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SUMMARY

Sequence-to-sequence generation applications take source texts as inputs, and auto-

matically generate new texts that satisfy specific target requirements, such as generating a

paraphrase, translating to another language, answering a question, etc. There are two key

challenges in sequence-to-sequence generation applications: first, how to encode source

texts into informative representations that preserve rich semantic information; second, how

to generate target texts that look like human-generated texts. In this thesis, I develop prob-

abilistic models to encode informative context representations from source texts using vari-

ational autoencoders, and investigate different learning algorithms to train models that can

effectively generate better target texts.

For learning context representations with variational autoencoders, I identify the limi-

tation of using variational autoencoders for sequence-to-sequence models is that applying

the standard normal prior is likely to trap the variational posterior into local optimal, thus

preventing the model from learning rich context representations. Therefore, I propose to

adapt the attention mechanism and learn some empirical priors to help the model get rid of

the local optimal and learn better context representations.

For investigating different learning algorithms for sequence-to-sequence models, I present

an empirical study on different learning algorithms (e.g. REINFORCE, DAGGER) to ana-

lyze how they can the training-inference discrepancy when training sequence-to-sequence

models. I apply different learning algorithms in state-of-the-art model [1] in paraphrase

generation tasks, and find that DAGGER constantly contributes to better performance.

vi



CHAPTER 1

INTRODUCTION

Sequence-to-sequence generation is an important subfield of Natural Language Processing

(NLP) which has a wide range of applications, such as paraphrase generation [2], dialogue

system [3], machine translation [4], question answering [5], etc. To learn an optimal policy

for sequence-to-sequence generation tasks, the model needs to generate sentence that not

only preserves the semantic meaning of source sentence, but also has rich linguistic styles

that look like human generated texts. There are two major aspects contributing to getting

the optimal policy in sequence-to-sequence generation: (1) encoding rich source content

information; and (2) generating correct and diversified target sentences.

Although prior works developed various methods [6, 7, 8] in sequence-to-sequence

generation, the recent progress mainly applies neural networks [9] to encode source infor-

mation and generate target sentence. Particularly, the encoder-decoder framework [10] is

widely adopted, in this work, I define it as Sequence-to-Sequence (Seq2Seq) framework.

As shown in Figure 1.1, the encoder is a recurrent neural network (RNN) which encodes

the input sentence into a deterministic latent representation that captures the semantic in-

formation of the source sentence. The decoder is another RNN which generates a word

at each time step conditioning on previous words and the encoded latent representations.

Note that the input word to the decoder during training is sampled from the ground truth

data distribution, while it switches to the model prediction distribution during testing, since

the ground truth data is no longer available. This training strategy is called teacher forcing

[11], which is a widely used learning algorithm for training recurrent neural networks.
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Figure 1.1: The general Seq2Seq framework for sequence-to-sequence generation.

1.1 Problems in Sequence-to-Sequence Generation

There are two major problems under this Seq2Seq framework: (1) the deterministic la-

tent representation prevents the decoder from generating diversified texts; (2) the training-

inference discrepancy caused by teacher forcing makes the decoder accumulate and propa-

gate errors when generating texts. The first problem can be identified as learning diversified

and informative latent representations for texts. In this work, I resort to apply probabilis-

tic models which learn a probability distribution of the latent representation. By sampling

the latent representation from a probabilistic distribution, the decoder is able to generate

diversified predictions that can be applied in many sequence-to-sequence generation tasks,

such as text style transfer [12], paraphrase generation [13], etc. The second problem can be

described as finding more suitable learning algorithm for Seq2Seq models. In this work,

I conduct an empirical comparison on reinforcement learning [14] and imitation learning

[15] algorithms to analyze how they can alleviate the training-inference discrepancy prob-

lem in Seq2Seq models.
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1.2 Probabilistic Representation Learning for Seq2Seq Models

Given the observed data x, z is the latent variable of x, the probability distribution of latent

variable is defined as:

p(z|x) =

∏M
i=1 p(x

(i), z(i))∏M
i=1 p(x

(i))
(1.1)

Since the marginal data distribution p(X) =
∏M

i=1 p(x
(i)) is not tractable in practice, we

use variational inference [16] to find an alternative distribution q(z|x) as an approximation

to the true posterior distribution p(z|x). A typical framework for vairational inference with

deep neural networks is variational autoencoders [17, 18].

Variational autoencoders apply an inference network to model the approximated pos-

terior qφ(z|x), also called the variational posterior, using amortized inference [19]. Each

input sentence x(i) shares the same set of parameters φ, and different input sentence x(i)

will lead to different variational posterior qφ(z|x(i)). Variational autoencoders use a gen-

erative model pθ(x|z(i)) to reconstruct the input sentence x(i), where z(i) is sampled from

the variational posterior qφ(z|x(i)). If the variational posterior learns a good approximation

to the true posterior distribution p(z|x(i)), the generative model will be able to reconstruct

high quality input sequence x(i).

Previous work [20] shows that latent representations of real-world text data are often

multi-modal and highly complex. In practice, variational autoencoders often fail to learn a

good approximation to the true latent manifold, and generate random text which preserve

little information from the input text. This failure comes from a bad local optimal [21],

where the variational posterior always equals to the prior and the model learns nothing in

the latent representations. The bad local optimal happens because the Kullback-Leibler

(KL) divergence term in loss function encourages the variational posterior to match the

prior. Since the prior in variational autoencoders is usually a standard normal distribu-

tion, the variational posterior will eventually collapse to the standard normal distribution,

making variational autoencoders encode just random noise into the latent representations.
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There has been some previous works proposing to learn an appropriate prior to help

variational autoencoders better approximate the true latent manifold. [22] suggests to ap-

proximate the optimal prior by assembling a mixture of Gaussian posteriors with pseudo-

inputs learned during training. [23] proposes to learn a Real Non Volume Preserving

(RNVP) prior to improve the performance of variational autoencoders. Other existing

works replace the Gaussian distributions with more complicated distributions to fit varia-

tional autoencoders on text data. [20] uses a piecewise constant probability density function

to parameterize latent variable z, but this distribution only serves for the topic modeling

task. [21] applies the von Mises-Fisher (vMF) distribution for variational autoencoders, but

this distribution gains small performance improvement compared with Gaussian distribu-

tion.

In chapter 3, I propose to apply Gaussian Process (GP) priors to capture the local latent

manifold of source text x, in order to help variational autoencoders better approximate the

true latent manifold. Gaussian Process is often used for exact inference [24, 25, 26], but

some prior work [27] also applies it as an extension of the variational autoencoders where

correlations between data samples are modeled through a GP prior on latent variables. I

follow the prior work [27] and propose a simple GP prior which fits into the variational

Seq2Seq framework.

1.3 Efficient Learning Algorithms for Seq2Seq Models

The most widely-used learning algorithm for training the RNN decoder is maximum likeli-

hood estimation (MLE), which is also called teacher forcing [11]. During training, the de-

coder makes prediction conditioning on the ground truth word at previous time step. While

during testing, the ground truth word is no longer available, the decoder makes prediction

conditioning on the word sampled from the model distribution at previous time step.

Previous work [28] argues that teacher forcing results in poor prediction performance

of the decoder. Since the word sampled from the model distribution at previous time step

4



may be very different from the word sampled from the ground truth data distribution, and

the decoder is never trained to make prediction conditioning on the words sampled from

the model distribution.

To address this challenge, prior work [13] suggests to utilize the exploration strategy

in reinforcement learning (RL). A typical way [29, 30, 31] of using RL is to use the word

sampled from the probability distribution at previous time step as the input to the decoder

during training, and use the ground truth text to compute the reward for updating the cur-

rent policy. However, training with RL algorithms is not trivial and often hardly works in

practice [32]. Another category in the middle ground between RL and MLE is imitation

learning (IL) [33, 34], which mixes the two kinds of inputs to the decoder during training,

and directly uses the ground truth text to update the current policy.

In chapter 4, I present an empirical comparison between different learning algorithms

(i.e. MLE, RL and IL) to demonstrate the pros and cons of using them for training RNNs. I

propose a unified framework to include some popular learning algorithms as special cases,

such as the REINFORCE algorithm [35] in RL and the DAGGER algorithm [34] in IL. To

better understand the value of different training strategies, I further propose several variant

learning algorithms based on the RL framework. Experiments on the benchmark datasets

show that the DAGGER algorithm helps the decoder making better predictions than the

REINFORCE algorithm and its variants in paraphrase generation.

1.4 Contributions

To sum up, with the goal of jumping out of local optimal and searching better solutions for

Seq2Seq models, I explore probabilistic models for representation learning and efficient

learning algorithms in various sequence-to-sequence generation tasks.

For probabilistic representation learning, I analyze the local geometry of latent mani-

folds of source texts, and propose to use variational Seq2Seq models with Gaussian Process

priors to better approximate the true latent manifolds of Seq2Seq models. The experiment

5



results show that Gaussian Process priors can help variational Seq2Seq models outperform

traditional Seq2Seq models in both paraphrase generation and style transfer tasks.

For efficient learning algorithms, I build a unified learning framework for popular learn-

ing algorithms (i.e. MLE, RL and IL), and conduct empirical experiments to compare the

benefits and limitations of different learning algorithms in paraphrase generation. The ex-

periment results show that IL is constantly better than RL and MLE for training Seq2Seq

models, and can outperform the state-of-the-art model with a large margin.
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CHAPTER 2

RELATED WORKS

This chapter summarizes prior works in probabilistic representation learning for texts and

efficient learning algorithms for training recurrent neural networks. The discussion on pre-

vious works can provide both theoretical insights and empirical observations of challenges

in sequence-to-sequence generation.

2.1 Probabilistic Representation Learning for Seq2Seq Models

With the goal of learning diversified and informative latent representations of real-world

data, some previous works [17, 18, 36] choose to apply deep latent variable models, which

are good at learning rich, non-linear data representations and also specify prior knowl-

edge to allow uncertainty about unknown factors. Variational autoencoders [17, 18] are

the general framework for learning deep latent variable models, where they apply amor-

tized variational inference [37, 38] to approximate the true posterior distribution of latent

variables.

Despite of their solid mathematical basis from Bayesian inference [39], variational au-

toencoders often suffer from poor generative performance. [40] claims that the poor perfor-

mance of variational autoencoders comes the mismatch between the true and approximated

posterior distribution of latent variables, which they refer to as the inference gap. They

decompose the inference gap into two components: the approximation gap which comes

from the inability of the variational distribution family to exactly match the true posterior,

and the amortization gap which comes from amortizing the variational parameters over the

entire training set instead of learning variational parameters for each training example indi-

vidually. By comparing the inference gap between variational autoencoders with different

variational distribution families, they find that the amortization gap is the major cause of
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the inference sub-optimal in variational autoencoders, because the decoder can learn to

accommodate different choice of variational distribution family. Besides, they show that

improving the expressiveness of approximated posteriors can effectively reduce the amor-

tization gap, thus making variational autoencoders achieve much better performance.

There have been extensive prior works on improving the expressiveness of approxi-

mated posteriors in the field of computer vision. [19, 41] uses more flexible approximated

posteriors (e.g, normalizing flow, auto-regressive flow). [42, 43] combines the amortized

variational inference with stochastic variational inference to further refine the approximated

posterior distribution. Another group of works propose that learning flexible priors is ben-

eficial to improving the expressiveness of approximated posteriors. [44] demonstrates that

updating the prior is helpful for both sample generation and inference, and propose to use

invertible functions to parameterize explicit densities for both the prior and the variational

posterior. [22] uses a mixture of variational posteriors as the prior, and empirically show

that applying the proposed prior can successfully increase the generative performance of

variational autoencoders.

In the context of sequence-to-sequence generation applications, some previous works

suggest to replace the Gaussian distribution family with other distribution families which

will be more suitable to model complex text data. [20] demonstrates that variational autoen-

coders with the standard Gaussian prior is incapable of representing complex latent factors

efficiently in the natural language text, and apply a piece-wise constant distribution as their

prior. [21] replaces the Gaussian distribution with von Mises-Fisher (vMF) distribution,

and manage to achieve better performance in document modeling and language model-

ing tasks. The existing works mainly focus on applying different variational distribution

families, few works have investigated how to improve the expressiveness of approximated

posteriors for text data.

In this work, I propose to learn empirical Gaussian Process priors to help improve

the expressiveness of approximated posteriors for text data in variational autoencoders.

8



The proposed Gaussian Process prior is an ad-hoc prior which only applies to the current

encoder hidden state, which enables the modeling of multi-modal distribution of text data

in the latent space. By conducting empirical experiments on some sequence-to-sequence

generation applications (i.e. paraphrase generation, style transfer), I show that the proposed

Gaussian Process priors can effectively help variational autoencoders better approximate

the true posterior distribution, thus achieving better performance than previous works.

2.2 Efficient Learning Algorithms for Seq2Seq Models

In supervised learning, a well-known challenge of training recurrent neural networks is the

exposure bias problem [29]: the current prediction of the generative model conditions on

the ground truth words during training, but switches to conditioning on previous predictions

during testing, causing the model accumulating and propagating errors when generating the

text.

Prior works [30, 31] follow the training strategy of reinforcement learning [14] for al-

leviating the exposure bias problem, where they introduce previous predictions as the input

to recurrent neural networks during training. [30] lets the model generate current predic-

tion conditioning on previous predictions during training, and propose to use minimum risk

training to minimize the discrepancy between model predictions and ground truth sentence,

where the discrepancy is computed by evaluation metrics for the sentence generation task

(e.g. BLEU[45], METEOR[46], etc.). [31] shares similar idea, but use actor-critic meth-

ods to alleviate the discrepancy between training and testing. They train a critic network

to compute the discrepancy between the model predictions and ground truth sentence, and

optimize the discrepancy in order to learn a better policy.

Other work [15] follows the training strategy of imitation learning [33, 34], and ran-

domly introduce previous predictions as the input to recurrent neural with some probabil-

ity. This method is called scheduled sampling, different from reinforcement learning, it

uses the ground truth sentence as the expert action to update its current policy. In other

9



words, it directly maximizes the log-probability of ground truth sentence during training,

and does not require to compute the discrepancy between model predictions and ground

truth sentence to update its current policy.

Another work [28] applies the adversarial domain adaptation [47, 48] to train a discrim-

inator to discriminate between predictions distribution and ground truth distribution. This

method is called professor forcing, by training the discriminator jointly with the generative

model, it aims at making the generative model produce predictions distribution that is very

similar to ground truth distribution.

While both reinforcement learning and imitation learning are widely used in sequen-

tial prediction tasks, there is a lack of direct comparison between the two different types

of training strategies, which leads to only a partial image on their benefits. In this work,

I conduct an empirical study on how reinforcement learning and imitation learning can

help alleviate the exposure bias problem in paraphrase generation. Experiments on bench-

mark datasets show that imitation learning is constantly better than reinforcement learning,

and training the state-of-the-art model [1] with imitation learning can help gain a further

performance improvement.
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CHAPTER 3

PROBABILISTIC REPRESENTATION LEARNING FOR SEQ2SEQ MODELS

This chapter discusses how to use variational inference and deep neural networks to learn

diversified and informative latent representations in Seq2Seq models.

Many NLP applications aim at transforming source text information into target text

information, such as machine translation [4], paraphrase generation [9], style transfer [49]

etc. In this chapter, I extend the variational autoencoders framework to varitaional Seq2Seq

framework, in order to fit it into a wider range of sequence-to-sequence generation appli-

cations. However, this vanilla adaptation often leads to a bad local optimal [50], where the

variational posterior qφ(z|x) collapses to the standard normal prior, and the RNN decoder

degrades to a RNN language model which only relies on the previous target word to make

current prediction during training.

To avoid being trapped in the bad local optimal, previous works [50, 51] suggest to

introduce attention mechanism [4] to enable the decoder to adaptively incorporate the in-

formation from source sequences. In this chapter, I explored different ways to adopt at-

tention mechanism into the variational Seq2Seq framework. In addition, I propose to learn

some flexible priors to further prevent variational Seq2Seq models from being trapped in

bad local optimal. Besides, I propose to conduct local geometric analysis on latent repre-

sentations to analyze whether variational Seq2Seq models learn a good approximation to

the true low-dimensional latent manifold of source sequences.

The rest of this chapter is organized as follows: section 3.1 introduces the variational

Seq2Seq framework and explains why the model is trapped in the bad local optimal during

optimization; section 3.2 discusses how to model the attention vectors as latent random

variables in the variational Seq2Seq framework; section 3.3 introduces how to model the

source encodings as latent random variables in the variational Seq2Seq framework; sec-
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tion 3.4 introduces how to do local geometric analysis on latent representations to analyze

whether variational Seq2Seq models learn a good approximation to the true latent manifold

of source sequences; section 3.5 defines evaluation metrics and shows empirical experiment

results for different variational Seq2Seq models; section 3.6 concludes the most effective

method to learn diversified and informative latent representations in Seq2Seq models.

3.1 Variational Seq2Seq Models

In order to extend the variational autoencoder to the variational Seq2Seq models (also

called varitional encoder-decoders), one possible way [52, 3] is to condition probabilis-

tic distributions on both source sequence x and target sequence y, such that the variational

posterior is qφ(z|x,y). However, this introudces a discrepancy between training and pre-

diction, since y is not available during prediction. Another widely used way [53, 54, 50] is

to condition latent variables z only on source sequencex. They assume that target sequence

y is a function of source sequence x, so that they have qφ(z|y) = qφ(z|f(x)) , qφ(z|x).

In this work, I follow the second approach [53, 50] to build our variational Seq2Seq frame-

work.

Let words from the source sequence be x = {x1,x2, ...,xN}, words from the target

sequence be y = {y1,y2, ...,yT}, and the latent variable be z. For the Seq2Seq model,

both the encoder and decoder are recurrent neural networks (RNNs). The RNN encoder

encodes the source sequence x into a series of hidden states h = {h1,h2, ...,hN}. For the

standard variationl Seq2Seq framework, the last hidden state hN is passed to a recognition

model to model the variational posterior qφ(z|x) using amortized inference [17]. Note that

the latent variable z encodes the information of the entire source sequence x, and is used

to initialize the first hidden state of the RNN decoder.

Training Since we assume that target sequence y is a function of source sequence x, we

have qφ(z|y) = qφ(z|f(x)) , qφ(z|x). Thus, the ELBo of the marginal log-likelihood is:

12



log pθ(y|x) ≥ Eqφ(z|x)[log
pθ(y, z|x)

qφ(z|x)
]

= Eqφ(z|x)[log pθ(y|z)]− KL(qφ(z|x)||p(z))

= Eqφ(z|x)[log pθ(y1|y0, z) +
T∑
t=2

log pθ(yt|yt−1)]− KL(qφ(z|x)||p(z))

= ELBo(y, z|x;φ, θ)

(3.1)

where the variational posterior is a Gaussian distribution qφ(z|x) = N (z|µφ(x), diag(σ2
φ(x)))

parameterized by the recognition model, and the prior is a standard Gaussian distribution

p(z) = N (z|0, I). The first and second component of the ELBo are the expected re-

construction error of the generative model, and the last component is the KL divergence

between the variational posterior and the prior. Maximizing the ELBo will push the KL

divergence close to 0 and essentially force the variational posterior qφ(z|x) to match the

prior p(z). As prior work [20] demonstrates that the natural language text usually has multi-

modal distribution in the latent space, the standard Gaussian prior constrains the variational

posterior in representing complex latent variables for text. Therefore, choosing an appro-

priate p(z) may help the variational posterior jump out of local optimal and learn a better

approximation to the true posterior distribution p(z|x).

Inference The generative process of variational Seq2Seq models is different from the

standard variational autoencoders [17, 18]. In order to encode the information from source

sequence x, the latent variable z is sampled from qφ(z|x) instead of p(z). When decoding

the target sequence, I use greedy decoding [55] to generate predictions ŷ.

Bad local optimal When directly optimizing the ELBo in Equation 3.1, I find that re-

gardless of the source sequence x, the decoder always predicts the same sentence on the
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Figure 3.1: The architecture of variational Seq2Seq models.

test set. This issue indicates that the RNN decoder completely ignores the information

from latent variable z and reduces to a RNN language model. By analyzing Equation 3.1,

I find that the ELBo can be optimized by simply letting the variational posterior qφ(z|x)

equal to the prior p(z), and focusing on maximizing the reconstruction error of the decoder∑T
t=2 log pθ(yt|yt−1). As illustrated in Figure 3.1, the latent variable z is only used to

initialize the initial decoder hidden state s0. The RNN decoder simply reduces to an auto-

regressive model such that pθ(yt|yt−1) when t >= 2. In this case, the recognition model is

trapped in a bad local optimal, and replacing the standard Gaussian prior with other more

flexible priors can no longer help improve the performance, because the decoder does not

rely on the latent variable z to generate target sequence y.

3.2 Varitional Attention for Seq2Seq Models

Since the reason for being trapped in the bad local optimal is because the decoder ignores

the source sequence information from latent variable z, a legitimate solution is to intro-

duce the information from source sequence at every decoding time step. Specifically, the

attention mechanism [4] is an effective method which enables the decoder to incorporate

information from source sequence at each decoding time step.

Attention Mechanism At each decoding time step t, the attention mechanism will com-

pute an attention vector ct (also called as context vector), which is a deterministic repre-
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sentation of the dynamics between all encoder hidden states h = {h1,h2, ...,hN} and the

previous decoder hidden state st−1:

ct =
N∑
i=1

αti · hi (3.2)

where the attention weight αti is computed as:

αti =
exp(st−1 ·WT

a · hi)∑N
j=1 exp(st−1 ·WT

a · hj)
(3.3)

where Wa is a weight matrix. A higher affinity of the previous decoder hidden state st−1

with the ith encoder hidden state hi will lead to a higher probability that the attention vector

is drawn from the ith encoding position. The current decoder hidden state st is computed

as:

st = RNN(st−1,yt−1, ct) (3.4)

During training, yt−1 is the ground truth target word, while during testing, it becomes the

predicted word sampled from the generative model pθ(yt|yt−1, ct) = softmax(Wy · st),

where Wy is a weight matrix.

Design of Variational Posteriors A related work on applying attention mechanism into

the variational Seq2Seq framework is proposed by [50], where they treat both the last en-

coder hidden state hN and the attention vector ct as latent random variables. The general

model architecture for this variational attention mechanism is demonstrated in Figure 3.2.

More specifically, they model the variational posterior of attention vectors as a diagonal

Gaussian distribution qψ(c|x) = N (c|µψ(c), diag(σ2
ψ(c))). Note that at each decoding

time step t, the variational Seq2Seq model will compute a corresponding attention vector

ct, and pass it to the recognition model to obtain a different variational posterior qψ(ct|x).

They model the variational posterior of last encoder hidden state the same way as defined

in section 3.1.
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Figure 3.2: The architecture of Seq2Seq models with Variational Attention.

Design of Priors According to [50], they propose a sentence prior distributions for atten-

tion variable: p(c) = N (h̄, I), which takes the average encoder hidden states as its mean.

Since the attention vector by definition is a weighted sum of encoder hidden states (where

the weight is computed as in Equation 3.3), introducing the average encoder hidden states

as mean imposes a valid constraint on the latent attention variable, and can help variational

posterior better approximate the true posterior distribution. The prior for the latent vari-

able z follows the prior works [17, 18] and is defined as a standard Gaussian distribution:

p(z) = N (0, I).

ELBo Considering two latent variables z and c, the ELBo in Equation 3.1 for variational

Seq2Seq models now can be rewritten as:

ELBo(y, z, c|x;φ, ψ, θ) = Eqφ(z|x),qψ(c|x)[log pθ(y|z, c)]

− KL(qφ(z|x)||p(z))− KL(qψ(c|x)||p(c))

= Eqφ(z|x),qψ(c|x)[log pθ(y1|y0, z, c1) +
T∑
t=2

log pθ(yt|yt−1, ct)]

− KL(qφ(z|x)||p(z))− KL(qψ(c|x)||p(c))

(3.5)
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Figure 3.3: The architecture of Seq2Seq models with Variational Context.

where at each decoding time step t, the decoder makes prediction conditioning on both pre-

vious word yt−1 and attention variable ct, which enables information from source sequence

to be incorporated into the decoder.

3.3 Variational Context for Seq2Seq Models

In this work, I explore a different way to utilize the information from source sequence. I

propose to model encoder hidden states h as latent random variables, so that each word

from source sequence xn will have a variational posterior qφ(hn|xn) parameterized by the

recognition model, as shown in Figure 3.3. By replacing deterministic encoder hidden

states with stochastic latent variables, the Seq2Seq model will obtain a larger search space

for optimal context representations, which is helpful for avoiding the model being trapped

in bad local optimal. Then, I apply the attention mechanism [4] to align decoder hidden

state st−1 with encoder latent variables h at each decoding time step t. To further help the

Seq2Seq model jump out of the local optimal, I introduce some advanced priors learned

from training data which may help the model to learn the complex data manifold in the

latent space.

Design of Variational Posteriors Different from the prior work discussed in section 3.2,

I treat encoder hidden states h = {h1, ...,hN} as latent random variables, and model the
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Figure 3.4: Comparison on approximated latent manifolds between different priors.

variational posterior as a diagonal Gaussian distribution qφ(h|x) = N (h|µφ(x), diag(σ2
φ(x))),

where µφ(xi) = fµ(RNN(xi,hi−1)) and σ2
φ(xi) = fσ(RNN(xi,hi−1)). Note that the vari-

ational Seq2Seq model samples one latent variable hi from qφ(h|xi) at each encoding posi-

tion i, and then uses the sampled h = {h1, ...,hN} to compute the attention vector defined

in Equation 3.2 and Equation 3.3 at each decoding time step, as shown in Figure 3.3.

Design of Priors In order to model the complex data manifold in the latent space and

encourage the variational Seq2Seq model to find more optimal context representation, I

propose to apply the following priors:

1. Normal prior: p(h) = N (0, I). This is a non-informative prior commonly used in

variational autoencoders [17, 18].

2. Mixture of Gaussians (MoG) prior: p(h) = 1
C

∑C
c=1N (µc,Σc), where C is the

number of mixture components, µc,Σc are parameters learned during training, and

Σc is a diagonal matrix. Each Gaussian component is assumed to cover different

aspects of the source sequence.

3. Mixture of Variational Posteriors (Vamp) prior [22]: p(h) = 1
C

∑C
c=1 qφ(h|x′c),

where C is the number of pseudo inputs, x′c is a pseudo input which only has a

unique out-of-vocabulary token, and the embedding of the unique out-of-vocabulary

token is learned during training. Following the prior work [22], I learn a multi-modal
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prior via pseudo-inputs, and assume each component represents a different semantic

or syntactic meaning of the source sequence.

4. Gaussian Process (GP) prior: p(h|x) ∼ GP (m(x), K(x,x′)), where the mean

function m(x) is the encoder RNN such that m(xi) = RNN(xi,hi−1) at each en-

coding position i, and the kernel function K(x,x′) is defined as:

K(xi,xj) =


0 ,xi 6= xj

Σλ ,xi = xj

such that the source word xi at different encoding position is independent with each

other. The intuition of the design of the mean and kernel function is that it can intro-

duce some randomness from the data variance around each hidden state. I prove the

correctness of the proposed GP prior in the next paragraph. The difference between

the proposed GP prior and other priors is that the proposed GP prior is an ad-hoc

prior which only applies to the current encoded hidden state hi.

An intuitive visualization of the approximated latent manifold for different priors is illus-

trated in Figure 3.4. The GoM prior and Vamp prior will lead the model to approximate the

latent manifold within a group of clusters, while the ad-hoc GP prior will lead the model to

approximate the latent manifold around each individual data point.

Proof of Gaussian Process (GP) Prior Let D = {(x1,h1), ..., (xi−1,hi−1)} be the ob-

served training set with Gaussian random noise, where hi = f(xi) + ε and ε ∼ N (0,Σλ).

xi is the current source word, we want to predict the function of outputs hi. Let h =

{h1, ...,hi−1}, we have the joint distribution:

h
hi

 ∼ N

m(x)

m(xi)

 ,

K(x,x) + Σλ , K(x,xi)

K(xi,x) , K(xi,xi)


 (3.6)
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The posterior distribution of output hi becomes:

p(hi|xi,x,h) = N (µi,Σi)

µi = m(xi) +K(xi,x) · (K(xi,xi) + Σλ)
−1 · (f −m(x))

Σi = K(xi,xi)−K(xi,x) · (K(xi,xi) + Σλ)
−1 ·K(x,xi)

(3.7)

In this work, I assume that each input data point xi is independent of each other, and define

kernel function as:

K(xi,xj) =


0 ,xi 6= xj

Σλ ,xi = xj

where Σλ is the data variance when sampling at encoding position i. So we have the pos-

terior distribution of the ith encoder hidden state p(hi|xi,x,h) = N (m(xi),Σλ), where

the mean function is defined to be the encoder RNN, i.e., m(xi) = RNN(xi,hi−1).

Since each encoder hidden state can be sampled from the above posterior distribution,

we claim all encoder hidden states can be sampled from the Gaussian Process p(h|x) ∼

GP (m(x), K(x,x′)).

ELBo Since I treat encoder hidden states as latent variables, the ELBo in Equation 3.1 of

the marginal log-likelihood is rewritten as:

ELBo(y,h|x;φ, θ) = Eqφ(h|x)[log pθ(y|h)]− KL(qφ(h|x)||p(h))

= Eqφ(h|x)[
T∑
t=1

log pθ(yt|yt−1, ct)]− KL(qφ(h|x)||p(h))
(3.8)

where the attention vector ct is computed based on latent variable h sampled from the

variational posterior qφ(h|x) as well as the previous decoder hidden state st−1 as defined

in Equation 3.2 and Equation 3.3, y0 is a special start of sequence token SOS.
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3.4 Geometric Analysis on latent representations

The motivation of conducting geometric analysis on latent manifold is to analyze whether

variational autoencoders learn a good approximation to the true low-dimensional latent

manifold of text data. Since the true latent manifold cannot be obtained in practice, I use

the latent manifold in the standard Seq2Seq model as a strong baseline to the true latent

manifold. If variational Seq2Seq models also learn a good approximation to the true latent

manifold, I expect their latent manifold to share similar geometric property with the latent

manifold in the standard Seq2Seq model.

I use local Principal Component Analysis (PCA) [56] to explain the geometric property

of latent manifolds. In geometric data analysis, local PCA is shown to be a useful tool

to capture intrinsic dimensions of data manifolds in high-dimensional space. Given a set

of K-dimensional latent representations Z = {z(i)}Mi=1, PCA applies a orthogonal linear

transformation to transform z into a new coordinate system [57], such that the greatest

variance of the data comes to lie on the first coordinate, the second greatest variance lies

on the second coordinate, and so on. By computing and comparing the data variance ratio

in each coordinate, we can get a sense of how the data distributed in the high-dimensional

latent space.

In this work, I follow the prior work [56] to conduct local PCA on latent representations

sampled from the recognition model. The algorithm can be conclued in three major steps:

Step 1. Obtain latent representations from recognition model: For the standard Seq2Seq

model, directly compute all latent representations {h(i)}Mi=1 from the encoder, for all x(i) in

training set. For variational Seq2Seq models, sample their corresponding latent represen-

tations from the mean of their variational posterior: z(i) ∼ qφ(z|x(i)), c(i) ∼ qψ(c|x(i)) or

h(i) ∼ qφ(h|x(i)), for all x(i) in training set.
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Step 2. Randomly select a local centroid and find its closest neighbours: After obtain-

ing all latent representations from the training set, randomly select a latent representation

h(i) as the local centroid h̄. Then, compute the Euclidean distance between the local cen-

troid h̄ and other remaining latent representations {h(i)}M−1i=1 :

L2 = ||h̄− h(i)||22, i = 1, ...,M − 1 (3.9)

I sort the latent representations in terms of the Euclidean distance in a descending order,

and select the top K number of latent representations Hnn = {h(j)}Kj=1, where K is a

hyper-parameter and K << M , as the nearest neighbours of the local centroid h̄.

Step 3. Conduct PCA on the local centroid and its closest neighbors: After having

the nearest neighbours of the local centroid h̄, subtract them by h̄:

H̄nn = {h(j) − h̄}Kj=1 (3.10)

Then, compute its covariance matrix, and do eigenvalue decomposition on it:

C =
1

M
H̄nnH̄

T
nn (3.11)

C = WΛW T (3.12)

where Λ = {λk}Kk=1 is the diagonal matrix of eigenvalues of H̄nnH̄
T
nn. I use the eigenvalue

λk in Λ to explain the data variance in the k-th latent dimension: the higher the eigenvalue

λk is, the larger data variance the k-th latent dimension will have. More specifically, I

compute the explained variance ratio of each eigen vector:

r2k =
λ2k∑K
j=1 λ

2
j

(3.13)
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I sort the explained variance ratio in a descending order, and preserve the eigen vectors

which summed up to 95% cumulative explained variance ratio as the principal components.

Do step 2 and step 3 iteratively until we sample enough local data points to identify the

data distribution in each latent dimension.

3.5 Empirical Experiments

3.5.1 Paraphrase Generation

I evaluate our models in the paraphrase generation task. The goal of paraphrase generation

is to generate a paraphrase of a given sentence, which preserves the maximum semantic

meaning of the source sentence but expressed in a different way.

Dataset and evaluation metrics I evaluate our models on the Quora Question Pair Dataset

1, and the Twitter URL Paraphrasing Dataset [58] 2. Both datasets contain positive and neg-

ative examples of paraphrases, and I only keep the positive examples for our experiments

as in prior work of paraphrase generation [13, 59]. For the Quora dataset, I follows the

configuration of [13] and split the data into 100K training pairs, 30K testing pairs and 3K

validation pairs. For the Twitter dataset, I divided it into 110K training pairs, 3K testing

pairs and 1K validation pairs.

For the evaluation metrics, I follow prior works [4, 9, 13] and use BLEU-1 and BLEU-2

score [45] to evaluate the quality of generated sentences compared with ground truth target

sentences 3. In order to measure the diversity of the generated sentences, I follow prior

works [50, 60] and use distinct metrics. The distinct metrics compute the percentage of

distinct unigrams (the Dist-1) or bigrams (the Dist-2) in generated sentences respectively.

1https://www.kaggle.com/c/quora-question-pairs
2https://languagenet.github.io
3https://github.com/moses-smt/mosesdecoder/blob/master/scripts/

generic/multi-bleu.perl
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Competitive models In order to ensure that the performance improvement comes from

the proposed priors, I do not apply state-of-the-art paraphrase generation models but in-

stead implement a simple RNN encoder-decoder with attention mechanism (Seq2Seq) as

proposed in [4]. I compare our models with the baseline Seq2Seq and the Seq2Seq model

with variational attention (VA-Seq2Seq) proposed in [50].

I first implement the Seq2Seq model with variational context using a standard normal

prior (VC-Seq2Seq + Normal). Following [22], I implement the VC-Seq2Seq model with

MoG prior (VC-Seq2Seq + MoG) and Vamp prior (VC-Seq2Seq + Vamp) as discussed

in section 3.3. Finally, I implement the VC-Seq2Seq model with Gaussian Process prior

(VC-Seq2Seq + GP).

Experimental setup For the baseline RNN encoder-decoder with attention mechanism

model (Seq2Seq), I use two single-layer GRU as the encoder and decoder. The input is a

sequence of tokens whose maximum length is set to be 20. A word embedding layer with

dimension 300 is applied to get the continuous representation of the sentence. The hidden

state dimension for both encoder and decoder is 300. I use Adam optimizer with learning

rate 5 × 10−5 for training. I train all models with 200 epochs, do auto-validation on the

validation set after every training epoch, and save the model with the lowest validation loss.

The VA-Seq2Seq and VC-Seq2Seq models share the same configuration with the baseline

Seq2Seq model, and add additional prior and posterior with the dimension size of 100.

Result analysis Table 3.1 and Table 3.2 show the performance of different models on

the Quora test set and Twitter test set respectively. I observe that the Seq2Seq model is a

strong baseline in terms of BLEU scores, and other proposed models can hardly outperform

it. However, the VC-Seq2Seq with GP prior manages to achieve comparable performance

with the Seq2Seq model, and generates sentence with higher diversity than all other models.

The observations are consistent in both datasets, which shows that GP prior is helpful

for both learning informative context representations of source sequences and generating
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Model Prior BLEU-1 BLEU-2 Dist-1 Dist-2

Prior work
1. Seq2Seq / 48.3 24.0 0.0140 0.0992
2. VA-Seq2Seq N

(
h̄, I

)
43.5 20.5 0.0153 0.1061

Our work
3. VC-Seq2Seq + Normal N (0, I) 38.9 17.3 0.0134 0.0855
4. VC-Seq2Seq + MoG 1

C

∑C
c=1N (µc,Σc) 38.2 16.8 0.0151 0.1146

5. VC-Seq2Seq + Vamp 1
C

∑C
c=1 qφ(z|x′c) 39.6 17.7 0.0131 0.0843

6. VC-Seq2Seq + GP
∏N

i=0N (µλ(xi),Σλ) 47.5 23.2 0.0155 0.1154

Table 3.1: Paraphrase generation performance on Quora test set.

Model Prior BLEU-1 BLEU-2 Dist-1 Dist-2

Prior work
1. Seq2Seq / 39.7 24.2 0.0858 0.3161
2. VA-Seq2Seq N

(
h̄, I

)
36.9 21.0 0.0850 0.3391

Our work
3. VC-Seq2Seq + Normal N (0, I) 27.5 13.4 0.0671 0.2602
4. VC-Seq2Seq + MoG 1

C

∑C
c=1N (µc,Σc) 29.3 13.9 0.0717 0.3070

5. VC-Seq2Seq + Vamp 1
C

∑C
c=1 qφ(z|x′c) 32.2 16.6 0.0830 0.3515

6. VC-Seq2Seq + GP
∏N

i=0N (µλ(xi),Σλ) 39.1 23.7 0.1004 0.4284

Table 3.2: Paraphrase generation performance on Twitter test set.

Source hacking a password ?

Target how do i hack a password ?

Predictions
Seq2Seq what are some of the best ways to improve your communication

skills ?
VA-Seq2Seq what is the best way to find someone who is a good question ?
VC-Seq2Seq + Normal how do i find out online with a little UNK of number - number

in a week ?
VC-Seq2Seq + MoG how can i hack somebody ’s whatsapp account if you do not

remember the email or a password ?
VC-Seq2Seq + Vamp how can i hack my instagram account ?
VC-Seq2Seq + GP how do i hack a twitter account ?

Table 3.3: Sample paraphrase generation results on Quora test set.
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Source hackers used new weapons in attack on u.s. internet

Target hackers used new weapons to disrupt major websites across u.s.
and they only attacked the united states

Predictions
Seq2Seq hackers used new weapons to disrupt major websites across u.s.
VA-Seq2Seq hackers used new weapons to double major websites across u.s.
VC-Seq2Seq + Normal new york times # us # hackers used new weapons to double

major websites across u.s.
VC-Seq2Seq + MoG hackers used new weapons to disrupt major websites across u.s.

, officials say
VC-Seq2Seq + Vamp hackers used new weapons to disrupt major websites across u.s.

the number of these are the biggest time .
VC-Seq2Seq + GP hackers used new weapons to disrupt major websites across u.s.

# ddos attack # iot @cnn

Table 3.4: Sample paraphrase generation results on Twitter test set.

Source: hacking a password ?
Target: how do i hack a password ?

VC-Seq2Seq + Normal VC-Seq2Seq + GP
1 how do i find out online with a little UNK of

number - number in a week ?
how do i hack a twitter account ?

2 i have any good password and i have tried
zoosk and i have tried zoosk and UNK them
from UNK

your best way to hack a password ?

3 and how do i get rid of them ? my way to hack ?
4 and i have saved back or not ? my way to get a good password ?
5 how long should i spend on top of number ? my UNK is not added as a password ?
6 i do not have a time work and i can get them

to my friend from your own search ?
my way to control my twitter ?

Table 3.5: Different h sampled from variation posterior qφ(h|x) on Quora test set.
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Figure 3.5: Cumulative explained variance plots of latent representations from Seq2Seq
and VC-Seq2Seq with different priors on Quora dataset.

Figure 3.6: Cumulative explained variance plots of latent representations from Seq2Seq
and VC-Seq2Seq with different priors on Twitter dataset.
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diversified target sequences.

For the evaluation of generating sequence that matches target sequence, I compare the

BLEU-1 and BLEU-2 scores across different models. Table 3.1 and Table 3.2 show that the

VC-Seq2Seq with GP prior can generate high quality target sentences compared with other

variational Seq2Seq models. Table 3.3 and Table 3.4 provide some generated sequences

from different models. I observe that the VC-Seq2Seq with GP prior is able to generate

paraphrases which have different expressions and also preserve the semantic meaning of

source sentences.

For the evaluation of generating diversified sequences, I compare the Dist-1 and Dist-2

across different models. Table 3.1 and Table 3.2 demonstrate that the VC-Seq2Seq with

GP prior generates most diversified sentences, which suggests that the GP prior is helpful

for the model to search optimal context representations in the latent space.

For the evaluation of encoding informative context representations, I sample differ-

ent latent representations from the variational posterior of different models to see if the

model can generate sentences that preserve similar semantic meanings. Table 3.5 shows

the prediction results of sampling different latent variable h from the variational posterior

qφ(h|x), where the italic sentence at line 1 is sampled from the mean of the variational pos-

terior. Comparing the generated sentences between normal prior and GP prior, I find that

the GP prior is able to introduce various expressions which are still semantically close to

the source sentence, while the standard normal prior fails to introduce relevant expressions.

For the evaluation of learning a good approximation to the true latent manifold, I con-

duct local PCA on latent representations from Seq2Seq and VC-Seq2Seq with different

priors, as shown in Figure 3.5 and Figure 3.6. As discussed in section 3.4, if varational

Seq2Seq models learn a good approximation to the true latent manifold, it will have a low-

dimensional latent representation in the latent space. From Figure 3.5 and Figure 3.6, I find

that VC-Seq2Seq with GP prior has the smallest total number of principal components,

which not only outperforms other variational Seq2Seq models, but also outperforms the
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strong baseline Seq2Seq model. This suggests that introducing GP prior is beneficial for

the variational Seq2Seq models to approximating the true latent manifold.

3.5.2 Style Transfer

I also evaluate our models in the style transfer task, more specifically, the formality transfer

[49] task. The goal of formality transfer is to translate an informal sentence into a formal

sentence, which preserves the maximum semantic meaning of the source informal sentence.

Dataset and evaluation metrics I evaluate our models on the Grammarly’s Yahoo An-

swers Formality Corpus (GYAFC) [49]. The GYAFC dataset has two sub-domains: En-

tertainment & Music (E&M), Family & Relationships (F&R). For the Entertainment &

Music (E&M) domain, it has 52,595 training pairs, 2,877 validation pairs and 1,416 testing

pairs. For the Family & Relationships (F&R) domain, it has 51,967 training pairs, 2,788

validation pairs and 1,332 testing pairs.

For the evaluation metrics, I use BLEU-1 and BLEU-2 score [45] to evaluate the qual-

ity of generated sentences compared with ground truth target sentences 4, and use distinct

metrics [50, 60] to measure the diversity of the generated sentences. The distinct metrics

compute the percentage of distinct unigrams (the Dist-1) or bigrams (the Dist-2) in gener-

ated sentences respectively.

Experimental setup The experimental setup and competitive models are the same with

the paraphrase generation task, please refer to subsection 3.5.1 for details.

Result analysis Table 3.6 and Table 3.7 show the performance of different priors in the

E&M test set and F&R test set respectively. Similar to the observations in paraphrase gen-

eration task, the Seq2Seq model is a strong baseline in terms of BLEU scores, and other

4https://github.com/moses-smt/mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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Model Prior BLEU-1 BLEU-2 Dist-1 Dist-2

Prior work
1. Seq2Seq / 37.4 12.2 0.0400 0.2398
2. VA-Seq2Seq N

(
h̄, I

)
36.2 11.2 0.0320 0.1948

Our work
3. VC-Seq2Seq + Normal N (0, I) 33.3 9.5 0.0324 0.1816
4. VC-Seq2Seq + MoG 1

C

∑C
c=1N (µc,Σc) 30.5 8.3 0.0707 0.3302

5. VC-Seq2Seq + Vamp 1
C

∑C
c=1 qφ(z|x′c) 29.0 7.4 0.0233 0.1228

6. VC-Seq2Seq + GP
∏N

i=0N (µλ(xi),Σλ) 37.2 12.1 0.0402 0.2360

Table 3.6: Formality transfer performance on GYAFC (E&M) test set.

Model Prior BLEU-1 BLEU-2 Dist-1 Dist-2

Prior work
1. Seq2Seq / 41.7 15.8 0.0274 0.2140
2. VA-Seq2Seq N

(
h̄, I

)
38.1 13.4 0.0277 0.2027

Our work
3. VC-Seq2Seq + Normal N (0, I) 37.7 12.9 0.0277 0.1836
4. VC-Seq2Seq + MoG 1

C

∑C
c=1N (µc,Σc) 37.5 12.2 0.0602 0.3783

5. VC-Seq2Seq + Vamp 1
C

∑C
c=1 qφ(z|x′c) 36.4 11.8 0.0280 0.1867

6. VC-Seq2Seq + GP
∏N

i=0N (µλ(xi),Σλ) 42.3 16.1 0.0335 0.2384

Table 3.7: Formality transfer performance on GYAFC (F&R) test set.

Source just a dum funny question hahahaha

Target just a senseless , funny question .

Predictions
Seq2Seq just a question , it is just a funny question .
VA-Seq2Seq just a question about this question .
VC-Seq2Seq + Normal i think that you were a little bit funny .
VC-Seq2Seq + MoG it is a very long time . it seems as though it is a very funny

movie .
VC-Seq2Seq + Vamp a man can not get a UNK .
VC-Seq2Seq + GP it is a good question , but it is funny .

Table 3.8: Sample formality transfer results on GYAFC (E&M) test set.
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Source dont forget to choose and vote for best answer ! ! !

Target do not forget to choose and vote for the best answer !

Predictions
Seq2Seq do not give up the best for the best and i wish to find a good

friend to answer !
VA-Seq2Seq do not forget to be happy and tell the truth .
VC-Seq2Seq + Normal do not forget to be happy with the best answer .
VC-Seq2Seq + MoG do not forget to choose and vote for the best answer .
VC-Seq2Seq + Vamp do not forget to the best answer , and be patient and have to be

able to find the answer
VC-Seq2Seq + GP do not forget to answer and vote for the best answer .

Table 3.9: Sample formality transfer results on GYAFC (F&R) test set.

Source: just a dum funny question hahahaha
Target: just a senseless , funny question .

VC-Seq2Seq + Normal VC-Seq2Seq + GP
1 i think that you were a little bit funny . it was a good question , but it is funny .
2 you * thinking of a funny question . it is a good question .
3 i have a friend who is a bad day . it is very funny .
4 was a good question . it is very good .
5 is a great time . it is not a good thing .
6 is more of the time . a good thing .

Table 3.10: Different h sampled from variation posterior qφ(h|x) on GYAFC (E&M) test
set.
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Figure 3.7: Cumulative explained variance plots of latent representations from Seq2Seq
and VC-Seq2Seq with different priors on GYAFC (E&M) dataset.

Figure 3.8: Cumulative explained variance plots of latent representations from Seq2Seq
and VC-Seq2Seq with different priors on GYAFC (F&R) dataset.
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proposed priors can hardly outperform it. Besides, the VC-Seq2Seq with MoG prior gen-

erates most diversified texts, but does not have good performance in matching the ground

truth target sentences. The VC-Seq2Seq with GP prior manages to achieve comparable per-

formance with the Seq2Seq model in terms of BLEU scores, and generate more diversified

texts than the Seq2Seq model. On both datasets, the VC-Seq2Seq with GP prior outper-

forms the VA-Seq2Seq model not only in matching ground truth target sequences, but also

in generating diversified texts.

For the evaluation of generating sequence that matches target sequence, I compare the

BLEU-1 and BLEU-2 scores across different models. Table 3.6 and Table 3.7 show that the

VC-Seq2Seq with GP prior achieves comparable results with the strong baseline Seq2Seq

model on E&M test set, and even outperforms the Seq2Seq model on F&R test set. Ta-

ble 3.9 and Table 3.8 provide some generated sentences sampled from the test set, which

demonstrate that the VC-Seq2Seq with GP prior is able to translate informal sentence to

formal sentence, and also preserve the semantic meaning.

For the evaluation of generating diversified sequences, I compare the Dist-1 and Dist-

2 across different models. Table 3.6 and Table 3.7 show that the VC-Seq2Seq with MoG

prior generates sentences with the highest diversity, but it has poor performance in matching

ground truth target sentences. While the VC-Seq2Seq with GP prior generates sentences

with the second highest diversity, and also good performance in matching ground truth

target sentences.

For the evaluation of encoding informative context representations, I sample different

latent representations from the variational posterior of different models. Table 3.10 shows

the prediction results of sampling different latent variable h from the variational posterior

qφ(h|x). The observation is consistent with the paraphrase generation task: the GP prior

is able to introduce various expressions which are still semantically close to the source

sentence, while the standard normal prior fails to introduce relevant expressions.

For the evaluation of learning a good approximation to the true latent manifold, I con-
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duct local PCA on latent representations from Seq2Seq and VC-Seq2Seq with different

priors, as shown in Figure 3.7 and Figure 3.8. In formality transfer task, the VC-Seq2Seq

with GP also manages to learn the most compact and low-dimensional representations in

the latent space, which validates our assumption that introducing appropriate prior can help

variational Seq2Seq models learn better approximation to the true latent manifold.

3.6 Contributions

In this chapter, I analyze the reason for the poor performance of adapting the variational au-

toencoders framework to Seq2Seq models, and introduce the variational attention Seq2Seq

framework to solve the problem. To help the variational attention Seq2Seq models bet-

ter approximate the true latent distribution, I propose to replace the standard normal prior

with a GP prior. The GP prior applies the encoder RNN as its mean function, and sim-

plifies the kernel function to an identity matrix, which imposes randomness around each

latent variable without considering the correlation between different latent variables. Ex-

periments on paraphrase generation and formality transfer tasks show that the proposed

variational Seq2Seq model with GP prior achieves comparable results with the standard

Seq2Seq model in generating sentences that match the ground truth target sentences, and

the generated sentences have larger diversity than the standard Seq2Seq model. I also

conduct local PCA to analyze the local geometry of latent representations from the pro-

posed variational Seq2Seq model and the standard Seq2Seq model. The results show that

the proposed variational Seq2Seq model with GP prior can learn a better low-dimensional

latent representations than the standard Seq2Seq model, which validates our assumption

that learning an appropriate prior can help the variational Seq2Seq model avoid bad local

optimal and better approximate the true latent distribution.

34



CHAPTER 4

AN EMPIRICAL COMPARISON ON LEARNING ALGORITHMS FOR

SEQ2SEQ MODELS

Work described in this chapter was undertaken in collaboration with Yangfeng Ji, and

published at EMNLP 2019 [61].

Generating text from given context involves decoding words step by step from a large

vocabulary. To learn a decoder, supervised learning which maximizes the likelihood of to-

kens often suffers from the exposure bias [29]. Although both reinforcement learning and

imitation learning have been widely used to alleviate the bias, the lack of direct compari-

son leads to only a partial image on their benefits. In this chapter, I present an empirical

study on how reinforcement learning and imitation learning can help alleviate the expo-

sure bias. I evaluate all learning algorithms on paraphrase generation task, since generating

paraphrases is a fundamental research problem that could benefit many other downstream

NLP applications, such as machine translation [4], document summarization [62], question

ansIring [5], etc.

The rest of this chapter is organized as follows: section 4.1 explains the exposure bias

problem in training recurrent neural networks with maximum likelihood estimation (also

called teacher forcing), and discusses some popular learning algorithms to alleviate the

exposure bias; section 4.2 introduces a unified learning framework to incorporate different

learning algorithms to better understand how they can help alleviate the exposure bias;

section 4.3 defines evaluation metrics and demonstrates empirical experiment results for

different learning algorithms; section 4.4 concludes the benefits and limitations of different

learning algorithms.
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4.1 Exposure Bias in Teacher Forcing

Recurrent neural networks [63] are a typical choice for generative models to generate texts.

During training, the model predicts the next word conditioning on previous ground truth

words. However, at test time, since ground truth words are not available, the model has to

predict the next word conditioning on its previous generated words. This training strategy

is called teacher forcing, which trains the model using words sampled from data distri-

bution, but tests the model using words sampled from model distribution. If the model

distribution is very different from the data distribution, the generative model will propagate

and accumulate prediction errors at test time. [29] defines this phenomena as the exposure

bias problem.

To address this problem, prior works [29, 30, 31] suggest to utilize the exploration strat-

egy in reinforcement learning (RL). A typical way of using RL in practice is to use model

predictions at training time and optimize the final evaluation metrics instead of maximiz-

ing the likelihood of the ground truth words. However, training with the RL algorithms is

not trivial and often hardly works in practice [32]. In the middle ground between RL and

teacher forcing, a well-known category is imitation learning (IL) [33, 34], which randomly

introduces model predictions during training with a schedule rate and obtains the optimal

policy by maximizing the likelihood of ground truth words.

4.2 A Unified Learning Framework

To better understand the benefits and limitations of different learning algorithms, I propose

a unified learning framework to include some popular learning algorithms as special cases,

such as the REINFORCE algorithm [35] in RL and the DAGGER algorithm [34] in IL. I

further propose several variant learning algorithms based on the unified learning framework

to have a complete comparison between all possible learning algorithms in RL and IL.

I build up the learning framework on paraphrase generation task. Given an input sen-
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tence x = (x1, x2, · · · , xS) with length S, a paraphrase generation model outputs a new

sentence y = (y1, y2, · · · , yT ) with length T that shares the same meaning with x. The

widely adopted framework on paraphrase generation is the encoder-decoder framework

[64]. The encoder reads sentence x and represents it as a single numeric vector or a set

of numeric vectors. The decoder defines a probability function p(yt | y≤t−1,x;θ), where

y≤t−1 = (y1, y2, . . . , yt−1) and θ is the collection of model parameters,

p(yt | y≤t−1,x;θ) = softmax(Wht) (4.1)

with ht = f(ht−1, yt−1,x), where f as a nonlinear transition function and W ∈ θ as a

parameter matrix. I use the pointer-generator model [1] as the base model, which is state-

of-the-art model on paragraph generation [13]. I skip the detail explanation of this model

and please refer to [1] for further information.

4.2.1 Basic Learning Algorithms

To facilitate the comparison between RL and IL, I propose a unified framework with the

following objective function. Given a training example (x,y), the objective function is

defined as

L(θ) =
{ T∑
t=1

log πθ(ỹt | ht)
}
· r(ỹ,y), (4.2)

Following the terminology in RL and IL, I rename P (ỹt | y≤t−1,x;θ) as the the policy

function πθ(ỹt | ht). That implies taking an action based on the current observation, where

the action is picking a word ỹt from the vocabulary V . r(ỹ,y) is a reward function with

r(ỹ,y) = 1 if ỹ = y. In our experiments, I use the ROUGE-2 score [65] as the reward

function. Algorithm 1 presents how to optimize L(θ) in the online learning fashion. As

shown in the pseudocode, the schedule rates (α, β) and the decoding function Decode(·)

are the keys to understand the special cases of this unified framework.
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Algorithm 1 Online learning algorithm
1: Input: A training example (x(i),y(i)), current schedule rates α(i), β(i) ∈ [0, 1], learning

rate η
2: Initialize L(θ)← 0
3: for t = 1, . . . , T do
4: p1, p2 ∼ Uniform(0, 1)
5: ỹt−1 ← yt−1 if (p1 < α(i)) else ŷt−1
6: ht = f(ht−1, ỹt−1,x)
7: ŷt ← Decode(π(y | ht))
8: ỹt ← yt if (p2 < β(i)) else ŷt
9: L(θ)← L(θ) + log π(ỹt | ht)

10: end for
11: δθ ← ∇θL(θ) · r(ỹ(i),y(i))
12: θ ← θ + η · δθ

The REINFORCE Algorithm. When α = 0, β = 0, and Decode(π(y | ht)) is defined

as as:

Decode(πθ(y | ht−1)) = Random Sampling(πθ(y | ht−1)), (4.3)

Specifically, when α = β = 0, both ỹt−1 and ỹt will choose the sampled values from

the Decode function with policy πθ. It essentially samples a trajectory from the decoder

(ŷ1, ŷ2, . . . , ŷT ) as in the REINFORCE algorithm. The reward is r(ỹ,y) = r(ŷ,y) once it

has the entire trajectory ŷ.

The DAGGER Algorithm. When 0 < α < 1, β = 1, and Decode(π(y | ht)) is defined

as as:

Decode(πθ(y | ht−1)) = Random Sampling(πθ(y
′ | ht−1)). (4.4)

Depending the value of α, ỹt−1 will choose between the ground truth yt−1 and decoded

value ŷt−1 with the function defined in Equation 4.4. On the other hand, ỹt will always

choose the ground truth yt as β = 1. Since ỹ = y, we have r(ỹ,y) = 1 and the reward

can be ignored from Equation 4.2. In imitation learning, ground truth sequence y is called

expert actions. The DAGGER algorithm [34] is also called scheduled sampling [15] in
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recent deep learning literature. To be accurate, α is dynamically changed during training.

Typically, it starts from 1 and gradually decays to a certain value along with iterations.

As shown in our experiments, the selection of decay scheme has a big impact on model

performance.

The MLE Algorithm. Besides, there is a trivial case when α = 1, β = 1. In this case,

ỹt−1 and ỹt are equal to yt−1 and yt respectively, and r(ỹ,y) = 1. Optimizing the objective

function in Equation 4.2 is reduced to the maximum likelihood estimation (MLE).

4.2.2 Other Variant Algorithms

Inspired by the three special cases mentioned above, I offer other algorithm variants with

different combinations of (α, β), while the decoding function Decode(π(y | ht)) in the

same as Equation 4.3 in all following variants.

• REINFORCE-GTI (REINFORCE with Ground Truth Input): α = 1, β = 0. Unlike

the REINFORCE algorithm, REINFORCE-GTI restricts the input to the decoder can

only be ground truth words, which means ỹt−1 = yt−1. This is a popular implemen-

tation in the deep reinforcement learning for Seq2Seq models [66].

• REINFORCE-SO (REINFORCE with Sampled Output): α = 1, 0 < β < 1. In terms

of choosing the value of ỹt as output from the decoder, REINFORCE-SO allows ỹt to

select the ground truth yt with probability β.

• REINFORCE-SIO (REINFORCE with Sampled Input and Output): 0 < α < 1,

0 < β < 1. Instead of always taking the ground truth yt−1 as input, REINFORCE-SIO

further relaxes the constraint in REINFORCE-SO and allows ỹt−1 to be the decoded

value ŷt−1 with probability α.

Unless specified explicitly, an additional requirement when 0 < α, β < 1 is that its

value decays to a certain value during training, which by default is 0.
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4.3 Empirical Experiments

Dataset and Evaluation Metrics. I evaluate our models on the Quora Question Pair

Dataset 1, and the Twitter URL Paraphrasing Dataset [58] 2. Both datasets contain posi-

tive and negative examples of paraphrases, and I only keep the positive examples for our

experiments as in prior work of paraphrase generation [13, 59]. For the Quora dataset, I

follows the configuration of [13] and split the data into 100K training pairs, 30K testing

pairs and 3K validation pairs. For the Twitter dataset, since our model cannot deal with

the negative examples as [13] do, I just obtain the 1-year 2,869,657 candidate pairs from

https://languagenet.github.io, and filter out all negative examples. Finally, I

divided the remaining dataset into 110K training pairs, 3K testing pairs and 1K validation

pairs.

To align with prior works [4, 9, 13], I use the following evaluation metrics to compare

our models with other state-of-art neural networks: ROUGE-1 and ROUGE-2 [65], BLEU

with up to bi-grams [45]. For the convenience of comparison, I also calculate the average

of the scores.

Competitive Systems. I compare our models with four competitive systems on para-

phrase generation: the sequence-to-sequence model [4, Seq2seq], the Reinforced by Match-

ing framework [13, RbM], the Residual LSTM [9, Res-LSTM], and the Discriminator

LSTM model [59, Dis-LSTM]. Among these competitive systems, the RbM [13] is more

closely related to our work, since we both use the pointer-generator as the base model and

apply some reinforcement learning algorithms for policy learning.

Experimental Setup. For all experiments, our model has 256-dimensional hidden states

and 128-dimensional word embeddings. Since the pointer-generator model has the ability

to deal with the OOV words, I choose a small vocabulary size of 5k, and we train the word

1https://www.kaggle.com/c/quora-question-pairs
2https://languagenet.github.io
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embedding from scratch. I also truncate both the input and output sentences to 20 tokens.

For the training part, I first pre-train a pointer generator model using MLE, and then

fine-tune this model with the REINFORCE, DAGGER and other variant learning algorithms

respectively. In the pre-training phase, I use the Adagrad optimizer with learning rate 0.15

and an initial accumulator value of 0.1; use gradient clipping with a maximum gradient

norm of 2; and do auto-evaluation on the validation set every 1000 iterations, in order to

save the best model with the lowest validation loss. In the fine-tuning phase, I use the

Adam optimizer with learning rate 10−5; use gradient clipping with the same setting in

pre-training; and do auto-evaluation on the validation set every 10 iterations.

When applying the REINFORCE and its variant algorithms, I compute the reward as

follows:

r(ỹn,y) = ROUGE-2(ỹn,y)− 1

N

N∑
n=1

ROUGE-2(ỹn,y) (4.5)

where N is the total number of sentences generated by random sampling, in all the experi-

ments, we set N = 4.

At test time, I use beam search with beam size 8 to generate the paraphrase sentence.

Figure 4.1: The schedule sampling rate for α and β

According to [15], I define the schedule rate α(i) = ki (where 0 < k < 1, i is the ith

training iteration), and β(i) = k/(k+exp(i/k)) (where k > 1, i is the ith training iteration).

In the experiments shown in 4.1, for the schedule rate α, I set k = 0.9999; for the schedule
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SCHEDULE RATE EVALUATION METRICS

Models α β ROUGE-1 ROUGE-2 BLEU Avg

1 Seq2Seq - - 58.77 31.47 36.55 42.26
2 Res-LSTM - - 59.21 32.43 37.38 43.00
3 RbM - - 64.39 38.11 43.54 48.68
4 Dis-LSTM - - - 44.90 45.70 45.30

5 PRE-TRAINED MLE α = 1 β = 1 66.72 47.70 54.01 56.14
6 REINFORCE α = 0 β = 0 67.00 47.91 54.06 56.32
7 REINFORCE-GTI α = 1 β = 0 67.03 48.10 54.23 56.45
8 REINFORCE-SO α = 1 β → 0 66.88 47.95 54.16 56.33
9 REINFORCE-SIO α→ 0 β → 0 67.62 48.99 55.19 57.26
10 DAGGER α→ 0 β = 1 67.64 48.96 55.06 57.22
11 DAGGER* α = 0.5 β = 1 68.34 49.99 55.75 58.02

Table 4.1: Paraphrase generation performance on Quora test set. The results of competitive
systems are reprinted from prior work: line 1 – 3 are obtained from [13], line 4 is obtained
from [59].

SCHEDULE RATE EVALUATION METRICS

Models α β ROUGE-1 ROUGE-2 BLEU Avg

1 PRE-TRAINED MLE α = 1 β = 1 58.49 43.84 38.45 46.92
2 REINFORCE α = 0 β = 0 58.67 44.06 38.46 47.06
3 REINFORCE-GTI α = 1 β = 0 58.58 43.89 38.42 46.96
4 REINFORCE-SO α = 1 β → 0 58.58 43.89 38.41 46.96
5 REINFORCE-SIO α→ 0 β → 0 58.82 44.10 38.85 47.25
6 DAGGER α→ 0 β = 1 58.84 44.24 38.95 47.34
7 DAGGER* α = 0.2 β = 1 58.95 44.34 39.04 47.44

Table 4.2: Paraphrase generation performance on Twitter test set. Since the dataset I ob-
tained is different from [13], I do not directly compare the results with the prior works.

rate β, I set k = 3000. The schedule rate curve is shown in Figure 4.1.

Result Analysis. Table 4.1 shows the model performances on the Quora test set, and

Table 4.2 shows the model performances on the Twitter test set. For the Quora dataset, all

our models outperform the competitive systems with a large margin. I suspect the reason is

because I ran the development set during training on-the-fly, which is not the experimental

setup used in [13].
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For both datasets, DAGGER with a fixed (α, β) gives the best performance among all the

algorithm variants. The difference between DAGGER and DAGGER* is that, in DAGGER,

I use the decay function on α at each iteration, α ← k · α with k = 0.9999. In our

experiments, I also try different decaying rates, and present the best results I obtained. The

selection of α depends on the specific task: for the Quora dataset, I find α = 0.5 gives us

the optimal policy; for the Twitter dataset, I find α = 0.2 gives us the optimal policy.

The reinforcement learning and imitation learning algorithms can help the encoder-

decoder model alleviate the exposure bias. Additional training with whichever variant al-

gorithms can certainly enhance the generation performance over the pre-trained model, as

shown in line 6 – 11 from Table 4.1 and line 2 – 7 from Table 4.2. This observation is

consistent with many previous works of using RL/IL in NLP.

However, the improvement of the REINFORCE algorithm is very small, only 0.18 on

the average score on Quora dataset, and 0.14 on the average score on Twitter dataset,

which indicates that the model cannot jump out of the local optimal. Among all RL-based

algorithms, REINFORCE-SIO algorithm performs best, which suggests introducing some

ground truth information can help the model cannot jump out of the local optimal, as shown

in line 9 from Table 4.1 and line 5 from Table 4.2.

I also observe that the average improvement in the Twitter dataset is not as significant

as in the Quora dataset. Since in the Twitter dataset, one source sentence shares several

different paraphrases, while in the Quora dataset, one source sentence only corresponds to

one paraphrase. For the pointer-generator model, the Twitter dataset is more challenging

than the Quora dataset.

Overall, in this particular setting of paraphrase generation, I found that DAGGER is

much easier to use than the REINFORCE algorithm, as it optimizes its policy by maximizing

the likelihood of ground truth words (expert actions). Although, picking a good decay

function α can be really tricky. On the other hand, the REINFORCE algorithm (together

with its variants) could only outperform the pre-trained baseline with a small margin.
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4.4 Contributions

In this chapter, I perform an empirical study on some reinforcement learning and imitation

learning algorithms for paraphrase generation. The empirical experiment results show that

both reinforcement learning and imitation learning algorithms are helpful in alleviating the

exposure bias. By comparing the performance between the REINFORCE algorithm and the

REINFORCE-SIO algorithm, I find that standard reinforcement learning is likely to trap

in the local optimal, and introducing some ground truth information can help improve the

performance. By comparing the performance between the DAGGER algorithm and other

algorithms, I find that DAGGER is the most efficient learning algorithms in paraphrase

generation, but the choice of the schedule rate is task-specific. Fine-tuning the pointer-

generator model with DAGGER can outperform the state-of-the-art method with a large

margin.

44



CHAPTER 5

CONCLUSION

With the goal of generating accurate and diversified texts, I explore different approaches to

learn an optimal Seq2Seq model.

The first approach is to apply the variational autoencoders framework on the Seq2Seq

model to learn a probabilistic distribution of latent representations. I adopt the attention

mechanism into the variational Seq2Seq framework, and propose to learn a GP prior to

help the model learn informative and diversified latent context representations. Experi-

ments in paraphrase generation and style transfer show that the proposed method is able to

consistently generate accurate and diversified texts.

The second approach is to try different learning algorithms to alleviate the training-

inference discrepancy when training Seq2Seq models. I present empirical comparison be-

tween different popular learning algorithms (e.g. maximum likelihood estimation, REIN-

FORCE, DAGGER) in an unified framework, and analyze their benefits and limitations in

alleviating the training-inference discrepancy. Experiments in paraphrase generation show

that DAGGER is most efficient learning algorithm, but the choice of its schedule rate is task-

specific. Fine-tuning state-of-the-art model with DAGGER algorithm can further achieve a

large margin performance improvement.

The Seq2Seq framework is a widely used framework for natural language generation.

My study in improving the generation performance of Seq2Seq models can be applied

in a wide range of sequence-to-sequence generation applications, such as dialogue sys-

tem, question answering, machine translation, etc. While current proposed methods focus

on sentence-level text generation, future work could be conducted on paragraph-level or

document-level text generation, where the input text becomes more complicated and chal-

lenging.
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