
Optimizing Electoral Boundaries:
A Network Flow Approach to Political Districting

A Technical Report Submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia · Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science

Fintan Horan
Spring, 2024

Advisors: Rosanne Vrugtman
Department of Computer Science

Briana Morrison
Department of Computer Science



Optimizing Electoral Boundaries
A Network Flow Approach to Political Districting

FINTAN HORAN∗, University of Virginia, USA

While many computational approaches to redistricting focus on optimizing for and evaluating population
equality, compactness, and contiguity, few take into account criteria such as minority representation. Thus In
this paper, I describe a model for computational redistricting that uses network flow to assign geographic
units to district centers while optimizing for population equality and compactness. I use the model to generate
example maps for Virginia’s Congressional and General Assembly districts and evaluate the produced districts
on the basis of population equality and minority representation, comparing them against the maps drawn
by the Supreme Court of Virginia in the 2021 redistricting cycle. My results show that this approach is
capable of generating compact and contiguous districts with population standard deviations of 0.0571% at the
Congressional level, 0.3489% at the state Senate level, and 0.9006% at the state House level. The generated
plans also show an increase in the number of minority opportunity districts compared to the current maps.
This work demonstrates the potential for computational methods to be used in a neutral and transparent
manner to draw political districts that meet a variety of criteria. Future work could expand the model to
include additional criteria such as the preservation of Communities of Interest and political competitiveness.

Additional Key Words and Phrases: redistricting, political geography, network flow, optimization, clustering

1 INTRODUCTION
Every ten years, in response to data reported in the United States census, electoral district boundaries
are redrawn to account for population changes in a process known as redistricting. Because of the
high-stakes nature of the single-member districts which compose our electoral system, redistricting
is a fiercely political battleground with a history of manipulation [9]. Historically, redistricting
has been carried out by state legislatures, where the controlling party both commissions and
approves the new district maps [2]. This has led to a practice known as gerrymandering, which is
the distortion of district boundaries for political gain [9]. Thus with legislators in control of the
process, it is said that, “In an election, the voters choose their politicians; but in redistricting, the
politicians choose their voters” [21].
Beginning in the computer revolution of the 1960s, there have been extensive research efforts

to depoliticize redistricting by automating the process. Computational approaches seek to solve
redistricting as an optimization problem, where the goal is to minimize or maximize some objective
function while satisfying a set of constraints [9]. However, selecting the best possible map from
the set of legal maps is an NP-Hard problem [15], thus computational approaches must rely on
heuristic optimization to find plans that are good enough [9].

Redistricting involves the clustering of geographic census units called blocks in such a way that
satisfies federal and sate requirements, and the redistricting criteria that a plan must abide by varies
from state to state. In Virginia, which has a redistricting commission tasked with drawing its maps,
plans must satisfy the following requirements:
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• Population equality, which is defined to be a deviation from the ideal size of no more than
±one person for Congressional districts and a deviation of no more than ±5% for General
Assembly districts.
• Contiguity, which requires districts to be composed of contiguous territory, such that no
district is connected only by bodies of water.
• Compactness, which requires that districts are drawn “employing one or more standard
numerical measures of individual and average district compactness, both statewide and
district by district.”
• The Voting Rights Act of 1965 (VRA) and the Equal Protection Clause of the 14th Amendment,
which require that districts are not drawn with race as the predominant factor, and that
districts “shall provide, where practicable, opportunities for racial and ethnic communities
to elect candidates of their choice.”
• Preservation of Communities of Interest (COI), which are defined to be a “neighborhood
or any geographically defined group of people living in an area who share similar social,
cultural, and economic interests.”
• Political Neutrality, such that “districts shall not, when considered on a statewide basis,
unduly favor or disfavor any political party” [6].

Most of the literature on computational approaches focuses on optimizing for the general criteria
of population equality, contiguity, and compactness, but evaluating an algorithm’s compliance
with the VRA is rare [3]. Thus in this paper, I describe a heuristic optimization model that uses a
capacitated clustering approach leveraging network flow. I use the model to generate example maps
for Virginia’s Congressional and General Assembly districts, and evaluate the produced districts
using the criteria of population equality and minority representation. I then compare my results to
the maps drawn by the Supreme Court of Virginia for the 2021 redistricting cycle in Grofman and
Trende [13]. My results show that this approach is beneficial in that it can generate district plans
with low population deviations and strong minority representation opportunities.

2 RELATEDWORK
The first computational approach to redistricting was published in 1963 by Weaver and Hess [24],
which recognizes redistricting to be analogous to the warehouse location-allocation problem found
in operations research. In the location-allocation problem, the objective is to identify the number,
location, and size of the warehouses that will most efficiently serve a set of customers with goods [7].
Weaver and Hess formulate the problem such that districts are the warehouses and population units
are the customers. In order to minimize the assignment cost, a compactness measure is proposed
based on the physics principle of moment of inertia, which is the sum of squared distances from
each unit to its axis of rotation, as this measure is smallest when the units are concentrated at the
center [24].

Due to the intractability of the problem, [24] uses Cooper’s iterative location-allocation heuristic
[7] where for each iteration, the new district centers are first located after which each population
unit is allocated to a district. This procedure continues until there is no change in the location of
the district centers. The allocation of each unit to a district is done using a subroutine that uses
linear programming to solve what is known as the transportation problem, which seeks to minimize
the distribution cost of transporting𝑀 goods to 𝑁 locations [5], where the cost is defined to be the
moment of inertia [24]. However, the transportation problem is solved in such a way that units can
be split between districts, and requires a procedure to recombine these split units. Furthermore,
the algorithm makes no guarantees of contiguity in the model and requires manually rejecting
plans that are discontiguous. Despite these limitations, [24] is considered to be a seminal paper
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in computational redistricting and there have been many approaches that have built upon this
foundation.

Rather than solving the allocation problem using a linear programming approach, George et al.
[11] models the problem as one using minimum-cost network flow. In this approach, a flow network
is createdwhere each geographic unit is represented as a nodewith its supply equal to the population
of the unit. These nodes are each connected to a set of nodes representing the district centers with
demand set to the sum of the population allocated to the specific district center. All district nodes
connect to a super sink node 𝑆 with its demand set to the sum of the population of all geographic
units.

The model implements two arc cost functions that the flow network seeks to optimize. The first
is the population flow from the 𝑖th geographic unit to the 𝑗th district, denoted 𝑓𝑖 𝑗 (𝑢𝑖 𝑗 ), while the
second is the population flow from the 𝑗 th district to the super sink node 𝑆 , denoted 𝑔 𝑗 (𝑣 𝑗 ). Various
formulations for these two cost functions are presented, including setting the cost of 𝑓𝑖 𝑗 (𝑢𝑖 𝑗 ) equal
to the population-weighted distance 𝑑 (𝑖, 𝑗) · 𝑢𝑖 𝑗 , similar to [24], and the cost of 𝑔 𝑗 (𝑣 𝑗 ) = 0.
[11] is modeled such that district capacities can be within some population threshold, and

implements this by setting upper and lower bounds to the arc flow, demonstrating an ability to
create districts within a population deviation of ±5%. However, while this population deviation
is sufficient to satisfy Virginia’s General Assembly threshold, it does not meet the more strict
Congressional requirements found in many states. Nevertheless, modeling the allocation problem
as one using network flow is beneficial due to its performance and flexibility, with network structure
and arc cost functions easily augmented to further constrain a model.
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Fig. 1. Example Minimum-Cost Flow Network in [11]

The work in this paper modifies the approach in [11] using a network inspired by Bradley et al.
[4], which describes a constrained k-means algorithm that sets capacity limits to clusters. The model
in [4] is similar to that of [11] with three main differences. First, [4] is focused on cluster sizes
where the cardinality of the cluster is equal to the total number of units assigned to the cluster.
Thus the supply of each 𝑖th node is 1. Second, the arc cost function from the 𝑖th unit to the 𝑗th
center is defined to be the euclidean distance 𝑑 (𝑖, 𝑗). Finally, to satisfy capacity constraints, the
set of center nodes have their demand set to the minimum cluster size and the artificial node has
demand equal to the difference of the total supply and the sum of the minimum capacity for each
cluster center.
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3 METHODS
This section describes the methodology employed to generate Virginia’s Congressional and General
Assembly districts. In 3.1, I detail the network flow model used to assign geographic units to district
centers, along with the general capacitated clustering approach. In 3.2, I describe the data required
for the experiments, as well as key preprocessing steps that were taken. Finally, in 3.3, I describe
the evaluation criteria used to assess the generated districts.

3.1 Model
In order to extend [4] to political districting, the supply of each 𝑖th node is set to the total population
of the geographic unit instead of 1. Because some geographic units have 0 population, the algorithm
also adds an artificial supply of 1 to any units without any population to guarantee appropriate
flow. Further, a minimum capacity constraint is not a sufficient criteria for population equality,
as excess supply can end up allocated to a single cluster. Thus this model constrains the district
capacities using lower-bound (𝐿𝜖 ) and upper-bound (𝑈𝜖 ) thresholds.

The capacity constraints are implemented in two steps. Let 𝑁 be the number of geographic units
and 𝑀 be the number of district centers. First, a set of 𝑀 intermediary transshipment nodes is
introduced, which have a demand of zero and to which every geographic unit connects. Each of
the𝑀 transshipment nodes then connects to its respective district node with an arc flow capacity
equal to the maximum population deviation threshold. Finally, the set of district center nodes have
a demand equal to the minimum population deviation. Similar to [4], excess supply is handled by
an artificial node with demand 𝑘 · 𝐿𝜖 −

∑𝑛
𝑖=1 𝑠𝑖 , where 𝑠𝑖 ∈ 𝑆 is the population of the 𝑖th block.

As in [11], the arc cost of each 𝑖th block to 𝑗th transshipment node is the population-weighted
euclidean distance 𝑑 (𝑖, 𝑗) · 𝑠𝑖 , and the arc cost from each transshipment node to district center, and
district center to artifical node, is 0.
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Fig. 2. Minimum-Cost Flow Network Formulation

There are two limitations to this formulation. The first is that, similar to [11, 24], the supply from
each 𝑖th geographic unit can be assigned to multiple district centers. However, this occurs when a
district is close to equidistant between two centers. To overcome this, each district is assigned to
the argmax𝑢𝑖 𝑗 , where 𝑢𝑖 𝑗 is the flow from the 𝑖th unit to the 𝑗th center. However, minimum flow
constraints can be added to ensure that each unit is assigned to a single district center.
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The second limitation is that this formulation does not explicitly model for contiguity, instead
optimizing for compactness with contiguity considered to be a byproduct. Duque et al. [10] shows
that network flow is one of three valid ways to model contiguity in a mathematical program, and
Shirabe [22] uses network flow with explicit contiguity constraints in the context of districting,
thus making it possible to augment the network model to add contiguity as a formal constraint.

For the purposes of this paper, the issue of contiguity is addressed through an a posteriori approach
similar to that of Mulvey and Beck [20] and Liao and Guo [17]. Unlike [17, 20] which consider each
pairwise swap of units to cluster centers, graph theory is leveraged to identify components which
are disconnected. Let 𝐺 = (𝑉 , 𝐸) be a graph representing the geographic units with 𝑉 = {𝑥 ∈ 𝑋 }
and 𝐸 = {(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑋 and 𝑢 ∼ 𝑣}. Let 𝐺 𝑗 be the subgraph for the geographic units of district 𝑗
and𝐶 𝑗 be the set of connected components of𝐺 𝑗 . The switch of each of the geographic units in the
set 𝐶 𝑗 \𝐶 𝑗max from district 𝑗 to each district 𝑑 ∈ 𝐷,𝑑 ≠ 𝑗 is considered. If this creates a connected
component, the switch is made.

Procedure Capacitated Clustering for Political Districting
Data: 𝑋 = {(𝑥𝑖 , 𝑦𝑖 , 𝑝𝑖 )}, 𝑖 = 1 . . . 𝑛
Result: 𝐿 = { 𝑗𝑖 }, 𝑗 = 1 . . . 𝑘 , 𝑖 = 1 . . . 𝑛
begin

𝐼 ←− ∞
𝐿 ←− ∅
𝐺 ←− Graph(X)
for𝑚 = 1 to MajorIterations do

𝑍 ←−RandomSelection(X, k)
Δ←− ∞
while Δ > 𝛿 do

𝐿′ ←− MinCostFlowAssignment(X, Z, 𝜖)
𝑍 ′ ←− Centroids(X, 𝐿′)
𝐼 ′ ←− Inertia(X, 𝑍 ′, 𝐿′)
if 𝐼 ′ < 𝐼 then

𝐼 ←− 𝐼 ′

𝐿 ←− 𝐿′

end
Δ←− FrobeniusNorm(Z, 𝑍 ′)
𝑍 ←− 𝑍 ′

end
for 𝑗 = 1 to 𝑘 do

𝐶 𝑗 ←− ConnectedComponents(𝐺 𝑗 )
if |𝐶 𝑗 | > 1 then

Switch(𝐶 𝑗 , Z)
end

end
end

end

The general procedure in Capacitated Clustering for Political Districting follows that of the
iterative location-allocation heuristic [4, 7, 11, 19, 24]. Let there be𝑀 major iterations, which seek
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to minimize the moment of inertia. For each major iteration, 𝑘 random centers are chosen. The
algorithm then iteratively alternates between solving the minimum-cost flow allocation subroutine
and determining the new district centers. This procedure is repeated until convergence, or when
the Frobenius norm of current and previous district centers are within some threshold 𝛿 . Once a
solution is found, the contiguity check and correction is performed, after which the next major
iteration begins.

3.2 Data
Three datasets from the United States Census Bureau were required for these experiments. Demo-
graphic data is from the 2020 Redistricting Data (PL 94-171) dataset, with two tables used: P1 for
Total and Black populations, and P2 to define the Non-Hispanic White population. Geographic data
is from the TIGER/Line Shapefiles from 2023. While it is common for redistricting algorithms to use
block-level data, which is the smallest geographic subdivision, I instead opted for the block group
granularity, which is a superset of the block granularity and better preserves political boundaries
such as counties and cities.

There were two modifications needed to prepare the geographic data for use with the model. First,
the data was projected to EPSG:3968 such that planar coordinates could be used with the euclidean
distance metric. Second, Virginia’s Eastern Shore is a challenge for automated redistricting, as it
is connected to mainland Virginia by a single bridge. The population of the Eastern Shore is not
large enough such that it can be drawn as a single district, thus this region was geographically
constrained to the mainland block group to which the bridge connects such that it would not violate
the contiguity requirements of [6]. Given a priori knowledge of a geography, similar approaches
could be taken to constrain other regions, or to ensure the preservation of political subdivisions
and communities of interest.

3.3 Evaluation Criteria
The districts generated using this approach are evaluated on the basis of population deviation and
minority representation. For minority representation, I consider four different district composition
criteria. The first are Black Majority districts, which are districts which have a Black population
in excess of 50%. The second are Minority-Majority districts, where Minority is defined to be the
district population excluding Non-Hispanic White. Additionally, as Lublin et al. [18] argue, due to
an increase in politically polarized voting, recent electoral data suggests that minorities now have
a higher probability of representation in districts without a majority. [18] finds this “sweet spot”
to be in the 40-50% range. Thus I also consider both Black Opportunity and Minority Opportunity
districts, which are defined to be those with a Black or Minority population ≥ 40%.

Finally, I compare the generated districts using this criteria to Virginia’s district maps from the
2021 redistricting cycle as drawn by the state Supreme Court in [13].

4 RESULTS
Experimental results are summarized below. For annotated maps of the generated districts, as well
as detailed population and minority composition data, please see the appendices.

At the Congressional level, Virginia’s strict population deviation requirement is difficult to meet
when using a block group granularity. The maps drawn in [13] have a population deviation of
0%, with 10 of the 11 districts meeting the ideal population target and the last with a deviation of
one person from the ideal. However, Levin and Friedler [16] find that few algorithmic approaches
achieve Congressional population deviations within 0.5%. Further, DeFord and Duchin [8] note that
Virginia is one of 13 states with a Congressional deviation requirement of ±one person, arguing that
overly strict population deviation requirements are often an excuse for poor redistricting practices.
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Thus despite not meeting Virginia’s strict Congressional requirements, this approach is able to
draw districts at this level within a population deviation < 0.1% which is well within a reasonable
target of < 0.5%.

Table 1. Congressional District Population Deviations

Ideal Population Std Deviation Min Deviation Max Deviation

784,672 0.0571 0.0033 0.0966

The generated Congressional maps demonstrate strong opportunities for minority representation.
In [13] there are 2Minority-Majority and 6Minority Opportunity districts, compared to the generated
map which has 4 Minority-Majority and 8 Minority Opportunity districts. However, [13] has 2 Black
opportunity districts compared to 1 in the generated map, while neither achieves a Black Majority
district.

Table 2. Congressional District Minority Representation

Black Majority Black Opportunity Minority-Majority Minority Opportunity

0 1 4 8

At the state Senate level, the algorithm performs well in regards to population deviation, with a
maximum deviation of 0.7285%. This is well within the alloted threshold in [6], and also significantly
lower than the maximum deviation of 2.40% in [13].

Table 3. State Senate District Population Deviations

Ideal Population Std Deviation Min Deviation Max Deviation

215,784 0.3489 0.0093 −0.7285

The minority representation in the generated state Senate maps is comparable to that of the
maps in [13], and generates districts that favor Opportunity versus Majority compositions. In [13],
there are 2 Black Majority, 15 Minority-Majority, 2 Black Majority, and 6 Black Opportunity districts.

Table 4. State Senate District Minority Representation

Black Majority Black Opportunity Minority-Majority Minority Opportunity

1 6 13 22

The population deviation for state House district maps is significantly more challenging at the
block group granularity due to the fact that there are 100 districts and block groups contain more
population per unit. However, the algorithm still generated districts with a maximum population
deviation of 2.4376%, less than the maximum deviation of 2.50% in [13].

The algorithm’s ability to create strong opportunities for minority representation that reflects the
composition of the state is best at the House level. The 8 Black Majority and 14 Black Opportunity
districts surpass that of the 5 and 13, respectively, in [13]. Furthermore, 37 Minority-Majority and
51 Minority Opportunity districts were created compared to 31 and 49, respectively, in [13].
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Fig. 3. Generated State House District Map

Table 5. State House District Population Deviations

Ideal Population Std Deviation Min Deviation Max Deviation

86,313 0.9006 0.0104 −2.4376

Table 6. State House District Minority Representation

Black Majority Black Opportunity Minority-Majority Minority Opportunity

8 14 37 51

In summary, this model is able to generate districts that come close to meeting Virginia’s strict
population deviation requirements at the Congressional level, and well within the requirements at
the state Senate and House levels. The model also generates districts that provide strong opportu-
nities for minority representation at all levels, with the state House districts in particular providing
significantly more opportunities for minority representation than the current maps.

5 CONCLUSION
In this paper, I have described an approach for generating political district maps based on the
capacitated clustering problem, which uses network flow to minimize the population-weighted
distance from each geographic unit to its district center and optimizes for population equality
and compactness. This procedure was used to generate maps for Virginia’s Congressional and
General Assembly districts, and was evaluated against the districts drawn by the Supreme Court of
Virginia for the 2021 redistricting cycle. My results show that this approach is capable of generating
districts that satisfy the requirements of contiguity and compactness, and produces districts with
a higher number of Opportunity districts than the maps drawn by the court. While Virginia’s
strict Congressional population deviation requirement was not met, this approach generated
Congressional districts within a 0.1% population deviation and General Assembly districts with
lower population deviations than the current maps.
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6 FUTUREWORK
Future work should strive to further constrain the model to consider the preservation of political
subdivisions, such as counties and cities, as well as COI. Network-based approaches can be aug-
mented such that the objective function is concave [11], and there are existing modifications to the
k-means algorithm that constrain units in a must-link manner [23]. However, given a priori knowl-
edge of these political subdivisions, it is possible to constrain the geographic units as demonstrated
in this paper with Virginia’s Eastern Shore. Additional criteria such as political competitiveness can
also be incorporated or evaluated post-hoc.
While there have been decades of research into computational methods for redistricting, re-

districting is a complex and nuanced problem and algorithmic approaches might not necessarily
consider the local communities affected in the creation of districts [1, 9]. Because of this, maps
continue to be drawn by humans in a way that lacks transparency and reproducibility. However,
with a growing number states establishing redistricting commissions that seek to remove the power
of process from the legislative body [12], algorithmic approaches may still have a place. Weaver and
Hess [24] saw computers as a way to overcome legislative deadlock in the map drawing process,
and, George et al. [11] was used alongside a redistricting commission to iteratively create and
modify districts based on commission feedback. Thus there need not be an all or nothing approach
to the use of computers in the map making process. With Virginia being a particular case where
commission deadlock resulted in its maps being drawn by the courts [14], algorithms may provide
an opportunity to offer neutrality in an inherently partisan process.
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A GENERATED CONGRESSIONAL DISTRICTS
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Fig. 4. Generated Congressional District Map

Table 7. Generated Congressional District Population & Minority Composition Data

District Population Deviation Deviation % Minority % Black %

1 784,853 181 0.0231 54.9556 42.519
2 785,180 508 0.0647 50.6089 8.5522
3 784,336 −336 −0.0428 15.6249 8.0168
4 785,117 445 0.0567 41.6129 24.9056
5 783,952 −720 −0.0918 30.3295 23.1296
6 784,698 26 0.0033 45.23 28.0104
7 784,254 −418 −0.0533 23.25 10.2256
8 784,134 −538 −0.0686 45.902 34.386
9 785,430 758 0.0966 52.6631 24.6816
10 784,873 201 0.0256 51.0753 15.2035
11 784,566 −106 −0.0135 44.0509 9.7566
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B GENERATED STATE SENATE DISTRICTS
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Fig. 5. Generated State Senate District Map

Table 8. Generated State Senate District Population & Minority Composition Data

District Population Deviation Deviation % Minority % Black %

1 215,908 124 0.0575 28.2681 18.0364
2 217,261 1,477 0.6845 58.4877 42.0066
3 214,899 −885 −0.4101 38.0732 20.1336
4 215,495 −289 −0.1339 44.2971 26.0735
5 215,470 −314 −0.1455 47.369 8.2132
6 215,443 −341 −0.158 42.1188 25.0442
7 215,964 180 0.0834 9.3983 4.0127
8 215,685 −99 −0.0459 65.713 20.5791
9 215,412 −372 −0.1724 60.926 12.9807
10 216,543 759 0.3517 39.854 34.6869
11 214,872 −912 −0.4226 47.2458 17.577
12 216,133 349 0.1617 61.4844 50.5064
13 215,586 −198 −0.0918 52.4974 40.9498
14 215,804 20 0.0093 36.6745 18.1317
15 215,954 170 0.0788 52.9858 14.9912
16 215,749 −35 −0.0162 26.3301 13.5069
17 214,212 −1,572 −0.7285 20.285 5.5977
18 217,082 1,298 0.6015 29.5193 20.3914
19 216,248 464 0.215 67.7477 45.7803
20 216,313 529 0.2452 51.1255 27.5259
21 215,459 −325 −0.1506 33.8682 26.9736
22 216,793 1,009 0.4676 31.0213 14.4221
23 216,215 431 0.1997 7.3316 3.3212

Continued. . .
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District Population Deviation Deviation % Minority % Black %

24 216,786 1,002 0.4644 30.2349 14.4539
25 217,105 1,321 0.6122 58.9222 9.3628
26 217,182 1,398 0.6479 44.7371 11.2776
27 215,308 −476 −0.2206 51.5452 9.407
28 214,787 −997 −0.462 47.6193 39.8744
29 214,350 −1,434 −0.6646 56.4147 47.3702
30 215,023 −761 −0.3527 59.7327 49.7314
31 215,943 159 0.0737 69.736 27.347
32 215,115 −669 −0.31 43.301 4.8774
33 214,641 −1,143 −0.5297 35.3502 17.8382
34 215,384 −400 −0.1854 27.723 19.6398
35 216,381 597 0.2767 40.7397 8.7609
36 216,107 323 0.1497 15.8602 8.0775
37 215,677 −107 −0.0496 21.5285 6.4926
38 216,030 246 0.114 46.8518 30.3319
39 215,036 −748 −0.3466 18.1202 5.9302
40 216,038 254 0.1177 34.7101 12.0118
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C GENERATED STATE HOUSE DISTRICTS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

48

49

50

51

52

53
54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69
70

71
72

73
74

75

76
77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92
93

94

95

96

97

98

99

100

Fig. 6. Generate State House District Map

Table 9. Generated State House District Population & Minority Composition Data

District Population Deviation Deviation % Minority % Black %

1 85,618 −695 −0.8052 28.3363 18.9446
2 85,572 −741 −0.8585 53.8856 43.0223
3 86,303 −10 −0.0116 28.8437 13.8442
4 84,389 −1,924 −2.2291 67.1474 26.033
5 85,081 −1,232 −1.4274 20.4335 4.9976
6 88,192 1,879 2.177 62.0442 49.2834
7 86,009 −304 −0.3522 18.2725 9.5746
8 86,322 9 0.0104 32.3255 4.701
9 85,239 −1,074 −1.2443 29.463 16.0044
10 87,009 696 0.8064 25.0871 11.4057
11 86,749 436 0.5051 34.9237 16.0002
12 86,550 237 0.2746 22.5523 7.294
13 86,943 630 0.7299 23.8179 11.7376
14 86,488 175 0.2028 55.1949 8.289
15 87,049 736 0.8527 50.9357 33.4628
16 86,695 382 0.4426 60.0796 51.4274
17 86,911 598 0.6928 11.9191 2.9858
18 86,084 −229 −0.2653 75.898 52.7078
19 86,418 105 0.1217 51.87 9.3349
20 87,073 760 0.8805 56.5192 36.4407
21 87,627 1,314 1.5224 58.4295 21.3907
22 86,858 545 0.6314 69.7276 23.7756
23 86,991 678 0.7855 17.1788 8.033

Continued. . .



Optimizing Electoral Boundaries 15

District Population Deviation Deviation % Minority % Black %

24 86,531 218 0.2526 54.785 32.8611
25 85,168 −1,145 −1.3266 43.6749 23.1049
26 86,185 −128 −0.1483 49.9948 15.1384
27 86,793 480 0.5561 32.9162 26.0885
28 86,323 10 0.0116 24.4489 16.7893
29 86,971 658 0.7623 61.87 51.5114
30 86,580 267 0.3093 25.2298 14.635
31 86,113 −200 −0.2317 37.7934 8.9139
32 87,062 749 0.8678 60.7912 8.2906
33 85,629 −684 −0.7925 57.832 50.6779
34 85,602 −711 −0.8237 28.2587 15.6118
35 86,543 230 0.2665 41.0143 17.4087
36 86,592 279 0.3232 32.7455 24.4711
37 86,021 −292 −0.3383 38.8347 34.7683
38 86,657 344 0.3985 57.8003 16.1672
39 87,222 909 1.0531 61.8422 15.1751
40 85,910 −403 −0.4669 10.6914 3.8133
41 85,314 −999 −1.1574 61.6394 51.6926
42 86,278 −35 −0.0406 48.9835 42.9206
43 85,516 −797 −0.9234 49.1452 43.8386
44 86,211 −102 −0.1182 39.1574 28.5868
45 85,611 −702 −0.8133 7.9125 3.1456
46 85,793 −520 −0.6025 35.7232 21.3304
47 87,694 1,381 1.6 18.0571 5.9115
48 84,209 −2,104 −2.4376 50.1799 13.1839
49 87,355 1,042 1.2072 68.8925 57.7574
50 86,253 −60 −0.0695 12.0633 6.2595
51 87,507 1,194 1.3833 54.9693 29.2308
52 86,148 −165 −0.1912 9.1238 4.5271
53 87,199 886 1.0265 51.84 38.6312
54 86,778 465 0.5387 44.5758 29.9661
55 85,935 −378 −0.4379 63.7109 54.9055
56 84,366 −1,947 −2.2557 35.5665 13.3454
57 87,011 698 0.8087 62.1875 53.5415
58 86,223 −90 −0.1043 32.2083 13.7597
59 87,138 825 0.9558 76.6187 41.6087
60 85,084 −1,229 −1.4239 55.3665 39.5539
61 86,734 421 0.4878 52.8063 25.8042
62 85,447 −866 −1.0033 44.1291 25.0494
63 87,000 687 0.7959 53.323 8.9218
64 85,750 −563 −0.6523 34.7219 23.8274
65 86,900 587 0.6801 33.1438 10.6743
66 85,775 −538 −0.6233 52.0047 32.1422
67 85,920 −393 −0.4553 14.361 4.4751
68 86,740 427 0.4947 37.7496 23.077

Continued. . .
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District Population Deviation Deviation % Minority % Black %

69 86,721 408 0.4727 14.9618 7.3131
70 86,573 260 0.3012 36.2191 19.9947
71 86,424 111 0.1286 43.5006 8.751
72 87,049 736 0.8527 65.2563 29.9038
73 87,248 935 1.0833 55.7732 7.1749
74 85,285 −1,028 −1.191 59.0948 9.9244
75 86,821 508 0.5886 22.2423 9.781
76 84,910 −1,403 −1.6255 45.4611 5.2726
77 86,939 626 0.7253 46.7339 5.9766
78 86,289 −24 −0.0278 61.8584 44.0242
79 85,543 −770 −0.8921 31.763 7.5985
80 87,123 810 0.9384 5.172 2.0087
81 86,035 −278 −0.3221 34.2012 27.6852
82 85,640 −673 −0.7797 64.8015 11.5367
83 86,349 36 0.0417 18.5179 12.8432
84 86,334 21 0.0243 30.4909 12.8733
85 85,234 −1,079 −1.2501 49.3277 28.3267
86 84,619 −1,694 −1.9626 57.818 19.7249
87 86,496 183 0.212 43.1812 36.9416
88 85,924 −389 −0.4507 32.6381 9.7458
89 85,756 −557 −0.6453 27.1643 7.968
90 86,595 282 0.3267 49.4567 8.9104
91 86,433 120 0.139 8.1867 4.1223
92 86,630 317 0.3673 33.8462 27.4201
93 85,710 −603 −0.6986 27.8252 17.1135
94 86,392 79 0.0915 35.6665 7.1314
95 86,981 668 0.7739 55.8306 21.415
96 86,670 357 0.4136 30.9357 19.1312
97 87,233 920 1.0659 64.6143 10.4353
98 86,995 682 0.7901 45.4095 10.4558
99 84,944 −1,369 −1.5861 36.4876 15.1323
100 87,537 1,224 1.4181 28.5388 14.218
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