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Abstract

Robustness to acoustic noise remains a challenge in automatic speech recognition (ASR). In
this work, we take a fault-tolerance approach to noise-robustness by applying data diversity
[1] to the input speech signal of an ASR system. Motivated by the observation that ASR
systems are sensitive to perturbations in the input under noisy conditions, our proposed
framework, termed data-diverse redundant processing, creates a diverse set of variants of the
input speech signal by applying label-preserving transformations such as time warping and
speed modulation. Treating a given ASR system as a black box, we process the variants to
generate a list of transcripts, termed hypotheses. Our experiments show that we are able to
generate diverse hypotheses in noisy environments quantified by the average of pair-wise word
error rate (WER) values, known as the Cross-WER [76]. We show error-correcting potential
or complementarity of these hypotheses using the notion of an oracle combination or a "best
possible combination" of them guided by the ground truth or reference transcripts, for which
we provide an algorithm. Our results show potential for consistent reductions (in an ideal
sense) in WER for noisy speech. We implement a modified version of the ROVER algorithm
[23] for combining multiple hypotheses into a single hypothesis. We evaluate our framework
on clean and realistic noisy speech from the CHiME3 dataset for the Google Cloud Speech to
Text, IBM Watson Speech to Text, and Microsoft Azure Speech to Text systems. Our results
maintain the original performances on clean data but achieve reductions of 2.31%, 3.88%,
and 3.5% over baseline WERs by a simple majority voting mechanism using as few as five
transformations. We further show empirical lower bounds on WER on generated confusion
networks (CNs) promising even greater reductions in WER of 8.6%, 8.36%, and 6.51% for
the Google, IBM, and Microsoft systems respectively. We point to existing work on more
sophisticated mechanisms such as confusion network re-scoring using language understanding
models to get WER values that more closely resemble these lower bounds. We conclude that
data diversity is a viable orthogonal method for noise-robustness, but its efficacy is limited by
the underlying ASR and its use is only encouraged when computational overhead of redundant
processing is not a concern.

Keywords— Automatic speech recognition, noise-robustness, data diversity, hypothesis
combination, ROVER



Publications

S. Preum, S. Shu, M. Hotaki, R. Williams, J. Stankovic, H. Alemzadeh, “CognitiveEMS: A
Cognitive Assistant System for Emergency Medical Services.” 7th IEEE Workshop on Medical
Cyber-Physical Systems, 2018.



Table of contents

List of figures xi

List of tables xiii

Nomenclature xiv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Automatic Speech Recognition 5
2.1 Black Box Model for Automatic Speech Recognition . . . . . . . . . . . . . 5
2.2 Decision-Theoretic Formulation of ASR . . . . . . . . . . . . . . . . . . . . 6
2.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Traditional Architectures . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 End-to-end Architectures . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Speech Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Word Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Considerations for Word Error Rate Computation . . . . . . . . . . . 10

2.5 Graphical Models for ASR Outputs . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Noise-Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7.1 Empirical Assessment of ASR in Noisy Environments . . . . . . . . 15
2.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Data Diversity for Automatic Speech Recognition 17
3.1 Data Diversity as a Fault-Tolerance Mechanism . . . . . . . . . . . . . . . . 17
3.2 Data Diversity for Automatic Speech Recognition . . . . . . . . . . . . . . . 18



Table of contents ix

3.3 Data-Diverse Redundant Processing Framework . . . . . . . . . . . . . . . . 19
3.4 Quantifying Diversity among Hypotheses . . . . . . . . . . . . . . . . . . . 20

3.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Quantifying Complementarity among Hypotheses . . . . . . . . . . . . . . . 23

3.5.1 An Algorithmic Definition of Oracle Combination . . . . . . . . . . 23
3.5.2 Oracle Combination Improvement . . . . . . . . . . . . . . . . . . . 25
3.5.3 Seemingly Counter-intuitive Results . . . . . . . . . . . . . . . . . . 25

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.1 Label-Preserving Transformations . . . . . . . . . . . . . . . . . . . 27
3.6.2 Diversity among Hypothesis . . . . . . . . . . . . . . . . . . . . . . 31
3.6.3 Complementarity of Hypothesis . . . . . . . . . . . . . . . . . . . . 33

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Hypothesis Combination 38
4.1 The Hypothesis Combination Problem . . . . . . . . . . . . . . . . . . . . . 38
4.2 ROVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Best and Worst Confusion Network Paths (Oracles) . . . . . . . . . . . . . . 42
4.4 Tuning ROVER for Better Performance . . . . . . . . . . . . . . . . . . . . 44
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.1 Incremental Combination of Hypotheses . . . . . . . . . . . . . . . . 46
4.5.2 Results with Five Transformations . . . . . . . . . . . . . . . . . . . 49

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Evaluation 53
5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Baseline Performance . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Data-Diverse Redundant Processing Results . . . . . . . . . . . . . . 54

5.2 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Discussion 57
6.1 Review of Work and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

References 61

Appendix A Additional Preliminaries 67
A.1 The Levenshtein Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



Table of contents x

A.2 Multiple Sequence Alignment . . . . . . . . . . . . . . . . . . . . . . . . . 68

Appendix B ASR Systems and Dataset 69
B.1 ASR Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2 The CHiME3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



List of figures

1.1 Black Box Model of an Automatic Speech Recognition System . . . . . . . . 1
1.2 Data-Diverse Redundant Processing Framework . . . . . . . . . . . . . . . . 3

2.1 Graphical Model of a One-Best ASR Result (Example) . . . . . . . . . . . . 11
2.2 Graphical Model of a N -Best ASR Result (Example) . . . . . . . . . . . . . 12
2.3 A Confusion Network (Example) . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 A Word Lattice (Example) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 A Model of the Sources of Noise . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Development Set WER (%) by the ASR Systems Grouped by Categories . . . 15

3.1 Diversity Matrices of a Randomly Shuffled Set of HypothesesH . . . . . . . 22
3.2 Monte Carlo Simulation of D and Cross-WER for Permutations of the List of

HypothesesH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Oracle Combination of Multiple Hypotheses . . . . . . . . . . . . . . . . . . 23
3.4 Sorted WER Results for Different Transformations over all Noise Profiles . . 29
3.5 Sorted WER Results for Different Transformations . . . . . . . . . . . . . . 30
3.6 Diversity Matrix Heat Maps for the Development set of the CHiME3 dataset

for all ASRs and Noise Categories . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Cross-WER (%) Values for ASRs and Noise Categories Using all 20 Transfor-

mations on the Development set of the CHiME3 dataset . . . . . . . . . . . 33
3.8 Pairwise Oracle Improvements Between Transformations . . . . . . . . . . . 34
3.9 Oracle Combination Improvements (Ideal Reduction in WER) using all

Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.10 Incremental Oracle Combination WER (%) as we start with a single transfor-

mation and continue adding transformations for the full Development set of
the CHiME3 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Hypothesis Combination of Multiple Hypotheses . . . . . . . . . . . . . . . 39
4.2 ROVER System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Multiple Sequence Alignment (MSA) Table . . . . . . . . . . . . . . . . . . 40



List of figures xii

4.4 ROVER Word Transition Network (WTN) or Confusion Network (CN) . . . . 40
4.5 ROVER Majority Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Best Path in the Confusion Network . . . . . . . . . . . . . . . . . . . . . . 43
4.7 Worst Path in the Confusion Network . . . . . . . . . . . . . . . . . . . . . 43
4.8 Pruned Confusion Network in Order to Find the Best Path . . . . . . . . . . . 44
4.9 Example of an Alignment Issue . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.10 Improved Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.11 Example of a Confusion Network where an All-Null Path is Possible . . . . . 46
4.12 Example of a ROVER Confusion Network after Post-Alignment Filtering . . 46
4.13 Combination WER (%) for ROVER and ROVER+ on the full (across all

categories) CHiME3 Development Dataset. The horizontal axis represents
a transformation added to be combined with previous transformations. The
vertical axis represents a combined WER of all transformations up to that
point in the inverse image axis. . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.14 ROVER+ WER (%) Broken Down by Categories of the CHiME3 Development
Dataset using the Best Five Transformations and Majority Voting . . . . . . . 49

4.15 ROVER+ Reductions in WER (%) using Five Transformations and Majority
Voting on the CHiME3 Development Dataset . . . . . . . . . . . . . . . . . 50

5.1 Comparison of ASR Transcriptions in Terms of WER on the Evaluation Set . 54
5.2 ROVER+ WER (%) Broken Down by Categories of the CHiME3 Evaluation

Dataset using the Best Five Transformations and Majority Voting . . . . . . . 55
5.3 ROVER+ Reductions in WER (%) using Five Transformations and Majority

Voting on the CHiME3 Evaluation Dataset . . . . . . . . . . . . . . . . . . . 55

6.1 Modified Confusion Network . . . . . . . . . . . . . . . . . . . . . . . . . . 59



List of tables

3.1 Details on Instances of the Label-Preserving Transformation Classes . . . . . 28

4.1 WER (%) and Improvements (%) on Full Noisy Subset (Bus + Café +
Pedestrian + Street) of the CHiME3 Development Dataset using the Best Five
Transformations for Each ASR . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 WER (%) and Improvements (%) on Full Noisy Subset (Bus + Café +
Pedestrian + Street) of the CHiME3 Evaluation Dataset using the Best Five
Transformations for Each ASR . . . . . . . . . . . . . . . . . . . . . . . . . 56

B.1 Summary of Development Subset of CHiME3 Dataset . . . . . . . . . . . . 70
B.2 Summary of Evaluation Subset of CHiME3 Dataset . . . . . . . . . . . . . . 70



Nomenclature

General Notation
a A scalar is represented by a lower-case, non-bold, and italic letter
a A vector, sequence, or set (or multiset 1) is represented by a lower-case and bold letter
A A variable of arbitrary/unknown dimensions
A A sequence of non-scalar elements, a matrix, or tensor
|a| Number of elements in a set or sequence a
argmax

x
f(x) x such that f(x) is maximized

argmin
x

f(x) x such that f(x) is minimized

Unique(a) Removes repeating elements from a sequence
1(condition) Indicator function on some condition
Automatic Speech Recognition
x An audio sample
x A sequence of speech samples corresponding to an utterance
w A word
w A sequence of words
A Acoustic Domain
V A vocabulary
W A language
F(.) ASR function
wRef Ground truth reference transcript
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Chapter 1

Introduction

S peech is a natural method of communication between humans. The field of automatic
speech recognition (ASR) has been an intensive area of research for many decades

aimed at extending this intuitive mode of communication to between humans and machines.
In this introductory chapter, we motivate the need for accurate automatic speech recognition in
noisy environments and introduce our approach, termed data-diverse redundant processing, to
improving the noise-robustness of these systems. We conclude the chapter with an overview
of the the structure of this thesis.

1.1 Motivation

Automatic speech recognition (ASR) or Speech-to-Text (STT) is an essential human-computer
interaction interface. A simple black box model (Figure 1.1) of an ASR system takes an
acoustic waveform as an input and produces a sequence of words as an output.

ASRSpeech Text

Fig. 1.1 Black Box Model of an Automatic Speech Recognition System

ASR has been an active area of research for over five decades. An early system developed
at the Bell Telephone Laboratories [15] used circuits to compare frequency content of speech
to recognize spoken digits. Another early system used Dynamic Time Warping (DTW) [64]
for recognition of spoken words. The introduction of the Hidden Markov Model (HMM)
[6] framework for ASR allowed for speech recognition to be treated as a statistical pattern
recognition problem with separate models to capture acoustic and linguistic aspects of speech.
The replacement of Gaussian Mixture Model (GMM) acoustic models and n-gram language
models by deep learning approaches [39, 55] has contributed to major progress in the recent
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years. Some so-called "end-to-end" architectures using recurrent neural networks (RNNs)
[32, 31, 34] have also been explored and shown great promise. Today, voice assistant systems
such as Amazon Alexa, Apple Siri, Google Home, and Microsoft Cortana have become
ubiquitous. Additionally, leading cloud computing platforms such Amazon Web Services,
Google Cloud Platform, IBM Watson, and Microsoft Azure all provide state-of-the-art models
as a service to be used in custom user applications. Despite the great ubiquity and advancements,
however, the accuracy of ASR transcriptions degrades under realistic noisy conditions. Such
deterioration in performance may be less tolerable in some applications such as safety-critical
systems. An example application of ASR technology in such a safety-critical system is a
voice-enabled cognitive assistant system for emergency medical services (EMS) in [63]. This
device is expected to be used in environments with many acoustic noises such as those from
traffic, people talking in the background, and radio chatter. Speech-to-Text and Text-to-Speech
(TTS) are the main forms of interaction between an emergency medical technician (EMT) and
a computer system in this device. It is crucial that ASR is accurate in transcribing speech.

1.2 Approach

In this work, we take a fault-tolerance approach to the noise-robustness problem in automatic
speech recognition. Unlike previous work that use robust front-ends or enhance the underlying
ASR models, we exploit data diversity [1] by algorithmically modifying the input speech
signal of an ASR in many different ways. This is motivated by the empirical observation
that ASR systems are sensitive to input perturbations under noisy conditions i.e., their output
may change when the input is even slightly changed. Our proposed framework, termed
data-diverse redundant processing, creates a diverse set of variants of the input speech
signal by applying label-preserving transformations (LPTs), which add spectral and temporal
variations to the signal without modifying its speech content i.e., such that an expert human
transcriber’s annotation of the speech signal does not change with the transformations. The
set of data-diverse variants are all processed by an ASR system with the hope that they will
generate diverse and complementary transcripts. We measure ASR output diversity using
the average of pairwise WER values among the transcripts, also known as Cross-WER [76].
We demonstrate complementarity of hypotheses coming from different transformations using
the notion of an oracle combination or "best possible combination" of them. This notion is
somewhat ambiguous. We provide an algorithmic definition that iteratively aligns hypothesis
transcripts to the reference transcript and builds a combination transcript by only keeping
the correctly recognized words. We can show complementarity of hypotheses if the oracle
combination of them leads to a hypothesis with fewer errors.
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Once multiple complementary transcripts are generated by processing the diverse variants,
a (non-oracle) hypothesis combination scheme is applied to their transcripts to generate a
combined transcript. A simple approach to this problem is the Recognizer Output Voting
Error Reduction (ROVER) [23] which uses multiple sequence alignment (MSA) to align the
hypotheses together. It then generates a graphical representation of a hypothesis space from the
alignment where words are represented as edges in a directed acyclic graph (DAG) known as a
Confusion Network (CN) 1. Finally, a "voting" mechanism selects a single hypothesis (a path
through the confusion network) as the output of the system. For our work, we implemented
a modified version of ROVER and used a simple majority voting scheme for finding paths
through generated confusion networks. Figure 1.2 shows the data-diverse redundant processing
framework investigated in this thesis2. This approach is orthogonal to existing approaches
to noise-robustness, which generally either aim to enhance the input speech signals or the
underlying ASR models. Our work is different, in that it exploits the sensitivity of ASR
systems to perturbations under noisy conditions.

Fig. 1.2 Data-Diverse Redundant Processing Framework

We evaluate our framework in terms of word error rate (WER) using the Google Cloud
Speech to Text3, IBM Watson Speech to Text4, and Microsoft Azure Speech to Text5 on the
Evaluation set of CHiME3 [7] dataset. These systems and the CHiME3 dataset are discussed
in more detail in Appendix B. Our experimental results show that we could reduce WER
by modest amounts of 2.31%, 3.88%, and 3.5% using as few as five transformations. We
also show empirical lower bounds on WER on best-performing paths on confusion networks
generated by our ROVER-like combination scheme suggesting that even greater gains are

1ROVER calls this graph a Word Transition Network (WTN)
2The notation will be explored in later chapters.
3https://cloud.google.com/speech-to-text
4https://www.ibm.com/cloud/watson-speech-to-text
5https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/

https://cloud.google.com/speech-to-text
https://www.ibm.com/cloud/watson-speech-to-text
https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
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possible. These lower bounds correspond to upper bounds on reduction in WER of 8.6%,
8.36%, and 6.51% for the Google, IBM, and Microsoft systems respectively. In agreement
with prior work [38, 65], we claim that simple majority voting is incapable of exploiting full
potential for improvements. We point to existing work on more sophisticated mechanisms as an
avenue for future work to get WER values that more closely resemble these lower bounds. Our
results indicate that data diversity is a viable orthogonal method to noise-robustness in ASR
but its efficacy is limited by the underlying ASR and the combination method. We also note
that the use of this approach is only encouraged when the cost associated with the redundant
processing of speech is not a concern6.

1.3 Thesis Organization

This thesis contains 6 chapters and is structured as follows:

• Chapter 2 covers the fundamentals of black box automatic speech recognition and
noise-robustness. It also establishes a baseline for clean and noisy data.

• Chapter 3 presents our approach and results for using data diversity to generate diverse
and complementary transcripts.

• Chapter 4 presents our approach and results for combining transcripts for reduced word
error rates.

• Chapter 5 evaluates our framework on unseen data.

• Chapter 6 summarizes our work and presents high-level conclusions. It also suggests
future directions in research.

6This is not an unrealistic use case, as it is possible that we may have unlimited access to just a single ASR.



Chapter 2

Automatic Speech Recognition

T his chapter provides the necessary technical preliminaries and formulations for automatic
speech recognition (ASR). We first define a black box model for ASR and provide the

classic decision-theoretic formulations of the ASR task. Although not necessary in a black box
setting, we provide high-level descriptions of traditional and end-to-end ASR architectures.
We introduce the word error rate (WER) evaluation metric and considerations for computing it
accurately. We then introduce graphical models for ASR outputs. Finally, we explore existing
work on the problem of noise-robustness in ASR. We conclude the chapter by empirically
quantifying the performance deterioration of multiple commercial ASR systems on noisy data
from the Development set of the CHiME3 dataset.

2.1 Black Box Model for Automatic Speech Recognition

Automatic speech recognition (ASR) is a sequence-to-sequence task, where the input is an
acoustic signal containing human speech, and the output is text. The input is often a digital
representation of an analog pressure wave sampled at a given sampling rate and a given bit
depth. The input acoustic waveform x could be represented as a time-series sequence of length
T :

x = x1, x2, . . . , xT (2.1)

Text is often represented as a sequence of words of length L:

w = w1, w2, . . . , wL (2.2)

where the sequence of words w is an element of the language set W , and a word w is an
element of a vocabulary set V 1. An ASR system F : A 7→ W maps elements from the

1We are not considering out-of-vocabulary (OOV) words here for simplicity
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acoustic domain A to the language domainW i.e., the function F takes x as input and returns
a hypothesized word sequence ŵ:

ŵ = F(x) = ŵ1, ŵ2, . . . , ŵL̂

We can also define a reference transcript wRef containing the actual words that were uttered
in the speech signal x. These are only available to us during development and evaluation of a
system.

wRef = R(x) = wRef
1 , wRef

2 , . . . , wRef
LRef (2.3)

The reference transcripts are usually manually annotated by expert human transcribers2,
which we denote as a functionR : A 7→ W . Informally, a machine learning approach to ASR
tries to learn the F as an estimate ofR. We provide the classic decision-theoretic formulation
of ASR in § 2.2.

2.2 Decision-Theoretic Formulation of ASR

Automatic speech recognition can be treated as a discriminative classification task that uses
the posterior probability P (w |x). One intuitive decision rule for ASR is the Maximum a
Posteriori (MAP) [5]:

ŵMAP = argmax
w

P (w |x) (2.4)

Given an acoustic inputx, the MAP decision rule finds the word sequencew that maximizes
the posterior probability P (w |x). The MAP decision rule can be rewritten as [77]:

ŵMAP = argmin
w′

∑
w ̸=w′

P (w |x)

= argmin
w′

∑
w

LMAP(w,w′)P (w |x) (2.5)

where

LMAP(w,w′) =

0 if w = w′

1 otherwise
(2.6)

2It is possible that different human transcribers produce different transcriptions for the same speech. This is
not addressed in our work.
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We observe that MAP decision rule incurs equal cost for all misclassifications i.e., it
minimizes the expected misclassifications. The MAP decision rule can be generalized by the
Minimum Bayes’ Risk (MBR) decision rule [56, 57, 69, 27]:

ŵMBR = argmin
w′

∑
w

L(w,w′)P (w |x) (2.7)

where L is an arbitrary loss function. The sum in Equation 2.7 is an (conditional) expectation
of the loss function L. It is referred to as a (conditional) risk in Bayesian Decision Theory
formalism [18]. To minimize error on the word level rather than sentence3 level, the Levenshtein
distance [50] or the (minimum) edit distance between two word sequences w and w′ can be
used:

LWord(w,w′) = NIns +NDel +NSub (2.8)

where NIns, NDel, and NSub refer to the number of insertions, deletions, and substitutions
that make up the Levenshenstein distance. The Levenshtein distance is discussed further in
Appendix A.1.

We observe that this treatment so far assumes that the posterior probability P (w |x) is
known. However, this is not the case in practice. Fortunately, we can apply Bayes’ Theorem:

P (w |x) = P (x |w)P (w)

P (x)
(2.9)

Since term P (x) in the denominator does not change with different w′ when minimizing
over all possible w′ ∈ W in Equation 2.7, the MBR decision rule can be expressed as:

ŵMBR = argmin
w′

∑
w

L(w,w′)P (x |w)P (w) (2.10)

The term P (x |w) is known as the likelihood of the acoustic vector x, and the term P (w)

is know as the prior probability of the word sequence w. The challenge in designing statistical
ASR systems has to do with computing these probabilities and searching over word sequences.

2.3 Architecture

This thesis is not concerned with the inner workings of automatic speech recognition systems.
However, a high-level view of common architectures can be useful. Below, we very briefly
describe a traditional pipeline, which depends on multiple separate components. We also

3We note that the term sentence is a semantic concept but is used to mean a sequence of words here.
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briefly discuss more recent efforts to build end-to-end ASR systems, with the aim of replacing
these components with a single system.

2.3.1 Traditional Architectures

Traditional ASR architectures depend on multiple components to perform speech recognition.
First, the input speech signal x is processed by a frontend stage to generate feature vectors
O = o1,o2, . . . ,oτ . These features are usually compact time-frequency representations of
speech such as Mel Frequency Cepstral Coefficients (MFCC). Feature normalization techniques
may also be applied in the frontend stage. These feature vectors are passed to a decoder
module, which searches over sequences of words, making use of the language and acoustic
models. This may be done using Viterbi approximation or using forward-backward operations
over a lattice [77]. In a traditional pipeline, the acoustic model is trained to compute the
likelihood P (O |w). Hidden Markov Models (HMMs) and Deep Neural Networks (DNN)
have shown major success on this task. The language model is trained to compute the prior
probability P (w) of a particular word sequence. A common approximation is the n-gram
language model, which under certain assumptions, can compute the conditional probability
of a word given n− 1 previous words. More recently, neural masked language models such
as the Bidirectional Encoder Representation from Transformers (BERT) [16] have become
popular. These models train networks to predict a probability distribution P (wi | context),
where context refers to both previous and future words. ASRs may also make use of a phonetic
dictionary, which is a mapping between words and phonetic units such as phones. These
systems are usually quite large and are hosted in the cloud or clusters of machines.

2.3.2 End-to-end Architectures

More recent approaches to ASR consider so-called "end-to-end" architectures [32, 34, 31].
These approaches replace traditional HMM-DNN pipelines with variants of recurrent neural
networks (RNNs). This has largely been possible with the introduction of the Connectionist
Temporal Classification (CTC) [30] which allows for RNNs to work with unsegmented speech
data. Deep Speech [34] by Baidu is one architecture that has shown great improvements.
Mozilla’s DeepSpeech4 is a popular open-source system based on this architecture. We note,
however, that most of these systems are not truly end-to-end as of yet and rely to varying
degrees on traditional components such as language models.

4https://github.com/mozilla/DeepSpeech

https://github.com/mozilla/DeepSpeech
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2.4 Performance Evaluation

The performance of an ASR is empirically evaluated on speech datasets. In § 2.4.1, we discuss
considerations for selecting speech datasets. In § 2.4.2, we discuss the word error rate (WER),
the standard metric for evaluating ASR systems.

2.4.1 Speech Datasets

A number of considerations such as speaker variability, vocabulary size, accents and dialects,
context, speaking style, and background noise need to go into choosing a benchmark dataset.
A benchmark dataset needs to be representative of the type of speech we wish to recognize
with an ASR. In this work, we are interested in improving the performance of an ASR on
noisy speech such that it more closely resembles performance on clean speech. The difficulty
in this lies in creating a dataset with both clean and noisy subsets, where all other variables
except for noise are consistent. Artificial corruption of audio such as corruption with additive
and/or convolutional noise has been explored in prior work [40]. This approach is appealing
because we only need to collect clean audio. Noise could be added systematically using
different noise models or actual noisy audio samples. This also allows for more direct control
over the signal-to-noise ratio (SNR). However, phenomena such as the Lombard effect [74],
an observed tendency of people to change their speech in noisy environments, threaten the
validity of such models. In this work, we make use of the 3rd CHiME Speech Separation and
Recognition Challenge (CHiME3) [7] dataset. CHiME3 is designed around the Wall Street
Journal (WSJ) [26] corpus and contains speech recorded in both noise-free and challenging
noisy environments. A detailed description of of the subsets of dataset used in this thesis can
be found in Appendix B.2.

2.4.2 Word Error Rate

The standard metric for assessing the performance of automatic speech recognition is the
Word Error Rate (WER). We first define WER for a R speech utterances (i.e., data points)
X = x1,x2, ...,xR. Ground-truth labels or reference transcripts for these data points are
the references WRef = wRef

1 ,wRef
2 , ...,wRef

R . Feeding each xi to an ASR, we get the outputs
Ŵ = ŵ1, ŵ2, ..., ŵR, which we will refer to as the inferences or hypotheses. The word error
rate is then the sum of (minimum) edits distances or Levenshtein distances (see Appendix
A.1 for more details) between corresponding members of WRef and Ŵ divided by the total
number of words in all members of WRef. This is sometimes referred to as micro-averaging
and is done in order to weigh all errors equally across data points:
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WER(WRef;Ŵ) =

∑R
i=1 LWord(w

Ref
i , ŵi)∑R

j=1 |wRef
j |

(2.11)

If computing WER for a single data point (i.e., R = 1), the WER defintion of Equation 2.11
reduces to:

WER(wRef; ŵ) =
NIns +NDel +NSub

NRef
(2.12)

where
NRef = |wRef| (2.13)

The WER is often multiplied by 100 and reported as a percent. It should be noted that WER
can exceed one hundred percent due to non-zero number of insertions NIns. The computation is
efficiently done using dynamic programming (DP). The computation can be related to pair-wise
sequence alignment, where the alignment satisfies the Levenshtein criterion i.e., minimizes
the total number of insertions, deletions, and substitutions. The Wagner-Fischer algorithm
[75] is the most common algorithm for this task. We employed a modified open-source
implementation of the WER computation5 in this thesis. The example below illustrates WER
computation for a single data point.

Reference the cat in the hat sat _ on the mat
Hypothesis the bat in _ hat sat down on the mat
Operation OK SUB OK DEL OK OK INS OK OK OK

WER =
1 + 1 + 1

9
× 100 ≈ 33.33%

2.4.3 Considerations for Word Error Rate Computation

We observe that although many efficient implementations of the Wagner-Fischer algorithm
exist, care must be taken for accurate computation of the WER. Stylistic differences between
reference and recognition transcripts can make this computation quite problematic. For this
work, we implemented a text normalization module informed by manually reviewing the
errors. Text normalization refers to the conversion of both the reference transcripts WRef and
recognition transcripts Ŵ into a standardized format for more accurate WER computation.
The example below illustrates a problem when the reference transcription and the ASR system
represent and format numbers differently:

5https://github.com/Franck-Dernoncourt/ASR_benchmark

https://github.com/Franck-Dernoncourt/ASR_benchmark
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Reference employment fell forty seven thousand after
Hypothesis employment fell _ _ 47000 after

We addressed a number of categories in our text normalization module. These included
acronyms, abbreviations, ordinal and cardinal numbers, decimals, dates, currency, symbols,
and alternate spellings. We adopted the Python num2words 6 and words2num 7 modules for
conversions dealing with numbers. Some cases were more challenging than others to write
simple conversion rules for such as:

Reference one quarter
Hypothesis 1/4 _

For such cases, if they occurred frequently in a dataset, we implemented heuristic
normalization rules. It should be noted that our normalization does not address all possible
issues. For this reason, the WER values reported in this thesis may be slightly off from actual
WERs.

2.5 Graphical Models for ASR Outputs

ASR tools are typically quite configurable and could output more than just a single one-best
sequence of words. The output is often represented as a directed acyclic graph (DAG) denoted
as G = {V , E} with edges representing words. The edges could be associated with a wealth of
metadata such as timing information and confidences from different models. A hypothesis is
then simply a sequence of words along edges from a start node on the left to a stop node on
the right. In our work, we only consider the one-best sequence as the ASR output, but the
DAG model of hypothesis spaces is useful for the hypothesis combination problem of Chapter
4. Below, we discuss some common ASR output formats in ascending order of complexity.

One-Best Sequence: The simplest output is the one-best sequence which consists of a single
hypothesis. This is typically the most confident sequence of words found by the ASR. Figure
2.1 shows the graphical representation of a one-best sequence:

she had your dark suit in greasy wash water all year

Fig. 2.1 Graphical Model of a One-Best ASR Result (Example)

N -Best List: ASR systems may provide the user with multiple possible hypotheses (usually
ranked). These N-best outputs can also be graphically represented as shown in Figure 2.2:

6https://pypi.org/project/num2words/
7https://pypi.org/project/words2num/

https://pypi.org/project/num2words/
https://pypi.org/project/words2num/
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she

she
soon

had your suit in greasy wash water all year

had her dark suit in greasy wash laughter all year

in greasy washed water all year

Fig. 2.2 Graphical Model of a N -Best ASR Result (Example)

Confusion Network: An alternate ASR output format is the Confusion Network (CN),
informally called a "sausage." For every word, confusion networks allow for multiple alternative
words. More formally, confusion networks are simple linear DAGs with the property that each
path from the start node to the stop node goes through all the other nodes. The set of words
represented by edges between two nodes is called a confusion set [54], or correspondence set
[23], or cohort set [3]. Confusion networks are often generated by transforming a word lattice
[54] (discussed next). They can also be generated by applying multiple sequence alignment
(MSA) on multiple different hypotheses. This is the approach taken by the ROVER algorithm
[23] where the resulting graph is called a Word Transition Network (WTN)8. They could
also be generated using timing information rather than multiple sequence alignment based
on a scoring function (See Appendix A.2 for more on MSA). Due to their simple structure,
confusion networks can efficiently model and store many competing hypotheses. We only
need to store a sequence of M confusion sets Q. Figure 2.3 shows an example of a confusion
network. The "_" symbol is a special character indicating a null or skip9. Null arcs allow
for hypotheses with "lengths" less than M to be generated from a confusion network with M

confusion sets.

she had your
her

dark
_

suit
soon

in

and
an

greasy
wash

washed

water

laughter
all year

Fig. 2.3 A Confusion Network (Example)

As mentioned, we can store confusion networks as a sequence of M confusion sets.

Q = C1, C2, ..., CM (2.14)

This is illustrated below for the example in Figure 2.3:

[
she

] [
had

] [your
her

][
dark

_

][
suit
soon

] in
and
an

[
greasy

] [ wash
washed

][
water

laughter

] [
all
] [

year
]

8The concept of Word Transition Network seems to be more general than confusion networks.
9Some literature denote null arcs with the labels "!NULL" or "<skip>" or "ϵ"
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Word Lattice: Word lattices are another common format in ASR technology. They are more
complex in terms of their structure than confusion networks and only allow for strict patterns to
be generated. They also encode timing information more accurately than confusion networks.
This, however, makes them inefficient to store in memory and more challenging to manipulate.
Word lattices are generally internally held in an ASR and not always available in a black box
setting. Our work does not deal with word lattices.

she had your
her dark

soon

suit and
suit

in

and

greasy

greasy wash
water

laughter
all year

Fig. 2.4 A Word Lattice (Example)

2.6 Noise-Robustness

Speech may be corrupted by a wide variety of noises, such as background sounds by people
speaking nearby, traffic, devices, and environmental variations. It is not possible to enumerate
all possible noises or their complex and dynamic impact on speech and speech recognition. A
model of the environment by Hansen [35] in Figure 2.5 captures a number of sources of noise
and speech characteristics, including the speech produced by stress, task workload, speaker
emotions, ambient noise, the Lombard effect (the tendency of people to increase their vocal
effort in the presence of noise), microphone distortion, and transmission distortion. A major
source of noise in this model is the ambient noise zenv. It has additive components but also
affects the speaker.

Fig. 2.5 A Model of the Sources of Noise

Now that we have considered some sources of noise, we consider the problem of automatic
speech recognition in speech affected by such noises. It is a well-known problem that the
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performance of automatic speech recognition deteriorates in the presence of noise. More
precisely, the WER achieved for noisy speech is often much greater than the WER achieved for
clean speech of the same type, as will be shown in the experiments of § 2.7. Noise-robustness
in ASR (informally) refers to reducing the WER for noisy speech such that it is comparable
to the WER achieved on clean speech. Any reduction in WER achieved in noisy categories,
however, can be seen as a step towards noise-robustness. Noise-robustness has been a major
area of research in the field of automatic speech recognition. A very large number of methods
have been proposed, published, and implemented over the decades. Li et. al [51] provides
a comprehensive overview and novel categorization of these methods. Although they use
five different criteria for categorization, we note that there are two major approaches to
noise-robustness. The first approach, termed feature-based methods, works on the input noisy
speech. Some methods such as Perceptually based Linear Prediction (PLP) [36] are motivated
by human hearing and work by extracting robust features from audio. Other techniques such
as Wiener filtering [52] and spectral subtraction [9, 8] aim to reconstruct clean speech from
noisy speech. The other approach, termed model-based methods, aims to train models that are
inherently robust to noisy inputs. Recent successes in noise-robust ASR systems have largely
been due to this approach. In particular, the replacement of older models with deep neural
networks (DNNs) [14, 39] have shown great success. For example, a work by Seltzer and
Wang [67] found that multi-condition training, noise-aware training, and dropout10 training of
DNNs significantly improved noise-robustness of ASRs. Our work is different from previous
work in the sense that we are not enhancing the signal or the model. Instead, we are exploiting
the observation that ASR systems are sensitive to perturbations in the input speech under noisy
environments. This is done by redundantly processing diverse variants of speech. This aligns
our work more closely with work in ensemble and multi-stream approaches to ASR [37]. Our
framework, the intuition behind it, and empirical evidence supporting our claim are further
explored in Chapter 3.

2.7 Experiments

In this section, we wish to quantify the degradation of ASR performance in terms of WER in
both clean and noisy environments. We report our experimental results on the Development
subset of the CHiME3 [7] dataset using leading Cloud ASR systems, including Google Cloud
Speech to Text, IBM Watson Speech to Text, and Microsoft Azure Speech to Text. The
CHiME3 dataset is designed around the Wall Street Journal (WSJ) [26] corpus and contains
speech recorded in both noise-free and challenging noisy environments. The ASR systems and
the CHiME3 dataset are used consistently throughout this thesis and are discussed in more

10Originally devised to prevent overfitting.
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detail in Appendix B. We note that the selected ASR systems are highly configurable and allow
for fine-tuning of different aspects of ASR such as acoustic and language models. We use
default options based on official code samples. Our results, however, should not be taken as a
general assessment of the performance of these systems. We also re-emphasize that our WER
values are somewhat rough due to limitations in our text normalization (see § 2.4.3).

2.7.1 Empirical Assessment of ASR in Noisy Environments

In this section, we establish a baseline performance for the Google, IBM, and Microsoft ASR
systems in terms of WER. Figure 2.6 plots the WER values for the different systems grouped
by the noise categories. We can see that all systems do well on clean (Booth) data with WER
values of less than 5%. The IBM system narrowly leads the other systems on clean data. This
reverses on noisy data, where the IBM system has the worst performance in terms of WER
across all categories. The Microsoft system has the best performance in nearly all categories,
except for the Bus category where the Google system performs slightly better.

Booth Bus Café Pedestrian Street
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0

20

40

60

80

100

W
or

d 
Er

ro
r R

at
e 

(%
)

4.99

20.03
16.39

12.4
15.81

3.79

30.96

46.75

23.97

30.52

4.37

21.03

12.0
7.88

12.56

Google
IBM
Microsoft

Fig. 2.6 Development Set WER (%) by the ASR Systems Grouped by Categories

These results show that there is a clear degradation in performance of ASRs when we move
from clean speech to noisy speech. In the next chapters, we aim to reduce the WER values for
the noisy categories such that they are closer to the WER for the Booth (Clean) category.

2.8 Summary and Conclusions

In this chapter, we explored the preliminaries of automatic speech recognition (ASR). We
presented classic decision-theoretic formulation of the ASR task. Despite our black box
treatment of ASR, we also presented a high-level architecture of a traditional ASR pipeline.
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We introduced the word error rate (WER) evaluation metric and considerations for benchmark
datasets. We discussed existing approaches to noise-robustness in ASR and briefly differentiated
our approach. Finally, we empirically quantified performance degradation of ASR in terms of
WER on leading cloud ASR systems using the Development subset of the CHiME3 dataset.



Chapter 3

Data Diversity for Automatic Speech
Recognition

T his chapter presents our approach to generating diverse transcriptions of speech
by applying diverse transformations on audio containing speech and redundantly

performing speech-to-text conversion. We first introduce data diversity as a fault-tolerance
mechanism, as formulated by Ammann and Knight [1, 46]. We present some high-level
intuition for applying data diversity in the context of automatic speech recognition and define
the data-diverse redundant processing framework. We present metrics from literature to
quantify diversity among hypotheses and introduce a visual representation of diversity. We
introduce the notion of an oracle combination of hypotheses to quantify complementarity or
error-correcting potential of the hypotheses. Finally, we present our experimental results on a
number of label-preserving transformations with multiple commercial ASR systems on the
Development set of the CHiME3 dataset.

3.1 Data Diversity as a Fault-Tolerance Mechanism

Data diversity, as formulated by Amman and Knight [1, 46], is a fault-tolerant strategy that
takes advantage of the observation that software execution conditions are often sensitive to
perturbations in the input data. It is possible for an application to produce very different
results on very similar or even logically equivalent data. Data diversity takes advantage of
such sensitivity by executing the same implementation of software on diverse data. Data
diversity could be employed in a system similar to N -version programming [4] called N -copy
programming [1]. As with N -version programming, it is hoped that the diversity in the
execution conditions of software leads to diverse outputs that do not contain all of the the same
errors i.e., are complementary.
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The first step in N -copy programming is data re-expression, which refers to algorithmically
modifying the input data1. This re-expression could be exact such as applying a random shuffle
(i.e., permutation) of data in an array fed to a sorting algorithm. It could also be inexact or
approximate such that it is still acceptable to the system. The re-expressed variants of an input
are fed to identical copies of a system. In some cases, the output from the system may need
to undergo reverse re-expression. The final stage in the system consists of aggregating the
outputs from each system and finding consensus among them. Ammann [1] uses the term
"voter" as a generic stand-in for this process. We note that data diversity may work for different
reasons in data-driven systems such as automatic speech recognition than those of traditional
logic-based software where errors are largely due to "bugs."

3.2 Data Diversity for Automatic Speech Recognition

We begin our investigation of data diversity for automatic speech recognition by noting that
speech is a complex and dynamic phenomenon without clearly distinguishable parts. The
temporal and spectral characteristics of speech are subject to a wide range of variations. These
variations include dialects, accents, speaking styles, pronunciation, speech rates, and the
emotional state of the speaker. Environmental noise, reverberation, and recording equipment
result in additional variability, which make ASR a particularly challenging task. We observe
that decision-theoretic approaches to ASR such as the maximum a posteriori decision rule
in Equation 2.4 consider the true posterior distribution P (w |x). The factored form of the
posterior still requires the true likelihood P (x |w) and true prior P (w). In practice, however,
we cannot compute these probabilities. In fact, it is usually difficult to characterize the true
distribution of any data. In practice, proxy models whose parameters are learned from data are
used. Mismatch between the model and input data is a major contributor to ASR errors under
adverse environments. These could be related to Dietterich’s statistical and representational
reasons for why ensemble learning methods may work [17]. Dietterich argues that due to
lack of training data and models being approximations to real processes that generate data,
an ensemble of multiple systems may perform better than individual systems. Similarly, we
argue that deliberate variations in the input could lead to some different parts of speech being
labeled differently by an ASR system. We can also relate data diversity with Dietterich’s
computational reason for why ensemble methods works. Given that ASR is a search problem
and the search space is too large, it is reasonable to assume that the search is done over a small
subset of all possible hypotheses. Data diversity may introduce variations that would result in
different subsets every time. We hypothesize that ASR systems are more susceptible to such
variations in the input when the input data is noisy. Empirical evidence presented later in §

1Diverse data could also be captured naturally such as from different sensors
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3.6.2 support this hypothesis. We wish to exploit this sensitivity by perturbing the input to
generate diverse hypotheses from a single ASR system. It is then hoped that these diverse
hypotheses are complementary i.e., they do not all contain the same mistakes.

3.3 Data-Diverse Redundant Processing Framework

To apply data diversity to an ASR system, we need to find re-expression algorithms that
generate variants of the original input speech. In this work, we consider transformations
that are, at least in principle, label-preserving. We use this term to emphasize that we are
not concerned with how much a transformed signal differs from the original based on some
distance metric for as long as the label is preserved. This is motivated by the observation that
diversity in the input may not have a straight-forward relationship with diversity in the output.
For example, small variations in the input could possibly generate as much (or perhaps more)
variations in the output as large variations in the input. We define the set of variants X as the
set of acoustic signals after N transformations have been applied to an acoustic signal x:

X = xT1 ,xT2 , . . . ,xTN , where xTi = Ti(x) (3.1)

Feeding xTi to an ASR, we get a hypothesis F(xTi) = wTi . Grouping the hypotheses in a
multiset of hypothesesH:

H = wT1 ,wT2 , . . . ,wTN (3.2)

The hypotheses could then be fed to a hypothesis combination module Ψ that combines
them to generate a single hypothesis:

wΨ = Ψ(H) (3.3)

A detailed view of our framework, termed data-diverse redundant processing, is shown
in Figure 1.2 (repeated below for convenience). This chapter is concerned with generating
the hypotheses H and quantifying diversity and complementarity between them. Chapter 4
explores combination schemes for the hypothesis combination module Ψ.
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3.4 Quantifying Diversity among Hypotheses

Given a multiset of hypotheses corresponding to the same input speech, we wish to quantify
the measure of diversity between them. Audhkhasi et. al [2] propose averaging of pairwise
WER values as an intuitive measure of diversity. Formally, given that H = w1,w2, ...,wN

is a list of N hypothesis sentences corresponding to speech signal x, the diversity D among
them can be defined as:

D(H) = 2

N(N − 1)

N∑
i=1

∑
j>i

WER(wi;wj) (3.4)

Wong. et. al [76, 77] propose a very similar metric known as Cross-WER. Cross-WER also
averages pairwise WER values, but it takes into account the fact that WER is not a symmetric
function. It computes both WER(wi;wj) and WER(wj;wi).

Cross-WER(H) = 1

N(N − 1)

N∑
i=1

∑
j ̸=i

WER(wi;wj) (3.5)

We observe that D(H) in Equation 3.4 is sensitive to the ordering of transcripts within the
multiset of hypothesesH2. For this reason, we make use of the Cross-WER metric rather than
D to quantify diversity in our work. To get a sense of diversity at a more granular level, we
propose constructing an N ×N matrix of the pairwise normalized edit distances (i.e., WERs).
This matrix, henceforth referred to as the diversity matrix, is computed as follows:

2The authors do not provide a formal definition of WER. It is likely that they use a different definition than the
standard normalized edit distance definition. Later work by the same authors [3, 47] suggest that they define it as
the Levenshtein distance between two word sequences, but this no longer a rate.
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0 WER(w1;w2) . . . WER(w1;wN)

WER(w2;w1) 0 . . . WER(w2;wN)

... ... . . . ...

WER(wN ;w1) WER(wN ;w2) . . . 0


(3.6)

We can gain insights by visualizing the diversity matrix as a heat map. We note that
the diversity metric D in Equation 3.4 uses the elements above the major diagonal3. The
Cross-WER metric in Equation 3.5 uses the numbers above and below the major diagonal. We
note that Equations 3.4 and 3.5 are defined for a single data point. They could be extended to
multiple data points by micro-averaging in the same fashion as computing WER for multiple
data points (Equation 2.11).

3.4.1 Example

Consider the listH below consisting of multiple hypotheses (padded for visual enhancement)
for the a speech signal x, with the reference transcript: "the cat in the hat sat on the mat."

the cat in the hat sat on the mat
the bat in the hat sat on the cat
the cat _ _ _ _ _ _ _
the cat and the bat sat on the mat
the bat and the cat sat on the mat
that cat on the mat sat by the mat
the cat and the bat sat on the mat
sat on the mat _ _ _ _ _

Figure 3.1 shows an example of two diversity matrices corresponding to the same set of
hypotheses above but with different ordering of transcripts withinH. We see that the value of
D(H) is not consistent between them (i.e., 1.17 versus 0.85). This is because D(H) only sums
the cells on top of the major diagonal in the matrix. A change in the ordering of H (i.e., a
permutation) causes the cells to move around within the matrix. We see that Cross-WER is
conistent between the permutations (i.e., 0.90 for both).

3Also called the principal diagonal, primary diagonal, leading diagonal, or major diagonal in linear algebra.
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( )  = 1.17, Cross-WER( ) = 0.90 ( )  = 0.85, Cross-WER( ) = 0.90
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Fig. 3.1 Diversity Matrices of a Randomly Shuffled Set of HypothesesH

Treating D as a random variable, with the underlying randomness coming from random
permutations ofH, a Monte Carlo simulation suggests that expected value of D is the Cross-
WER4. Figure 3.2 shows the first 100 iterations of the Monte Carlo simulation for the example
above. We can see that the cumulative average of the D(H) approaches the Cross-WER value,
which is constant over the permutations.

0 20 40 60 80 100
Random Shuffle Number

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(%
)

( )
Cross-WER( )
Cumulative Average of ( )

Fig. 3.2 Monte Carlo Simulation of D and Cross-WER for Permutations of the List of
HypothesesH

4A general proof, however, is required to show this.
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3.5 Quantifying Complementarity among Hypotheses

For diversity to be useful, the hypotheses need to be complementary (i.e., have mistakes
in different locations). Diversity does not necessarily indicate that the hypotheses in a
multiset H are complementary (e.g., hypotheses can be wrong in different ways). To show
complementarity, we conceive of finding the "best possible combination" of a given number of
hypotheses using an oracle machine with knowledge of the reference transcript. This oracle
combination, denoted as Φ(H), could put together the hypotheses in a way that reduces WER.
In practice, we cannot always compute such a combination since we only have access to
the reference transcripts during development and evaluation. Showing that complementary
transcripts are generated consistently for a large dataset during development could, however,
provide justification for the utility of data diversity. We denote the oracle combination of a
multiset of N hypothesesH = w1,w2, ...,wN as:

wΦ = Φ(H) = Φ(w1,w2, ...,wN) (3.7)

This is shown in Figure 3.3, which shows multiple hypotheses as the input and a single
hypothesis as the output. The dotted line indicates implicit knowledge of the reference
transcript.

Fig. 3.3 Oracle Combination of Multiple Hypotheses

Once an oracle combination wΦ is found, the term in Equation 3.8 represents a kind of
lower-bound on WER that could potentially be achieved by combining the hypotheses inH.
We can claim that the multiple hypotheses are complementary (in an ideal sense) if the oracle
combination of them produces a lower WER than WERs achieved by the individual hypotheses.

WER(wRef;wΦ) (3.8)

3.5.1 An Algorithmic Definition of Oracle Combination

We note that the notion of a "best possible combination" of multiple hypotheses is ambiguous.
Algorithm 1 describes a simple scheme for this combination. This definition allows for removal
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or filtering of all incorrect words5 and preserves the original ordering of words within each
hypothesis. We start an iterative process by initializing the sequence wΦ to be of the the same
size as wRef. The elements are initialized as null elements. We iterate over the hypotheses
with i as the index of iteration. The Filter function removes all incorrect words (i.e., words
that are not in the reference transcript) from the ith hypothesis wi to yield a filtered version of
the hypothesis wFiltered (which changes every iteration). The filtered hypothesis wFiltered and
the reference transcript wRef are aligned using the Levenshtein criterion by the Wagner-Fischer
algorithm6 to yield aligned (and hence equally sized) sequences wFiltered∗ and wRef∗. All
matched words in the alignment are placed within wΦ in the same location as their location in
the unaligned reference transcript wRef

7. If the combination sequence achieves a WER of zero,
we stop. Otherwise, we continue iterating until we are out of hypotheses. Finally, if there are
null elements in the combined sequence wΦ, we remove those to yield the final sequence. We
note that our notion of an oracle combination is is similar to Breslin’s [11] notion of "IDEAL
combination" in the context of confusion network combination (CNC).

Algorithm 1 Oracle Combination Φ(H)
1: Let wΦ be a sequence of size |wRef| with all NULL elements
2: for i = 1, ..., |H| do
3: wFiltered ← Filter(wi; {w |w ∈ wi ∧ w /∈ wRef})
4: wRef∗,wFiltered∗ ← Levenshtein-Align(wRef,wFiltered)
5: location← 1
6: for k = 1, ..., |wRef∗| do
7: if wRef∗[k] == wFiltered∗[k] then
8: wΦ[location]← wFiltered∗[k]
9: end if

10: if wRef∗[k] ! = NULL then
11: location← location + 1
12: end if
13: end for
14: if WER(wRef,wΦ) == 0 then
15: Break
16: end if
17: end for
18: wΦ ← Filter(wΦ; {NULL})

5Words that are in the hypothesis but not the reference. Not to be confused by insertions, deletions, and
substitutions.

6The Needleman-Wunsch algorithm [58] may provide better results without the need for filtering of incorrect
words since it maximizes the match between two sequences. We used the Wagner-Fischer algorithm [75] because
it was readily available from our implementation of the WER computation.

7Removing incorrect words from wi generally leads to wRef and wRef∗ being the same since most insertions
will be removed. However, this is not always the case. For example, incorrect repetition of a correct word in the
hypothesis can make wRef∗ longer than wRef.
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3.5.2 Oracle Combination Improvement

We note that the oracle combination WER in Equation 3.8 is not a relative value. To show
improvement of an oracle combination of a list of N hypotheses H = w1,w2, ...,wN over
some baseline transcript wBase, we can define the oracle combination improvement ∆Φ

wBase(H)
as the difference between the WER of the baseline transcript and the WER achieved by the
oracle:

∆Φ
wBase(H) = WER(wRef;wBase)−WER(wRef; Φ(H)) (3.9)

It follows that the oracle improvement is non-negative if the baseline transcript is included
in the set of hypotheses since the combination transcript will be at least as good as the best
individual hypothesis:

∆Φ
wBase(H) ≥ 0 , ifwBase ∈ H (3.10)

The function ∆Φ
wBase is valid for any non-empty subset of H. This could be useful in seeing

how different transcriptions complement each other. We can arrange pairwise improvements
in a matrix, henceforth referred to as the oracle combination improvement matrix. As with
the diversity matrix, this matrix may be visualized as heat map. In the context of data-
diverse redundant processing framework, this matrix tells us how transcripts from different
transformations complement other transcripts.

∆Φ
w1
(w1,w1) ∆Φ

w1
(w1,w2) . . . ∆Φ

w1
(w1,wN)

∆Φ
w2
(w2,w1) ∆Φ

w2
(w2,w2) . . . ∆Φ

w2
(w2,wN)

... ... . . . ...

∆Φ
wN

(wN ,w1) ∆Φ
wN

(wN ,w2) . . . ∆Φ
wN

(wN ,wN)


(3.11)

Finally, we note that improvement metric in Equation 3.9 is defined for transcriptions of a
single data point x. It could be extended to multiple data points by taking the difference of
WER values for multiple baseline transcripts and multiple oracle combination transcripts.

3.5.3 Seemingly Counter-intuitive Results

Intuitively, we do not expect a transcript to complement itself (or two identical hypotheses to
be complementary), but it turns out that a lower WER can sometimes be achieved if we follow
Algorithm 1. This is partially because the algorithm removes (i.e., filters) all incorrect words
from the hypothesis before constructing the combination sequence wΦ. The improvement may
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come from the removal of any insertions in the hypothesis. A more interesting case of such
self-improvement is when even the removed insertions do not account for the full improvement.
We attribute this to the counter-intuitive results obtained by the Levenshtein distance (see
Appendix A.1 for details) criterion for aligning sequences. The Levenshtein distance is the
minimum number of insertion, deletion, and substitution operations required to transform one
sequence into another sequence. The Wagner-Fischer algorithm [75] computes this by finding
an alignment that satisfies this requirement. Examining the alignments reveals that they can
be counter-intuitive at times. Consider the example below, where a Levenshtein alignment is
found between a reference and a hypothesis transcript:

Reference the black cat in the hat
Hypothesis cat that was in the hat
Operation SUB SUB SUB OK OK OK

It may seem peculiar that the words "cat" in the reference and hypothesis sequences were
not aligned. This Levenshtein alignment considers the word "cat" to have been "substituted"
by the word "was." However, this is not the intuitive understanding of a substitution. A more
"sensible" alignment may be:

Reference the black cat _ _ in the hat
Hypothesis _ _ cat that was in the hat
Operation DEL DEL OK INS INS OK OK OK

However, we can see that only the first alignment minimizes the number of operations (i.e.,
three substitutions) to transform one sequence into the other. The second alignment requires
four operations (i.e., two deletions and two insertions). This illustrates that minimizing the edit
distance does not necessarily generate "sensible" alignments8. The algorithm may consider
correctly recognized words as "errors" in order to achieve the smallest possible distance. If
the list of hypotheses consists of this single hypothesis i.e.,H = w in the above example, the
oracle combination algorithm Φ(w) returns the following:

Reference the black cat in the hat
Oracle Combination _ _ cat in the hat

Operation DEL DEL OK OK OK OK

Computing the WER for the "combination," we get a value of 2/6 = 0.33̄, which is better
than the baseline WER of 3/6 = 0.5. This improvement will have seemed odd without
examining the alignment. However, it could be argued that this expected behaviour from an

8This also illustrates the difference between the minimum distance criterion (computed with the Wagner-Fischer
algorithm [75]) and the maximum match criterion (computed using the Needleman-Wunsch algorithm [58]) for
aligning sequences. These are sometime confused. Our filtering of incorrect words, however, means that the
combination sequence wΦ will be the same in most cases regardless of which algorithm is used.
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oracle machine. We do claim that such self-improvements are small in practice in the conext
of our work, as will be shown empirically in the experiments section of this chapter.

3.6 Experiments

In this section, we present experimental results on the Development set of CHiME3 dataset
using the Google Cloud Speech to text, IBM Watson Speech to Text, and Microsoft Azure
Speech to Text systems. The configuration and setup is the same as the previous chapter
(further details can be found in Appendix B). In § 3.6.1, we discuss the transformations
considered followed by WER results for each. In § 3.6.2, we present our results quantifying
diversity among transcripts generated by these transformations. In § 3.6.3, we presents results
concerning the complementarity of the transcripts generated by the transformations.

3.6.1 Label-Preserving Transformations

Given that the goals of this work is to show the feasibility of generating diverse outputs using
label-preserving transformations rather than finding the best transformations, our choice of
transformations was somewhat arbitrary. Future work, however, can find transformations
automatically, perhaps using statistical optimization methods. For now, we consider six general
classes of transformations that modify the speech signal in both time and amplitude axes.
Table 3.1 lists 20 transformations considered, their labels, and their parameters.

The Identity transformation refers to using the original unaltered audio. This was done
because many ASR systems (e.g., Google9) do not recommend modifying the audio signals.
Including them also ensures that the oracle combination improvement ∆Φ

wBase will be non-
negative, since the transcriptions of unaltered speech are the baselines against which we
compare the combination of hypotheses.

The Amplitude Normalization transformation refers to scaling the speech signal such
that it fits within the +1/-1 rails. We emphasize that this is uniformly applied to the entire
signal and should not be confused with automatic gain control.

The Additive White Gaussian Noise transformation refers to injecting randomness at
high signal-to-noise ratio (SNR). This was achieved using the awgn function of MATLAB
with signalpower specified as measured to determine the appropriate noise level based on a
specified SNR.

The Speed Modulation (Time Warping) class of transformations refers to changing the
speed of signal by stretching or compressing the audio along the time axis. This was achieved
by the resample function in MATLAB, which also "applies an FIR Antialiasing Lowpass

9https://cloud.google.com/speech-to-text/docs/best-practices

https://cloud.google.com/speech-to-text/docs/best-practices
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Class Label Parameters / Description

Identity None Baseline

Amplitude Normalization Normalized +/- 1

Additive White Gaussian Noise Gaussian SNR = 30 dB

Speed Modulation
(Time Warping)

Slow Speed Multiplier = 10/11
Slower Speed Multiplier = 10/12
Slowest Speed Multiplier = 10/13

Fast Speed Multiplier = 11/10
Faster Speed Multiplier = 12/10
Fastest Speed Multiplier = 13/10

Speed Modulation
(Phase Vocoder)

Slow (Vocoder) Speed Multiplier = 10/11
Slower (Vocoder) Speed Multiplier = 10/12
Slowest (Vocoder) Speed Multiplier = 10/13

Fast (Vocoder) Speed Multiplier = 11/10
Faster (Vocoder) Speed Multiplier = 12/10
Fastest (Vocoder) Speed Multiplier = 13/10

Speech Enhancement
/Denoising Algotihms

Berouti-79 Spectral Subtraction [8]
Boll-79 Spectral Subtraction [9]

Ephraim-Malah-84 MMSE [19]
Ephraim-Malah-85 Log MMSE [20]

Gustafsson-01 Spectral Subtraction [33]

Table 3.1 Details on Instances of the Label-Preserving Transformation Classes

Filter... and compensates for the delay introduced by the filter"10. Particular levels of this
speed modulation transformations were determined by speed multipliers, which we selected to
deviate slightly from the original speed.

The Speed Modulation (Phase Vocoder) class refers to changing the speed of the audio
while maintaining short-term spectral characteristic of the signal. This was done with a phase
vocoder [24]. We used an open-source implementation11. Particular levels of modulation for
this transformation were also determined by speed multipliers, which were selected to be the
same as those of the time warping class of transformations.

The Speech Enhancement/Denoising Algorithms class refers to transformations that
actively seek to enhance the speech signal. We considered some early techniques such as
spectral subtraction [8, 9, 33] and minimum mean square error (MMSE) estimators [19, 20].
We used MATLAB implementations of these by Loizou [53]. Since these algorithms generally
resulted in volume reduction, we normalized the outputs to within +/- 1. We did not expect
these transformations to do very well on their own since they tended to generate anomalous
speech signals.

10https://www.mathworks.com/help/signal/ref/resample.html
11http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/

https://www.mathworks.com/help/signal/ref/resample.html
http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/
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Figure 3.4 lists the WER for all transformations on full Development set of the CHiME3
dataset (across all five categories). We see that transformations with minimal changes to
the signals such as the identity transformation, normalizing, and adding Gaussian noise at
very high SNR do very well across the ASRs. This is consistent with guidelines for these
systems recommending not to to modify the audio. As for both types of speed multipliers,
slowing the audio down seems to do better than speeding the audio up. Speech enhancement
algorithms generally do not do well, but they are inconsistent across systems. For example, the
transformation labeled "Ephraim-Malah-85" does fairly well with the Microsoft system but
does not perform as well with the Google and IBM systems.
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Fig. 3.4 Sorted WER Results for Different Transformations over all Noise Profiles

Figure 3.5 plots sorted WER values broken down by the noise categories. We can see that
most transformations do consistently well for clean (Booth) audio. However, the performance
is not consistent across transformations for noisy audio. Some transformation do much
more poorly than others. We also observe that transformations do not necessarily perform
consistently across noise profiles and different ASRs.
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3.6.2 Diversity among Hypothesis

Figure 3.6 plots the diversity matrices for the clean and noisy categories. The matrices are
computed based on Equation 3.6, but for multiple utterances12. The matrices are interpreted
as heat maps with each cell in a matrix representing the WER (Equation 2.11) between the
row transformation transcripts (considered the references) and the column transformation
transcripts (considered the hypotheses). Brightness is on the scale of [0, 2]. The major diagonal
consists of all zeros since all transcripts fully agree with themselves. We also note that the
matrices are somewhat symmetric along the major diagonal. This is because the cells at (i, j)
and (j, i) within a matrix only differ by a normalization factor. The diversity matrices for clean
data are fairly dark (smaller Cross-WERs). This indicates that we were not able to generate
much diversity with clean speech. The plots for noisy data are much brighter for all ASRs,
indicating that more diversity was generated in these categories. We observe that the Google
and IBM systems are more susceptible to perturbations in the input than the Microsoft system.

12The computation consists of micro-averaging, which is equivalent to treating the multiple utterances as one
long utterance.
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Fig. 3.6 Diversity Matrix Heat Maps for the Development set of the CHiME3 dataset for all
ASRs and Noise Categories
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Figure 3.7 aggregates and reports the Cross-WER values (%) for all five categories. Cross-
WER can be thought of as the average brightness of the heat maps (excluding the diagonal) in
the Figure 3.6. Interpreting Cross-WER as a measure of diversity, we can again see that we
are able to induce diversity in the output of the ASR by applying diversity in the input. We
observe that more diversity can be achieved in noisy categories than clean categories. We also
see that Google and IBM tools are much more susceptible to diversity than Microsoft.
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Fig. 3.7 Cross-WER (%) Values for ASRs and Noise Categories Using all 20 Transformations
on the Development set of the CHiME3 dataset

3.6.3 Complementarity of Hypothesis

Figure 3.8 plots pairwise oracle improvement matrices as heat maps between all transcripts
of all transformations for the different ASRs grouped by noise categories. The matrices are
computed according to Equation 3.11 but for multiple utterances13. Each cell in a matrix
represents the oracle improvement by combining row transformation transcripts and the column
transformation transcripts over the row transformation transcripts. Brightness is on the scale
of [0, 0.5]. The major diagonals represents the seemingly counter-intuitive self-improvements
(See § 3.5.3). We hypothesized that these improvements will be minimal. This is supported by
the dark major diagonals here, indicating that improvements due to removing extra words and
alignment issues are minimal.

13The computation consists of micro-averaging, which is equivalent to treating the multiple utterances as one
long utterance.
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Fig. 3.8 Pairwise Oracle Improvements Between Transformations



3.6 Experiments 35

Figure 3.9 shows the oracle combination improvements over the baseline performance
for the ASRs in all categories using all 20 transformations. We can see that very little ideal
improvements exists in the Booth (clean) category. Greater improvements exist in noisy
categories.
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Fig. 3.9 Oracle Combination Improvements (Ideal Reduction in WER) using all Transformations

Figure 3.9 reported oracle combination improvements (ideal reductions in WER) using all 20
transformations considered in the experiments. However, we do not expect all transformations
to equally contribute to these reductions. We can show how ideal combination WER changes
as we use different subsets of the transformations. If most of the improvements come from just
a few transformations, we can limit our use to those. Figure 3.10 shows incremental oracle
combination WER values as we start with one transformation and add more transformations
based on the ranking of transformations in Figure 3.4. This ordering is motivated by the fact
that we want to use fewer transformations and want individual transformations to have small
error rates on their own. The dashed lines represent the baseline WER values. We see that
oracle combination WER improves as we add more transformations. We also see that the
oracle combination WER saturates after a certain point, and that most improvements can come
from the best few transformations.



3.7 Related Work 36

N
or

m
al

iz
ed

G
au

ss
ia

n
N

or
m

al
iz

ed
 

   
   

N
on

e
   

   
N

on
e

   
   

N
on

e  
   

   
Sl

ow
es

t
   

   
Sl

ow
es

t
   

   
G

au
ss

ia
n  

   
   

G
au

ss
ia

n
   

   
N

or
m

al
iz

ed
   

   
Ep

hr
ai

m
-M

al
ah

-8
5  

   
   

Fa
st

   
   

Ep
hr

ai
m

-M
al

ah
-8

5
   

   
Sl

ow
er  

   
   

Sl
ow

 (V
oc

od
er

)
   

   
Sl

ow
er

   
   

Be
ro

ut
i-7

9  
   

   
Sl

ow
er

 (V
oc

od
er

)
   

   
Fa

st
   

   
Fa

st  
   

   
Sl

ow
es

t (
Vo

co
de

r)
   

   
Be

ro
ut

i-7
9

   
   

Sl
ow

es
t  

   
   

G
us

ta
fs

so
n-

01
   

   
Ep

hr
ai

m
-M

al
ah

-8
4

   
   

Ep
hr

ai
m

-M
al

ah
-8

4  
   

   
Sl

ow
er

   
   

G
us

ta
fs

so
n-

01
   

   
Sl

ow
 

   
   

Ep
hr

ai
m

-M
al

ah
-8

5
   

   
Bo

ll-
79

   
   

G
us

ta
fs

so
n-

01
 

   
   

Sl
ow

   
   

Sl
ow

   
   

Fa
st

er  
   

   
Fa

st
 (V

oc
od

er
)

   
   

Fa
st

er
   

   
Sl

ow
es

t (
Vo

co
de

r)  
   

   
Fa

st
er

   
   

Sl
ow

es
t (

Vo
co

de
r)

   
   

Sl
ow

er
 (V

oc
od

er
)  

   
   

Be
ro

ut
i-7

9
   

   
Sl

ow
er

 (V
oc

od
er

)
   

   
Sl

ow
 (V

oc
od

er
)  

   
   

Fa
st

er
 (V

oc
od

er
)

   
   

Sl
ow

 (V
oc

od
er

)
   

   
Bo

ll-
79

 
   

   
Ep

hr
ai

m
-M

al
ah

-8
4

   
   

Fa
st

 (V
oc

od
er

)
   

   
Fa

st
 (V

oc
od

er
)  

   
   

Bo
ll-

79
   

   
Fa

st
er

 (V
oc

od
er

)
   

   
Fa

st
er

 (V
oc

od
er

)  
   

   
Fa

st
es

t
   

   
Fa

st
es

t (
Vo

co
de

r)
   

   
Fa

st
es

t  
   

   
Fa

st
es

t (
Vo

co
de

r)
   

   
Fa

st
es

t
   

   
Fa

st
es

t (
Vo

co
de

r)  

Added Transformation

0

5

10

15

20

25

30

35

40

O
ra

cl
e 

C
om

bi
na

tio
n 

W
ER

 o
f T

ra
ns

fo
rm

at
io

ns
 o

f T
hi

s 
an

d 
Pr

ev
iu

s 
Tr

an
sf

or
m

at
io

ns
  (

%
)

Google Baseline
IBM Baseline
Microsoft Baseline
Google
IBM
Microsoft

Fig. 3.10 Incremental Oracle Combination WER (%) as we start with a single transformation
and continue adding transformations for the full Development set of the CHiME3 dataset.

3.7 Related Work

In this work, we use the formulation of data diversity as a fault-tolerance mechanism by
Ammann and Knight [1, 46] who make the observation that software systems are often sensitive
to perturbations in the input data. It is possible for software systems to produce different results
on equivalent input data. Their proposed N -copy programming system is a direct analogue of
the concept of N -version programming introduced by Avizienis et. al [4]. Ammann terms
diversity inherent to design of systems as design diversity. Some works [13, 60] have made
explicit use of this formulation of data diversity where an N -copy programming-like system is
employed and referred to as a multi-variant system. A related concept is the notion of ensemble
methods [17] in machine learning. Ensemble methods could be related to both data and design
diversity. Some techniques such as boosting [25] combine weak learners into a strong learner.
Other methods such as bagging (short for bootstrap aggregating) [10] generate diverse systems
by training on different random subsets of the training set.

An early prominent work exploiting diversity in automatic speech recognition is by Fiscus
[23] who showed that lower word error rates can be achieved by combining transcriptions from
different ASR systems. The Recognizer Output Voting Error Reduction (ROVER) algorithm
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developed as a part of this work has been the basis for many hypothesis-level ensemble methods
in automatic speech recognition. Other approaches have considered combination of systems at
the frame level rather than the hypothesis level [11, 77]. Some ensemble-like approaches are
called multi-stream methods [37]. Examples of this include systems where different systems
are trained to work with different frequency bands [70, 61].

A work that very closely resembles our work is by Kumar et. al [47] who show that
diverse hypotheses can be generated by applying different denoising algorithms to the input
speech. Their intuition is similar to that of the work in [49], which claims denoising and speech
enhancement algorithms enhance some parts but deteriorate other parts of speech. Although
our experimental work considers some speech enhancement algorithms as label-preserving
transformations, we make the claim that diversity in speech input in general can be used to
generate diverse outputs. We make use of metrics defined in previous work for quantifying
diversity [2, 76]. Our approach to measuring complementarity of multiple transcripts via an
oracle is similar to Breslin’s [11] notion of IDEAL combination in the context of confusion
network combination (CNC). An even earlier work by Burget [12] introduces the notion of
Dependent Word Error Rate (DWER) as another measure of complementarity.

3.8 Summary and Conclusions

In this chapter, we explored injecting diversity in the input of an ASR system as a means of
inducing diversity in the output. We generated variants of speech by applying label-preserving
transformations such as time-warping and speed modulation. We processed these variants
to generate a list of hypotheses. Our experimental results using multiple commercial ASR
systems on the CHiME3 Development set showed that we were able to generate diverse
hypotheses, and that greater diversity was achieved under noisy conditions. We quantified
overall diversity among hypotheses generated by different transformations with the Cross-WER
metric [76]. We introduced diversity matrices as a visual representation of diversity. We
introduced the notion of an oracle combination of hypotheses and provided an algorithm for
computing it. We used this oracle combination to show complementarity or error-correcting
potential of hypotheses. We visualized complementarity of a pair-wise transformations using
the oracle improvement matrices as heatmaps. Our experimental results showed that hypotheses
generated by redundantly processing speech-to-text on diverse variants of speech have great
potential for reduction in WER in noisy environments.



Chapter 4

Hypothesis Combination

T his chapter investigates the problem of combining multiple hypotheses (i.e., transcrip-
tions of speech). In Chapter 3, we showed that we are able to generate diverse and

complementary hypotheses. In this chapter, our goal is to combine these hypotheses into
a single hypothesis with the aim of reducing errors. We discuss the well-known ROVER
algorithm and explore some factors that may contribute to poor combinations with it. We
propose some (minor) modifications aimed at making ROVER perform better when a simple
majority voting scheme is utilized. The goal of this chapter is not to find an optimal combination
scheme, but rather to demonstrate modest improvements with the data-diverse redundant
processing framework as a noise-robustness method1.

4.1 The Hypothesis Combination Problem

The problem of combining hypotheses from different sources has application in many fields
including automatic speech recognition (ASR) and machine translation (MT). Given that
H = w1,w2, ...,wN is a multiset of N hypotheses corresponding to a speech signal x, the
goal of hypothesis combination is to combine the hypotheses using words from any or all
individual hypotheses to generate a single hypothesis wΨ in a way that word error rate (WER)
will be reduced. This can be thought of as an approximation of the oracle combination Φ(H)
or the "best possible combination" of hypotheses discussed in 3.5.1. Figure 4.1 illustrates this
system. We note that unlike the oracle combination in Figure 3.3, we no longer have access to
the reference transcript wRef.

1Although the "ideal" performance of the oracle combination in Algorithm 1 makes a good case for the use of
data diversity as a noise-robustness approach and treats the actual combination problem as an "externality", the
results may be unconvincing, as they require recourse to reference transcripts for combination.
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Fig. 4.1 Hypothesis Combination of Multiple Hypotheses

As with the oracle combination Φ(H), we can define an improvement metric for an arbitrary
combination scheme Ψ(H):

∆Ψ
wBase(H) = WER(wRef;wBase)−WER(wRef; Ψ(H)) (4.1)

Unlike the oracle improvement ∆Φ
wBase , however, we are not guaranteed a non-negative

improvement ∆Ψ
wBase ≥ 0 if wBase ∈ H. This means that a poor combination scheme could be

more detrimental than helpful. An intuitive approach to combination consists of first finding
areas of agreement and disagreement between the hypotheses and finding schemes for selecting
one of many options in areas of disagreement. The Recognizer Output Voting Error Reduction
(ROVER) algorithm [23] does exactly that and is introduce in § 4.2. We note that ROVER has
been extensively studied by researchers and is the basis of many "hypothesis-level" combination
methods. This chapter considers a ROVER-like approach to hypothesis combination to show
improvements in ASR performance by exploiting data diversity. We review work related to
ROVER in § 4.6.

4.2 ROVER

The Recognizer Output Voting Error Reduction (ROVER) algorithm [23] was devised at NIST
and is a simple approach to combining multiple hypotheses. ROVER is broken down into
multiple stages, as shown in Figure 4.2.

Fig. 4.2 ROVER System Architecture
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Given thatH = w1,w2, ...,wN is a list of hypotheses to be combined, ROVER first applies
multiple sequence alignment (MSA) to the hypotheses to align them to each other. This consists
of strategically inserting "_" tokens (called gaps, nulls, or skips) into the sequences such that
they (i.e„ the sequences) will all have the same length and alike words in different sequences
are aligned. The MSA problem has widely been studied in the field of bioinformatics, where
biological sequences such as DNA are often aligned. We provide a brief formal description
of this problem in Appendix A.2. The aligned sequencesH∗ = w∗

1,w
∗
2, ...,w

∗
N consist of N

word sequences of M words (including gaps) each. H∗ is termed the alignment table in this
thesis since the elements can be arranged in an N ×M grid:

w∗
1 = w∗

11 w∗
12 . . . w∗

1M

w∗
2 = w∗

21 w∗
22 . . . w∗

2M
... ... . . . ...

w∗
N = w∗

N1︸︷︷︸
J1

w∗
N2︸︷︷︸
J2

. . . w∗
NM︸ ︷︷ ︸
JM

(4.2)

ROVER’s original formulation in [23] uses an approximate MSA method using iterative
applications of pairwise alignments. Figure 4.3 shows an example of an alignment table of
multiple hypotheses corresponding to there reference transcript: "the cat in the hat sat on the
mat." Gaps (i.e., "_" tokens) have been inserted in particular places in the sequences such that
alike words from different sequences line up and all sequences have the same length.

the cat and the hat _ on _ mat
the bat in that hat sat in the mat
the cat end _ hat _ on the mat
the cat in the at sat on the mat
the cat in _ at sat on _ mat

Fig. 4.3 Multiple Sequence Alignment (MSA) Table

ROVER generates a Word Transition Network (WTN) from the alignment table H∗ by
representing unique elements of each column in the table (i.e., words in corresponding locations
across hypotheses) and representing them as edges between two nodes in a directed acyclic
graph. Figure 4.4 shows the WTN for the example in the alignment table above. We note that
this graph is a confusion network (defined in § 2.5).

the cat
bat

and

in
end

the

that
_

hat
at

sat
_

on
in

_
the

mat

Fig. 4.4 ROVER Word Transition Network (WTN) or Confusion Network (CN)
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We refer to the multiset of words in the ith column of the alignment table as a correspondence
or confusion list Ji = w∗

1i, w
∗
2i, ..., w

∗
Ni. The set of unique elements in the ith column is the

correspondence or confusion set CROVER
i = Unique(Ji). The generated confusion network

consists of M confusion sets denoted as QROVER = CROVER
1 , CROVER

2 , ..., CROVER
M . The ith

confusion set consists of Ki words: CROVER
i = w1, w2, ...wKi

. ROVER finds a single path
through the confusion network represented by a sequence of words:

wROVER = ROVER(H) = wROVER
1 , wROVER

2 , ..., wROVER
M (4.3)

Each word within a confusion set CROVER
i is scored based on a convex combination2 of the

word’s relative frequency of occurrence and a confidence score. The ROVER result wROVER is
then found by selecting the word with the highest score (breaking ties arbitrarily) from each
confusion set:

wROVER
i = argmax

w∈CROVER
i

[
α

Count(w)
N

+ (1− α)Confidence(w)
]

(4.4)

The term Count(w) is the number of times the word w appears in the ith column of the
alignment table (i.e., in the the confusion list Ji). The term N is the number of hypotheses
to be combined. The term Confidence(w) returns a confidence score for the word within
the confusion set. The confidence score returned by the Confidence(w) function could be
average, maximum, or some other combination of confidences from the ASR for a word w. It
could alternatively have been assigned before the alignment or once the confusion network is
generated. The convex combination parameter α could be tuned on a development set3. Once
the ROVER sequence wROVER is found, we can define the ROVER improvement metric:

∆ROVER
wBase (H) = WER(wRef;wBase)−WER(wRef; ROVER(H)) (4.5)

In this work, we make use of a simple implementation of the ROVER algorithm around
an open-source multiple sequence alignment library in Python4. Our work did not consider
confidences i.e., α = 1, which is referred to as majority voting, as captured by Equation 4.6.
The factor 1/N is dropped since it does not change the maximization.

wROVER
i = argmax

w∈CROVER
i

Count(w) (4.6)

2Linear combination of points where coefficients are non-negative and add up to 1.
3Experiments by Fiscus [23], however, did not show that this tuning could generalize to unseen data.
4https://github.com/Franck-Dernoncourt/ASR_benchmark

https://github.com/Franck-Dernoncourt/ASR_benchmark


4.3 Best and Worst Confusion Network Paths (Oracles) 42

Figure 4.5 shows the confusion network of Figure 4.4 where the paths with the highest
frequencies are emphasized. We note that there are multiple possibilities and one is arbitrarily
selected by Equation 4.6.
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Fig. 4.5 ROVER Majority Voting

4.3 Best and Worst Confusion Network Paths (Oracles)

The sequence wROVER describes a path through the ROVER confusion network represented by
the sequence of confusion sets QROVER. However, due to the simplicity of the "voting" method
in Equation 4.4, we will not always make good choices i.e., we may select a path in the confusion
network that may not be optimal in terms of WER. This has been observed in prior work [38],
who propose that more sophisticated methods than majority voting should be used for finding
paths. In fact, it is a distinct possibility that ROVER(H) will yield a higher WER than the
individual hypotheses to be combined i.e., WER(wRef;wROVER) > WER(wRef;w) ∀w ∈ H.
In this section, we propose computing oracle bounds on WER achieved from the confusion
network QROVER. These bounds will be assessments of the confusion networks themselves
rather than the "voting" scheme of Equation 4.4 or Equation 4.6. We first define an arbitrary
path through the confusion network as a sequence of words (including skip or null elements),
where the ith word is selected from the ith confusion set:

wPath = wPath
1 , wPath

2 , ..., wPath
M , wherewPath

i ∈ CROVER
i (4.7)

Next, we consider the case of when we pick a best performing path from the confusion
networkQROVER. We can define a best path wBest as a path through the confusion network that
minimizes the WER, as expressed by Equation 4.8. We note that this path is not necessarily
unique.

wBest = arg min
wPath

WER(wRef;wPath) (4.8)

Figure 4.6 shows the confusion network of Figure 4.4 with the best path highlighted, which
contains no errors. For this particular example, the best path is unique.

The idea of selecting the best path from a confusion network is similar to the idea of oracle
combination Φ(H) that we introduced in § 3.5.1. However, the confusion network generated by
ROVER is more constrictive because it imposes a more rigid structure on the combination. For
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Fig. 4.6 Best Path in the Confusion Network

example, if we are computing the best path and a confusion set CROVER
i within the confusion

network contains all incorrect words, we are still forced to select a word wi ∈ CROVER
i from

that confusion set. This is in contrast to our definition of Φ(H), where we can simply filter out
incorrect words. In general, we expect the oracle combination to be better than the ROVER
confusion network best path5:

WER(wRef;wBest) ≥WER(wRef;wΦ) (4.9)

We can also define a worst path wWorst as a path through the confusion networkQROVER that
maximizes WER (Equation 4.10). ROVER is guaranteed to be helpful if the WER achieved
by the worst path is less than that of a baseline. However, this is generally hard to achieve in
practice. This worst performing path may also not be unique.

wWorst = arg max
wPath

WER(wRef;wPath) (4.10)

Figure 4.7 shows the confusion network of Figure 4.4 with the worst paths highlighted. We
note that there are many options here and one is arbitrarily picked by Equation 4.10.
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Fig. 4.7 Worst Path in the Confusion Network

Implementation Detail: As with finding the oracle combination wΦ, we need access to the
reference transcript wRef to find wBest and wWorst. A naive implementation of the oracles will
check all possible paths in the graph and keep track of the best and worst performing paths.
However, the number of paths is generally too large and checking every path is infeasible. The
number of paths in a confusion network is the product of the cardinality of all confusion sets,
which increases very rapidly with the number of confusion sets M and confusion sets with
cardinalities greater than unity:

5This is usually the case but does not mathematically follow from our algorithmic definition of Φ. It may be
possible to conceive of cases where the confusion network contains a better sequence than the oracle combination,
This is because the our definition of the oracle combination in Algorithm 1 imposes some structure on the
combination and is not the best possible arrangement of words from the hypotheses.
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Number of Paths(QROVER) =
M∏
i=1

|CROVER
i | (4.11)

We implement the oracles by pruning the confusion networks first. For example, when
computing the best path wBest, we can remove all edges corresponding to incorrect words
except for null arcs and making sure at least a single edge is kept in each confusion set. This
significantly reduces the size of the graph and allows for brute-force checking of fewer paths.
Figure 4.8 illustrates the pruning of the confusion network of Figure 4.4 to optimize finding
the best path. The edges with dotted lines are no longer considered a part of the confusion
network. We can see that we need to check fewer paths than the original network.
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Fig. 4.8 Pruned Confusion Network in Order to Find the Best Path

4.4 Tuning ROVER for Better Performance

As we will see in the experiments in § 4.5, results obtained from ROVER show great potential
in improvement in terms of a best oracle WER. However, they also show great potential in
making things worse in terms of the worst oracle WER. We will also see that a simple majority
voting could not exploit the potential for improvements in many cases. In this section, we
describe tuning ROVER along a number of dimensions with the goal of improving the majority
voting performance.

Pre-Alignment Filter: We observe that too much diversity among the hypotheses inH may
cause a number of issues in hypothesis combination via ROVER. For example, if we use
transcripts from poor-preforming transformations, we will see a lot of diversity, but this will
likely be due to many incorrect words. This will result in poor confusion networks in terms
of best, worst, and majority voting results. We propose not to include certain transcripts if
we believe they will do more harm than good. This can be done by simply dropping certain
transformations that perform poorly in general6.

Improving Alignments: The goal of multiple sequence alignment (MSA) in the context of
ROVER hypothesis combination is to find areas of agreements and disagreements over time
among the hypotheses. We observe that it is possible for standard MSA to align tokens that

6It can also be done dynamically if we can predict which hypotheses will not contribute to the combination.
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did not originally overlap in time. Similarly, it may not align tokens that did overlap in time.
Consider the example below with just two sequences:

to be or not to be
to be _ _ _ too

(a)

to be or
_

not
_

to
_

be
too

(b)

Fig. 4.9 Example of an Alignment Issue

This alignment maximizes the match for sequences if the scoring function penalizes all
inequalities similarly. However, it may be more sensible to align the word "to" with the word
"too" since they are homophones:

to be or not to be
to be _ _ too _

(a)

to be or
_

not
_

to
too

be
_

(b)

Fig. 4.10 Improved Alignment

Although very sophisticated improvements can be applied to MSA, we supply the MSA
function with a custom scoring function that considers certain tokens to be equal for the
alignment purpose. These include words that are homophones (found using the CMU phonetic
dictionary7), words that share a linguistic root (determined by lemmatization and stemming
functions of the Python Natural Language Toolkit8), and commonly mistaken words (deter-
mined by empirical study of the errors). The hope is that this would generate better alignments.

Post-Alignment Filter: Once an MSA table is generated but before a confusion network is
built, we can apply some pruning to remove possibility of problematic sequences. A particular
case of interest to us are null arcs (denoted by "_") in confusion networks. Null arcs are
important components of confusion networks, as they allow for us to skip selecting words from
a confusion set. However, they could significantly reduce performance by outvoting correct
words. Consider the example below with just three hypotheses for the reference sentence: "I
do not like green eggs and ham".

I do not like green eggs and _
_ _ _ _ green eggs _ _
_ _ _ _ _ _ and ham

The confusion network generated by this example allows for a path of all nulls, as shown in
Figure 4.11. The majority voting result only returns the phrase: "green eggs and".

7http://www.speech.cs.cmu.edu/cgi-bin/cmudict
8https://www.nltk.org/

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://www.nltk.org/
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  I  
_

 do 
_

not 
_

like
_

green
_

eggs
_

and 
_

ham 
_

Fig. 4.11 Example of a Confusion Network where an All-Null Path is Possible

We make the observation that the number of confusion sets M in a confusion network is
roughly the same as the number of words actually spoken9. This observation has been made
before [62]. With this, we claim that the best path (represented by a sequence) through a
confusion network should have roughly M non-null elements i.e., only very few or no skips
will exist in the best path. We claim that ROVER can perform better if some null arcs are
pruned before voting. We propose not to add null arcs that in the alignment table are leading
or trailing. Some potential improvement will inevitably be sacrificed, but we assert this will
make the worst case and majority voting results much better overall. For the example above,
the generated confusion network after pruning leading and trailing nulls is shown in Figure
4.12, which no longer requires voting:

  I  
_

 do 
_

not 
_

like
_

green
_

eggs
_

and 
_

ham 
_

Fig. 4.12 Example of a ROVER Confusion Network after Post-Alignment Filtering

4.5 Experiments

In this section, we present our experimental results for combining hypotheses using ROVER
and our modifications (excluding pre-alignment filter) to ROVER (referred to as ROVER+ for
convenience). We performed experiments on the Development set of the CHiME3 dataset
using the Google Cloud Speech to Text, IBM Watson Speech to Text, and Microsoft Azure
Speech to Text. The configuration and setup is the same as the previous chapters (Appendix B).

4.5.1 Incremental Combination of Hypotheses

To find which transformations to drop (i.e., to define the pre-alignment filter), we considered
how the combination WER changed as we started with a single transformation and added more
transformations. The order of transformations we selected was based on the ascending order
of WERs, as reported in Figure 3.4. This was motivated by the fact that we want to use fewer
transformations and want individual transformations to have small error rates on their own.

Figures 4.13 shows our results for the Google, IBM, and Microsoft systems on the entire
Development set of the CHiME3 dataset. The Baseline (dotted blue line) curves refer to the

9Or at least, the number of words actually spoken is not much smaller than the number of confusion sets M
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baseline performance in terms of WER of the corresponding ASR on the entire Development
set of the CHIME3 dataset before we consider any label-preserving transformations. We see that
the Microsoft system has the best overall performance. The Google system narrowly follows.
The IBM system has the worst overall performance. The Oracle Combination curves indicate
incremental oracle combination of the transformations. Each dot on this curve represents WER
of the oracle combination (Algorithm 1) of all transcripts of the transformations up to that
point. This is a repetition of the numbers reported in Figure 3.10. We expect these curves to
be monotonically decreasing, as adding more transformations can only make WER better.

Figure 4.13 also reports ROVER and ROVER+ best paths, worst paths, random paths10, and
majority voting paths. We make some general observation across all ASRs. We observe that as
more transformations are added, WER for ROVER and ROVER+ best paths decrease and WER
for ROVER and ROVER+ worst paths increase. This is because we are adding both correct and
incorrect edges to confusion networks. This supports our claim that hypothesis combination
has potential to both improve but also to deteriorate performance. The best path curves for
both ROVER and ROVER+ follow the oracle combination curve but are higher generally. This
is because these WERs are found by picking paths from a confusion network which imposes a
rigid structure on the possible combination of hypotheses. Similar to the oracle combination
curves, we do see that the ROVER and ROVER+ best path curves stagnates at some point.
They actually get slightly worse when adding more transformation at some points. We attribute
this to the fact that as more transformations are added, multiple sequence alignment (MSA)
becomes a harder problem which could lead to sub-optimal confusion networks. The oracle
combination curve does not suffer from this issue since it does not depend on alignment of
hypotheses to each other but rather aligns the hypotheses to the reference transcript i.e., it can
only get better by adding more transformations. We note that ROVER+ in general has a better
worst path and slightly worse best path compared to ROVER. This can be attributed to our
pruning of the confusion networks, which inevitably removes some optimal paths. In terms of
majority voting, we observe that it is a fairly poor method for finding optimal paths through the
confusion networks. In fact, it actually makes the performance worse if too many hypotheses
are combined. This can also be attributed to poor confusion networks (e.g., votes not getting
aggregated due to misalignments or too many incorrect words). We do, however, observe
that as hypothesized, ROVER+ performs better in terms of majority voting than ROVER. We
highlight the best possible non-oracle combination with a red square. These are reductions
of 1.29% with 4 transformations for the Google system, 1.73% with 6 transformations for
the IBM system, and 3.07% with 9 transformations for the Microsoft system. These are all
achieved by ROVER+.

10By selecting edges with equal probability from each confusion set. Empirically, they tend to be fairly
stable for large data and can be intuitive (admittedly informal) "average" performance assessments of confusion
networks.
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Fig. 4.13 Combination WER (%) for ROVER and ROVER+ on the full (across all categories)
CHiME3 Development Dataset. The horizontal axis represents a transformation added to be
combined with previous transformations. The vertical axis represents a combined WER of all
transformations up to that point in the inverse image axis.
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4.5.2 Results with Five Transformations

We observed diminishing returns with the incremental combinations in Figure 4.13. In
particular, we saw that most of the potential in improvements (in terms of oracle combination
or ROVER or ROVER+ best oracles) could come from the best few transformations. We
also found that our modifications in § 4.4 to ROVER made majority voting better, and that
the performance of the majority voting either stagnated or became worse after some point.
In this section, we report our results broken down by categories on the development set of
the CHiME3 dataset. We selected the top five transformations for each ASR (i.e., this is the
pre-alignment filter). This was chosen as a trade-off between potential in improvements, actual
improvements with majority voting, the cost of using fewer transformations, and the need to
compare between ASRs (which requires N to be the same between them). Figure 4.14 reports
WER (%) values achieved using five transformations for all five categories of the development
subset of the CHiME3 dataset and the ASRs.
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Fig. 4.14 ROVER+ WER (%) Broken Down by Categories of the CHiME3 Development
Dataset using the Best Five Transformations and Majority Voting

Figure 4.15 plots the improvements using ROVER+. We can see that the clean performance
has not experienced much change. However, we gain improvements in noisy categories for all
systems. The best improvement is in the Bus category for the Microsoft system at 10.52%.
This is a little inconsistent with the other improvements, which are generally lower. Upon
investigating, we found that many of the Microsoft transcriptions for the baseline were empty
for this category. This indicates that the effect of noise on these system may have sudden jumps
e.g., the system may not return anything at all under some noisy conditions. We speculate
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that this is likely an intentional feature of these ASR systems where they choose not return
anything at all, if they consider the input too noisy. This is further evidence that ASR systems
are sensitive to perturbations in the input when the input is noisy, and that data diversity can
exploit it.
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Fig. 4.15 ROVER+ Reductions in WER (%) using Five Transformations and Majority Voting
on the CHiME3 Development Dataset

To summarize our results, we can aggregate all the noisy categories together and compute
an overall WER. Table 4.1 summarizes our results on the CHiME3 Development set. We
see that modest improvements of 1.42%, 1.99 %, and 3.5% are found by the ROVER+ for the
Google, IBM, and Microsoft systems respectively. We also show that even greater gains of
6.45%, 6.06%, and 5.8% are possible. For consistency, we only report the ROVER+ numbers.
Best possible improvements with ROVER are even greater, since the confusion networks are
not pruned.

Google IBM Microsoft

Baseline 16.16 33.05 13.37
ROVER+ Best Oracle 9.71 26.99 7.57
ROVER+ Worst Oracle 24.48 39.59 14.86
ROVER+ Majority Voting 14.75 31.06 9.87

ROVER+ Best Oracle Improvement 6.45 6.06 5.8
ROVER+ Majority Voting Improvement 1.42 1.99 3.5

Table 4.1 WER (%) and Improvements (%) on Full Noisy Subset (Bus + Café + Pedestrian +
Street) of the CHiME3 Development Dataset using the Best Five Transformations for Each
ASR

To achieve WERs that are closer to the above lower bounds, however, we need more
sophisticated mechanisms (some of them briefly discussed next in § 4.6) than simple majority
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voting for finding paths from the confusion networkQROVER. We will leave this as future work.
We note that although some improvements are achieved, we are still very far from solving the
problem of noise-robustness. Even the best possible improvements for noisy date do not yield
word error rates comparable to word rates achieved for clean data.

4.6 Related Work

The Recognizer Output Voting Error Reduction [23] introduced in this chapter is the basis
for many hypothesis combination algorithms. Many generalizations and improvements have
been made to it over the years. Mangu et. al [54] formalize the notion of confusion networks
and present algorithms for generating them from lattices. Evermann and Woodland [22]
introduce a generalization of ROVER known as the confusion network combination (CNC)
and demonstrated small improvements over ROVER. Schwenk et. al [66] study some of the
peculiarities of the ROVER algorithm such as the impact of order of pairwise alignments in an
approximate multiple sequence alignment algorithm on the combined word error rate. They also
consider the case of breaking ties during voting, normalization of outputs, and incorporating
language modelling in the selection process. Stolke et. al introduces the N-best ROVER [68]
as another generalization of ROVER and a special case of CNC. Another generalization of
ROVER is called e-ROVER [48, 28] and was shown to provide slight improvements. Xue
et. al [78] very interestingly modifies the concept of confusion networks for when a single
word is split into two words during recognition. Sankar et. al [65] propose a Bayesian
decision-theoretic approach known as BAYCOM that shows significant improvements over
standard voting schemes. Zhang et. al [79] proposes a neural network-based insertion detection
and word scoring scheme for selecting hypotheses from the ROVER confusion networks. They
also make the observation that frequency of occurrence and confidence scores are not enough
for optimal selection of hypotheses. Hillard et. al [38] present iROVER that uses a classifier to
make better decisions than voting schemes. Audkhasi et. al [3] presents a theoretical basis for
ASR diversity and WER achieved by ROVER. Hoffmeister et. al [41] introduces the minimum
fWER combination scheme by replacing the multiple sequence alignment part of ROVER with
a time frame-wise word error cost. Hoffmeister et. al [42] extends the idea of iROVER [38] to
confusion network combination [22]. We wish to incorporate some of these techniques in the
data-diverse redundant processing framework for better improvements in the future.

4.7 Summary and Conclusions

In this chapter, we explored the problem of combining multiple hypotheses into a single
hypothesis. We considered the well-known ROVER algorithm and proposed some minor
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modifications to improve its results. We further proposed to find oracle (having knowledge
of the reference) paths from confusion networks to show the range of possible WERs. Our
experiment on diverse transcriptions of the Development set of the CHiME3 dataset show
that modest actual improvements and potential for even greater improvements in terms WER
are possible.



Chapter 5

Evaluation

I n Chapters 3 and 4, we developed techniques, gained insights, and tuned parameters to
show actual and potential improvements on the Development set of the CHiME3 dataset

with the proposed data-diverse redundant processing framework (Figure 1.2). We showed that
it is possible to generate diverse and complementary transcripts by applying diversity in the
inputs. We showed that modest improvements can be found using a modified version of the
ROVER algorithm with a simple majority voting method. We also showed empirical bounds
on WER from generated confusion networks promising even greater gains. In this Chapter,
we evaluate the system developed in previous chapters on the unseen Evaluation set of the
CHiME3 dataset.

5.1 Experiments

In this section, we report our experimental results on the Evaluation subset of the CHiME3
dataset with the Google Cloud Speech to Text, IBM Watson Speech to Text, and Microsoft
Azure Speech to text systems. The configuration and setup is the same as the previous chapters.
Further details on the configuration and the dataset can be found in Appendix B). In § 5.1.1, we
establish baseline WER values for the different categories of the dataset. In § 5.1.2, we apply
data-diverse redundant processing using the configuration found in Chapter 4 i.e., modified
ROVER (labeled ROVER+ here) with top five transformations for each ASR.

5.1.1 Baseline Performance

In this section, we establish baseline performances for the Google, IBM, and Microsoft systems
in terms of WER. The bar plot in Figure 5.1 reports WER (%) values achieved for all five
categories of the Evaluation subset of the CHiME3 dataset and the ASRs.
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Fig. 5.1 Comparison of ASR Transcriptions in Terms of WER on the Evaluation Set

The results are similar to the results we found for the development set, as reported in Figure
2.6. All ASRs do well on clean speech and poorly on noisy speech. The degradation is the
worst with the IBM system. The best results are found with the Microsoft system. The results
are generally worse than the results achieved for the Development set of the CHiME3 dataset,
as reported in Figure 2.6. We attribute this mismatch to the fact that the Development and
Evaluation sets of the CHiME3 dataset do not have speakers in common.

5.1.2 Data-Diverse Redundant Processing Results

To apply data-diverse redundant processing framework for the Evaluation set, we used the
same setup as that for the Development set in Chapter 4. Figure 5.2 reports WER (%) values
achieved using five transformations for all five categories of the Evaluation subset of the
CHiME3 dataset and the ASR, Here, we make similar observations as the ones we made the
Development set. We are able to achieve modest improvements with a simple majority voting
scheme. However, this does not seem to exploit the full potential for improvements.
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Fig. 5.2 ROVER+ WER (%) Broken Down by Categories of the CHiME3 Evaluation Dataset
using the Best Five Transformations and Majority Voting

Figure 5.3 plots the improvements (reductions in WER) using ROVER+. Just like the
results for the Development set in the previous chapter (Figure 4.15), we can see that we have
not gained any improvement on clean data. We were, however, able to achieve improvements
in noisy conditions.
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Fig. 5.3 ROVER+ Reductions in WER (%) using Five Transformations and Majority Voting
on the CHiME3 Evaluation Dataset

Table 5.1 summarizes our results by aggregating all of the noisy categories and computes
an overall WER. As before, we can see that modest improvements of 2.31 %, 3.88%, and 3.5%
are achieved with ROVER+ for the Google, IBM, and Microsoft systems respectively. We also
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found best possible improvements of 8.6%, 8.36%, and 6.51%. These results are better but
consistent with the results found for the Development dataset.

Google IBM Microsoft

Baseline 29.45 55.12 18.10
ROVER+ Best 20.85 46.76 11.59
ROVER+ Worst 39.14 58.90 22.71
ROVER+ Majority Voting 27.13 51.24 14.60

ROVER+ Best Oracle Improvement 8.6 8.36 6.51
ROVER+ Majority Voting Improvement 2.31 3.88 3.5

Table 5.1 WER (%) and Improvements (%) on Full Noisy Subset (Bus + Café + Pedestrian +
Street) of the CHiME3 Evaluation Dataset using the Best Five Transformations for Each ASR

5.2 Summary and Conclusions

In this chapter, we presented our results on the Evaluation set of the CHiME3 dataset using
the data-diverse redundant processing technique developed in earlier chapters. Our results
show that our framework retains the baseline performance for clean data and shows modest but
consistent improvement in noisy conditions. As before, our results also indicate that a simple
voting mechanism is insufficient in exploiting the full potential to reduce WER.



Chapter 6

Discussion

I n this thesis, we investigated the problem of generating complementary transcripts from
a single ASR system using data diversity and combining them for reduced WER in noisy

environments. In this concluding chapter, we will review the thesis and suggest possible future
directions in research.

6.1 Review of Work and Conclusions

In Chapter 2, we introduced a black box model of automatic speech recognition, preliminaries,
and the problem of noise-robustness in automatic speech recognition. We performed experi-
ments on clean and noisy speech from the Development set of the CHiME3 dataset with the
following leading cloud speech-to-text systems: Google Cloud Speech to Text, IBM Watson
Speech to Text, and Microsoft Azure Speech to Text. Our results showed that all ASR systems
show some degradation in performance on noisy speech in terms of WER. This degradation,
however, was not consistent across ASR systems, with some systems showing more inherent
robustness than others. The degradation was also not consistent across categories for different
ASR systems indicating that some systems are more robust to some types of noise. We defined
noise-robustness as the objective of reducing WER for noisy speech such that it is closer to the
WER achieved for clean speech.

In Chapter 3, we introduced data diversity as fault tolerance mechanism, as formulated by
Ammann and Knight [1]. We asserted that ASR performance deterioration can be attributed to
a number of factors including the mismatch between a trained model and the testing data. We
asserted that the ASR systems are more susceptible to perturbations in the input under noisy
conditions due to the uncertainty they introduce to the system. We introduced the data-diverse
redundant processing framework for generating diverse and complementary hypotheses and
combining them. We introduced the Cross-WER metric from the work in [76] to measure
diversity among hypotheses. We introduced the notion of an oracle combination of hypotheses
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to show complementarity or error-correcting potential among hypotheses. Our experiments
on the Development set of the CHiME3 dataset showed that we are indeed able to generate
diverse and complementary hypotheses. Our results showed a consistent divergence in terms
of Cross-WER between clean and noisy speech. We also showed that the results tend to be
somewhat complementary and that an "ideal" or oracle combination of them could lead to
significant decrease in WER for noisy speech and modest improvements for clean speech. We
also showed that only a few transformations could account for most of the improvements.

In Chapter 4, we introduced the problem of combining multiple hypotheses. We introduced
the ROVER algorithm [23] for combining multiple hypotheses. We defined the notion of
best and worst paths in a confusion network as means of computing empirical bounds on
WER. We discussed that these bounds are assessments of the confusion networks themselves
rather than the ROVER scoring method based on frequency of occurrence and a confidence
score. We discussed some modifications to ROVER that we expected will improve majority
voting performance. Our experimental results on the Development set of the CHiME3
dataset showed that we were able to gain modest improvements with five transformations.
The empirical bounds on the confusion networks promised even greater gains, which we
asserted could be achieved by more sophisticated "voting" schemes such as the use of language
models. The same experiments were repeated for the Evaluation set of the CHiME3 dataset
in Chapter 5, which gave similar results as the Development set. Given that the results showed
modest improvements in terms of WER and did not approach WER achieved for clean data for
all systems, we conclude that data-diverse redundant processing is a viable orthogonal method
for noise-robustness but its efficacy is limited by the underlying ASR and combination method.
Finally, we note that the use of this approach is only encouraged when the cost of repeatedly
performing speech-to-text conversion is not a concern.

6.2 Future Work

Based on the results obtained in this work, future work is suggested as follows:

• Given our black box treatment of ASR systems, we did not do any theoretical analysis of
diversity. In future, we hope to explore theoretical basis of data diversity on common
ASR architectures and components such as HMM-DNN acoustic models.

• In this work, the choice of transformations (e.g., time warping or amplitude normalization)
was somewhat arbitrary. We hope to better optimize this in the future. Applying methods
such as reinforcement learning [45, 71], genetic algorithms, and generative networks
[29] for sequence-to-sequence transformations may be one avenue of exploration.

• The results for the diversity matrix (introduced in § 3.6.2) confirms our claim that ASR
systems are more sensitive to perturbations in the presence of noise. We hypothesize that
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these matrices could be used for performance monitoring and quality estimation [59] in
automatic speech recognition i.e., we can determine if an ASR system is doing poorly
without recourse to reference transcripts or confidences from the systems by simply
seeing how much transcripts generated by label-preserving transformations disagree.

• In this work, we did not do any cost analysis of redundantly processing speech by ASR
systems. In the real world, any additional processing will cost CPU cycles, memory, and
dollars. Future work should consider such things. We concede that our approach has
limited applicability and narrow use case. In practice, the cost of redundantly executing a
particular ASR many times may be more than using another noise-robustness technique
that provides better improvements.

• In this work, we did not look beyond WER for characterizing noise-robustness. It may
be useful to empirically study the errors that were corrected.

• In this work, we did not make use of any metadata from ASR tools such as confidences,
timing information, or even alternative transcriptions (N -best lists and confusion
networks). These information could be invaluable in generating hypothesis spaces and
finding consensus among transcriptions.

• During development, we observed that many errors in ASR are not errors where a single
word is misinterpreted as another word. It is very common for a single word to be
recognized as multiple words or multiple words to be recognized as a single word. The
ROVER algorithm and confusion networks in general are unequipped to handle such
cases. Figure 6.1a shows a how a confusion network is unable to model the fact that the
word "horizon" is confused with the phrase "the rise in."

horizon

the
rise in

(a)

horizon

the rise in

(b)

Fig. 6.1 Modified Confusion Network

The work in [78] introduces modified confusion network topology that allows for words
and phrases to compete. Their work modifies the algorithm by Mangu, Brill, and Stolcke
[54] that converts a word lattice into a confusion network. A more recent work by Jeon et.
al [44] also introduces such a topology, which they term heterogeneous word confusion
network. We propose that ROVER can similarly be modified to generate such modified
confusion networks. Figure 6.1b shows how such a modified confusion network can
model the problem of phrase confusions.

• In this work, we explored the notions of best and worst path oracles in the context of
confusion networks. These oracles can be useful in bounding the possible WER achieved
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by a confusion network. However, better metrics may be needed to characterize the
many other possible WERs that can be achieved from a confusion network. Inspired by
Monte Carlo methods, we wish to build methods around the notion of random paths
through confusion networks to describe distribution of possible WERs.

• We were only able to achieve a fraction of the potential improvements in WER with
majority voting. This observation has been made before, and a number of more powerful
approaches have been explored [38, 65, 66]. In the future, we hope to explore and apply
the many techniques from prior work using language modelling and machine learning to
ROVER1. We could also look into re-scoring confusion networks with recent advances
in natural language processing (NLP) such as masked language modelling (MLM) using
the Bidirectional Encoder Representation from Transformers (BERT) [16].

1ROVER itself could possibly be replaced by an end-to-end hypothesis combination network.
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Appendix A

Additional Preliminaries

A.1 The Levenshtein Distance

The (minimum) edit distance, commonly known as the Levenshtein distance, is the minimum
number of insertions, deletions, and substitutions required to transform one sequence into
another another sequence. It was proposed by Vladimir Levenshtein [50] in the context of
binary codes. T. K. Vintsyuk [73] also proposed such a distance metric in the context of speech
recognition. It was also proposed by Stanislaw Ulam [72] in 1972 in the context of biological
sequences. The Levenshtein distance between two sequences a and b with sizes |a| and |b| is:

Levenshteina,b(|a|, |b|) (A.1)

where the function Levenshteina,b(i, j) is defined as recursively as [21]:

Levenshteina,b(i, j) =



max(i, j) if min(i, j) = 0,

min


Levenshteina,b(i− 1, j) + 1

Levenshteina,b(i, j − 1) + 1

Levenshteina,b(i− 1, j − 1) + 1(a[i] ̸= b[j]))

(A.2)

where the term 1 is the indicator function. The recursive implementation of Equation A.2 is
not computationally optimal 1. Typically, a dynamic programming (DP) solution is employed
instead. The algorithm has a history of multiple invention but is often credited to Wagner and
Fischer [75].

1The precise time complexity is not obvious.
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A.2 Multiple Sequence Alignment

This section provides a brief formal introduction of multiple sequence alignment (MSA). Given
a set of N sequences S:

S =



s1 = s11, s12, ..., s1l1

s2 = s21, s22, ..., s2l2
...

sN = sN1, sN2, ..., sNlN

(A.3)

A multiple sequence alignment of S is obtained by inserting gaps (denoted by "_") into the
original sequences such that the resulting sequences all have the same length and no column
consists of gaps only:

S∗ =



s∗1 = s∗11, s
∗
12, ..., s

∗
1L

s∗2 = s∗21, s
∗
22, ..., s

∗
2L

...

s∗N = s∗N1, s
∗
N2, ..., s

∗
NL

(A.4)

We see that L is at least the length of the largest sequence:

L ≥ max(l1, l2, ...lN) (A.5)

Although an MSA is any arbitrary transformation that satisfies the above requirements, our
goal typically is to find an optimal solution based on a scoring function. Different scoring
functions can be defined. A discussion of these functions is beyond the scope of this thesis
but can be found in [43]. Optimal MSA could be implemented by extending the pair-wise
Needleman-Wunsch alignment algorithm [58] to hyper-dimensional space. This algorithm
has a time complexity of O(mn) where m and n are the lengths of the two sequences being
aligned. The computational complexity of the extended algorithm in hyper-dimensional
space is O(

∏N
i=1 li), where li is the length of the ith sequence to be aligned. This calls for a

cumbersome implementation and an unacceptable time complexity. Most applications use an
approximate solution. Many approximate algorithms are freely and commercially available.
We used a simple open-source method2.

2https://github.com/Franck-Dernoncourt/ASR_benchmark

https://github.com/Franck-Dernoncourt/ASR_benchmark


Appendix B

ASR Systems and Dataset

B.1 ASR Systems

We used multiple state-of-the-art leading cloud ASR systems for our development and
evaluation. Below, we provide a short description of these systems and the recognition
configurations used in this thesis.

Google Cloud Speech-to-Text

The Google Cloud Speech-to-Text1 tool is a leader in cloud-based speech-to-text powered by
Google’s machine learning technologies. Google provides a REST API and client libraries for
different programming languages. We used the Python client library and obtained transcriptions
using the synchronous mode of the API. We used the default en-US model and only collected
the most confident transcriptions. This setup is consistent for the entirety of this thesis.

IBM Watson Speech-to-Text

The IBM Watson Speech to Text2 is also a cloud solution that uses deep-learning algorithms to
apply knowledge about grammar, language structure, and audio/voice signal composition to
create customizable speech recognition. Our recognition setup was similar to our setup with the
Google Cloud Speech-to-text. We used the Python Client library and obtained transcriptions
using the synchronous recognition mode. We used the default en-US_BroadbandModelmode
and collected the one-best transcriptions. This setup is consistent for the entirety of this thesis.

1https://cloud.google.com/speech-to-text
2https://www.ibm.com/cloud/watson-speech-to-text

https://cloud.google.com/speech-to-text
https://www.ibm.com/cloud/watson-speech-to-text
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Microsoft Azure Speech-to-Text

The Microsoft Azure Speech to Text3 is also leading cloud automatic speech recognition tool
that enables real-time transcription of audio streams into text. It has replaced Microsoft’s Bing
Speech tool. We used the Python Speech Software Development Kit (SDK) and the obtained
transcriptions using the recognize_once mode of recognition. This setup is consistent for
the entirety of this thesis.

B.2 The CHiME3 Dataset

In this work, we make use of the CHiME3 dataset [7]. The 3rd CHiME Speech Separation
and Recognition Challenge is designed around the Wall Street Journal (WSJ) [26] corpus
and contains speech recorded in both noise-free and challenging noisy environments using a
6-channel tablet-based microphone array. In this thesis, we make use of the Development
and Evaluation subsets of the dataset. We selected Channel 1 of the recordings.

Subset Category Data Points Speakers

Development
Isolated

Channel 1

Booth 410 2 Male, 2 Female
Bus (Real) 410 2 Male, 2 Female
Café (Real) 410 2 Male, 2 Female

Pedestrian (Real) 410 2 Male, 2 Female
Street (Real) 410 2 Male, 2 Female

Table B.1 Summary of Development Subset of CHiME3 Dataset

Subset Category Data Points Speakers

Evaluation
Isolated

Channel 1

Booth 330 2 Male, 2 Female
Bus (Real) 330 2 Male, 2 Female
Café (Real) 330 2 Male, 2 Female

Pedestrian (Real) 330 2 Male, 2 Female
Street (Real) 330 2 Male, 2 Female

Table B.2 Summary of Evaluation Subset of CHiME3 Dataset

3https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/

https://azure.microsoft.com/en-us/services/cognitive-services/speech-to-text/
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