errors of these models’ performance measures.

Table 4.5: means and standard errors (in parentheses) of FP/FN for single
vs. multiple kNN imputation (15% rows and 4 columns missing data) for our
deletion method where the SNR ranges between 15.13 and 15.21
Imp = #of imputations

n p d Imp FP FN FP (SIS) FN (SIS)
50 30 NA 1 3.61 (0.69) 0.31 (0.08) NA NA
50 30 NA 3 3.35 (0.61) 0.28 (0.07) NA NA
50 30 NA 5 3.56 (0.58) 0.40 (0.08) NA NA
50 30 NA 7 3.21 (0.61) 0.32 (0.08) NA NA
100 200 63 1 2.84 (0.46) 0.37 (0.06) 57.35 (0.06) 0.35 (0.06)
100 200 63 3 2.54 (0.39) 0.40 (0.06) 57.36 (0.06) 0.36 (0.06)
100 200 63 5 2.15 (0.35) 0.38 (0.06) 57.35 (0.06) 0.35 (0.06)
100 200 63 7 2.24 (0.33) 0.37 (0.06) 57.34 (0.06) 0.34 (0.06)

Looking at Table (4.5), for (n, p) = (50, 30) and (100, 200), as the num-

ber of imputations increased, the FP and FN remained roughly constant.

However, for both cases, by the end, the FP substantially decreased when

comparing one and seven imputations. Hence, for the FP, multiple impu-
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tation helped a little bit. However, for the FN, it did not, and thus, the

developed procedure is relatively robust against the number of imputations.

If we were to increase the number of imputations beyond seven imputations,

these results could further be improved. However, due to computational cost,

we could not increase the number of imputations further.
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Chapter 5

Data Analysis

Exclusive breast-feeding is the preferred method of feeding during the first

6 months of age to support optimal growth and development and to protect

against gastrointestinal disease, diarrhea, and respiratory tract infection. It

is the reference model against which all alternative feeding methods are mea-

sured with regard to growth, health, development, and all other short-term

and long-term outcomes (Gartner et al. (2005)). In recent years, extensive

research has been geared towards the lipid component of breast milk, which

provides not only calories and macronutrition but also key micronutrients

for infant growth and cognitive development. Nayak et al. (2017) considered

the lipid composition of breast milk’s impact on early infant growth and cog-

nitive development particularly from low-income populations in the Indian

subcontinent.

A single breast milk specimen was collected within six weeks postpar-
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tum from two low-income maternal cohorts of exclusively breastfed infants

from Dhaka, Bangladesh (n =683) and Kolkata, India (n =372), and as-

sayed for percentage composition of 26 FAs (fatty acids). Individual FAs

were expressed as percentage wt/(wt of total identified FA); the FA pro-

file of each specimen contained 26 individual FAs. Other variables consid-

ered for this study included maternal age, maternal anthropometry (mater-

nal height/weight), maternal BMI, maternal education, expenditure, infant

birth order, days of lactation, total number of pregnancies, and infant age

at breast milk collection. For our project, we considered maternal height,

maternal education, expenditure, and infant birth order since those variables

significantly affected the response variable as in Nayak et al. (2017). The

response variables for this project were the waz, haz, and whz, which stand

for the weight for age, height for age, and weight for height, respectively, as-

sessed using the Multicentre Growth Reference Study (MGRS) application.

Lastly, we focused on the following periods: 24 weeks, 52 weeks, and 104

weeks.

Using the previously mentioned information, we compared our proposed

deletion, Lin’s and Susin’s methods, by seeing which final FAs out of the 26

FAs affected the waz, haz, and whz using the model of waz, haz or whz vs. the

26 FAs, maternal height, maternal education, expenditure, and infant birth

order within the previously mentioned periods where Table (5.1) has each of

the 26 FAs’ notation. Note that the extra variables are kept regardless of

which final FAs were selected. We focused on choosing the optimal δ through
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the AIC, BIC, and BICc for our deletion method. Furthermore, we wanted

to see which method(s) performed the best by comparing their associated

MSEs from the models using the selected variables.

Table 5.1: The 26 fatty acids and their descriptions

FA Description
CAP Capric
LAU Lauric
MYR Myristic
PAL Palmitic
PLA Palmitelaidic
PLE Palmitoleic
STE Stearic
ELA Elaidic
OLE Oleic
LLA Linoelaidic
LA Linoleic
ARA Arachidic
GLA gamma-Linolenic
EIC9 Eicosenoic
ALA alpha-Linolenic
EDA Eicosadienoic
BEH Behenic
DGLA Dihomo-g-linolenic
AA Arachidonic
LIG Lignoceric
EPA Eicosapentaenoic
NER Nervonic
DTA Docosatetraenoic
DPA6 Docosapentaenoic-n6
DPA Docosapentaenoic-n3
DHA Docosahexaenoic
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For our deletion method, we initially conducted an F-test for all the

y/period combinations between the models of y vs. X and y vs. Z−1, X

where Z−1 represents the remaining FAs after a specific one of them is taken

out. For any such y/period combinations with a p-value less than 0.05, we

proceed with the data analysis for the deletion method. Otherwise, for such

y/period combinations with a p-value of at least 0.05, we end with the y

vs. X model and calculate its associated MSE. Table (5.2) summarizes the

results for this initial step. Looking at Table (5.2), for the waz during 52 and

104 weeks and haz during 24, 52, and 104 weeks, since they have p-values

less than 0.05, we proceeded with the data analysis for our deletion method.

For the whz during 24, 52, and 104 weeks, we ended with the y vs. X model

for our deletion method. Hence, by the end, for our deletion method, we see

a relationship between the 26 FAs and the waz and haz.

As mentioned above, we wanted to compare our proposed deletion with

Lin’s and Susin’s methods by seeing what final FAs out of the 26 FAs are

selected for waz, haz, and whz. For our deletion method, we focused on the

waz during 52 and 104 weeks and haz during 24, 52, and 104 weeks since

their associated F-test p-values were less than 0.05. Remember that if any

method ends up with no FAs, we choose the model of y vs. X. For our

deletion method, the boxplots of the R2-differences and optimal δ selected

by the AIC, BIC, BICc are shown in Figure (5.1) a)-e). For the boxplots,

remember that if the optimal δ is within the R2-differences, then at least

one of the FAs will be chosen at the end. If the optimal δ is the maximum
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of all the R2-differences, then all FAs will be treated as noninformative by

the end, whereas if the optimal δ is the minimum of all the R2-differences,

then all FAs will be treated as informative by the end. The results for this

comparison are summarized in Tables (5.3)-(5.11).

For our deletion method, 5 out of 6 cases ended with the BIC/BICc not

choosing any FAs, whereas for the haz during 104 weeks case, the BIC/BICc

only chose the DPA FA. Moreover, the AIC chose at least two FAs for all

the pertinent cases. Looking at Table (5.4), all methods chose the EIC9. All

methods picked the PAL, ELA, OLE, and NER FAs based on Table (5.5).

Proceeding with Table (5.6), all methods chose the ARA and BEH FAs. All

methods picked the ARA and NER FAs when looking at Table (5.7). Fi-

nally, glancing at Table (5.8), all methods picked the GLA, EDA, and DPA

FAs. Hence, for all methods, the Eicosenoic, Palmitic, Elaidic, Oleic, and

Nervonic fatty acids have an effect on the weight for age using the MGRS

application when the maternal height, maternal education, expenditure, and

infant birth order are kept. Meanwhile, for all methods, the Arachidic, Be-

henic, Nervonic, gamma-linolenic, Eicosadienoic, and Docosapentaenoic-n3

fatty acids affect the height for age using MGRS application when the ma-

ternal height, maternal education, expenditure, and infant birth order are

kept.

Looking at Tables (5.4)-(5.8) again, we see that each method had almost

roughly the same MSEs where Susin’s method had the lowest MSEs of them

all. We notice this same trend in Tables (5.3) and (5.9)-(5.11) as well. How-
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ever, remember that it had the lowest MSE because it chose the most FAs

by the end.

As a last step to this data analysis, we wanted to explore other studies

that used this dataset to verify if some of the FAs that were chosen be-

fore had an impact still. One noticeable study is Yakes et al. (2011). This

study examined the cross-sectional relationship between prolonged breast-

feeding and maternal BMI, assessed the adequacy of fat intake among lac-

tating and non-lactating mothers of children 24-48 months of age, and deter-

mined breast milk FA composition. Dietary data were collected during two

non-consecutive 24-hour periods via 12-hour in-home daytime observations

and recall. The National Cancer Institute method for episodically consumed

foods was used to estimate usual intake distributions. By the end of the study,

almost all women were estimated to consume less than the recommended in-

take levels for total LA, GLA, AA, DPA, DGLA, DHA, and ALA. Hence,

the Linoleic, gamma-linolenic, Arachidonic, Docosapentaenoic-n3, Dihomo-

g-linolenic, Docosahexaenoic, and alpha-linolenic fatty acids affect this study.

Compared to our data analysis, for all three methods, the Arachidonic,

gamma-linolenic, and Docosapentaenoic-n3 fatty acids were found to have

an effect as well.

Another noticeable study is Szabó et al. (2010). This study compared

the fatty acid composition of human milk at two different stages of lacta-

tion. It investigated the relationship between trans isomeric and long-chain

polyunsaturated fatty acids (LCPUFAs) in human milk at the sixth month
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of lactation. Human milk samples were obtained from 462 mothers who par-

ticipated in a large birth cohort study at the sixth week and sixth month of

lactation. The fatty acid composition of human milk lipids was determined

by high-resolution capillary gas-liquid. It was shown that the percentage con-

tributions to human milk fatty acid composition of PUFAs (LA, AA, ALA,

and DHA) increased significantly. Hence, the Linoleic, Arachidonic, alpha-

linolenic, and docosahexaenoic fatty acids affect this study. Compared to our

data analysis, the Arachidonic fatty acids were also found to affect all three

methods.

We conclude that Arachidonic is one of the most essential fatty acids for a

woman at birth to digest due to it having an effect in all the previous studies,

including ours. This fatty acid is involved in early neurological development

as infants.

y week p-value
waz 24 0.0570
waz 52 0.0234
waz 104 0.0105
haz 24 0.0028
haz 52 0.0013
haz 104 0.0079
whz 24 0.3589
whz 52 0.2173
whz 104 0.1004

Table 5.2: p-values of F-test between models of y vs. Z,X and y vs. X where
y represents the waz,haz or whz, Z represents the 26 FAs and X represents
htcm,medu,bodr,exp
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method
deletion Susin

AIC BIC/BICc Lin selbal clr-lasso coda-lasso
CAP x
LAU
MYR x
PAL
PLA
PLE x x x x
STE x x x x
ELA
OLE x x
LLA
LA
ARA
GLA x x x x
EIC9 x x x x
ALA
EDA x x
BEH x x
DGLA
AA x x
LIG
EPA
NER x
DTA
DPA6
DPA x x
DHA x x
MSE 1.2761 1.2761 1.2418 1.1924 1.1844 1.2367

x = chosen FA
Table 5.3: selected FAs, and MSEs from final linear regression model of either
y vs. X or y vs. Z,X for the waz variable during 24 weeks for the deletion
(AIC,BIC,BICc for optimal δ), Lin’s and Susin’s methods
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method
deletion Susin

AIC BIC/BICc Lin selbal clr-lasso coda-lasso
CAP
LAU
MYR
PAL x x
PLA
PLE x x x
STE
ELA
OLE x
LLA x
LA x
ARA x x x
GLA x x x x
EIC9 x x x x
ALA x
EDA x
BEH x x
DGLA
AA x
LIG x x x x
EPA x x
NER x x x x
DTA x
DPA6
DPA x x x x
DHA x x
MSE 0.4819 0.5263 0.4812 0.4372 0.4768 0.4913

x = chosen FA
Table 5.4: selected FAs, and MSEs from final linear regression model of either
y vs. X or y vs. Z,X for the waz variable during 52 weeks for the deletion
(AIC,BIC,BICc for optimal δ), Lin’s and Susin’s methods
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method
deletion Susin

AIC BIC/BICc Lin selbal clr-lasso coda-lasso
CAP x x
LAU
MYR x x
PAL x x x
PLA
PLE x
STE x
ELA x x x
OLE x x x x
LLA x
LA x x
ARA x
GLA x x x
EIC9 x x x x
ALA x
EDA x x x
BEH
DGLA x x x
AA x x
LIG
EPA x x
NER x x x x
DTA x x x
DPA6
DPA x x x x
DHA x x
MSE 0.9396 1.0415 0.9576 1.0002 0.9467 0.9191

x = chosen FA
Table 5.5: selected FAs, and MSEs from final linear regression model of either
y vs. X or y vs. Z,X for the waz variable during 104 weeks for the deletion
(AIC,BIC,BICc for optimal δ), Lin’s and Susin’s methods
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method
deletion Susin

AIC BIC/BICc Lin selbal clr-lasso coda-lasso
CAP x x
LAU
MYR x x x x
PAL x x x
PLA
PLE x x
STE x x x x
ELA x x
OLE
LLA x x x
LA x x x
ARA x x x x
GLA x x x x
EIC9 x x x
ALA x x
EDA x x x
BEH x x x x
DGLA x x
AA x x x
LIG
EPA x x
NER x x x
DTA x x
DPA6 x x
DPA x x
DHA
MSE 0.8476 0.8490 0.8382 0.8049 0.7505 0.7505

x = chosen FA
Table 5.6: selected FAs, and MSEs from final linear regression model of either
y vs. X or y vs. Z,X for the haz variable during 24 weeks for the deletion
(AIC,BIC,BICc for optimal δ), Lin’s and Susin’s methods
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method
deletion Susin

AIC BIC/BICc Lin selbal clr-lasso coda-lasso
CAP
LAU
MYR x x
PAL
PLA x
PLE x
STE x
ELA
OLE
LLA x x
LA
ARA x x x x x
GLA x x x x
EIC9
ALA x
EDA x x x
BEH
DGLA x
AA x
LIG x x x
EPA x
NER x x x x
DTA
DPA6
DPA x x
DHA x x x x
MSE 0.1586 0.1597 0.1568 0.1590 0.1554 0.1557

x = chosen FA
Table 5.7: selected FAs, and MSEs from final linear regression model of either
y vs. X or y vs. Z,X for the haz variable during 52 weeks for the deletion
(AIC,BIC,BICc for optimal δ), Lin’s and Susin’s methods
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method
deletion Susin

AIC BIC/BICc Lin selbal clr-lasso coda-lasso
CAP
LAU
MYR x x x x
PAL x x
PLA
PLE
STE x
ELA
OLE x
LLA x x
LA
ARA
GLA x x x x x
EIC9 x
ALA
EDA x x x x
BEH x
DGLA x x x
AA x x x
LIG x
EPA x
NER x x x
DTA
DPA6 x
DPA x x x x x x
DHA
MSE 0.8169 0.8312 0.7744 0.7819 0.7728 0.7590

x = chosen FA
Table 5.8: selected FAs, and MSEs from final linear regression model of either
y vs. X or y vs. Z,X for the haz variable during 104 weeks for the deletion
(AIC,BIC,BICc for optimal δ), Lin’s and Susin’s methods
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method
deletion Susin

AIC BIC/BICc Lin selbal clr-lasso coda-lasso
CAP x
LAU x
MYR
PAL x
PLA x
PLE x x x
STE
ELA
OLE x
LLA
LA x
ARA
GLA x x x
EIC9 x x x
ALA
EDA x
BEH x x
DGLA x
AA
LIG x
EPA x
NER x x
DTA x
DPA6 x x
DPA
DHA x x
MSE 1.1243 1.1243 1.0767 1.0594 1.0049 1.1243

x = chosen FA
Table 5.9: selected FAs, and MSEs from final linear regression model of either
y vs. X or y vs. Z,X for the whz variable during 24 weeks for the deletion
(AIC,BIC,BICc for optimal δ), Lin’s and Susin’s methods
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method
deletion Susin

AIC BIC/BICc Lin selbal clr-lasso coda-lasso
CAP
LAU
MYR
PAL x
PLA
PLE x x x x
STE
ELA x
OLE x
LLA
LA x
ARA x
GLA x x x
EIC9 x x x x
ALA
EDA
BEH x x x
DGLA x
AA x
LIG x
EPA x
NER x x x
DTA x x
DPA6 x x
DPA x x x x
DHA x
MSE 0.8337 0.8337 0.7470 0.6823 0.7247 0.7310

x = chosen FA
Table 5.10: selected FAs, and MSEs from final linear regression model of
either y vs. X or y vs. Z,X for the whz variable during 52 weeks for the
deletion (AIC,BIC,BICc for optimal δ), Lin’s and Susin’s methods
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method
deletion Susin

AIC BIC/BICc Lin selbal clr-lasso coda-lasso
CAP x x
LAU
MYR
PAL x
PLA
PLE x x x
STE
ELA
OLE x x x
LLA
LA x x x
ARA
GLA x
EIC9 x x x x
ALA
EDA
BEH x
DGLA x
AA x
LIG x
EPA
NER x
DTA x
DPA6 x x
DPA x x
DHA x x x x
MSE 0.9149 0.9149 0.8407 0.7957 0.8384 0.8795

x = chosen FA
Table 5.11: selected FAs, and MSEs from final linear regression model of
either y vs. X or y vs. Z,X for the whz variable during 104 weeks for the
deletion (AIC, BIC, BICc for optimal δ), Lin’s and Susin’s methods
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Figure 5.1: boxplots of R2-differences for the models of waz vs. Z, X during
a) 52 weeks, b) 104 weeks, and haz vs. Z, X during c) 24 weeks, d) 52 weeks,
e) 104 weeks
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Chapter 6

Future Work

Some of the work we plan to do for this project in the future includes using

parallel computing for our deletion method, extending it to generalized lin-

ear model settings for our deletion method, and implementing a clustering

technique for both our single and multiple imputation methods.

• We plan to implement parallel computing to our deletion method to ad-

dress the involved combinatorics problem when p is large. More specif-

ically, we plan to use parallel computing to delete a pair, triple,..., of

variables simultaneously, as it would help speed up the computation

of our deletion method since the computation of the R2 difference of

deleting a set of variables does not depend on the deletion of another

set of variables. The way we would do this is the following. First,

we would use the doParallel and foreach packages in R. Under

the doParallel package, we use the registerDoParallel func-
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tion to set the number of cores used to the maximum allowed as that

would allow our deletion method to run on multiple cores instead of

one core. Then, under the foreach package, we would replace all of

the pertinent for loops with the foreach loop, %dopar% and %:%

combination to take care of deleting a pair, triple, etc. of covariates.

The first to second-to-last foreach loops with have the %:% at the end

as the %:% operator is known as a nesting operator that turns multiple

foreach loops into a single loop. This combination will accumulate all

of the indices of the variables that will be deleted. The last foreach

loop will have the %dopar% at the end as the %dopar% makes use

of the registerDoParallel function to run the pertinent task(s)

under multiple cores. This combination will take care of deleting the

pertinent variables from X. All of this pertinent code will be set equal

to a new variable Xd where, from there, we carry the deletion method

as we would typically do.

• We want to extend our deletion method to generalized linear models

(GLM) instead. to perform variable selection for compositional data

in more complicated settings. Consider the model without any deleted

variables to be

g(E(y)) = β0 +Xβ, y ∼ F

where β0, X and β are defined as before, g(·) is a link function that
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specifies how E(y) relates to X, and F is the distribution of y in the

exponential distribution family. For example, if y ∼ Poisson, we can

choose the link function g(E(y)) = log(E(y)) such that the model is

ln(E(y)) = β0 +Xβ, (6.1)

whereas if y ∼ Binomial, we can choose the link function g(E(y)) =

logit(E(y)) such that the model is

logit(E(y)) = β0 +Xβ.

Since we are working with GLMs, we will use the difference in deviances

between the original model and the model after deleting compositional

variables to find which variables are informative. The deviance of a

GLM is defined as

D = 2× log(
L(θ̂1, ..., θ̂N)

L(β̂)
)

where log(L(θ̂1, ..., θ̂N)) is the maximum value of the log-likelihood

function for the saturated model such that θi ∝ g−1(β0 + Xβ), for

all i = 1, ..., N , and log(L(β̂)) is value of the maximized log-likelihood

function when fitting model (6.1). We will evaluate different criteria,

such as the AIC, BIC, etc., on choosing the optimal δ to see which gives

us an optimal δ that leads to the best results.
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• We want to revisit K-means clustering and add it to our single KNN

imputation. Consider the same setup as that for the single KNN im-

putation. Then:

1. Run steps 1 and 2 from the single KNN imputation

2. Divide the k-nearest neighbors of xi into K clusters

3. For c = 1, ..., K:

(a) We are interested in imputing xij(c). Hence, replace xij(c) by

x∗ij(c) = median(xi1j(c), ..., xikj(c)).

(b) To make sure the unit-sum constraint is satisfied, we set

x∗∗ij(c) = (1−
∑

o∈O xio(c))
x∗
ij(c)∑

i∈R,j∈C x
∗
ij(c)

.

4. Use an appropriate criterion to determine which c out of the K

clusters had the best-imputed value.

5. For the cth value that had the best-imputed value, our final im-

puted value becomes x∗∗ij(c) from step 3(b).

Note that we might end up with potential outliers when we stick with

the original k-nearest neighbors for a missing value. Hence, to make

sure that there are no outliers, we wanted to divide these k-nearest

neighbors into K roughly equal groups. Note that K ≤ p. For a

specific row of xi, if one observation is missing, K = p − 1 whereas if

more than one observation is missing, we will investigate how to specify

K. Lastly, when we are done with the single imputation case, we also
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want to try K-means clustering on multiple imputation as well to see

if the multiple imputation results improve.

• We want to revisit and redefine our multiple imputation algorithm for

improved numerical results in Table (4.5).

Assuming the same setup for the single imputation algorithm where

n > p, we may proceed as follows.

1. For l = 1, 2, ..., N

(a) Run step 1 (a)-(c) from the previous multiple imputation algo-

rithm where X∗l denotes the lth sampled non-missing version

of X after we impute xij(l) accordingly.

(b) Remove any column inX∗l and run linear regression of y on the

remaining p− 1 columns of X∗l with intercept. The resulting

coefficient of determination is denoted as R2
O.

(c) Let Ω1(l) be an empty set and kl = 2.

(d) For each subset of kl columns of X∗l , X
kl
i(l) = (X∗i1(l), ..., X

∗
ikl (l)

)

for i = 1, 2, ..., Cp
kl
, delete Xkl

i(l) in X
∗
l , and denote the resulting

covariate matrix asX∗∗i(l). Regress y onX
∗∗
l with intercept, and

denote the resulting coefficient of determination as R2
pi
.

(e) Compute dkli the same way that dki was calculated from our

deletion method.

(f) Select the non-informative variable set Ωkl(l) = {Xkl
i(l) : |dkli | ≤
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δ for i = 1, 2, ..., Cp
kl
}, where δ is defined and chosen the same

way as that from our deletion method.

(g) If Ωkl(l) = Ω(kl−1)(l), go to Step (i).

(h) Let kl = k1 + 1 and repeat Steps (c)-(f) till kl = p.

(i) Stop.

2. Use the majority vote among Ωk1(1),Ωk2(2), ...,ΩkN (N) to see which

final variables appear in at least half of these sets where such a

final set is denoted as Ωall.

Note that if n < p, the algorithm is the same as before, but for each

imputation, we perform 1 (a) first, followed by SIS, and then 1 (b)-(i)

instead.

• For the n < p case, we consider using a more efficient ultra-high di-

mensional data screening technique than SIS to improve our deletion

method’s FN in the simulation studies. Note that, in SIS, when all co-

variates are standardized, ranking them in order of (absolute) correla-

tion with the response is equivalent to ordering the estimated slopes |β̂j|

(Ghosh et al. (2021)). However, SIS is non-robust since the estimates

β̂′js are from MLE/OLS. Ghosh et al. (2021) used the same approach as

SIS, but with robust estimates for βj in the marginal model using the

density power divergence (DPD) approach. Let us fix a j ∈ {1, 2, ..., p}
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and α > 0. Consider the jth marginal model

yi = γj + βjxij + εj, i = 1, ..., n (6.2)

where ε ∼ N(0, σ2
j ), Xj is the jth covariate for each j = 1, ..., p, and

θj = (γj, βj, σj)
T are estimated by the MLE/OLS methods. Based on

the marginal model (6.2), the objective function can be simplified to

the form Hn,α(θj) = 1
n

∑n
i=1 lα(yi, γj + βjxij, σj), where

lα(y, η, σ) =
1

σα(2π)α/2
(

1√
1 + α

− 1 + α

α
e
−α(y−η)2

σ2 ) +
1

α
.

Then, θj is estimated as θ̂Mj such that

θ̂Mj = (γ̂Mα
j , β̂Mα

j , σ̂Mα
j ) = argmin

θ

1

n

n∑
i=1

lα(yi, γj + βjxij, σ).

Based on θ̂Mj , for a given α > 0, we can choose the informative variables

in order of the values of |β̂Mα
j |, which is referred to as the DPD-SIS

procedure (Ghosh et al. (2021)). Note that at α = 0 (in a limiting

sense), θ̂Mj coincides with θ̂j. Thus, the DPD-SIS algorithm at α = 0

becomes identical to the SIS. The extent of robustness of the DPD-SIS

increases with increasing α > 0.
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