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ABSTRACT 

Pedestrian bridges represent a class of structures that are not typically heavily loaded, but 

may experience significant vibrations during operation due to pedestrian traffic and wind loads. 

To investigate the effect of these vibrations, pedestrian bridges can be characterized based on their 

dynamic properties such as natural frequencies, mode shapes and damping ratios. Existing design 

codes address the vibration levels either by ensuring the critical frequency ranges associated with 

typical pedestrian bridges are outside the fundamental frequencies of the structure or by restricting 

the maximum accelerations below the limits for pedestrian comfort. This research study discusses 

vibration serviceability assessment of a highly trafficked, lively pedestrian bridge based on the 

experimental tests and numerical analysis. The selected bridge is an approximately 190-ft long 

three-span steel structure with a continuous reinforced concrete slab supported on two longitudinal 

steel girders.  

First, a finite element model of the pedestrian bridge was developed to setup key 

instrumentation parameters for the field tests. Experimental tests consisting of impact hammer 

tests, ambient vibration tests and pedestrian interaction tests were then conducted to obtain the 

modal characteristics of the structure. It was observed that the fundamental frequency of the bridge 

in the vertical direction obtained through field tests was within the critical range described by 

available design guidelines. This required further analysis to assess the performance of the bridge 

relative to the maximum acceleration threshold. In addition to the peak dynamic response obtained 

from the pedestrian interaction tests, peak acceleration values based on current design guidelines 

were computed analytically and compared to the comfort limits. Results from the study suggest 

that the footbridge possesses satisfactory serviceability performance under low and dense traffic 

conditions, but the comfort level was classified as minimum under very dense traffic loads. 
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NOMENCLATURE 

ABBREVIATION DESCRIPTION 

AASHTO American Association of State Highway and Transportation Officials 

AISC American Institute of Steel Construction  

BSI British Standards Institution 

BDI Bridge Diagnostics Inc. 

CEN European Committee for Standardization 

CL Comfort Level 

DAQ Data acquisition  

DFT Discrete Fourier Transform 

DLF Dynamic Load Factors 

EFDD Enhanced Frequency Domain Decomposition 

EMA Experimental Modal Analysis 

FDD Frequency Domain Decomposition 

FEA Finite Element Analysis 

FFT Fast Fourier Transform 

FRF Frequency Response Function 

HIVOSS Human Induced Vibration of Steel Structures 

LRFD Load and Resistance Factor Design 

MAC Modal Assurance Criteria 

MDOF Multi Degree of Freedom 

ODS Operational Deflection Shapes 

OMA Operational Modal Analysis 

PSD Power Spectral Density 

SDOF Single Degree of Freedom 

SVD Singular Value Decomposition 

TC Traffic Class 
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SYMBOL DESCRIPTION 

k Stiffness 

m Mass 

c Damping 

u Displacement 

ϕ Modal vector 

qn Modal coordinate 

𝜔𝑛 Natural frequency 

𝜔𝑑 Damped natural frequency 

ζ  Damping ratio 

Rxx Auto-correlation function 

Rxy Cross-correlation function 

𝑆𝑥𝑥 Power spectral density 

𝑆𝑥𝑦 Cross power spectral density 

𝐺𝑥𝑥 One sided power spectral density 

𝐺𝑥𝑦 One sided cross power spectral density 

ψ Reduction coefficient 

𝛾 Coherence 

δ Logarithmic decrement 

𝜆𝑘 Pole 

𝑅𝑘 Residue 

Δ Deflection 

E Modulus of elasticity 

I Moment of inertia 

n Number of pedestrians 

d Pedestrian density 

a Acceleration 

U Singular vector 

S Singular values 
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1. INTRODUCTION 

1.1. General  

Bridge structures may undergo various levels of vibrations during their service life. These 

vibrations occur due to different force producing elements at or near the surface such as traffic 

(human and vehicular), wind, earthquakes or other natural events. Forces such as these within the 

structure may lead to severe deterioration of major components of the structure or even complete 

collapse. A typical example of vibrations causing such a structural disaster is the Tacoma Narrows 

bridge collapse in 1940. The reason for collapse was the wind induced resonance, that caused the 

bridge to vibrate at its amplified natural frequency creating “wave” like patterns (Rogers, 1997). 

Another typical example of excessive vibrations in bridges was the London Millennium 

Bridge that opened in June 2000 and was immediately seen to vibrate laterally on its first day. 

Recorded measurements showed a lateral movement of the bridge of about 2 to 3 inches. Despite 

there being no impending risk of structural failure, safety and comfort of pedestrians was at risk. 

The reason for such excessive vibration was reported to be the possibility of footfall frequency of 

pedestrians, correlating with the resonance frequency of the bridge. This “lock-in” phenomenon 

was the primary cause of the bridge being closed for further assessment and structural changes 

such as increased damping implemented (Dallard et al., 2001). 

The probability of excessive vibrations in pedestrian bridges is high and makes them 

susceptible to serviceability issues more so than structural integrity ones. It is the concept of 

“human comfort” that is of prime importance in evaluating these bridges for serviceability. The 

Commonwealth of Virginia contains nearly 21,000 bridge structures in its inventory of which 

around 220 of those are pedestrian overpasses over highways or footbridges carrying pedestrians 

over non-highways. The operational safety of this vast infrastructure is directly undertaken by the 

Virginia Department of Transportation. Moreover, it is quite likely that pedestrian bridges are not 

even evaluated as consistently as other highway bridges. It is also quite possible that a large amount 

of pedestrian bridges, is not even included in the inventory. These structures are only rated for 

capacity, several of which have a multitude of details missing in the inventory (Harris et al., 2015) 

The capacity ratings however, do not shed light upon the serviceability of the structure or any 

indication of its dynamic characteristics. Due to the increasing concern of excessive vibrations on 

these bridges, it is imperative to understand their dynamic characteristics and document them.  
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1.2. Objectives of Thesis 

This thesis describes an experimental and analytical dynamic evaluation of a pedestrian 

bridge located over a highly trafficked state highway. The main goal of this thesis is to report and 

investigate the dynamic characteristics of an in-service pedestrian bridge and assess the structure 

for its serviceability based on the guidelines provided in various design standards. Several 

European as well as a few American standards exist that dictate the vibration serviceability 

assessment of bridges specifically (HIVOSS, 2007; Murray et al., 2001; SÉTRA, 2006). The thesis 

will provide an in-depth study of a footbridge serviceability assessment under different pedestrian 

loading conditions and compare the results under existing guidelines. The main topics of 

discussion include: 

 Experimental and operational modal analysis  

 Complete experimental and numerical dynamic characterization of the footbridge 

 Comparative discussion of the HIVOSS, SÉTRA and AISC guidelines 

The main aim of the complete project would therefore be to study how dynamic loads 

induced by pedestrians create comfort issues and its effect on footbridge design and maintenance. 

1.3. Organization of Thesis  

This thesis is organized into the following sections: 

Chapter 1 presents description of the research problem and scope of the research. It gives 

a brief insight into the motivation and general purpose of conducting this research.  

Chapter 2 provides the theoretical/mathematical background on the topic of vibration 

testing and modal analysis. The chapter is further divided into three different modal analysis 

methods namely theoretical, experimental and operational.  

Chapter 3 discusses the existing guidelines for vibration serviceability assessment of 

pedestrian bridges. American guidelines of AISC and LRFD and European guidelines of HIVOSS 

and SÉTRA are discussed in this section. 

Chapter 4 provides a further investigation and a literature review on the research topics of 

vibration testing and modal analysis as applied to standard bridge structures. It then presents some 
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cases where this vibration evaluation was performed specifically on pedestrian bridges for 

serviceability assessment.  

Chapter 5 presents the investigation procedure, the detailed description of the bridge and 

the test methods and approaches used including a preliminary finite element model followed by 

the experimental test setups.  

Chapter 6 presents the obtained results and its following discussions in the light of the 

presented guidelines. Results include the obtained natural frequencies and mode shapes of the 

bridge which are in turn evaluated under each of the serviceability standards. 

Chapter 7 summarizes the findings of the current study. 

Chapter 8 suggests potential research of the topic in the future.  
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2. MODAL ANALYSIS 

Modal analysis is the tool that characterizes the dynamic properties of a structure under 

given theoretical or experimental conditions. Hence, through this analysis modal parameters of a 

structure namely the natural frequencies, mode shapes and damping ratios can be estimated (Maia 

& Silva, 2014). Modal analysis can be further divided into three branches:   

Theoretical Modal Analysis: This method is essentially an eigenvalue problem where the 

structural matrices, namely the stiffness matrix K, mass matrix M and the damping matrix C are 

known. These structural matrices are then resolved to obtain the system modal parameters  

Experimental Modal Analysis: This method as the name suggests is based on obtaining the 

modal parameters by exciting the structure using a known source of force and recording the 

structural response from accelerometers placed strategically on the structure. Excitations and their 

acceleration responses are then further processed to obtain the modal parameters. 

Operational Modal Analysis: This is similar to experimental modal analysis, however the 

structure is not excited using a known source of force. Instead, the structure is excited under 

ambient conditions, the responses are measured from accelerometers on the structure and the 

modal parameters are then obtained by processing response only data. 

2.1. Theoretical Modal Analysis 

In order to understand the modal analysis approach used in this document a brief 

mathematical explanation of the classical theoretical modal analysis technique is given. The free 

vibration response of an 𝑁 degree of freedom undamped system is governed by the equation 

(Chopra, 2012): 

𝐦 𝐮̈(𝑡) + 𝐤 𝐮(𝑡) = 0      ( 1 ) 

where the matrices m is the mass matrix and k is the stiffness matrix and are defined as: 
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In the case of free vibration, for each degree of freedom present within the structure there 

exists a characteristic deflected shape or the “natural mode of vibration.” This characteristic mode 

can be described mathematically as: 

𝐮(𝑡) = )(tqnn      ( 2 ) 

where the deflected shape 𝜙𝑛does not vary with time. The time variation of the displacement is 

described by the simple harmonic function; 

 )sin()cos()( tBtAtq nnnnn       ( 3 ) 

where 𝐴𝑛and 𝐵𝑛 are constants that are determined from initial conditions of motion and 𝜔𝑛 is the 

natural frequency. Substituting the equation (3) into (2) gives: 

𝐤 𝜙𝑛 = 𝜔𝑛
2 𝐦 𝜙𝑛     ( 4 ) 

The above is called the matrix eigenvalue problem. The above equation can be further 

simplified and solved for non-trivial solutions such that: 

𝐝𝐞𝐭(𝐤 − 𝜔𝑛
2 𝐦) = 0     ( 5 ) 

The 𝑁 roots of 𝜔𝑛
2 determine the 𝑁 natural frequencies of vibration from smallest to largest. 

These roots are known as the eigenvalues. Once these 𝜔𝑛 are known, the corresponding vector 

𝜙𝑛can be solved. These 𝑁 independent 𝜙𝑛 are known as natural modes of vibration. Writing the 

equation for an 𝑁 DOF system in modal matrix form: 

𝐤 𝚽 = 𝐦 𝚽 𝛀𝟐     ( 6 ) 

where the matrices 𝚽 and 𝛀𝟐 are defined as: 

𝚽 =
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The above solution is the free vibration solution giving real values as damping was ignored. 

For the case of a damped system we can expand our initial equation of motion to: 

𝐦 𝐮̈(𝑡) + 𝐜 𝐮̇(𝑡) + 𝐤 𝐮(𝑡) = 0    ( 7 ) 
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This can be written in terms of the natural modes of the associated undamped system using 

the modal expansion in equation (3): 

𝐦 𝚽 𝐪̈ + 𝐜 𝚽 𝐪̇ + 𝐤 𝚽 𝐪 = 0     ( 8 ) 

Pre-multiplying with 𝚽𝐓 gives: 

𝐌 𝐪̈ + 𝐂 𝐪̇ + 𝐊 𝐪 = 0     ( 9 ) 

Due to orthogonality matrices, 𝐌 and 𝐊 are diagonal. Assuming classical damping that is 

an uncoupled 𝐂 matrix it will result in 𝑁 uncoupled differential equations in the modal coordinates 

𝑞𝑛.  The SDOF damping ratio can be obtained as follows: 

nn

n
n

M

C
ζ

2
        ( 10 ) 

Equation (2) can be solved to get the following displacement response: 

𝐮(𝑡) =
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where 𝜔𝑑 = 𝜔𝑛√1 − 𝜁𝑛
2 

2.2. Experimental Modal Analysis 

In the case of experimental modal analysis, dynamic parameters (natural frequency, 

damping and mode shapes) are estimated by physically exciting the structure through a 

“controlled” forcing function (Mola et al., 2015). In order to understand the concept of 

experimental modal analysis some key terms are defined here: 

2.2.1. Modes and Operating Deflection Shapes 

In the process of experimental modal analysis, the structure is artificially excited and the 

“Operating Deflection Shapes” (ODS) are measured and then post processed to estimate the 

structural parameters of the tested structure. These operating deflection shapes are defined as any 

forced motion of two or more points on a structure such that a shape is created that is essentially 

the motion of one-point relative to all others (Schwarz & Richardson, 1999).  The operating 

deflecting shapes are in effect measured through vibration sensors in order to estimate the mode 

shapes and frequencies. These ODSs differ from the structure’s mode shapes by their inherent 
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dependence on an external force, whereas the mode shape is not dependent on any external force 

but is rather a unique characteristic of the structure based on its resonance (Richardson, 1997).  

Frequency Response Function 

In experimental modal analysis once the structure is excited, the data is recorded through 

accelerometers placed with specific orientations at various locations corresponding to a single 

degree of freedom on the structure. Modal parameters can be extracted from this data in either the 

time or frequency domain. In the frequency domain, a frequency response function (FRF) can be 

computed. Resonance frequencies can be estimated from the FRF by simply identifying the peaks 

of the plotted FRF. A frequency response function can be simply described as the ratio of the 

output response of the structure due to an applied force (Brandt, 2011): 

)(

)(
)(






F

X
H       ( 12 ) 

where 𝑋(𝜔) is the structure’s frequency domain response and 𝐹(𝜔) is the forcing function.  

The frequency response function is known differently based on the measured response. The 

flow chart below shows these terms where 𝐷 is the displacement response, V is the velocity 

response, 𝐴 is the acceleration response and F is the forcing function (Irvine, 2000) 

 

Figure 1. Frequency Response Function Types 

In this document, we will focus on the Accelerance Frequency Response Function.  

Fourier Transform and Power Spectrums 

In physical terms, experimental data is collected as signals in the time domain. In order to 

convert the signal from time domain to frequency domain a Fourier Transform is required. The 

theory of Fourier series states that every periodic signal 𝑥𝑝(𝑡) having a time period of 𝑇𝑝 can be 

Frequency Response 
Function

Force Displacement

D/F 

"Admittance"

F/D 

"Dynamic Stiffness"

Force Velocity

V/F 

"Mobility"

F/V "Mechanical 
Impednace"

Force Acceleration

A/F 

"Accelerance"

F/A "Dynamic 
Mass"



8 

 

split into a (potentially infinite) number of sinusoidal signals each having an individual amplitude 

and a corresponding phase. These infinite terms can be written as a complex sum as (Brandt, 2011): 


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)(      ( 13 ) 

where coefficient 𝑐𝑘 is given by: 
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 for k = 0,1,2, ….   ( 14 ) 

However, in the case of a bridge structure, it is assumed that vibrations on the structure are 

random and not periodic. These vibrations are continuous in nature and hence contain an infinite 

range of frequencies. Therefore, an easier way of describing this signal is through its relative 

likelihood of occurrence or density. The “Power Spectral Density,” 𝑆𝑥𝑥 of a function is hence 

estimated as the forward Fourier Transform of the signal’s auto-correlation function 𝑅𝑥𝑥: 

)( fS xx  ℱ 




   deRR fj

xxxx

2)()]([     ( 15 ) 

where the auto-correlation function is defined as the expected value as: 

 )]()([Exp)(   txtxRxx      ( 16 ) 

Similar to the power spectral density we can also define the double sided “Cross Power 

Spectral Density”  𝑆𝑥𝑦 as the forward Fourier Transform of the cross-correlation of the input 

signal 𝑥(𝑡) producing an output signal 𝑦(𝑡): 

)( fSxy  ℱ 




   deRR fj

xyxy

2)()]([     ( 17 ) 

where the cross-correlation function is defined as the expected value as: 

  )]()([Exp)(   tytxRxy      ( 18 ) 

In the above relations the power spectral densities estimated are double-sided, meaning 

that the Fourier Transform of the signal causes half of the physical frequency content to appear at 

negative and the other half in the positive frequencies. Therefore, these spectral densities are then 

further described for just one-side as: 
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)(2)( fSfG xxxx  for 0f  

)(2)( fSfG xyxy  for 0f  

Welch’s Method 

Building on the theoretical understanding of the spectral densities, a common method used 

to estimate the power spectral density and the cross power spectral density is called the Welch’s 

method. In this method the collected signal 𝑥(𝑛) is divided into 𝑀 segments, each of length 𝑁 

which are then applied a window 𝑤 before a Discrete Fourier Transform is obtained. This is 

mathematically showed as: 
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where 𝑆𝑝 is some scaling factor and 𝑋𝑤,𝑚 is the discrete Fourier Transform. One segment of this 

discrete transform is given as: 
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    ( 20 ) 

2.2.2. FRF Estimators 

Following up from equation (12) an efficient experimentally obtained frequency response 

estimator would be one that minimizes the estimation error. To better understand this we can 

rewrite equation (12) (Rocklin et al., 1985) 

  )()()( FHX     ( 21 ) 

where 𝜀 is the is the error vector. 

The above can be rewritten in spectra forms. The first FRF assumption is that the error is 

incoherent with the forcing function and the second assumption is that the error is incoherent with 

the responses. Hence: 

)(
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fx
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In the equations above 𝐻1 is modelled such that Gaussian noise is added to the responses 

and 𝐻2 is modelled such that Gaussian noise is added to the forcing function or input.  
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2.2.3. Modal Parameter Extraction 

There are several ways to identify modal parameters from the obtained FRFs. The most 

common method is the peak amplitude method whereby individual resonance peaks on the FRF 

are identified as the natural frequency of that mode. The FRF in this case can be written as: 

rrr

r

i

A
H




2
)(

22 
      ( 23 ) 

The width of the resonance corresponds to damping. It is estimated from the imaginary part 

of the complex mobility FRF using the half power bandwidth method as follows: 

2

22
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


      ( 24 ) 

The peaks of the imaginary part of the FRF then correspond to the mode shape: 

 2|)(|2 rr HA       ( 25 ) 

where 𝐴𝑟 is the modal constant at resonance, 𝜔𝑟 is the resonance frequency that corresponds to 

the natural frequency, 𝜔𝑎 and 𝜔𝑏 are the half power points at 
|𝐻(𝜔)|

√2
, ζ is the damping ratio.  

This method can be experimentally seen from Figure 2 below (Schwarz & Richardson, 

1999) :  

 

Figure 2. SDOF Peak Amplitude Method (Richardson, 1997) 
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2.2.4. Other Processing Considerations 

Following from equation (22) we can estimate a coherence function 𝛾𝑥𝑓 between both the 

FRFs as: 

)()(
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This is just a quality measure of the estimated frequency response regardless of which FRF 

estimator we actually use. It ranges between 0 to 1 where 0 is least coherence and 1 is completely 

coherent. In impact excitations, it is imperative to consider three additional items: 

1) Pre-Trigger: Due to the inherent damping of the structure, a fast and short impulse force 

causes the response to exist for a short period of time. In order to ensure that both the excitation 

and the response signal are captured, the sampling rate is planned such that data collection starts 

or pre-triggers before the actual impact.  

2) Windowing: Due to the signal-to-noise ratio effect or “leakage, inherent in decaying impact 

responses, data is windowed such as to reduce these effects. Windowing forces the signal to be 

periodic thereby reducing leakage effects. 

3) Averaging: Since accurate impacting depends on the person impacting the structure, it is 

preferred to obtain multiple impacts and then average the data. 

2.3. Operational Modal Analysis 

In operational modal analysis the input source is unknown or immeasurable. The excitation 

is produced through ambient sources such as wind and other ground vibrations. There are a number 

of methods developed to obtain modal parameters using output only measurements such as 

Covariance-Driven Stochastic Subspace Identification (SSI-COV), Ibrahim Time Domain (ITD) 

and Least-Squares Complex Exponential (LSCE) (Alvaro Cunha & Caetano, 2005). The method 

selected in this study for evaluating the modal parameters is Frequency Domain Decomposition 

(FDD). This method is very popular in civil engineering applications and estimates the modal 

parameters without knowing the excitation input. It is also closely related to the classical peak 

amplitude method in which the frequencies are peak picked. It also offers good approximation of 

closely spaced modes despite noise contamination. The FDD technique is explained by (Brincker 

et al., 2000) in detail below. 
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2.3.1. Theoretical Background  

The unknown inputs 𝑥(𝑡) and the acquired outputs 𝑦(𝑡) can be related through their power 

spectral densities and frequency response functions as follows:  

)()()()(  jHjGjHjG T

xxyy      ( 27 ) 

where 𝐺𝑦𝑦(𝑗𝜔) is the (𝑟 𝑥 𝑟) power spectral density (PSD) matrix of r inputs and 𝐺𝑥𝑥(𝑗𝜔) is the 

(𝑚 𝑥 𝑚) power spectral density matrix of m outputs. 𝐻(𝑗𝜔) is the (𝑚 𝑥 𝑟) frequency response 

function (FRF) matrix with ¯ and T denoting the complex conjugate and transpose respectively.  

The partial fraction expansion of the FRF can be written in terms of pole/residue as follows: 
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where 𝑛 is the number of modes 𝜆𝑘 is the pole and 𝑅𝑘 is the residue. If the input is assumed to be 

white noise, then the PSD becomes a constant matrix and equation (27) can be rewritten as:  
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where superscript 𝐻 denotes the complex conjugate. The above expression is then reduced to a 

pole/residue form using partial fractions as follows: 
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where 𝐴𝑘  is the 𝑘’th residue matrix of the output PSD which is also an (𝑚 𝑥 𝑚) Hermitian matrix: 
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The contribution from the 𝑘 th mode is given by: 
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where 𝛼𝑘 is minus the real part of the pole kkk j  . Under light damping the residue 

becomes proportional to the mode shape vector: 
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where 𝑑𝑘 is a scalar constant. At a certain frequency only a small number of modes will contribute 

significantly, typically one or two. Denoting these by 𝑆𝑢𝑏(𝜔), then a lightly damped structure’s 

output spectral density would be written as: 
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2.3.2. The FDD Algorithm  

The first step in the process is to estimate the power spectral density matrix 𝐺𝑦𝑦(𝑗𝜔)  for 

the outputs from the experimental data. The output PSD known at discrete frequencies 𝜔 =  𝜔𝑖 is 

then decomposed by taking the Singular Value Decomposition (SVD) of the matrix; 

H

iiiiyy USUjG )(        ( 35 ) 

where the matrix 𝑈𝑖 = [𝑢𝑖1, 𝑢𝑖2, … , 𝑢𝑖𝑚] is the unitary matrix holding singular vectors 𝑢𝑖𝑖 and 𝑆𝑖 

is a diagonal matrix holding the scalar singular values 𝑠𝑖𝑖. At a peak corresponding to the 𝑘’th 

mode in the spectrum this mode or a close mode will be dominating. If only the 𝑘’th mode is 

dominating, there will only be one term in equation (34). The first singular vector in this case 𝑢𝑖1 

would be an estimate of the mode shape: 

1iU       ( 36 ) 

The corresponding singular value is the auto power spectral density function of the single 

degree of freedom system. This power spectral density function is identified by isolating the peak 

and comparing the mode shape estimate with the singular vectors obtained for frequency lines 

around the peak. The peaks selected from the singular values plot will correspond to the natural 

frequency of the system. 

2.3.3. The EFDD Extension  

Following the above algorithm, an extension of FDD was further proposed (Brincker et al., 

2001) to estimate damping known as the Enhanced Frequency Domain Decomposition. The 
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obtained auto power spectral density function that is 𝑆𝑖1 is converted from frequency domain back 

to time domain using the inverse Fourier Transform. This time domain function is also the auto 

correlation function of the single degree of freedom system. From this time domain function, all 

extreme values 𝑟𝑘 (including both peaks and valleys) are obtained. The logarithmic decrement is 

then estimated as: 

)ln(
2 0

kr

r

k
       ( 37 ) 

where 𝑟0 is the initial value of the correlation function and 𝑟𝑘 is the 𝑘’th extreme. The damping 

ratio is then given by: 
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      ( 38 ) 

The natural frequency in this case however is then estimated by performing a linear 

regression between the crossing times and the times corresponding to the peaks. Therefore, the 

natural frequency would then be estimated as: 

21 





 d       ( 39 ) 

Similar to equation (26), in order to assess the correlation between one mode and another 

such as comparing analytical {𝜙𝐴}𝑟 and experimental modes {𝜙𝑋}𝑞, a statistical indicator known 

as Modal Assurance Criteria can be estimated using the relative modal vectors as follows: 
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3. DESIGN GUIDELINES FOR SERVICEABILITY ASSESSMENT 

Civil structures such as bridges undergo regular vibrations during their normal operation. 

These vibrations are caused mainly by dynamic loads such as traffic or other ambient conditions 

such as wind. A unique case of these vibrations is presented in pedestrian bridges. Inherent to their 

characteristics, pedestrian bridges are usually lighter and contain slenderer members owing to 

lower loading demands. The structural properties of these structures tend to be on a much lower 

side causing relatively lower natural frequency and stiffness ranges. These bridges then become 

easily susceptible to vibrations from pedestrian traffic or “human induced vibrations.” (Gheitasi et 

al., 2016). This phenomenon leads to the safety and stability of these structures or serviceability 

assessment. The most well documented case in this topic has been the London Millennium Bridge 

(Dallard et al., 2001). There are two major checks for which the serviceability assessment is 

conducted. These are the natural frequency limits and the maximum acceleration limits. Several 

design codes exist that specify frequency and acceleration limits of pedestrian bridges under 

traffic.  

The most commonly used codes will be discussed in the following sections. For a general 

understanding of the serviceability assessment process a flowchart is provided below (Grandić, 

2015) 
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Figure 3. Serviceability Assessment Flowchart (Grandić, 2015) 
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3.1. Pedestrian Loading 

Just like any other forced vibration system, a pedestrian bridge undergoes a dynamic 

response under an input force, in this case this force is caused by the pedestrian loading. Due to 

the various different types of moving activities such as walking and running, performed by 

pedestrians on a bridge, the nature of pedestrian loading is fairly complex. Several models exist in 

the literature that theoretically estimate the loading caused by a pedestrian/s walking on a bridge 

(Hauksson, 2005; S. Živanović et al., 2005)  

Assuming that the forcing functions described are all periodic under the rationale that 

during an activity such as walking and running, each step force is repeatable with human motion 

and is exactly similar to the step before, we can theoretically predict these forces using the Fourier 

series (Heinemeyer et al., 2009): 
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where 𝐹𝑝,𝑣𝑒𝑟𝑡(𝑡) and 𝐹𝑝,𝑙𝑎𝑡(𝑡) are the vertical and lateral periodic forces due to human walking or 

running, P is the static load corresponding to the pedestrian's weight, 𝑓𝑠 is the step frequency, 

𝛼𝑖,𝑣𝑒𝑟𝑡 and 𝛼𝑖,𝑙𝑎𝑡 are the Fourier coefficients of the 𝑖th harmonic for vertical and lateral forces. 

These coefficients are also known as Dynamic Load Factors (DLFs). Several authors have reported 

different values for the dynamic load factors. For example, one model proposes a vertical DLF of 

0.257 in the case of the first harmonic from walking. This dynamic load factor is then decreased 

as frequency of walking is increased. The overall frequencies of the common human activities on 

a pedestrian bridge can be estimated as shown in Table 1 (S. Živanović et al., 2005): 

Table 1. Frequencies of common human activities 

 Slow (Hz) Normal Fast 

Walking 1.4-1.7 1.7-2.2 2.2-2.4 

Running 1.9-2.2 2.2-2.7 2.7-3.3 

Jumping 1.3-1.9 1.9-3.0 3.0-3.4 

The above table gives an idea of the average human motion frequencies. These can also be 

compared to the codified frequency assessment limits of the walking structure.  
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As discussed earlier, several codified guidelines exist for the design and assessment of 

dynamic response from pedestrian bridges. Table 2 shows the frequency limits imposed by some 

of these codes under which a further assessment must be carried out (Gheitasi et al., 2016): 

Table 2. Range of Frequencies by Design Codes (AASHTO, 2009; HIVOSS, 2007a; SÉTRA, 

2006) 

Reference Vertical Transverse 

British National Annex 1.5 – 5 Hz < 1.5 Hz 

Eurocode 1990 < 5 Hz < 2.5 Hz 

SÉTRA 1 – 5 Hz 0.3 – 2.5 Hz 

HIVOSS 1.25 – 4.6 Hz 0.5 – 1.2 Hz 

AASHTO LRFD < 3 Hz < 1.3 Hz 

The table above is only a brief indicator of the range of frequencies under which each of 

the codes will carry out a further evaluation. However, not every code has strict frequency 

restrictions or follows the exact same criteria as shown in the flowchart above. Some of the most 

common design codes are discussed in detail here: 

3.2. AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges 

(NCHRP 20-07 TASK 244)  

This is an additional guidance for the design and construction of pedestrian bridges in 

supplement to the AASHTO LRFD Bridge Design Specifications. These guide specifications are 

not specific to vibration serviceability; however, they briefly define certain limits. The 

specifications define the limit of the vertical natural frequency to be no less than 3 Hz in order to 

avoid the first harmonic from walking. This limit in the lateral direction is set at 1.3 Hz. If these 

limits are not met, then a secondary evaluation is to be made. Table 3 shows this criteria 

(AASHTO, 2009): 

Table 3. AASHTO LRFD Frequency Limit 

 Vertical Lateral 

Frequency Limit > 3 Hz > 1.3 Hz 

This evaluation will have to take into account the frequency and magnitude of pedestrian 

footfall loadings, the phasing of this loading from multiple pedestrians including the “lock-in 
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phenomena,” the structural damping estimation and the acceleration limits. To account for all the 

above items, the specifications alternatively suggest the evaluation of the following criteria: 

)
180

ln(86.2
W

f     or    feW 35.0180   ( 43 ) 

where 𝑊 is the weight of the support structure including dead load and 𝑓 is the fundamental 

frequency in the vertical direction. 

3.3. AISC Steel Design Guide No. 11 (Floor Vibrations due to Human Activity) 

This criterion is based on the dynamic response of steel beam or joist supported floor 

systems to walking forces and can be extended to incorporate footbridges as well. The guideline 

for human comfort design is based on three different components. Firstly, the guidelines suggest 

acceptable acceleration limits as a percentage of peak acceleration over the acceleration of gravity. 

These values differ from one activity to another. In terms of comfort, people usually have lower 

acceleration acceptance limits for vibration frequencies between 4 – 8 Hz. The recommended peak 

acceleration limits for different occupancies can be seen from Figure 4 (Murray et al., 2003): 

 
Figure 4. International Standardization Organization (ISO) Peak Acceleration Limits 

(Murray et al., 2003) 
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The second item for the design criteria are the recommended values of the Fourier 

coefficients in the pedestrian harmonic load model from equation (41-42). Several researchers 

have recommended coefficients that differ from case to case (Bachmann & Ammann, 1987; 

Blanchard et al., 1977; Yao et al., 2002). In the AISC Steel Design guide, the recommended values 

for the Fourier coefficients for a person walking, are as follows: 

Table 4. Recommended Fourier Coefficients for Loading Model 

Harmonic, 𝒊 
Person Walking 

𝑭, Hz αi 

1 1.6-2.2 0.5 

2 3.2-4.4 0.2 

3 4.8-6.6 0.1 

4 6.4-8.8 0.05 

The third part of the design criteria takes into account the resonance response function 

which essentially is just the ratio of the floor acceleration to the acceleration of gravity and is given 

as: 
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Where 
𝑎𝑝

𝑔
 is the estimated peak accelerations in g, 

𝑎𝑜

𝑔
 is the acceleration limit from the 

Figure 4, 𝑓𝑛 is the natural frequency of the floor, 𝑃𝑜 is the constant force equal to 0.41 kN (92 lbs) 

for footbridges, 𝛽 is the modal damping ratio and 𝑊 is the effective weight of the floor. 

The formula above shows that for a fundamental frequency greater than 8 Hz, the 

acceleration limit does not increase. This is different than the limit shown in the Figure 4 because 

in the figure, peak acceleration limits keep increasing beyond 8 Hz. This is done to approximately 

account for footstep impulse vibration. For natural frequencies greater than 9-10 Hz an additional 

stiffness check is implemented: 

1k  mmkN /  or 7.5k  inkips/  ( 45 ) 

The standard also suggests a simplified procedure for determining the first vertical natural 

frequency of a simple floor or beam supported on steel girders between columns as follows: 

           gfn 18.0  ( 46 ) 
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where ∆ is the midspan deflection of the member relative to its supports due to the loading. In a 

simple span assumption, this can be estimated as: 

)384/(5 4

ts IEwL       ( 47 ) 

where 𝑤 is the uniformly distributed load per unit length support by the member, 𝐸𝑠 is the modulus 

of steel, 𝐼𝑡 is the transformed moment of inertia and 𝐿 is the member span. 

Figure 4 can also be used to extend the original plateau to 3-20 Hz. It is finally mentioned 

that floor systems with natural frequency less than 3 Hz should be generally avoided.  

3.4. HIVOSS (Human Induced Vibrations of Steel Structures) (HIVOSS, 2007) 

This is the European design and assessment guide of the vibration serviceability. HIVOSS 

identifies several step wise design criteria for footbridges. HIVOSS suggests the usage of a finite 

element model and experimental testing to determine the natural frequency content of the 

footbridge. It also defines additional revisions to the modal mass of the structure. Utilizing the 

pedestrian force models and their harmonic representation as defined in the previous section, 

HIVOSS provides the following critical range of frequencies: 

 For vertical and longitudinal vibration:  1.25 ≤ 𝑓 ≤ 4.6 Hz 

 For lateral vibration:      0.5 ≤ 𝑓 ≤ 1.2 Hz 

Therefore, footbridges that have their natural frequencies within the limits defined above 

must be subjected to a dynamic assessment to pedestrian excitation. For the dynamic response 

assessment of footbridges, the next step is to define a set of physical conditions representing real 

conditions that can occur during service time of the footbridge. HIVOSS defines five traffic classes 

based on pedestrian densities 𝑑 (peds./m2) as shown in Table 5 and four comfort levels, ranging 

from unacceptable vibration levels to maximum comfort as shown in Table 6.  

Table 5. Traffic classes defined in HIVOSS 

Traffic Class Density, 𝒅 (𝒑 = pedestrian) Description 

TC 1 15 𝑝/𝑑𝑒𝑐𝑘 𝑎𝑟𝑒𝑎 Very weak traffic 

TC 2 0.2 (𝑝/𝑚2) Weak traffic 

TC 3 0.5 (𝑝/𝑚2) Dense traffic 

TC 4 1.0 (𝑝/𝑚2) Very dense traffic 

TC 5 1.5 (𝑝/𝑚2) Exceptionally dense traffic 
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Table 6. Comfort levels defined in HIVOSS (*Limit value defined in SÉTRA guidelines) 

Comfort level Description Vertical 𝒂𝒍𝒊𝒎𝒊𝒕(𝒎/𝒔𝟐) Transverse 𝒂𝒍𝒊𝒎𝒊𝒕(𝒎/𝒔𝟐) 

CL 1 Maximum < 0.5 < 0.1 (0.15*) 

CL 2 Medium 0.5 – 1.0 0.1 (0.15*) – 0.3 

CL 3 Minimum 1.0 – 2.5 0.3 – 0.8 

CL 4 Unacceptable > 2.5 > 0.8 

The guidelines also define a “lateral lock-in” phenomena, whereby a pedestrian in order to 

compensate for his center of gravity and lateral stability will try to move with the bridge’s lateral 

displacement motion. This will cause the laterally moving footbridge to vibrate even further as 

essentially the pedestrian has caused his moving motion harmonic to coincide with that of the 

bridge causing a higher resonance amplitude. This phenomenon was observed to occur at a trigger 

amplitude of 0.1-0.15 m/s2.   

The next step in the HIVOSS guidelines is to calculate the maximum acceleration that the 

footbridge will experience under each design situation. There are three alternative methods 

described in the guidelines for the evaluation of acceleration. In the first two methods, that is the 

SDOF method and the finite element method, a harmonic load model is used that simplifies the 

random pedestrian load corresponding to a pedestrian density 𝑑 to an equivalent deterministic load 

uniformly distributed on the bridge deck. This equivalent number of perfectly synchronized 

pedestrians, 𝑛′ corresponds to a stream of 𝑛 random pedestrians as follows: 

nn 8.10  (TC1 to TC3, 𝑑 < 1.0 p/m2)    ( 48 ) 

nn 85.1  (TC4 to TC5, 𝑑 ≥ 1.0 p/m2)    ( 49 ) 

where ζ is the structural damping ratio. Both models can be defined by a uniformly distributed 

harmonic load corresponding to the equivalent pedestrian stream as follows:  


S

n
tfPtp s


 )2cos()(      ( 50 ) 

where 𝑃 is the component of the force due to a single pedestrian and given as 280 N for vertical 

vibrations and 35 N for transverse vibrations, S is the area of the loaded surface (note that 𝑛 = 𝑆 ×

𝑑), 𝑓𝑠 is the walking frequency of the pedestrian, and ψ is the reduction coefficient that accounts 

for the probability that the step frequency or its second harmonic approaches the considered natural 
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frequency of the footbridge. This reduction coefficient is illustrated as a function of the structure’s 

frequency for the vertical and transverse vibrations in Figure 5 below: 

  

(a) (b) 

Figure 5. Reduction coefficient ψ for (a) vertical and (b) transverse vibrations according 

to HIVOSS guidelines.  

A finite element model or an equivalent SDOF system of the footbridge is then used to 

compute the associated maximum acceleration for given dynamic loading. If the SDOF approach 

is used, the maximum acceleration at resonance under the above described load model can be 

estimated as: 

2

1
*

*

max
m

p
a        ( 51 ) 

where 𝑝∗ is the generalized load and calculated as 
2𝑝𝐿

𝜋
 for a distributed load 𝑝 per unit length and 

𝑚∗ is the generalized mass and calculated as 
𝑚𝑠𝐿

2
  for given distributed mass 𝑚𝑠 per unit length.  

The third method is a response spectra approach that aims to describe the stochastic loading 

and system response with a specific confidence level based on 5000 different pedestrian streams. 

Each of these streams had statistically random properties including pedestrian weight, step 

frequency, start position, moment of first step etc. The following empirical equation is provided to 

predict the characteristic acceleration, 95th percentile of maximum acceleration based on different 

pedestrian densities: 

2
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     ( 52 ) 

where 𝑘𝑎,95% is the peak factor that transforms the standard deviation of the acceleration response 

to the 95th percentile characteristic value, 𝜎𝑎
2 is the variance of the acceleration response, 𝜎𝐹 is the 
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standard deviation of the pedestrian loading, 𝐶 is the constant describing the maximum of the load 

spectrum, 𝑘1 and 𝑘2 are constants which depend on the considered natural frequency and 

pedestrian density, 𝑚𝑖
∗ is the modal mass of the considered mode 𝑖.     

Therefore, the above criteria can be used to assess the serviceability of a footbridge under 

the European guidelines. HIVOSS also suggests further testing procedures and structural 

modifications that is beyond the scope of this document.  

3.5. SÉTRA (Assessment of Vibrational Behavior of Footbridges under 

Pedestrian Loading) (SÉTRA, 2006) 

The SÉTRA guidelines define four footbridge classes: Class I – urban footbridge with very 

heavy traffic; Class II – urban footbridge with heavy traffic; Class III – footbridge for standard 

use; and Class IV – seldom used footbridge. The comfort levels are defined in the same manner 

with HIVOSS guidelines as given in Table 6 except that the limiting acceleration value for 

maximum comfort for transverse vibrations is 0.15 m/s2. For Class I to III footbridges, a dynamic 

analysis might be required if their natural frequency is below 5 Hz for vertical vibrations and below 

2.5 Hz for transverse vibrations. Table 7 provides the load cases that need to be considered in the 

dynamic analysis depending on the footbridge’s class and natural frequency. Case I corresponds 

to a loading due to sparse or dense crowds and is considered for Class II and Class III footbridges. 

Case II represents a very dense crowd loading and is considered only for Class I footbridges. Case 

III considers the second harmonic of the vibrations caused by pedestrian loads and is taken into 

account for Class I and II footbridges. For all loading cases, the loads for dynamic analysis are 

calculated using the equations (48) to (50) given above. The pedestrian density d and the force due 

to a single pedestrian walking P are given in Table 8 for each loading case. The reduction 

coefficient ψ according to SÉTRA guidelines is given in Figure 6. The maximum acceleration of 

the footbridge is calculated using a SDOF approach and given as follows: 

 S

wtp
a

d)(4

2

1
max       ( 53 ) 

where |𝑝(𝑡)| is the magnitude of the applied load 𝑝(𝑡); 𝑤𝑑 is the available width of the deck for 

pedestrian walking; and 𝜌𝑆 is the total linear density, which is calculated as the sum of the linear 

density of deck and that of the pedestrians.  
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Table 7. Load cases to select for dynamic analysis 

Footbridge class 

Frequency range (V: Vertical, T: Transverse) 

Range 1 

V =1.7–2.1 Hz 

T =0.5–1.1 Hz 

Range 2 

V = 1.0–1.7 Hz and 2.1–2.6 Hz 

T = 0.3–0.5 Hz and 1.1–1.3 Hz 

Range 3 

V = 2.6–5.0 Hz 

T = 1.3–2.5 Hz 

Class I Case 2 Case 2 Case 3 

Class II Case 1 Case 1 Case 3 

Class III Case 1 – – 

 

Table 8. Pedestrian loads for different loading cases 

Loading 

case 

Pedestrian density, 𝒅(𝒑/𝒎𝟐) Single pedestrian force, 𝑷(𝑵) 

Class I Class II Class III Class I Class II Class III 

Case 1 – 0.8 0.5 – 
280 (V) 

35 (T) 

280 (V) 

35 (T) 

Case 2 1.0 – – 
280 (V) 

35 (T) 
– – 

Case 3 1.0 0.8 – 
70 (V) 

7 (T) 

70 (V) 

7 (T) 
– 

 

  

(a) (b)  

Figure 6. Reduction coefficient for (a) vertical and (b) transverse vibrations according to 

SÉTRA guidelines 
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3.6. General Comments 

Some comparisons can now be outlined after reviewing the guidelines mentioned in this 

section. The three main guidelines HIVOSS, SÉTRA and the AISC Guide 11 can be compared as 

follows. 

 In HIVOSS and SÉTRA a traffic class and comfort level is defined based on the 

pedestrian density, location of the bridge and usage. These in effect then correspond to 

an acceleration limit. In the AISC design guide peak accelerations are graphically 

obtained from the ISO 2631-2 based curve. 

 For the harmonic load prediction, both HIVOSS and SÉTRA provide a range of values 

for the reduction coefficient but the AISC design guide provides a simplified exact 

numerical estimate to be used for outdoor footbridges. 

 An in-depth calculation for loading is provided under HIVOSS and SÉTRA but only 

specific load values are provided for chosen harmonics in AISC. 

 HIVOSS and SÉTRA contain provisions for vertical, longitudinal and transverse motion. 

Therefore, they can be used to assess for frequencies and accelerations in any of the three 

directions. AISC is however applied for only vertical motion. 

 AISC guide is a comprehensive guide for all steel structures especially floor systems and 

incorporates other structures such as footbridges as well. HIVOSS and SÉTRA are 

specifically used only for footbridges. 

In general, it can be deduced that HIVOSS and SÉTRA provide an extensive mathematical 

background and analytical solutions whereas the AISC design guide provides only simplified 

solutions and estimates. Both the European guides are more extensive and provide greater detail 

than the AISC guide. Despite, its simplistic nature the AISC design guide fails to provide an in-

depth discussion on vibration serviceability specific to footbridges. 
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4. BACKGROUND RESEARCH 

Dynamic testing of bridges has been conducted on bridge structures for some time (Abdel-

Ghaffar & Scalan, 1985), however with modern technological advances and fast signal processing 

methods it has now become possible to conduct and process vibration data from bridges in real 

time, with better precision and accuracy. Several extensive studies exist that deal with this topic. 

The following literature review for this document has been divided into two sections. First an 

outline of the recent works pertaining to dynamic testing of bridge structures, their instrumentation 

plans, signal processing schemes and their resulting dynamic properties are presented. This is 

followed by a brief background of vibration testing of pedestrian bridges. This will include the 

incorporation of estimated dynamic properties and the assessment of pedestrian bridges for 

vibration serviceability.  

4.1. Vibration Testing and Modal Analysis 

An important aspect of bridge structures is their dynamic characteristics. The most 

important of which is the “natural frequency” of the structure as it inherently defines the system 

in terms of its mass and stiffness. This key dynamic property aids the understanding of the 

structure’s vibration modes causing severe serviceability issues. Vibration experimental studies on 

bridge structures have been conducted by numerous researchers, some of who are discussed below 

(Cunha et al., 2012; Bačinskas et al., 2013; Brownjohn et al., 2003; Halling et al. , 2004; 

Rahmatalla et al., 2014; Wang et al., 2005; Whelan et al., 2009). The underlying commonality 

between each of these researches is their main goal of finding the structure’s natural frequency and 

its modes of vibration. There are numerous ways in which a researcher can conduct this analysis. 

The following literature review provides a comprehensive background of the different testing 

techniques used by these researchers, their testing plans, processing techniques and the resulting 

dynamic properties: 

Assessment of Highway Bridge Upgrading by Dynamic Testing and Finite-Element Model 

Updating (Brownjohn et al., 2003)  

Researchers in this article conducted an extensive set of vibration tests of a highway bridge 

which was renovated and upgraded for strengthening. Changes made to the bridge included the 

removal of overstressed rubber bearings causing a continuous, joint-less structure. The bridge 

essentially consisted of precast pre-tensioned inverted T-beams carrying a concrete deck slab on 
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top. For instrumenting the bridge, a grid of points measuring only vertical acceleration was chosen, 

dividing the bridge into four strips in the transverse direction and six strips in the long direction. 

For the forced vibration test a shaker with a range of providing 0.5 kN at 1.5 to 30 Hz was used 

and was located at the one-third span position on one walkway for convenience and maximum 

effect. Frequency response functions were obtained from the test by dividing the cross power 

spectrums with the auto power spectrums. Modal parameters were obtained using the SDOF circle 

fit and the Eigensystem Realization Algorithm procedures. In the pre-upgrade test 5 vibration 

modes were observed in the range of 0-20 Hz. In the post-upgrade tests lower mode frequencies 

appeared to be significantly higher. Evaluating these using the modal assurance criterion (MAC) 

it was observed that well-coordinated modes had values greater than 0.9 whereas the poorly 

coordinated ones had less than 0.5. Results from these tests were also updated consequently in a 

finite element model. This updated FEM model was able to estimate the load carrying capacity 

more reliably than before. The authors were able to clearly observe the added rotational restraint 

in the modes following the structural changes. 

Modal Analysis and Modelling of Highway Bridges (Halling et al., 2004) 

In this research, two highway bridges in Utah were tested using forced and ambient 

vibrations. Bridge 1 was long-span flyover type structure and was tested by using a drop weight, 

and ambient vibrations. Bridge 2 was a two span bridge with a skew of 7 degrees and end to end 

elevation of about 2 meters. Instrumentation deployed on the first bridge included 10 removable 

accelerometers and 21 channels of strong motion force balanced accelerometers permanently 

attached to the structure. Of these 21 channels, 18 channels were located on the deck and bents of 

the bridge with 3 channels and the recorders located at a free-field site about 140 meters away 

from the bridge. Forced vibration testing was conducted using an eccentric-mass shaking that was 

mounted on the east extension of bent 7. The forcing function, ranging from 0.5 to 20 Hz was 

applied at 45 degrees to the longitudinal axis of the bridge.  

Natural frequency estimates obtained from forced, ambient and a computer generated finite 

element were compared for the first 10 modes and were found to be highly comparable. For the 

second bridge, thirty-four channels of data were recorded during both ambient and forced vibration 

testing. Seven of those channels were longitudinal, seven vertical, and twenty transverse. The 

bridge was excited from ambient vibration where a 1800 kg drop weight was positioned in three 

different locations.  
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Similarly, for this bridge a computer generated FEM model was compared with the ambient 

and forced tests showing a variation of no more than 4%. The authors further suggested a long 

term study for the temperature and traffic effects on the monitoring system.  

Overview of a Modal-Based Condition Assessment Procedure (Wang et al., 2005) 

This article dealt with the process of characterizing the physical condition of a structure. A 

representative bridge in Ohio was selected as a case study to illustrate the procedure discussed in 

this paper. This condition assessment was performed by conducting modal and truck load testing 

followed by a finite element modelling and calibration. The bridge in question consisted of three 

spans and five girders with cover plates spaced at certain distances. For the modal test, 15–20 

accelerometers with a range of 0.025 – 800 Hz, were placed on the bridge deck above a given 

girder line and the bridge was systematically excited using an instrumented hammer while 

acceleration data was recorded. Data was acquired from these sensors using a Hewlett-Packard 

(HP) VXI data acquisition system. Locations of all output sensors were established based on the 

results of the nominal finite element modal. In the instrumentation scheme, two configurations 

were used where sensors of girder 2 and 5 were switched due to traffic restrictions: 

A Bridge-Girder Condition Indicator (BGCI) was also calculated. This is simply the 

displacement profile of the instrumented girders and is computed by multiplying the flexibility 

matrix by a load vector. The BGCIs were used in the convergence study to determine how many 

modes are required to completely characterize the behavior of the bridge and were used along with 

the frequencies, mode shapes, and strain data in calibrating the finite element model. All the data 

captured was processed in MATLAB using routines in the frequency domain. Experimental and 

analytical mode shapes were correlated using the MAC. The finite element model was calibrated 

using an objective function. The authors observed that the standard calibration procedure 

developed for this bridge can be used and modified for another bridge in the absence of 

experimental data and would still yield more accurate results.  

Real-Time Wireless Vibration Monitoring for Operational Modal Analysis of an Integral 

Abutment Highway Bridge (Whelan et al., 2009) 

In this study a large-scale wireless sensor network was deployed for ambient vibration 

testing of a single span integral abutment bridge to derive in-service modal parameters. The bridge 
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consisted of a thick reinforced concrete slab supported by four integral abutment girders with a 

single span. A total of 20 data points were monitored with dual-axis accelerometers: 

The general test setup consisted of twenty dual-axis accelerometers deployed alongside 

eleven reusable strain transducers that were interfaced with twenty wireless sensor nodes. 

Acceleration responses of the bridge from ambient excitation were measured using accelerometers 

mounted directly to the web of each girder. A duration of three minutes and six seconds (186 

seconds) was specified with an effective sampling rate of 128Hz. Excitation of the structure was 

provided only by ambient environmental loads and vehicular traffic. In this study, output-only 

system identification from the accelerometer time histories was performed using the Modal 

Analysis on Civil Engineering Constructions (MACEC) software package. This software analysis 

package permits the use of both the classical Fourier-based Frequency Domain Decomposition 

(FDD) with peak picking as well as the stochastic subspace identification (SSI) method for 

deriving mode shapes, natural frequencies, and damping ratios. A solid model of the bridge tested 

consisting of the steel superstructure, concrete slab, abutments, and railings was also drafted in 

AutoCAD 2004 from the as-built Department of Highways drawings. Finite element analysis of 

the model was performed using the FEMPRO software package by ALGOR Incorporated. The 

overall objective of this study was to evaluate the performance of the wireless sensor network. 

Real-time streaming of 40 channels synchronized with each other was achieved successfully. 

Recent Perspectives in Dynamic Testing and Monitoring of Bridges (Cunha et al., 2012) 

This research was an extensive review of some of the recent aspects in dynamic testing and 

monitoring of bridges. Three of the case studies within this article are summarized here. 

Millau Viaduct: 

This large cable-stayed road-bridge in France was used to perform ambient vibration 

testing using four seismographs including triaxial accelerometers. These seismographs, duly 

synchronized using GPS sensors, were placed outside the deck. With the purpose of identifying as 

many modes of vibration as possible, essentially of vertical and transversal bending nature, two of 

those triaxial sensors were used as references (sections R1 and R2) and kept in fixed positions, 

whereas the other two were successively placed in each one of the remaining 26 sections 

schematically indicated in . The seismographs were programmed using a laptop to acquire signals 

with a sampling rate of 100 Hz in periods of 960 s every 20 min, the last 4 min being used.  
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A singular value decomposition of the data showed the existence of a large number of 

modes in the frequency range of 0.1-1.0 Hz. Different stochastic modal identification methods 

such as the p-LSCF (poly-reference Least squares Complex Frequency-domain estimator) and SSI-

COV (Covariance-driven stochastic subspace identification) were used to obtain modal 

parameters. 

Pedro e Inês Footbridge: 

This slender structure with metallic arch spans and a rectangular box cross section was an 

interesting prospect in studying the dynamic structural behavior. According to preliminary studies 

developed at design stage it was stated that this bridge would be prone to excessive lateral and 

vertical human-induced vibrations, and so the structure was built with necessary precautions in 

order to enable the subsequent installation of several dampers. The monitoring system included 

six piezoelectric accelerometers, a signal conditioner, an uninterruptable power supply and a 

digital computer, stored inside one of the bridge abutments and transmitting measured records of 

vibration every 20 min through the Internet to a central computer. The signals were then organized 

in a database that can be accessed at any time by post-processing tools in LabVIEW (National 

Instruments Corporation Austin, Texas). To satisfy the main objective of this monitoring system, 

a website was developed, which allowed the visualization of the time signals of the six 

accelerometers and subsequently monitoring the vibration levels of the structure.  

During the construction phase several dynamic tests were conducted including ambient, 

free vibration and crowd tests. Results from these tests were the basis for fine tuning the finite 

element model and subsequent final design of dampers. It was observed that a jump in the peak 

acceleration is observed at a certain number of pedestrians that is consistent with codified literature 

(HIVOSS). Damping estimates were also calculated for the damper design.  

Infant D Henrique Bridge: 

This bridge was composed of two mutually interacting fundamental elements: a very rigid 

prestressed reinforced concrete box beam, supported by a very flexible reinforced concrete arch. 

The dynamic monitoring system of the Infante D. Henrique Bridge was composed of 12 force 

balance accelerometers installed inside the deck box girder. Three sensors equip each of four 

sections, one to measure the lateral acceleration and two for the vertical acceleration at the 

downstream and upstream sides.  
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Acceleration time series with a length of 30 minutes sampled at a rate of 50 Hz were 

recorded. Temperature sensors were also installed to eliminate any temperature effects in the 

modal parameter estimation. Three different identification algorithms, FDD (Frequency Domain 

Decomposition), SSI-COV and p-LSCF were used.  

A Sensor Instrumentation Method for Dynamic Monitoring of Railway Bridges (Bačinskas et 

al., 2013) 

In this article, researchers conducted experimental and numerical analysis using forced and 

ambient vibration testing techniques. The bridge located in Lithuania, carried two railway tracks 

built on prestressed concrete sleepers and crushed stone ballast. The structural system of the bridge 

consisted of a composite steel-concrete deck rigidly fixed to the reinforced concrete abutments. 

For the instrumentation, a Brüel&Kjær LAN-XI system was used for measuring the vibration 

parameters of the real structure. In the test, accelerometers were fixed to the control pads attached 

to the surface of the bridge superstructure. Field tests of the bridge were conducted using 

excitations induced by dropping a weight and by ambient traffic excitation loadings. During the 

tests vertical and horizontal lateral accelerations and displacements at mid-span of the girders were 

measured.  

The purpose of the impact vibration tests was to extract bridge resonant modes and 

corresponding frequencies to be used for comparison with those obtained from the ambient 

vibration test and by numerical simulation. The collected test data was analyzed using the 

Brüel&Kjær software program to determine main modal characteristics of the bridge 

superstructure: accelerations, mode shapes, frequencies of forced and free vibrations, damping 

ratios. The bridge response to dynamic excitation was measured as acceleration-time records. The 

measured acceleration response was filtered with a 30 Hz low-pass filter. A numerical modal 

analysis of the tested bridge was also performed using commercial finite element software 

Staad.Pro. It was observed that the numerical model predicted five modes below 20 Hz whereas 

experimental data was only able to pick up four. Experimental and numerical data were also found 

to be comparable to each other. The authors further suggested updating their numerical model with 

the experimental data to predict future condition. 
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Finite Element Modal Analysis and Vibration-Waveforms in Health Inspection of Old Bridges 

(Rahmatalla et al., 2014) 

Researchers in this article introduced a nondestructive vibration based approach known as 

the Operational Response and Waveform Analysis (ORWA) in order to validate predictability of 

the finite element model. The bridge investigated in this study was a composite steel I-girder and 

concrete deck bridge with a single span over a small natural creek in Iowa. The structure was not 

rated structurally deficient during its previous bridge inspection, but was deemed functionally 

obsolete and received a low sufficiency rating, meaning it was intolerable and required high-

priority corrective action. For the ORWA test, five roving uniaxial accelerometers and one fixed- 

reference accelerometer were used to record an extensive grid of 440 response points including 70 

per beam, 10 per diaphragm, and 20 per abutment.  

Accelerometers were fixed to the bottom flange of the beams and diaphragm members 

using magnets, and brackets were fixed to the face of the abutment walls with epoxy so that the 

vertical acceleration of the walls could be measured. A field impact test using a 5000 lbf impulse 

hammer was also conducted on the bridge as a baseline approach with the goal of getting more 

confidence with the ORWA test. For the impact test, three 5000 g range triaxial accelerometers 

and six 100 g range uniaxial accelerometers were used to determine the dynamic response of 

various structural elements. Typically, accelerometers were fixed to structures with a magnet, but 

in some cases, where rust and dirt or concrete existed, wax was used with a magnet. An IOtech 

Zonic Book/618E Data Analyzer and an IOtech/650U were used to acquire data and construct the 

frequency response function (FRF). MEscope software was used to calculate the peak frequencies 

and associated mode shapes and to animate data. A numerical model of a bridge similar to a healthy 

form of the field-tested structure was then created using ANSYS. The ORWA testing was validated 

by both the impact test and the ANSYS model showing comparable bending modes.  

4.2. Serviceability Assessment 

In the section above a summary of the research articles with different vibration testing 

procedures was outlined. The topic of vibration testing is now further expanded to incorporate 

vibration aspects specifically on footbridges. The main reason in conducting an extensive 

serviceability assessment analysis on pedestrian bridges, has to do more with human comfort than 

with the structural integrity of the bridge. Human comfort on footbridges has been studied by 
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several researchers in light of existing codes and guidelines (Bacinskas et al., 2014; Caifeng & 

Linxiong, 2015; da Silva et al., 2007; Dey et al., 2015; El-robaa et al., 2015; Gudmundsson, 2008; 

Honda, 2007; Sadeghi & Kueh, 2015; Salgado et al., 2014; Grandić, 2015; Van Nimmen et al., 

2010; Živanović et al., 2006). The major pre-cursor to a sudden interest in the field of vibration 

serviceability was the London Millennium Bridge as discussed earlier. Since then, numerous 

researchers have tried to investigate the dynamic response to a footbridge under different types of 

force loading either analytically or experimentally or both. The following section discusses a few 

of these investigations: 

Modal Testing and FE Model Tuning of a Lively Footbridge Structure (Živanović et al., 2006) 

This was one of the first published articles where physical vibration testing and finite 

element modeling of footbridges was reported. The selected structure located in the country of 

Montenegro, was a steel box girder multispan footbridge. It was previously observed that at 

particular design load combinations stresses are induced in the structure close to allowable 

vibration limits in the cross sections. The bridge, despite being stiffened earlier, did not show a 

huge shift in these vibration frequencies. For a more detailed investigation the researchers 

developed a finite element model and recorded the modes shapes. Following the FE model, a FRF-

based modal test was conducted on the bridge using only limited instrumentation, but multiple 

measurement points and a shaker for the excitation source. After this, an ambient vibration test 

was also conducted to obtain modal parameters. For the FRF modal test, the Non-Linear Least 

Squares (NLLSI-M) method was employed and for the ambient vibration test The Canonical 

Variate Analysis (CVA) was used. Analyzing the results from the tests, it was revealed that the 

experimental results were consistent with each other but there was a discrepancy with the FE model 

resulting in low natural frequency estimates. This was fixed by model tuning some of the stiffness 

parameters from the model, resulting in good correlation. 

Vibration Analysis of Footbridges Due to Vertical Human Loads (da Silva et al., 2007) 

The main idea behind this research article was to develop a design methodology to better 

evaluate the footbridge’s user comfort and safety. A finite element model of a footbridge in the 

city of Rio de Janiero, Brazil was created on ANSYS. Dynamic forces on the model were simulated 

using Fourier Series equation for time varying forces incorporating a harmonic force dynamic 

amplifier αi. The authors further suggested that human activities such as dancing, jumping and 
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aerobics only excite the first mode whereas concentrated forces such as people walking may excite 

higher vibration modes. Two criteria for human comfort are suggested: Acceleration limits based 

on the ISO standards and a time dependent harmonic force component that coincide with the 

fundamental frequency. These in turn result in the formulation of a resonance response function, 

which is in turn incorporated into the model.  

A total of four load cases are evaluated: 1) one resonant harmonic load applied at maximum 

amplitude point depicting a walking load, 2) a static and harmonic combination of time dependent 

loads depicting another walking load, 3) a moving time dynamic load simulated by six different 

forces applied at various intervals depicting a more realistic walking load and 4) an extreme load 

depicting a crowd. The natural frequency from a single degree of freedom model was verified by 

the finite element model. It was observed that acceleration limits from various international 

standards were not exceeded when only one person walked the footbridge, however, the 

acceleration limits did exceed the limits in the case of a large number of pedestrians such that it 

causes enormous problems related to human comfort.  

Serviceability Assessment of Three Lively Footbridges in Reykjavik (Gudmundsson et al., 2008) 

In this research article, researchers tested two post-tensioned concrete footbridges and one 

steel footbridge for vibration levels of which only one of the post-tensioned structures were 

discussed in this particular article. These bridges were located in Reykjavik, Iceland. The authors 

evaluated and updated the finite element models of the bridges with previously performed 

experimental vibration testing. Various load cases were implemented to assess serviceability of 

these bridges. These included pedestrians walking and running at specific frequencies. Several 

configurations were tested and then compared with the design standards. For the first test bridge, 

peak accelerations and response factors were compared with the Eurocode prestandard and ISO 

10137 and results were found to satisfy the criteria. The load cases were also generated in the finite 

element model and peak accelerations graphed against experimental values, Bachmann values and 

the Eurocode standard. It was observed that the finite element model was the lowest in the single 

pedestrian case and was very accurate in the single runner case.  

In the second bridge only running load cases were evaluated due to a higher frequency first 

mode. It was observed that the Eurocode limits were exceeded by a single runner at and around 

the resonant frequency compared to a packed crowd. The authors suggested the use of a 
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probabilistic approach instead of using deterministic load models and binary pass-fail acceleration 

criterion. 

Vibration Serviceability of Bongossi Wood Pedestrian Bridge (Honda, 2012)  

In this short research article, the author conducted an analytical serviceability test on a 

timber footbridge located in city of Kitakyushu in Japan. Field tests were also conducted on the 

bridge through ambient vibrations, impact loading and resonant walking and running vibrations. 

A pedestrian model was then developed in FORTRAN using equations of motions through the 

direct integral method. Results obtained were compared with the Ontario Code and BS5400.  It 

was observed that both standards satisfied the measured and computed results.  

Vibration Serviceability of Footbridges: Evaluation of the Current Codes of Practice (Van 

Nimmen et al., 2010) 

A comprehensive study is published in this article whereby the authors evaluate two 

different design codes, the European guide HIVOSS and the French guide SÉTRA using data 

obtained from a finite element model as well as from vibration testing. The two codes are discussed 

in context of their relationship to each other given a four step methodology: 1) human induced 

vibrations as defined by the equivalent number of pedestrians, 2) footbridge dynamic 

characterization whereby both codes explain different criteria for added mass and damping ratios, 

3) vibration calculation or maximum acceleration under maximized loading, reduction factor and 

resonance frequency and 4) vibration level evaluation under various comfort levels. A total of 8 

footbridges were studied. Results from the ambient tests and numerical model are tabulated for all 

the bridges. Two of the eight total footbridges were provided in detail. It was concluded that small 

variations in the finite element model result in different code evaluation. Therefore, a modified 

load model was suggested given uncertainties in the design stage. It was observed that damping 

values also influence the predictions but are difficult to estimate in the design stage. An in situ 

identification of modal parameters was finally suggested.     

Field Load Testing and Structural Evaluation of Steel Truss Footbridge (Bacinskas et al., 2014) 

In this article, researchers tested a newly constructed steel truss footbridge in Lithuania. 

The bridge was simplified to a simple span model due to the location of elastomeric bearings at 

the ends. A finite element was created in Staad.Pro to assess static and dynamic characteristics. 

For the static test consideration, the bridge was loaded with precast concrete slabs and during the 
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dynamic test the span was excited by a drop weight and by pedestrians. An array of 26 sensors 

was used to instrument the bridge. In the static tests, the mid span deflection and the residual 

displacements were observed to be in accordance with the finite element model. In the dynamic 

test, measured natural frequencies were lower than code specified limits and therefore required a 

vibration comfort evaluation. Codes used in this research were adopted from the Lithuanian 

standards, which are in effect based on the Eurocode. Numerical simulations in finite element 

model were compared with the code standards and a three people running experiment. Results 

were found to be below the specified limits and in good correlation with the experimental values.  

Serviceability Assessment of the Góis Footbridge using Vibration Monitoring (Salgado et al., 

2014)  

In this paper the authors looked into the different design codes that provide standards for 

serviceability assessment of a footbridge. The footbridge used in this study was a timber arch 

structure located in Portugal. The bridge was instrumented with accelerometers at 31 measuring 

points including both transverse and vertical directions. The mode shapes obtained for the 

footbridge displayed excessive flexibility in the lateral direction. The authors noted good 

estimation of natural frequencies and damping ratios given small standard deviations. To 

determine the acceleration levels three different pedestrian cases were evaluated. This included a 

case with pedestrians walking at 1.4-1.8 Hz then one with 2.7-3.1 Hz and the last case with 

pedestrians jumping on the bridge at frequencies of 2.0-2.5 Hz. Peak acceleration values and the 

natural frequencies were then compared to several different codes and standards. The limits 

specified in these standards were satisfied in some cases and required further acceleration 

assessment in other cases. The authors also observed that using RMS accelerations a better 

parameter of pedestrian comfort level can be evaluated. It was finally concluded that current codes 

and standards are not fully applicable and a further study was proposed.  

Ambient Vibration Survey and Vibration Serviceability Evaluation of Footbridges (Caifeng et 

al., 2015) 

In their research Caifeng & Linxiong tested 37 footbridges in various districts of China by 

conducting an ambient vibration test followed by a vibration serviceability evaluation based on 

two design codes. Modal analysis was conducted on the acquired data by peak picking the natural 

frequencies based on the Frequency Domain Decomposition Technique. Several different forms 
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of footbridges were tested such as single or multi span with spans ranging from 20 meters to 120 

meters. It was observed that most of the footbridges have fundamental frequencies in the range of 

2-7 Hz where the lowest frequencies correspond to single span pre-arched footbridges and the 

highest frequencies correspond to short span bridges with piers.  

Damping ratios were also calculated using the half power bandwidth method. For the 

vibration serviceability the authors used the Chinese Industrial Standard CJJ69-95 with the British 

Standard 5400 to evaluate the serviceability of the footbridge. In the evaluated criteria, acceleration 

limits needed to be satisfied (𝑎𝑚𝑎𝑥 ≤ 0.5√𝑓) if the fundamental frequency was between 3-5 Hz. 

If the fundamental frequency was more than 5 Hz the criterion was automatically satisfied and if 

the fundamental frequency was less than 3 Hz, then it was not satisfied at all. In their evaluation, 

the authors suggested reinforcement for increased stiffness or vibration absorbers for footbridges 

that did not pass the serviceability criteria.  

Evaluation of Human-Induced Vibration of Continuous Footbridge (El-Robaa et al., 2015) 

In this research human-induced vibrations are evaluated through the “footfall” phenomena 

using finite element modelling. The footfall analysis method as published by “The Concrete 

Centre” CCIP-016 is a rigorous analysis method for calculating structural response from a single 

walking person. A response factor (R) is calculated which is simply a multiplier of the base line 

curve for RMS acceleration as defined in the British Standard 6472-1992. This corresponds to the 

level of average threshold of human perception in continuous vibration. For the purpose of their 

research, the authors modelled a total of 15 footbridges composed of hinged supported composite 

steel beams with 2 equal spans and a reinforced concrete composite slab deck. The various cross 

sections were optimized for deflection and strength and were evaluated by the footfall analysis. In 

the analysis a range of walking frequencies from 1-2.8 Hz were generated through a forcing 

function and induced into specific nodes in the structure. Based on the acceleration components of 

these nodes the total response factor is obtained. This model was simulated for all the range of 

frequencies and the maximum response factor was obtained. It was found that for all cases, heavily 

trafficked indoor bridges did not satisfy the CCIP-016 limit cases. Different finished weights of 

the bridges also corresponded to varying response factors. The authors noted a key point that in 

some cases a frequency of 3 Hz and above in a small span bridge with low finished weight was 
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not satisfied by the footfall analysis despite being satisfied by other international standards such 

as the AASHTO LRFD standards. 

Vibration Serviceability Analysis of Aluminum Pedestrian Bridges Subjected to Crowd Loading 

(Dey et al., 2015) 

In this article, the notion of serviceability assessment was extended to incorporate 

aluminum pedestrian bridges that were constructed in house. The two bridges of spans 12.2 meters 

and 22.9 meters were assembled with bolted connections from aluminum members and had equal 

width and height dimensions. A total of twelve accelerometers were instrumented on the structures 

both laterally and vertically. Modal tests on the structure were conducted and the natural 

frequencies and damping ratios were recorded. For serviceability considerations several pedestrian 

tests were conducted with varying configurations. The tests were also repeated several times for 

added redundancy and statistical significance. The test results were compared with 4 different 

standards namely: Eurocode 5, British National Annex, SÉTRA and HIVOSS. Each of the codes 

were used to obtain loading scenarios and acceleration limits.  

Natural frequencies from the structure were verified with the critical limits to assess the 

requirement of a dynamic analysis. It was observed that except for the shorter bridge in vertical 

frequency range, every other case had to be evaluated for a secondary dynamic check. An 

important observation made by the authors was the likely increase of vibration due to the 

successive harmonics of the walking frequency resonating with the structures natural frequency. 

A further study in damping uncertainty was suggested by the authors.  

Serviceability Assessment of Composite Footbridge Under Human Walking and Running Loads 

(Sadeghi & Kueh, 2015) 

The aim of this research study was to generate fundamental research knowledge on the 

vibration characteristics of slender composite footbridge structures under human running and 

walking loads for further evaluation with current design standards. In this study the authors 

employed modal analysis using finite element model of the composite bridge. Human walking and 

running was simulated using the harmonic forces as expressed in the Fourier time domain. The 

serviceability criterion was adopted from ISO standards, where 2 specific items: peak acceleration 

limits and the harmonic force component were checked. For the harmonic case a resonance 

response function was defined in terms of the reduction factor. The finite element model was 
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created in SAP2000. The ground motion induced by the pedestrian was applied through the 

application of a three component (longitudinal, lateral and vertical) force at the middle of the 

bridge. It was observed that the first fundamental frequency coincided with only the third harmonic 

of the walking load and second harmonic of the running load. From the results it was seen that the 

maximum accelerations were below the peak limits specified in ISO, Ontario Code and the BS 

5400. The deflection limits were also checked using LRFD provision of 𝐿/1000. All of the various 

checks were satisfied for the model. 

Serviceability Verification of Pedestrian Bridges Under Pedestrian Loading (Grandić, 2015) 

This research article identifies the lack of defined dynamic models for pedestrian loads in 

serviceability as the main disadvantage in current European codes. As a result, the authors propose 

a design load model that can fulfil this void. Pedestrian walking forces in all the three directions 

(vertical, lateral and horizontal) were represented by periodic components in the Fourier series. 

Each force is defined by a step frequency variable, phase shifts and Fourier coefficients/dynamic 

load factors. These dynamic load factors were defined separately in various other articles and were 

tabulated in the paper. However, these factors were not taken into account in different international 

codes and forces are estimated based only on a step frequency that coincides with the structure’s 

natural frequency. The authors defined three different load models: 1) single pedestrian, 2) group 

of pedestrians and 3) continuous pedestrian stream. A sample footbridge model in Zagreb, Croatia 

was modelled in DARK software developed at University of Rijeka and the proposed load models 

were implemented. Maximum accelerations and natural frequencies were obtained from closed 

form solutions as well as from the software. Results were found to be lower than codified limits 

and difference between closed form solutions and software was not more than 3.8% in any case.  

4.3. Summary 

The literature in this section highlights the work performed in the area of dynamic testing 

and serviceability assessment of pedestrian bridges. Studies discussed above show how dynamic 

properties of a bridge structure are obtained from experimental testing methods using different 

data processing techniques. Forced vibration tests and ambient vibration tests are commonly used 

to obtain the dynamic data. Dynamic data obtained from a pedestrian bridge is then used to assess 

its serviceability condition. It was shown above how the key parameters in a serviceability 
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evaluation are the peak accelerations and the natural frequency limits of the structure. Guidelines 

and codes exist that limit these parameters of a given structure.  

However, most of the existing research has focused on European standards and very few 

comprehensive case studies are present that suggest vibration serviceability in American standards. 

It is also seen that minimal guidance is provided by AASHTO on vibration serviceability and as 

such none of the present literature discuss serviceability assessment under the light of AASHTO 

design guidelines (AASHTO, 2009). Another observation from the research review is that effects 

of ambient conditions such as temperature are also not investigated. Temperature effects on 

structures have been studied earlier but not in the light of vibration serviceability.   

The work detailed in this thesis will incorporate different European and American codes 

and perform an in-depth serviceability assessment of a lively footbridge. Comparisons of the 

European and American standards will be made in an effort to further research in the topic of 

Vibration Serviceability Assessment. Effects of temperature on the assessment would also be 

briefly explored.     
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5. DYNAMIC CHARACTERIZATION OF RUFFNER FOOTBRIDGE 

This section will discuss the complete dynamic characterization of the selected pedestrian 

bridge. This is the methodology section where the procedure for obtaining dynamic properties of 

natural frequencies, mode shapes and damping for the structure as well as the various guidelines 

are presented. An outline of this section is provided in the subsection below.  

5.1. Investigation Procedure 

There are several steps that outline the overall investigation procedure. The following 

model briefly explains these steps: 

  

From the investigation matrix above, the document will initially present results from a 

preliminary finite element model followed by the experimental procedure, the subsequent data 

analysis and finally the serviceability assessment of the footbridge. The numerical model 

developed in SAP2000 acts as a base model whereby the initial dynamic properties and mode 

shapes are estimated. These are then subsequently used to guide the experimental and 

serviceability testing plan. Data acquired from this plan is then processed in MATLAB using 

modal analysis techniques to obtain the in-situ dynamic characteristics. These characteristics are 

then finally incorporated into the selected codes and guidelines for serviceability assessment.  

Serviceability

Use codified information to assess the bridge for serviceability

Modal Analysis

Process acquired data to obtain in-situ dynamic properties

Experimental Testing

Conduct extensive experimental testing and acquire data wirelessly 

Numerical Modelling

Analyze a finite element model for preliminary dynamic characteristics
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5.2. Description of the Selected Footbridge 

The footbridge investigated in this study is one of two footbridges located south on Emmet 

Street on US 29 in the city of Charlottesville, Virginia. It is located on the grounds of the University 

of Virginia and crosses US 29, linking Ruffner Hall with South Newcomb Road on the other side. 

Figure 7 shows pictures of the footbridge from different angles. 

 

 

(a) 

 

(b) 

Figure 7. Ruffner Bridge a) View from Bavarro Hall (South West Side); b) View from 

North West sidewalk below 

Due to its location at the center of University of Virginia, it is frequently used by students, 

staff and faculty members and is highly trafficked during major sporting events (e.g. football 

games) and ceremonies (e.g. commencement). Constructed in 1973, the bridge is essentially a 

multi-span steel girder with a cast in place concrete deck. Twin girders support the concrete deck 

with diaphragms at the pier intersection and cross-bracing at regular intervals along the length of 

the structure. Other important features of the bridge include its cantilever on both ends and parapets 

with railings. These features play an important role in the overall mode calculation as the cantilever 

causes added flexibility of modes and the parapets will cause greater stiffness for any torsional 

motion. Some of these features can be seen in Figure 8 below. 

The total length of the bridge is 190 ft with successive five spans of 15, 52, 70, 38, and 15 

ft each. The total width of the bridge is 16 ft including 1 ft parapets on each side. The center span 

girders have a thin cover plate on the bottom flange for added strength and stiffness. The unit 

weight of concrete, reported from the drawings, is 110 pcf with a deck slab thickness of 10.5 in. 

Based on measured geometry and available plans, total mass of the superstructure per unit length 

is estimated at 1879.0 lb/ft. A simple (scaled) layout of the bridge plan is shown in Figure 9. 
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(a) 

 

               (b) 

 

(c) 

Figure 8. (a) Cross bracing, (b) Girder connection between each span, (c) View of the side 

parapet and railing 

 

Figure 9. Bridge layout 

 

5.3. Preliminary Finite Element Analysis (FEA) (Gheitasi et al., 2016) 

A 3D finite element model of the pedestrian bridge was developed using (CSI, 2013). Due 

to the uncertainties in the material and structural properties, engineering based estimation was used 

for some parameters in the model development. The model was developed using four-node shell 

elements with a thin-plate formulation incorporating both plate and membrane behavior for the 

deck, and two-node frame elements with general beam-column formulation for the girders. Each 
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15' 15'52' 70' 38'

N
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node possessed six degrees of freedom and relevant rotational and/or translational degrees of 

freedom were restrained at certain joints to replicate the observed boundary conditions as closely 

as possible. Linear elastic material behavior was employed for both steel and concrete materials 

and composite action between the deck and the girders was enforced through node sharing. A mesh 

sensitivity analysis was also carried out to ensure the adequacy of the mesh refinement. A free 

vibration analysis was performed to determine natural frequencies and mode shapes of the 

footbridge. The six lowest vertical and transverse modes of vibration were computed and are 

illustrated in Table 9. The frequencies and mode shapes derived from the FEA models were used 

in planning the instrumentation of the bridge for ambient vibration tests described in the following 

sections (Gheitasi et al., 2016). 

Table 9. Frequencies and modes of vibrations derived from the preliminary finite 

element model 

Mode No. Vertical Bending Transverse 

1 

 
fV1 = 4.42 Hz 

 
fT1 = 1.97 Hz 

2 

 
fV2 = 6.51 Hz 

 
fT2 = 4.04 Hz 

3 

 
fV3 = 9.46 Hz 

 
fT3 = 6.99 Hz 
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5.4. Experimental Test Setup  

Results from the preliminary finite element model were used to plan the instrumentation 

scheme for the experimental tests. Transducer and impact locations were chosen based on the 

relative modal displacements of the meshed grid in the finite element model. Points near zero 

modal displacement or “nodes” were not instrumented such as the deck part that was on top of the 

columns. Testing was conducted at three different times of the year. These included testing the 

structure in July, October 2015 and then January 2016. On each of these test days, testing usually 

started around 11:00 am and continued until approximately 4:00 pm. Since the tests were 

conducted in three different times of the year instantaneous temperature of the structure was also 

measured. Temperature and its effects on the vibration data will be discussed in Chapter 6.  

5.4.1. Equipment 

Instrumentation used for the vibration test primarily consisted of a set of accelerometers 

connected to a wireless data acquisition system. For the forced vibration test an impact hammer 

was used which was also connected to the same data acquisition. The DAQ system used was 

manufactured by Bridge Diagnostics Inc. (BDI) and included the BDI Win-STS software that was 

installed on a standard laptop manufactured by Panasonic (Model CF350). Accelerometers used 

were made of micro-machined capacitive sense element and were also BDI manufactured. They 

had a range of ±2g and a differential sensitivity of 1V/g. These sensors were connected by 20 feet 

long field-grade instrumentation cables to a BDI STS-Wi-Fi node where a total 6 nodes were used 

with an individual capacity to hold 4 transducers providing a total capacity of 24 transducers 

capable of simultaneous data collection. However, due to the limited number of accelerometers 

that is 10, only a few of these nodes were used at a time. These were then connected wirelessly to 

a single base station which in turn was connected to the laptop using a Wi-Fi signal.  

For the forced vibration test, an impact hammer was used that was manufactured by PCB 

Piezotronics and had a force range of 0 – 5000 lbf. The hammer was of model 086D50 and included 

two different impact tips (a stiffer and softer tip). The hammer was connected to a PCB 

Piezotronics signal conditioner model 480E09 using BNC cables which in turn was connected to 

the BDI node using another BNC – Alligator clip cable. The interface for this connection was 

made possible using a universal sensor input plug supplied by BDI. 

 



47 

 

Calibration files for each of the sensors connected to the DAQ system were factory 

computed and installed in the software. Calibration for the impact hammer was based on the impact 

hammer voltage to force sensitivity and was done manually. Data collected from the DAQ system 

was saved automatically by the BDI-STS software as an excel file. This file was then further 

imported and the data processed for modal analysis in MATLAB (“MATLAB,” 2015). 

Temperature measurements on the deck were taken using a digital laser infrared thermometer 

temperature gun and ambient temperature were recorded from weather.gov database.  

5.4.2. Instrumentation Plan 

As mentioned earlier, all vibration testing spanned over a period of 3 days and was 

conducted non-consecutively. Three different instrumentation plans were used for the test, where 

one was specific to impact and ambient data and the other two for serviceability:  

Impact and Ambient Test: The first instrumentation plan was for the ambient and forced 

vibration test and hence had a much more refined mesh. A total of 18 vertical data points were 

used as accelerometer locations including 2 reference points and 2 impact hammer locations. Due 

to a limited number of sensors the grid was divided into half and the test repeated twice, one for 

the first half of the bridge and one for the other. This instrumentation scheme is shown below. 

 

Figure 10. Ambient and impact tests instrumentation scheme 

Table 10 shows the details of this test: 
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Table 10. Impact and ambient test matrix 

Test No. Type Attached Sensors Impact Point Duration (s) Repetitions 

1 Impact 6,12,1,2,3,4,10,11,13,14 3 15 5 

2 Impact 6,12,1,2,3,4,10,11,13,14 15 15 5 

3 Ambient 6,12,1,2,3,4,10,11,13,14 N/A 900 1 

4 Impact 6,12,5,7,8,9,15,16,17,18 15 15 5 

5 Impact 6,12,5,7,8,9,15,16,17,18 3 15 5 

6 Ambient 6,12,5,7,8,9,15,16,17,18 N/A 900 1 

 

           Serviceability Test: In this test, two different testing techniques or plans were used. In the 

first technique groups of 1 and 9 people walked on the bridge at different walking frequencies as 

measured by a metronome (Gismart [Mobile application software], 2016). Accelerometers were 

placed in both vertical and transverse directions. Figure 11 shows the scheme: 

 

Figure 11. Serviceability first part tests instrumentation scheme 

Table 11 shows the details of this test: 

Table 11. Walking serviceability test matrix  

Test No. Type No. of People Walk Frequency (Hz)  Repetitions 

1 Serviceability 9 1 3 

2 Serviceability 9 1.5 3 

3 Serviceability 9 2 3 

4 Serviceability 1 1 3 

5 Serviceability 1 1.5 3 

6 Serviceability 1 2 3 

7 Serviceability Crowd N/A 3 
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For the second technique one pedestrian was used to create a jumping motion at a frequency 

of 2 Hz at each of the mid points of the span. The frequency of 2 Hz was chosen based on the fact 

that results from the previous serviceability tests showed peak accelerations at walking frequency 

of 2 Hz. This was due to its second harmonic being close the bridge’s fundamental frequency. 

Accelerometers were instrumented in a similar fashion as the first serviceability technique with 

few changes including removal of the longitudinal sensor and one transverse sensor to 

accommodate the added two vertical sensors. Figure 12 shows the instrumentation scheme: 

 

Figure 12. Serviceability second part tests instrumentation scheme 

The testing matrix for this plan is shown in Table 12: 

Table 12. Jumping serviceability test matrix 

Test No. Type Location Jump Frequency (Hz) Repetitions 

1 Serviceability Left Span (Curry) 2 3 

4 Serviceability Center Span 2 3 

9 Serviceability Right Span (Newcomb) 2 3 

Sensor attachment and BDI node locations can be seen from Figure 13 below: 

 
(a) 

 
(b) 

Figure 13. (a) Location 4 of accelerometer, (b) Node and base station shown on the left 

of the bridge 
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5.4.3. Testing Logistics 

In all the above tests, data collection time was changed according to each test. Therefore, 

for tests which had a quick impact followed by free vibration, a time of 15 seconds was chosen to 

completely capture the response. Serviceability tests where people walked from one end of the 

bridge to the other, collection time was changed from 30 seconds to 1 minute depending on the 

walking frequency. For example, at a walk frequency of 2 Hz when people moved faster and 

crossed the bridge in less time, data collection was shorter than for a walk frequency of 1 Hz.  

In all of the tests (impact, ambient and serviceability) a sampling frequency of 100 Hz was 

used. This was selected based on the range of frequencies obtained from the preliminary finite 

element model. Since the frequencies of interests lay between 0 – 10 Hz, there was no need to have 

a high sampling rate. A sampling frequency of 100 Hz ensured that a range of 0 – 50 Hz of 

frequencies were obtainable from the response data based on the Nyquist theorem (Olshausen, 

2000). 

In the impact tests, a soft hammer tip was used. The hammer tips allow for the energy 

content of the force impulse to be tailored to deliver the desired range of frequency content 

(PCB.com, 2016). In this bridge only the first three modes were particularly of interest, as they 

corresponded to a low natural frequency range of 1-10 Hz. As there was no need to trigger higher 

modes, using a harder tip would have given excess data. As mentioned earlier, during all these 

tests, temperature was also measured throughout the day. This will be discussed further in the later 

sections.  

 The following Figure 14 shows images from the tests. 

 

(a) 

 

(b) 

Figure 14. (a) Serviceability test with 9 people, (b) Impact hammer test 
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6. RESULTS AND DISCUSSION 

All of the test data was collected in BDI data acquisition software Win-STS (“Win-STS,” 

2011) and was then transferred and processed in MATLAB. Due to the wireless capabilities of the 

BDI hardware, a battery was used which caused power fluctuations in time domain data when set 

for an extended period of time. This issue was resolved in MATLAB by using the command 

“detrend,” applied to all sensor data for consistency. The following Figure 15 shows an example: 

 

 (a)            (b)     

Figure 15. (a) Power fluctuation and (b) resolved ambient data for sensor 7 

Filtering was performed to suppress any unwanted part of the signal. An 8th order filter was 

applied using MATLAB to filter out undesired low and high frequencies. This was done by initially 

using a low pass infinite impulse response filter with a pass band of 30 Hz and then by using a 

high pass infinite impulse response filter with pass band of 0.5 Hz. These can be seen below: 

    

Figure 16. (a) Low pass filter at 30 Hz, (b) High pass filter at 0.5 Hz 
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6.1. Forced Vibration Tests  

Forced vibration test data consisted of an input signal and output data. The input signal was 

the impulse force recorded upon impact from the impact hammer. The output data was the data 

from accelerometers, i.e. acceleration data in gs, where g denotes the gravity. Upon impacting the 

bridge, the impact hammer showed a peak resulting in the attached accelerometers showing peak 

accelerations followed by free vibration of the bridge. A sample of such a test is shown below: 

 

 

Figure 17. Sample impact hammer plot (top) and acceleration data from sensor 12 

The above data was then processed in MATLAB. Using equation (6) and (22) we can write 

the frequency response in matrix form as follows: 
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Where 𝑋 is the response in terms of the frequency response function (FRF) as obtained from the 

accelerometers and 𝐹 being the impact force from the hammer. A total of 4 matrix equations are 

formed, each corresponding to the impact test from Table 10. In order to link the two sets of two 

impact test data, the FRF matrix is pre-multiplied by the reference FRF in each of the cases. These 
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are then combined or added together to give a normalized mode FRF vector. Since the forcing 

locations in the test were 3 and 15, two columns vectors within the FRF matrix corresponding to 

𝐻3,1−18 and 𝐻15,1−18 will be obtained. Each time domain data is also filtered and a window is 

applied. This was explained earlier in section 2.2.4. The overall procedure to obtain one FRF 

matrix can be seen from the schematic below (Note: The plots shown in the schematic only indicate 

the procedure performed and do not reflect the original data): 

 

The two different FRFs using equation (22) are therefore obtained. It was decided to use 

only H1 data as resonance peaks (circled in red) were easily identifiable in H1 than in the H2 

frequency spectrum. Figure 18 is an example of both of these FRFs and their resulting coherence: 
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Figure 18. Frequency response function and coherence H1 & H2 for impact location at 3 

and sensor at 1 

From Figure 18 above, the presence of peaks around 4 and 6 Hz can be observed with 6 

(circled in red) being more dominant. This corresponds to the natural frequency of the bridge. 

However, it must be noted that a minor peak also exists around 9 Hz corresponding to the third 

natural frequency, but is not very clear. This will eventually appear in other graphs depending on 

the impact location and the response measured. It is also observed that coherence for the FRF is 

high showing that the impact force is very well correlated to the response. A summary of the first 

three natural frequencies and the damping ratios from the impact response plots for each test is 

shown in Table 14. Table 13 shows the averaged frequencies for each of the forcing locations.   

Table 13. Summary of obtained natural frequencies 

Forcing Location 1st 𝒇𝒏 (Hz) 2nd 𝒇𝒏 (Hz) 3rd 𝒇𝒏 (Hz) 

3 4.102 5.869 9.341 

15 4.053 5.811 9.326 

Table 14. Complete list of picked natural frequencies and damping ratios 

Forcing 

Location 

Sensor 

No. 

1st 𝒇𝒏 

(Hz) 

ζ  

(%) 

2nd 𝒇𝒏  
(Hz) 

ζ  

(%) 

3rd 𝒇𝒏 

(Hz) 

ζ  

(%) 

3 1 -- -- 5.918 0.59 -- -- 

3 2 -- -- 5.82 0.50 9.194 0.48 

3 3 -- -- 5.82 0.50 9.194 0.48 
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3 4 4.108 0.44 5.82 0.51 -- -- 

3 5 4.108 0.39 5.869 0.57 -- -- 

3 6 4.108 0.43 5.869 0.53 -- -- 

3 7 -- -- -- -- 9.243 0.38 

3 8 -- -- -- -- 9.194 0.41 

3 9 -- -- -- -- 9.194 0.40 

3 10 -- -- 5.918 0.60 -- -- 

3 11 -- -- 5.869 0.50 9.341 0.22 

3 12 -- -- 5.869 0.53 9.341 0.26 

3 13 4.108 0.44 -- -- -- -- 

3 14 4.108 0.48 -- -- -- -- 

3 15 4.108 0.39 5.869 0.58 -- -- 

3 16 -- -- 5.967 0.21 9.341 1.12 

3 17 -- -- 5.967 0.31 9.341 0.91 

3 18 -- -- -- -- 9.341 0.47 

15 1 4.01 0.64 5.918 0.27 -- -- 

15 2 4.108 0.59 5.82 0.41 -- -- 

15 3 4.108 0.81 5.869 0.60 9.194 0.53 

15 4 4.01 0.93 6.553 0.23 -- -- 

15 5 4.059 0.87 6.553 0.22 -- -- 

15 6 4.059 0.89 6.553 0.23 -- -- 

15 7 4.108 0.86 6.553 0.25 -- -- 

15 8 4.108 0.79 -- -- -- -- 

15 9 -- -- -- -- -- -- 

15 10 4.01 0.64 5.92, 6.553 0.22 -- -- 

15 11 4.108 0.59 5.82, 6.456 0.41 9.292 0.42 

15 12 4.108 0.81 5.82, 6.456 0.47 9.341 0.30 

15 13 4.01 0.83 6.456 0.32 -- -- 

15 14 4.059 0.91 6.456 0.39 -- -- 

15 15 4.059 0.87 6.456 0.36 -- -- 

15 16 4.108 0.86 6.456 0.42 -- -- 

15 17 4.108 0.84 -- -- -- -- 

15 18 -- -- -- -- -- -- 
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It can be observed from Table 14 that some of the sensors displayed two closely spaced 

peaks or frequencies for the second mode such as sensor 10 upon impact at 15 (shown in the table 

as separation by a comma). This is a clear indication of the presence of two modes that have a 

natural frequency very close to each other. It is possible that one of these is a torsional mode similar 

to the 2nd pure bending mode. Some of the sensors were located close to a node and were thus not 

able to pick up any of the natural frequencies such as sensor 18 upon impact at 15. The damping 

ratios can be observed to range between 0.4 - 0.9 %. The values are reasonable but show large 

variation. The average damping for the structure is around 0.53 %. 

Using the frequency response function’s imaginary component as shown in equation (25), 

the mode shapes were also computed. An example of the imaginary parts of FRFs from two output 

points are provided below to show this procedure. In this case the goal is to identify the 2nd mode 

shape. Peaks of imaginary parts of FRF at 2nd natural frequency are identified in Figure 19 below. 

 

           (a)                                                           (b) 

Figure 19. (a) Imaginary FRF plot for sensor 4, (b) Imaginary FRF plot for sensor 12 

Using the above technique, the first 3 mode shapes are obtained from the data and are 

shown in Table 15. It is clearly observed that the first 2 mode shapes that are in pure bending are 

very similar but the third mode shape which is a torsional is not completely similar to the other. 

This could mainly be attributed to the low power output from the third mode in the frequency 

response function. It is possible that during the impact test, only the first two modes were excited 

and the third mode was not. From Table 14, the recorded third natural frequency occurs much less 

frequently than the first and second. This can also be seen graphically in Appendix IV FRF plots: 
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Table 15. Obtained mode shapes for different impact points 

 Forcing Location 

 3 15 

1st Mode 

Shape 

   

2nd Mode 

Shape 

  

3rd Mode 

Shape 

  
 

6.2. Ambient Tests 

Similarly, the modal parameters were also obtained from the ambient test data. The ambient 

test data was collected in two different times of the year, one in the month of July and the other in 

the month of January so that the effect of temperature could also be studied. Following is the plot 

of singular values obtained from the ambient data in both cases: 

Winter 

 
Figure 20. SVD plot of ambient test in winter 
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Summer 

 
Figure 21. SVD plot of ambient test in summer 

The following vertical natural frequencies are picked from the singular values plot. The 

associated damping ratios and MAC are also estimated and shown below. The MAC values are 

calculated in MATLAB using the ABRAVIBE (Brandt, 2013) toolbox: 

Table 16. Natural frequencies, damping and MAC for summer and winter 

 1st 𝒇𝒏 (Hz) ζ (%) 2nd 𝒇𝒏 (Hz) ζ (%) 3rd 𝒇𝒏 (Hz) ζ (%) 

Summer 4.052 0.44 6.570 0.33 9.193 0.23 

Winter 4.090 1.16 5.873 1.00 11.43 0.64 

% Difference 𝒇𝒏 0.90 11.90 24.33 

MAC 0.9935 0.9204 0.8880 

From Table 17 it can be seen that all three modes are quite similar during ambient vibration 

tests in the summer and winter as seen from a high MAC value. The third mode however has a 

lower MAC value as provided in Table 16. Overall, the mode shapes correlate quite well between 

the two times of the year. However, it can also be seen that the percentage difference in the natural 

frequency estimates has increased from the first to the third natural frequency. This suggests a 

definite shift in the modal parameters of the system from summer to winter. The effect of 

temperature has been shown to affect the dynamic characteristics of a bridge (Moorty & Roeder, 

1992). It is also seen that the damping of the structure is also fluctuating showing a decreasing 
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trend from the first mode to the third. No conclusive deductions can be outlined from the damping 

values and it needs to be investigated further in the future.  

Table 17 below shows mode shapes obtained from the summer and winter vibration tests: 

Table 17. Obtained mode shapes in the summer and winter 

 Summer Winter 

1st 

Mode 

Shape    

2nd 

Mode 

Shape 
  

3rd 

Mode 

Shape   

 

The MAC values between the forced and ambient tests conducted around the year (January 

and July 2016) are also shown in Table 18. It can be seen that the natural frequencies identified 

through impact hammer test and ambient vibration tests are very close to each other. The third 

mode MAC is not shown as only a torsional mode was obtained in the forced vibration test as 

compared to pure bending modes in ambient tests.  

Table 18. MAC values for forced and ambient vibration tests 

 1st 𝒇𝒏 (Hz) 2nd 𝒇𝒏 (Hz) 

MAC Winter-Forced 0.9959 0.9989 

MAC Summer-Forced 0.9975 0.9195 
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The recorded deck temperatures for each time of the year the tests were performed are 

provided in Table 19. 

Table 19. Deck and ambient temperatures during testing 

Summer Winter 

Time 

Deck 

Temperature 

(°F) 

Ambient 

Temperature 

(°F) 

Time 

Deck 

Temperature 

(°F) 

Ambient 

Temperature 

(°F) 

3:00 PM 106.25 82.90 12:00 PM 19.11 23.00 

4:00 PM 101.84 82.90 1:30 PM 21.69 24.10 

5:15 PM 97.25 84.00 3:30 PM 21.80 26.10 

Average 101.78 83.27 Average 20.87 24.40 

It is clearly observed from the table above that the bridge surface temperatures were 

drastically different (a difference of about 80°F) between the two times of the year. The effect of 

this temperature change can be clearly observed from the natural frequency shift in Table 16. It 

has been observed in previous literature that natural frequency values increased for the same mode 

due to stiffening effects caused by temperature drops (Moser & Moaveni, 2011; Xia et al., 2011).  

A similar behavior is observed for the third mode where the change in natural frequency is 

an increase of about 24.33%. This is however inconclusive as the second mode shows a decrease 

in the natural frequency estimate of 11.9% from the summer to winter. It cannot be suggested from 

the data that lowered temperature cause a decrease in the natural frequency, however it can be 

ascertained that temperature effects shift the modal characteristics of the structure. 

6.3. Human Induced Vibration Tests 

Human induced vibration tests in this section are first summarized from each of the design 

guidelines. This includes calculation of an analytical acceleration limit based on that design guide. 

This is then followed by the experimentally obtained acceleration values for the bridge. These are 

then finally compared and serviceability of the structure assessed in the light of different codes. 



61 

 

6.3.1. Analytical Results 

Using the AISC steel design guide, the first item to check is the deflection parameter. Since 

it is likely that the longest span will vibrate the most and register higher acceleration limits, it will 

be selected for calculations. These are calculated using the equation (47) as follows: 

∆ =
5𝑤𝐿4

384𝐸𝑠𝐼𝑡
=

5(1879 𝑝𝑙𝑓)(70 𝑓𝑡)4(1728 𝑖𝑛3/𝑓𝑡3)

384(29 x 106 𝑝𝑠𝑖)(132749 𝑖𝑛4)
= 0.2636 𝑖𝑛 

Then the fundamental frequency from equation (46) is estimated as: 

𝑓𝑛 = 0.18√
𝑔

∆
= 0.18√

386 𝑖𝑛/𝑠2

0.2636 𝑖𝑛
= 6.89 𝑟𝑎𝑑/𝑠 

The total weight of the bridge can be estimated as: 

𝑊 = 𝑤𝐿 = 1879 𝑝𝑙𝑓 ∗ 70 𝑓𝑡 = 131530 𝑙𝑏𝑠 𝑜𝑟 131.5 𝑘𝑖𝑝𝑠 

AISC recommends using a damping value of 0.01 for outdoor footbridges. (It will be 

observed that the experimental damping is also around 0.01) Using this we can then obtain: 

𝛽𝑊 = 0.01 ∗ 131.5 𝑘𝑖𝑝𝑠 = 1.32 𝑘𝑖𝑝𝑠 𝑜𝑟 1315.3 𝑙𝑏𝑠 

Now using equation (44) we can assess the resonance response function as: 

𝑎𝑝

𝑔
=

𝑃𝑜 exp(−0.35𝑓𝑛)

𝛽𝑊
=

92 𝑙𝑏𝑠 exp(−0.35(6.89 𝑟𝑎𝑑/𝑠)

1315.3 𝑙𝑏𝑠
= 0.627 % 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑟 0.06 𝑚/𝑠2 

The above is much less than the prescribed limit of 5% or 0.49 m/s2 for outdoor footbridges. 

Under the AASHTO LRFD design guidelines the following evaluations are done: 

𝑓 ≥ 2.86 𝑙𝑛 (
180

𝑊
) = 2.86 𝑙𝑛 (

180

357 𝑘𝑖𝑝𝑠
) = −1.95 𝐻𝑧 

𝑊 ≥ 180𝑒−0.35𝑓𝑛 = 180𝑒−0.35∗4.019 = 44.09 𝑘𝑖𝑝𝑠 

It can be observed that with the in-situ bridge weight of 357 kips a negative frequency is 

obtained which is much below the real lowest vertical frequency of the bridge. Using that low 

vertical experimental natural frequency, the weight of the bridge is estimated as 44.09 kips which 

is below the original weight. Therefore, the design criteria are satisfied. 
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To estimate the maximum accelerations using HIVOSS guideline, two design situations 

are considered. The first design situation (D1) corresponds to the daily usage with a traffic class 

of TC2 and a target comfort level of CL1. The second situation (D2) resembles the case where a 

high traffic occurs such as during a sporting event (i.e. football weekends). The traffic class 

assigned to D2 is TC4 and the target comfort level is CL2.  

To estimate the maximum accelerations using SÉTRA guideline, the selected footbridge 

was considered as Class II footbridge. According to Table 7, the dynamic response of the 

footbridge was calculated under Case 3 loading conditions since its vertical natural frequency falls 

into Range 3. The damping ratio was assumed to be 0.4%, which is the suggested average value 

by both HIVOSS and SÉTRA guidelines for the selected footbridge. The SDOF approach was 

used to calculate the maximum acceleration of the footbridge under each design situation.  

Table 20 summarizes the parameters used to calculate the design loads and, the 

corresponding harmonic loads and predicted maximum acceleration response according to each 

design case.  

Table 20. Analytical results for peak acceleration response 

Design code d (p/m2) np ψ p(t) (N/m2) amax (m/s2) 

HIVOSS – D1 0.2 4.8 0.25 ))019.4(2cos(360.1)( ttp   0.32 

HIVOSS – D2 1 29.1 0.25 ))019.4(2cos(238.8)( ttp   1.81 

SÉTRA 0.8 9.6 1 ))019.4(2cos(721.2)( ttp   0.61 

 

6.3.2. Experimental Results 

Acceleration time histories in vertical (V) and transverse (T) directions were collected from 

the performed pedestrian interaction tests as shown before in Figure 11 and Figure 12. In the 

transverse direction the estimated natural frequencies were below the serviceability design limit 

and therefore transverse data was ignored. Figure 11 is redrawn to rename the sensors as shown: 
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Figure 22. Marked accelerometer locations (regeneration of Figure 11) 

 For the first serviceability technique the collected data included acceleration records over 

the course of the tests for all of the four loading scenarios (9 people at 3 different walking 

frequencies and random flow of pedestrians) and their corresponding repetitive runs. 

Representative sets of raw data collected from the synchronized tests from the accelerometer V3 

and T3 are illustrated in Figure 23, which highlights the sensitivity of the bridge dynamic response 

to the imposed loading frequency. Note that for the pedestrian frequency of 2 Hz, the second 

harmonic of the step frequency is almost equal to the fundamental frequency of the footbridge in 

the vertical direction. Therefore, a resonant response was observed in the acceleration history. 

 

Figure 23. Vertical (V3) and transverse (T3) accelerations due to walk at different frequencies 
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The acceleration time histories obtained from the accelerometer V3 during the passage of 

about 40 people on the footbridge for three different tests are shown in Figure 24. It can be seen 

that the maximum acceleration (about 0.2 m/s2) was lower than the peak value obtained during 

the synchronized tests at 2 Hz.  

 

Figure 24. Vertical acceleration time histories at V3 during random flow of pedestrian tests 

The raw data was post-processed to define the peak acceleration values obtained from each 

test run. Table 21 summarized the peak acceleration values at different locations according to the 

mounted instrumentations. As it is given, the peak acceleration values in both vertical and 

horizontal directions demonstrate significant variations according to the sensor location. However, 

the maximum acceleration responses for each direction were highlighted in the table, and used in 

this study for comparison to the allowable limits provided by current design guidelines.  

Table 21. Peak acceleration responses (m/s2) 

Test V1 V2 V3 V4 V5 V6 T1 T2 T3 

1.2 Hz 0.098 0.097 0.145 0.146 0.059 0.066 0.015 0.021 0.010 

1.5 Hz 0.160 0.154 0.169 0.153 0.119 0.100 0.033 0.036 0.016 

2 Hz 0.207 0.200 0.400 0.396 0.147 0.129 0.028 0.031 0.024 

Random 0.194 0.189 0.192 0.169 0.163 0.161 0.044 0.046 0.028 

 In the second serviceability testing approach, acceleration data was recorded for the case 

of one pedestrian jumping at a frequency of 2 Hz. Two extra vertical sensors were placed on one 

of the end spans. The testing plan as shown in Figure 12 is redrawn in Figure 25 below to account 

for the naming of the sensors. In this part serviceability assessment was performed by pedestrian 

jumping motion at each of the mid points of the three major spans.  
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Figure 25. Marked accelerometer locations (regeneration of Figure 12) 

 Representative sets of raw data collected in the tests from the accelerometer V1, V4 and 

V6 are illustrated in Figure 26: 

 

Figure 26. Vertical time histories of V1, V4 and V6 sensors during a jumping motion 

Similar to the pedestrian tests discussed above, maximum accelerations were obtained from 

the raw data for each of the jump test cases. Peak acceleration results for a jumping frequency of 

2 Hz on all three spans are summarized as follows:  

Table 22. Peak accelerations for jumping at three different spans (m/s2) 

 V1 V2 V3 V4 V5 V6 V7 V8 T1 T2 

Curry 0.291 0.276 0.236 0.213 0.021 0.030 0.011 0.009 0.020 0.010 

Center 0.090 0.097 0.443 0.441 0.035 0.045 0.014 0.014 0.004 0.020 

Newcomb 0.027 0.029 0.078 0.081 0.286 0.288 0.065 0.101 0.007 0.008 
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6.3.3. Serviceability Evaluation 

The analytical dynamic response together with the critical maximum values of the recorded 

accelerations in the vertical direction were compared to the limits provided in current guidelines.  

Figure 27 illustrates the comparison between critical acceleration values obtained from 

experimental and analytical approaches, to the limits provided in current guidelines. As 

demonstrated, the maximum critical acceleration response (0.40 m/s2) obtained from the pedestrian 

interaction tests, satisfy the limits of the codes, which would ensure the vibration serviceability of 

the selected structure. According to AISC guidelines the maximum limit for peak acceleration for 

comfort is 0.49 m/s2 and which is greater than our maximum critical acceleration response from 

both the analytically estimated (0.06 m/s2) and experimentally obtained value (0.44 m/s2).  

 

Figure 27. Evaluation of pedestrian-induced dynamic response 
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The peak acceleration (0.32 m/s2) estimated for the design situation D1 according to 

HIVOSS guideline is also below the target comfort level (maximum comfort or 𝑎𝑚𝑎𝑥 < 0.50 m/s2) 

selected for this situation. However, the analytical values (1.81 m/s2) for critical dynamic 

responses of the footbridge in the design situation D2 exceed the target comfort limit (medium 

comfort or 𝑎𝑚𝑎𝑥 < 1 m/s2). The peak acceleration (0.61 m/s2) estimated by SÉTRA guideline 

indicates a medium comfort level for the footbridge.  

Note that the selected number of people for the pedestrian interaction tests corresponds to 

an equivalent pedestrian density of 0.7 p/m2 for this footbridge. The SÉTRA guidelines classifies 

the bridge as Class III for such a traffic level and do not require a dynamic analysis for that 

footbridge. For a pedestrian density 𝑑 = 0.7 p/m2, the HIVOSS guidelines predicts the peak 

acceleration as 0.58 m/s2. This value overestimates the measured peak accelerations from the 

experimental tests. For this bridge, it can be concluded that the analytical expressions provided in 

HIVOSS and SÉTRA guidelines tend to be conservative for estimating the peak acceleration 

response of the studied footbridge. Nevertheless, they are considered as safe margins (upper bound 

on the behavior) that can help engineers control the vibration vulnerability of the system.  
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7. CONCLUSIONS 

In this research project a multi-span steel girder pedestrian bridge with excessively lively 

behavior was investigated to obtain key information about the structure’s dynamic characteristics 

and to examine that behavior through a comparative vibration serviceability analysis. In the initial 

phase of the research project, a preliminary finite element model was developed and the resulting 

natural frequencies and mode shapes were recorded. These numerical dynamic properties then 

acted as a baseline for the actual field tests on the pedestrian bridge. Three different types of 

acceleration time data were collected from the sensors on the bridge. The first type of data resulted 

from a forced vibration test where an impact hammer was used to excite the structure at certain 

locations and the response recorded. The second type of data was collected from an ambient test 

where the bridge was allowed to be in service and the data recorded for an extended period of time. 

The third type of data was collected from a series of pedestrian walking and jumping tests at certain 

frequencies in effort to excite the bridge’s critical limits.  

Results from the impact hammer and ambient data were found to correlate very well 

resulting in a high modal assurance criteria value of around 0.98. Since ambient tests were 

conducted in two different times of the year, it was observed that the bridge’s dynamic 

characteristics changed considerably from summer to winter. This was attributed to the change in 

stiffness parameters of the bridge due to temperature changes. In the pedestrian loading tests, it 

was observed that the vertical natural frequencies were below the limit in the design codes 

HIVOSS and SÉTRA and therefore acceleration records were obtained. Peak acceleration 

response was recorded at the midpoint of the mid-span at a walking frequency of 2 Hz. This was 

used to conduct another serviceability test with just one person jumping at this critical frequency 

and the peak acceleration response was recorded at 0.44 m/s2. These were compared with the 

limiting values in the design codes and were found to be within the prescribed range. Numerically 

estimated values in the design codes were also compared to the limits and it was found that in the 

HIVOSS design situation of D2, the medium comfort level was exceeded.  

It could be safely concluded that the pedestrian bridge does not have any serious 

serviceability issues and only some design situations may result in a decreased comfort level. It is 

however recommended that further design classes be evaluated according to the code and results 

compared to the finite element model along with the experimental data.          
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8. FUTURE WORK 

Based on the obtained results, it can be seen that the serviceability assessment of the 

Ruffner footbridge is satisfied according to the different design standards. However, there are still 

several items that will be accomplished in the future. These include but are not limited to: 

1) Use of other data processing and modal identification techniques. These could include time 

or frequency domain based identification methods such as SSI-COV (Maia & Silva, 2014). 

These data processing techniques would also improve the damping estimation. Since EFDD 

is not the most robust predictor of damping, other different algorithms can be tried to estimate 

a more accurate damping ratio.  

2) Improved processing parameters. These may include items such as filtering, windowing and 

leakage effects.  Data capturing parameters such as sampling and time stamp could be 

improved to obtain highest quality of data. 

3) Model updating procedure. Dynamic data can be used to update the finite element model and 

to correlate the data exactly with the numerical model. The model can also be tested for 

numerical simulations of pedestrian loadings. Different pedestrian motion configurations can 

be simulated in the model and response obtained. 

4)  Increased pedestrian interaction test configurations. Experimental tests did not consist of all 

the pedestrian motion configurations or traffic classes. Therefore, this could be implemented 

to ensure that the maximum accelerations under service are obtained. These critical 

configurations could then be used to create a maximum acceleration testing plan. Results can 

be further analyzed for a more robust serviceability assessment. 

5) A more rigorous comparative assessment using other guidelines. 

In general, the topic of vibration serviceability is still relatively new and research in the 

United States on the subject has not been as extensive as in Europe. Incorporation of the pedestrian 

walking harmonics into the design code is not quite clear and no clear guidance as to how many 

harmonics should be incorporated in design, is present in the guides. Damping has been briefly 

investigated in this research, but with more refined algorithms it can be more accurately estimated. 

The design codes must also be expanded to integrate all types of pedestrian structures instead of 

just simple concrete or steel bridges. It is recommended that the AISC design codes be expanded 

and vibration serviceability explored further in the future. 
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APPENDIX I (Experimental Modal Analysis Code) 

Code for forced impact hammer test. The damping part of the code is written by Muhammad M. 

Sherif (PhD candidate) at University of Virginia: 

% Clear all variables, erase command window and close all open windows 
clc 
clear all 
close all 

  
%----------------Read BDI output files ----------------% 
% Commands "try" and "catch me" are used to capture error in the code 
for i = 1:20 
    try  
        filename=strcat('Impact_',num2str(i),'.dat'); % Creates 

filename based on BDI output file 
        filename=strcat('''',filename,'''');          % Creates 

additional strings to pass on to command 
        % The following reads BDI data according to set parameters.  
        % In each loop a different line and column is read according 

to the 
        % BDI data. If the exact parameter is not matched then it 

executes 
        % as an error which in turn is evaluated in the next "try" 

loop for a different parameter  
        

command=sprintf(['Test',num2str(i),'=csvread(',filename,',21,0,[21,0,1

522,19]);']);  
        eval(command); 
    catch me  
    end  
  clear me i filename command 
end 

  
%-------------Truncate data------------------% 
% Truncate BDI files to get only accelerometer data 
for i = 1:10 
    % The following truncates the data in the numbered columns 
    eval(strcat('Test',num2str(i),'(:,[1 2 5 6 9 10 11 14 16])=[];')) 
end  
for i = 11:20 
    eval(strcat('Test',num2str(i),'(:,[1 5 6 7 9 10 11 14 17])=[];')) 
end  
clear i filename 

  
%------------Read impact hammer data-------------% 
% Gathering Impact data from the BDI data 
for i = 1:20 
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    % The following reads the impact hammer column data and saves it 

as a 
    % new variable 
        eval(strcat('I',num2str(i),' = Test',num2str(i),'(:,5);')) 
end 

  
% That impact hammer column is then removed from the overall 

measurement 
% matrix to create an acceleration only output matrix 
for i = 1:20 
        eval(strcat('Test',num2str(i),'(:,5)=[];')) 
end 

  
%-----------------Order Data-----------------------% 
% The following orders the test data according to sensor no for Tests 

1-10 
for i = 1:10 
    eval(strcat('x = Test',num2str(i),';')) % Create a new variable 

for acceleration matrix  
    eval(strcat('y = zeros(size(Test',num2str(i),',1),1);'))  % Create 

a zeros column 
    % The following assigns acceleration columns and zeros columns 
    % according to the instrumentation scheme for that particular test 
    

eval(strcat('T',num2str(i),'=cat(2,x(:,8),x(:,10),x(:,5),x(:,6),y,x(:,

1),y,y,y,x(:,9),x(:,7),x(:,4),x(:,3),x(:,2),y,y,y,y);')) 
    eval(strcat('clear Test',num2str(i),';')) 
end 
clear i x y 

  
% Ordering Test data according to sensor no for Tests 12-22 
for i = 11:20 
    eval(strcat('x = Test',num2str(i),';'))   
    eval(strcat('y = zeros(size(Test',num2str(i),',1),1);')) 
    

eval(strcat('T',num2str(i),'=cat(2,y,y,y,y,x(:,1),x(:,2),x(:,7),x(:,6)

,x(:,5),y,y,x(:,4),y,y,x(:,3),x(:,10),x(:,9),x(:,8));')) 
    eval(strcat('clear Test',num2str(i),';')) 
end 
clear i x y 

 
%----------------Setup Processing Parameters----------------% 

  
% Define time domain range and sampling frequency 
Fs = 100.16;                   % Sampling frequency 
T = 15;                        % Signal length (Test time for impact 

tests) 
Samples = round(Fs*T);         % Total Discrete acclerence data 

samples  
t=linspace(0,15,Samples);      % Define time length (Time vector)  
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L = length(T1(:,1));           % Length of data points  
% NFFT = [];                   % Number of bins use 2^nextpow(L) for 

Cooley-Tukey. For default use []  
% window = [];                 % Define window to be used in pwelch. 

Can use hann(L) or rectwin etc. 
NFFT = 2^nextpow2(L);                     
window = hann(L);    

  
%----------------Filter Design----------------% 
ld = designfilt('lowpassiir','FilterOrder',8, ... 
    'PassbandFrequency',25,'PassbandRipple',0.2, ... 
    'SampleRate',100);      % Lowpass IIR 8th order with 25 Hz 

passband 
hd = designfilt('highpassiir','FilterOrder',8, ... 
    'PassbandFrequency',0.2,'PassbandRipple',0.2, ... 
    'SampleRate',100);      % Highpass IIR 8th order with 0.2 Hz 

passband 
% The following plots the filter design 
fvt = fvtool(ld,'Fs',100); xlabel('Frequency (Hz)'); grid off    % 

Filter visualization 
legend(fvt,'lowpass') 
fvt = fvtool(hd,'Fs',100); xlabel('Frequency (Hz)');  grid off   % 

Filter visualization 
legend(fvt,'highass') 

  
%---------------------Compute Spectral Parameters--------------------% 
%---------------------------_Test 1----------------------------------% 
% First Test (Impact at 3, Sensors 6 12 1 2 3 4 10 11 13 14) 
PXX=0;PFF=0;PFX=0;PXF=0;FX=0;XF=0;F=0;W=0;          % Define variables 

for calculation of spectral densities 
PXXf=0;PFFf=0;PFXf=0;PXFf=0;FXf=0;XFf=0;Ff=0;Wf=0;  % Same variables 

for filtered data 

  
% The following loop evaluates the spectral density using the commands 
% "pwelch" for auto and "cpsd" for cross spectrums. A window is also 
% used which was defined earlier. These are all saved in the variables 
% defined in the lines above 
for i = 1:5 
    % This part processes only the unfiltered data 
    

eval(strcat('[Pxx',num2str(i),',f',num2str(i),']=pwelch(T',num2str(i),

',window,[],NFFT,Fs);')); % autospectrum of the response 
    eval(strcat('PXX = PXX+Pxx',num2str(i),';')) 
    eval(strcat('F = F+f',num2str(i),';')) 

     
    

eval(strcat('[Pff',num2str(i),',w',num2str(i),']=pwelch(I',num2str(i),

',window,[],NFFT,Fs);')); % autospectrum of the impact 
    eval(strcat('PFF = PFF+Pff',num2str(i),';')) 
    eval(strcat('W = W+w',num2str(i),';')) 
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eval(strcat('[Pfx',num2str(i),',fx',num2str(i),']=cpsd(I',num2str(i),'

,T',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PFX = PFX+Pfx',num2str(i),';')) 
    eval(strcat('FX = FX+fx',num2str(i),';')) 

     
    

eval(strcat('[Pxf',num2str(i),',xf',num2str(i),']=cpsd(T',num2str(i),'

,I',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PXF = PXF+Pxf',num2str(i),';')) 
    eval(strcat('XF = XF+xf',num2str(i),';')) 

     
    % This part processes only the filtered data 
    eval(strcat('TF',num2str(i),'=filtfilt(ld,T',num2str(i),');')) % 

Apply the low pass part of the filter to the outputs 
    eval(strcat('IF',num2str(i),'=filtfilt(ld,I',num2str(i),');')) % 

Apply the low pass part of the filter to the intput 
    eval(strcat('TF',num2str(i),'=filtfilt(hd,TF',num2str(i),');'))% 

Apply the high pass part of the filter to the already low filtered 

data 
    eval(strcat('IF',num2str(i),'=filtfilt(hd,IF',num2str(i),');'))% 

Apply the high pass part of the filter to the already low filtered 

data 

     
    

eval(strcat('[Pxxf',num2str(i),',ff',num2str(i),']=pwelch(TF',num2str(

i),',window,[],NFFT,Fs);')); % autospectrum of the response 
    eval(strcat('PXXf = PXXf+Pxxf',num2str(i),';')) 
    eval(strcat('Ff = Ff+ff',num2str(i),';')) 

     
    

eval(strcat('[Pfff',num2str(i),',wf',num2str(i),']=pwelch(IF',num2str(

i),',window,[],NFFT,Fs);')); % autospectrum of the impact 
    eval(strcat('PFFf = PFFf+Pfff',num2str(i),';')) 
    eval(strcat('Wf = Wf+wf',num2str(i),';')) 

     
    

eval(strcat('[Pfxf',num2str(i),',fxf',num2str(i),']=cpsd(IF',num2str(i

),',TF',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PFXf = PFXf+Pfxf',num2str(i),';')) 
    eval(strcat('FXf = FXf+fxf',num2str(i),';')) 

     
    

eval(strcat('[Pxff',num2str(i),',xff',num2str(i),']=cpsd(TF',num2str(i

),',IF',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PXFf = PXFf+Pxff',num2str(i),';')) 
    eval(strcat('XFf = XFf+xff',num2str(i),';')) 
end 
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% All the saved variables are averaged for the number of times the 

test was 
% conducted. Matrix Sff is repeated to correspond to each sensor 

seperately 
% for further processing  
 Sxx=PXX/5;  Sfx=PFX/5;  Sxf=PXF/5;  Sff=PFF/5;    

Sff=repmat(Sff,1,18);   % Spectral Densities (Unfiltered) 
 F=F/5;      W=W/5;      FX=FX/5;    XF=XF/5;  
 H1 = Sfx./Sff;     H2 = Sxx./Sxf;      Coh = H1./H2; % Computes the 

H1 and H2 frfs and then their coherence 
 H1(isnan(H1))=0;   H2(isnan(H2))=0;    Coh(isnan(Coh))=0; % Elements 

with divisibility by zero that came up as NaN are changed to 0 
 Sxxf=PXXf/5;  Sfxf=PFXf/5;  Sxff=PXFf/5;  Sfff=PFFf/5;    

Sfff=repmat(Sfff,1,18);   % Spectral Densities (Filtered) 
 Ff=Ff/5;      Wf=Wf/5;      FXf=FXf/5;    XFf=XFf/5;    
 H1f = Sfxf./Sfff;     H2f = Sxxf./Sxff;      Cohf = H1f./H2f; 
 H1f(isnan(H1))=0;   H2f(isnan(H2f))=0;    Cohf(isnan(Cohf))=0;  
 H11=H1;    H21=H2; H11f=H1f;   H21f=H2f;  % Since the above is 

repeated for all tests, H1 H2 and their filtered counterparts are 

saved as new variables 

  
 j=[5,7,8,9,15,16,17,18]; % A row matrix is defined to use as plotting 

tool. The elements correspond to the measurements that are not present 

in this test 
 counter=1; % Counter defined to be used as loop clock 

  
% The following part plots the H1, H2, Coherence and their filtered 
% counterparts 
 for i = 1:18 
    if i~=j(counter)   
         figure;subplot(3,1,1); 

plot(F,(H1(:,i)),'r',Ff,(H1f(:,i)),'b');ylabel('H1');xlim([0 

20]);set(gca,'FontSize',16) 
         suptitle(['Sensor at ',num2str(i),' Impact at 3']) 
         legend('Unfiltered','Filtered') 
         subplot(3,1,2); 

plot(F,mag2db(H2(:,i)),'r',Ff,mag2db(H2f(:,i)),'b');legend('Unfiltered

','Filtered');ylabel('H2');xlim([0 20]);set(gca,'FontSize',16) 
         subplot(3,1,3); 

plot(F,mag2db(Coh(:,i)),'r',Ff,mag2db(Cohf(:,i)),'b');legend('Unfilter

ed','Filtered');xlabel('Freq(Hz)');ylabel('Coherence (dB)');xlim([0 

20]);set(gca,'FontSize',16)       
    else 
        if counter==length(j) 
        else 
            counter=counter+1; 
        end 
    end 
 end 
% The following part plots only the filtered H1 and Coherence for 
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% presentation purposes 
for i = 1:18 
    if i~=j(counter)   
         figure;subplot(2,1,2); plot(Ff,(H1f(:,i)));ylabel('H(\omega) 

Accelerance');xlabel('Freq(Hz)');xlim([0 20]);set(gca,'FontSize',16) 
         suptitle(['Sensor at ',num2str(i),' Impact at 3']) 
         subplot(2,1,1); plot(Ff,mag2db(Cohf(:,i)));ylabel('Coherence 

(dB)');xlim([0 20]);ylim([-100 0]);set(gca,'FontSize',16)       
    else 
        if counter==length(j) 
        else 
            counter=counter+1; 
        end 
    end 
 end 
 clear counter PXX PFF PFX PXF FX XF F W PXXf PFFf PFXf PXFf FXf XFf 

Ff Wf i j % To clear data for new test  

  
 %--------------------------- Test 2---------------------------------% 
 % The same protocol as used for Test 1 is repeated for Test 2 
 % Second Test (Impact at 15, Sensors 6 12 1 2 3 4 10 11 13 14) 
PXX=0;PFF=0;PFX=0;PXF=0;FX=0;XF=0;F=0;W=0; 
PXXf=0;PFFf=0;PFXf=0;PXFf=0;FXf=0;XFf=0;Ff=0;Wf=0;  % Same 

coefficients for filtered data 

  
for i = 6:10 
     % Unfiltered Data 
    

eval(strcat('[Pxx',num2str(i),',f',num2str(i),']=pwelch(T',num2str(i),

',window,[],NFFT,Fs);')); % autospectrum of the response 
    eval(strcat('PXX = PXX+Pxx',num2str(i),';')) 
    eval(strcat('F = F+f',num2str(i),';')) 

     
    

eval(strcat('[Pff',num2str(i),',w',num2str(i),']=pwelch(I',num2str(i),

',window,[],NFFT,Fs);')); % autospectrum of the impact 
    eval(strcat('PFF = PFF+Pff',num2str(i),';')) 
    eval(strcat('W = W+w',num2str(i),';')) 

     
    

eval(strcat('[Pfx',num2str(i),',fx',num2str(i),']=cpsd(I',num2str(i),'

,T',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PFX = PFX+Pfx',num2str(i),';')) 
    eval(strcat('FX = FX+fx',num2str(i),';')) 

     
    

eval(strcat('[Pxf',num2str(i),',xf',num2str(i),']=cpsd(T',num2str(i),'

,I',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PXF = PXF+Pxf',num2str(i),';')) 
    eval(strcat('XF = XF+xf',num2str(i),';')) 
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    % Filtered data 
    eval(strcat('TF',num2str(i),'=filtfilt(ld,T',num2str(i),');')) 
    eval(strcat('IF',num2str(i),'=filtfilt(ld,I',num2str(i),');')) 
    eval(strcat('TF',num2str(i),'=filtfilt(hd,TF',num2str(i),');')) 
    eval(strcat('IF',num2str(i),'=filtfilt(hd,IF',num2str(i),');')) 

     
    

eval(strcat('[Pxxf',num2str(i),',ff',num2str(i),']=pwelch(TF',num2str(

i),',window,[],NFFT,Fs);')); % autospectrum of the response 
    eval(strcat('PXXf = PXXf+Pxxf',num2str(i),';')) 
    eval(strcat('Ff = Ff+ff',num2str(i),';')) 

     
    

eval(strcat('[Pfff',num2str(i),',wf',num2str(i),']=pwelch(IF',num2str(

i),',window,[],NFFT,Fs);')); % autospectrum of the impact 
    eval(strcat('PFFf = PFFf+Pfff',num2str(i),';')) 
    eval(strcat('Wf = Wf+wf',num2str(i),';')) 

     
    

eval(strcat('[Pfxf',num2str(i),',fxf',num2str(i),']=cpsd(IF',num2str(i

),',TF',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PFXf = PFXf+Pfxf',num2str(i),';')) 
    eval(strcat('FXf = FXf+fxf',num2str(i),';')) 

     
    

eval(strcat('[Pxff',num2str(i),',xff',num2str(i),']=cpsd(TF',num2str(i

),',IF',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PXFf = PXFf+Pxff',num2str(i),';')) 
    eval(strcat('XFf = XFf+xff',num2str(i),';')) 
end 
 Sxx=PXX/5;  Sfx=PFX/5;  Sxf=PXF/5;  Sff=PFF/5;    

Sff=repmat(Sff,1,18);   % Spectral Densities (Unfiltered) 
 F=F/5;      W=W/5;      FX=FX/5;    XF=XF/5;    
 H1 = Sfx./Sff;     H2 = Sxx./Sxf;      Coh = H1./H2; 
 H1(isnan(H1))=0;   H2(isnan(H2))=0;    Coh(isnan(Coh))=0;  
 Sxxf=PXXf/5;  Sfxf=PFXf/5;  Sxff=PXFf/5;  Sfff=PFFf/5;    

Sfff=repmat(Sfff,1,18);   % Spectral Densities (Filtered) 
 Ff=Ff/5;      Wf=Wf/5;      FXf=FXf/5;    XFf=XFf/5;    
 H1f = Sfxf./Sfff;     H2f = Sxxf./Sxff;      Cohf = H1f./H2f; 
 H1f(isnan(H1))=0;   H2f(isnan(H2f))=0;    Cohf(isnan(Cohf))=0;  
 H12=H1;    H22=H2; H12f=H1f;   H22f=H2f; 

   
 j=[5,7,8,9,15,16,17,18]; 
 counter=1; 
 for i = 1:18 
    if i~=j(counter)   
         figure;subplot(3,1,1); 

plot(F,H1(:,i),'r',Ff,H1f(:,i),'b');ylabel('H1');xlim([0 

20]);set(gca,'FontSize',16) 
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         suptitle(['Sensor at ',num2str(i),' Impact at 15']) 
         legend('Unfiltered','Filtered') 
         subplot(3,1,2); 

plot(F,H2(:,i),'r',Ff,H2f(:,i),'b');legend('Unfiltered','Filtered');yl

abel('H2');xlim([0 20]);set(gca,'FontSize',16) 
         subplot(3,1,3); 

plot(F,mag2db(Coh(:,i)),'r',Ff,mag2db(Cohf(:,i)),'b');legend('Unfilter

ed','Filtered');xlabel('Freq(Hz)');ylabel('Coherence (dB)');xlim([0 

20]);set(gca,'FontSize',16) 
    else 
        if counter==length(j) 
        else 
            counter=counter+1; 
        end 
    end 
 end 

  
for i = 1:18 
    if i~=j(counter)   
         figure;subplot(2,1,2); plot(Ff,(H1f(:,i)));ylabel('H(\omega) 

Accelerance');xlabel('Freq(Hz)');xlim([0 20]);set(gca,'FontSize',16) 
         suptitle(['Sensor at ',num2str(i),' Impact at 15']) 
         subplot(2,1,1); plot(Ff,mag2db(Cohf(:,i)));ylabel('Coherence 

(dB)');xlim([0 20]);ylim([-100 0]);set(gca,'FontSize',16)       
    else 
        if counter==length(j) 
        else 
            counter=counter+1; 
        end 
    end 
 end 
 clear counter PXX PFF PFX PXF FX XF F W PXXf PFFf PFXf PXFf FXf XFf 

Ff Wf i j 

  
 %--------------------------- Test 3---------------------------------% 
 % Third Test (Impact at 15, Sensors 6 12 5 7 8 9 15 16 17 18) 
PXX=0;PFF=0;PFX=0;PXF=0;FX=0;XF=0;F=0;W=0; 
PXXf=0;PFFf=0;PFXf=0;PXFf=0;FXf=0;XFf=0;Ff=0;Wf=0;  % Same 

coefficients for filtered data 

  
for i = 11:15 
     % Unfiltered Data 
    

eval(strcat('[Pxx',num2str(i),',f',num2str(i),']=pwelch(T',num2str(i),

',window,[],NFFT,Fs);')); % autospectrum of the response 
    eval(strcat('PXX = PXX+Pxx',num2str(i),';')) 
    eval(strcat('F = F+f',num2str(i),';')) 
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eval(strcat('[Pff',num2str(i),',w',num2str(i),']=pwelch(I',num2str(i),

',window,[],NFFT,Fs);')); % autospectrum of the impact 
    eval(strcat('PFF = PFF+Pff',num2str(i),';')) 
    eval(strcat('W = W+w',num2str(i),';')) 

     
    

eval(strcat('[Pfx',num2str(i),',fx',num2str(i),']=cpsd(I',num2str(i),'

,T',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PFX = PFX+Pfx',num2str(i),';')) 
    eval(strcat('FX = FX+fx',num2str(i),';')) 

     
    

eval(strcat('[Pxf',num2str(i),',xf',num2str(i),']=cpsd(T',num2str(i),'

,I',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PXF = PXF+Pxf',num2str(i),';')) 
    eval(strcat('XF = XF+xf',num2str(i),';')) 

     
    % Filtered data 
    eval(strcat('TF',num2str(i),'=filtfilt(ld,T',num2str(i),');')) 
    eval(strcat('IF',num2str(i),'=filtfilt(ld,I',num2str(i),');')) 
    eval(strcat('TF',num2str(i),'=filtfilt(hd,TF',num2str(i),');')) 
    eval(strcat('IF',num2str(i),'=filtfilt(hd,IF',num2str(i),');')) 

     
    

eval(strcat('[Pxxf',num2str(i),',ff',num2str(i),']=pwelch(TF',num2str(

i),',window,[],NFFT,Fs);')); % autospectrum of the response 
    eval(strcat('PXXf = PXXf+Pxxf',num2str(i),';')) 
    eval(strcat('Ff = Ff+ff',num2str(i),';')) 

     
    

eval(strcat('[Pfff',num2str(i),',wf',num2str(i),']=pwelch(IF',num2str(

i),',window,[],NFFT,Fs);')); % autospectrum of the impact 
    eval(strcat('PFFf = PFFf+Pfff',num2str(i),';')) 
    eval(strcat('Wf = Wf+wf',num2str(i),';')) 

     
    

eval(strcat('[Pfxf',num2str(i),',fxf',num2str(i),']=cpsd(IF',num2str(i

),',TF',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PFXf = PFXf+Pfxf',num2str(i),';')) 
    eval(strcat('FXf = FXf+fxf',num2str(i),';')) 

     
    

eval(strcat('[Pxff',num2str(i),',xff',num2str(i),']=cpsd(TF',num2str(i

),',IF',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PXFf = PXFf+Pxff',num2str(i),';')) 
    eval(strcat('XFf = XFf+xff',num2str(i),';')) 
end 
 Sxx=PXX/5;  Sfx=PFX/5;  Sxf=PXF/5;  Sff=PFF/5;    

Sff=repmat(Sff,1,18);   % Spectral Densities (Unfiltered) 
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 F=F/5;      W=W/5;      FX=FX/5;    XF=XF/5;    
 H1 = Sfx./Sff;     H2 = Sxx./Sxf;      Coh = H1./H2; 
 H1(isnan(H1))=0;   H2(isnan(H2))=0;    Coh(isnan(Coh))=0;  
 Sxxf=PXXf/5;  Sfxf=PFXf/5;  Sxff=PXFf/5;  Sfff=PFFf/5;    

Sfff=repmat(Sfff,1,18);   % Spectral Densities (Filtered) 
 Ff=Ff/5;      Wf=Wf/5;      FXf=FXf/5;    XFf=XFf/5;    
 H1f = Sfxf./Sfff;     H2f = Sxxf./Sxff;      Cohf = H1f./H2f; 
 H1f(isnan(H1))=0;   H2f(isnan(H2f))=0;    Cohf(isnan(Cohf))=0;  
 H13=H1;    H23=H2; H13f=H1f;   H23f=H2f; 

  
 j=[1,2,3,4,10,11,13,14]; 
 counter=1; 
 for i = 1:18 
    if i~=j(counter)   
         figure;subplot(3,1,1); 

plot(F,H1(:,i),'r',Ff,H1f(:,i),'b');ylabel('H1');xlim([0 

20]);set(gca,'FontSize',16) 
         suptitle(['Sensor at ',num2str(i),' Impact at 15']) 
         legend('Unfiltered','Filtered') 
         subplot(3,1,2); 

plot(F,H2(:,i),'r',Ff,H2f(:,i),'b');legend('Unfiltered','Filtered');yl

abel('H2');xlim([0 20]);set(gca,'FontSize',16) 
         subplot(3,1,3); 

plot(F,mag2db(Coh(:,i)),'r',Ff,mag2db(Cohf(:,i)),'b');legend('Unfilter

ed','Filtered');xlabel('Freq(Hz)');ylabel('Coherence (dB)');xlim([0 

20]);set(gca,'FontSize',16) 
    else 
        if counter==length(j) 
        else 
            counter=counter+1; 
        end 
    end 
 end 

  
for i = 1:18 
    if i~=j(counter)   
         figure;subplot(2,1,2); plot(Ff,(H1f(:,i)));ylabel('H(\omega) 

Accelerance');xlabel('Freq(Hz)');xlim([0 20]);set(gca,'FontSize',16) 
         suptitle(['Sensor at ',num2str(i),' Impact at 15']) 
         subplot(2,1,1); plot(Ff,mag2db(Cohf(:,i)));ylabel('Coherence 

(dB)');xlim([0 20]);ylim([-100 0]);set(gca,'FontSize',16)       
    else 
        if counter==length(j) 
        else 
            counter=counter+1; 
        end 
    end 
 end 
 clear counter PXX PFF PFX PXF FX XF F W PXXf PFFf PFXf PXFf FXf XFf 

Ff Wf i j  
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 %--------------------------- Test 4---------------------------------% 
 % Fourth Test (Impact at 3, Sensors 6 12 5 7 8 9 15 16 17 18) 
PXX=0;PFF=0;PFX=0;PXF=0;FX=0;XF=0;F=0;W=0; 
PXXf=0;PFFf=0;PFXf=0;PXFf=0;FXf=0;XFf=0;Ff=0;Wf=0;  % Same 

coefficients for filtered data 

  
for i = 16:20 
     % Unfiltered Data 
    

eval(strcat('[Pxx',num2str(i),',f',num2str(i),']=pwelch(T',num2str(i),

',window,[],NFFT,Fs);')); % autospectrum of the response 
    eval(strcat('PXX = PXX+Pxx',num2str(i),';')) 
    eval(strcat('F = F+f',num2str(i),';')) 

     
    

eval(strcat('[Pff',num2str(i),',w',num2str(i),']=pwelch(I',num2str(i),

',window,[],NFFT,Fs);')); % autospectrum of the impact 
    eval(strcat('PFF = PFF+Pff',num2str(i),';')) 
    eval(strcat('W = W+w',num2str(i),';')) 

     
    

eval(strcat('[Pfx',num2str(i),',fx',num2str(i),']=cpsd(I',num2str(i),'

,T',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PFX = PFX+Pfx',num2str(i),';')) 
    eval(strcat('FX = FX+fx',num2str(i),';')) 

     
    

eval(strcat('[Pxf',num2str(i),',xf',num2str(i),']=cpsd(T',num2str(i),'

,I',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PXF = PXF+Pxf',num2str(i),';')) 
    eval(strcat('XF = XF+xf',num2str(i),';')) 

     
    % Filtered data 
    eval(strcat('TF',num2str(i),'=filtfilt(ld,T',num2str(i),');')) 
    eval(strcat('IF',num2str(i),'=filtfilt(ld,I',num2str(i),');')) 
    eval(strcat('TF',num2str(i),'=filtfilt(hd,TF',num2str(i),');')) 
    eval(strcat('IF',num2str(i),'=filtfilt(hd,IF',num2str(i),');')) 

     
    

eval(strcat('[Pxxf',num2str(i),',ff',num2str(i),']=pwelch(TF',num2str(

i),',window,[],NFFT,Fs);')); % autospectrum of the response 
    eval(strcat('PXXf = PXXf+Pxxf',num2str(i),';')) 
    eval(strcat('Ff = Ff+ff',num2str(i),';')) 

     
    

eval(strcat('[Pfff',num2str(i),',wf',num2str(i),']=pwelch(IF',num2str(

i),',window,[],NFFT,Fs);')); % autospectrum of the impact 
    eval(strcat('PFFf = PFFf+Pfff',num2str(i),';')) 
    eval(strcat('Wf = Wf+wf',num2str(i),';')) 
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eval(strcat('[Pfxf',num2str(i),',fxf',num2str(i),']=cpsd(IF',num2str(i

),',TF',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PFXf = PFXf+Pfxf',num2str(i),';')) 
    eval(strcat('FXf = FXf+fxf',num2str(i),';')) 

     
    

eval(strcat('[Pxff',num2str(i),',xff',num2str(i),']=cpsd(TF',num2str(i

),',IF',num2str(i),',window,[],NFFT,Fs);')); % CrossSpectrum 
    eval(strcat('PXFf = PXFf+Pxff',num2str(i),';')) 
    eval(strcat('XFf = XFf+xff',num2str(i),';')) 
end 
 Sxx=PXX/5;  Sfx=PFX/5;  Sxf=PXF/5;  Sff=PFF/5;    

Sff=repmat(Sff,1,18);   % Spectral Densities (Unfiltered) 
 F=F/5;      W=W/5;      FX=FX/5;    XF=XF/5;    
 H1 = Sfx./Sff;     H2 = Sxx./Sxf;      Coh = H1./H2; 
 H1(isnan(H1))=0;   H2(isnan(H2))=0;    Coh(isnan(Coh))=0;  
 Sxxf=PXXf/5;  Sfxf=PFXf/5;  Sxff=PXFf/5;  Sfff=PFFf/5;    

Sfff=repmat(Sfff,1,18);   % Spectral Densities (Filtered) 
 Ff=Ff/5;      Wf=Wf/5;      FXf=FXf/5;    XFf=XFf/5;    
 H1f = Sfxf./Sfff;     H2f = Sxxf./Sxff;      Cohf = H1f./H2f; 
 H1f(isnan(H1))=0;   H2f(isnan(H2f))=0;    Cohf(isnan(Cohf))=0;  
 H14=H1;    H24=H2; H14f=H1f;   H24f=H2f; 

  
 j=[1,2,3,4,10,11,13,14]; 
 counter=1; 
 for i = 1:18 
    if i~=j(counter)   
         figure;subplot(3,1,1); 

plot(F,H1(:,i),'r',Ff,H1f(:,i),'b');ylabel('H1');xlim([0 

20]);set(gca,'FontSize',16) 
         suptitle(['Sensor at ',num2str(i),' Impact at 3']) 
         legend('Unfiltered','Filtered') 
         subplot(3,1,2); 

plot(F,H2(:,i),'r',Ff,H2f(:,i),'b');legend('Unfiltered','Filtered');yl

abel('H2');xlim([0 20]);set(gca,'FontSize',16) 
         subplot(3,1,3); 

plot(F,mag2db(Coh(:,i)),'r',Ff,mag2db(Cohf(:,i)),'b');legend('Unfilter

ed','Filtered');xlabel('Freq(Hz)');ylabel('Coherence (dB)');xlim([0 

20]);set(gca,'FontSize',16) 
    else 
        if counter==length(j) 
        else 
            counter=counter+1; 
        end 
    end 
 end 

  
for i = 1:18 
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    if i~=j(counter)   
         figure;subplot(2,1,2); plot(Ff,(H1f(:,i)));ylabel('H(\omega) 

Accelerance');xlabel('Freq(Hz)');xlim([0 20]);set(gca,'FontSize',16) 
         suptitle(['Sensor at ',num2str(i),' Impact at 3']) 
         subplot(2,1,1); plot(Ff,mag2db(Cohf(:,i)));ylabel('Coherence 

(dB)');xlim([0 20]);ylim([-100 0]);set(gca,'FontSize',16)       
    else 
        if counter==length(j) 
        else 
            counter=counter+1; 
        end 
    end 
 end 
 clear counter PXX PFF PFX PXF FX XF F W PXXf PFFf PFXf PXFf FXf XFf 

Ff Wf i j 
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%--------------------For Mode Shapes-----------------------% 
% The following part combines the FRF matrices corresponding to the 

same 
% impact location. Matrices A & B are normalized by dividing by the 
% reference accelerometer location. They are then combined as 1 matrix 

in C 
A=bsxfun(@rdivide, imag(H11),imag(H11(:,12))); A(isnan(A))=0;  % 

Divide by reference 
B=bsxfun(@rdivide, imag(H14),imag(H14(:,12))); B(isnan(B))=0; % Divide 

by reference 
A(:,6)=0; % Since two references were used we can neglect one 
C=A+B;    % Combine both matrices together to get one full imaginary 

FRF 
C(:,12)=C(:,12)./2;         % Half the reference to cancel redundancy 
freq=4.019;                    % Identify natural frequency value 
[Val,Loc]=min(abs(f1-freq));% Find location of required frequency 
Z=zeros(18,18);             % Create zero matrix for mode shape          
M=C(Loc,:);                 % Select imaginary part of H1 for modes 
% The followign part selects the modal value for each measurement 

location 
% and places it at the corresponding location 
ModeMatrix=[M(1),0,M(2),M(3),0,M(4),M(5),M(6),0,M(7),M(8),0,M(9),M(10)

,0,M(11),M(12),0,M(13),M(14),M(15),0,M(16),M(17),0,M(18)];    % Create 

nodes corresponding to piers 
x=[0.5 1 1.9 3.2 4.2 5.5 6.4 7.3 8.6 9.6 10.9 11.8 12.3].*16;       % 

Create bridge distance points  
x=[x,x];    % Create a matrix for 3D plotting 
y=zeros(1,26);  % Create an empty matrix for each bridge point 
% The following loop creates the second side of the bridge plot 
for i=14:26 
    y(i)=16; 
end 
z=ModeMatrix; figure 
[Xq,Yq]=meshgrid(0:1.6:196.8,0:1.6:16); % Create a mesh corresponding 

to exact bridge measurements 
Zq=griddata(x,y,z,Xq,Yq,'cubic');  % Create a grid with cubic 

interpolation 
surf(Xq,Yq,Zq); hold on;    % Create a surface plot 
zz=zeros(1,26); % Create an empty matrix in the z direction 
Zr=griddata(x,y,zz,Xq,Yq,'cubic'); % Create the interpolated grid in 

the other direction 
g=mesh(Xq,Yq,Zr);set(g,'facecolor','none','linewidth',1.5,'edgecolor',

'k')  % Plot the mode shape 
ylim([-50 50]); grid off 
% shading interp;  
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% ----------------------Damping----------------------% 
% The following code estimates the damping for experimental tests 

using the 
% imaginary part of accelerance FRF 

  
% The loop runs 3 times for each of the first 3 natural frequencies in 

the 
% accelerance FRF  

  
% The first loop is for the FRF that has only the first half of the 
% instrumented bridge data 
clc 
for z=1:3 
    if z==1 % For 1st natural frequency 
            H=H11(1:100,:);F=f1(1:100,:);  % These are the limits 

between which the first natural frequency lies 
            FirstFreq=Findomegas(H,F); clear H F   % function that 

calculates the w1, w2, wn runs 
            Damp11=(FirstFreq(:,2)-

FirstFreq(:,1))./(2*FirstFreq(:,3));  % Half power bandwidth is 

calculated 
        else if z==2 
            H=H11(101:160,:);F=f1(101:160,:); % These are the limits 

between which the second natural frequency lies 
            SecondFreq=Findomegas(H,F); clear H F 
            Damp21=(SecondFreq(:,2)-

SecondFreq(:,1))./(2*SecondFreq(:,3)); 
        else  
            H=H11(161:220,:);F=f1(161:220,:); % These are the limits 

between which the third natural frequency lies 
            ThirdFreq=Findomegas(H,F); clear H F 
            Damp31=(ThirdFreq(:,2)-

ThirdFreq(:,1))./(2*ThirdFreq(:,3)); 
            end 
    end 
    z=z+1; 
end 

  
% The second loop is for the FRF that has the second half of the 
% instrumented bridge data. This is similar to the loop above 
for z=1:3 
    if z==1 
            H=H14(1:100,:);F=f1(1:100,:); 
            FirstFreq2=Findomegas(H,F); clear H F 
            Damp14=(FirstFreq2(:,2)-

FirstFreq2(:,1))./(2*FirstFreq2(:,3)); 
        else if z==2 
            H=H14(101:160,:);F=f1(101:160,:);; 
            SecondFreq2=Findomegas(H,F); clear H F 
            Damp24=(SecondFreq2(:,2)-

SecondFreq2(:,1))./(2*SecondFreq2(:,3)); 
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        else  
            H=H14(161:220,:);F=f1(161:220,:); 
            ThirdFreq2=Findomegas(H,F); clear H F 
            Damp34=(ThirdFreq2(:,2)-

ThirdFreq2(:,1))./(2*ThirdFreq2(:,3)); 
            end 
    end 
    z=z+1; 
end 

  
% The following saves the damping values from the sensor points and 
% averages the damping ratios between the reference points 

  
% This is the Damping for the first natural frequency for each of the 

DOF 
Damping1=[Damp11(1); 
          Damp11(2); 
          Damp11(3); 
          Damp11(4); 
          Damp14(5); 
          (Damp11(6)+Damp14(6))/2; 
          Damp14(7); 
          Damp14(8); 
          Damp14(9); 
          Damp11(10); 
          Damp11(11); 
          (Damp11(12)+Damp14(12))/2; 
          Damp11(13); 
          Damp11(14); 
          Damp14(15); 
          Damp14(16); 
          Damp14(17); 
          Damp14(18)] 

       
% This is the Damping for the second natural frequency for each of the 

DOF 
Damping2=[Damp21(1); 
          Damp21(2); 
          Damp21(3); 
          Damp21(4); 
          Damp24(5); 
          (Damp21(6)+Damp24(6))/2; 
          Damp24(7); 
          Damp24(8); 
          Damp24(9); 
          Damp21(10); 
          Damp21(11); 
          (Damp21(12)+Damp24(12))/2; 
          Damp21(13); 
          Damp21(14); 
          Damp24(15); 
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          Damp24(16); 
          Damp24(17); 
          Damp24(18)] 

  
 % This is the Damping for the third natural frequency for each of the 

DOF 
 Damping3=[Damp31(1); 
          Damp31(2); 
          Damp31(3); 
          Damp31(4); 
          Damp34(5); 
          (Damp31(6)+Damp34(6))/2; 
          Damp34(7); 
          Damp34(8); 
          Damp34(9); 
          Damp31(10); 
          Damp31(11); 
          (Damp31(12)+Damp34(12))/2; 
          Damp31(13); 
          Damp31(14); 
          Damp34(15); 
          Damp34(16); 
          Damp34(17); 
          Damp34(18)] 
  

% The following function file is written by Muhammad M. Sherif (PhD 

Candidate) 
% at University of Virginia.  

  
% The code uses a given FRF and its corresponding frequency vector and  
% calculates the maximum value and its half power bandwidth points 

  
function [freq]=Findomegas(H11,f) 

     
    [rows,cols]=size(H11); 
    freq=zeros(cols,3);          

    
    for i=1:cols 
        %Get Max and Find its locations 
        maxpeak=max(imag(H11(:,i))); 
        for j=1:rows 
            if imag(H11(j,i))==maxpeak 
                currow=j; 
            end 
        end 
        %Check if amp=amp/sqrt(2) at any point 
        amp=maxpeak/sqrt(2); 
        %If yes found will =j (i.e. the place of the stored value) 
        firstfound=0; 
        secondfound=0; 
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        %if not then interpolate, find the lower point and then get 

the higher 
        %point by pointers foundlowerpoint is the place of the lower 

point 
        firstfoundlowerpoint=0; 
        secondfoundlowerpoint=0; 
        %Right of the graph 
        %Check what is the max amount of data 
        if currow+30>rows 
            last=rows; 
        else 
            last=currow+30; 
        end 
        for j=currow:1:last 
            if imag(H11(j,i))==amp 
                firstfound=j; 
            else 
                if firstfoundlowerpoint==0 
                    if imag(H11(j,i))<amp 
                        firstfoundlowerpoint=j; 
                    end 
                end 
            end 
        end 
        %Left of the graph 
        %Check what is the max amount of data 
        if currow-30<1 
            last=1; 
        else 
            last=currow-30; 
        end 
        for j=currow:-1:last 
            if imag(H11(j,i))==amp 
                secondfound=j; 
            else 
                if secondfoundlowerpoint==0 
                    if imag(H11(j,i))<amp 
                        secondfoundlowerpoint=j; 
                    end 
                end 
            end 
        end 
        %Start Picking the location and frequencies and interpolate if 

needed 
        %Omega_2 
        if firstfound==0 
            freq(i,2)=f(firstfoundlowerpoint)+(f(firstfoundlowerpoint-

1)-f(firstfoundlowerpoint))*((amp-

imag(H11(firstfoundlowerpoint,i)))/(imag(H11(firstfoundlowerpoint-

1,i))-imag(H11(firstfoundlowerpoint,i)))); 
        else 
            freq(i,2)=f(firstfound,1); 
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        end 
        %Omega_1 
        if secondfound==0 
            

freq(i,1)=f(secondfoundlowerpoint)+(f(secondfoundlowerpoint+1)-

f(secondfoundlowerpoint))*((amp-

imag(H11(secondfoundlowerpoint,i)))/(imag(H11(secondfoundlowerpoint+1,

i))-imag(H11(secondfoundlowerpoint,i)))); 
        else 
            freq(i,1)=f(secondfound,1); 
        end 
        %Omega_n 
        freq(i,3)=f(currow,1); 
    end 
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APPENDIX II (Operational Modal Analysis Code) 

Code for ambient vibration tests (Code is modified by the one written by Mohammad Farshchin): 

function [Frq,phi]=FDD(Input1,Input2,Fs) 

  

% This code has been modified from the original one written by  

% Mohammad Farshchin at UoM 

  

% Input: the name of input file that contains time history data 

% Fs: sampling frequency 

% Frq: identified frequencies 

% phi: identified mode shapes 

 

% --------------------------------------------------------------------

----- 

% Initialization 

close all 

% --------------------------------------------------------------------

----- 

% Read acceleration data from both excel files  

% Note only a detrend has been applied here and no filtering is used. 

Acc1=detrend(xlsread(Input1)); 

Acc2=detrend(xlsread(Input2)); 

display('FDD is in progress, please wait ...') 

% --------------------------------------------------------------------

----- 

% Compute Power Spectral Density (PSD) matrix for each of the matrices 

% CPSD function, with default settings, is used to compute the cross 

power 

% spectral density matrix. More sophisticated methods can also be 

% applied for more accuracy. 

for I=1:size(Acc1,2) 

    for J=1:size(Acc1,2) 

        [PSD1(I,J,:),F1(I,J,:)]=cpsd(Acc1(:,I),Acc1(:,J),[],[],[],Fs); 

    end 

end 

for I=1:size(Acc2,2) 

    for J=1:size(Acc2,2) 

        [PSD2(I,J,:),F2(I,J,:)]=cpsd(Acc2(:,I),Acc2(:,J),[],[],[],Fs); 

    end 

end 

Frequencies(:,1)=F1(1,1,:); 

% --------------------------------------------------------------------

----- 

% Perform Modal Analysis (Use the Identifier function, below) 

[Frq,phi,Fp,s1] = Identifier(PSD1,Frequencies); % First data set 

% Save results 

save('C:\Users\salma\Desktop\WinterFootbridge\IdResults.mat','phi','Fp

','s1','Frequencies') 
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% Repeat 

[FrqX,phiX,FpX,s1X] = IdentifierX(PSD2,Frequencies); % Second data set 

save('C:\Users\salma\Desktop\WinterFootbridge\IdResultsX.mat','phiX','

FpX','s1X','Frequencies') 

  

% --------------------------------------------------------------------

----- 

% Print results 

display('-----------------------------------------------------') 

display('               Identification Results                ') 

display('-----------------------------------------------------') 

% Print frequencies 

display('Identified frequencies') 

for I=1:size(Frq,1) 

    fprintf('Mode: %d; Modal Frequency: %6.4g (Hz)\n',I,Frq(I)) 

end 

% Print Mode shapes 

display('Related mode shapes') 

for I=1:size(Frq,1) 

    fprintf('Mode shape # %d:\n\n',I) 

    disp(phi(:,I)) 

end 

% Print frequencies for second test 

display('Identified frequencies Second') 

for I=1:size(FrqX,1) 

    fprintf('Mode: %d; Modal Frequency: %6.4g (Hz)\n',I,FrqX(I)) 

end 

% Print Mode shapes for second test 

display('Related mode shapes Second') 

for I=1:size(FrqX,1) 

    fprintf('Mode shape # %d:\n\n',I) 

    disp(phiX(:,I)) 

end 

%-------------------------------Damping-----------------------------------% 

% First Test 
display(Frq)    % Shows chosen natural frequencies 
for i = 1:size(Frq,1) 
    NatFreq(i)= Frq(i);     % Creates another natural frequency vector 
end 
figure; 
RRxy=ifft(s1);          % Obtain inverse fourier transform (Brincker) 
FF=linspace(0,100.16,length(RRxy));     % Create a frequency vector 
plot((FF(1:(length(RRxy)/2)+1)),RRxy(1:(length(RRxy)/2)+1)); 
[Val Loct]=findpeaks(real(RRxy));       % Identify peaks or extreme 

values 
r0 = RRxy(1);                           % First peak value or ro 
for i = 1:size(Frq,1); 
    [V Pos]=min(abs(FF-NatFreq(i)));    % Obtain location of natural 

frequency in frequency vector     
    [VV PkLoc] = min(abs(Loct-Pos));    % Use the above location to 

locate the associated peak 
    logD(i) = (2/PkLoc) * log(r0/abs(Val(PkLoc)));  % Log decrement 
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    Damp(i) = logD(i)/sqrt(logD(i)^2 + 4*(pi^2));   % Estimate damping 
end 
% Second Test 
display(FrqX) 
for i = 1:size(FrqX,1) 
    NatFreqX(i)= FrqX(i); 
end 
figure; 
RRxyX=ifft(s1X); 
FFX=linspace(0,100.16,length(RRxyX)); 
plot((FFX(1:(length(RRxyX)/2)+1)),RRxyX(1:(length(RRxyX)/2)+1)); 
[ValX LoctX]=findpeaks(real(RRxyX)); 
r0X = RRxyX(1); 
for i = 1:size(FrqX,1); 
    [VX PosX]=min(abs(FFX-NatFreqX(i))); 
    [VVX PkLocX] = min(abs(LoctX-PosX)); 
    logDX(i) = (2/PkLocX) * log(r0X/abs(ValX(PkLocX))); 
    DampX(i) = logDX(i)/sqrt(logDX(i)^2 + 4*(pi^2)); 
end 
Damping=(Damp+DampX)/2      % Average out damping from both data sets 
end 
  

%% ---------------------------- subfunctions -------------------------

----- 

function [Frq,phi,Fp,s1] = Identifier(PSD,F) 

  

% Compute SVD of the PSD at each frequency 

for I=1:size(PSD,3) 

    [u,s,~] = svd(PSD(:,:,I)); 

    s1(I) = s(1);                                                          

% First eigen values 

    s2(I) = s(2,2);                                                        

% Second eigen values 

    ms(:,I)=u(:,1);                                                        

% Mode shape 

end 

  

% Plot first singular values of the PSD matrix 

figure 

hold on 

plot(F,mag2db(s1)) 

xlabel('Frequency (Hz)') 

ylabel('1st Singular values of the PSD matrix (db)') 

  

% -------------------------------------------------------------------- 

% Peak selection 

% a: Draw rectangles around peaks while holding left click 

% b: Press "Space" key to continue peak selection 

% c: Press "any other key" if you have selected a peak by mistake and 

want 

% to ignore it 

% -------------------------------------------------------------------- 



98 

 

  

Fp=[];% Frequencies related to selected peaks 

NumPeaks=input('Enter the number of desired peaks:'); 

display('-----------------------------------------------------') 

display('Peak selection procedure') 

display('a: Draw rectangles around peaks while holding left click') 

display('b: Press "Space" key to continue the peak selection') 

display('c: Press "any other key" if you have selected a peak by 

mistake and want to ignore it') 

k=0; 

while k~=NumPeaks 

    A=getrect;                                                                          

% Draw a rectangle around the peak 

    [~,P1]=min(abs(F-A(1))); 

    [~,P2]=min(abs(F-(A(1)+A(3)))); 

    [~,B]=max(s1(P1:P2)); 

    Max=B+P1-1;                                                                         

% Frequency at the selected peak 

    

scatter(F(Max),mag2db(s1(Max)),'MarkerEdgeColor','b','MarkerFaceColor'

,'b')         % Mark this peak 

    pause;key=get(gcf,'CurrentKey'); 

    Fp(end+1,:)=[Max,F(Max)]; 

    if strcmp(key,'space') 

        % Press space to continue peak selection 

        k=k+1; 

        

scatter(F(Max),mag2db(s1(Max)),'MarkerEdgeColor','g','MarkerFaceColor'

,'g')      % Mark this peak as green 

    else 

        % Press any other key to ignore this peak 

        Fp(end,:)=[]; 

        

scatter(F(Max),mag2db(s1(Max)),'MarkerEdgeColor','r','MarkerFaceColor'

,'r')      % Mark this peak as red 

    end 

end 

% Number selected peaks, respectively 

[~,Sr]=sort(Fp(:,2)); 

Fp=Fp(Sr,:); 

clf 

plot(F,mag2db(s1)) 

hold on 

xlabel('Frequency (Hz)') 

ylabel('1st Singular values of the PSD matrix (db)') 

for I=1:size(Fp,1) 

    

scatter(Fp(I,2),mag2db(s1(Fp(I,1))),'MarkerEdgeColor','g','MarkerFaceC

olor','g') 

    text(Fp(I,2), mag2db(s1(Fp(I,1)))*1.05, mat2str(I)) 

end 

% Identified modal frequencies 
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Frq=Fp(:,2); 

% Compute mode shapes for each selected peak 

for J=1:size(Fp,1) 

    [ug, ~, ~] = svd(PSD(:,:,Fp(J,1))); 

    phi(:,J) = ug(:,1); 

end 

  

end 

  

%--------------------Second Subfunction-------------------------------

% 

function [Frq,phi,Fp,s1] = IdentifierX(PSD,F) 

  

% Compute SVD of the PSD at each frequency 

for I=1:size(PSD,3) 

    [u,s,~] = svd(PSD(:,:,I)); 

    s1(I) = s(1);                                                          

% First eigen values 

    s2(I) = s(2,2);                                                        

% Second eigen values 

    ms(:,I)=u(:,1);                                                        

% Mode shape 

end 

  

% Plot first singular values of the PSD matrix 

figure 

hold on 

plot(F,mag2db(s1)) 

xlabel('Frequency (Hz)') 

ylabel('1st Singular values of the PSD matrix (db)') 

  

% --------------------------------------------------------------------

----- 

% Peak selection 

% a: Draw rectangles around peaks while holding left click 

% b: Press "Space" key to continue peak selection 

% c: Press "any other key" if you have selected a peak by mistake and 

want 

% to ignore it 

% --------------------------------------------------------------------

----- 

  

Fp=[];% Frequencies related to selected peaks 

NumPeaks=input('Enter the number of desired peaks:'); 

display('-----------------------------------------------------') 

display('Peak selection procedure') 

display('a: Draw rectangles around peaks while holding left click') 

display('b: Press "Space" key to continue the peak selection') 

display('c: Press "any other key" if you have selected a peak by 

mistake and want to ignore it') 

k=0; 

while k~=NumPeaks 
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    A=getrect;                                                                          

% Draw a rectangle around the peak 

    [~,P1]=min(abs(F-A(1))); 

    [~,P2]=min(abs(F-(A(1)+A(3)))); 

    [~,B]=max(s1(P1:P2)); 

    Max=B+P1-1;                                                                         

% Frequency at the selected peak 

    

scatter(F(Max),mag2db(s1(Max)),'MarkerEdgeColor','b','MarkerFaceColor'

,'b')         % Mark this peak 

    pause;key=get(gcf,'CurrentKey'); 

    Fp(end+1,:)=[Max,F(Max)]; 

    if strcmp(key,'space') 

        % Press space to continue peak selection 

        k=k+1; 

        

scatter(F(Max),mag2db(s1(Max)),'MarkerEdgeColor','g','MarkerFaceColor'

,'g')      % Mark this peak as green 

    else 

        % Press any other key to ignore this peak 

        Fp(end,:)=[]; 

        

scatter(F(Max),mag2db(s1(Max)),'MarkerEdgeColor','r','MarkerFaceColor'

,'r')      % Mark this peak as red 

    end 

end 

% Number selected peaks, respectively 

[~,Sr]=sort(Fp(:,2)); 

Fp=Fp(Sr,:); 

clf 

plot(F,mag2db(s1)) 

hold on 

xlabel('Frequency (Hz)') 

ylabel('1st Singular values of the PSD matrix (db)') 

for I=1:size(Fp,1) 

    

scatter(Fp(I,2),mag2db(s1(Fp(I,1))),'MarkerEdgeColor','g','MarkerFaceC

olor','g') 

    text(Fp(I,2), mag2db(s1(Fp(I,1)))*1.05, mat2str(I)) 

end 

% Identified modal frequencies 

Frq=Fp(:,2); 

% Compute mode shapes for each selected peak 

for J=1:size(Fp,1) 

    [ug, ~, ~] = svd(PSD(:,:,Fp(J,1))); 

    phi(:,J) = ug(:,1); 

end 

  

end 
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%-------------------FDD Mode Shapes-----------------------------% 

  
% Define A1, B1, C1 as 1st, 2nd and 3rd mode shapes obtained from 

first  
% data set and A2, B2 and C2 as mode shapes obtained from second data 

set 

  
% Each of the modal matrices are normalized through the reference 

sensor 
% and combined to form one grid of sensors 
% Sensor 12 is used as reference and sensor 6 is neglected in this 

case 
AX=real(A1)./real(A1(12));AX(6)=0; 
AY=real(A2)./real(A2(12));A=AX+AY;A(12)=A(12)./2; 
BX=real(B1)./real(B1(12));BX(6)=0; 
BY=real(B2)./real(B2(12));B=BX+BY;B(12)=B(12)./2; 
CX=real(C1)./real(C1(12));CX(6)=0; 
CY=real(C2)./real(C2(12));C=CX+CY;C(12)=C(12)./2; 
M=(C); % Matrix M defined as mode matrix. M(C) represents 3rd mode 

previously defined as 'C' 
ModeMatrix=[M(1),0,M(2),M(3),0,M(4),M(5),M(6),0,M(7),M(8),0,M(9),M(10)

,0,M(11),M(12),0,M(13),M(14),M(15),0,M(16),M(17),0,M(18)];    % Create 

nodes corresponding to columns 
x=[0.5 1 1.9 3.2 4.2 5.5 6.4 7.3 8.6 9.6 10.9 11.8 12.3].*16;       % 

Create bridge distance points 
x=[x,x];    % Create mesh matrix 
y=zeros(1,26); % Define either side of bridge as a set of 13 points 

each 
for i=14:26 
y(i)=16; 
end 
z=ModeMatrix; figure 
[Xq,Yq]=meshgrid(0:1.6:196.8,0:1.6:16); 
Zq=griddata(x,y,z,Xq,Yq,'cubic'); 
%mesh(Xq,Yq,Zq) % Could also use mesh 
surf(Xq,Yq,Zq); hold on; 
zz=zeros(1,26); 
Zr=griddata(x,y,zz,Xq,Yq,'cubic'); 
g=mesh(Xq,Yq,Zr);set(g,'facecolor','none','linewidth',1.5,'edgecolor',

'k') 
ylim([-50 50]); grid off 
% Use the command amac(A1,A2) to compute Modal Assurance Criteria  

% (Abravibe) 
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APPENDIX III (Serviceability Code) 

The following code finds peak accelerations to be further used for serviceability assessment: 

clc 
clear 
close all 

  
%----------------Read and Organize Files----------------% 
% Read BDI files directly 
% Commands "try" and "catch me" are used to capture error in the code. 

This is similar to EMA code 
for i = 1:20 
  try 
    filename=strcat('Test_',num2str(i),'.dat');  
    filename=strcat('''',filename,''''); 
    

command=sprintf(['Test',num2str(i),'=csvread(',filename,',21,0,[21,0,9

0164,11]);']); 
    eval(command); 
  catch me 
      try 
        filename=strcat('Test_',num2str(i),'.dat');  
        filename=strcat('''',filename,''''); 
        

command=sprintf(['Test',num2str(i),'=csvread(',filename,',21,0,[21,0,1

2039,11]);']); 
        eval(command); 
      catch me 
      try 
        filename=strcat('Test_',num2str(i),'.dat');  
        filename=strcat('''',filename,''''); 
        

command=sprintf(['Test',num2str(i),'=csvread(',filename,',21,0,[21,0,9

782,11]);']); 
        eval(command); 
      catch me 
      try 
        filename=strcat('Test_',num2str(i),'.dat');  
        filename=strcat('''',filename,''''); 
        

command=sprintf(['Test',num2str(i),'=csvread(',filename,',21,0,[21,0,9

034,11]);']); 
        eval(command); 
      catch me 
      try 
        filename=strcat('Test_',num2str(i),'.dat');  
        filename=strcat('''',filename,''''); 
        

command=sprintf(['Test',num2str(i),'=csvread(',filename,',21,0,[21,0,7

707,11]);']); 
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        eval(command); 
      catch me 
      try 
        filename=strcat('Test_',num2str(i),'.dat');  
        filename=strcat('''',filename,''''); 
        

command=sprintf(['Test',num2str(i),'=csvread(',filename,',21,0,[21,0,7

477,11]);']); 
        eval(command); 
      catch me 
      try 
        filename=strcat('Test_',num2str(i),'.dat');  
        filename=strcat('''',filename,''''); 
        

command=sprintf(['Test',num2str(i),'=csvread(',filename,',21,0,[21,0,6

029,11]);']); 
        eval(command); 
      catch me 
        filename=strcat('Test_',num2str(i),'.dat');  
        filename=strcat('''',filename,''''); 
        

command=sprintf(['Test',num2str(i),'=csvread(',filename,',21,0,[21,0,4

527,11]);']); 
        eval(command); 
      end 
      end 
      end 
      end 
      end  
      end  
  end 
  clear me i filename command 
end 

  
%----------------Read and Organize Files----------------% 
% The following loop removes any power fluctuations from the data. The 
% command used is "detrend" and is explained in the thesis 
for i = 1:20 
    eval(strcat('Test',num2str(i),'=detrend(Test',num2str(i),');')); 
end 
clear i 

  
% Eliminating the empty node column and creating a separate column for 
% strain gage 
for i = 1:20 
    eval(strcat('Test',num2str(i),'(:,9)=[];')); 
    % Create cell for strain as cant make matrix or different sized 

columns 
    eval(strcat('Strain{:,',num2str(i),'}=Test',num2str(i),'(:,2);')); 
end 
clear i 
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% Clear strain column from Tests 
for i = 1:20 
    eval(strcat('Test',num2str(i),'(:,2)=[];')); 
end 
clear i 

  
% Rearranging rows to first 6 as vertical, then 3 transverse then 
% 1 longitudinal  
for i=1:20 
    eval(strcat('T',num2str(i),'=Test',num2str(i),'(:,[10 1 5 7 3 8 9 

6 2 4]);')) 
    eval(strcat('clear Test',num2str(i),';')) 
end 

  
% Converting from g to m/s^2 
for i=1:20 
    eval(strcat('T',num2str(i),'=T',num2str(i),'.*9.8065;')) 
end 

  
% This creates a vector to hold titles for the subplots within the 

figure 
Titles=['Vertical at 1    '; 
        'Vertical at 2    '; 
        'Vertical at 3    '; 
        'Vertical at 4    '; 
        'Vertical at 5    '; 
        'Vertical at 6    '; 
        'Lateral at 1     '; 
        'Lateral at 4     '; 
        'Lateral at 5     '; 
        'Longitudinal at 7']; 

  
 % This creates a vector to hold the main titles for each of the plots 
SuperTitles=['9 people at 1Hz        '; % 1 
             '39 people (random)     '; % 2 
             '9 people at 1Hz        '; % 3 
             '37 people (random)     '; % 4 
             '9 people at 1Hz        '; % 5 
             '9 people at 1.5Hz      '; % 6 
             '9 people at 1.5Hz      '; % 7 
             '9 people at 1.5Hz      '; % 8 
             '9 people at 2Hz        '; % 9 
             '9 people at 2Hz        '; % 10 
             'Lots of people (random)'; % 11 
             '9 people at 2Hz        '; % 12 
             'Ambient Test           '; % 13 
             '1 person at 1Hz        '; % 14 
             '1 person at 1.5Hz      '; % 15 
             '1 person at 1.5Hz      '; % 16 
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             '1 person at 1.5Hz      '; % 17 
             '1 person at 2Hz        '; % 18 
             '1 person at 2Hz        '; % 19 
             '1 person at 2Hz        ']; % 20 

              
%----------------Plot Data----------------% 
for i = 1:20 
figure 
    for j = 1:10 
        subplot(5,2,j) 
        eval(strcat('y=numel(T',num2str(i),'(:,j));')) % This 

calculates the no. of elements in a column 
        x=y./100.16;    % Creates a time step given the sampling 

frequency of 100.16 Hz 
        t=linspace(0,x,y); % Creates a time vector 
        eval(strcat('plot(t,T',num2str(i),'(:,j));')); % Plots the 

specific graph 
        xlabel('Time(s)'); ylabel('Acceleration(g)'); 

title(Titles(j,:)) % Uses earlier defined titles on the plot 
        % Data cursor code for finding max and min 
        eval(strcat('[max_val,index] = max(T',num2str(i),'(:,j));')); 

% Finds the maximum value and its location in the plot 
        eval(strcat('[min_val,ind] = min(T',num2str(i),'(:,j));'));   

% Finds the minimum value and its location in the plot 
        eval(strcat('ABSVal(i,j)=max(abs(T',num2str(i),'(:,j)));')) % 

Absolute value from all tests to estimate either the largest min or 

largest max (extreme value) 
        hold on; 
        % The following are plotting parameters used to indicate the 
        % extreme point 
        plot(t(index),max_val,'ks','markerfacecolor',[0 0 0]); 
        plot(t(ind),min_val,'ks','markerfacecolor',[0 0 0]); 
        text(t(ind),min_val,['Min: ',num2str(min_val)]) 
        text(t(index),max_val,['Max: ',num2str(max_val)]) 
        clear x y t max_val min_val ind index 
    end 
    suptitle(SuperTitles(i,:)) % Assign earlier defined main titles 
end 

clear i j Titles SuperTitles 
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APPENDIX IV (FRF Plots from EMA) 

The following are the plots from impact hammer test (Table 14) where each of the peaks 

corresponding to a particular degree of freedom and the impact location are shown: 

 

Figure 28. FRF from impact at location 3 and measurement at location 1 

 

 

Figure 29. FRF from impact at location 3 and measurement at location 2 
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Figure 30. FRF from impact at location 3 and measurement at location 3 

 

 

 

Figure 31. FRF from impact at location 3 and measurement at location 4 
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Figure 32. FRF from impact at location 3 and measurement at location 5 

 

 

 

Figure 33. FRF from impact at location 3 and measurement at location 6 
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Figure 34. FRF from impact at location 3 and measurement at location 7 

 

 

 

Figure 35. FRF from impact at location 3 and measurement at location 8 



110 

 

 

Figure 36. FRF from impact at location 3 and measurement at location 9 

 

 

 

Figure 37. FRF from impact at location 3 and measurement at location 10 
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Figure 38. FRF from impact at location 3 and measurement at location 11 

 

 

 

Figure 39. FRF from impact at location 3 and measurement at location 12 
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Figure 40. FRF from impact at location 3 and measurement at location 13 

 

 

 

Figure 41. FRF from impact at location 3 and measurement at location 14 
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Figure 42. FRF from impact at location 3 and measurement at location 15 

 

 

 

Figure 43. FRF from impact at location 3 and measurement at location 16 
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Figure 44. FRF from impact at location 3 and measurement at location 17 

 

 

 

Figure 45. FRF from impact at location 3 and measurement at location 18 
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Figure 46. FRF from impact at location 15 and measurement at location 1 

 

 

 

Figure 47. FRF from impact at location 15 and measurement at location 2 
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Figure 48. FRF from impact at location 15 and measurement at location 3 

 

 

 

Figure 49. FRF from impact at location 15 and measurement at location 4 
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Figure 50. FRF from impact at location 15 and measurement at location 5 

 

 

 

Figure 51. FRF from impact at location 15 and measurement at location 6 
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Figure 52. FRF from impact at location 15 and measurement at location 7 

 

 

 

Figure 53. FRF from impact at location 15 and measurement at location 8 
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Figure 54. FRF from impact at location 15 and measurement at location 9 

 

 

 

Figure 55. FRF from impact at location 15 and measurement at location 10 
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Figure 56. FRF from impact at location 15 and measurement at location 11 

 

 

 

Figure 57. FRF from impact at location 15 and measurement at location 12 
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Figure 58. FRF from impact at location 15 and measurement at location 13 

 

 

 

Figure 59. FRF from impact at location 15 and measurement at location 14 
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Figure 60. FRF from impact at location 15 and measurement at location 15 

 

 

 

Figure 61. FRF from impact at location 15 and measurement at location 16 
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Figure 62. FRF from impact at location 15 and measurement at location 17 

 

 

 

Figure 63. FRF from impact at location 15 and measurement at location 18 

 


