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Abstract

This research develops an adaptive actuator failure compensation framework of robotic
systems with parameter uncertainties in addition to actuator failures. The research
shows a complete design methodology for developing an actuator failure compensa-
tion scheme for robotic systems. The adaptive control design uses an integration of
multiple individual failure compensators, which utilizes existing control techniques
such as the backstepping control design. With the direct adaptation based on the
Lyapunov technique to handle uncertainties in the system, the adaptive actuator
failure compensation framework guarantees desired closed-loop stability and asymp-
totic output tracking, despite actuator failures whose patterns, times and values are
all unknown. Simulation results are presented to verify the desired adaptive actua-
tor failure compensation control performances for multiple types of robotic systems
from the theoretical cooperative manipulator benchmark system to a more realistic

application such as the landing of a helicopter with robotic legs.
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Chapter 1

Introduction

With the exponential increase of the world population, the problem of limited
resources becomes much more severe as time goes on. In order to help solve this
problem to increase the supply to match the increasing demand, more advanced tech-
nologies are needed. Robotic is one of the most important technology that could
help reduce the workload of human and increase productivity in various industries.
Additionally, robotic system could be used to perform dangerous tasks such as search
and rescue operations, space explorations, and underwater missions. Thus, the de-
velopment of the robotic technology is one of the most important topics that needed
our attention. One of the most important problems that prevents the advancement
in robotic field is the safety issue. Since in most cases the robotic system needs to
operate autonomously, any fault in the robotic system could disrupt or compromise
the entire operation. In some case, a failure in the robotic system could also result
in the loss of human life, who operate or work in the proximity of the system. To
solve the aforementioned problem, the development of an adaptive actuator failure
compensation scheme that could enable the robotic system to operate even when
failure occurs is needed. Our research has been focused on the development of a new
general theoretical framework for adaptive actuator failure compensation of robotic
systems. The control framework is developed for designing a controller for robotic

systems with possible actuator failures in addition to parameter uncertainties. The
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control framework guarantees the desired stability and tracking performance of the

robotic systems.

1.1 Literature Review

Robotic systems play a critical role in various industries as well as in many critical
projects such as search and rescue operations, space explorations, and underwater
missions. In those applications, robotic systems have to operate in extreme environ-
ments [1, 2], which increases the chance of actuator failures in the system. Since
the robotic systems are used for critical tasks [3, 4], failures may cause severe con-
sequences. In order to increase the reliability of the system, we need to develop a
controller that can function when failures occur. There are many studies that develop
a controller to improve the robustness of a robotic system [5, 6, 7, 8, 9]. However,
most of them rely on actuator failure knowledge, which often difficult to obtain in
real time. Thus, a complete control design framework for adaptive actuator failure
compensation schemes, which can operate without the knowledge of actuator failure,
is a significant research topic. In this research, we look into two types of robotic
system, which are the cooperative manipulator robotic system and the parallel struc-
ture robotic system. One of the most important characteristic of robot manipulators,
which make the manipulator difficult to control, is that the dynamic of the manipu-
lators is highly nonlinear. Although it is possible to design a controller to achieve a
good performance if we known a precise model of the system [15], the controller is not
capable of handling any changes and uncertainties in the system. In general a robot
manipulator often interacts with environments such as grabbing or carrying different
objects with unknown dimensions, orientations or gripping points. Hence, although

it is possible to obtain the parameters in the system with sufficient accuracy, it is
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not practical to use parameter identification to obtain system parameters for every

circumstance.

To deal with the uncertainty, the problem of designing adaptive control laws for
rigid-robot manipulators that ensure asymptotic trajectory tracking has interested re-
searchers for many years and many adaptive control algorithms have been proposed
[10, 11, 12, 13]. The basic idea of adaptive control is to change the values of gains
or parameters in the control law according to some online algorithm corresponding
to the changes and uncertainties in the system. The adaptive controller can learn
an appropriate set of controller parameters during the course of its operation. A key
point of the adaptive control algorithm is to make the tracking error converges re-
gardless of whether the trajectory is persistently exciting or not [18]. That is, we do
not need parameter convergence for task convergence. Moreover, the overall stability
and convergence of the combined on-line control process can also be systematically
guaranteed. This control approach is especially useful for robotic manipulators, which
usually perform repetitive tasks. The tracking performance of the adaptive controller
can improve with time through the adaptation for each successive operation [26]. Over
the past two decades, the concept of using cooperative manipulators has attracted
the attention of many researchers. However, most literature focuses on the studies
of kinematics and dynamics of the system [22, 23]. Researches on control strategies
arc relatively few especially regarding to actuator failure compensation problem. In
the literature, there are two types of basic control strategies for cooperative manipu-
lators: kinematic control strategies and dynamic control strategies. In the kinematic
control strategies, the nonlinear dynamics are not considered to avoid the complex
computation, thus, the controller can be designed easily. However, these types of con-
trollers can not always produce satisfactory performance, and there is no guarantee

of stability especially at higher speed [24]. On the other hand, the dynamic control
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strategies, which are considered in this study use a full dynamic model of the system.
In this way, the nonlinear dynamics of the landing mechanism can be compensated
and higher performance can be achieved [25, 26, 27]. Finally, this control approach
allows for actuator failure compensation of the landing mechanism, which is the main
focus of this study.

Actuator failure compensation is a well-known problem in automatic control.
There are studies that focus on actuator failure compensation, such as the neural
network control, sliding-mode control, and an adaptive actuator failure compensa-
tion [28, 29]. However, most studies only focus on actuator degradation which only
consider small changes in the actuator outputs, or rely on the detection and isola-
tion scheme of actuator failures in the system which is relatively slow and its used
is limited [30, 31, 32, 33]. In order to efficiently compensate actuator failures in the
helicopter landing process, an actuator failure compensation control scheme that is

reliable and capable of immediate failure adaptation is needed [34, 35].

1.2 State of the Art

Actuator failure compensation is one of the most important problems in the robotic
field. There are many studies that are trying to solve this problem. Before we
propose our adaptive actuator failure compensation scheme for robotic system, we
first explain the existing control technique that relates to our study. In this section, we
explore some of the most recent studies regarding the fault tolerant control technique
for robotic systems as well as the state-of-the-art of the adaptive actuator failure
compensation outside the robotic field. The literature review of the state-of-the-art
will help us understand the advantages and disadvantages of our proposed control

scheme as well as explain the contribution of our study.
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1.2.1 Fault Tolerant Control for Robotic Systems

In this subsection, we explore the existing technique relates to fault tolerant control
and actuator failure compensation for robotic system. From the recent literature,
the existing techniques use for actuator failure compensation of a robotic system is
the fault detection, isolation, and recovery (FDIR), which is classified as a subfield of
control engineering. The existing algorithm focus on monitoring a system, identifying
when an actuator failure has occurred, and obtaining the characteristics of the failures
if possible. There are two major approaches which are: 1) a direct pattern recognition
of sensor readings that indicate a fault and 2) an analysis of the discrepancy between
the sensor readings and expected values, based on from some system model. In order
to detect actuator failures in the system, we check if the discrepancy of the signal
goes above a certain threshold. After the problem is detected, a fault isolation and
reconfiguration is used based on the type and the location of the failure, this technique
is called fault detection and isolation (FDI) techniques. The development in the fault
detection, isolation, and recovery of the robotic system is still in a very early state
as we can see from the recent studies. Over the past few years (2014-2016), there are
several papers that try to address multiple issues in the fault detection and isolation

(FDI) problem for robotic systems as follows:

In [36], the paper addresses the fault detection and isolation (FDI) problem for
robotic assembly of electrical connectors. The paper considers different switched
linear models with known switching sequences, bounded parameters, and external
disturbances. Given a current input/output data, the feasible parameter set of fault-
free switched linear model is obtained by sequentially calculating an optimal ellipsoid.
If the pair of data is not consistent with any possible model, a fault is then detected.

The isolation of fault is realized by checking the consistency between the data sequence
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and each possible actuator failure model one by one. In this case if a fault is detected,

the robot then stops to prevent potential damage.

In [37], the paper presents a conceptual control approach that aims to integrate
the fault tolerance technique into the design of a robot real-time control architecture.
In this case, the fault detection is designed based on dedicated software components
scanning faulty behaviors. Diagnosis is based on the residual principle and signature
analysis to identify faulty software or hardware components and faulty behaviors.
Finally, the overview of the recovery mechanism is discussed in different contexts and
operational functions of the robotic systems.

In [38], this paper is concerned with the distributed fault estimation for a class of
nonlinear networked systems, where the T-S fuzzy model is utilized to approximate
the nonlinear plant and the whole fault estimation task is operated by a wireless
sensor network. The controller is designed based on the Lyapunov stability theory
and the robust control approach, a sufficient condition is obtained, such that the
estimation error system is asymptotically stable with a prescribed H.. performance
level.

In [39], this paper presents an adaptive-based fault detection and isolation scheme
for a general class of robot manipulators, where all parameters in the system are
known. The proposed algorithm consists of a nonlinear adaptive fault detection es-
timator and a bank of fault isolation estimators to determine the types of faults,
while the fault parameter function may be time-varying. The method is applied to a
two-link robot manipulator and the simulation results are presented and discussed.

In [40], computational intelligence techniques are being investigated as an exten-
sion of the traditional fault diagnosis methods. This paper presents a scheme for fault
detection and isolation (FDI) via artificial neural networks and fuzzy logic. It deals

with sensors and actuator fault of a three links Scara robot. A fault is detected and
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isolated whenever the residual exceeds its corresponding threshold. The paper only
considers a partial actuator failure, which we can directly adjust the control input to

compensate for the failures.

In the patent [41], a fault tolerant controller is developed for robotic systems.
The robotic arm supervisor may detect faults affecting an arm and also perform fault
reaction activities. The system supervisor handles the fault as either a system or
local fault depending upon its class. For system faults, a fault notification is sent to
the arm processors of non-failed arms so that the non-failed arms are placed in the
safe state. For local faults, a degraded operation option is provided and if the fault

is classified as recoverable, a recovery option is provided.

As we can see from the recent literature related to actuator failure in robotic sys-
tem, many studies are still in a very early state and there are many problems that still
remain unsolved. The FDI approach may be slow because the error from the actuator
failures need to reach certain thresholds (to prevent fault positive) before the isolate
scheme can be deployed. Moreover, the isolation mechanism also prevents reactiva-
tion of the actuator even when the failures have been resolved. Another important
issue with the fault detection, isolation, and recovery technique is the fact that in
many cases, it may be impossible to specify the characteristic of actuator failures.
This problem can be seen from the system identification technique in adaptive con-
trol. In order to guarantee the exact value of parameters, the system needs to satisfy
the persistent excitation condition, which cannot be guaranteed in the operation of

robotic systems.

In order to improve the performance of robotic systems with possible actuator
failure, in this study, we proposed adaptive actuator failure compensation scheme for
robotic system to solve the actuator failure problem, where actuator failure values,

failure times and failure patterns are unknown.
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1.2.2 Adaptive Actuator Failure Compensation Techniques

Adaptive control is widely used for actuator failure compensation for its capability
of accommodating system parameters and uncertainties. Adaptive control of system
with actuator failures is aimed at compensating for uncertain failures with adaptive
tuning of controller parameters based on the system error signal in order to achieve
desired control performance. In this subsection, we explore recent studies of adaptive
actuator failure compensation across multiple applications. The literature review
would help us understand the existing algorithm related to adaptive actuator failure
compensation, which would be helpful for developing the adaptive control scheme for

robotic systems.

In [43], an adaptive output feedback control scheme is proposed for a class of
nonlinear systems with possible actuator failures. By developing a high-gain observer
with one dynamic gain, the closed-loop stability and arbitrarily small tracking error
can be guaranteed. Furthermore, by estimating the upper bound of the unknown
time-varying parameters caused by the actuator failures, together with an initializa-
tion technique, it is proved that the L; tracking performance is achievable, which is
fundamentally different from the commonly accepted concept that with actuator fail-
ures, it is impossible to improve the L, tracking performance by using initialization

technique.

In [44], this paper investigates the problem of adaptive fault-tolerant control for a
class of linear systems with time-varying actuator faults. An active fault compensa-
tion control law was designed in two steps. Firstly, the time-varying fault parameters
were estimated based on a novel adaptive observer. Then, based on online estima-
tions of the fault parameters, an adaptive fault-tolerant controller was constructed

to compensate for the loss of actuator effectiveness and to eliminate the effect of



CHAPTER 1. INTRODUCTION 9

fault estimation error. The asymptotic stability and an adaptive H; performance
of a closed-loop system can be guaranteed, even in the case of actuator faults and

disturbances.

In [45], An optimal adaptive compensation control scheme is proposed for a class
of multi-input multi-output affine nonlinear systems with actuator failures. The pa-
per considers stuck actuators and partial effectiveness failures, an adaptive dynamic
programming method is adopted by using neural networks to approximate the cost
function. The proposed optimal adaptive compensation law can guarantee that the
closed-loop system with actuator failures is stable and that the given reference signals

are effectively tracked.

In [46], this paper solves the adaptive output rejection problem of unmatched
input disturbance, and the adaptive compensation problem of uncertain failures whose
pattern, values and time are all unknown, for nonminimum phase systems, two related

open problems to which existing adaptive control designs are not applicable.

In [47], This paper develops a multivariable multiple-model adaptive control scheme
for adaptive state feedback state tracking control of systems whose plant-model
matching conditions are uncertain and parameters are unknown. The paper uses
multiple reference model systems to generate multiple parameter estimations and
feedback control signals from which a most suitable control input is selected. The
proposed control design could guarantee both stability and asymptotic tracking per-

formance.

In [48], This paper develops a new adaptive multiple-model control scheme for a
class of nonlinear multiple-input multiple-output dynamic systems with known system
parameters to compensate uncertain actuator failures using an error transformation.
Such an adaptive control scheme ensures desired system stability and asymptotic

tracking properties, despite the presence of failure uncertainties.



1.3. RESEARCH QUESTION AND BASIC APPROACH 10

From the literature review of the recent works in adaptive actuator failure com-
pensation techniques, we can see that the adaptive control could offer a better per-
formance in solving the actuator failure problem in robotic system. However, the
existing algorithm is either based on a linear system, or require that all parameters
in the system are known.

In this thesis, we develop an adaptive actuator failure compensation scheme for
robotic system with actuator failures, where actuator failure values, failure times
and failure patterns are unknown. In our study, we consider the nonlinear dynamic
model of the robotic systems (dynamic control approach), where some parameters in
the system may be unknown. The adaptive actuator failure compensation scheme
can guarantee desirable closed-loop stability and asymptotic tracking of the robotic

system.

1.3 Research Question and Basic Approach

The main objective of this study is to develop an adaptive actuator failure com-
pensation scheme to solve actuator failure problem, where actuator failure values,
failure times and failure patterns are unknown. The proposed algorithm also consid-
ers standard problems in control and robotic field such as the system constraint and

parameter uncertainty, in addition to actuator failure problem.

Basic approach

In this research, the development of each control design is divided into four steps
as follows. In step 1, we begin our research by formulating the problem with the
discussion of control objective and the dynamic model of a robotic system. In step

2, we design a nominal controller for the system in a nominal situation in which the
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knowledge of actuator failure is known.

Robot
Manipulators

l Actuator Failure
i e () I
qa(t) Ji WO | Qo (1)

e(t) \\\‘ Switching

Scheme

. / |

1

! Controller N i
1

__________ e

Figure 1.1: Block diagram for nominal design

From the block diagram, each nominal controller in the controller bank is devel-
oped based on conventional approach such as the backstepping control or the Slotine
and Li’s control design with known actuator failure values and the switching scheme
is developed from the known actuator failure pattern. However, It is generally very
difficult to obtain the knowledge of actuator failure in robotic systems. In step 3, the
adaptive control scheme is developed based on the nominal controller structure and

parameterization for failure compensation.

Unknown Actuator failure

Qd v
Adaptive | Tc Robot do
Controller Manipulators

?

Figure 1.2: Block diagram for adaptive failure compensation design

In the adaptive failure compensation design, an adaptive integration of multiple
individual failure compensators is used to combine the controllers. Since the actuator

failure pattern is unknown, the switching algorithm is integrated into each adaptive
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controller. The estimators of unknown parameters and actuator failure pattern is

constructed and updated using adaptive control technique using the Lyapunov the-

ory. In step 4, we study the simulation of the designed controller with associated

benchmark system to confirm its effectiveness.

1.4 Thesis Outline

The thesis is organized as follows:

In Chapter 2, we introduce the fundamental background in robotic and adaptive

control that is needed for the development of the proposed algorithm.

In Chapter 3, we formulate the overall problem as well as the objective of the

research.

In Chapter 4, we begin our study by developing an adaptive actuator failure
compensation scheme based on a benchmark cooperative robotic manipulator

system with known system parameter.

In Chapter 5, we expand our knowledge of the adaptive actuator failure com-
pensation scheme onto a generalized model of cooperative robotic systems by
developing a design procedure, which can be used with various cooperative ma-

nipulator robotic systems.

In Chapter 6, we design a controller for a robotic system with parameter un-

certainty, which can better reflect a more practical type of robotic system.

In Chapter 7, we develop an adaptive controller for a robotic system with par-

allel manipulator structure. In this case the problem of closed loop dynamic
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constraint is considered in addition to actuator failure and parameter uncer-

tainty.

e In Chapter 8, the complete framework of the adaptive actuator failure compen-
sation control for robotic system is developed and applied to the landing of a

helicopter with robotic legs.

e In Chapter 9, we summarize the result of the study and discuss some possible

future works related to this research topic.



1.4. THESIS OUTLINE

14




Chapter 2
Technical Background

In this chapter, we introduce some technical backgrounds in mathematics, robotic and
adaptive control that is needed for the development of the adaptive actuator failure
compensation framework. Some related mathematical background and preliminaries
in adaptive control will be presented for the development of the control framework in
the later chapters. In Section 2.1, the basic concept and definition related to robotic
system is introduced.. In Section 2.2, the Euler Lagrange’s equation is introduced and
examples of the derivation of the dynamic equations for robotic systems are given.
Then the dynamic model of cooperative and parallel manipulator are reviewed in
Section 2.3. In Section 2.4, we introduce the Lyapunov stability theory, which is the
fundamental concept used in our control designs. In Section 2.5 introduces some basic

control approaches used in robotic systems.

2.1 Robot Manipulators

A robot manipulator or a mechanical arm is one of the most important components
in a robotic system. In our study, we consider the robotic systems that use multiple
robotic manipulator to perform certain tasks. In this section, we introduce the basic
components of robot manipulators, which serve as an important background to the

later parts of the thesis.

15
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Links and Joints: Robot manipulators are composed of multiple links connected
by joints into an open kinematic chain. There are two types of joints considered
in this study, which are revolute and prismatic joints. A prismatic joint, such as
hydraulic and pneumatic cylinder actuators allows a linear motion between two links.
A revolute joint, such as a motor allows relative rotation between two links. In this
study, we denote the joint variables as g;, which represents the relative displacement

between two links 1;, [; 1.

Degrees of Freedom: The number of joints determines the degrees-of-freedom of
the manipulator (This does not necessarily represent the degrees-of-freedom of the
system, which depends on the configuration of each manipulator). Typically, a robotic
system needs six degrees-of-freedom to control the position and orientation of the end-
effector of a manipulator. A manipulator that has more than six links is referred to

as a kinematically redundant manipulator.

Workspace: The workspace of a robot manipulator is the total area that the end-
effector of a robot can reach. The workspace is depended on the structure of the
robot manipulator and the mechanical constraint on each joint. For example, a typ-
ical servo motor may limit the movement of the joint to be less than 360 degrees.
The workspace of robotic system can be divided into a reachable work space and a
dextrous workspace. The reachable workspace is the entire set of point reachable by
the system, and the dextrous workspace is those points where the manipulator can
rcach with arbitrary orientation. When an actuator failure occurs, the workspace of
the robot is also reduced based on the characteristics of the failure. In this study,
we only consider the reachable workspace of the system after the consideration of

actuator failures.

Robot Configurations: By using different types of joints with different arrange-
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ments, the robot can be assembled into many configurations such as articulated con-
figuration, spherical configuration, cylindrical configuration, etc. In this study, we
consider the robotic system with articulated configuration and the Cartesian config-
uration. The articulated configuration or a revolute manipulator is the robot manip-
ulator with multiple revolute joints such as an elbow type manipulator, which is one
of the most common manipulator seen in literature. The Cartesian configuration is
the robot manipulator with multiple prismatic joints. This type of configuration has
the simplest dynamic of all configurations. The Cartesian configuration is used in
our study as a benchmark system for testing the initial design of the actuator failure

compensation framework.

2.2 FEuler-Lagrange Equation

The Euler-Lagrange equation is one of the most important equations in developing a
dynamic model of a robotic system. Because a robotic system is a mechanical system,
it must follow the principle of conservation of energy. This means that if there is no
external energy applied to the system, the summation of potential and kinetic energy
of the system will always remain the same, regardless of how the system is changed.
On the other hand, if we applied any external energy to the system, the change in
potential and kinetic energy of the system will be equal to the amount of energy we
put into the system.

One of the problems in deriving the dynamic model of a robot manipulator is the
constraint force in the manipulator. Since each link in the robotic system is connected
together, it creates holonomic constraints in the system. It is very difficult to measure
or calculate the constraint force between each link, thus, the principle of virtual work

is used in order to derive the dynamic model of the system.
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Definition of holonomic constraint: A constraint on k coordinate 7, rs, ..., 7%

is called holonomic constraint if it is an equality constraint of the form
gi(T’l,...,T’k) :O, i:1,2,...,l, (21)

where [ is the number of constraint equations of the system.

For a robot manipulator with n links, the constraint equations can be written in
terms of n generalized coordinates ¢1, ¢o, ..., ¢,,, where ¢, ..., ¢, are all independent. In
the case, each coordinate r; is a function of the generalized coordinate 7;(q1, ..., qn), 7 =

1, ..k

Consider the system in equilibrium, the net force on all particles in the system
must be zero. This implies that the work done by each set of virtual displacement is
Zero as

k

> Flori =0, (2.2)

i=1
where F; is the total force (the sum of external forces and the constraint forces)
on each particle 7, and dr; is the virtual displacement of each particle. The virtual
displacements are any set of infinitesimal displacement that satisfies the constraint

equation (2.1).

Because the robotic system are not necessarily in an equilibrium state, we general-
ize the above equation using the D’Alembert’s principle. The principle states that we
can put any system into an equilibrium state by introducing the negative derivative

of the momentum of the particle. With this, we replace F; in (2.1) with F; — p as
k k
> Flori =Y plor;=0. (2.3)

i=1 i=1

By considering the fact that the total work done by the constraint force is zero, we
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can rewrite (2.3) as .
zn: U;6q; — Y plor; =0, (2.4)
j=1 i=1
where
U=y (2.5)
with f; represent the external force done to each particle.

Define the kinetic energy of the system K as

Zm vl v;, (2.6)

where the velocity v; = 7;. The momentum term in (2.3) can be written in the

generalized coordinates as
d oK 0K
T ;. 2.7
> i~ > (i ~ o 27

By substituting (2.7) into (2.3), we have

o —U;)dq; = 0. (2.8)

Z( d oK 0K
— " dt 9q; 8qj

Because the coordinates ¢, ..., g, are independent, we have

d oK 0K
U, = 2.
dt a‘b an 1 =0 (29)

for j = 1,...,n. For a robot manipulator, the generalized force ¥; is the sum of the

actuator torque 7; and a potential field. Thus, ¥; can be written as

ov

v 2.10
dq; (2.10)

\I/j:Tj—
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where V' is the potential energy of the system. The general form of the Euler-Lagrange

equation can be written as
d oL L
Eg_@_g_% - (2.11)
where L = K — V, K is the kinetic energy, V is the potential energy of the system,
g, is the generalized coordinates and 7; is the actuator torque.

The dynamic model of a robotic system is usually written in the following form

D(q)i+ C(q,4)¢+ g(q) = T, (2.12)

where ¢ € R™ is the output of the system representing the angle of each joint, D(q) €
R™™ is the inertia matrix of the manipulators, C(q,q) € R™™ is the Coriolis and
centrifugal term, g(q) € R" is the gravity term and the input is 7 = [r, ..., 7,]7 with

7; as the torque of each actuator.

2.2.1 Example: Single-link Robotic Manipulator System

In order to further our understanding of the Fuler-Lagrange equation in deriving a
dynamic model of a robotic system, we first consider a single-link robotic manipulator
system as follows.

Let consider ¢, g, as the angles of a link and a motor in the system. J,,, J; as the
moment of inertia of the motor and the link accordingly. We can see that the system
will have its kinetic energy equation as follows

K = % mln, + %qu'? (2.13)

Now we consider the potential energy of the system. This potential energy will be

depend on the position of the robot. Since we let ¢, be the angle of the system, we
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will need to consider the gear ratio in order to get the real angle of the link ¢;. For k

represents the gear ratio of the robot arm, the potential energy is
Om
V = Mgl(1 —cos?) (2.14)

With the potential energy and the kinetic energy of the system we can now get the
total energy of the system. The Lagrangian L is as

o ]_ Jl .2 Qm
L= 2(Jm + kz)qm + Mgl(1 — cos . ) (2.15)

As a result, we have the dynamic of a single-link robot manipulator system as

J, Mgl m
Jm + Elq'm + _g(Sin q_) =T

i (2.16)

2.2.2 Example: Two-link Planar Elbow Robotic Manipulator

In order to gain a better understanding of the dynamic model of robotic system,
we expand our knowledge of Euler-Lagrange equation to the two-link planar elbow
robotic manipulator. The two-link planar elbow robotic manipulator is one of the
standard robotic system that can represent a class of robot manipulator.

The first step to obtain dynamics of the robot manipulator is to find the Euler-
Lagrange equation for the system. In order to do so, we will need to get kinetic
and potential energy of the system. We first define the parameters of the system as
follows. Lets ¢; will be the angle of each joint, mass and length of each link will be
represented as M;, and [; accordingly. The distance from a joint to the center of mass

of that joint will be [.;. The kinetic energy is as

Vey = ciQ)i = ]-)2 (217)
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Figure 2.1: Two-link planar elbow robotic manipulator.

where J,; represents the Jacobian matrix of the system

—lgasing; O
Ja=1|lacosql 0] - (2.18)
0 0

For the second link, we have the Jacobian matrix as

—lising —1e2sin (g1 + q2) —le2sin(q1 + q2)
Jeo = | licosqr +1c2cos (q1 + q2)  leacos(q1 + q2) | - (2.19)

0 0

For potential energy we have the summation of each link in the system

V=Vi+ Vo= (Mla+ Mls)gsing + Ml.agsin (g1 + o). (2.20)

By substituting the kinetic and potential energy into the Euler Lagrange’s equation,

we can obtain the dynamic model of the system in the form The dynamic of the
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two-link planar system can be written in the form

D(q)i+ Clg,)q+ g(q) =, (2.21)
where the inertia matrix D(q) is as

L +1, I,
D(q) = MyJ} Je + MaJ%Jeo+ (2.22)
I I

The matrix C(q, q) is

(—Mallegsings)gi  (—Malileosings)(q1 + go)
C = . (2.23)
(le1lc2 sin QQ)Ch 0

The gravitational term g(t) is

(maler + maler) cosqu
g(q) = . (2.24)
Maleo cos q + o

In this study, we focus on robotic system with redundancy such as cooperative manip-
ulator parallel manipulators. Such system is a combination of multiple manipulators
discussed in this section. With the dynamic model of robot manipulator, we can de-
rive the dynamic model of the cooperative manipulator parallel manipulator systems
to be used as the model for the proposed adaptive actuator failure compensation

design.
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2.3 Cooperative and Parallel Manipulators

In this study, we mainly consider two types of robotic systems with redundancy. In
this research, the cooperative manipulator robotic system is referred to many manip-
ulators that is perform a single task together. For this type of system, we assume
that the problem from the closed loop kinematic constraint is negligible because the
base position of each manipulation or the gripping position of each manipulator can
be moved, which enable some flexibility in the system structure. On the other hand,
the parallel manipulator robotic system is considered a signal system that contains
multiple manipulator in a parallel structure. In this case the manipulator and well
as the gripping position of a manipulator is mounted at a specific location in the
system. Thus, one will need to consider the system constrain for the development of

an adaptive failure compensation for the parallel structure robotic system.

The general dynamic model of robotic systems considered in this study can be
divided into two parts, which are the dynamic of each manipulator and the dynamic
of the mutual object. In order to develop a controller for such systems, we need
to obtain the combined dynamic of the system. In this section, we will develop a
general dynamic model of the system with n degrees of freedom and m actuators.

The combined dynamic model of the robotic systems can be described as follows.
D(x,)%, + Co(o, T0)To + Ge(x,) = E(x,)T, (2.25)

where z, € R" is the output of the system representing the position and orientation
of the mutual object, D.(z,) € R™" is the combined inertia matrix of the object
and manipulators, which is assumed to be a bounded and positive definite matrix,

C.(zy,,) € R™™ is the Coriolis and centrifugal term, G.(x,) € R" is the gravity
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term, E = [Fy, Fy, ..., E,] € R™™ is a transformation matrix from the joint space
to the task space, E; € R" and 7 = |1, ..., Tm]T with 7; as the torque of each actu-
ator. Since the cooperative manipulator system need to carry various objects, some

parameters in D,, C. and G. are often unknown.

Although the parameters of the system are unknown, it is common to assume that
the system satisfies the following structural properties:
a) D, is a symmetric and positive definite matrix.

b) D, — 2C, is a skew symmetric matrix.
These properties will be used for proving the negative definite property of matrices,
which is important in the process of finding suitable Lyapunov function to ensure the

performance of the system.

2.4 Lyapunov Stability Theory

The adaptive actuator failure compensation framework developed in this study utilizes
the Lyapunov stability theory to ensure closed loop stability and boundedness of
signals in the system. The Lyapunov stability theory is widely used in the analysis
and design of various types of systems. The concept of stability in the sense of
Lyapunov will be introduced in this section, the stability concept and the Barbalat’s
Lemma is also discussed.

Stability is one of the most important concepts in control theory. The concept of
stability is related to the ability to remain in a state regardless of small disturbance.
In order to introduce the definition of the stability, we consider a nonlinear dynamic

of a non-autonomous system described by the differential equation as

i = f(x,1), (2.26)
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where x € R™ and f : R" x Ry — R". The definition of equilibrium point and its

stability is defined as follows.

Definition 2.1: A state of the system z, is considered to be an equilibrium point if

f(ze,t) =0 for all t > 0.

Definition 2.2: The equilibrium point z. is said to be stable if for every e > 0 and
any to > 0, there exist a d(e,t) > 0 such that ||zo|| < § implies that ||x(¢; zo,t0)]] <

5, YVt > to

Definition 2.3: The equilibrium point x. is said to be asymptotically stable if it
is stable and for every ty > 0, there exists a function p(ty) > 0 such that ||zo|| < p

implies that limy;_, ||2(¢; 2o, to)|| = 0.

Lyapunov Stability Theorem: Given an autonomous system & = f(z), then the
equilibrium point is stable if there exists a scalar function V(x) : R® — R, such that
- V(zx) =0 if and only if z = 0 and V' (z) > 0 if and only if = # 0.

- V(z) <0 for all value x # 0

The equilibrium point is asymptotically stable if the Lyapunov function satisfies

V(z) < 0 for all value = # 0.

Barbalet’s Lemma: Let f(t) be a differentiable function, the Barbalet’s lemma
states that if im_, f(¢) = k < oo and if f(¢) is uniformly continuous, then lim, . f(t) =
0. In the context of the Lyapunov stability analysis: If V(x, ) is lower bounded, V<0
and V is bounded, then we can conclude that V — 0 as t — oo. In this study, we

often use the Lyapunov theory to prove that the tracking error e goes to zero asymp-
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totically. In this case, we need e € Lo, N Ly and ¢ is bounded, so that e — 0 as

t — o0.

2.5 Control of Robotic Systems

In this section, we discuss control schemes in robotic system used in this study, which
are the Slotine and Li’ control design and the backstepping control design. The control
schemes discuss in this section is designed for robotic system without actuator failure.
The control schemes introduced in this section will be used as nominal control for

each controller bank in the adaptive actuator failure compensation framework.

2.5.1 Slotine and Li’s Control Design

Consider the dynamic model of the robotic system

De(q)G + Celq,4)q + Ge(q) = E(x,)T. (2.27)

If we can completely generate E(x,)T, it is possible to design the baseline controller

using the Slotine and Li’s control algorithm as follows.

Design for the known parameter case. If all parameters in the system are
known, we can design a controller using the Slotine and Li’s approach [18]. This
controller is designed for the system without actuator failure. It will be used as a
baseline for developing the adaptive actuator failure compensation scheme.

In this case, we first define an error vector s = é + Age, where e = x, — x4, T4 is
the desired trajectory, v = 45— Age being an intermediate vector signal and let Ay be

any n X n constant matrix whose eigenvalues have positive real parts. The definition
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of this error vector means that the convergence of s also implies the convergence of

the tracking error.

The cooperative manipulator model can be rewritten with the error vector as

D.s+C.s=FEr—D.20—Cv—G.. (2.28)

Since we assume that all parameters are known and the rank of E(z,) is larger than

n, we can always choose a controller such that

ET(t) = Do+ Cov+ G, — Kgs(t), (2.29)

where the gain matrix K is chosen to be a positive definite matrix. If we can precisely

generate ET(t), the closed-loop system becomes

D.é + Cos + Kgs = 0. (2.30)

From closed loop system (2.30) and the definition of s, we can guarantee that the
system output x, tracks the desired trajectory x4 asymptotically. In this case, the

controller needs complete knowledge of parameters in the system.

Design for the unknown parameters case. Since robotic systems often in-
teract with the environment, some parameters in D,., . and G, in often unknown.
To design a controller for the system with parameter uncertainties, we estimate the

unknown matrices with 157 C , G respectively. With this equation (2.29) becomes

Er(t) = Do+ Cv + G — Kys(2). (2.31)
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We can linearly parameterize the system by rewriting the right side of equation
(2.31) as a known regressor matrix Y (x,, &,, v, 0) multiplied by an estimate 0 of an

unknown parameter vector, the controller becomes
Er=D0+Cv+G— Kys =Y — Kys, (2.32)
where the regressor matrix Y (z,, &,, v, 0) is such that
Do+ Cow+ G.=Y(x,, &,v,0)0" (2.33)

with 6* being the unknown parameter vector in the system that is estimated by g,

The closed-loop system becomes
De$ + Cos + Kgs = Y0, (2.34)

where 6 = 6 — 0* is the estimation error of the unknown parameters in the system.

We can choose the adaptive law for 0 as
6= -T'Y7s. (2.35)

With the chosen adaptive law, we can prove that s, $ is uniformly bounded and s € L2,
so limy_,o $(¢) = 0. From the definition of s, this also implies that the tracking error

converges asymptotically.

2.5.2 Backstepping Nonlinear Control Design

In order to control a nonlinear system, we need to construct a nonlinear controller

for the system. In this section, we consider using a backstepping design to develop a
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controller for a second-order nonlinear system. Consider the nonlinear system in the

state space form as

&y = f(x1)ze, T3 = g(w1, 22) + ult) (2.36)

Yy =, (237)

where x1, x5 is the state of the system, y is the output and u(t) is the input of the
system. The objective is to design a state feedback control signal u(t) such that all
closed-loop signal is bounded and the system output tracks a given reference output
signal y,,(t). For a second order system, the backstepping design can be done in two

steps as follows.

Step 1: Define z; = x1 — y,n, 20 = 9 — (3, where 3 is a design function to be

determined. From the state equation of the system, we can write 2; as

2= a1 = Pm = f(@1)22 = Gm = f(21)(22 = B) = m- (2.38)

In order to choose the designed function (3 to stabilize the system, we consider a

Lyapunov candidate function and its derivative as

1
Vi=3za (2.39)

Vi = z1(f(21) 2 + f(21)B — Um)- (2.40)

With the design function

B = fla1) (=121 + Gm), (2.41)
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where ¢; is a positive constant. The derivative of the Lyapunov function becomes

Vi = —c12l 2 4 flxy) 21 2. (2.42)

We see that the term —c;z{ 1 is always negative.

Step 2: Since z, # 0, we continue using backstepping design by considering
gy =i — = g(1, ) + u(t) = 6, (2.43)
and the second Lyapunov function
L p

The time-derivative of V5 is
Vo =Vi+ 282 = —cizles 4+ 21 (f(x1) 2 + g(an, 22) + u(t) — B) (2.45)
As a result, the control signal u(t) is chosen as
u(t) = —g(x1, 7o) — caz0 — f(21)21 + B (2.46)
With the chosen u(t), equation (2.44) becomes

Vy = —c127 21 — o2 2. (2.47)

With a positive constant ¢, we have V5 is negative definite. With this design, the
nonlinear can guarantee the closed-loop signal boundedness and asymptotic output

tracking of the system: lim; . (y(t) — ym(t)) = 0.
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Remark 2.1: The adaptive actuator failure compensation framework developed in
this study enable the conventional control design such as the Slotine and Li’s design or
the backstepping control design to be able to compensate for actuator failures in the
system. In this study, we will use the backstepping control approach for the system
with known parameters and the Slotine and Li design for the system with unknown
parameters.

From the derivation using the backstepping technique, we need to design the
adaptive actuator failure compensation to ensure D' F(z)7 = —D; 1 (—C.— G,)xo—
Cozo — 21 + ﬁ If all parameters of the system are known, we can directly design
actuator failure compensation scheme with this algorithm. The cancellation of the
nonlinear terms in the backstepping control design could improve the system transient
response of the adaptive actuator failure compensation scheme. The disadvantage of
this approach is that the controller structure needs the inverse of the inertia matrix
D!, which may be difficult to obtain, especially for a robotic system with parameter

uncertainties.



Chapter 3
Problem Formulation

The overall control problem for robotic system can be described as follows, provided
a desired trajectory of the end-effector, the dynamic model of the system, finds a
control law that produce force or torque signals to each actuator in the system, so
that the system operate according to the desired performance. The control design
for a robot manipulator can be divided into two steps. First, a robotic end-effector
travel path is first specified. From the movement trajectory of the end-effector and
also via resorting to the inverse kinematics, the motions of each joint can therefore
be determined so as to create the desired trajectory for the end-effector. The next
step is to figure out the amount of torque that one has to apply to joints so that the
joints are able to achieve the desired motion. The torque can be calculated based on
the dynamic model of the system (Kinematic control approach).

Controlling the robotic manipulator to conduct in a designated fashion is a difficult
task because the dynamic of a robotic system is extremely nonlinear. Regarding
robotic systems, the parameter related to the joints and payload may be unknown or
may change during the operation. For the purpose of having a higher repeatability
and accuracy in the robotic systems performance, we need to consider the dynamic
characteristic of the system. Traditional control techniques treat a robotic mechanism
as uncoupled linear subsystems, which can achieve adequate performances at low

speeds. However, for applications that require high-speed actions, they are no longer

33
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effective. In order to solve this problem, the use of advanced control algorithm such
as adaptive control is needed (Dynamic control approach).

Adaptive control is able to adjust parameters in the system to match unknown
parameters, or parameters with uncertainties. With respect to the adaptive control,
the controller does not have to rely on the exact data of parameters in the system,
and if there are some changes such as the change of parameter values or actuator
failure, the controller is able to handle it through an adaptation algorithm.

The objective of this research is to develop an adaptive actuator failure compensa-
tion scheme to ensure closed-loop stability and asymptotic output tracking of robotic
systems with parameter uncertainties in the presence of uncertain actuator failures.
In this chapter, we discuss the fundamental problems that are needed to be solved as
well as the step by step approach of this research for developing the desired actuator

failure compensation framework.

3.1 Actuator Failures in Robotic Systems

Actuator failures in control systems may cause severe system performance deteriora-
tion and can even lead to system instability. In order to improve the reliability and
safety of the system, the changes from such failure must be accommodated. In this
research, the adaptive control framework needs to be able to compensate for actuator
failures in the system without exact knowledge of the actuator failure values, failure

time, or the failure pattern.

3.1.1 Actuator Failure Uncertainties

In general, a robotic system needs to operate in an unknown or even hazard environ-

ment. Under such extreme conditions, a robotic system is often disturbed and parts
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of the system can be easily damaged. The problem such as the damage directly to
actuator such as overheat, structural damage and electrical problem, or the indirect
damage such as communication problems and software malfunctions are considered
an actuator failure in the system. From such problem, we can see that the actuator
failures can be uncertain, that is, it is not known when, in what manner, or how
many actuators fail at any point during the system operation. The actuator failures
occur with various characteristic, such as some unknown inputs may be stuck at some
fixed values at unknown time instants, or the actuator could completely fail and the
control input becomes zero. In any case, unlike normal disturbances to the system,
actuator failures cause additional and large system uncertainties. For example, when
a motor in a robotic system fails, the system structure from the active input of the
motor to the output of the end-effector experiences significant changes, and so do
the system parameters. Moreover, the characteristic of the failure changes signifi-
cantly depending on the joint location of the failed motor. Because of this reason,
the compensation of the unknown failures in the system is a challenging problem for
robotic system. In order to solve this problem, a complete adaptive actuator failure

compensation framework is needed to design a controller for the system.

3.1.2 Actuator Failure Model

In this subsection, we define a mathematical description of actuator failure in the
system as well as model the characteristic of actuator failure value. Let 7(t) be the
system input vector. When an actuator failure occurs, the control input component
7;(t) associated with the failing actuator ¢ becomes an arbitrary signal, which can be

expressed as

Tl(t) Z(t), t>1t;, 1 € {1,2, A ,m}, (31)
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where m is the number of actuators in the system.
Although we do not know the exact value of the control input when the failure

occurs, we can model the failure based on knowledge of the actuator structure as

p
Ti(t) =To+ Y Toifais(t), t > i, (3.2)
j=1
where p is the number of components in the failing signal, f,;; are known functions
corresponding to each component of the actuator and i,t;,7;; are unknown failure
index, failure time and failure value of each actuator component.

With some specifications of the unknown constants 7o, 7;; and known functions
faij(t), we can model most common actuator failures such as the lock in-place failure
of the actuator: 7; = Tjp, which may happen when the controller fails to commu-
nicate with the actuator, or the complete failure of a motor in the system: 7; = 0.
Additionally, the terms 7;; foi;(t) in the actuator failure model can be used to model
additional types of time varying failures such as a square wave actuator failure, which

the failure happens periodically.

3.1.3 Actuator Failure Pattern

Because the behavior of the system with failures also changes according to which and
how many actuators fail at any given time. The concept of actuator failure pattern
which describe the configuration of actuator failure is discussed in this section. In
this study, we define actuator failures in the system as follows: Let ¥ be a set of
all possible actuator failure pattern such that ¥ = {01y, 0(9),...,00n) }, where N is
the number of all possible actuator failure pattern that satisfies Assumption 3.1,
and 0@y = diag{o(y1, 0(i)2, .-, O(iym} is the actuator failure pattern with o;); = 1 if

actuator j fails and o(;; = 1 otherwise.
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Assumption 3.1: Define a matrix E(i) from the dynamic model of the robotic system
(2.28) for each actuator failure pattern o(;), as a submatrix of E without the columns
associated with the failing actuator (each associated column j is such that o(;); = 1)
. In this study, we assume that the rank of the matrix E(,-) must be larger or equal to

the degree of freedom of the system for every possible actuator failure pattern. <y

3.2 Basic Problem Statements

As we can see from the literature review, the development of adaptive actuator failure
compensation scheme is still in an early stage and there are several open problems
that are needed to be answered. In order to develop a complete adaptive actuator
failure compensation framework for robotic system, we divided the study into two
major stages, each solving different critical issues as follows. During the first stage
of the development, the objective of the research is to lay out fundamental ideas and
techniques needed for the adaptive actuator failure compensation framework. At this
stage, we consider the robotic system with known parameters and development of
the framework is focused entirely on the actuator failure compensation scheme. After
obtaining the initial framework, the second stage of the development is to extend the
framework to a more general class of the robotic system. At this stage, we have solved
several key technical issues in control and robotic fields such as the uncertainties in
the system as well as the closed loop kinematics constraint in the robotic system with

redundancy.

3.2.1 Initial Stage of the Development

In the initial stage of the development of our adaptive actuator failure compensation

framework, the research can be divided into two steps. In the first step, we design
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an adaptive actuator failure compensation scheme for a theoretical benchmark to
ensure the feasibility of the proposed control scheme. In the second step, we apply
the control design to a more practical system. In this case, we apply our control
scheme to a Hexapod system, which is one of the most important classes of robotic

systems with redundancy.

Step 1: Design for a Cooperative Manipulator System

In this step, we develop an adaptive actuator failure compensation control framework
for cooperative manipulator in the presence uncertain actuator failures. In this step,

our aims is to solve the following problems:

e Solve an open problem by developing an adaptive actuator failure compensation
scheme for a cooperative manipulator system subject to uncertain actuator

failure without explicit knowledge of the failing actuator.

e Develop an initial control design framework for the adaptive actuator failure

compensation control scheme for a class of robotic systems.

The adaptive control scheme is applicable to the cooperative manipulator robotic

system model of in the state space form as

.flz.fg

Ty = g1(21,22) + ga(1, T2)u(t) (3:3)

where 1 = z, € R" and 2 = 7, € R", are the states of the system, y = ;1 € R"
is the output of the system, ¢, € R", go € R™™ are known matrices based on the
dynamic system, n is the degree of freedom, m is the number of the actuators, and

u € R™ is the system input. Due to possible actuator failures, an applied feedback
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control signal v(t) = [v1,v2,...,v,]T € R™ may not reach the system, as wu;(¢) is not
equal to v;(t) if w;(t) = @;(t). More precisely, in the presence of actuator failures,
the signal u(t) is u(t) = (I — o(t))v(t) + o(t)u, where o(t) = diag{oy, 09,03} is the
actuator failure pattern matrix such that o;(t) = 1 if the i actuator fails, that is, if
ui(t) = u;(t), and o;(t) = 0 otherwise, and u(t) = [u, . . ., )" .

Control Objective: The control objective is to design a feedback control signal
v(t) such that lim; ., (g2(z1)u(t) — wq(t)) = 0, despite the uncertain actuator failures
u(t) = (I —o(t))v(t) + o(t)u, where wy is a desirable control signal for w to control
the system model: &; = xo, 9 = ¢1(x1,22) + w, to make all signals in the closed-
loop system are bounded and the output y(t) = x;(t) asymptotically tracks a given
reference signal y,,(t). When this objective is met, the real system @, = xq, &9 =
g1(z1, x2) + go(x1)u(t) will be ensured to have the desired signal boundedness and
tracking properties, and this will be achieved through control adaptation.

The adaptive actuator failure compensation scheme is designed to compensate for
actuator failure in the system without the knowledge of the failing actuator j, time
that actuator failure occurs t;, or value of the output of the failing actuator @;(t),
so that the system will remain stable and the output y(¢) asymptotically tracks the

reference signal y,,(¢) even when actuator failures occur.

Step 2: Design for a Hexapod System

In this step, we extend the adaptive actuator failure compensation scheme to a Hexa-

pod system. Our aims for this step of our development are as follows:

e Develop an adaptive actuator failure compensation scheme for a Hexapod sub-

jected to uncertain actuator failure.

e Extend the scope of the adaptive actuator failure control design method to

actuator failure cases where more than one actuator fails at the same time.
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e Study the simulation of the adaptive actuator failure compensation scheme

based on the Hexapod model subject to uncertain actuator failure.

In this study, we will develop an adaptive actuator failure compensation control
solution framework of a Hexapod in the presence of uncertain actuator failures. We

consider the following Hexapod system.

(a) (b)

Figure 3.1: The model of Hexapod and the manipulator structure.

The Hexapod model (5.5) can be written in the state space form as

T1 =Ty, Tp= 91(%7332) + 92@1; xz)u(t), (34)

where 21 = 0 € R? and 25 = 0 € R3 are the states of the system, y = 2; € R? is the
output of the system, u = f,, € R® is the system input, ¢; € R?, and go € R3>*% are

known matrices.

Control Objective: Consider the Hexapod model (3.4), due to possible actuator

T

failures, an applied feedback control signal v(t) = [v1,v,...,v]" may not reach the

system, as u;(t) is not equal to v;(¢). More precisely, in the presence of failures, the
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signal wu(t) is

u(t) = (I — o(t)o(t) + o(t)a, (3.5)

where @ is an unknown failure signal and o(t) = diag{oy,09,...,04} is the actua-
tor failure pattern matrix such that o;(t) = 1 if the i actuator fails and o;(t) = 0
otherwise.

The control objective is to design a feedback control signal v(t) such that
limy 00 (g2(21, 2)u(t) — wa(t)) = 0, despite the uncertain actuator failures wu(t) =
(I—o(t))v(t)+o(t)u, where wy is a desirable control signal for w to control the system.
In this case, we also allow concurrent actuator failure for up to three actuator failures

in the system.

3.2.2 Final Stage of the Development

In this stage of the development of our adaptive actuator failure compensation frame-
work, the research can be divided into three steps. In the first step, we design an
adaptive actuator failure compensation scheme for a theoretical benchmark with pa-
rameter uncertainties. In the second step, we apply the control design to a more

practical system, which is the

Step 1: Design for a Benchmark System with Parameter Uncertainties

In this step, we develop an adaptive actuator failure compensation scheme for a

cooperative manipulator robotic system. This topic solves the following problems:

e Develop adaptive actuator failure compensation scheme for a class of coopera-
tive manipulator system with parameter uncertainties, in addition to actuator

failure uncertainties.
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e Derive a complete proof and perform performance analysis of the proposed

actuator failure compensation scheme.

e Develop a compensation scheme for a square-wave actuator failure signal in a

cooperative manipulator system.

e Study the simulation of the adaptive actuator failure compensation scheme
based on a benchmark cooperative manipulator system with parameter uncer-

tainties.

In this research, the cooperative manipulator robotic system is referred to many
manipulators that is performing a single task together. For this type of system, we
assume that the problem of system constraint is negligible because the base position
of each manipulation or the gripping position of each manipulator can be moved,
which enable some flexibilities in the system structure.

In this study, we will develop an adaptive actuator failure compensation scheme for
a general cooperative manipulator system with n degrees of freedom and m actuators.
The combined dynamic model of the cooperative systems balancing a rigid platform

can be described as follows.

Dc(ajo)io + Cc(xm i'o)i‘o + Gc(xo) = E(I’O)’T, (36)

where x, € R" is the output of the system representing the position and orientation
of the mutual object, D.(x,) € R™™ is the combined inertia matrix of the object
and manipulators, which is assumed to be a bounded and positive definite matrix,
Cu(z,,1,) € R™™ is the Coriolis and centrifugal term, G.(x,) € R" is the gravity
term, E = [Ey, Ey, ..., E,] € R™™ is a transformation matrix from the joint space

to the task space, F; € R" and 7 = [r1, ..., ;y]T with 7; as the torque of each actu-
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ator. Since the cooperative manipulator system need to carry various object, some
parameters in D.., C. and G, are often unknown.

Control Objective: Our control objective is to ensure the orientation of the plat-
form, or to make x,(t) tracks a desired trajectory x4(t) asymptotically. Consider
the cooperative manipulator robotic model (6.1), due to uncertain actuator fail-
ures, an applied feedback control signal 7.(t) = [Te1, T2, ..., Tem|! may not reach
the system, as 7;(t) is not equal to 7.(t). More precisely, the signal 7(t) is 7(t) =
(I —o(t))71.(t) + o(t)7, where T is an unknown vector of the actuator failure values
and o(t) = diag{oy, 09, ...,0,,} is the matrix of actuator failure pattern such that
o;(t) = 1 if the i actuator fails and o;(¢) = 0 otherwise.

The control objective is to design a feedback control signal 7.(t) such that the
closed-loop system D.s + C.s + K;zs = 0, despite the uncertain actuator failures
7(t) = (I —o(t))7e(t) + o(t)7, where the error vector s is defined as s = é + Age
with e = x, — x4, x4 is the desired trajectory, Ag € R"*" is a design matrix whose
cigenvalues have positive real parts and the gain matrix K, is chosen to be positive
definite. This control objective ensures the desired signal boundedness and tracking

properties of the system.

Step 2: Design for a 2-DOF Redundantly Actuated Parallel Manipulator

In this step, we develop a new adaptive actuator failure compensation scheme for a
parallel robotic system with parameter uncertainties. The objective of the control
design is to ensure the desired closed-loop stability and asymptotic output tracking

of the system subject to uncertain actuator failure. The goals this step are as follows:

e Develop an adaptive actuator failure compensation scheme for a parallel ma-
nipulator system with parameter uncertainties, in addition to actuator failure

uncertainties.
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e Study the dynamic and control of parallel structure robotic manipulator and

demonstrate how to deal with the constraint of the parallel structure.

e (larification of several key technical issues and solutions for the adaptive actu-

ator failure compensation scheme for parallel manipulator system.

e Study the simulation of the adaptive actuator failure compensation scheme
based on a 2-DOF redundantly actuated parallel manipulator subject to uncer-

tain actuator failure.

In this case, we consider a 2-DOF redundantly actuated parallel manipulator as
our benchmark system. The parallel manipulator is actuated by three servo motors
located at the bases Al, A2, and A3. The end-effector is mounted at the common
joint O, where the three manipulators meet. The joint angles are defined as follows:
Gal, Qa2, Qa3 Tefer to the active joint angles, and g1, gr2, o3 refer to the passive joint

angles.

A2 X

Figure 3.2: The 2-DOF redundantly actuated parallel manipulator.

The combined dynamic of the system with the closed-loop constraints can be
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expressed in the joint space as

Doj+ Ceg+ f =7+ AT, (3.7)

where D, € R%%6 is the combined inertia matrix, C. € R*% is the combined Cori-
olis and centrifugal matrix, 7 = [T,1,Ta2,Ta3,0,0,0]7, is the torque vector, f =
[fah fa27 fa3’ 07 0» 0]T7 is the fI'iCtiOH vector and the vector q= [qah a2, 9a3; b1, qv2, Qb?)]T

represents the angle of each manipulator joint in the system.

Control Objective: Our control objective is to guarantee the position of the end-
effector of the 2-DOF redundantly actuated parallel manipulator, or ¢,(t) tracks a
desirable trajectory gq(t) asymptotically even when an actuator failure occurs. Con-
sider the parallel manipulator model (7.9), due to possible actuator failures, an applied
feedback control signal 7.(t) = [Te1, Te2, Te3]” may not reach the system, as 7,(t) is not

equal to 7.;(t). More precisely, in the presence of failures, the signal 7,(t) is

Ta(t) = (I = o())7e(t) + o ()7, (3-8)

where 7 is an unknown failure vector and o (t) = diag{o1, 02, 03} is the actuator failure

pattern matrix such that o;(t) = 1 if the ¢ actuator fails and o;(¢) = 0 otherwise.

The control objective is to design a feedback control signal 7.(t) such that the
closed-loop system ETD.Es + ET(DCE" + C.E)s + Kgs = 0, despite the uncertain
actuator failures 7,(t) = (I — o(t))7.(t) + o(t)7, where the error vector s is defined
as s = €+ Age with e = g, — qq, qq is the desired trajectory of the end-effector,
Ay € R?*? is a design matrix whose eigenvalues have positive real parts and the gain
matrix K, is chosen to be positive definite. When this objective is met, the system

will be ensured to have the desired signal boundedness and tracking properties.
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Step 3: Design for a Landing of Helicopter with Robotic Legs

In this step, we develop an adaptive actuator failure compensation scheme for a

helicopter landing system with parameter uncertainties. The aims of this step are:

e Develop an adaptive actuator failure compensation scheme for landing of a

Helicopter with parameter uncertainties, in addition to actuator failures.

e Study the dynamic and control for the landing of a helicopter using robotic legs,

and demonstrate how to deal with the constraint of the parallel structure.

o (lerify several key technical issues and solutions for the adaptive actuator fail-
ure compensation scheme for helicopter landing system and extend the failure

compensation scheme to concurrent actuator failure case.

e Study the simulation of the adaptive actuator failure compensation scheme

based on a Helicopter landing system subject to uncertain actuator failure.

In this study, we will develop an adaptive actuator failure compensation scheme
for a helicopter landing system on uneven terrains with redundantly actuated parallel
manipulator.

The dynamic model of the system can be expressed as

ETDmEq.o + ET(DmE + CmE)QO + ETg + JbDoqlo + JbCono = ETT) (39)

where ¢, € R? is the height, roll and pitch of the helicopter body,D,, € R'?*12 is the
combined inertia matrix of the manipulator, C,, € R'?*'? is the combined Coriolis
and centrifugal matrix, 7 is the torque vector, matrix F is a Jacobian matrix of the

system.
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Figure 3.3: Landing of a helicopter with robotic legs on uneven terrains with redun-
dantly actuated parallel manipulators.

The adaptive actuator failure compensation scheme developed in this study utilizes
the redundancy from the parallel structure of the landing mechanism to compensate
for possible actuator failures. In order to achieve this objective, the helicopter landing
system considered in this study requires at least 3 functioning actuators in different
manipulator, thus, we allows actuator failures for up to 3 different manipulators in

each actuator failure case.

Control Objective: Our control objective is to guarantee the height displacement,
roll angle and pitch angle of the helicopter body, or g,(t) tracks a desirable trajectory
q4(t) asymptotically even when an actuator failure occurs. Consider the combined
system model (8.6), due to possible actuator failures, an applied feedback control
signal 7.(t) may not reach the system, as 7;(t) is not equal to 7.;(t). More precisely, for
each actuator failure pattern o(;), the signal 7(t) is 7(t) = (I —o(;)(t))7(t) + o) (£) 7).
where 7(;) is an unknown failure vector for the actuator failure pattern o(; case, and

o (t) is the actuator failure pattern matrix such that o(;;(¢) = 1 if the j actuator
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fails and 0;);(t) = 0 otherwise.

The control objective is to design a feedback control signal 7.(¢) such that the
closed-loop system satisfies: ET Dy, Es+ET (D E+CoyE)s+JyDos+ JyCos+Kys = 0
in the nominal case, and also asymptotically in the adaptive case of unknown system
parameters, despite the uncertain actuator failures 7(t) = (I — ;) (t))7.(t) + o) ()7,
where the error vector s is defined as s = é + Age with e = g, — qq4, g4 is the desired
trajectory of the end-effector, Ay € R**? is a design matrix whose eigenvalues have
positive real parts and the gain matrix K is chosen to be positive definite. When this
objective is met, the system will be ensured to have the desired signal boundedness

and tracking properties lim;_, e(t) = 0.

We will present each adaptive actuator failure compensation design in the follow-
ing chapter, where the initial stage of the development is presented in Chapter 4 and

5, and the second stage with unknown parameters is presented in Chapter 6 -8.



Chapter 4

Design for A Cooperative Manipu-

lator System

In this chapter, we design an adaptive actuator failure compensation scheme to con-
trol a benchmark cooperative manipulator robotic system. The design ensures desired
closed-loop stability and asymptotic output tracking of the system subject to uncer-
tain actuator failure. In this case, we assume that all parameters in the system are
known.

Cooperative manipulator robotic systems play a critical role in many projects such
as search and rescue operations, space explorations, and underwater missions. In
order to improve the reliability of the system, we need a controller that can achieve
certain desired properties even when actuator failure occurs. In this chapter, we
develop a new adaptive actuator failure compensation scheme to control a cooperative

manipulator robotic system. This study aim is to solve the following problems:

e Solve an open problem by developing an adaptive actuator failure compensation
scheme for a cooperative manipulator system subject to uncertain actuator

failure without explicit knowledge of the failing actuator.

e Develop an initial control design framework for the adaptive actuator failure

compensation control scheme for a class of robotic systems.

49
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The chapter is organized as follows. In Section II, we formulate the problem with
the discussion of the actuator redundancy, control objective, and actuator failure
model. In Section III, the dynamic model of a cooperative robotic system is developed
using the Euler-Lagrange equation. In Section IV, we design a nominal controller
for the example system in a nominal situation in which the knowledge of actuator
failure is known, to construct the controller structure and parameterization for failure
compensation. In Section V, the adaptive control scheme is developed based on the
nominal controller structure, for the case of uncertain actuator failure. In Section VI,
we study the generalize model of the cooperative robotic system with the adaptive
actuator failure compensation scheme. Finally in Section VII, the simulation results

of the algorithm are presented to confirm the effectiveness of our design.

4.1 Problem Formulation

The goal of this study is to develop an adaptive actuator failure compensation control
scheme to ensure closed-loop stability and asymptotic output tracking of a general
class of cooperative robotic systems in the presence of uncertain actuator failures. In
this section, the control problem is formulated, and the associated technical issues
arc addressed based on a general cooperative robotic system model and a benchmark

manipulator system.

4.1.1 Cooperative Manipulator Systems

Consider robotic systems that use multiple manipulators to fulfill a common task, such

as to control a platform. The general dynamic model of such cooperative manipulator
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systems can be described as

Dc(a:o)j&o + Oc(ajm x‘o)i‘o + Gc(xo) = ET(xo)Tv (41)

where x, is the position and orientation of the platform, the combined inertia matrix
of the object and manipulators D,.(x,) is assumed to be a bounded and positive defi-
nite matrix, C.(x,, &,) is the Coriolis and centrifugal term, G.(z,) is the gravity term,

T T

E is a transformation matrix which will be discussed later on, and 7 = [r{, ..., T

s Tp s

7; is the generalized torque vector of each manipulator, and p is the number of ma-

nipulators in the system.

For the benchmark system model (to be described next) used in this study, we
consider a system with three actuators. Since the system only needs two degrees of
freedom, it is possible to develop an adaptive actuator failure compensation scheme
for the system when one actuator in the system may fail. However, if two actuators
in the system fail, it will be impossible to control the system to achieve a two-degree

of freedom motion, with only one remaining actuator.

This concept is also applied to a system with higher degrees of freedom. For a
system with N degrees of freedom, we need at least N remaining actuators to work

in order to develop an adaptive actuator failure compensation scheme.

4.1.2 Actuator Failure Model

In this study, we will use the following actuator failure model.

Let u(t) = 7(t) € R™ be the system input vector. When an actuator failure

occurs, the control input component u;(t) associated with the failing actuator j may
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become an arbitrary signal which can be expressed as
u](t) :ﬂj(t),tz tj,j S {1,2,...,m}. (42)

Although we do not know the value of the control input when the failure occurs, we
can model the failure based on some knowledge of the structure of the actuator failing

signal as
n;
() = o + Y i fai(t),t > 1, (4.3)
i=1

where n; is the number of components in the failing signal, f,;; are known functions
corresponding to each component of the actuator, and j,t;, 4;; are unknown failure

index, failure time, and failure value of each component of the actuator.

4.1.3 Control Objective

In this study, we will develop an adaptive actuator failure compensation control frame-
work for cooperative manipulator systems in the presence uncertain actuator failures.
The objective of the adaptive failure compensation control scheme is to guarantee
closed-loop system stability and output tracking, without the knowledge of the actu-
ator failures.

The adaptive control scheme is applicable to the cooperative manipulator robotic

system model of the form

33121‘2

Ty = g1(71, 72) + ga(21, T2)u(t) (4.4)

where 21 = x, € R" and x5 = &, € R", are the states of the system, y = x; € R"
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is the output of the system, g; € R", go € R™™ are known matrices based on the
dynamic system, n is the degree of freedom, m is the number of the actuators, and
u € R™ is the system input. Due to possible actuator failures, an applied feedback
control signal v(t) = [v1,v2,...,v,]T € R™ may not reach the system, as u;(¢) is not
equal to v;(t) if u;(t) = u;(t). More precisely, in the presence of actuator failures, the

signal u(t) is

u(t) = (I —o(t))v(t) + o(t)a, (4.5)

where o(t) = diag{ o1, 09, 03} is the actuator failure pattern matrix such that o;(t) = 1
if the ¢ actuator fails, that is, if u;(t) = u;(¢), and o0;(t) = 0 otherwise, and u(t) =
[y, ..., U] T
The control objective is to design a feedback control signal v(t) is such that

limy o0 (g2(x1)u(t) — wq(t)) = 0, despite the uncertain actuator failures u(t) = (I —
o(t))v(t) + o(t)u, where wy is a desirable control signal for w to control the system
model: & = xy, &9 = g1(21, 23) + w, to make all signals in the closed-loop system are
bounded and the output y(t) = z1(¢) asymptotically tracks a given reference signal
Ym(t). When this objective is met, the real system @1 = xq, &2 = ¢1(x1, 2)+9g2(x1)u(t)
will be ensured to have the desired signal boundedness and tracking properties, and

this will be achieved through control adaptation.

The adaptive actuator failure compensation scheme is designed to compensate for
actuator failure in the system without the knowledge of the failing actuator j, time
that actuator failure occurs t;, or value of the output of the failing actuator u;(t),
so that the system will remain stable and the output y(¢) asymptotically tracks the

reference signal y,, () even when actuator failures occur.
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4.1.4 A Benchmark Cooperative Manipulator System

In order to develop an adaptive control scheme for a general cooperative robotic
system, we first consider a two-dimensional cooperative manipulator system as a
benchmark system in our study. The system contains two manipulators, which are
attached to each side of a rigid platform as shown in Figure 4.1. We will design
a controller that can guarantee asymptotic tracking of both height h(¢) and angle
0(t) of the system. The adaptive control scheme for this sample robotic system can
be extended to general cooperative robotic systems such as a Hexapod system or a
humanoid robot, which will be discussed later on.

In many systems such as a humanoid robot, adding another leg to the robot for
redundancy is not possible without the loss of functionality of the system. In our
robotic system model, the redundancy of the system will came from an additional
joint in a robotic manipulator. The system uses three actuators ¢, ¢o, g3 to support
a rigid platform that links actuator ¢; and g3 together. The actuator ¢y is added to
increase redundancy in the system to compensate for possible actuator failure that
could occur on the left side of the platform. In this study, we consider three cases of

actuator failure patterns:
e Case 1: no actuator failure occurs, that is, o(t) = diag{0,0,0}, or
e Case 2: the actuator ¢ fails, o(t) = diag{1, 0,0}, or
e Case 3: the actuator ¢y fails, o(t) = diag{0, 1, 0}.

With the benchmark model, we can derive the dynamic model of the system,
and then we will develop the control scheme based on the dynamic model. The
development of the adaptive actuator failure compensation scheme can be divided

into three parts. First, we will find a feedback control signal wy from a backstepping
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Figure 4.1: The benchmark cooperative robotic system.

control design, which ensures the stability and tracking of the system in the absence of
actuator failure. Then, the nominal controller for the system will be developed based
on the knowledge of actuator failure. The nominal control will be designed such that
the control signal matches the signal wy, so that the output of the system follows
the desired trajectory. Finally, the adaptive actuator failure compensation scheme is
developed based on the nominal controller structure, using parameter adaptation to

handle the actuator failure uncertainties in the system.

4.2 The Benchmark System Model

The dynamic model of a redundant manipulator robotic system has been discussed in
various books and published papers. There are several approaches that can be used
to obtain a set of dynamic equations of the system, such as using Newton’s second law
of motion, or the Euler-Lagrange equation. Newton’s second law of motion is a well-
known method of analyzing movement of an object. However, in order to calculate
the dynamic of an object, one needs to know every force that acts on the object.
Robotic systems, which contain many joints and links, it is complicated to calculate

constraint forces in the system. As a result, using the Euler-Lagrange equation to
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develop the dynamic equation is a preferable method.

In this study, the derivation of the dynamic model of the system is divided in three
parts. First, we derive dynamic equations of the system using the Euler-Lagrange
equation. After we obtain the dynamic equations, state parameters of the system
are defined and calculated. Finally, the dynamic equation is put into the state space
form, so that it can be used for the development of the adaptive actuator failure

compensation scheme.

Euler-Lagrange Equation

In order to use the Euler-Lagrange equation, we need to determine the generalized
coordinates of the system. There are two sets of independent coordinates that should
be considered. We can choose the height A(t) and angle 6(¢) of the platform as
the generalized coordinates of the system. Although in this way the outputs of the
system will be directly related to cach coordinate, the dynamic equations arc more
complicated because the force of each actuator will act on different directions to each
coordinate. On the other hand, by selecting the position of each actuator ¢, qs, g3
as the generalized coordinates, we can reduce the complexity of the derivation; as a

result, we will use this second set as the generalized coordinates.

Before we derive the dynamic equations of the system, we consider the relationship
between the coordinates and the outputs of the system.

From Figure 4.1, we can write the height and the angle of the platform in terms
of the position of each actuator as

@1+ g2+ qs
2

8(q1, g2, q3) = arctan(

h(Qh q2, Q3) =

1+ q2 — (J3)
b ’
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where the constant by is the length of the base of the platform. The derivatives of
(4.6) and (4.7) are

1. .
h(q1, g2, q3) = §(q1 + Ga + ¢3) (4.8)

; bo(d1 + do — d3)
6 = : .
(Q17 q2, q3) bg + (Q1 + go — q3>2 (4 9)

Based on the generalize coordinate ¢; for i = 1,2, 3, we consider Lagrange’s equation

i(aL)_a_L _ .
dt 0" 0q "

(4.10)

where the Lagrangian L =T — V| T is the kinetic energy, V is the potential energy,
¢ = [q1, g2, g3 are the vectors of generalized coordinates, and u; is the torque of each
actuator, which acts along each coordinate. If the dependency forces between ¢y, g2
are small, we can approximate that the generalized coordinates are independent from

each other. Thus, the kinetic energy and the potential energy can be written as

1 . . . 1. 1.
T = 5(mady + (ma +ma)ds + msds) + 5mph” + S 1,6° (4.11)
V =migq + (m1 + ma)gge + msggs + mygh, (4.12)

where g is the scalar value of the gravity, m; is the mass of each actuator, m, is the

mass of the platform, and I, is the moment of inertia of the platform.

We calculate each term in the Lagrange’s equation as

oL
dq;

1
= —(mig + 5myg):i = 1,2,3. (4.13)
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4 9L e first derive gL as

For the term Sa

L dh do

— = ] h— I, H—

3@1 ey dq * dg, ‘
oL . dh do
= ; h— +1, H—
9o (m1 * mz)(]z + "y dgo + dgo
oL . dh df

= _ y h—+1, H—

043 s dqs * dgs

From equation (4.8) we have j—q’i =1, and
.
5= Zmp((h + G2 + G3)-

Consider 95—2 based on equation (4.9), we have

Gﬁ _ ;b (g1 + G2 — G3)
dg; (0§ + (¢1 + a2 — 3)?)%

(4.14)
(4.15)

(4.16)

(4.17)

(4.18)

where the constant o; = 1 fori = 1,2, a; = —1 for i = 3. We define ¢; = ¢1 + ¢2 + g3,

G2 = q1+ q2 — g3, and ¥y, ¥y ; as follows

1 . aibglpq;Q

Uy = —mpq, Vo= —5—515-
477 (b5 + a3)*

Then, the time derivative 4 (g—L) can be written as

d 0L .. . -
Ea_l =myq + ¥ + Uy,
d OL

U, + 0
pn 8qQ = (m1 +ma)Go+ V1 + ¥y
d OL

——— =m U, + U
dt 0y 3¢z + V1 + Wy 5,

(4.19)

(4.20)
(4.21)

(4.22)
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where Wy, ¥, are expressed as

- 1 . - I 43243
Uy =-myqi, Vo = a;iby], - . 4.23
g Vel G T gy
Finally, the Lagrange’s equation becomes

) . . 1
myGy + Wy + Va1 +mig + Mg =T (4.24)

) . . 1
(m1 +m2)(Ga+g) + W1+ Vyp + SMpY = T2 (4.25)

B . . 1
mags + V1 + Va3 + mag + §mpg =73 (4.26)

Determination of Signals ¢; and ¢

In order to put the dynamic equations in the state space form, we need to rewrite the

dynamic equations in term of ¢; and . Rewrite equations (24)-(26) for each ¢; as

T — (\Ifl + \11271 + (mlg + %mpg))

71 = 4.27
q1 my ( )
L T2 Wy —Wyy ((m1 +ma)g + %mpg) (4.28)
2 my + mo my + mo ’
— () + Vg3 + (mag + tm
3

Define a parameter ¢; = 1+ 72 (-~ +——+-L). We can combine equation (27)-(29)

mi mi1+ma2 m3

to get ¢, as
1 7 T T3 myg., 1 1 1
— (2 ) By 2y (— —— + —
o G ma my+mg ma) ( 2 )(ml my+me Mg
. 1 1 1
Wy (— F —— + —)). (4.30)
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With a parameter ¢, = (1 + (bzbJrg’;)z G + s T m%)), we also have ¢, as
1 7 T: T | 1 1
p=—(—4+—2— - )P (——— — —
G mi mpt+my  m3 my  mp+my M3
mpg., 1 1 1 4031, (7243) , 1 1 1
g+ T2 -y - el —
2 'm mip+ms Mgz b+ad; "mi mpi+mo Mg
(4.31)
Let parameters M, = (% + mlim + mg) and M, = (m1 + mlimz mg) Since Uy, Uy,

contain §, g2, we rewrite equation (30), and (31) as

. 1 1 T2 T3 mpg b(z)lpq_g 4b8]p(jgg%
=—(—+————+—)—(3g+ + — M,
n Gt my  my+my m3) (39 2 (o5 +a)* (b +§%)3) )
(4.32)
1 7 T T3 1 mpg 463-713((72@)
= —((— - —— — —— N My + ——="-M,).
o = G o = T i) — (g4 TS My o+ T M)
(4.33)

With (3 = bzb {’;)2 M, by substitution of ¢, from (33), equation (32) becomes

.. Lo To T3 (3, 71 Ty T3
G = _—t ) -+ = —
Cl my mp+moe Mg G2 miy  mp+mg Mg . .
Cd mpg) _ (@4631}7(@2@%) _ A3 1,025 )M,
Y 2 G b+a O+ 3)?
(4.34)

S (mpln) + (g + )My — (39 +
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With ¢4 = 1+ J22 M, we have

q_. 1 7'1 T2 + T3 43 T T2 T3
| = 2 By et 2 13
C4Cl my Mmp+me Mg Ca my  my+my Mg
C3 myg GAbAL,(q2q3)  4b21,3233
+—M 3g+ —— )M, — (== —=r —=\M,].
GOt M= B M = (e g g
(4.35)

CQ 2

We solve for ¢, with a similar approach. With (5 = =2 M,, by substitution of §; from

(35), equation (33) becomes

- 1 1 T2 T3 1 myg
Sy 2 By 2 I
== Co my  my+me ma) CQ((g+ 2 )My + b8+ 73
_L[(l T By B, m T
CaGiG2 mp+mg Mg G my  mp+my Mg
€ myg 3 401 (033) A5 1,005
+ +_M+3+_Ma+_ — - . Ma.
Gt M Gt M S R - G
(4.36)
Dynamic Model in the State Space Form
The dynamic equations can be written in the state space form. We define z; =
(211, 212]" = [h,0]7, and @y = [291, 20" = (@1, ). With g1 = 2h, @ = botan6, we
have the system in state space form as
1. 1 -
=1 ———— 4.37
$1 [2Q1 b0(1+92)QQ] ( )
(G1 + G2 — G3)]" (4.38)

Ty = [(G1 + G + G3)

Let u = 11, 7o, 73] be the system input, and y = [k, 6]7 be the system output. The
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state equation can be written as

21 = f(z1)22 (4.39)
Ty = g1(x1, 72) + go(21, T2)u (4.40)
Yy = 1, (4.41)

where the matrix f(x;) is expressed as

Jui(z 0
f(z1) = ) : (4.42)

0 f 22 ($ 1)
We have

1

—bo(l o) (4.43)

Jfu(z) = %7 faa(w1) =

The matrix gi(x1,22), g2(x1,x2) are known matrices, which can be calculated from
the Lagrange’s equation. The matrix g;(x1, 22) = [g11(1, T2), g12(71, 72)].T Consider

equations (4.35) and (4.36), we obtain

L G mpg mpg G 46311;((]21‘%2) 4b3]p47237§2
=—[Z(g+ My, —((3g + —22) + 2 2 —22)M,] (4.44
g11 C4C1 CQ (g 92 ) b (( g 2 ) CZ b% _'_q% (b(2)+q%)3) ] ( )
1 Mg A3 1, (G23,) G Gs, Mg Mg
= —[~(g+ )My — — 53— M| — [ (g + )My + (39 + —~

G i+ a (b3 +33)°

Define the matrix go(1,x2) as

g211 G212 9213
92(21, 22) = : (4.46)

9221 G222 G223
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According to the equations (35) and (36), we have each component of the matrix as

b6y b
9211 - §4C]_ [(]‘ EQ)(m]_ )]7
_ g 6y b
g3 = GG 3+ Cz)(ms)],
TN WGk G

R TR < N S
gz = G . ng)(mlg—mZ)]’

R GRS SNV
ga1 = (Cz C4C1C2(1 Cz))(ff?)’ :

1 _ b6 Gy b
my +m2)’ 9oz = G2 C4C1(2(1 * Cz))(ms)'

(4.47)

In this way, we have derived the state space form of the dynamic model of the

cooperative manipulator robotic system with actuator redundancy, which can be used

to design an adaptive actuator failure compensation scheme.
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4.3 Nominal Control Design

In this section we develop a nominal controller for the system, assuming the knowledge
of the actuator failures. Such a controller structure can be used to design an adaptive
actuator failure compensation scheme for the system with uncertain actuator failures.

From the dynamic model derived in Section III, we have

@y = f(z1)T2 (4.48)
Ty = g1(x1, T2) + g2(21, T2)u (4.49)
where y = [h,0]7 is the system output, and f(x,), g1(z1,22), g2(x1, 72) are known

matrices.

Our control objective is to control the height h(¢) and angle 6(t) of the platform, to
make the system output y(¢) tracks a desirable trajectory y,,(¢) asymptotically. First,
we generate a desirable feedback control signal wy; = g2(x1, x2)u from a backstepping
control design method, and then we develop a nominal failure compensation controller

based on the feedback control signal, wg, and the failure of the actuator signals.

4.3.1 Backstepping Control Design

e will first choose a control signal wy such that it can guarantee the closed-loop
signal boundedness and asymptotic output tracking of the system in the absence of

actuator failures [17].

Define 2y = x1 — Yy, 20 = w9 — 3, where [ is a design function to be determind.
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Step 1: From the state equation of the system, we can write 2; as

2 =31 — Ym = f(21)(22 + B) — Um- (4.50)

In order to choose 3 to stablize the system, we consider a Lyapunov candidate function

and its derivative as

Vi = %lezl (4.51)
Vi = 21(f ()2 + f(21)8 = Gm). (4.52)

With the design function
B = flz) (=erz1 + Gm), (4.53)

where ¢; is a positive constant, the derivative of the Lyapunov function becomes
V, = —c1 2 21 + fw1) 2 2. (4.54)

We see that the term —c; 27 21 is always negative.

Step 2: Since 29 # 0, we continue using backstepping by considering
bo =ty — B = g1(@1, T2) + go(1, T2)U — B, (4.55)
and the second Lyapunov function

1
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The time-derivative of V5 is

Vo = Vi + 2959 = —czfz + zzT(f(:L’l)zl + g1(x1, 22) + g2(x1, T2)u — B) (4.57)

If the signal w,; can be chosen as

wg = go(T1, T2)U (4.58)

= —gi1(21,32) — caza — f(w1) 2 + B (4.59)
Equation (29) becomes

Vy = —c128 2 — cp2f 2. (4.60)

With a positive constant ¢y, Vs is negative definite. As a result, the control signal
wy can guarantee the closed-loop signal boundedness and asymptotic output tracking

of the system: lim; o (y(t) — ym(t)) = 0.

4.3.2 Nominal Actuator Failure Controller Structure

In this subsection, we develop a nominal controller for the system, with knowledge
of actuator failures. The nominal control law will guarantee that the control input

signal matches the desirable signal w; when actuator failures occur.

Since the controller needs to handle several cases of actuator failure, we select a
nominal controller structure as a combination of the control law for each actuator
failure case. We first design three individual control laws for three actuator failure

case [18].
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Design for the no failure case

In the case of no actuator failure in the system, we have control signal u = v*. We

need to design v(t) such that wy = go(21, z2)v*. We consider
v*(t) = v(yy (1) = ha(@1, B2)v501) (1), (4.61)
where hy(z1,22) € R™?, and vy ,,(t) € R**! are such that

Ga(x1, T2) ha (21, $2)’UZ(1) = Wy (4.62)

Notice that in case of no actuator failure, we have some flexibilities when choosing
the matrix h,(x1,22). We can choose the matrix such that the system is optimized
subject to some desirable constrains. With chosen h, (1, x2), the intermediate control

signal can be written as

Va1 (1) = Ko(z1, 22)wa, (4.63)

One way to design the controller to have a unique solution is to use only two actu-
ators to control the system. By turning off actuator u;, we can design the controller

by choosing

V() = vy () = 0 vty @) (4.64)

'UZ(l) (t) = hl(xl, :162)116‘(1) (t) (465)

With g2 = [g21, 922, 923] = [921, g2(2)], we can choose a new matrix hy(z, z2) € R**?
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such that goe) (w1, @2)hi (21, 22) is invertible. Thus, v, (t) € R**! can be chosen as
Vo) () = Ki(21, 29)wa, (4.66)
where the matrix K;(z1,22) € R?*? is expressed as

Ki(z1,29) = (92(2)(%7xz)hl(%,%))_l. (4.67)

As a result, we have the nominal control signal vz‘l)(t) that can be used to control

the system with no actuator failure.

Design for the u; failure case

In case of actuator u, failure, we have the signals u; = 43, us = v3, and ug = v3. The

nominal control signal can be chosen as
V() = vy (t) = [0 vzg)(t)]T. (4.68)
With gy = [g21, 922, g23] = [921, g2(2)], We have
Ua2) (8) = ha(@1, T2)vg () (0), (4.69)

where the matrix hy(z1,z9) € R?*? and the signal Vp2) (t) € R**! can be chosen to

satisfy

921(1’1, l’Q)ﬂl + gz(g)hg(l'l, l‘g)vg(g)(t) = Wq. (470)
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The signal v5, (t) can be written as
Vp(a) (t) = Ko1 (21, ¥2)wa + Kao(1, 22) U, (4.71)
where Ky € R?*% Koy € R?*! are expressed as

Ko = (g2 ha(1, $2))_1

Koy = —(gaho(21, 22)) " go1 (21, 22). (4.72)

We can see that with this design, the nominal control signal vf,)(t) ensures wy =

g2(x1, xg)vz‘z) for the actuator u; failure case.

Design for the u, failure case

Similarly, in case of actuator us failure. The nominal control signal can be designed

as

vH(t) = v (t) = [V](3)(1), 0, 55 (0] (4.73)

Defining v}, (t) € R**! as

Ve (t) = [03g) (), Vi ()] (4.74)

U2(3) (t) = hg(l'l,l'g)’l)g(g’) (t) (475)
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With go1) = [g1, g23], we can choose hs(z1,22) € R**?, and Vo) (t) € R?*! to satisfy
G2(1) (21, T2) ha (21, T2) V(3 () + Gaalla = wy. (4.76)
The signal vg () can be written as
Voez)(t) = Kz1 (21, 22)Us + Kaa(21, To)wa, (4.77)
where K3 € R?*! K3y € R?*? are expressed as

Ks = (92(1)(961,$2)h3($17$2))_1922(IL’1,$2)

Ksy = —(92(1)(%7$2)h3(951,9€2))_1- (4.78)

We can see that the nominal control signal v(y (t) ensures wy = ga(@1, 22)vy) for

the actuator uy failure case.

Composite control design

With the control structure for all three cases, we can design a composite control law

for the system as

v (t) = XTv(y (1) + X50(y () + X503 (1), (4.79)

where x7, X5, x4 are the indicator functions of the actuator failure: yj = 1 when there
is no actuator failure, x5 = 1 for w; actuator failure, and x5 = 1 for uy actuator
failure. The indicator functions x7, x3, x5 = 0 for its noncorresponding cases, e.g.,
X; = 0 when actuator u; fails. Signal va)(t) is the nominal control signal in case of

no actuator failure in the system, v, (t) is the nominal control signal for the actuator
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u failure case, and v(3(?) is the nominal control signal for actuator us failure case.
Because of the indicator functions and the nominal control signals, the composite

design ensures wy = ga(x1, 2)v*(t) for every case of actuator failure. The composite

control design can control the system with an actuator failure when the information

of actuator failure is known.

4.4 Adaptive Actuator Failure Compensation

The nominal control design, which is developed in Section 4.4, needs information
of the actuator failures. In this section, we develop an adaptive actuator failure
compensation scheme, which can achieve the control objective in the presence of
uncertain actuator failures without the knowledge of the failing actuator and its

signal.

4.4.1 Adaptive Controller Structure

The adaptive control algorithm is developed based on the nominal controller structure.
Since we do not know the values of vaz‘l),x’gv&)? and X§UZ‘3), we first design the

adaptive controller structure as
U(t) = Ux(l)(t) + Uy(2) (t) + Uy(3) (t), (4.80)

where vy(1)(t), Uy(2)(t), vy(3)(t) are the estimates of x7v(}), X3v(y), X503, respectively.

In order to derive vy)(t), we restructure xjv(;) € R3*! from the nonimal controller
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(4.61) as
XTUZ}) = X#{h"LKawd = diag{XTlv XTQ’ XT3}haKawd7 (481)

where x7; = X712 = Xi3 = X7, that is, we will estimate the parameter 7} three times for
achieving a suitable parametrization. With the estimated parameter diag{x11, x12, X13}

we have the adaptive version of X10(y) as

vy (t) = diag{x11, X12, X13 } e K awa. (4.82)

With vy 2)(t) = [0, vya@) (£)T]", we now derive vy,(9)(¢) from its nominal version:
X3Vn(2) (1) = X5ha Koiwa + x3urha Koy € R?*. (4.83)
From the actuator failure model (4.3), the actuator failure u;(¢) can be expressed as

it) = pi" fuilt), (4.84)

where fui(t) = [1, fair(t), -, fain,(t)]T are known functions corresponding to the ac-

T contains the paremeters of values

tuator failure components, p! = [Uo, Ui, .-, Uin,]
associated with each actuator failure component, and n; is the number of actuator

failure components.

Then, the estimate of x3v}, (t) is chosen as

. 1y far () o1
Uya(2) (t) = diag{x21, X2z} ho Ko1wa + , (4.85)
/)ir(g)fal (t) P12,
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where, similar to that in (4.83), diag{x21, x22} is the estimate of diag{x3;, x32} with
X3 = X31 = X3o- The terms x3,p07 and x3,p] are estimated by py1) and py), where
¢1 = [p11, 2] = haKo.

In order to derive vy, we consider vy = [Uya1), 0, Uyas))’. With vy, =

[Uy(31), Ux(33)]" » we consider

X5vae)(t) = XshaKa1Us + x3hs Kswg € R**Y (4.86)
Similar to the derivation of v,42)(t), we have

. Py faa () o1
Uya3)(t) = diag{xs1, x32 } hs Ksowa + , (4.87)
Pg(g)faz (t) P2z,

where diag{xs1, x32} is the estimate of diag{x3;, x52} With x5 = x4, = x3». The pa-
rameters py(1y and paz) are the estimates of x5, 05 and x3,05, where ¢ = [@o1, qbgz]T =

hs 3.

The controller structure (4.80) can be written as

(1) = vy (1) + [0, v, 2y (D] + [oxan) (), 0, vyqss) (1)) (4.88)

With this parametrized controller structure, we can develop adaptive laws to update
the parameters diag{x11, X12, X13}, diag{x21, x22}, diag{xs1. xs2}, p101), P1(2)5 P201), and
p2(2), so that the system can achieve the control objective in the presence of uncertain

actuator failure.
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4.4.2 FError System

In order to design an adaptive law for the system, we consider the system error
caused by an actuator failure. With an uncertain actuator failure, the signal u(t) can

be written as

u(t) = (I —o(t))v*(t) + o(t)a, (4.89)

where o(t) = diag{ o1, 02, 03} is the actuator failure pattern matrix such that o;(t) = 1

if the 7 actuator fails, and o;(t) = 0 otherwise. With gs(x1, zo)u(t) = wy, we have

go(x1,22) (I — 0)v*(t) + ot1) = wy (4.90)

For an adaptive updated control signal v(t), where go(x1,29)v(t) = w. Based on

equations (4.89) and (4.90), we have an error system between v(t) and v*(t) as

g2(z1,22) (I — 0)(v — V") = w — wy. (4.91)

We consider the backstepping design with a possible actuator failure. With z; =

Tl — Ym, 22 = T3 — [, where [ is a design function from equation (4.53), we have

2’1 = —C121 + f($1)22 (492)
Zy = q1(x1, 22) + ga(x1, T2)u — 5
= g1(z1,22) + w — B+ (Wg — wa)

= —f(r1)21 — 222 + W — wy. (4.93)

From equations (4.91) and (4.93), 25 becomes
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Zo = —f(x1)21 — cazo + ga(@1,2) (L — 0)(v — v"). (4.94)

Define the error signal v = v — v*, and the error of each estimated parameter as
Xij = Xij — Xi» Pit) = Pi(j) — (Xi11,;0;). From equations (4.80) and (4.91), the error

signal v can be written as
0 = diag{X11, X12, X13 } P K awa + [0, 6§a(2)(t)]T + [@x(i%l)(t)a 0, Dy(33) (t)]T~ (4.95)

Based on equations (4.85) and (4.87) with Oy,3)(t) = [Oy(31)(t), Dya3) (£)], we have

Py far () o

Uya(2) (t) = diag{Xa1, X22} ho K o1 (21, 22)wa + ~
P1ayfar () P12,
- NPTV /32(1)fa2(t)¢21
Uya(3)(t) = diag{Xs1, X32 }hoKsa (@1, T2)wg + . (4.96)
/35(2)]0@(15)(?)2%

The effect of actuator failure to the nominal controller can be analyzed using the

Lyapunov function
1
Vy = 5(2«{2«1 + 23 23). (4.97)

Based on equation (4.92) and (4.94), the derivative of the Lyapunov function (4.97)

becomes

‘72 = —0121T21 - szzTZz + 2292(371, 372)([ - U)(ﬁ)- (4-98)
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With v from equation (4.95), the derivative of the Lyapunov function is

Vo = —cr2l 2y — eozd 2y + 2 go (21, 22) (I — o)diag{X11, X12, X13 }ha K awa
+ 25 ga(1, 22) (I = 0)[0, 00y ()] + 25 g2 (w1, 22) (I — 0)[Tyany (£), 0, Tyazy (1)]

(4.99)

With the possible actuator failure, V5 is no longer negative semidefinite, from which,
we cannot guarantee system stability. We design an adaptive scheme to update the

parameters diag{x11, x12, x13}, diag{xo1. x22}, diag{xs1, xs2}. P1(1), P1(2), P2(1); and

p2(2), and then, new Lyapunov functions can be used to ensure system stability.

4.4.3 Adaptive Laws

In this subsection, we develop an adaptive scheme for updating the parameter of
the controller (4.80). The adaptive laws for diag{x11, X12, x13}, diag{x21, x22}, and

diag{xs1, x32} can be generically chosen as

X1 = _713'2;9%#1]’

o T

X2 = —7V25%2 92(j+1)H2j

S T

X31 = —731%3 §21 431

Xs2 = —7Y33%3 G23ila, (4.100)

where v;; > 0 is the adaptive gain, and

H1 = [,un, H12, M13]T = hoK,wq
Ho = [Mzh Mzz]T = ha Ko 1wy

p3 = a1, pa] " = hyKziwa, (4.101)
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with hg, ho, hs, K., K21, and Kj3; being the design matrices from the adaptive con-

troller structure consisting of (4.81), (4.85), and (4.87).

Similarly, the adaptive laws for pi(1), p1(2), p2(1), and pa(2) can be chosen as

P10y = —Tgfaizs 24101
a1y = —L(21) fa123 ga1021

Pa(2) = _F(22)fa2zgg23¢22, (4.102)

where the parameter I';;) = F%; 5 >0is the adaptive gain matrix. The function ¢; is
defined as ¢, = [¢11, ¢12]T = hy Ky, and ¢y = [da1, ¢22]T = h3K3;.

We then use a parameter projection scheme to ensure the boundedness of the esti-
mated parameters in the presence of actuator failure uncertainties. We first consider
the physical range of the indicator functions xj, x5, and xj. From the definition of

the indicator functions, we have
0<x;<1l, 0<x;3<1, 0<x3<L (4.103)

Because X7, = Xia = Xi3 = XTI, X1 = X322 = X3 and X3 = X3 = X5, we have
0 < x;; < 1. We can see that the estimated parameters y;; should also have the lower

bound at 0 and the upper bound at 1.

Let pi, pi2 be the upper and lower bounds of the components p}, of pf, i = 1,2,

k=1,2,..,k,, that is,

P < Pk < P13 < P < P (4.104)

The upper and lower bounds p}Z, pit can be obtained from the maximum and min-

imum values that each failing actuator can produce based on the actuator failure
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model (4.3).

With the upper and lower bounds of each component of p; , we can see that each
component of the estimated parameters p;(; should also has the same boundaries as

the component of p; because p;(;) is the estimate of p;x; with 0 < x; < 1.

With the upper and lower bounds of the true parameters, we can modify the adap-
tive laws in (4.100) and (4.102), so that each component of the estimated parameters
stays within its boundaries; and in particular, the initial conditions x;;(0), p;)(0) are

chosen inside the boundaries.

The adaptive laws for x;;(t) become

X1j = —V1j%s Gojl1; T Oxijs X2j = —V2i%3 Go(j+1) M2 T Oy

X31 = —7Y3123 G21/31 + Oys1, X32 = —7V3373 Jastls2 + Oxa2, (4.105)
where the projection function g,;; is chosen as

0 if Xij € (0, 1),

or x;; =0 and gy >0,
Oxij = (4.106)

or xi; =1 and p; <0,

| —0xij otherwise,
with 0,;; defined as

~ T

Ox1j = —715%2 925115
- T

Ox2j = —72j%2 92(j+1) H2;5

_ T

Ox31 = —7Y3122 §21 431

Ox32 = —733%3 §23/is2. (4.107)
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Similarly, the adaptive laws for p;(;y = [pi(j)1), - Pij)ns)]” become

. T
PGy = —Laj fajzz 9241015 + 05y,
P2(1) = —F(21)fa125921¢21 + Ops(1y

pa(2) = —La9) farzs Go3022 + 0poiey: (4.108)
where the projection function 9,:(;) = [0i(j)(1), --s Qpi(j)(ns)]” 18 chosen as

0 if Pig)(k) € (Pif oiR)s

it pigywy = Piks and iy = 0,
Pi(4) (k) N o d N < O
or  piGyk) = Pirs and ik < 0,

L —00i(j)(k) otherwise,
with 25i(5) = [i(5)1): -+ pi)(mo)] " defined as
001() = L5 fas2a Goi41) 1

0p2(1) = —F(21)fa122ngl¢21

0p2(2) = _F(22)fa225923¢22- (4.110)

It can be verified that the parameter projection schemes have the properties

(Xij — Xij)0x; <0 (4.111)

(PiGir) = Xi3Pik) Cosiiry < 0, (4.112)

With the parameter projection scheme and chosen initial conditions 0 < y;;(0) <
L pi < pigi (0) < P2, we can guarantee the boundedness of every estimated param-

eter used in the adaptive control scheme.
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4.4.4 Performance Analysis

The adaptive actuator failure compensation scheme can ensure the stability and track-
ing of the system in any of the three cases of possible actuator failure patterns: no
failure occurs, actuator u, failure case, or actuator uy failure case, as shown by the

following theorem [18].

Theorem 1. The adaptive actuator failure compensation scheme with the feed-
back control law (4.80) updated by the adaptive laws (4.105)- (4.108), when applied
to the robotic model (3.39)-(4.41), guarantees the closed-loop signal boundedness and

asymptotic output tracking: lim; ... (y(t) — ym(t)) = 0.

Proof. We first consider the error signals z; = x1 — Y, and 2o = x5 — §. With

uncertain actuator failures, we have the derivatives of z; and 2, as

ZH=—c1z+ f(2r)2

Zy = — f(x1)z1 — cazo + go(x1,22) (I — 0)(v — v"). (4.113)

Because the derivative of the error signal Z; contains the actuator failure pattern
o which changes according to each actuator failure case, we need to consider three
Lyapunov function candidates V1, V9, V,3 for analyzing each actuator failure pattern
to ensure the system stability.

We first consider the case of no actuator failure, with the Lyapunov function candidate

1 1
V=52 a+550+; Z yetalTs Z Givs + Z e ]

+3 [Z Pl Ao + Z A (4.114)
i=1 =



CHAPTER 4. DESIGN FOR A COOPERATIVE MANIPULATOR SYSTEM 81

With the parameter projection scheme (83) and (84), we have the derivative of each
term in (4.114) as
d 1

pri (21 21 + 23 20) = —c12] 21 — Cazg 29 + 23 Go(71, T2) (I — )y (1)

+ 25 ga (w1, @) (I — 0)[0, D) (D] + 25 g2(w1, 22) (I — 0)[Dy(an) (1), 0, Dy az) (8)]”

(4.115)

dt 3 Z ) = =2 D) Xugait] + Y i 0 < — 7 92(1, 22) Ty 1)
=1 i=1

(4.116)

2 2

d, 1 I T e~

%( B (Z Xovai + Z p{(i)rlilpl(i)))
i=1

=1

= _2592(371: 9)[0, 0 Xa ]T + Z X2L721 Ox2i T Z Pl Q/Jm-)

< _2592(371:372)[077)9«1 Ol (4.117)
d, 1 <
E( B (Z >~(§ﬁ3—z‘1 + Z /35(@-)%1/32(@')))
=1 =1 , )
- _Zgg2($17 x2) [@X(31)(t)7 0, 6X(33)(t)]T + Z 5(31'7:3_11@)(31 + Z ﬁ%}i)FQ_ilgpz(i)
i=1 i=1
< _ZQng(l’la ) [ﬁx(?»l) (1),0, Uy (33) (t)]T- (4.118)

Here we have used the parameter projection property (4.111) and (4.112); that is,
XiVij 0xy <0 Py Li 0p,y) < 0. (4.119)

Based on equations (4.115)-(4.118) with ¢ = diag{0, 0,0}, the derivative of the Lya-

punov function (4.114) becomes
Vi < —c 272 — cozt 2y < 0. (4.120)

For the actuator u, failure case, we have the actuator failure pattern o = diag{1,0,0}.
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We need a new Lyapunov function candidate V5 as

1 1
Ve =cs it snm+ g Z Aovn + Zl: Givait + KooV

+ Z ﬁii)rilﬁl(i) + ﬁ%}z)rz_zlﬁz(2)]- (4.121)

1=1

To obtain the derivatives of the Lyapunov function candidates in (4.121), we consider
the derivative of each term similar to the derivation in the case of no actuator failure.

In this case, we have

dt 2 Z Xllf)/lz _ZgQQ(xb x2)[0 Uxa(? )]T + Z )221'72:'1@)(22‘
=2
< —23 ga(w1, m2) (I — 0)Ty(1) (4.122)
d 1 2
E( B (Z XoiVai + Z P 5 Prn))
i=1 i=1
2 2
= T2 92(x17 xQ)[Ov Uxa(Q) T + Z 1’72_1‘10)(2:' + Z ﬁf(i)rl_ilgm(i)
=1 =1
< — T go(ar 2)(I = )0, 5oy (O] (1123)
d, 1, 5, _ - 1~
E( 2 (X32ve + P2(2)F2210§2)))

_Z’érg?(xl? 1‘2)[0, 6){(1(2) (t)]T + >~<3273_219X32 + ﬁg(Z)FZ_;sz(z)

_ZgQQ(xb ) (I — U)[@X(fﬂ)(t)v 0, Ty(33) (t)]T' (4.124)

IN

We notice that the terms %71, X31751, and po1)Iay po1) disappear because
(I — o) = diag{0,1,1}, with ¢ = diag{1,0,0}. We can see that the terms in the
derivatives of Lyapunov function candidates (4.122)-(4.124) cancel the non-negative
semidefinite parts in (4.115), and the derivatives of the Lyapunov function (4.121)

becomes

V;Q < —clzipzl - CQzQTzQ <0. (4.125)
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For the actuator us failure case, we have the actuator failure pattern o = diag{0, 1,0}.
We use a new Lyapunov function candidate

1 1 1= o1, 2
Vas = som+ 552+ 5[;:3 X' + Xove

2 2
+ Z X%ﬂgl + /3{(2)1—‘1_21[31(2) + Zﬁg(,-)l“;ﬁz(i)]. (4.126)

=1 =1

With simular approach as actuator u; failure case, we can see that the terms 2,715 ,
Y375, and Py firy disappear because (I — o) = diag{1,0,1}. In this case, we

have
Vi < —0121T21 — cgz;fzg <0. (4.127)

The derivatives of our Lyapunov functions (4.120), (4.125), and (4.127) for all actu-
ator failure cases are negative semidefinite. With the parameter projection schemes,
we can show that all signals in the system are bounded. Since z(%), 22(t), 21(t) €

L>*N L?, based on the Barbalat lemma we can conclude that lim,_,o 21 = 0. V¥ ¥

From Theorem 1, we can see that the adaptive actuator failure compensation
scheme can guarantee the asymptotic tracking for the system subject to uncertain
actuator failures, that is, for the system operating in any of the three actuator failure

cases.

4.5 Initial Control Framework

In this section, we discuss main ideas of an adaptive actuator failure compensation

scheme with a general cooperative manipulator robotic system to develop an initial
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control framework used in this study.

A cooperative manipulator robotic system uses multiple manipulators to control
an object. Since the movement of the object depends on the coordination of every
manipulator, an actuator failure in the system may compromise the entire system.
It is important to develop an actuator failure compensation scheme for the system.
Because a cooperative manipulator robotic system contains many manipulators, it
often has enough redundancy to allow for easy integration of the adaptive actuator

failure compensation scheme.

4.5.1 General Dynamic Model of Robotic System

The dynamic model of a cooperative manipulator robotic system can be divided into

two parts, which are the dynamics of each manipulator and the dynamic of the object.

In order to derive the dynamic model of a general cooperative manipulator robotic
system, we first consider the dynamic of each manipulator. Since each robotic manip-
ulator in the system can be viewed as a rigid robot interacting with the environment,

we have the dynamic model of the ¢th manipulator as

Di(¢:)di + Cilqi, @) Gs + Gila) = 7 — J 7, (4.128)

where ¢; is the joint angle of robot ¢, 7; is the vector of joint torques, and 7; donates
the interacting force between robot endeffector and the object. D;(g;) is the inertia
matrix, C;(q;, ¢;) is the Coriolis and centrifugal term, G;(¢;) is the gravity term, and

J; is the Jacobian matrix from task space to Cartesian space.

We then obtain the dynamic model of the object. The general form of the dynamic

model of a rigid object, which is interacting with the robotic manipulators, can be
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written as
Do(0)E0 + Co(o, o)io + Golwo) = Y ATH;, (4.129)
=1

where x, is the position and orientation of the platform, m is the number of the
manipulators in the system, D,(z,) is the inertia matrix of the object, C,(x,,,)
is the Coriolis and centrifugal term of the object, G,(x,) is the gravity term of the
object, and A; is the augmented Jacobian matrix of the object from the task space

to Cartesian space.

Let y; be the coordinate of the endeffector of each manipulator, we have the

relationship of each coordinate as

Ji(Qi)Qz’ = (4-130)

Ai(z,)Eo = Ui (4.131)

The general dynamic model of a cooperative manipulator robotic system can be
obtained by combining (4.128) and (4.129). With the coordinate transformation, the
dynamic equation of the cooperative robotic system can be written in the task space

as
D (x5)%o + Co(xp, T0)To + Ge(x,) = ET(%)T, (4.132)

where the combine inertia matrix of the object and manipulators D.(x,) is assumed
to be a bounded and positive definite matrix, C.(z,, ¥,) is the Coriolis and centrifu-
gal term, G.(x,) is the combined gravity term, £ = [ET, ..., E1]T with E;(z,) =
J1 A i =1,2,...,m, and 7 = [r{,...,7E]", 7; is the generalized torque vector of the

1th manipulator.
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With the general dynamic model of a cooperative manipulator system, we can de-
sign an adaptive actuator failure compensation scheme for the robotic system subject

to uncertain actuator failures.

4.5.2 Actuator Failure Compensation Scheme

When an actuator failure occurs, the joint torque 7; produced by that actuator be-
comes unknown. Because the complexity of the cooperative manipulator robotic
system, it is difficult to identify failures in the system. In order to ensure the stability
and tracking property of the system, we use the adaptive actuator failure compensa-
tion scheme developed in this study. We first rewrite the dynamic model in the state

space form as

Zi'lzl’g

Ty = 91(9[51,962) + 92(371)11’: Yy = 21, (4-133)

where x1 = z,, and xy = 1,, y is the output of the system, and v = 7 is the input of

the system. With the inertia matrix D.(x.) nonsingular, we have

g1(x1,w9) = =D (1) (Cay, x2)ws + Gla1))

g2(z1) = D Y2 ET (21). (4.134)

We can design an adaptive actuator failure compensation scheme by the following

design procedure:

(i) Obtain a desirable signal wy; = go(x1)u by using the backstepping design

method, which can guarantee the closed-loop signal boundedness and asymptotic
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output tracking of the system in the absence of actuators failures. Define z; =
T1 — Ym, 22 = To — [, where y,, € R" is the desirable trajectory and f = —c121 + Y.

‘e have the desirable signal

Wa = Go(@1, T2)u = —g1(T1, X2) — €220 — 21 + B, (4.135)

(ii) Assuming all actuator failures are known, develop a nominal control for the
system, which can produce a control signal v such that wy = g2(x)v for every desirable

actuator failure pattern o. The nominal controller structure can be written as

1) = Y wivgy() (4130

where X7 is the indicator functions associated with each actuator failure pattern, the
signal vy (t) is the nominal control signal for each case of actuator failure in the

system, and n,, is the number of the actuator failure patterns.

* *

The control signal vf; (¢) can be designed such that wg = g2(1, 22)v7;(t). For each

case of actuator failure,
vt (t) = vy (t) = Avyly (1), (4.137)

where A € R™*™ is the actuator failure pattern matrix, which is chosen to eliminate
the failed actuator input from the equation since we do not have control over the

failed actuator. The nominal control signal can be written as
Vaeo) (1) = halr, 22) v (8), (4.138)

where h;(z1, z2) € R™*" is the design matrix. The signal vj, (t) € R"™! can be chosen
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to satisfy

G2 (T1, T2)U; + Gogiyehi(1, X2) Vg (t) = wa, (4.139)

where gy is a submatrix of g;,which only contain the column associated with the

failed actuator, and g(;)2 is a submatrix of g, without the column in go;);.

(iii) Derive the adaptive controller structure for the system subject to uncertain
actuator failure with the controller parameterization based on the nominal controller

structure developed in part (ii). We can design the adaptive controller structure as

np

u(t) = Z Uy(i) (1), (4.140)

*

where v,(;) is the estimate of X; V(i) with x; estimated by a diagonal matrix similar
to what we did in Section V and p; is estimated by p; based on the actuator failure

model (4.3).

(iv) Develop an adaptive scheme for updating the parameters used in the adaptive
controller structure similar to what we did in Section V. For example, the adaptive

laws for updating the parameter x;; can be chosen as
Xij = —VijZa G2;lijs (4.141)
where v;; > 0 is the adaptive gain, and
My = [Nz‘h,ui% e ,um]T = h;Kjpwq, (4-142)

with h;, and K5 being the design matrices from the adaptive controller structure.
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Similarly, the adaptive laws for p;;) can be chosen as

pi) = ~Lij) faiza 9210, (4.143)

where the parameter I'(;;) = F%’;j

defined as ¢; = [Qbih iy e <Z5m]T = i K.

) > 0 s the adaptive gain matrix. The function ¢; is

Such an adaptive actuator failure compensation scheme is applicable to specific
system under this general cooperative robotic system model to improve the perfor-

mance of various cooperative manipulator robotic system.

4.6 Simulation Study

In this section we simulate the adaptive actuator failure compensation control scheme

based on the robotic model subject to uncertain actuator failures.

4.6.1 System Model and Simulation Conditions

The simulations are performed based on the dynamic model of the robotic system as

1 = f(x1)2o (4.144)

Ty = g1(x1, T2) + g2(21, T2)u, (4.145)

where y = x; is the output of the system. The matrix f(z1), g1(x1,x2), and go(x1, x2)
are calculated from equation (10). The simulations assign the mass of each actuator
as my = mg = mg = lkg, the mass of the platform m, = 10kg, the moment of
inertia of the platform I, = 1kg-m?, and the length of the platform by = Im. For

simulation we choose ¢; = ¢y = 2,7;; = 0.01, Ty = 0.01L, f,; = [1,sin0.3¢]". The
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initial conditions are chosen as y(0) = [1,1]7, x;;(0) = 0, and x;¢;) = [0,0]%.

In this simulation study, two simulations are evaluated as follows:

Lock In-Place Failure of the Actuator. In this simulation, we use a constant
reference output y,,(t) = [2,0.5]7. We simulate actuator failures occur twice as follows:

(i) No actuator failure case: u(t) = v(t) for 0 <t < 50s,

(ii) Actuator us failure case: us = s = 20 at time 50 < ¢t < 100s,

(iii) The failing actuator us becomes normal again, no actuator failure case: u(t) =
v(t) for 100 < ¢ < 150s,

(iv) Actuator u; failure case: u; = 43 = —30 at time 150 < ¢ < 200s.

Sinusoidal Actuator Failure. In this case, we use a sinusoidal reference output
Ym(t) = [2 +sin(0.1¢),0.2 4+ 0.1sin(0.1¢)]7. We let actuator failures happen two times
as follow:

(i) No actuator failure case: u(t) = v(t) for 0 <t < 50s,

(i) Actuator uy failure case: us = iy = 205sin (0.3t) at time 50 < ¢ < 100s,

(iii) The failing actuator us becomes normal again, no actuator failure case: u(t) =
v(t) for 100 < ¢ < 150s,

(iv) Actuator u; failure case: u; = 4y = —30sin (0.3t) at time 150 < ¢t < 200s.

4.6.2 Simulation Results

For the Lock In-Place Failure of the Actuator case, the simulation results show the
output of the system in Figure 4.2, the control input in Figure 4.3, and the adaptive
parameters are presented in Figure 4.4 - Figure 4.5.

For the Sinusoidal Actuator Failure case, the simulation results show the output of
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the system in Figure 4.6, the control input in Figure 4.7, and the adaptive parameters

are presented in Figure 4.8 - Figure 4.9.
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Figure 4.2: System responses for y,,(t) = [2 + sin(0.1¢),0.5]” with constant failure.



4.6. SIMULATION STUDY 92

200 T T T
= / _
2 of - -
5
_200 1 1 1
0 50 100 150 200
Time (1)
200 T T .//_i
B
z of \ [ .
N
=)
-200 ; ! .
0 50 100 150 200
Time (t)
100 T T T
/é\ ¥
£ 50 i
o
S5
0 1 1 1
0 50 100 150 200

Time (t)

Figure 4.3: Actuator outputs subject to constant actuator failure.
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Figure 4.4: Adaptive indicator functions x11, x12, X13-
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Figure 4.5: Adaptive indicator functions xa1, X22, X31, X32-
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Figure 4.6: System responses for y,,(t) = [2 + sin(0.1¢),0.2 + 0.1sin(0.1¢)]" with
sinusoidal actuator failure.
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Figure 4.7: Actuator outputs subject to

sinosoidal actuator failure.
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Figure 4.8: Adaptive indicator functions x11, x12, X13-
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Figure 4.9: Adaptive indicator functions xa1, X22, X31, X32-

The simulation results confirm that the adaptive actuator failure compensation

scheme can guarantee that the tracking error of the system goes to zero as time goes

to infinity for a constant or a sinusoidal desirable trajectory. The adaptive actuator

failure compensation scheme allows one actuator u; or us to fail, but both actuators

cannot fail at the same time. Finally, the simulation results show that adaptive ac-

tuator failure compensation scheme supports both a constant and a sinusoidal failure

signal.

4.7 Conclusion

Cooperative manipulator robotic systems which perform tasks such as moving ob-

jects, aiming an automatic firearm, and controlling a laser beam, are crucial for many
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operations that work in an extreme environment. Since the systems contain multi-
ple manipulators, actuator redundancy usually exists which is required for actuator
failure compensation. Developing an adaptive actuator failure compensation scheme
that can effectively compensate for the actuator failures in the system is important
for the operations and is a challenging control problem.

In this chapter, we have studied a benchmark cooperative manipulator system,
and then developed a new adaptive actuator failure compensation scheme for a class
of nonlinear multi-input multi-output cooperative manipulator robotic system. Our
research shows that, with a complete parameterization of failure pattern, a desirable
closed-loop stability and asymptotic tracking of the system can be achieved, despite
the uncertain actuator failures. The simulation results also verified the performance of
the adaptive control algorithm when applied to the benchmark robotic model subject

to uncertain actuator failure.



Chapter 5

Design for A Hexapod System

In this chapter, we develop a new adaptive actuator failure compensation scheme
based on the initial adaptive actuator failure compensation framework to control a
Hexapod system. The control design ensures desired closed-loop stability and asymp-
totic output tracking of the system subject to uncertain actuator failure.

Hexapod robotic systems play an important role in several applications such as
precision pointing systems, where Hexapods are used to aim laser devices. The Hexa-
pod has six manipulators to collectively move the payload, but we may not need to
control six degrees of freedom at all time. The Hexapod needs three actuators to
control the orientation of the payload, so it is possible to use the remaining actuators
to compensate for failures in the system.

In this study, we develop a new adaptive actuator failure compensation scheme
to control a Hexapod. The control design ensures desired closed-loop stability and
asymptotic output tracking of the system subject to uncertain actuator failures. In
this study, we also consider the failure cases such that multiple actuator failures occur
at the same time. This study makes the following contributions to the robotics and

control fields:

e Develop an adaptive actuator failure compensation scheme for a Hexapod sub-
jected to uncertain actuator failure without explicit knowledge of the failing

actuator.

97
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e Extend the scope of the adaptive actuator failure control design method to
actuator failure cases where more than one actuator fails at the same time

(concurrent actuator failures).

e Study the simulation of the adaptive actuator failure compensation scheme

based on the Hexapod model subject to uncertain actuator failure.

The chapter is organized as follows. In Section II, we derive the dynamic model
of the Hexapod to be used in this study. In Section III, we formulate the problem
with the discussion of the control objective, actuator failure model and concurrent
actuator failures. In Section IV, we design a nominal controller for the system in a
nominal situation in which the knowledge of actuator failure is known. In Section V,
the adaptive control scheme is developed based on the nominal controller structure,
for the case of uncertain actuator failure. Finally in Section VI, the simulation results

are presented to confirm the effectiveness of the design.

5.1 System Modeling of the Hexapod System

In this study, we will develop an adaptive actuator failure compensation control so-
lution framework of a Hexapod in the presence of uncertain actuator failures. We

consider the Hexapod and the manipulator structure in Figure 5.1.

5.1.1 Dynamic Model of the Hexapod

The dynamic equation of the i strut of the Hexapod is given in the joint space as [11]

midzTijsi = fmi - fpi - midfg - ki(d?(psi - Qi) - lri)

— bd! (psi — i),i = 1,2,...6, (5.1)
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Figure 5.1: The model of Hexapod and the manipulator structure.

where m; is the mass of the ith strut, ¢ is the gravitational constant, k; is the constant
of stiffness of the ith strut, b; is the damping constant of the ith strut, f,,; is the force
of the motor which located in the top of the ¢th strut, f,; is the force of the ith
strut exerted on the platform, [.; denotes the relaxed strut length, d; € R? is the
unit direction along the ith strut, ps,ps, P € R> represents the position, velocity
and acceleration of the top of the ith strut respectively and ¢;, ¢; € R? represents the

position and velocity of the bottom of the ith strut.

Define [ = [I},ls, ..., lg]*, we can combine the six equations of struts in (5.1) as

Msl+ Bl + K(l - lr) + MsQau + Msgu - fm - fp; (52)

where M = diag{m, ma,...,ms}, B =diag{b,bs,...,bs}, K = diag{kq, ko, ..., ks},
l’r — [lrlalr2""7lr6]Ta Qav = [d’{q.l»dg’q'%”'?dgq.ﬁ]T7 Gu = [d{gad;pg7»dg’g]T7 fm -

[finty fm2s oy frme]™> and f, = [fp1, fo2s -y fo6]” are the combined matrices.

The equation describing the motion of the orientation of the platform, which is
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modelled as a rigid body, is given in the reference frame by

LA+ Cy(0,0)0 = T, (5.3)

where 6 € R? is the angular displacement of the payload, I, € R**? is the matrix of
moment of inertia, C,(6, 0)6 represents the Coriolis and centripetal terms and 7 € R?

is the generalized torque exerted on the platform.

Let x, = [0f,pl] € R® denote the pose of the base frame with respect to the
reference frame, where 67 € R? represents the angular displacement and p, € R? is
the position of the base frame. The generalized torque can be calculated from the

strut forces as

7= E"(0,x0) . (5-4)

where the transformation matrix F(6,x;) = J(0,x,)RT, J(0,xs) is a 6 x 3 matrix
which is a part of the manipulator Jacobian and R’ is a 3 x 3 rotation matrix from

the base frame to the reference frame.

Combining (5.1) and (5.3) as in [11], we have the dynamic of the Hexapod as

D(0, x3)0 + C(0, X, 0, X»)0 + G (0, x»)

= ETf'm - P(ev Xbs 97 Xb)‘g - ETK<7?((97 Xb) - l'“)

_0(97 Xbs Xb)Xb - Q(ev Xbs Xb)va (55)

where 7 is a constraint function and
D, xb) = I, + ETM,E, C(0,x3,0,x) = C, + ETBE + ETM,JR" 4+ 2ETM,P,,
G(67 Xb) - ETMSg’uv P(67 Xb 6.7 Xb) — ETMSPZ + ETBP37

Q0 xp, Xp) = ETM,Jp + ETM,[Q Ogx3),
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C(0, xs, Xs) = E"M,Ch,

Pi(0, X, X0)0 = T (0, x0)05 x R (x5, X0)0,

Py(0,8, x5, X6)0 = J (0, X6, 0, %5)0 x RT (X3, X6)0 + J (0, x6)05 x 0 x RT (x5, X5)0,
P3(0, x5, X5)0 = J(0, x5)05 X RT(x3, xs)0 and

Q0. x5, X6)0 = J (0, x5)05 x R (x5, Xs)0.

5.1.2 Dynamic Model in State Space Form

The Hexapod model (5.5) can be written in the state space form as

T =T, Eo = g1(x1,22) + go(1, 22)u(t), (5.6)

where 21 = 0 € R* and 2, = 6 € R® are the states of the system, y = z; € R? is the
output of the system, v = f,, € R® is the system input, ¢, € R?, and g, € R3>* are

known matrices based on the dynamic equation in (5.5)

g2(x1,m2) = D(0, x) ' E” (5.7)
91(z1,22) = D(w1, x) " [=C(21, Xb T2, X5)0 — G (21, Xb)
_P(beb’é?Xb)xl — ETK(%(‘TD Xb) - ZT)

—C (1, Xb, Xb) X6 — Q(T1, X6, Xb) Xb)- (5.8)

In order to design an adaptive control design, we first assume that the base position
X» and the base velocity x; are measured. Under this assumption the Jacobian matrix

J, the rotation matrix R and the constraint function 7 are known.
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5.2 Problem Formulation

The objective of this research is to design an adaptive actuator failure compensation
scheme to ensure closed-loop stability and asymptotic output tracking of a Hexapod

without explicit knowledge of failing actuators.

5.2.1 Control Objective

Hexapods are used in applications that require high precision as well as reliability such
as controlling lasers in a surgery or carrying sensitive materials. Since a Hexapod
contains many actuators, the possibility of actuator failure is relatively high. For
example, a damage in a single wire may cause an actuator to completely fail, or a delay
in the communication between the controller and an actuator may cause the output
of that actuator to remain constant for a period of time. To solve these problems, we
design a controller, which utilizes redundancy in the system to compensate for the
failures. In this study, we design an adaptive actuator failure compensation for the
Hexapod to control the orientation of the platform despite concurrent failures.

The control objective of the study can be described mathematically as follows.
Consider the Hexapod model (5.6), due to possible actuator failures, an applied feed-
I

back control signal v(t) = [v1,vs,...,0g]" may not reach the system, as u;(t) is not

equal to v;(t). More precisely, in the presence of failures, the signal u(t) is

u(t) = (I — o(t)o(t) + o(b)a, (5.9)

where @ is an unknown failure signal and o(t) = diag{oy, 09, ...,06} is the actua-
tor failure pattern matrix such that o;(t) = 1 if the i actuator fails and o;(t) = 0

otherwise.
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The control objective is to design a feedback control signal v(t) such that
limy o0 (g2(1, z2)u(t) — wye(t)) = 0, despite the uncertain actuator failures wu(t) =
(I — o(t))v(t) + o(t)u, where wy is a desirable control signal for w to control the
system (5.6). The controller is designed to make all signals in the closed-loop system
to be bounded and the output y(t) = z1(t) asymptotically tracks a given reference
signal y,,,(¢). When this objective is met, the real system &y = 9, 9 = g1(21,22) +
g2(x1, x2)u(t) will be ensured to have the desired signal boundedness and tracking

properties, and this will be achieved through control adaptation.

The adaptive actuator failure compensation scheme is designed to compensate
for failures in the system without the knowledge of the failing actuator j, time that

actuator failure occurs ¢;, or the output of the failing actuator ,;(t).

5.2.2 Actuator Failure Model

In this study we assume that we do not have the exact knowledge of the actuator
failures in the system. Let u(t) = f,,(t) € R® be the system input vector. When an
actuator failure occurs, the control input component u;(t) associated with the failing

actuator j may become an arbitrary signal which can be expressed as
w;(t) = u;(t),t >t;,7 € {1,2,...,m}. (5.10)

Although we do not know the value of the control input when the failure occurs, we
can model the failure based on some knowledge of the structure of the actuator failing

signal as

u;(t) = wjo + Zﬂijfaij(t)vt > 1, (5.11)
i=1
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where n; is the number of components in the failing signal, f,;; are known functions
corresponding to each component of the actuator, and j,¢;, 4;; are unknown failure
index, failure time and failure value of each component of the actuator. With some
specifications of the unknown constants o, 4;;, and known functions f,;;(t), we can
model some common actuator failures, for example, the lock in-place failure of the
actuator: @; = ujp, or the complete failure of a motor in the system: @; = 0. The
terms ;; fo;;(t) in the actuator failure model can be used to cover additional types of

time varying actuator failures.

5.2.3 Concurrrent Actuator Failures

An autonomous robotic system that has multiple actuators in the system such as a
Hexapod often uses serial-link structures to communicate between the controller and
the actuators in the system. If there is a damage in a part of the communication
link, it may cause every actuator in the same chain to fail at the same time. The
concurrent actuator failures, where more than one actuator fails at the same time, is
a crucial problem in the robotic field.

In this study, we design an adaptive actuator failure compensation scheme for a
Hexapod system. The developed adaptive control scheme can guarantee the desired
closed-loop stability and asymptotic tracking, despite concurrent actuator failures.
Since the Hexapod has six manipulators, the controller can compensate up to three

concurrent failures before the system becomes underactuated.

5.3 Nominal control design

In this section, we develop a nominal controller for the system, assuming the knowl-

edge of the actuator failures are known. Such a controller structure can be used to
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design an adaptive actuator failure compensation scheme for the system with uncer-
tain actuator failures. Our control objective is to control the system in equation (5.6)
whose actuators u(t) are subject to the failures (5.11), that is, to design a feedback
control signal v(t) to make the system output y(¢) (orientation 6(t) of the platform)
tracks a desirable trajectory y,,(t) asymptotically. First, we specify a desired feedback

control signal wy for w = go(x1, 29)u from a backstepping method [14, 15]:
wa = —q1 (1, T2) — Co20 — 21 + B (5.12)

with the design function f = —c121 + Y-

The nominal control law will guarantee that the control input signal matches the

desirable signal wy; when actuator failures occur.

Since the controller needs to handle multiple cases of actuator failure, we select a
nominal controller structure as a combination of the nominal controller of each actua-
tor failure case. We first design multiple individual control schemes for each actuator

failure case.

Design for the no failure case. In the case of no actuator failure in the
system, we have control signal u(t) = v(t). We need to design v(t) = v*(t) such that

g2(x1, w2)v* = wy. We consider
v (t) = v(1)(t) = ha(1, T2)v501) (1), (5.13)
where h, (71, 29) € R5*® and Uny(t) € RO*1 satisfy

92(w1, 2) ha (21, X2) V(1) = Wa- (5.14)
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Since the Hexapod has six manipulators to collectively move the orientation of
the platform, we have some flexibilities when choosing the matrix h,(xi,z5). We
can choose the matrix such that the system is optimized subject to some desirable

constrains. With chosen h,(x1, z2), the intermediate control signal can be written as
Uy (t) = Ka(21, T2)wa, (5.15)

where K, is a matrix in R9*3.

In this study, we choose to optimize the system to distribute the workload to
each actuator equally. We design a controller such that the output of the adjacent
actuator produces an equivalent force if possible, in this actuator failure case we

choose v1 = v9, v3 = v4, and vs = vg. With this constraint, we have

v*(t) = vy (t) = [v1, v1, v3, v3, 05, 05]" (5.16)

Uy (t) = ha (@1, 22)vg1) (1), (5.17)

where vf;(l)(t) = [v1, v, v3]. With goq1 = [%(921 + g22), %(923 + go4), %(925 + g26)] We can

3x3

choose a new matrix hy(z1,x2) € R**® such that go,(x1, 22)h1 (21, x2) is invertible, so

Vo) (t) € R**! can be chosen as
v;(l)(t) = Ki(z1, 22)wq, (5.18)

where Kl = (92a1h1($1, 1‘2))_1.

Design for one actuator failure case. There are six possible configurations of
actuator failure with one failing actuator. Since the Hexapod has a relatively sym-
metric structure, the controller for each possible failure configuration can be designed

similarly for each configuration, so we will only choose actuator u; failure case to
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serve as an example in this study. In case of actuator u; failing, we have the signal

uy = u;. The nominal control signal v(t) = v*(¢) can be chosen as
v (t) = vy (t) = [0, v, 05, v3, 0%, vi]”. (5.19)
With v}, (t) = [v3, v3, v3] we have
Ua(2) (1) = ha(z1, 22)v55) (1), (5.20)

where the matrix hy(xy,22) € R3*3. The signal Vg (1) € R3>*! can be chosen to

satisfy
921 (71, T2) Uy + Gaazha(1, T2)v59) (t) = W, (5.21)
where goq0 = [ga2, %(ggg + go4), %(925 + go6)]. The signal vg(z)(t) can be written as
Up(2) (t) = Kai (21, 2)wa + Kao(x1, 22) 01, (5.22)

where Ky = (gzthz(l‘l,l‘z))_l and Ko = —(92a2h2($1,f?))_lgm(fﬁl,fﬁz)-

Design for two actuator failure case. In this case, we consider both actuator u,
and uy fail at the same time. When actuator u; and wu, failure, we have the signals

uy =ty and up = Up. The nominal control signal v(t) = v*(¢) can be chosen as
vt (t) = v(y(t) = [0,0,v5, 05, v, vg]" (5.23)

With v*

(1) = [v7. 5. ] we have

Vaea) (1) = hs (w1, 22)055) (1), (5.24)
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where the matrix h3(z1,22) € R, The signal v, (f) € R can be chosen to

satisfy
9211 + g2alla + G2a3havg o) (t) = wa, (5.25)
where ga,3 = [go3, %(924 + go5), gog]. The signal v(’;(3) (t) can be written as
Vos)(t) = Kaziwa + Kaotiy + K33la, (5.26)
where K31 = (g2ashs(r1, 22)) 7",
K3y = —(g2ashs (1, 2)) " ga1 (1, ¥2) and

K33 = —(goazhs(x1, 19)) L gaa(xy, 22).

Design for three actuator failure case. In this case, we choose actuator u,, us
and us fail. When actuator uq, ug and us failure, we have the signals uy = 4y, ug = ug

and us = u5. The nominal control signal v(t) = v*(t) can be chosen as
v*(t) = viy (t) = [0, v3, 0,v;,0,v5]". (5.27)
With v} (t) = [v3, v}, v5] we have
Uy (8) = ha(@1, m2)vg4) (D), (5.28)

where the matrix hy(z1,25) € R*? and the signal vj, () € R**! can be chosen to

satisfy

921ty + 923tz + goslis + Goashavyy (t) = wa, (5.29)



CHAPTER 5. DESIGN FOR A HEXAPOD SYSTEM 109

where gaq4 = [ga2, g4, gog]. The signal va‘( 5 (t) can be written as
Voa)(t) = Knwa + Kaptiy + Kaztiz + Kyatis, (5.30)
where Ky = (gaqaha(z1, 22)) 71,
Kip = —(g2aaha(1. 22)) g1 (21, 22),
Kz = —(g2aaha (1, 2)) " go3(w1, 22) and

Ky = —(g2a4h4(331a5’32))_1925(1:171:2)'

Composite control design. With the control signals for all cases, we design a

composite nominal control law for v(t) = v*(t) as

vi (1) = X100y () + X309 () + X303 () + Xaviy (1), (5.31)

where X7, x5, X5, x4 are the indicator functions of the actuator failure: x; = 1 for
© = 1,2,3,4 if the associate failure pattern occurs, x; = 0 otherwise. The signal
vz‘l)(t) is the nominal control signal in case of no actuator failure in the system,
Uy (t) is the nominal control signal for single actuator failure case (actuator u; fails),
UE*B)(t) is the nominal control signal for the two actuator failure case (actuators u;
and uy fail) and Vi (t) is the nominal control signal for the three actuator failure
case (actuators wuq,us,us fail). The other possible cases of actuator failure can be
designed and added to the composite control in a similar way with the example cases.
Because of the indicator functions and the nominal control signals, the composite

design ensures go(x1, z9)u = wy for every case of failure that we consider.
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5.4 Adaptive Failure Compensation Design

The nominal control design, which is developed in Section IV, needs information
of the actuator failures. In this section, we develop an adaptive actuator failure
compensation scheme, which can achieve the control objective in the presence of
uncertain actuator failures without the knowledge of the failing actuators and its

signals.

5.4.1 Adaptive Controller Structure

The adaptive control algorithm is developed based on the nominal controller structure.
Since we do not know the values of x7, x5, x4, x4 and the value of failing actuator u

we first design the adaptive controller structure as

v(t) = Vy(1) () + Ux(g)(t) + Uy (3) () + Vy(4) (1), (5.32)

where v, (;)(t) are the estimates of X500, for j =1,2,3,4.

We estimate x; with diag{x;1, X;2, Xj3}, where we estimate the parameter x; three
times for achieving a suitable parameterization. The actuator failure u;(¢) can be

parametrized using the actuator failure model (5.11).

In order to illustrate this concept, we use the parameterization of vy s)(t) as an

example in our study.

With vy(3)(t) = [0,0,0y(3)3, Ux(3)1, Ux(3)4: Ux(3)6)” and @; are the error signals, let

Uya3)(t) = [Ux@)3: V()4 V)]

we can derive vy,3)(t) from the nominal version
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Vq(3) (t)* as
X3Ua(3) () = X3ha Kziwa + X3U1ha Ksz + X3U2hs Ks3. (5.33)
Then, the estimate of x3v} (t) can be written as

Uya(3) (t) = diag{X31> X325 X33}h3K31Wd

pgl(l)fal (t)¢311 ng(l)fag(t)Qngl
+ pgl(Z)fal(t)%l? + pgz(z)fw(t)%zz ) (5.34)
/)51(3)fa1(t)¢3137 /353(3)]”(12(75)<b3237

where diag{xs1, xa2, X33} is the estimate of diag{ x5, X352, X5z} With x5 = x5, = x5, =
X33- The terms x3,03;, X3205 and x33p3; are estimated by psi1),psi2) and psis), for
i = 1,2 with ¢31 = [da11, 312, ¢313]T = h3 K3 and ¢z = [¢321, P302, ¢323]T = h3Ks;.

The parametrization of vy 1)(t), vy(2)(t) and vy4)(t) can be done in the similar way
as vy (3)(t). With this parametrized controller structure, we will develop adaptive laws
to update the parameters diag{xi1, X2, Xis}, for ¢ = 1,2,3,4, pagj), p3105)» P320)» Pa1(j)» Pa2(j)
and pg3(;), for 7 = 1,2,3, so that the system can achieve the control objective in the

presence of uncertain actuator failure.

5.4.2 Adaptive Laws

In this subsection, we develop an adaptive scheme for updating the parameters of
the controller (5.32). The adaptive laws for x;; with i = 1,2,3,4 and j = 1,2,3 are

chosen as

Xij = —Yij%3 92aijl; + Oxs; (5.35)
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where v;; > 0, are the adaptation gains, and

pi = [pins pio, pis)" = hiKiwq (5.36)

with hy, ho, hs, hy, K1, K21, , K31, and Ky being the design matrices from the adaptive
controller structure (5.32).

The projection function p,,; is chosen as

0 if Xij € (0,1),

or x;; =0 and py; >0,
Oxij = 9 (5.37)
or x;; =1 and py; <0,

— Oxij otherwise,

with éxij defined as @xij = —%jzggagij,ulj.

Similarly, the adaptive laws for p;(;y = [pij)1)s s Pij)(nn)]” Decome

pai) = —T@i) faiza 202iP25 + 0pays P315) = —L31)fai 23 9243 93105) + Gpans)
P32(j) = _F(32)fajzg.92a3j¢32(j) + Opaajy> p41(j) = _F(41)fajzgg2a4j¢41(j) + 9415

Pa2(j) = —F(42)faj22TgQa4j¢42(j) + Opinyys Pa3i) = —F(43)fajzgg2a4j¢43(j) 1 Opuisisy

(5.38)
where the projection function 0,y = [0,i(j)(1)s -+ Qm(j)(m)]T is chosen as
( . * *b
0 if Ptk € (DI P,
it pighywy = pixs and gk = 0,
Ooigyy = (5.39)

or  pigk) = Pik, and oGk <0,

L 0pi() (k) otherwise,
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With Gpi(j) = [20i()(1), -+ pits)ny)] " defined as

ﬁ2(j) = _F(2j)fajzg.92a2j¢2j’ ﬁ31(j) = _F(31)fajzggza3j¢31(j)
P320) = —T32) faj?s 92a3iP320), Py = —T (1) faj?s Goa;Pa1(y)
Pa2(j) = —F(42)faj22nga4j¢42(j); P43(j) = —F(43)fajzggza4j¢43(j)7 (5.40)

T

where I'(;;) = F(ij) > () are the adaptation gain matrices.

Here we use a parameter projection scheme to ensure the boundedness of the

estimated parameters in the presence of actuator failure uncertainties.

We have the range of x; as 0 < x; < 1. Since we know x; is between 0 and 1,
we can use the parameter projection to ensure their estimates x;; are in the interval

[0, 1], as continuous parameters.

Let pit, pi? be the upper and lower bounds of the components pj, of pf, i =
2,31,32,41,42,43 k = 1,2,...,k,, that is, pi* < pi < pi. The upper and lower
bounds pi¢, pi? can be obtained from the maximum and minimum forces that each

actuator can produce.

With the parameter projection scheme and chosen initial conditions 0 < x;;(0) <
L it < pigiry(0) < Py, we can guarantee the boundedness of every estimated param-

eter used in the adaptive control scheme.

Theorem 1. The adaptive actuator failure compensation scheme with the feedback
control law (5.32) whose parameters are updated by the adaptive laws (5.35)-(5.40),
when applied to the Hexapod model (5.6) subject to actuator failures (5.11) whose
failure pattern, value and time instants are uncertain, guarantees the closed-loop sig-

nal boundedness and asymptotic output tracking: lim; o (y(t) — ym(t)) = 0.
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Proof. The proof is similar to that in [10] for a nonlinear system and is refined
here. We first consider the error signals z; = z; — y,,, and 2o = x5, — 3. With

uncertain actuator failures, we have the derivatives of z; and z, as
21 = —(C1%1 + 29, 2.2 = —Z21 — (%9 + gg(ﬂfl, .Z'Q)(I — O')(U — U*). (541)

Because the derivative of the error signal Z, contains the actuator failure pattern o
which changes according to each actuator failure case, we need to consider a new
Lyapunov function candidates for each actuator failure pattern to ensure the system

stability.

For the case of no failure, we consider the following Lyapunov function candidate

3 3
1 1
Vi = 54 To+ 22 Z2 + ZZ zﬂw

1 P
+52. Z Pty Ty Pt (5-42)

k j=1

for k = 2,31, 32,41,42, 43.

With the parameter projection scheme, we have the derivative of each term as

d 1
dt 2

+ Zzng(l’l» 22) (1 = 0)[0, 00,0y (D] + 23 g2 (1, 22) (I — 0)[By(31) (£), 0, Ty33) (©143)

(zl 21+ 25 22) —cllezl — cgzszQ + zzng(a:l, T2)(I — 0)y)

3 3
dt 3 lemz = =23 D> Xuigaitd] + Y X1 0 < =25 ga(1, 22)Ty1) (5.44)
i=1 =

3 2
% 3 (Z Pl i) = D Ko v + D BT Gy < 0 (5.45)
=1

=1 =1
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Here we have used the parameter projection property and ; that is,
f(iﬂi;lQXij <0 ﬁ?(j)ri_jlgﬂm <0. (5.46)
With o = diag{0, 0,0}, the derivative of the Lyapunov function (5.42) becomes
Vi < —c 272 — cyzt 2y < 0. (5.47)

For the actuator u, failure case, we have the actuator failure pattern o = diag{1, 0, 0}.

We need a new Lyapunov function candidate V5 as

1 1
Vaz = 521 Z1 + 222 2ty [Z Xt + ZX%’YQZ + X323 + Zpl(z 1 A1)
i=1 i=1
+ 02(2)F22 P22)]- (5.48)

To obtain the derivatives of the Lyapunov function candidates in (5.48), we con-
sider the derivative of each term similar to the derivation in the case of no actuator

failure. In this case, we have

3
d - -
d_ Z Xlz’)/lz = _2392(1‘17 x2)[07 U;fa(Q) (t)]T + Z X2i72ilgxzi
i=2
< —22 Tgo(m1, mg)(I — 0)Uy(1) (5.49)
d, 1
(5 mezz + Zpl )

2 2
= =23 9221, 22)[0, Dhooy (D) + D X073 0vns + D 1T 0o

=1 =1
< —2z5 ga(w1,2) (1 — 0)[0, Ty o) ()] (5.50)

(5.51)
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d, 1

E( 5 (X375 + 52(2)F2_21ﬁg(2)))
= _Z,—QFQQ (331, 332)[0, {};{a@) (t)]T + 23273_219)(32 + ﬁg(Q)F2_21QP2(2)
< — 2 21, 22) (I = )O3 (1), 0, Dy ()] (5.52)

We notice that the terms X3v1;', X3,751 » and ooy p2(1) disappear because (I —o) =
diag{0,1, 1}, with o = diag{1,0,0}. We can see that the terms in the derivatives of
Lyapunov function candidates (5.49)-(5.52) cancel the non-negative semidefinite parts

in (5.43), and the derivatives of the Lyapunov function (5.48) becomes
Viy < —c12] 2 — eyt 2y < 0. (5.53)

For the actuator uy failure case, we have the actuator failure pattern o = diag{0, 1, 0}.
We use a new Lyapunov function candidate

1 1 1 9 2 -
Vi = 52?21 + §Z2TZ2 + 5[2 X%ﬂul + X§27221
i=1,3

2 2
+ Z >~<§z’73_z‘1 + ﬁﬂz)rleﬁl(Q) + Z /3%“(1'){122152(2,)]‘ (5.54)

=1 =1

With a similar approach as actuator u; failure case, we can see that the terms 2,715 ,
Y3751, and Py piry disappear because (I — o) = diag{1,0,1}. In this case, we

have
V, < —c12l 2 — ozl 2 < 0. (5.55)

For the remaining actuator failure cases, we have the different actuator failure pattern
o, thus, a new Lyapunov function candidate is needed to analyze the stability of the

system. We can notice that the previous Lyapunov function no longer works in the
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other actuator failure cases because we cannot guarantee that term associated with the
estimated parameter corresponding to the failing actuator X?j%;l and ﬁ,-(j)Fi_jl Pi(y) will
be negative definite. Thus, the new Lyapunov function candidate can be constructed
by removing such term from the original Lyapunov function V.

It can be proven that the derivative of the new Lyapunov functions candidate con-
structed this way are negative semidefinite. With the parameter projection schemes,
we can show that all signals in the system are bounded. Since z(t), z2(t), 21(t) €

L> (N L?, based on the Barbalat lemma, we can conclude that lim; ,,, 2, = 0. 7 V7

5.5 Simulations Study

In this section, we simulate the actuator failure compensation control scheme based

on the Hexapod model subject to uncertain actuator failures.

5.5.1 System Model and Simulation Conditions

The simulations are performed based on the Hexapod model (5.6). We assign the
parameters in the system based on the Stewart platform [8,9].

The base point of each manipulator is x4 = [0.30cos &, 0.30 cos &, 0] for i =
1,2,...,6, the platform points are assigned as p; = [0.15 cos %’,0.15 cos %’,O], the di-
rectional vectors d = [0.81,0.23,0.95,1,0.71,0.95;0.27, 0.92,0.29,0, 0.7, 0.29;
0,0.31,0.1,0,0,0.1].

The mass of each manipulator is assigned as 3.0kg, the mass of the platform with
the payload M, = 40.0kg with the inertia I, = [0.05,0.003,0.004;0.003,0.04, 0.003;
0.004,0.003,0.1]. For simplicity the spring and damping constants are chosen to be

one. The initial conditions are y(0) = [1,1,1], and estimated parameters have zero
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initial condition.
In this study, we set the desirable trajectory of each simulation as
Ym = [5sin (0.2t), 5sin (0.2t), 5sin (0.2¢)]7, we consider three cases of actuator failures
as follows:
One actuator failure case:
(i) No actuator failure case: u(t) = v(t) for 0 <t < 50s,
(ii) Actuator u, failure case: u; = @; = 20sin (0.1¢) at time 50 < ¢ < 100s.
Two actuator failure case:
(i) No actuator failure case: u(t) = v(t) for 0 <t < 50s,
(i) Actuator u; and uy failure case: wy = @; = 20sin (0.1t), us = 4y = 10sin (0.1¢) at
50 <t < 100s.
Three actuator failure case:
(i) No actuator failure case: u(t) = v(t) for 0 <t < 50s,
(ii) Actuator uy, uz, and wus failure case: w; = u; = 20sin(0.1%), uz = uz =

10sin (0.1¢), us = s = 10sin (0.1¢) at 50 < ¢ < 100s.

5.5.2 Simulation Results

For each actuator failure case, the simulation results show the system output 0(t) =

0,0,,0.]" in Figures 5.2 - 5.4.



CHAPTER 5. DESIGN FOR A HEXAPOD SYSTEM 119

60 80 100

0] 20 40
Time (t)

0 20 40 60 80 100

Time (t)

0 20 40 80 100
Time (t)

Figure 5.2: System output 6(t) vs. y,,(t) for one actuator failure case.
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Figure 5.3: System output 0(t) vs. yn,(t) for two actuator failure case.
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Figure 5.4: System output 6(t) vs. y,,(t) for three actuator failure case.

The simulation results confirm that the adaptive actuator failure compensation
scheme can guarantee that the tracking error of the system goes to zero for a sinusoidal
desirable trajectory. The adaptive actuator failure compensation scheme allows up

to three actuators to fail at the same time.

5.6 Conclusions

A Hexapod plays an important part in many projects. Developing an adaptive ac-
tuator failure compensation scheme that can effectively compensate for the actuator
failures in the system is important for those applications and is a challenging control
problem. Since the system has six manipulators, we can design a controller, which
utilizes the redundancy to control a Hexapod with concurrent failures.

In this chapter, we have studied the Hexapod. Our research shows that, with

a complete parametization of failure patterns, a desirable closed-loop stability and
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asymptotic tracking of the system can be achieved, despite the concurrent actuator
failures. The simulation results also verified the performance of the adaptive control

algorithm when applied to the Hexapod model subject to uncertain actuator failures.
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Chapter 6

Design for A Cooperative System

with Parameter Uncertainties

One of the most important characteristic of robot manipulators, which make a ma-
nipulator difficult to be controlled, is that the dynamic of the manipulators is highly
nonlinear. Although it is possible to design a controller to achieve a good performance
if we known a precise model of the system [15], the controller is not capable of han-
dling any changes and uncertainties in the system. In general, a robot manipulator
often interacts with environments such as grabbing or carrying different objects with
unknown dimensions, orientations or gripping points. Hence, although it is possible
to obtain the parameters in the system with sufficient accuracy, it is not practical to

use parameter identification to obtain system parameters for every circumstance.

The problem of designing adaptive control laws for rigid-robot manipulators with
uncertainty that ensures asymptotic trajectory tracking has interested rescarchers
for many years and many adaptive control algorithms have been proposed [20, 15,
17, 49, 15, 22| . The basic idea of adaptive control is to change the values of gains
or parameters in the control law according to some online algorithms corresponding
to the changes and uncertainties in the system. The adaptive controller can learn
an appropriate set of controller parameters during the course of its operation. A

key point of the adaptive control algorithm is to make the tracking error converges

123
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regardless of whether the trajectory is persistently exciting or not [49]. That is, we do
not need parameter convergence for task convergence. Moreover, the overall stability
and convergence of the combined on-line control process can also be systematically
guaranteed. This control approach is especially useful for robotic manipulators, which
usually perform repetitive tasks. The tracking performance of the adaptive controller

can improve with time through the adaptation for each successive operation [26].

In this study, we develop an adaptive actuator failure compensation scheme for a
cooperative manipulator robotic system. The characteristic of the cooperative ma-
nipulator system is that it uses multiple manipulators to achieve an objective, such
as moving or balancing an object. Because the cooperative manipulator system has
multiple manipulators, it often has redundancy in the system. The redundancy al-
lows is to develop an adaptive actuator failure compensation scheme for any possible
failure in the system. Over the past two decades, cooperative manipulator systems
have attracted the attention of many researchers. However, most literature focuses
on the studies of kinematics and dynamics of the system ([8, 9, 10, 11], researches
on control strategics arc relatively few, especially regarding to actuator failure com-
pensation problem. In the literature, there are two types of basic control strategies
for cooperative manipulator system: kinematic control strategies and dynamic con-
trol strategies. In the kinematic control strategies, the nonlinear dynamics are not
considered to avoid the complex computation, thus, the controller can be easily de-
signed. However, these controllers can not always produce high performance, and
there is no guarantee of stability at the high speed. On the other hand, the dynamic
control strategies, which are considered in this study, use a full dynamic model of
the system. So the nonlinear dynamics of the manipulators can be compensated and

higher performance can be achieved.

This topic makes the following contributions for the control and robotic field of
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study:

e Develop adaptive actuator failure compensation scheme for a class of coopera-
tive manipulator system with parameter uncertainties, in addition to actuator

failure uncertainties.

e Derive a complete proof and perform performance analysis of the proposed

actuator failure compensation scheme.

e Develop a compensation scheme for a square-wave actuator failure signal in a

cooperative manipulator system.

e Study the simulation of the adaptive actuator failure compensation scheme
based on a benchmark cooperative manipulator system with parameter uncer-

tainties.

The organization of this chapter is as follows. In Section 2, the formulation of
the control problem is discussed. This includes the basic concepts and needed as-
sumptions, such as the system model, the structure of actuator failure signal, control
objective and actuator redundancy. In Section 3, nominal controller is developed
for the system when the knowledge of actuator failures is known. In Section 4, we
parameterize the nominal controller and develop an adaptive laws for the actuator
failure compensation scheme. The complete proof and performance analysis is also
given in this section. Finally in Section 5, we study the simulation of a cooperative
manipulator benchmark system with both constant and square-wave actuator failure

to confirm the effectiveness of the adaptive actuator failure compensation scheme.
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6.1 Problem Formulation

The aim of this study is to solve the actuator failure problem to increase reliability
of robotic systems. The paper develops an adaptive actuator failure compensation
scheme for cooperative manipulator systems with unknown system parameters. The
proposed algorithm ensures the system stability and asymptotic tracking properties

of robotic systems with possible actuator failure.

6.1.1 Dynamic Model of Cooperative Manipulator Systems

In this research, the cooperative manipulator robotic system is referred to many
manipulators that is performing a single task together. For this type of system, we
assume that the problem of system constraint is negligible because the base position
of each manipulation or the gripping position of each manipulator can be moved,
which enable some flexibilities in the system structure.

The general dynamic model of cooperative manipulator systems can be divided
into two parts, which are the dynamic of each manipulator and the dynamic of the
mutual platform. In order to develop a controller for a cooperative manipulator
system, we need to obtain the combined dynamic of the system as discussed in ([?]).
In this study, we will develop an adaptive actuator failure compensation scheme for a
general cooperative manipulator system with n degrees of freedom and m actuators.
The combined dynamic model of the cooperative systems balancing a rigid platform

can be described as follows.

D(2,)Zo + Co(o, o) T + Ge(x,) = E(x,)T, (6.1)

where z, € R" is the output of the system representing the position and orientation
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of the mutual object, D.(x,) € R™" is the combined inertia matrix of the object
and manipulators, which is assumed to be a bounded and positive definite matrix,
C.(zy,,) € R™™ is the Coriolis and centrifugal term, G.(x,) € R" is the gravity
term, £ = [Ey, Ey, ..., E,] € R™™ is a transformation matrix from the joint space
to the task space, F; € R" and 7 = [7y, ..., ;)T with 7; as the torque of each actu-
ator. Since the cooperative manipulator system need to carry various objects, some

parameters in D, C,. and G. are often unknown.

Although the parameters of the system are unknown, it is common to assume that
the system satisfies the following structural properties:
a) D. is a symmetric and positive definite matrix.

b) D, — 2C, is a skew symmetric matrix.

6.1.2 Actuator Failure Model

In order to develop an adaptive actuator failure compensation scheme, we need to
obtain the structure of the actuator failure signal. Although we do not have the
knowledge of actuator failure, such as the failure value or failing time, we can model

the failure signal structure as follows.

When actuator failure occurs, the control input components 7;(¢) corresponding

with the failing actuator ¢ may become uncertain, the input components become

n(t) =F(t), t>t, i€ {1,2,...,m}, (6.2)

where m is the number of actuators in the system and ¢; is the time that each actuator

failure occurs.
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We model the actuator failure signal as

n
Ti(t) =T+ > Tifas(t), t > 1, (6.3)
j=1
where 7 is the number of possible failing components in an actuator, fq;; are known
functions corresponding to each failing component of the actuator and i,t;,7;; are
unknown failure index, failure time and failure value of cach failing actuator compo-
nent.

With some specifications of the unknown constants 7o, 7;; and known functions
faij(t), we can model most common actuator failures in the robotic system such
as the complete failure of an actuator: 7; = 0, or the lock in-place failure of the
motor: T; = Tjo, which may happen when the controller fails to communicate with
the actuator. The terms 7;;f,;;(t) can be used to represent time varying actuator
failures signal. In this study, we mainly focus on the constant actuator failure signal

as well as as the square wave actuator failure signal.

6.1.3 Basic Assumption

The adaptive actuator failure compensation scheme developed in this study utilizes
the redundancy in the system to compensate for possible failures. In order to achieve
this, a system with n degrees of freedom needs at least n functioning actuators. This
means that a cooperative manipulator system (6.1) with m actuators allows up to k
actuator to fail at the same time, where k& < m — n. In this paper, we consider a
benchmark cooperative manipulator system with two degrees of freedom and three
actuators. The configuration of the benchmark system allows one actuator to fail.
The proposed control algorithm needs the following assumption to guarantee that the

solution for the actuator failure compensation scheme to exist.
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Assumption 6.1. Define a matrix E(; as a submatrix of E(z,) in (6.1) without
the associated column E; , Fj,, ..., E;,, where i; is the actuator failure index of each
actuator failure case for j = 1, 2, ..., k with k as the number of the concurrent actuator
failures. In this study, we assume that the rank of the matrix E(i) must be larger or

equal to the degree of freedom n for every actuator failure pattern. \V4

This assumption prevents the possibility that the system becomes underactuated
in some system configurations, even when the number of the remaining actuators is
larger than the degrees of freedom. This concept can be clearly seen in the cooperative

manipulator benchmark system discussed in the simulation study.

6.1.4 Control Objective

Our control objective is to ensure the orientation of the platform, or to make z,(t)
tracks a desired trajectory x,4(t) asymptotically. Consider the cooperative manip-
ulator robotic model (6.1), due to uncertain actuator failures, an applied feedback
control signal 7.(t) = [Te1, Te2, - - -, Tem)? may not reach the system, as 7;(¢) is not equal

to 7.(t). More precisely, the signal 7(t) is

where 7 is an unknown vector of the actuator failure values and
o(t) = diag{o1, 09, ..., 0 } is the matrix of actuator failure pattern such that o;(t) = 1
if the 7 actuator fails and o;(t) = 0 otherwise.

The control objective is to design a feedback control signal 7.(t) such that the

closed-loop system D.$ + C.s + K;s = 0, despite the uncertain actuator failures
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7(t) = (I — o(t))7e(t) + o(t)7, where the error vector s is defined as s = é + Age
with e = x, — x4, x4 is the desired trajectory, Ay € R"*" is a design matrix whose
eigenvalues have positive real parts and the gain matrix K, is chosen to be positive
definite. This control objective ensures the desired signal boundedness and tracking
properties of the system.

The algorithm proposed in this study can be used to compensate up to k concur-
rent actuator failures. In this paper, we will first design allows up to one actuator to
fail for simplicity. The design for multiple actuator failure will be discussed in Section
6.4.5. The adaptive actuator failure compensation scheme is designed to compensate
for actuator failures without the knowledge of the failing actuator ¢, time that actu-
ator failure occurs t;, or value of the output of the failing actuator 7;(t), so that the
system will remain stable and the output z,(¢) asymptotically tracks the reference

signal z4(t) even when actuator failures occur.

6.2 Nominal control design

In this section, we develop a baseline nominal controller for the cooperative manip-
ulator robotic system. The nominal controller assumes that all knowledge of the
actuator failures such as the failing pattern, failing time and failing values are known.
The nominal controller structure will be used to design an adaptive actuator failure
compensation scheme in the following section.

The nominal controller uses the integration of several controller bank, each con-
troller bank is developed based on an existing control algorithm that is designed for
the system without actuator failure such as the backstepping control or the Slotine
and Li’s control design. In this case, the actuator failure values are known, and the

switching scheme is developed from the known actuator failure pattern.
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6.2.1 Based Line Control Design

Consider the dynamic model of the cooperative manipulator system (6.1)

D(x5)Z, + Co(o, To)To + Ge(x,) = E(x0)T. (6.5)

If we can completely generate E(x,)T, it is possible to design the baseline controller

as follows.

Design for the known parameters case. If all parameters in the system are
known, we can design a controller using the Slotine and Li’s approach [18]. This
controller is designed for the system without actuator failure. It will be used as a

baseline for developing the adaptive actuator failure compensation scheme.

In this case, we first define an error vector s = é + Age, where e = x, — x4, 14 is
the desired trajectory, v = 24— Age being an intermediate vector signal and let Ay be
any n X n constant matrix whose eigenvalues have positive real parts. The definition
of this error vector means that the convergence of s also implies the convergence of

the tracking error.

The cooperative manipulator model can be rewritten with the error vector as

D.s+C.s=FEr—D.—Cuw—(Gl,. (6.6)

Since we assume that all parameters are known and the rank of E(x,) is larger than

n, we can alway choose a controller such that

Etr(t) =D+ Cov + G. — Kys(t), (6.7)
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where the gain matrix K is chosen to be a positive definite matrix. If we can precisely

generate E7(t) , the closed-loop system becomes

Des + Cos + Kys = 0. (6.8)

From closed loop system (6.8) and the definition of s, we can guarantee that the
system output x, tracks the desired trajectory xy asymptotically. In this case, the

controller needs complete knowledge of parameters in the system.

Parameterization for Unknown Parameters. Since robotic systems often inter-
act with environment, some parameters in D, C. and G.. in often unknown. To design
a controller for the system with parameter uncertainties, we estimate the unknown

matrices with D, C, G respectively. With this equation (6.7) can be written as
ET(t) = Do+ Cv+ G — Kys(t). (6.9)

We can linearly parameterize the system by rewriting the right side of equation
(6.9) as a known regressor matrix Y (z,, Z,,v, ) multiplied by an estimate 0 of an

unknown parameter vector, the controller becomes
Er=Di+Cv+G—Kys=Y0 — Kgs, (6.10)
where the regressor matrix Y (x,, &,, v, 0) is such that
D+ Cow+ G =Y (x,,30,v,0)0 (6.11)

with 6* being the unknown parameter vector in the system that is estimated by 0.
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The closed-loop system becomes

Dos+ Cus + Kgs =Y0, (6.12)

where 0 = 6 — #* is the estimation error of the unknown parameters in the system.
With the following parameterization, we can design a nominal controller for the

system where the information of actuator failure is known.

6.2.2 Actuator Failure Compensation

In this study, we consider the cooperative manipulator system (6.1), whose actuators
are subjected to unknown actuator failures as model in (6.3). That is, to design
a feedback control signal 7.(f) to make the system output x,(¢) tracks a desirable
trajectory x4(t) asymptotically.

In order to achieve this, we first consider the nominal design (6.7) with the re-

gressor matrix (6.11) as

E(xo)T =Y (20, T, v,0)0" — Kys(t). (6.13)

When an actuator failure occurs the feedback control signal 7.(¢) may not reach the

system as 7 = (I — 0)7. + 07, so equation (6.13) becomes

E[(I — o())r(t) + o(t)7] = YO — Kys(1). (6.14)

In order to control the system, our task is to design the feedback control signal
7.(t) such that E7(t) = Y(q,q,v,0)0* — K4s(t) so that D.s+ C.s+ Kys = 0. for every
possible actuator failure pattern.

To demonstrate this design technique, we will consider a general cooperative ma-
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nipulator system with m actuators and n degrees of freedom with m = n + 1. This
allows one actuator failure to fail at any time. This design will be further illustrated

with a benchmark cooperative manipulator system in the simulation study section.

Our proposed actuator failure compensation scheme chooses a controller structure
as a combination of multiple nominal controller of each actuator failure pattern.
According the Slotine and Li’s control algorithm, the individual controller structure

for each actuator failure case can be designed as follows.

Design for the no failure case. In the no failure case, we have the control signal
7(t) = 72(t). We design the feedback control signal 77(t) such that E(z,)7)(t) =

Y (20, o, v,0)0* — K4s(t). We consider

7L () = 720 (1) = Pa(20)Tea (o) (1) (6.15)

for some chosen matrix function h,(x,) € R™ ™. We need to choose the matrix h,
such that the function E(O)ha is invertible. For example, if the matrix E(o) is a not
square matrix, then we will need to choose h, such that Eh, is a square matrix
and is invertible. Furthermore, the design matrix h, can also be used for the load
distribution of actuators in the system. The signal 77, (t) € R™1 to be determined
from

E(xo)ha(xO)T:a(0)<t) = Y(.’L‘O, im v, U>0* - Kd3<t>' (616)

In this case, we can choose ho(z,), such that the solution for 77, (t) exists. The

explicit form of the solution 77, (t) can be written as

T (8) = Kt (2,) (YO — Kas(t)) (6.17)

ca

for some K,; € R"™* ™. Since the matrix K,; has more rows than its columns, this
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structure of K,; admits possibility up to m — n constrained optimality. For unique
solution, we choose the controller by using only two actuators to control the system.

To achieve this, we set 7,; = 0, the controller is

Ty () = 10 700y (O], Tooy () = Po (o)) (1). (6.18)
Define a submatrix E) = [Es, E3, ..., Ey], where E; is the ¢ column of the trans-

formation matrix E(z,). In this case, a new matrix function hg(x,) € R™™ can be
chosen such that Eg)ho(z,) is invertible. With Assumption 1, the explicit form of

oy () € R™! can be written as
Too0)(t) = Ko1(2,) (Y™ — Kas(t)), (6.19)
where the matrix Ko (z,) € R™*" are expressed as
Ko (o) = (E()(mo)ho(w,)) " (6.20)

This design ensures F(z,)7 = Y (x,, T,,v,0)0" — K4s(t) for the no failure case.

Design for one actuator failure case. In case of the actuator ¢ fails, we have
T =T, 7 =7, for j = 1,2,...,m with j # i. The nominal control signal can be
chosen as

T.(t) = c*(i)(t) = [ach*a(i)p 042722(1)2: e 7a7lT:a(i)m]T7 (6.21)

where «; = 0 if the actuator ¢ fails and «; = 1 otherwise. Define the intermediate con-
trol signal 77, ., as a vector consisting of the non-zero rows of To@)- Lhe intermediate

<] * 3 4
control signal Toa(i) COIL be chosen as

Toa()(t) = hi(20) T (1), (6.22)
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where the matrix h;(z,) € R™" is chosen such that Eh;(z,) is invertible and the

signal 75, (t) € R*** can be obtained from
ET+ E(i)hi(aso)T:O(i)(t) =Y0" — Kys(t). (6.23)
The explicit form of the signal 7, (t) can be written as
Toowy (1) = Kin(2,) (Y 0" — Kas(t)) + Kig(,)T, (6.24)

where K;; € R™", K;; € R™*! are expressed as

Ki = (Eghi(z,)7", Kio = —(Enhi(w,)) " Ei(,). (6.25)

It is easy to see that the nominal controller 7., () ensures that E(z,)7 =Y (2, &,, v, 0)0"—

K;s(t) for each actuator failure case.

Composite control design. With the control structure for the no actuator failure
case and m cases of one actuator failure case, we can design a composite control law

for the system by combining all cases as proposed in [?] and [?] as

7. (1) = XoTe(o) (t) + Z X Toy (1), (6.26)
i=1
where xg, x7 for ¢ = 1,...,m are the indicator functions of the actuator failure:

X = 1 when there is no actuator failure, x; = 1 for ¢ actuator failure. The indicator

functions xj, x; = 0 for its non-corresponding cases.

With the knowledge of the indicator functions and the nominal control signals,
this design ensures E(z,)7 = Y (x,, &,,v,0)0* — Kys(t) for every case of actuator fail-

ure, which implies that the tracking error converges to zero asymptotically. However,
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it is very difficult to obtain the knowledge of which actuator has failed in real time. In
the next section, we will develop an adaptive actuator failure compensation scheme

for the system without the knowledge of which actuator has failed.

Remark 6.1: As previously mention, our adaptive actuator failure compensation
scheme proposed in this paper is applicable with various baseline control approaches.
The proposed scheme extends the capability of state of the art control technique to
handle actuator failure problems of robotic systems. In this subsection, an alterna-
tive baseline control algorithm using backstepping control technique is considered as
a comparison to the Slotine and Li’s control algorithm.

With the backstepping design, we need to design the adaptive actuator failure
compensation to ensure D;'E(x))7 = —D; ' (=C, — Go)xy — ca29 — 21 + (. If all
parameters of the system are known, we can directly design actuator failure com-
pensation scheme with this algorithm. The cancellation of the nonlinear terms in
the backstepping control design could improve the system transient response of the
adaptive actuator failure compensation scheme. The disadvantage of this approach is
that the controller structure needs the inverse of the inertia matrix D', which may

be difficult to obtain, especially for a robotic system with parameter uncertainties.

6.3 Adaptive Failure Compensation Design

The nominal control design derived in the previous section needs the knowledge of
the actuator failures as well as the values of every parameter in the system, which can
be difficult to obtain. In this section, the adaptive control scheme is developed based

on the nominal controller structure and parameterization for failure compensation.

In the adaptive failure compensation design, an adaptive integration of multiple
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individual failure compensators is used to combine the controllers. Since the actuator
failure pattern is unknown, the switching algorithm is integrated into each adaptive
controller. The control input 7.(¢) is the combination of each control scheme based on
the nominal controller from the previous section, which each controller is developed
using the Slotine and Li’s control algorithm. There is an estimator corresponding to
each controller, the estimators estimate the actuator failure values, actuator failure
patterns and the uncertain parameters in the system. In this section, we will explain

the parameterization of the controller and develop adaptive laws for the estimators.

6.3.1 Adaptive Controller Structure

The adaptive control scheme is developed based on the nominal controller structure
(6.26). Since we do not know the values of x¢, x;, 7 and 6%, the adaptive controller is

constructed as

Tc(t) = Tex(0) (t) + Z Tex (i) (t)v (627)

where 7.,0)(t) and 7.,(;)(t) are the estimates of XoTeo) and xj7y, respectively.

We need to parameterize each individual term in the adaptive controller structure.
To derive 7.,(0)(t), we restructure X0Ten(0) € R™1 from the corresponding nominal

design (6.18) and (6.19) as
XoTob(0) = —XoloKo1 Kas(t) + hoKo1 Y xpb" (6.28)

Since the term ¢ is a scalar multiplied with a matrix. We need to parameterize this

term multiple times to reflect the multiplication to each row of the matrix. Redefining

Xo as Xg = diag{Xg1, X02: - - -» Xon} With XG1 = Xg2 = ... = X0, = Xg, We can choose
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the adaptive controller structure as Te(o)(t) = [0, 7.0 (1)]", Wwhere

Tex(0)(t) = —diag{xo1, - - -, Xon JRoKo1 Kas(t) + hoKo1 Y 0y (6.29)
with 6y is the estimate of x50™ and xo; is the estimate of xp; for j = 1,2,...,n.
To derive 7., (;)(t), we first define 7oy () (t) = [O1Tex(i)1, @aTex(i)2s - - - » A3 Tex(iyn) »

where o; = 0 if actuator ¢ fails. Then, we calculate the elements of 7.,(;(t) from
its subvector 7.,q@i). The vector 7.y, is the same as 7.,(;(¢) without the i column.

The vector 7.y, is developed by considering its nominal structure as
7—c*a(z) (t) = _X?Z)thledS + thZlYXEkz)e* + X?z)’]_—lthZQ (630)

Because of the unknown actuator failure signal 7;, we need to use the actuator
failure model (6.3). The actuator failure signal can be expressed as 7;(t) = pi7 fu: (1),
where fu;(t) = [1, fai1 (1), .., fain(t)]T are known functions corresponding to the failure
components, pi = [Ti, Tits -+ 7m)? contains the parameter values associated with each
failing component of the actuator and n is the number of possible failing components

of an actuator.

With similar parameterization of y; and the actuator failure model, we can choose

the controller 7,,,4;)(t) as

Pil)fai(t>¢i1

szQ)fa'i(t)¢i27
Texa(i)(t) = —diag{xi1, - - ., Xin JRi i1 Ks(t) + hi K Y 0; + _ )

Pzzn) fai(£)Pin

(6.31)
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where 6; is the estimate of x;6" and y;; is the estimate of xj; for j = 1,2,...,n. The
terms x;;p; is estimated by pi;) for j = 1,2,...,n, where ¢; = [di1, dio, . - o]t =

6.3.2 Error System

In order to design an adaptive law, we consider the estimation error from the esti-
mates of actuator failures and unknown parameters. Our adaptive actuator failure

compensation design ensures

Er(t)=E( — o)1, + EoT
= E(I —o0)(te— 1)+ E(I —0)7* + EoT (6.32)

=FE({I —o)(r.— 1)+ Y0 — Kys(t)

as E(I — o)1} + EoT = Y0* — K s(t) is ensured by the nominal design. We have
Er(t)=Y0" — Kys(t) + E(I —o(t))(1e — 7)) (6.33)
From equation (6.32) and (6.33), the closed-loop system becomes

Deé + Cus + Kys = E(I — o(t)) (7, — 7). (6.34)

(&

The error signal 7. = 7. — 77 can be written as

m

7o = [0, (—Xoho Kor Kas(t) + ho KoY 00)"1" + ) " Fupi), (6.35)

1=1
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where Ty = [0 Tea(in (1), @aTea@iy2(t), 3Teays ()], X = diag{Xi1, - - -, Xin}» Xij = Xij—

X; and the error signal 7.q(;, which represents the nonzero term of 7.q(;) is

p~z‘(1)fai(t)¢i1

/53;2) fai(t)¢i2

%Ca(i) = _S(zthledS(t) + thﬂYé; + (636)

I ﬁz(n)fal(t)¢zn

with the error signals p;;) = pijy — Xjp; and 0, =6 — X;0* for j=1,2,... n.

6.3.3 Adaptive Laws

In this subsection, we develop an adaptive law for updating the estimated parameters
(6.27). The adaptive law is developed based on the error system, which can guarantee
the desired system performance. The adaptive laws for y;; with ¢ = 0,1,...,m and

7 =1,2,...,n are chosen as
Xij = =" Ejtti; + Oy (6.37)

where E(i)j € R™! represents the j column of matrix E(i), vi; > 0 are the adaptation

gains and

i = [fit, fias - -+ fin) " = —hi K1 Kgs(t) (6.38)

with p,;; as the projection function, h; and Kj;; being the design matrices from the
controller structure (77).

Similarly, the adaptive laws for p;;y = [pig)1), - Picj)@)] become

pity = Ly fais" Eliyidij + 0oy, (6.39)
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where ,;(;) is the projection function and I'i;j) = Fg;j) > 0 are the adaptation gain

matrices.

The adaptive laws for 0;;, where j = 1,2,...,m with m being the number of the

unknown parameters, are chosen as
éz’j = —BijSTE(z‘)hiKﬂYj -+ 0¢;, (6.40)

where gy, is the projection function, Y; € R™*! represents the j column of the regres-

sor matrix Y (z,, ¥, v, v) and f;;) > 0 are the adaptation gains.

Remark 6.2: Here we use a parameter projection design for o, (%), 0s(t) and ,(¢).

We first consider the physical range of the indicator functions x;, fori = 0,1, ..., n.

From the definition of the indicator functions, we have
0<x; <L (6.41)

Because xj = diag{xjy, X, - -, Xin} With Xf; = Xj2 = .- = X, = X7, we have
0 < x;j; < 1. We can see that the estimated parameters y;; should also have the lower

bound at 0 and the upper bound at 1. The projection function g,,; is chosen as

0 if Xij c (O, 1),

or x;; =0 and g >0,
Oxij = (6.42)
or x; =1 and gy <0,

| —0xij otherwise,

with @Xij defined as @Xij = XU = —’}/ijSTE(Z')j/J,,L'j.

Let pj(), p;f(bj) be the upper and lower bounds of the actuator failure components
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Piti) that is,

*a, * *b
PiGy) < Pig) < Pigy)- (6.43)

The upper and lower bounds p;f(“j), p;f(bj) can be obtained from the maximum and min-
imum values that each failing actuator can produce based on the actuator failure
model.

With the upper and lower bounds of each component of p; , we can see that each
component of the estimated parameters p; ;) should also have the same boundaries as
the component of p; because p;(;) is the estimate of p;x; with 0 < y; < 1.

The projection function 0,:(;) = [0pi(j)(1)s --» Cpi(j)m)) " is chosen as

0 if i)k € (P35 03)

it pigyw) = Pifs and 0uigyky = 0,
Opiciymy = (6.44)

or  piik) = Pk, and 0k < 0,

L —00i(i) (k) otherwise,

withk = 1,2,...,7and @pi(j) = [8pi(j)(1)s - Opiciyy)” is defined as 8,i(;) = —T(ij) faj s By Pij-
The parameter projection scheme for gq4(t) can be designed in a similar way using
6*@, 0*® as the upper and lower bounds of each component in 6*.

This choice of o, (t), 0s(t) and g,(t) ensures that (xi; — Xj;)oy, < 0, (6 —
X;0")oo(t) < 0 and (pigr) — X5Pik) Qoy;ny < 0, which guarantee the boundedness of

estimated parameters x;; € L™, 0;; € L> and p;;) € L.
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6.3.4 Performance Analysis

The proposed actuator failure compensation scheme can ensure the stability and
tracking of the system with uncertain actuator failures as shown by the following

theorem.

Theorem 6.1. The adaptive actuator failure compensation scheme with the feed-
back control law (6.27) updated by the adaptive laws (6.37) - (6.40), when applied to
the cooperative manipulator model (6.1) with up to one actuator failure, guarantees
the closed-loop signal boundedness and asymptotic output tracking: lim;_, e(t) = 0,

despites the uncertainties of actuator failure index, failure times and failure values.

Proof: We first consider the closed-loop system with the nominal controller E(z,)7(t) =

Y (24, o, v,0)0* — K48(t). We can easily obtain the closed-loop system as
Doé+ Cus + Kys = 0. (6.45)

By comparing the adaptive failure compensation design with the nominal controller
design as shown in the Error System section E7(t) = Y0* — Kys(t)+ E(I —o(t)) (7. —

7*), we have the closed-loop system as
D.$+ Cos+ Kgs = E(I —o(t))(T —1)). (6.46)

The error signal 7. = 7. — 77 is

m

7o = [0, (—Xoho Kor Kas(t) + ho KoY 00)"1" + )~ Fugi), (6.47)

1=1



CHAPTER 6. DESIGN FOR A COOPERATIVE SYSTEM WITH PARAMETER
UNCERTAINTIES 145

Where )2 = di&g{f@l, ce )2“1}, Xij = Xij — X:( and

Piny Jai(t)dia

~ ﬁi(z)fai(t)¢i2
Tea(i) = —Xihi Kin Kgs(t) + hi K1Y 0; + _ (6.48)

i ﬁi(n) fai(t)¢in

with p;;) = piy — x;p; and 0, =0 — X;0  for j=1,2,... . n.

To find a Lyapunov-like function candidate, we first consider the time derivative

of 15T D.s along the trajectory of (6.46), we have

gt(%sTDcs) = —sTKys 4+ s"E(I — o(t))7. (6.49)

Based on the proposed adaptive laws, one can see that there are suitable Lyapunov
function candidates that can be used to prove the stability of the system of each failure
pattern o(t). The Lyapunov function can be chosen based on the adaptive law to
canceled the non-negative term s” E(I — o(t))7. in (6.59) for each case of actuator

failure.

For the no actuator failure case, the Lyapunov function can be chosen as

Vo = %STDCS + % Z Z )222]%;1

i=0 j=1

1 m m . 1 m n o L
*3 Z Z 0585701 + 9 Z Z PiyLij PiG)- (6.50)
=1 j=1 =1 j=1

Based on the adaptive laws and the error equation (6.47), the time derivative of

X275, 07 8,710; and Py bigjy canceled the non-negative definite terms in (6.59).
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The time derivative of the Lyapunov function becomes
Vo < —sTKys <0. (6.51)

Let k£ be the actuator failure index. The Lyapunov function for one actuator failure

case 1s

‘/; = %STETDCES -+ % z%) Zl l]fyz] + 5 Z Z jlﬁij
i=0 j= i=0 j=1

sz(jr 1~ _% zkrYz?c

J=

038

3

NE

+

—_

7

1
2 ;

||M3£

—1 1 Uk
Zk elk 22:1[)2 zkpl (k)

The time derivative of the Lyapunov function V; is

V; < —s"Kys <0. (6.52)

Let (T;,Ti11),1=0,1,2,...,n with Ty = 0,7, = 0o be time intervals on which the
actuator failure pattern is fixed. In the analysis we have proven that for each actuator
failure pattern, there exists a Lyapunov function that ensures the performance of the
system during (7}, 7T;41), where T; is the time that the an actuator failure occurs.
Because we have considered all possible actuator failure cases, thus, we can guarantee

the performance of the system for all time (75, 7,,).

With the Lyapunov function and the properties of the parameter projection scheme,
we can show that s(t) € L> () L? and all signals in the system are bounded, based on

the Barbalat lemma we can conclude that the error vector lim; o, s(t) =0. Vv VvV

From Theorem 6.1, we can see that the adaptive actuator failure compensation
scheme can guarantee the asymptotic tracking for the system with parameter un-
certainties subjected to uncertain actuator failures, that is, for the system operating

with any actuator failure pattern that we have considered.
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6.3.5 Concurrent Actuator Failures

A cooperative robotic system often uses serial-link structures to communicate between
the controller and multiple actuators in the system. If there is a damage in a part
of the communication link, it may cause every actuator in the same communication
chain to fail at the same time. The concurrent actuator failures, where more than one
actuator fails at the same time, is a crucial problem in the robotic field. Previously, the
proposed control algorithm only considers single actuator failure cases, it is possible
to extend the proposed actuator failure compensation scheme to concurrent actuator
failure cases. For example, if one more actuator is added to the system, so that
m —n = 2. With the additional manipulator, the system has redundancy that allows
up to two actuators to fail concurrently.

In order to develop an adaptive actuator failure compensation scheme that allows
up to two actuators to fail at the same time, we first design a failure compensation
scheme for the system in which all information of actuator failures is known.

For each concurrent actuator failure case k that has two failures with actuator
failure indices ki and ko, we have 7, = T4y, Th, = Thp, 75 = 755 for j = 1,2,...,m
with j # ki, ke and k; # ks. The nominal control signal for each concurrent failure
case is 7(t) = 77(t) = Ty (t) With k = 1,2,... k, where k is the number of all
actuator failure pattern with two concurrent failures. The control signal 77, () can

be designed as

7—c>,< (t) = TI:(con) (t) = [alTI:a(con)l? aQTl;ka(con)Zﬂ ce 7a”7—l:a(con)m]T7 (653)

where a; = 0 if the actuator with the actuator index ¢ fails and «; = 1 otherwise.
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Define the intermediate control signal To(con) 8 @ vector consisting of the non-zero

rows of Th(con)" The control signal Tha(con) €31 be chosen as

con

7-I;ka((con))(t) = hk(con)leO(con) (t)7 (654)

where the matrix hycony € R™™. The signal T,jo(con)(t) € R™! can be chosen to
satisfy
By Ty + By Ty + Ek(con)hk(CO”)Tl:O(con) (t) =Y — de(t)7 (655)

where Ek(am) is defined as a submatrix of F without the k; and &y rows. The signal

Tho(eon) (1) can be written as
TI:O(CO") (t) - Kk(c‘m)l(ye* - de(t)) + Kk(Con)?ﬁcl + Kk(Con)37__k27 (656)

where Ky(con)t = (E(eon)i(con)) " Ki(eon)2 = —(Ei(eon)Pk(con)) ™ iy and Kiconys =
—(Ek(con)hk(wn))_lE’KQ. This design ensures E7} = Y6* — K s(t) for each concurrent
actuator failure case, where both actuators with actuator failure indices k; and k- fail
at the same time. The concurrent design for two actuator failures can be combined
with the adaptive actuator failure compensation scheme (6.27) to allow up to two

concurrent actuator failures as

m k
Tc(t) - Tcx(O) (t) + Z Tcx(i) (t) + Z Tkx(con) (t)v (657)
=1 k=1

where Tiy(con)(t) are the estimates of X,’;(Con)ﬂj(wn) and Xg(con) is the indicator function

for each concurrent actuator failure case, which is the indicator function.

The parameterization of gy (;)(con)(t) can be done in the same way as in (6.30).

With 74, (£) = 9} (conyfak1 (1)s Tio (1) = Pibcom) Jar2 (1), the parameterized control signal
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component Trqy(con) Can be written as

Tkax(con)(t) = _diag{Xk(con)h e 7Xk(con)n}hk(con)Kk(con)leS(t)

+hk:(con) Kk(con)l Yek(con)

P£1 (con)(1) fakl (t) ¢k1(con)1 pz;g(con)(l) fakZ (t) ¢k2(con)1
(6.58)
pkl (con) fakl( )(Dkl (con)2 pkg (con) fak2( )@k2 (con)2
+ + ,
T T
pkl(con) (n) fakl (t) (bkl(con)n pkg(con) (n) fak2 (t) (ka(con)n

where 0y(con) is the estimate of Xz(wn)@* and X(con); is the estimate of XZ(con) ; for
j=1,2,...,n. The terms X (con)j Pi(con) 15 estimated by pricony(j) for j = 1,2,....n
and | = 1,2 with @pi(con) = [Pki(con)1s Phi(con)2s - - - » Prtconyn) T = Pis(con) Ki(con)2 and
Pra(con) = [Pka(con)1s Ph(con)2s - - - » Pr2(conyn) . = Pis(eon) Kk(conys- With the proposed pa-
rameterization scheme and the similar adaptive laws as in Section 4.3 can be applied
to the adaptive actuator failure compensation scheme to update the estimated pa-
rameters O (con)s Xi(con); a0d Pricon(y)) for j = 1,2,... . nk =1,2,.. S kand =12

to ensure the desired closed-loop stability and asymptotic output tracking.

Remark 6.3: To extend the proof of Theorem 6.1 to allow up to two concurrent
actuator failures in the system, we need to consider additional Lypunov functions
for the concurrent actuator failure pattern. In the previous proof, we have found
multiple Lyapunov function for the all time intervals (7},7;.1),7 = 0,1,2,...,n with
Ty = 0,7,, = oo on which up to one actuator failure occurs and the actuator failure
pattern is fixed. To guarantee the system performance for all time, we need to find
additional Lyapunov functions for all (7},7;1;) on which two concurrent actuator

failures occur. For each concurrent actuator failure pattern k for k = 1,2, ..., k with
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two actuator failure, which the actuator failure indices are k1, ko, k1 # ko, we consider

the following Lyapunov function candidate Vi(con)

m n m m ~
Vk(con) = %STETDCES + % Z Z 5612]*}/7;1 + = Z Z 0;1;6@;102]

1=0j=1 z:O J=1
1 R T 1 1 - 2 1 1 - 0T 1
+3 21 Z:lpz’(j)rij Pi(5) — 3 ,Z%Xz‘kl%kl T2 Z%‘gklﬁikleikl
1=1y= 1= =

m. L
_% Z pzzkl)]'—‘lklpl(kl) 2 Z sz‘gfylkz
1=

m 15 B
—% Z%)@u@ mzez’kz - % leyz(kz) ikzpi(k2)
1=

The time derivative of the Lyapunov function Vicon) is
Viteon) < —8T Kgs < 0. (6.59)

With the additional Lyapunov function, we have considered all possible failure cases
of up to two concurrent actuator failures for all time intervals (7p,7},). Similarly to
the proof shown in Theorem 6.1, we can show that s(t) € L°° () L? and all signals in
the system are bounded, based on the Barbalat lemma we can conclude that the er-
ror vector lim; .., s(t) = 0. Thus, the adaptive actuator failure compensation scheme
can guarantee the asymptotic tracking property for the system with parameter un-
certainties subjected to uncertain actuator failures. With the additional design of
the concurrent actuator failure case, the proposed algorithm allows up to two actu-
ators to fail at the same time. The similar approach could also be used to extend

the developed algorithm to cases when more than two actuators fail at the same time.

Remark 6.4: It is possible for the adaptive actuator failure compensation scheme
to handle a case of a square wave actuator failure signal. There are two approaches

to solve this problem as follows:
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1. If the time instance that the actuator failure occurs is unknown and the pe-
riod of the square wave signal is relatively large, we can treat the failure similar to
the constant actuator failure case. This approach could stabilize the system and the
tracking performance is acceptable; however, we cannot guarantee asymptotic track-

ing because the controller needs to adapt at each edge of the square wave failure signal.

2. In order to achieve asymptotic tracking, we need to model the square wave
failure signal. From the actuator failure model (6.3), the base-function of the complete
square wave signal can be described as

27T(t - tf)

=1, (6.60)

fai(t) = sgn]

where T' represents the period of the square wave and ¢y is the time that actuator
failure occurs. However, this basic square wave function can only represent the most
basic form of a square wave signal. In order to handle multiple types of square wave

signal, we model the failure with two base-function as

T = Tinfa1 () + Tia faa (1),

sgn[%ﬁt”)] +1 sgn[Zbe)]

far(t) = 5 , fa2(t) = 7; . (6.61)

This allows multiple types of square wave failure signal such a square wave with
unequal period or different starting wave. With the proposed actuator failure model,
we can use our adaptive actuator failure compensation scheme to handle a system
with possible square wave actuator failure signal. This approach can also guarantee

the asymptotic tracking of the system with parameter uncertainties.
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6.4 Simulations Study

In order to demonstrate the effectiveness of the proposed control scheme, we consider
a two-dimensional cooperative manipulator system as a benchmark system in our
study. The system contains two manipulators, which are attached to each side of a
rigid platform as shown in Figure 6.3. The benchmark example that we choose is
capable of representing a cooperative manipulator system in general; Additionally,
the benchmark system is relatively easy to understand, which make the it a good
example to use for demonstrating the effectiveness of our control algorithm.

As in Figure 6.3, the system uses three actuators qi, g2, g3 to support a rigid plat-
form. The actuator ¢s is added to increase redundancy in the system to compensate

for the possible failure that could occurs on the left side of the platform.

Manipulator 1

o}

I Manipulator 2

3 }EI
!

S350 SRR
bo

1 |
I 1

Figure 6.1: The benchmark cooperative manipulator system.

6.4.1 The Benchmark System Model

In this study, we derive the dynamic model of the benchmark system using the Fuler-
Lagrange equation. Based on the generalized coordinate [; for ¢ = 1,2, 3, we consider

Lagrange’s equation
d oL, 0L

aor = (6.62)
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where the Lagrangian L =T — V| T is the kinetic energy, V is the potential energy,
l; = [l1,12,15] are the vectors of generalized coordinates that represent the length of
each actuator, and 7; is the torque of each actuator, which acts along each coordinate.
For simplicity, we assume that the dependency forces between ¢y, ¢ is relatively small.
The kinetic energy and the potential energy can be written as

T = L(mal + (mq +ma)3 + mal?) + m,h? + 11,6°

(6.63)
V' =mygly + (my + ma)gls + msgls + mygh,

where g is the scalar value of the gravity, m; = 1kg is the mass of each actuator. With

the small angle approximation technique, the Lagrange’s equation can be written as

ro=l+ %+ b+ 1) + 2+ — 1)+ (14 3my)g
7y =20+ "2 (L + b+ 13) + (0 + b — I3) + (24 3myp)g (6.64)

ra = Tk () — (4 — ) + (14 Smy)g.
Because the height and the orientation of the system can be specified using by
the length of each platform. In this study, we let z,; = [l1, o] and x,5 = l3. With the
dynamic model of the system from the Lagrange’s equation, we could transform the

system into a general form to use in the simulation of the adaptive actuator failure

compensation scheme in the next subsection.

6.4.2 Benchmark System in General Form

In this subsection, we define z, = [x,1,T,]? as state of out system which could be
used to specific the height and orientation of the platform and 7; for ¢ = 1,2, 3 is the

force that each actuator g; produces. With the mass of each actuator is assigned as
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one, the dynamic of the system can be written in the general form as

Do()i0 + Colo, i0)ito + Gu(,) = Ela,)T. (6.65)

The matrices D,, C., G, and E can be written as

243w 43 m b 00
D, = ,C. = (6.66)
T 00
dg + s 2 10
G, = B = , (6.67)
g+ ™ 00 1

where g is the gravitational constant, m,, is the mass of the platform and I, is in the
moment of inertia of the platform. We can see that this system has redundancy that
allows either actuator ¢; or ¢, to fail. If actuator gs fails, the rank of submatrix E(g)
becomes one, which violates Assumption 1, so we will not consider this case in the

simulation study:.

6.4.3 Simulation Conditions

In the simulation study, we simulate the system using the Matlab software with ode45
function. In order to see the performance of the algorithm, we choose the gains in
the system to be relatively small with K; = [5 0,0 5] and all adaptive gain is chosen
to be 0.1. We assign the parameter of the system as m, = 10kg, I, = 1lkg-m* and
by = 1m. These parameters are unknown to the controller.

The initial conditions of the system are chosen as z, = [1,1]%, the reference
signal is chosen as x4(t) = [1+0.1sin(0.1¢), 1 +0.1sin(0.1¢)]7. Although the adaptive

actuator failure compensation developed in this study can handle most initial values of
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the parameters in the system, we need to be careful when choosing some initial values
to prevent matrix singularity. For example, we cannot choose the initial value of the
mass of the system to be zero. For simplicity, in this study the initial parameters of

the system are chosen to be one.

In this simulation study, two simulations with different types of failure are evalu-

ated as follows.

Lock in-place failure of the actuator. In this simulation, we use constant actu-
ator failure signals. We let actuator failure occurs twice as follows:

(i) No actuator failure case: 7(t) = 7.(t) for 0 < ¢ < 50s,

(ii) Actuator ¢ failure case: 7, = 73 = 20 at 50 < ¢ < 100s,

(iii) The failing actuator ¢; becomes normal again, no actuator failure case: 7(t) =
7.(t) for 100 < ¢ < 150s,

(iv) Actuator g, failure case: 75 = 7o = —30 at 150 <t < 200s.

Square wave actuator failure. In this case, we use square wave actuator fail-
ure signal. In order to demonstrate the effectiveness of our design, we study two

cases of actuator failure with a different algorithm.

(i) Using original design by estimating the square wave actuator failure as a con-
stant. In this case, we let the actuator failure occur at time ¢t = 50s. The square wave
failure signal is chosen as

fa(t) =5 % 3gn[21—7ge : (6.68)

(ii) In the second case, we introduce the square wave based function as introduce

in Remark 6.2. We also let the same square wave actuator failure occur at time

t = 50s.
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6.4.4 Simulation Results

For the lock in-place failure case, the simulation results show the output of the system
x, versus the desirable trajectory z, in Figure 6.2. In this study, we assume that some
parameters in the system are unknown. The estimated parameters éo, are shown in
Figure 6.3. For the square wave actuator failure case, the simulation results of the
first case are shown by Figure 6.4 and Figure 6.5 and the second case is shown by

Figure 6.6 and Figure 6.7.

1.4 T T T
E 1.2 .
5
> 1 -
0.8 1 1 1
0] 50 100 150 200
Time (t)
2 T T T
— 1.5 i
E
[s\]
><O
1 -
0.5 1 1 1
0 50 100 150 200
Time (t)

Figure 6.2: System output z,(t) vs. z4(t) for the lock in-place failure.

As we can see from Figure 6.2, the tracking error of the system always goes to
zero. The simulation results confirm that the adaptive actuator failure compensation
scheme can guarantee that the tracking error of the system goes to zero for the desired
sinusoidal trajectory. From Figure 6.3, the study also shown that the estimated

parameters are bounded but do not necessarily converge to the true value, which
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Figure 6.3: Estimated parameters 0, for the lock in-place failure.

is consistent with our theory and is acceptable from the control perspective. The
adaptive actuator failure compensation scheme for the benchmark system allows ¢

or ¢, to fail, but both actuators cannot fail at the same time.
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Figure 6.4: Estimated parameters 91 for the square wave actuator failure.
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Figure 6.5: Estimated actuator failure signal pi(1), p1(2), p2(1) and pa(2).
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From Figure 6.4 and Figure 6.5, we can see that it is possible to stabilize the
system by estimated the square wave actuator failure signal as a constant. However,
every time the square wave signal changes its magnitude, it will take some time for

the controller to adapt to the changes.

1.2 T T T T T
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0 50 100 150 200 250 300
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@
<° 09 F
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0 50 100 150 200 250 300
Time (1)

Figure 6.6: System output z,(t) vs. z4(t) for the square wave actuator failure.



6.4. SIMULATIONS STUDY 160

5 T IL T T
O 7
_5 1 1 1 1 1
0 50 100 150 200 250 300
Time (1)
1 T T T T T
0
_1 1 1 1 1 1
0 50 100 150 200 250 300
Time (1)
0 T T T T
021 o > :
_0.4 1 1 1 1 1
0 50 100 150 200 250 300
Time (t)
1 T T T T T
0
_1 1 1 1 1 1
0 50 100 150 200 250 300
Time (t)

Figure 6.7: Estimated actuator failure signal pi(1y, p1(2), p2(1) and pa(2).

By introducing the square wave based function to our algorithm, the simulation
result in Figure 6.6 shows that the performance of the system is significantly improved
compared to the original version in Figure 6.4. In this case, it is possible to guarantee
that the tracking error of the system goes to zero for the desired sinusoidal trajectory:.
From the simulation result shown in Figure 6.7, we can see that the estimation schemes
become more accurate and the tracking error of the system with square wave actuator
failure is reduced over time, which confirm the performance of the adaptive actuator

failure compensation scheme developed in this study.
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6.5 Conclusions

A cooperative manipulator robotic system plays an important role in many projects.
Developing an adaptive actuator failure compensation scheme that can immediately
compensate for any possible failures in the system is important for the control and
robotic fields. Since the cooperative manipulator systems often have redundancy, we
can design a controller that utilizes the redundancy to control a cooperative manip-
ulator system when actuator failures occur.

In this chapter, we have studied the adaptive actuator failure compensation scheme
for a cooperative manipulator robotic system with parameter uncertainties in addi-
tion to actuator failure. The adaptive control design uses an integration of multiple
individual failure compensators and direct adaptation to handle actuator failure and
parameter uncertainties in the system. With complete proof and performance anal-
ysis, the proposed algorithm guarantees a desirable closed-loop stability and asymp-
totic tracking property can be achieved, despite uncertain actuator failures. The
simulation results verified the performance of the proposed algorithm when applied
to the cooperative manipulator system subjected to uncertain actuator failures, which

included constant actuator failure as well as square wave actuator failure signal.
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Chapter 7

Design for A Parallel Manipulator

with Parameter Uncertainties

A parallel manipulator is a mechanical system that uses several computer-controlled
serial chains to support a single platform, or end-effector. With parallel manipulators,
a high rigidity may be obtained with a small mass of the manipulator, which allows
high precision with high speed of movements, and the redundancy of the actuator
can be used to solve the actuator failure problem.

In this chapter, we develop a new adaptive actuator failure compensation scheme
for a parallel robotic system with parameter uncertainties. The objective of the
control design is to ensure the desired closed-loop stability and asymptotic output
tracking of the system subject to uncertain actuator failure. This study makes the

following contributions to the robotics and control fields:

e Develop an adaptive actuator failure compensation scheme for a parallel ma-
nipulator system with parameter uncertainties, in addition to actuator failure

uncertainties.

e Study the dynamic and control of parallel structure robotic manipulator and

demonstrate how to deal with the constraint of the parallel structure.

e Clarification of several key technical issues and solutions for the adaptive actu-

163
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ator failure compensation scheme for parallel manipulator system.

e Study the simulation of the adaptive actuator failure compensation scheme
based on a 2-DOF redundantly actuated parallel manipulator subject to uncer-

tain actuator failure.

The chapter is organized as follows. In Section 2, we formulate the problem with
the discussion of the dynamic model of the parallel manipulator system, actuator
redundancy, actuator failure model and control objective. In Section 3, we design a
nominal controller by assuming that the knowledge of actuator failures is known. In
Section 4, the adaptive control scheme is developed based on the nominal controller
structure. Finally, in Section 5, we study the simulation of a redundantly actuated

parallel manipulator to confirm the effectiveness of the control design.

7.1 Problem Formulation

The objective of this research is to develop an adaptive actuator failure compensation
scheme to solve the actuator failure problem in robotic system. In this study, we
utilize the redundancy in the structure of a parallel manipulator to ensure closed-loop
stability and asymptotic output tracking of the system with parameter uncertainties

in the presence of uncertain actuator failures.

7.1.1 Dynamic Model of the Parallel Robots

One of the most important problems, which makes parallel manipulators difficult to
control, is the constraints in the parallel structure of the system. In this study, we
will develop an adaptive actuator failure compensation scheme for a parallel robot

with constraints. In this case, we consider a 2-DOF redundantly actuated parallel
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manipulator as our benchmark system. The parallel manipulator is actuated by three
servo motors located at the bases A1, A2, and A3. The end-effector is mounted at the
common joint O, where the three manipulators meet. The joint angles are defined as
follows: qu1, qu2, qas refer to the active joint angles, and g1, gp2, gp3 refer to the passive

joint angles.

A2 X
Figure 7.1: The 2-DOF redundantly actuated parallel manipulator.

The dynamic model of the parallel manipulator can be obtained by combining the

dynamic model of each leg. According to [16], the dynamic model of each leg is

D;g; + Cig; + [i = 7, (7.1)

where §; and ¢; are the joint angular acceleration and angular velocity of each ma-
nipulator for i = 1,2,3, D; € R**? is inertia matrix, and C; € R?*? is Coriolis and
centrifugal term. Also, 7; = [74 O]T is joint torque vector with 7,; as the actuated
joint torque and the passive joint torque is zero, the friction torque vector is denoted

as f; = [fu 0]7 as we assume that passive joint friction torque is negligible. The
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actuated joint friction torque f,; can be modeled as [16]

fai = Sign(q.ai)fci + fUiCjaia (72)

where f,.; represents the Coulomb friction, and f,; represents the coefficient of the

viscous friction.

The combined dynamic of the system with the closed-loop constraints can be

expressed in the joint space as

D+ Cog+ f =1+ A", (7.3)

where D, € R%%6 is the combined inertia matrix, C,. € R%*% is the combined Cori-
olis and centrifugal matrix, 7 = [Ta1,Ta2,Ta3,0,0,0]7, is the torque vector, f =
[fal: fa27 fa37 07 07 0]T7 is the friction vector and the vector q= [QQIv a2, 4a3; qv1, 4b2, Qb3]T

represents the angle of each manipulator joint in the system.

One of the difficult problems, which arises in the robotic system with parallel
structure, is how to deal with the constraints. The constrained torque in the system
is very difficult to measure; as a result, we cannot directly develop a controller that

addresses this issue. In this study, we first consider the constraint force vector AT\,

0H(q)
ot

where the matrix A is the differential of the closed-loop constrained equation

A(q)¢ = 0 and X is a multiplier representing the magnitude of the constraint force.

Definition 7.1: Constraint: A constraint on a mechanical system is a relation of

the form

Alg)g=0 (7.4)

For a robotic system the matrix, we can derive the constraint matrix A from a
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set of real value function h;(q),7 = 1,2, 3,4 that describe the closed-loop constraints
of the parallel manipulator. In this case, we consider the constraint equations from

the position of actuator al to position of a2 and from al to a3. Consider both x and

y axis, we have

hy Ta1 + 1c08(qa1) + 1cos(qp1) — Taz — 1 cO8(qa1) — L cos(qp2)
ho Ya1 + 18i0(qq1) + 18in(qp1) — Ya2 — 1 €08(qa1) — I sin(qpa)
hs Ta1 + 1c08(qa1) + 1cos(qp1) — Taz — L c08(qaz) — L cos(qp3)
| hy | | Ya1 +Usin(gar) + Isin(gp) — Yaz — 1 c08(qaz) — Isin(ges) |
(7.5)

where x,;, Y. represents the position of actuator ai in the x and y axist respectively.

The matrix A can be obtain by differentiating the closed-loop constrained equation

O0H(q)

o) — oM G = A(q)g = 0. We have A(q) = 2!

ot dq

Definition 6.1 as.

such that A(q)g = 0 as defined in

[ —Isin(qq1)  Isin(qa2) 0 —Isin(gp)  Isin(gpe) 0 ]
A lcos(qa1) —1cos(quo) 0 lcos(qr) —lcos(qe) 0
- —Isin(qa1) 0 Isin(qas) —Isin(qe) 0 I'sin(gp3)
| 1cos(¢a1) 0 —lcos(qa3) lcos(gm) 0 —lcos(gp3) |

(7.6)

In order to deal with the unknown constraint force vector AT\, we define the
Jacobian matrix £ € R5*% such that ¢ = F¢, with ¢, = [& y]* represents the velocity
of the end-effector. With the Jacobian matrix £ and the fact that A(q)¢ = 0, we

have AE{, = 0, from which one can conclude that the equation ET AT = 0 holds.
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With this property, the dynamic model of the parallel manipulator with constraints

can be written as

E'D.j+ E'C.i+ ETf = E'r. 7.7
eq e

The dynamic model can be rewritten in the task space by using the relation

i = FEq, + Fi, as

E'D.E§, + EY(D.E+ C.E)j, + E*f = ETr. (7.8)

Since we assume that the friction torque of the passive joints is zero, we can further
simplify the dynamic model using a Jacobian matrix between the velocity of the end

effector and the actuated joints as
E'D.Ej, + EY(D.E + C.E)j, + J' fo = "7, (7.9)

where 7, is the torque of the actuated joints, f, is the friction of the actuated joint,

and the Jacobian matrix J € R3*? is such that ET7r = JT7,.

Remark 7.1: In a robotic system, it is common to assume that the system sat-
isfies the following structural properties:
a) D is a symmetric and positive definite matrix.

b) D — 2C is a skew symmetric matrix.

With this assumption, it can be proven that the new dynamic model that we
obtained (7.9) also satisfies the similar structural properties:
¢) ETD.E is a symmetric and positive definite matrix.

d) 8E7;)§7CE —2(E™( D.E + C.F)) is a skew symmetric matrix.
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7.1.2 Actuator Redundancy

In order to develop an actuator failure compensation scheme, having redundancy in
the system is one of the most crucial requirements. A parallel manipulator robotic
system usually satisfies this requirement and it is also relatively easy to increase the
number of actuators in a parallel manipulator system; thus, the study of parallel struc-
ture in robotic systems could open a new way that can improve both the performance
and reliability of a robotic system in the future.

The adaptive actuator failure compensation scheme developed in this study uti-
lizes the redundancy from the parallel structure to compensate for possible actuator
failures. In order to achieve this objective, a system with n degrees of freedom needs
at least n functioning actuators in the system [25]. Thus, the 2-DOF redundantly
actuated parallel manipulator needs at least 2 functioning actuators, which allows
an actuator failure to occur. In order to guarantee that the solution of the adaptive
actuator failure compensation exists, we consider a matrix j(i) as a submatrix of J in
(7.9) without the associated column .Ji, J; or J3 corresponding to the actuator failure
index of each actuator failure case ¢ = 1,2, 3. In this case, we can see that the rank
of the matrix j(i) is always equal to 2 for every actuator failure pattern; thus, it is
possible to develop an adaptive actuator failure compensation for this system, which

allows an actuator failure to occur.

7.1.3 Control Objective

Our control objective is to guarantee the position of the end-effector of the 2-DOF
redundantly actuated parallel manipulator, or ¢,(t) tracks a desirable trajectory ¢4 (t)
asymptotically even when an actuator failure occurs. Consider the parallel manipu-

lator model (7.9), due to possible actuator failures, an applied feedback control signal
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7e(t) = [Te1, Tea, T3]t may not reach the system, as 74;(t) is not equal to 7.;(¢). More

precisely, in the presence of failures, the signal 7,(t) is
To(t) = (I — o(t))7e(t) + o ()T, (7.10)

where 7 is an unknown failure vector and o (t) = diag{ oy, 09, 03} is the actuator failure
pattern matrix such that o;(¢) = 1 if the ¢ actuator fails and o;(t) = 0 otherwise.
The control objective is to design a feedback control signal 7.(¢) such that the
closed-loop system ETD.Es$ + ET(DCE" + C.E)s + Kgs = 0, despite the uncertain
actuator failures 7,(t) = (I — o(t))7.(t) + o(t)7, where the error vector s is defined
as s = é + Age with e = ¢q, — qq, qq is the desired trajectory of the end-effector,
Ay € R?*2 is a design matrix whose eigenvalues have positive real parts and the gain
matrix K, is chosen to be positive definite. When this objective is met, the system

will be ensured to have the desired signal boundedness and tracking properties.

7.2 Nominal control design

In this section, we develop a nominal controller for the 2-DOF redundantly actu-
ated parallel manipulator by assuming that the knowledge of the actuator failures is
known. Such a controller structure can be used to design an adaptive actuator failure

compensation scheme with uncertain actuator failures in the following section.

7.2.1 Based Line Control Approach

Before we begin the development of the actuator failure compensation, we first study
the conventional controller for the system, which is developed based on the Slotine

and Li’s approach [18]. Consider the dynamic model of the parallel manipulator
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system (7.9)

E"D.Ej, + E"(D.E + C.E), + J* fu = J'7,. (7.11)

In order to develop a controller for the system, we first define an error vector
s = ¢+ Ape € R?, where ¢ = q, — qq, v = g — Ape € R? being an intermediate
vector signal and let Ay be a constant matrix whose eigenvalues have positive real
parts. The definition of this error vector means that the convergence of s also implies
the convergence of the tracking error. Since some parameters in D,., C. and f, are

unknown, we choose 7,(t) € R* to meet

JTr = ETDE0 + ET(DoE + CoE)o + 7 f — Kys(1),

(7.12)

where D, C, f are the estimates of D., C., f, respectively.

We can linearly parameterize the system by introducing the following parameter-

ization.

E'DEv + ET(D.E + C.E)yv+ JVf =Y(q,¢,v,0)6",

(7.13)

where #* being the unknown parameter vector in the system that is estimated by 6 and
Y (q,q,v,0) being a known regressor. In robotic system, the parameter uncertainty is
unstructured since it represents an unknown value such as the mass or the inertia in

the system.
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With the known regressor matrix, we write

E"DE0+ EY(D.E+C.Eyw+ J'f =Y0 — Kys(t).

(7.14)

Define 6 = 6 — 0* as the paramecter crror, the closed-loop system becomes

E"D.Es+ ET(D.E + C.E)s+ Kys = Y0. (7.15)

7.2.2 Actuator Failure Compensation

In this study, we consider the 2-DOF redundantly actuated parallel manipulator
whose actuators are subject to an actuator failure (??), that is, to design a feedback
control signal 7*(t) to meet J'7,(t) = Y(q, ¢, v,0)0* — Kys(t) for 7, = (I — o)1} + 0T,
so that ETD.E$ + ET(D.E + C.E)s + K45 =0 .

Our proposed control scheme chooses a nominal controller structure as a com-
bination of the nominal controller of each actuator failure pattern. We first design

multiple individual control schemes for each actuator failure case.

Design for the no failure case (7,(t) = 77(t)) : We consider

7e (1) = 720)(t) = haTe() (1) (7.16)

for some chosen matrix function h, € R**® and the signal 77, (t) € R**! are deter-

mined from
I ha(Go) To() (1) = Y OF — Kys(t). (7.17)

We need to choose a matrix h, such that the function J (7;) h; is invertible. For example,
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if the matrix j(i)) is a not square matrix, then we will need to choose h; such that
JTh, is a square matrix and is invertible. Furthermore, the design matrix h; can also

be used for the load distribution of actuators in the system.

With the assumption of actuator redundancy that we have made, it is possible to
choose hq, such that the solution of 77, (t) exists. The explicit form of the 77, (¢)

can be written as
Tea(o)(t) = Kar (YO" — Kys(t)). (7.18)

for some K, € R*?. Since the matrix K,; has more rows than its columns, this
structure of K,; admits possibility up to m — n constrained optimality. For unique
solution, in this study we choose the controller by using only two actuators to control

the system. By setting 7.1 = 0, the controller can be chosen as
Ty (1) = [0 T:lfo)(t)]T» Tap0) () = hoTeo(0) (0)- (7.19)
With the submatrix j(o) = [Jo, J3], we choose hg and To0(0) (t) as
JoyhoTio(t) = Y0 — Kus(t). (7.20)
The explicit form of 77, (¢) is
Too0)(t) = Ko (Y 0" — Kqs(t)), (7.21)

where Kop = (J{Gho) ™"

This design ensures J7 75 = Y0* — Ks(t) as desired.
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Design for one actuator failure case (1, = 7,,7; = T = 1,2,3,5 # i): We

consider

7o () = Tl (t) = (01T i1, 2T (iy2s X3 Tom(iyn) (7.22)

where a; = 0 if the actuator ¢ fails and a; = 1 otherwise. Defining the vector signal

*

wa(i) @S & vector consisting of the non-zero rows of 77, we consider

Tea(i) (1) = PiTeg (i) (1) (7.23)

with h; € R?*? and 7%

w003) (t) € R**! are obtained from

JET + Thhitlw (t) = YO — Kys(t), (7.24)

2

where the submatrix Ji;) € R?*? represents the Jacobian matrix E without the asso-

ciated i row.

The explicit form of 77,(t) can be written as
Too)(t) = K (Y0 — Kys(t)) + KiaT;. (7.25)
where K;; € R?*? K;y € R?*! are expressed as
Kiy = (Jlyhi)™!, Kig = —(Jjyhi) ' ;. (7.26)

This ensures J7'7 = JT (I —o)77+J 0T = Y* — Ks(t) for each actuator failure case.

Composite control design. With the control structure for the no actuator
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failure case and three cases of one actuator failure case, we can design a composite

control law for the system by combining all cases as

3
(1) =) X (), (7.27)
=0

where x; for ¢ = 0,1, 2,3 are the indicator functions of the actuator failure: xj =1
when there is no actuator failure, y; = 1 for ¢ actuator failure. The indicator functions
X; = 0 for its non-corresponding cases.

With the knowledge of the indicator functions and the nominal control signals,
this design ensures J1(0)7 = Y0* — Kys(t) for every case of actuator failure. In
practice it is very difficult to obtain the knowledge of which actuator has failed, in
the next section we will develop an adaptive actuator failure compensation scheme

without the knowledge of which actuator has failed.

7.3 Adaptive Failure Compensation Design

The nominal control design derived in the previous section needs the knowledge of the
actuator failures as well as the values of every parameter in the system, which may
not be possible to measure. In this section, we develop an adaptive actuator failure
compensation scheme for the parallel manipulator system with unknown parameters

in the presence of uncertain actuator failures.

The system block diagram of the adaptive actuator failure compensation scheme is
shown in Figure 7.2. The control input 7.(¢) is the combination of each control scheme
based on the nominal controller from the previous section, which each controller is
developed using the Slotine and Li’s approach. There are estimator corresponding to

each controller, the estimators estimate the actuator failure values, actuator failure
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%(t) + eft) Parallel % (1)

Manipulators

Figure 7.2: System Block Diagram.

patterns and the uncertain parameters in the system. In this section, we will explain

the parameterization of the controller and develop adaptive laws for the estimators.

7.3.1 Adaptive Controller Structure

The adaptive control scheme is developed based on the nominal controller structure

(7.27). Since we do not know the values of x}, 7 and 6%, we first design the controller

Tc(t) = Z Tex(i) (t), (728)

where 7.,(;)(t) are the estimates of and xj7y,.

To derive Te,(i)(t), we first define 7o) (£) = [0 Tex(i)1, @2Ter(i)2s X3Tex (i3] s Where
a; = 0 if actuator ¢ fails. Then, we calculate the elements of 7., (t) from its subvector
Texa(i)- Lhe vector Toyq) is the same as 7.,(;(¢) without the i column. The vector

Teya(i) 18 developed from
X:Tc*a(z) (t) - _X;kh’thleS + thﬂYX;ke* + X:ﬂthzZ (729)

From the actuator failure model, we can express unknown actuator failure signal

as 7;(t) = piT fai(t), where fui(t) = [1, fair (1), -, fain, (1)]" are known functions cor-
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responding to the failure components, p! = [Tio, i1, .-, Tin,] . contains the parameter
values associated with each actuator failure component and 7n; is the number of failure

components.

Finally, we can choose the controller 7.,,;(t) as

Texa(i) (1) = — diag{ X1, Xiz }hi I K as(t)

ni10i1 ng(l)faz'(t)ﬁbﬂ
+ + , (7.30)
Ninbi2 PiT(g)f wi(t) D2

where ;; is the estimate of xj; = x; for j = 1,2, 6;; is the estimate of x7;0", x;;p;
iS estimated by pz(j) Wlth N = [T]il,T]ig]T = hZK”Y and ¢1 = [(bil; @ig]T = h'LKz2 The
function f,;(t) are known functions corresponding to component of the actuator which

is defined in (8). From this, we can obtain 7.,;)(t) by adding the i’ zero column to

Texa(i)(£)-

7.3.2 Error System

In order to design an adaptive law, we consider the estimation error from the esti-
mates of actuator failures and unknown parameters. Our adaptive actuator failure

compensation design ensures

JEr(t)y = JNI — o).+ JPo7
=J' I -o)re—7)+J'(I - o)+ J o7

= JU(I = o)(r. — 77) + YO — Kys(t) (7.31)

as JI(I — o)7t* + JTo7 = Y0* — K;s(t) ensured by the nominal design.
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The closed-loop system becomes
E'D.Es+ EY(D.E + C.E)s 4+ Kgs = J'(I — o(t)) (1. — 7). (7.32)

3
The error signal 7. = 7, — 7. can be written as 7. = ) 7.,
i=0
where 7o) = [Q1Tea(i)1(t), @Tea(i)2(t), sTears ()], Xi = diag{Xi1, Xi2}» Xij = Xij — X}
and the error signal 7.q(;), which represents the nonzero term of 7, is

i Tea(i)1 (1) ninfin ﬁﬂl)fai(t)cbﬂ
Tea(i) = = —Xihi Kin Kqs(t) + + (7.33)

7~—ca(z‘)2 (t) Ninbi2 ﬁi(n)fa,z'(t)¢z'2

7.3.3 Adaptive Laws

In this subsection, we develop an adaptive scheme for updating the estimated pa-
rameters of the controller (7.28). The adaptive laws for x;; with ¢ = 0,1,...,3 and

j = 1,2 are chosen as
Xij = =78 it + Py (7.34)

where j(z‘)j € R™*! represents the j column of matrix j(i), 7ij > 0 are the adaptation
gains, (; = [Wi1, figs - - -, in]? = —hi K;1K45(t), Py; is the projection function, h; and
K1 are the design matrices from the nominal controller structure.

The adaptive laws for pijy = [pi(j)1)s - Pit)s)) " with i = 1,...,3 and j = 1,2

are chosen as

pitiy = —LiijyJais” Jiyjdis + Poyy» (7.35)
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where P,(;) is the projection function and I'(;;) = F%’;j) > 0 are the adaptation gain

matrices.

The adaptive laws for 6;; with ¢ =0,1,...,mand j =1,2,...n:
0i; = —Bys" Jawymij + Do, (7.36)

where Py, is the projection function, 7; = [mi1, Mia, - - -, Min)” = iKY, By = Z:'; > 0
are the adaptation gain matrices.

Remark 7.2: Here we use a parameter projection design for P, ., B, , and F,.

Pi(5)
The parameter projection uses the knowledge of the parameter regions 0 < yi < 1,
03 < 07 < 0% and pip < py < pif. pif and pif being the upper and lower bounds
of the components pj, of pj. 65 and 65° being the upper and lower bounds of each
component in 6*.

This choice of o,(t), o0s(t) and g,(t) ensures that (xi; — xj;) Py, < 0, (i —
;0 )Pa(t) < 0, (pigir) — XijPie) Doy < 0 which guarantees the boundedness of

estimated parameters.

7.3.4 Performance Analysis

The proposed actuator failure compensation scheme can ensure the stability and
tracking of the system with uncertain actuator failures as shown by the following

theorem.

Theorem 7.1. For the system with unknown D.,C. and f, the designed adaptive
actuator failure compensation scheme guarantees the closed-loop signal boundedness

and asymptotic output tracking: lim,_,, e(t) = 0 despites the uncertainties of actua-
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tor failure index, failure time and failure values.

Proof: The Lyapunov function for no failure case is

2 2 2 2 2 2
1 1 R B 1 ~ 4= 1 N 1~
Vo=5s"B'DEs+ 53 3 Xy +5 0 D 00+ 530D hpTig oro-

k=0 j=1 k=0 j=1 k=1 j=1
(7.37)

The time derivative of the Lyapunov function Vj is
Vo < —sTKys <0. (7.38)

The Lyapunov function for actuator ¢ failure case is

2 2 2 2 2 2
1 1 o _ 1 T 1 - 1

2 k=0 j=1 k=0 j=1 k=1 j=1
1< I 1
-3 Z Xbi T — 5 Z OiB Oni — 3 Z Py i Preo)
k=0 k=0 k=1
(7.39)
The time derivative of the Lyapunov function V; is
Vi < —sTKys < 0. (7.40)

With the Lyapunov function, s(t) € L®()L? and all signals in the system are

bounded, and so is $; based on the Barbalat lemma, we can conclude that lim,_,., s(t) =

0 and lim; ,, €e(t) =0
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7.4 Simulations Study

In order to demonstrate the effectiveness of the proposed control scheme, we imple-
ment an adaptive actuator failure compensation scheme for the 2-DOF redundantly
actuated parallel manipulator. The parallel manipulator is actuated by three servo
motors located at the bases Al, A2, and A3. The end-effector is mounted at the
common joint O, where the three manipulators meet. The joint angles are defined as
follows: qq1, a2, ¢a3 Tefer to the active joint angles, and qp1, gpo, qp3 refer to the passive

joint angles.

7.4.1 2-DOF redundantly actuated parallel manipulator model

In this section, we discuss the dynamic of the parallel robotic system. We define
qo = [r,y]" as the position of the end-effector and 7,; for i = 1,2,3 is the force that

each actuator produces. From (7.9), we have the dynamic of the system as [16]

E'D.Ej, + EY(D.E + C.E)j, + J* fu = J' 7. (7.41)
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The matrices D, and C, are
i 07 0 0 Gicanm 0 0
0 03 0 0 Bicae O
D, — 0 0 05 0 0 G5cas
Oican 0 0 0% 0 0
0  Oicar O 0 o; 0
I 0 0  Oscas O 0 05
i 0 0 0  Oisgn O 0
0 0 0 0  Ospa O
0 0 0 0 0 O3sqps
C.= (7.42)
0% 54a1 0 0 0 0 0
0 655402 0 0 0 0
I 0 0 0543 O 0 0

with 67 represents the system parameters which are unknown to the controller, the

functions Cabi = COS (Qai - sz‘)v Sqbi = (Sil’l Qai — qbi)dbia and Sqai = —(Sil’l Qai — Qbi)Qai-
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The known Jacobian matrices £ and J are

T1 COS q(p1) 71 81N q(p1)

T9COSqp2) T2 SIN Qo) - 7
T1COSqp1)y T1SINqp)

T3 COS q(b3) 7’3 S G (p3)
FE = , J =] rycos qe2) T28Iqe) |
—T1CO8((q1) —T1SINq(q1)

T3 COS q(p3) T3 SN q(13)

—T2CO8 ((q2) —7T2 SN G(q2)

—T3CO8((a3) —7T3SIN((a3)

where r; = 1 ] and [ represents the length of each link, which can be obtained

Usin (qy; —qai

easily.

7.4.2 Simulation Conditions

In the simulation study, we assign the parameters in the system as 67 = 0.0932, 65 =
0.0427,05 = 0.0427, 03 = 0.0381,0; = 0.0085,0; = 0.0085,0% = 0.0426, 05 =
0.0111,6; = 0.0111. The friction parameters are chosen as f,; = 2.9936, f,o =
2.7617, f,3 = 2.8771, fa = 0.4976, f.o = 0.4570, f.3 = 0.3006. These parameters
are only used for the simulation and are unknown to the controller.

The initial conditions of the system are chosen as ¢, = [0.3 0.3]", the reference

signal is chosen as ¢q(t) = [2.2 2.9]T.

7.4.3 Simulation Results

In this section, we show some of our preliminary results of our study. In this case, we
only consider simple cases of simulation with constant reference input and constant
actuator failure. To simplify the problem, we assume that most of the parameters in

the system are known with only the exception of 8] and 6;.
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In this simulation, we use constant actuator failure signals. We let actuator g,
failure occurs twice as follows:
(i) No actuator failure case: 7(t), = 7.(t) for 0 <t < 50s,
(ii) Actuator ¢ failure case: 7,1 = 71 = 5 at 50 < ¢ < 100s,
(iii) The failing actuator ¢; becomes normal again, no actuator failure case: 7(t) =
7.(t) for 100 <t < 150s,

(iv) Actuator q; failure case: 7,1 =73 = —5 at 150 < ¢t < 200s.

In this case, the simulation results show the output of the system in Figure 7.3,
the position of the actuated joint qu1, qu2, qu3 in Figure 7.4 and the estimated failure

torque 7, are presented in Figure 7.5.

0.3 T T T T T T T T T

0.2 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Time (t)

0.3 T T T T T T T T T

0.28 - (\/\h \/ v 7

— 0.26 7

0.24 7

0.22 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Time (t)
Figure 7.3: System output ¢,(t) for a reference gz = [2.2 2.9]7.
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Figure 7.4: Angle of the actuated joint qu1, Gu2, Qa3 -
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Figure 7.5: Angle of the flexible joint qp1, g2, qp3 -
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Figure 7.6: Estimated value of the failure torque 7 .

The simulation results confirm that the adaptive actuator failure compensation

scheme can guarantee that the tracking error of the system goes to zero for the desired

trajectory.

7.5 Conclusions

A parallel manipulator robotic system plays an important role in many projects and
the concept of adding redundancy to the system can be used to improve the per-
formance as well as reliability of a robotic system. Developing an adaptive actuator
failure compensation scheme for parallel robots that can immediately compensate for
any possible failures in the system is important for the control and robotic fields.

In this chapter, we have studied the adaptive actuator failure compensation scheme
with a parallel manipulator robotic system. Our research shows that, with a complete

parameterization of failure patterns and system parameters, a desirable closed-loop
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stability and asymptotic tracking of the system can be achieved, despite uncertain
actuator failures. The simulation results also verified the performance of the adaptive
control algorithm when applied to the 2-DOF redundantly actuated parallel manip-

ulator model subject to uncertain actuator failures.
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Chapter 8

Design for Landing of A Helicopter

with Robotic Legs

A helicopter is a type of aircraft, which is capable of taking off and landing vertically.
This attribute allows helicopters to be used in congested or isolated areas and perform
tasks that is not possible for other types of aircraft. One limitation of the current
state-of-the-art helicopter is that the system needs to land on a flat surface. In
order to overcome this limitation, engineers proposed a new type of robotic landing
gear using robot manipulators, which fold in flight, extract while landing, and bend
in response to variable terrains [14]. These robotic legs allow for stable and safe
landing of unmanned helicopters in a variety of rough terrains which are typically
not accessible to traditionally outfitted aircrafts. The proposed system is still in the
developmental state and there are several issues that are needed to be addressed

before the proposed landing system can be used in a practical situation.

Safety is one of the most important problems that needs to be solved before the
proposed landing system can be used. Although the robotic landing gear can help a
helicopter operates on an uneven terrain, this approach also increases the complexity
of the landing process. The robotic landing gear using legs with articulated joints
that can fold up when the helicopter is flying and extend when the copter is preparing

to land, thus the system needs to deal with several actuators in each manipulator.

189
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In order to address the aforementioned problems, a more advanced control design is
needed to control the landing process of the helicopter with robotic legs subject to

uncertain actuator failures.

Additionally, the proposed helicopter landing system needs to operate on several
types of uneven terrains and in various circumstances, which many parameters of the
system and the environment may be unknown. To deal with the uncertainties, the
problem of designing adaptive control laws for rigid-robot manipulators that ensures
asymptotic trajectory tracking is needed. The basic idea of adaptive control is to
change the values of gains or parameters in the control law according to some online
algorithm corresponding to the changes and uncertainties in the system. The adaptive
controller can learn an appropriate set of controller parameters to compensate actu-

ator failures through the adaptation for each successive operation [15, 16, 17, 18, 19].

The studied helicopter landing system utilizes the parallel structure in the ma-
nipulator legs to make adjustments in the landing process. A parallel manipulator is
a mechanical system that uses several computer-controlled serial chains to support a
single platform, in this case the body of a helicopter. With a parallel manipulator
structure, a high rigidity may be obtained with a small mass of the manipulator,
which allows high precision with high speed of movements, and the redundancy of
the actuators can potentially be used to solve the actuator failure problem [20, 21].
Over the past two decades, parallel manipulators have attracted the attention of
many researchers. However, most literature focuses on the studies of kinematics and
dynamics of the system [22, 23]. Researches on control strategies are relatively few
especially regarding to actuator failure compensation problem. In the literature, there
are two types of basic control strategies for parallel manipulators: kinematic control
strategies and dynamic control strategies. In the kinematic control strategies, the

nonlinear dynamics are not considered to avoid the complex computation, thus, the



CHAPTER 8. DESIGN FOR LANDING OF A HELICOPTER WITH ROBOTIC
LEGS 191

controller can be designed easily. However, the landing process of a helicopter is a
complicated and rapid process, these types of controllers can not always produce sat-
isfactory performance, and there is no guarantee of stability especially at higher speed
[24]. On the other hand, the dynamic control strategies, which are considered in this
study use a full dynamic model of the system. In this way, the nonlinear dynamics of
the landing mechanism can be compensated and higher performance can be achieved
[25, 26, 27]. Finally, this control approach allows for actuator failure compensation
of the landing mechanism, which is the main focus of this study.

Actuator failure compensation is a well-known problem in control system. There
are studies that focus on actuator failure compensation, such as the neural network
control, sliding-mode control, and an adaptive actuator failure compensation [28, 29].
However, most studies only focus on actuator degradation which only consider small
changes in the actuator outputs, or rely on the detection and isolation scheme of
actuator failures in the system which is relatively slow and its used is limited [30, 31,
32, 33]. In order to efficiently compensate actuator failures in the helicopter landing
process, an actuator failure compensation control scheme that is reliable and capable
of immediate failure adaptation is needed to ensure a safe landing [34, 35].

In this paper, we develop a new adaptive actuator failure compensation scheme for
a helicopter landing system with parameter uncertainties. The algorithm uses redun-
dancy in the parallel structure to ensure desired closed-loop stability and asymptotic
output tracking of the system subject to uncertain actuator failure. This paper makes

the following contributions to solving such a new problem:

e Develop an adaptive actuator failure compensation scheme for landing of a

Helicopter with parameter uncertainties, in addition to actuator failures.

e Study the dynamic and control for the landing of a helicopter using robotic legs,

and demonstrate how to deal with the constraint of the parallel structure.
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o (lerify several key technical issues and solutions for the adaptive actuator fail-
ure compensation scheme for helicopter landing system and extend the failure

compensation scheme to concurrent actuator failure case.

e Study the simulation of the adaptive actuator failure compensation scheme

based on a Helicopter landing system subject to uncertain actuator failure.

The paper is organized as follows. In Section II, we formulate the problem with
the discussion of the dynamic model of a proposed helicopter landing system, actuator
redundancy, actuator failure model and control objective. In Section III, we design a
nominal controller by assuming that the knowledge of actuator failures is known. In
Section IV, we develop the adaptive control scheme based on the nominal controller
structure. Finally, in Section V, we study the simulation of a helicopter landing

system to confirm the effectiveness of the control design.

8.1 Problem Formulation

The objective of this research is to develop an adaptive actuator failure compensa-
tion scheme to solve the actuator failure problem in the proposed helicopter landing
mechanism. In this study, we utilize the redundancy in the structure of a parallel
manipulator to ensure closed-loop stability and asymptotic output tracking of the

system with parameter uncertainties in the presence of uncertain actuator failures.

8.1.1 Dynamic Model of the System

In this study, we will develop an adaptive actuator failure compensation scheme for
a helicopter landing system on uneven terrains with redundantly actuated parallel

manipulator as.
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Figure 8.1: Landing of a helicopter with robotic legs on uneven terrains with redun-
dantly actuated parallel manipulators.

In order to improve the performance of the landing system and guarantee a safe
landing, we propose a new structure of the helicopter landing system by using six
landing legs instead of four legs that is originally proposed. The Hexapod structure
of the landing mechanism could improve the system performance and the additional
redundancy could be used to design an effective adaptive actuator failure compensa-

tion controller for the system.

The first step in designing the controller for the system is to study the dynamic
model of the new proposed landing mechanism. The dynamic model of the system can
be obtained by combining the dynamic model of each landing leg with the dynamic

model of the helicopter body.

Dynamic model of each landing leg: In this study, we use a two-link robotic
manipulator as each leg in the landing mechanism of the helicopter [26]. The dynamic

model of such leg can be written as

DiGi + CiGi + i = 75 — J i feur(i)s (8.1)
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where §; and ¢; are the joint angular acceleration and angular velocity of each ma-
nipulator for i = 1,2, ...,6, D; € R?*? is inertia matrix, and C; € R?*? is Coriolis and
centrifugal term, g; is the gravitational term J,; € R?*? is the nonsingular Jacobian

matrix and fe,( is the external force vector at the end-effector.

Dynamic model of a helicopter body: Because the main focus of this research
is the landing mechanism of the helicopter, we model the body of the helicopter as
a rigid mass with time varying parameters for its mass and inertia. The dynamic

model of the helicopter can be written as

Ingn + Cn(q, qn)dn =

Mh[3]§ = fha (82)

where p, € R? is the augular displacement of the helicopter body, p € R? is the
position of the payload, I is a 3 x 3 matrix of the inertia, C,(g, ¢) represents Coriolis
and centrifugal term, M} is the effective mass of the helicopter that the landing
mechanism need to support, I3 is a 3 x 3 identity matrix, and 7, € R and f, € R?

are the generalized torque and force exerted on the helicopter body.

From the general dynamic model of a rigid body, we can see that the system has
six degrees of freedom. However, for the landing aspect of a helicopter, the landing
mechanism is set up directly under the base of the helicopter such that the upward
force of each manipulator will only affect the height displacement, roll angle and pitch
angle of the helicopter body, which are enough to guarantee a safe landing. From

this, the dynamic model of the helicopter body is reduced to

Do(.]'o + Oo@o = To, (83)
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where g, € R? is the height, roll and pitch of the helicopter body, D, is a 3 x 3 inertia
matrix, C, represent Coriolis and centrifugal terms, and 7, € R? are the generalized

torques exerted on the body that is related to height, roll and pitch of the helicopter.

System constraint: The combined dynamic of the manipulator with system con-

straint can be written as [27]

D+ CoG+g=17— J" four + AT, (8.4)

where D,, € R'2*12 is the combined inertia matrix of the manipulator, C,, € R'?x12

is the combined Coriolis and centrifugal matrix, 7 is the torque vector, f.,; is a force
that is exerted on the helicopter body and ¢ represents the angle of each manipulator

joint in the system.

One of the difficult problems, which arises in the robotic system with parallel
structure, is how to deal with the constraints. The constrained torques in the system
are difficult to measure; as a result, we cannot directly develop a controller that
addresses this issue. In this study, we first consider the constraint force vector AT\,
9H(q) _

ot

where the matrix A is the differential of the closed-loop constrained equation

A(q)¢g = 0 and X is a multiplier representing the magnitude of the constraint force.

In order to deal with the unknown constraint force vector AT\, we define the
Jacobian matrix E such that ¢ = E¢, with ¢, represents the vertical velocity, pitch
rate and roll rate of the helicopter. With the Jacobian matrix F and the fact that
A(q)¢ = 0, we have AEqG, = 0, from which one can conclude that the equation

ETAT = ( holds. With this property and the relation § = Eq, + Eq,, the dynamic
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model of the parallel manipulator with constraints can be written as

E'D,,Ej, + EY (D, E + CpE)j, + E'g

=E'r — ETJ" fou. (8.5)

This dynamic model represents the dynamic of the leg structure with constraint.
In the next subsection, we consider the combined dynamic of the helicopter body

with the manipulator dynamic.

Combind dynamic model of the system: The combined dynamic of the system
can be obtain with the substitution of the generalized torque 7, with the generalized
external force of each manipulator f.,;. Defind a transformation matrix .J, € R3*3

such that Jy7, = ETJE fext- The dynamic model of the system can be expressed as

E'D,,Ejy + EY(DWE + CpE)j, + E'g

+ JbDoéjo + JbOOQO - ETT- (86)

Because the proposed landing mechanism needs to operate on various circum-
stances, many parameters in the landing process may be unknown. This means that
there are some uncertainties in the D,,, C,,, g, D,, C, matrices. In this study, we only
focus on the control of the landing mechanism not the control of the flight mechanic
in the helicopter, thus, any time varying function related to the flight mechanic of

the helicopter is assumed to be known.

In a robotic system, it is common to assume that the system satisfies the following
structural properties:
a) Dy, D, is a symmetric and positive definite matrix.

b) D.—2C., D, — 2C, is a skew symmetric matrix.
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With this assumption, it can be proven that the new dynamic model that we
obtained (8.6) also satisfies the similar structural properties:
c¢) The combined inertia matrix ETD,, E + J,D, is a symmetric and positive definite

matrix.

d) The combined matrix % — 2 EY(DpE + CoE) 4 J,C,) is a skew sym-

metric matrix.

Remark 8.1: The helicopter may land on various terrains, the Jacobian matrix F
may change with each landing. However, we can easily measure the structure of the
landing surface from the position of each landing leg on the initial impact when the
helicopter landed. As a result, the Jacobian matrix is assumed to be known for each

landing.

8.1.2 Actuator Redundancy

In order to develop an actuator failure compensation scheme, having redundancy in
the system is one of the most crucial requirements. The proposed helicopter landing
system with six manipulators satisfies this requirement; thus, the study of actuator
failure compensation scheme for the systems could improve both the performance and
reliability of the proposed landing mechanism.

The adaptive actuator failure compensation scheme developed in this study utilizes
the redundancy from the parallel structure of the landing mechanism to compensate
for possible actuator failures. In order to achieve this objective, the helicopter landing
system considered in this study requires at least 3 functioning actuators in different
manipulator, thus, we allows actuator failures for up to 3 different manipulators in
each actuator failure case.

In this study, we define actuator failures in the system as follows: Let X be a
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set of all possible actuator failure pattern such that ¥ = {0, 0(), ...,0(n) }, where
N is the number of all possible actuator failure pattern that satisfies Assumption 1,
and o) = diag{o1, 0@)2, ---» 012} is the actuator failure pattern with og;y; = 1 if
actuator j fails and o0(;); = 1 otherwise.

Assumption 1: Define a matrix E(i), for each actuator failure pattern oy, as
a submatrix of E without the columns associated with the failing actuator (each
associated column j is such that o(;); = 1) . In this study, we assume that the rank
of the matrix E(i) must be larger or equal to 3 for every possible actuator failure

pattern. \V/

Remark 8.2: Although the proposed landing mechanism contain twelve actu-
ators, the actuator located on the same manipulator is dependent with each other.
This means that an actuator failure in a manipulator will severely affect the per-
formance of the entire manipulator, thus, in most case it is not possible to use the
other actuator within the same manipulator to compensate for each other, especially
when the manipulator needs to support a large load such as in the helicopter landing

system considered in this study.

8.1.3 Actuator Failure Model

Our adaptive control scheme needs to be able to compensate for an actuator failure in
the helicopter landing system, but it is a difficult task to obtain the exact knowledge
of the actuator failures that have yet to occur. To design an adaptive actuator failure
compensation scheme, we first develop an actuator failure model to describe the

unknown actuator failures in the system as follows.

Let 7(t) = |11, T2, ..., T12]T be the system input vector. When an actuator failure

occurs, the control input component 7;(t) associated with the failing actuator j may
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become an arbitrary signal, which can be expressed as [34]

7;(t) =7;(t), t > t;. (8.7)

Although the exact value of the control input 7;(¢) is unknown, the structure of

actuator failure can be obtained based on some knowledge of the actuator as

~]|

p
0+ Y Tinfair(t), t > 1, (8:8)
k=1

where p is the number of components in the failing signal, f,;, are known functions
corresponding to each component of the actuator and j,t;,7;; are unknown failure

index, failure time and failure value of each actuator component.

With some specifications of the unknown constants 7jy, 7, and known functions
fajk(t), we can model most common actuator failures such as the lock in-place failure
of the actuator: 7; = Tjp, which may happen when the controller fails to communicate
with the actuator, or the complete failure of a motor in the system: 7; = 0. Addition-
ally, the terms 7, f,;1(t) in the actuator failure model can be used to model additional
types of time varying actuator failures such as a square wave actuator failure, which

the failure occurs periodically.

8.1.4 Control Objective

Our control objective is to guarantee the height displacement, roll angle and pitch
angle of the helicopter body, or ¢,(t) tracks a desirable trajectory qq(t) asymptotically
even when an actuator failure occurs. Consider the combined system model (8.6), due
to possible actuator failures, an applied feedback control signal 7.(¢) may not reach

the system, as 7;(t) is not equal to 7.;(t). More precisely, for each actuator failure
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pattern oy;), the signal 7(¢) is

T(t) = (I — 0() (t))7.(t) + (T(i)(t)f(i), (8.9)

where 7(;y is an unknown failure vector for the actuator failure pattern o; case, and
o()(t) is the actuator failure pattern matrix such that o(;;(t) = 1 if the j actuator
fails and o;);(t) = 0 otherwise.

The control objective is to design a feedback control signal 7.(t) such that the
closed-loop system satisfies: ETD,, E$+ET (D E+CiyE)s+JyDos+ J,Cos+Kqs = 0
in the nominal case, and also asymptotically in the adaptive case of unknown system
parameters, despite the uncertain actuator failures 7(t) = (I — o) (¢))7e(t) + 03 (t)7T,
where the error vector s is defined as s = é + Age with e = g, — qq4, g4 is the desired
trajectory of the end-effector, Ay € R**? is a design matrix whose eigenvalues have
positive real parts and the gain matrix K is chosen to be positive definite. When this
objective is met, the system will be ensured to have the desired signal boundedness

and tracking properties lim;_, e(t) = 0.

8.2 Nominal control design

The adaptive actuator failure compensation scheme proposed in this study is a control
scheme that builds on top of the existing control algorithm. The proposed scheme
enable the existing algorithm to be able to compensate for any possible actuator
failure.

From the block diagram, each nominal controller in the controller bank is devel-
oped based on an existing control algorithm that is designed for the system without
actuator failure such as the backstepping control or the Slotine and Li’s control de-

sign. In this case, the actuator failure values are known, and the switching scheme is
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l Actuator Failure
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Figure 8.2: Block diagram for nominal control design

developed from the known actuator failure pattern.

In this section, we develop a nominal controller for the proposed helicopter landing
system by assuming that the knowledge of the actuator failures is known. Such a
controller structure is needed to ensure that it is possible to design the adaptive
actuator failure. Moreover, the baseline control design developed in this section can
be used to design an adaptive actuator failure compensation scheme with uncertain

actuator failures in the following section.

8.2.1 Ideal Control System

Before we begin the development of the actuator failure compensation, we first study
the conventional controller for the system, which is developed based on the Slotine
and Li’s approach. Consider the dynamic model of the helicopter landing system

(8.6) as

ETD,Ejy + ET(DWE + CpE)j, + ETg

+ JyDyoiip + JyColo = ETT. (8.10)
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In order to develop a controller for the system, we define an error vector s =
e+ Noe € R?, where e = ¢, — qq, v = g — Ape € R? being an intermediate vector
signal and let Ag be a constant matrix whose eigenvalues have positive real parts. We

can parameterize the system with

E'D,,Eij, + EY(D\E + CoE)dy + ETg + J, Doy

+ JoColo = Y (¢o, o, v, 0)0" + F (4o, 4o, v, V), (8.11)

where 6* being the vector of unknown parameters in the system, Y (¢, ¢, v, v) being a

known regressor matrix and F'(q,, ¢,, v, 0) is a known matrix.

We choose the control 7(t) € R'? such that

ETr =Y (q,¢,0,0)0" + F(qo, 4o, v, ©) — Kys(t). (8.12)

With the chosen control law for the desired nominal performance, the ideal closed-

loop system becomes

E'D,,E$+ EY(DE + Co E)s

+ JyDos + JyCos = 0. (8.13)

For a robotic system without actuator failures, we can perfectly generate the control
signal 7, so that the equation (8.12) holds. In this case, we can prove that s is
bounded and s € L?, so limy_,o, s(t) = 0 as $ is also bounded. From the definition of

s, the convergence of s also implies the convergence of the tracking error.
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8.2.2 Actuator Failure Compensation

In this subsection, we consider the helicopter landing system, where the uncer-
tainties of actuator failure and parameter uncertainties are known; that is, to de-
sign a feedback control signal 77(¢) to meet the desired nominal signal E77(t) =
Y(q,q,v,0)0* + D0 + J,Cov — Kgs(t) for 7 = (I — 0,))7} + 0337, Vouy € 3, so the
closed loop system ETD,,Es + ET(DpE + ConE)s 4+ JyDos + J,Cos = 0.

The proposed actuator failure compensation scheme chooses the nominal controller
structure as a combination of individual controller for each actuator failure pattern

as shown in Figure 8.2 as

N
T (t) = Z X; Teiy (1), (8.14)
=0

where N is the number of all possible actuator failure cases and x; for+ =0,1,..., N
are the indicator functions of the actuator failure: x; = 1 when there is no actuator
failure, x; = 1 for ¢ actuator failure. The indicator functions x; = 0 for its non-

corresponding cases.

The controller design for each actuator failure pattern can be obtained as follows:

Step 1: Define an intermediate control vector 77, from the control signal 7. by remove
4 element associated with the failing actuator (we remove the signal associated with
the actuator failure because we have no control over the signals when the actuators

fail).

For each actuator failure case o(;), lets 7.(t) = 7, (¢) as

*

Tc(i)(t) = [0417':@(1')17 aQT:a(i)27 e 7(1127—;(1')12],11’ (8.15)
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where «; = 0 if the actuator 7 fails and «; = 1 otherwise. The intermediate vector
signal Toa(i) 18 then defined as a vector consisting of the non-zero rows of Toi)- From
this definition, the control signal Toq) can be reconstructed by inserting a zero for

each column associated with the failing actuator into Teali) -

Step 2: Formulate the desired control signal structure from the baseline control

design. The intermediate control signal can be designed from

Toa(i) () = MiToi) (1) (8.16)

with some chosen matrix function h; € RU?=mX(2=m) and 77 . () € R ™)1 are

obtained from

> E[T 4+ Efhitin(t) = Y0 + F — Kys(t), (8.17)
Jea()
where the submatrix E(i) € RU2=m)x3 pepresents the Jacobian matrix E without the
row associated with the failing actuators, m; is the number of concurrent actuator
failure for each actuator failure case o(;) and ag;) is defined as a set of all failing ac-

tuator index j such that o@;); = 1.
Step 3: Solving for the explicit form of 773, (t) to obtain the desired control signal.
With Assumption 1, it is possible to choose h;, such that the solution of Tob(i) (t)

exists. In order to obtain a unique solution, we choose the design matrix h; such that

EE‘?) h; is a square matrix and is invertible.
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The explicit form of the 77, (¢) can be written as
T (t) = Ko(Y0" + F — Kys(t)) + > Ky, (8.18)
where Ko € R¥® and K;; € R**! are expressed as

Kio = (Efyhs) ™", Ky = —(Efyhi) ' E;. (8.19)
The proposed nominal control design ensures EXT = ET(I — o))} + EToyT =
Y6* + F — Kys(t), so that the closed loop system ETD,,E$ + ET (D, E + Co,E)s +
JpyD,s + Jp,C,s = 0 for every actuator failure case.
In this section, we have designed a nominal control law for the system, where
all uncertainties in the system are known. In the next section, we will develop an
adaptive actuator failure compensation scheme without the knowledge of the actuator

failure in addition to parameter uncertainties.

8.3 Adaptive Failure Compensation Design

The proposed helicopter landing mechanism needs to operate on various types of ter-
rains under different circumstances, thus some system parameters may be unknown.
Additionally, the information regarding the actuator failure, such as the actuator fail-
ure values 7(;), actuator failure pattern o(;, or the failing times ¢;) is often impossible
to obtain. In this section, we proposed an adaptive actuator failure compensation
scheme for the helicopter landing system with unknown parameters in addition to
uncertain actuator failures.

The system block diagram of the proposed adaptive actuator failure compensation
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scheme is shown in Figure 8.3.

Unknown Actuator failure

dd v
Adaptive | Tc Robot do
Controller Manipulators

T

Figure 8.3: Adaptive system Block Diagram.

The control input 7.(¢) is the combination of the parameterize controller struc-
ture, which is developed from the nominal controller design in the previous section.
Because some parameters in the controller structure are unknown, we develop estima-
tors corresponding to each adaptive controller, the estimators estimate the actuator
failure values, actuator failure patterns and the uncertain parameters in the system.
In this section, we will first parameterize the nominal controller to obtain a suitable

adaptive controller structure, and then we will develop adaptive laws for the system.

8.3.1 Adaptive Controller Structure

The adaptive control scheme is developed based on the nominal controller structure
(?7?7). Since we do not know the values of x}, 7(;) and 6%, we first design the controller

as

7e(t) =) Texi) (1), (8.20)
=0

where 7,,;)(t) are the estimates of each actuator failure case with the indicator func-
tion Xj 77,

To derive each adaptive controller structure 7., (t), we first define an intermediate
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control signal 7,y4)(t), similar to the process in the nominal control design. We
consider the adaptive control signal Te,;)(t) = [Q1Tex(i)1, Q2Tex(@)2: - - - » V12Tex(i)12) 5
where «; = 0 if actuator 7 fails and «; = 1 otherwise. Then, we calculate the elements
of Ty (i) (t) from its subvector 7,,q(;)- The subvector 7.,4(;) is obtained from the original
control signal 7., (t) without the element associated with the failing actuator for each
actuator failure pattern 0 4)-

To derive the intermediate controller structure 7.,4(;), we consider its nominal

version as

X; Tea(iy (1) = — X; hiKio Kas + hi KoY x; 0"

+ ) TG (8.21)
JEQ;)
From the nominal controller structure (8.21), the term x7, x;0* and x;7; are unknown
and needs to be parameterized.
In this study, we consider the parameterization of unknown system dynamics and

actuator failures as follows:

e The indicator function x} is parameterized as diag{xi1, Xi2, - - - ,X,mbl.)}, where

m; = 12 — m;, the term x;; is an estimate of x; with xj; = x; and 0;; is the

estimate of xj;0",

e The term x;0* associated with the unknown parameters is estimated by 0,; =

[0i1, . .., 0] such that

N6

*
Nirn; Vi,
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where 1; = [, - - Mim]T = iKY .

e The actuator failure value x;7; is parameterize based on the proposed ac-
tuator failure model (8.8). The actuator failure value can be modeled as
7i(t) = pi" faj(t), where fo;(t) = [1, faj1(t), ..., fajs (t)]" are known functions
corresponding to the failed components, p; = [Tjo, Tj1, ..., Tjz)* contains the pa-
rameter values associated with each actuator failure component and p is the
number of actuator failure components. The term xj;p; is estimated by p;(;)

such that

Pitny fai(t)Pin
Z X; TihiKij = Z : ; (8.23)

JEA () JEQ )
o1 Fui)on

where ¢; = [¢i1, ..., i) = hiKy;.

Finally, we can choose the controller 7.,,;(t) as

Texa(i) (t) = —diag{xi1, Xi2, - - - » Xirma) } a5 (t)

N ng(l)faz‘(t)@u
+ : + ) : . (8.24)
JEQ()
Niri; Oirin, Priny Jai (8) P

From the intermediate controller structure, we can obtain 7.,(;(t) by adding the
zero columns associated with the failing actuator to 7.,q((t). The adaptive controller
structure developed in this section will be used with the adaptive law to ensure that
the control objective is met for the system with unknown actuator failures in addition

to parameter uncertainties.
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8.3.2 Adaptive Laws

In this subsection, we develop adaptive laws for updating the estimated parameters
Xij» Pi(j), 0i; in the controller structure (8.20). The adaptive laws proposed in this
study are developed based on the Lyapunov method to ensure desired closed-loop
stability and asymptotic output tracking when applied to the adaptive controller

structure.

The adaptive laws for y;; with ¢ =0,1,..., N and j = 1,2, ...,m, are chosen as
Xij = =%is8" Eayjbtis + Py (8.25)

where E_'(Z-)j € R¥! represents the j column of the submatrix E’(,-) defined for each
adaptive controller 7, (t), 7i;; > 0 is the adaptation gain, p; = [, fi2, - - -, fin]” =
—h;KioK4s(t), Py, is the projection function, h; and Kj, are the matrices obtained

from the nominal design process for ecach actuator failure case.

The adaptive laws for piijy = [pi(j)(1)s - Pig)(nny] With with @ = 0,1,..., N and

j=1,2,...,m; are chosen as
pity = —Tiip fais" Etiyi®ij + Py, (8.26)

where P,;(;) is the projection function and I'(;;) = e

(i) > 0 are the adaptation gain

matrices.

The adaptive laws for 0;; with ¢ =0,1,...,N and j =1,2,...,1m; is
0: = —Bijs" Eaynij + P, (8.27)

where Py, is the projection function, 7; = [mi1, Mia, - - -, Min)” = hiKinY, By = Z:'; > 0
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are the adaptation gain matrices.

Remark 8.3: The adaptive laws proposed in this paper uses parameter projection

designs for P, ., P,

xijs Loy and Fp,. The parameter projection utilizes the information of
the parameter regions based on the physical properties of the system 0 < y < 1,
070 < 05 < 0;'7” and pi2 < ph < pib. pit and pi being the upper and lower bounds
of the components pj, of p;. 65 and 05° being the upper and lower bounds of each
unknown parameter in the system 6*.

This choice of the projection functions g, (t), 0y(t) and g,(t) ensures the following
properties (Xij - X;'kj)sz'j <0, (81 - X:e*)P9<t) <0, (pi(jk) o X;kjp;(k)Ppi(jk) < 0 which

guarantees the boundedness of the estimated parameters.

8.3.3 Performance Analysis

The proposed actuator failure compensation scheme can ensure the stability and
tracking of the helicopter landing system with parameter uncertainties subjected to

unknown actuator failures as shown by the following theorem.

Theorem 8.1. The adaptive actuator failure compensation scheme with the adap-
tive controller structure (8.20) updated by the adaptive laws (8.25) - (8.27), when
applied to proposed helicopter system model (8.6), guarantees the closed-loop signal
boundedness and asymptotic output tracking: lim, ., e(f) = 0, despites parameter
uncertainties in the system in addition to unknown actuator failure index, failure
times and failure values.

Proof: Define (7;,T;41),i = 0,1,2,...,p with 75 = 0,7, = oo as the time intervals
on which the actuator failure pattern is fixed. To guarantee the performance of the

system, we need to show that there exists a Lyapunov function for every time interval
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(T}, Ti+1), where T; is the time that actuator failure pattern changes. The Lyapunov

function V; corresponding to each actuator failure pattern o; is

N m
V; = 3T (ETD,,E + J,Dy)s + 1 0 3 i2,"

i=0]—
N m o
%(X% 19 7]1‘91] + Z Z p7(])Fij1pi(j) Z ; sz’yzk (828)
=0 j= =0 j=1 (43
N
_Z Z ezk1 zkl‘g’lk Z Z pz(k zklpZ ))
=0 k€o; =0 k€Eo;

Using the properties of the parameter projection, the time derivative of the Lyapunov

function V; is
Vi < —sTKys <0. (8.29)

With the Lyapunov function, s(t) € L () L? and all signals in the system are
bounded, and so is §; based on the Barbalat lemma, we can conclude that lim; ., s(t) =
0 and limy_, e(t) = 0.

Because the state of the system in any time interval (7}, 7;;1) must belong to an
actuator failure pattern o; € ¥, where ¥ is the set of all possible actuator failure
petterns including the no failure case. In this study, we have designed the controller
for all actuator failure pattern o;, so that we have a Lyapunov function for each time
interval (7, T;11). As a result, we can guarantee the performance of the system at all

time ¢ € (0, 00).

8.4 Simulation Study

In order to guarantee the performance of the proposed adaptive actuator failure com-
pensation scheme, we design an adaptive actuator failure compensation for landing

of a helicopter with robotic legs. In this case, the helicopter is supported by six
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robot manipulators, which are used to support and maintain the orientation of the

helicopter body.

8.4.1 Simulation Conditions

The dynamic of each robot manipulator can be written as presented in (8.1). The
derivation of the specific two-link planar robot manipulator can be found in [19].
In the simulation study, we assign the parameter as follows: The mass of each link
m; = 10kg, I; = 5kg.m? the length of each link I; = 1m for i = 1,2,...,12, where
actuator 1,2,...,6 are the upper part and actuator 7,8, ...,12 are the lower part of
manipulator 1,2, ...,6 respectively. With the helicopter facing the = axis and the
center of the helicopter body is at located at (0,0,1) initially, the base position of each
manipulator is located at (1,0,1), (0.866,0.5,1), (0.866,-0.5,1), (-1,0,1), ( -0.866,0.5,1
), (-0.866,-0.5,1) respectively.

In this study, we model the dynamic of the helicopter body as a rigid mass with
unknown parameters as shown in (8.3). The dynamic model of the helicopter can be

estimated by

ITFT(LL)@"T = 0.866(7'02 + To3 — Tos — 7—06)
Ipr(t)é.p = 701 — Toa + 0.5(702 + To6 — To3 — Tos)

6
M F(t)h = " 101 — Mg, (8.30)
=1

where the height h, roll angle 6, and pitch angle ¢, are the output of the system
needed for a safe landing, the mass and moment of inertia of the helicopter M, =
500kg, I, = 100kg.m?, I, = 100kg.m? are unknown to the controller, F,.(t), F,(t), F.(t)
are known functions from the flight dynamic and 7y; is the perpendicular force of the

manipulator to the base of the helicopter body.
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8.4.2 Simulation Results

In this section, we show the results of our study. In this case, we only consider simple
cases of simulation with constant reference input and constant actuator failure. The
reference of the output for ¢, = [h,0,,6,] is ¢4 = [1,0,0].

In this simulation, we use the complete failure of actuators 7; = 0. We let actuator
q1, qs3, and g5 fail concurrently at time ¢ > 50s:
(i) No actuator failure case: 7(t) = 7.(t) for 0 <t < 50s,
(ii) Actuator ¢, g3, and g5 failure case: 7 = 73 =75 = 0, Mc = 0.9Mc* at t > 50s

In this case, the simulation results show the output of the system in Figure 8.4.

0 1 1 1 1 1 1 1 1 1
0] 20 40 60 80 100 120 140 160 180 200

Time (1)
0.2 T T T T T T T T T

Roll (Radius)

_0.2 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Time (t)

O 20 40 60 80 100 120 140 160 180 200
Time (t)

Pitch (Radius)
o

Figure 8.4: The output of the system g, for ¢4 = [1,0, 0].
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Figure 8.5: The estimate of the actuator failure pattern x; (no actuator failure case).
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Figure 8.6: The estimate of the actuator failure pattern y» (7 failure case).
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Figure 8.7: The estimate of the actuator failure pattern x» (71,73 and 75 failures).

Figure 8.5 - 8.7 show the estimates of x1, x2, x3, which represent the estimates of
the actuator failure patternf (the nofailure case, 7y actuator failure case and 7, 73, 75
failure case repectively). From this we can see that, the system does not switch to
a specific controller as in the nominal case, but the system use the combination of
three controllers to control the system.

The results confirm that the adaptive actuator failure compensation scheme can
guarantee that the tracking error of the system goes to zero, thus able to maintain

the orientation of the helicopter.
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8.5 Conclusions

In this chapter, we have studied the adaptive actuator failure compensation scheme
for the landing of a new helicopter with robotic legs subject to uncertain actuator
failures. The adaptive control design uses an integration of multiple individual fail-
ure compensators and direct adaptation to handle actuator failure and parameter
uncertainties in the system. The proposed algorithm guarantees that a desirable
closed-loop stability and asymptotic tracking property can be achieved, despite un-
certain actuator failures in addition to parameter uncertainty. The simulation result
verified the performance of the proposed algorithm when applied to the helicopter

model subjected to uncertain actuator failures.



Chapter 9

Conclusion and Future Works

This research develops an adaptive actuator failure compensation framework of non-
linear multi-input multi-output robotic systems subject to uncertain actuator failures
with parameter uncertainties in addition to actuator failures. The research shows a
complete design methodology for developing an actuator failure compensation scheme
for robotic systems such as cooperative manipulator system and parallel structure
robotic system. The adaptive actuator failure compensation framework guarantees
desired closed-loop stability and asymptotic output tracking, despite actuator failures
whose patterns, times and values are all unknown. Simulation results are presented
to verify the desired adaptive actuator failure compensation control performances for
multiple types of robotic systems from the theoretical cooperative manipulator bench-
mark system to the landing of a helicopter with robotic legs. From the simulation
results we can also see that the algorithm can work with both actuator degradation

cases as well as the complete failure cases.

9.1 Future Works

The adaptive actuator failure compensation framework developed in this study en-
sures the performance of the system subject to unknown actuator failure. Although

the control framework can greatly enhance the robustness of the system, it is still in

217
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the early stage of development. Due to the lack of advanced researches related to
actuator failure compensation in robotic system, there are still many open problems
that need to be solved. In this section, we discuss a few open problems related to the

adaptive actuator failure compensation within the robotic field of study.

Actuator Dynamic: In our study, we assume that the torque of cach actuator in
the system 7(t) can be produced precisely. However, the assumption may not hold in
practice. Due to the dynamic of the motor the actual actuator output 7(¢) may be
different from the desired control signal. This error could deteriorate the performance
of the system, especially for the system that required high precision and operate with
a relatively high velocity. The study of the adaptive actuator failure compensation
for robotic system with actuator dynamic is an important topic that could further

enhance the performance of the control design.

Flexible Joint Robot Manipulator: Another open problem related to the dy-
namic model of the robotic system is the consideration of flexible joint robot. The
transmission mechanism in many industrial robots contains flexible joint components.
The study of robotic systems with flexible joint could further increase the performance

of the control design.

Sensor Faults: The adaptive actuator failure compensation framework developed in
this study only consider the failure in the actuators. However, the faults in robotic
system can also originate from the problem of the sensors in the system.F The study
of sensor fault is one of the most challenging open problems related to the fault-

tolerant control of robotic systems.
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Control Optimization Methods: As mentioned previously, the adaptive actua-
tor failure compensation framework developed in this study is still is a very early
stage. Although the proposed control framework can guarantee the desired perfor-
mance of the system, there are many aspects of the controller that could potentially
be improved. From the recent literatures, an adaptive control of a system could be
optimized based on a certain cost function using optimization techniques such as the
multi-mode adaptive control. However, the nonlinearity and uncertainties in robotic
system prevent such method from being used. When the parameters in the system are
unknown, it affects the calculation of the cost function. Thus, the current optimiza-
tion technique cannot be directly applied to our framework. The research related
to optimization techniques for the adaptive actuator failure compensation frame-
work could potentially improve the performance of the actuator failure compensation

framework.
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