
 Maintenance vs Growth: Two Sides of the Same Coin 

 A Technical Report submitted to the Department of Computer Science 

 Presented to the Faculty of the School of Engineering and Applied Science 

 University of Virginia • Charlottesville, Virginia 

 In Partial Fulfillment of the Requirements for the Degree 

 Bachelor of Science, School of Engineering 

 Eric Knocklein 

 Spring, 2022 

 On my honor as a University Student, I have neither given nor received unauthorized aid on this 
 assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

 Brianna Morrison, Department of Computer Science 



 Maintenance vs Growth: Two Sides of the Same Coin 
 CS4991 Capstone Report, 2022 

 Eric Knocklein 
 Computer Science 

 The University of Virginia 
 School of Engineering and Applied Science 

 Charlottesville, Virginia USA 
 ek6ge@virginia.edu 

 ABSTRACT 
 A Virginia-based technology company with 
 a long history sought to grow and modernize 
 their service but was held down by legacy 
 code and a lack of maintenance. Using 
 concepts and best-practices gathered in my 
 classes at UVA, I aided in both the growth 
 and maintenance of these services by fixing 
 bugs (modernizing the code) and 
 implementing new features. I used concepts 
 that are often seen as inconsequential to the 
 development of programs: in-line 
 documentation, descriptive variable names, 
 modularization, etc. To achieve our goals for 
 this task, the team and I had to communicate 
 effectively both within and outside of the 
 codebase. Though my project has only 
 minimal outcomes to date, the outcomes are, 
 nevertheless, crucial for the continued 
 success of the product. Because both 
 maintenance and growth are continual 
 processes, future work includes adding 
 structure to the codebase and increasing its 
 modularity. 

 1. INTRODUCTION 
 What is more important: adding new 
 features to a product or maintaining 
 already-implemented features? This is a 
 common question for many companies as 

 they allocate their limited resources. Each 
 has its own benefits, but maintenance is 
 often neglected in favor of growth.. 

 Growth is the flashier of the 
 disciplines. It is usually much more 
 satisfying for both developers and managers 
 to create new features than to maintain old 
 ones. New features draw in new customers 
 with the promise of future prospects. On the 
 other hand, maintenance is inherently a 
 retrospective act. It serves to retain 
 already-existing customers. Maintenance 
 serves more than already-existing 
 customers, though, because a poorly 
 maintained software will not gain any new 
 customers, either. Because of this, it is 
 arguably more important than growth. 
 However, the two disciplines cannot so 
 easily be separated, for maintenance 
 provides a foundation from which the 
 program can grow. Growth, in turn, if done 
 sustainably, can ease the burden of 
 maintenance. Thus, growth is only viable in 
 the long term if it is done sustainably and if 
 the program is well maintained. 

 2. RELATED WORK 
 There is a plethora of research into software 
 maintenance and debugging. Kaur and Singh 
 (2015) name several key concepts in 



 reducing maintenance costs in software: 
 re-documentation, elimination of cloned 
 code, and, of course, the fixing of bugs, 
 among others. 

 Bennett and Rajlich (2000) propose a 
 model under which to view software 
 development. In this model, my team was 
 working on program evolution. According to 
 the paper, this is the stage in which new 
 features are added and in which the biggest 
 structural changes occur, so it is where 
 maintenance and growth coincide. 

 An early paper by Lientz, et al. 
 (1978) emphasizes the importance of 
 appropriate management of the maintenance 
 phase of software development, citing it as 
 the most crucial aspect of software 
 maintenance and maintainability. My 
 experience supports this, as it is difficult to 
 write maintainable code or to maintain old 
 code without some overarching vision of the 
 structure and philosophy of that code. 

 3. PROCESS DESIGN 
 I was fortunate enough to experience both 
 the maintenance and the growth of this 
 platform. To understand the work that I 
 completed, one must understand the systems 
 under which I worked. During the 
 discussion of these systems, which I will 
 categorize into assignment systems and 
 quality control systems, I will describe how 
 they hindered or advanced my work. 
 Working under such systems is crucial in a 
 team in both the development of new 
 features and the maintenance of existing 
 features. While they may stifle some 
 innovation or cause some friction in the 
 development process, their benefits to 

 organization are essential to the workings of 
 the team. 

 3.1 Assignment Systems 
 Work to be done was assigned through 
 tickets. Developers would receive a ticket 
 with information about the bug they were 
 supposed to remove or a feature they were 
 supposed to implement. 

 Tickets varied in scope and difficulty 
 with some simply requiring the changing of 
 one line of code and others requiring the 
 reworking of large portions of certain files. 
 To reflect this, when a ticket was completed, 
 the developer completed a  “Level of Effort” 
 field. This allowed management to gauge 
 the workload of their developers and balance 
 work among them. 

 To further aid in the balancing of the 
 workload, tickets were assigned to projects, 
 each of which had a few dedicated 
 developers well versed in that area. This was 
 not my experience, for I worked to fill in 
 any gaps in the teams or on general tickets 
 not well suited for a project assignment. 

 Interestingly, the assignment and 
 submitting of tickets was done through two 
 distinct web pages. While these offered 
 almost the same functionality, they were 
 presented quite differently and were 
 optimized for certain functions. This 
 decentralized form of communications was 
 often cumbersome to use. 

 Other communication issues were 
 also apparent in the assignment systems. 
 While there were guidelines on ticket 
 creation, they were rarely followed. The 
 guidelines stated that a maintenance ticket 
 should describe at minimum the element in 
 which the bug resided, an image of the bug 



 or gap in action (or, preferably, a video), and 
 a complete description of the current and 
 desired behavior of the element in question. 
 Instead, the tickets often only included one 
 or two sentences that inevitably required 
 lengthy meetings to clarify. 

 3.2 Quality Assurance Systems 
 Once the work to be done on a ticket is 
 completed, it is sent to the Quality 
 Assurance (QA) team. This team then 
 verifies that the new behavior is correct and 
 desirable. Because of the sub-par ticket 
 writing, the desired behavior is not always 
 clearly explained. As with the assignment of 
 tickets, a meeting is usually scheduled to 
 clarify the desired behavior, but this meeting 
 is with the developer instead of the creator 
 of the ticket. 

 It is required that every ticket pass 
 through the QA team. This ensures the 
 quality and consistency of the work done. 
 While it does slow the process of 
 development, it also prevents most faulty 
 code from becoming embedded into the 
 codebase. Such embedded code is much 
 more difficult to revise than it is when it is 
 first written. 

 However, there are some major 
 limitations to the QA team, which does not 
 assure the quality of the code (its readability 
 or its style) but simply the outcomes of the 
 code. This decreases the incentive for 
 developers to write readable and 
 maintainable code. No attention is paid to 
 the specifics of a solution, either. Any 
 solution that works is deemed correct. It is, 
 of course, impractical to work through all 
 the code that is written during the QA 

 process, but simple steps can be taken to 
 ensure the maintainability of the code. 

 3.3 Code Structure and Version Control 
 To understand the structure of the codebase, 
 one must understand some details of the 
 product being developed. It is a no-code 
 website building tool whose interface is 
 broken into a set of widgets. These widgets 
 are linked to a node-based logical flow 
 system, which handles the interactivity of 
 the website. 

 The code is somewhat modular, with 
 each widget or each node being defined in 
 its own file. Within these files, though, the 
 code ceases to be highly modular. Some 
 functions are many hundreds of lines long. 
 These functions composed files that were 
 thousands or even tens of thousands of lines 
 long. 

 As stated before, there was no real 
 incentive for developers to write 
 maintainable code, which could be part of 
 the reason these files and functions were so 
 cumbersome. Another consequence of the 
 lack of coding standards was a lack of 
 comments or in-line documentation. Legacy 
 code, which only a few people at the 
 company understood, dominated the 
 codebase, leaving junior developers to spend 
 hours attempting to locate whatever issue 
 they were ticketed to address. 

 Some of these issues were alleviated 
 by the version control and the relatively 
 strict standards for interacting with it. The 
 codebase was controlled through GitLabs, 
 and each ticket was developed on its own 
 branch. This gave each developer the 
 freedom to experiment with solutions and 
 implementations without fear of breaking 



 something else in production. Once a ticket 
 was completed, the developer would write a 
 merge request (MR) that detailed the 
 changes made and the reason for those 
 changes. In my experience, the writing of 
 these MRs was much clearer than that of the 
 tickets. This allowed developers to research 
 the code they planned to work on before 
 doing so, partly decreasing the issues with in 
 line documentation. 

 3.4 Maintenance Work 
 The bulk of my work was on the 
 maintenance of the codebase. For the most 
 part, this was focused on finding and fixing 
 bugs and inconsistency issues. To do this 
 work, I had to gain an understanding of the 
 codebase, which was sometimes challenging 
 because of the details provided earlier in this 
 report. 

 It is often more difficult to parse 
 another developer’s solution to a problem 
 than it is to invent one. I found this to be 
 true in my work, especially when there are 
 very few comments and no external 
 documentation. 

 3.5 Novel Work 
 While not as frequent as the maintenance 
 work, my work in adding new features 
 represents some of my biggest contributions 
 to the company. Writing a solution from 
 scratch is often simpler than revising a 
 solution that is already implemented. As 
 such, being able to add new features offered 
 some freedom to write code the way I saw 
 fit with the standards I deemed necessary. 

 4. ANTICIPATED OUTCOMES 

 Being just an intern at an established 
 company meant that my work had a fairly 
 small effect on the company as a whole. 
 However, my work has highlighted flaws in 
 the company systems and is still being 
 reviewed and utilized by the company. 

 I anticipate that my code and the 
 issues that I raised to management about the 
 structure of the code will drastically improve 
 the maintainability of the codebase, which 
 will have spillover effects such as reducing 
 the work needed to train new developers. 
 This last point is especially important for 
 growing companies such as this. 

 5. CONCLUSION 
 Part of my goal with my maintenance work 
 was to improve the readability of the 
 already-existing code. However, within a 
 complex function or program, it is difficult 
 to be confident in one's understanding of 
 code written by someone else. As such, I 
 was rarely confident in my ability to 
 document code that was not my own. This 
 severely dampened the impacts of my work. 
 Even so, my code added some much-needed 
 modularity and stability to certain sections 
 of the code. The same is true for the few 
 features that I implemented. Not only are 
 these features necessary, but they are also 
 written in a readable and maintainable 
 manner. 

 6. FUTURE WORK 
 Since growth and maintenance are both 
 continuous processes, there is still much 
 work to be done. The most crucial 
 shortcomings of the system are outlined in 
 this report, and these are the areas that 
 should be addressed first. However, most of 



 these changes must be implemented broadly, 
 as they are managerial in nature. 

 The code itself is quite mature, but 
 much of it is burdened by legacy code. A 
 crucial next step is to modernize the 
 codebase, and this is what I will be working 
 on in the coming months. The team I have 
 been placed on is working to integrate React 
 into the codebase to make the company’s 
 webpages much more reactive and 
 user-friendly. This comes along with 
 changes in the User Interface (UI) styling. 
 Changing this core system of the website 
 will likely expose other shortcomings that 
 can be fixed in this new reactive and modern 
 manner. 

 The structure of React also lends 
 itself well to fixing the shortcomings listed 
 in this report. It is built to be modular and 
 encourages modular design. Without 
 functions that are thousands of lines long, 
 the code will be made much simpler and 
 more readable. In turn, inserting comments 
 will be made less cumbersome because each 
 comment has to describe fewer complex 
 behaviors. Hopefully, this will lead to 
 individual developers being encouraged to 
 write their own readable and 
 well-documented code. 

 7. UVA EVALUATION 
 I could not have completed the work as 
 efficiently as I did without the guidance and 
 experience provided to me by my UVA 
 coursework. Though it did not provide me 
 with experience in the specific tools I 
 needed for the job (JavaScript and jQuery), 
 it gave me the tools necessary to learn what 
 I needed on my own. There is a large 
 emphasis placed on learning my doing in the 

 UVA CS department, which fits well with 
 my work experience. There are no lectures 
 to watch or tutorials to follow (even though 
 the documentation should have, perhaps, 
 provided such resources); I learned by 
 doing. 

 The most analogous class to this 
 work environment was CS 3240 Advanced 
 Software Development. While this class 
 should have provided a wealth of pertinent 
 experience and applicable knowledge, this 
 was not the case. The only true applicable 
 skill learning in the course that was used in 
 the internship was how to use git effectively. 
 Even that, though, I learned more effectively 
 and at a greater level than during my 
 coursework. 

 What hindered my learning (and 
 what likely hinders the learning of many 
 other students in the course) is the 
 group-work oriented structure of the course. 
 There is a fundamental disconnect between 
 how group work functions in academics 
 compared to the way teamwork works in the 
 workplace. This disconnect stems from the 
 differing motives of the individuals 
 participating in each system. Workers who 
 do not work do not get paid, while students 
 who do not work are carried by their 
 teammates. This incentivizes students to 
 offload their weight and responsibility onto 
 the group-member that is most diligent, 
 severely hindering their own learning as 
 well as that of their teammates. 

 It would provide a more analogous 
 work environment if students were able to 
 choose their teammates. This would provide 
 teams with similar levels of commitment 
 and an enhanced ability for accountability 



 through social pressures (as would exist in 
 the workplace). 

 REFERENCES 
 [1] Kaur, U., and Gagandeep S. “A Review 
 on Software Maintenance Issues and How to 
 Reduce Maintenance Efforts.” International 
 Journal of Computer Applications, vol. 118, 
 no. 1, 2015, pp. 6–11., 
 https://doi.org/10.5120/20707-3021. 

 [2] Bennet, K. H. and Rajlich, V. T. 2000. 
 “Software Maintenance and Evolution: a 
 Roadmap” Research Institute for Software 
 Evolution Department of Computer Science 
 University of Durham Wayne State 
 University UK Detroit, MI 48202 DH1 3LE 
 USA 

 [3] Lientz B. P., Swanson E. B., and 
 Tompkins G. E. 1978. Characteristics of 
 application software maintenance. Commun. 
 ACM 21, 6 (June 1978), 466–471. 
 https://doi.org/10.1145/359511.359522 


