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Abstract

The explosive coalescence of two black holes 1.3 billion light years away has for the

very first time allowed us to peer into the extreme gravity region of spacetime sur-

rounding these events. With these maximally compact objects reaching speeds up

to 60% the speed of light, collision events such as these create harsh spacetime en-

vironments where the fields are strong, non-linear, and highly dynamical – a place

yet un-probed in human history. On September 14, 2015, the iconic chirp signal

from such an event was registered simultaneously by both of the Laser Interferom-

eter Gravitational-Wave Observatory (LIGO) detectors – by an unparalleled feat of

modern engineering. Dubbed “GW150914”, this gravitational wave event paved the

way for an entirely new observing window into the universe, providing for the unique

opportunity to probe fundamental physics from an entirely new viewpoint. Since this

historic event, the LIGO/Virgo collaboration (LVC) has further identified ten addi-

tional gravitational wave signals in its first two observing runs, composed of a myriad

of different events. Important among these new cataloged detections is GW170817,

the first detection of gravitational waves from the merger of two neutron stars, giving

way to new insight into the supranuclear physics resident within.

This thesis explores this new unique opportunity to harness the information en-

coded within gravitational waves in regards to their source whence they came, to

probe fundamental physics from an entirely new perspective. Part A focuses on

probing nuclear physics by way of the tidal information encoded within gravitational

waves from binary neutron star mergers. By finding correlations between this tidal

information and fundamental nuclear matter parameters, we find new constraints on

the latter with both current and future gravitational wave observations. Finally, by

making use of constraints on the nuclear matter equation of state from GW170817, we

develop improved universal relations between neutron star observables, which assist

in better parameter estimation for future observations.
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Another enticing subject one might consider is the validity of Einstein’s general

relativity. While observationally confirmed in every spacetime region reachable over

the last century, it has yet to be probed in extreme gravity environments, such as

those outside binary black hole mergers. Part B focuses on testing general relativ-

ity from such events by way of the remnants of such spacetime encoded within the

gravitational wave signal. By considering both parameterized tests and by testing

the consistency between the inspiral and merger-ringdown signals, we find strong

constraints on several alternative theories of gravity with both current and future

observations, including the combination of multiple events and with the multi-band

detections between both space-based and ground-based detectors. Finally, we devise

a new general spacetime metric which is parameterized beyond the Kerr one that

describes black holes in general relativity. We find corrections to several astrophysi-

cal phenomena in the new beyond-Kerr metric which could be observed with future

observations by e.g. the Event Horizon Telescope.
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Chapter 1

Introduction

Before Einstein’s famous advent of general relativity (GR) in 1915, the law of universal

gravitation put forth by Newton over two hundred years ago in 1687 was accepted as

the ultimate expression of gravity. At that time, while Newton himself was skeptical

on this point, his theory was extremely accurate in its predictions of the attractive

forces between massive objects. However, as human ingenuity advanced over the

following century, careful astronomical observations proved there to be some minute

deviations between Newton’s theory and what they found. Foremost among such

observations was the peculiar precession of Mercury’s perihelion (as demonstrated

in Fig. 1.1), an effect well explained in Newton’s gravity by the perturbations of

other planets, the oblateness of the sun, and also tidal effects. However, the observed

precession of 574” per century did not agree well with the Newtonian calculation of

531” per century, an extra 43” per century that would later be perfectly accounted

for by GR [2, 3]. This effect, among others first prompted Einstein to begin work on

his historic theory.

1
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Figure 1.1: Exaggerated demonstration of the advance of Mercury’s (blue)
perihelion (green star) about the Sun (yellow).

Built upon his theory of special relativity in 19051, Einstein’s full theory of GR

elegantly describes the relationships between mass and the curvature of spacetime.

Incredibly so, this complex theory of gravity is described by the simple set of field

equation that made Einstein famous:

Gµν =
8πG

c4
Tµν . (1.1)

In the above expression, the right hand side describes the energy/matter content of

the system via the stress-energy tensor Tµν , while the left hand side describes the

curvature of spacetime via the Einstein Tensor Gµν . As John Archibald Wheeler

aptly put it, “Spacetime tells matter how to move; matter tells spacetime how to

curve” [4]. One astounding phenomena that appears out of the new theory of gravity

1Einstein’s special relativity taught us that the laws of physics are the same for all observers in
any inertial reference frame, and that the speed of light in vacuum is constant for all observers.
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is the presence of gravitational radiation, or gravitational waves (GWs), from sources

with time-dependent mass quadrupole moments. Such radiation manifests itself as

ripples in (or perturbations of) spacetime itself, traveling across the universe at the

speed of light.

In the following century, Einstein’s celebrated theory of gravity has made waves in

the scientific community as it has perfectly explained every gravitational phenomena

observed, and passed every test with flying colors. The first three “classical tests”

proposed by Einstein himself consisted of the following three observations: the peri-

helion precession of Mercury’s orbit, the deflection of light about the Sun, and finally

the gravitational redshift of light [5]. The first test, the advancement of Mercury’s

perihelion as shown in Fig. 1.1, can be shown to agree with the carefully observed

value of 574” per century by including general relativistic effects. In particular, the

planets’ deeper descent into the Sun’s gravitational well at the perihelion relative

to the aphelion causes an additional shift of 43” per century for Mercury, perfectly

explaining the disagreement. The second test of the deflection of light about the Sun

was famously confirmed by the Eddington experiment on May 29, 1919. By observ-

ing stars near the line-of-sight of the edge of the Sun both at night and during the

total solar eclipse, they were amazingly able to observe the predicted 1.75” shift of

star light predicted by GR. Finally, in 1925 Walter Sydney Adams initially measured

the predicted gravitational redshift2 of light radiating from the massive star Sirius-B.

2Gravitational redshift describes the shift of photon wavelengths to longer wavelengths when
observed from a point higher in the gravitational potential. For example, light emitted by a star
becomes redshifted as it travels out of the gravitational “well”.
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All such experiments have been improved upon significantly in the past century with

continued outstanding agreement with Einstein’s theory of GR.

Since the historic classic confirmations of Einstein’s theory of GR, several more

modern tests have been enacted in every spacetime environment available, all still

agreeing strongly with GR’s predictions. Here in the local solar system for example,

in 1964 Irwin Shapiro demonstrated the time-dilation radar photons experienced (the

Shapiro delay) on a round-trip from Mercury and Venus just after being eclipsed

by the Sun, an effect that agreed with the predictions of GR to 5% [6]. More recent

observations with the Cassini probe have narrowed down this agreement to 0.002% [7].

Later in 1968, Kenneth Nordtvedt proposed a test to probe the equivalence principle,

which is a fundamental pillar of GR telling us that the trajectories of freely-falling

bodies is independent of their internal structure. The so-called Nordtvedt effect

compares the relative motion between two bodies (e.g. the Earth and moon) which

would experience no difference in acceleration in GR towards a third body (e.g. the

Sun) [8]. This effect has been studied both here on Earth via Lunar Laser Ranging

techniques [9] which has accurately measured the Earth-Moon distance to within a

centimeter, as well as with binary pulsar3 timing of triple systems [10, 11]. All such

observations to date have all similarly been found to agree with GR [12]. Similarly,

further pulsar timing observations have confirmed GR yet again from the accurate

measurement of their perihelion precession [10,11], an effect much stronger than found

3Pulsars are rapidly rotating neutron stars which emit extremely regular radio pulses on each
rotation. Such stars have extremely stable orbits which make the pulses very precise and allow for
very accurate monitoring of their orbital mechanics.
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Figure 1.2: The very first image of a black hole. This image is of the supermassive
black hole resident at the center of M87, and was taken by the EHT. (Taken from
Ref. [19]).

here in the solar system. Several other tests of GR have been enacted including

the observations of gravitational lensing of distant objects behind massive galaxies,

with table-top experiments of small masses, and even with large-scale cosmological

observations as discussed in [13–18]. All such tests to date have proven Einstein to

be correct yet again.

Even more recently, we have had the unique opportunity to probe the spacetime

surrounding a supermassive black hole (BH) at the center of the M87 galaxy. As

described by the no-hair theorem, in GR, uncharged, stationary BHs are described

by the Kerr spacetime metric which is parameterized only by their mass and spin.

Very recently in 2019, through superior feats of human engineering and scientific
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collaboration, the Event Horizon Telescope (EHT) effectively made use of an Earth-

sized telescope [20] to take an image of the famous supermassive BH M87∗ [19,21–24]

as shown in Fig. 1.2. By combining the observations of seven millimeter and sub-

millimeter instruments across the globe (very-long baseline interferometric, or VLBI,

array), this incredible feat has once again failed to disprove Einstein’s theory of gravity

in yet another observation.

However, one aspect of Einstein’s theory was still missing. Prior to the year 1974,

there had been no convincing proof of one of the most outstanding predictions of Ein-

stein’s – the existence of GWs. In this same year, Hulse and Taylor discovered what

would turn out to be one of the first clearly convincing cases of gravitational radiation

in an indirect observation. Using the 305 m Arecibo radio observatory, the team at

the University of Massachusetts Amherst famously observed the familiar pulses from

a rapidly rotating pulsar 6.4 kpc away, with a period of only 59 ms. By modeling

the originating system, they found it to be in a binary orbit with what turned out

to be another NS – the first, and only discovery of a binary pulsar system to date.

Named PSR B1913+16, or the “Hulse-Taylor” binary [25] after its discoverers, this

fascinating system was carefully studied over the following three decades. The re-

sulting work by Weisburg, Nice, and Taylor over thirty years later offered us the first

indirect observation of gravitational radiation [26]. As shown in Fig. 1.3, we see that

the observed decay in the orbital period of the Hulse-Taylor binary matches perfectly

with the predictions of GR, which tells us that GWs carry energy and angular mo-
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Figure 1.3: Decay of the orbital period of the Hulse-Taylor binary pulsar system
PSR B1913+16 [25] taken with three decades of timing observations (data points
with error bars “mostly too small to see”). The solid line depicts the expected
orbital decay from the radiation of GWs, which matches very well. (Taken from
Ref. [26]).
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mentum away from the system. This loss results in a slow inspiral between the two

objects until they finally lose enough energy to merge together. This first remarkable

indirect observation of GWs became yet another convincing win for Einstein, nearly

sixty years past GR’s formulation, and in result, it led the duo to receive the Nobel

Prize in 1993 “for the discovery of a new type of pulsar, a discovery that has opened

up new possibilities for the study of gravitation” [27].

Forty years later on the historic day of September 14, 2015 the LVC for the very

first time directly observed GWs from a coalescing pair of BHs [28]. Aptly named

GW150914, this famous event rocked the world of GW physics, finally confirming

one of Einstein’s last predictions from his theory of gravity. Through a true marvel

of modern engineering and scientific collaboration, both of the LIGO interferometers

located in Hanford Washington and Livingston Louisiana simultaneously observed

the characteristic GW chirp signal of a merging compact binary as shown in Fig. 1.4.

Careful Bayesian analysis of this event led the LVC to determine this signal to have

originated from a merging pair of BHs with masses of 35.8 M� and 29.1 M�, located

410 Mpc away. This cataclysmic event reached nearly 60% the speed of light before

finally colliding, releasing a total amount of energy equivalent to 3 M� [28]. This

incredibly powerful event released fifty times the energy radiated from all of the stars

in the observable universe over a period of only fractions of a second. The remnant

BH was left behind with 62 M�, rotating with a dimensionless spin4 of 67% of its

4The dimensionless spin χ is defined as the total angular momentum in the ẑ-direction divided
by its mass squared, or χ ≡ Jz/m

2. The maximum value this parameter can take is 1, else the
appearance of naked singularities, which have yet to be observed.
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maximum value. The resulting GWs from both the inspiral, the merger, and the

ringdown of this event then traveled for 1.3 billion years to Earth at the speed of

light, to finally be detected with minute deviations of the LIGO interferometer arm

lengths. One typically classifies such perturbations of spacetime by a quantity known

as the strain, simply given by ∆L/L, where L is the characteristic distance between

two test masses, and ∆L is the resulting change in length between the two given

by the passing of a gravitational wave. As can be seen in Fig. 1.4, such strains

are typically on the order of ∼ 10−3 of the radius of a proton for arm lengths of

L ∼ O(1 km)! Over the following 4 years, the LVC has further detected nine more

GW signals from merging BH binaries [29], as well as one detection of GWs from

a merging pair of neutron stars (NSs), GW170817 [30] in their first two observing

runs (O1 and O2). The current observing run (O3) has further identified over fifty

new GW candidates [31] of binary BH, binary NS, and even BH-NS merger systems.

Among such exciting new candidate events is the second confirmed observation of a

binary NS coalescence [32] with a large total mass of ∼ 3.4 M�.

The famous GW event GW150914 has opened an entirely new window into ob-

serving the universe from an entirely new, unique perspective. With gravitational

interactions being the weakest of all four forces found in our universe, the resulting

interaction between GWs and the matter they encounter is extremely limited, and

they can pass through many obstacles without reserve. For example, GWs can easily

escape unhindered from the optically thick regions of spacetime that are occupied
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Figure 1.4: Gravitational wave strain signal (gray) from the Hanford (top) and
Livingston (bottom) GW interferometers. The overlaid blue curve was obtained
from a linear combination of sine-Gaussian wavelets that did not assume any
particular morphology, while the cyan curve is a result from the PhenomD waveform
model. (Taken from Ref. [28]).
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by high densities of matter, which can not be probed by traditional electromagnetic

(EM) observations. Primary among examples of such situations is in the very early

universe prior to the last scattering surface when photons were unable to escape the

hot-dense gas that was the universe. Previously undetectable with EM observations,

such times may now be observed via the primordial gravitational radiation which was

emitted long before in the period of cosmic inflation. In addition, GWs allow us to

probe, for the very first time in human history, the extreme gravity environments of

spacetime, where the fields are extremely strong, non-linear, and highly dynamical.

Prior to this new era of astrophysical observation, we only had access to the weak

and static regions of spacetime found in e.g. the solar system, on Earth, with pulsar

timing observations, and of large-scale cosmological observations. This new window

into the universe will now allow us to probe several aspects of fundamental physics

from an entirely new standpoint.

Besides testing Einstein’s theory of GR in the extreme gravity environments found

outside binary BH coalescences, another fascinating subject to explore with our new-

found observation of GWs is nuclear physics. While nuclear matter has been exten-

sively studied here in our local terrestrial environments, the behavior of nuclear matter

beyond the saturation density of ρ0 ≈ 2.5× 1014 g/cm3 has been poorly modeled up

until now, due to the lack of physical observations. Closely related to the short-range

nature of the strong force [33], the aforementioned nuclear saturation density dictates

the average density of atomic nuclei, regardless of their location on the periodic ta-
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ble. As a result, without large external forces acting on matter, here on Earth we

are mostly limited to nuclear matter observations at or below the saturation density

ρ0. A useful identifying thermodynamic function of nuclear matter is known as the

equation of state (EoS), which relates the pressure and density of nuclear matter. See

Figure 1.5 for several examples of the NS EoS. Until now, terrestrial experiments have

probed and constrained the nuclear EoS up to around the saturation density with var-

ious experiments studying e.g. heavy-ion, neutron-rich collision interactions [34–38].

However, the behavior of the EoS beyond the saturation density is mostly uncertain

up until now, and is currently one of the largest unsolved mysteries in both nuclear

physics and astrophysics.

Throughout a star’s life, the intense inward gravitational pressure creates a hot,

dense environment in the core which initiates nuclear fusion, resulting in an outward

flow of energy that supports the star against gravitational collapse [40,41]. Beginning

with the fusion of the lightest element helium into hydrogen, this process continues

until the star runs out of fuel, at which point the process will start over again with

the fusion of hydrogen into carbon. The cycle repeats, moving through the heavier

elements in the periodic table until a lack of stellar mass is available to re-ignite fusion

of the next heavier element. For the most massive of stars, the process continues

through neon, oxygen, silicon, iron, and even nickel; at which point there exists no

remaining stable elements for fusion to occur. At this point, the inward gravitational

force overcomes any outward forces present within the star, and the core collapses
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Figure 1.5: Six example EoS’s of nuclear matter found within NSs. The shaded
turquoise region corresponds to the 90% confidence interval on the EoS from the
observation of GWs from GW170817 [39]. The dashed vertical line corresponds to
the nuclear saturation density. The spectral EoSs displayed here were randomly
generated for demonstration purposes, as discussed further in Chapter 5, with the
solid curves agreeing with the LVC result, and the dashed ones not.
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inwards as the outer lays are ejected out into space in a supernova event, providing the

universe with several of the heavier elements that we see today here on Earth5. With

smaller-mass stars below 10 M�, the core collapse is eventually halted by the presence

of an electron degeneracy pressure – a direct outcome of the Pauli exclusion principle

restricting fermions to exist in the same state as each other. The resulting white dwarf

is a dense body with masses between 0.15 M� and 1.2 M�, and radii between 4,000

km and 16,000 km (comparable to that of Earth). On the other hand, for giant stars

with masses between 10 M� and 29 M�, the extreme gravitational force exceeds that

of even the electron degeneracy pressure, further collapsing the core down until it is

halted yet again by a similar neutron degeneracy pressure, along with strong repulsive

nuclear forces. At this point, the pressures are so extreme that even molecules and

individual atoms are torn apart, with the electrons and protons energetic enough to

form more neutrons. The result is an ultra-compact object (NS) composed mostly of

neutrons and subatomic particles, with masses between 1 M� and 2 M�, and radii

around 11− 12 km (comparable to that of a city!). Within the NS is the existence of

supranuclear matter, with densities reaching upwards of five times that of the nuclear

saturation density - providing us with the excellent opportunity to probe the EoS

beyond the atomic densities found here on Earth. Finally, for extremely massive

stars with greater than 29 M�, the inward gravitational pressure is large enough to

overcome even the neutron degeneracy pressure and strong repulsions present in the

5As confirmed with GW170817 [30] by Kasen et al in Ref. [42], the heaviest elements found on
the periodic table are formed from the kilanova event preceding the coalescence of two NSs.
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NS, and it collapses down to a single point of singularity masked by an event horizon,

known as a BH.

Apart from BHs which are vacuum solutions to Einstein’s field equation, NSs exist

as the most compact (observed) objects in the universe. The resulting supranuclear

matter present within these extreme objects is vital to the goal of studying the EoS

beyond the saturation density, something unreachable here with terrestrial observa-

tions. In particular, the nuclear matter EoS is extremely important because it is

intrinsically deterministic of the global NS observables, including the mass, radius,

moment of inertia, quadrupole moment, and tidal deformability. Before the obser-

vation of GWs from such objects, several EM observations of NSs gave way to new

probes of the EoS. For example, in the past, x-ray observations of the NS’s mass and

radius have been used to constrain the EoS via the mass-radius relationship [43–47].

More recently in 2019, the Neutron Star Internal Composition Explorer (NICER)

mounted on the International Space Station successfully mapped the NS mass-radius

profile via x-ray observations of local hotspots rotating with the NS [48–53]. Sev-

eral follow-up investigations have further transformed such probability distributions

of the NS radius with uncertainties on the order of ∼ 10% into constraints on the

EoS [53–56]. Further in the future, the Square Kilometre Array (SKA) projected to

be built in Australia and South Africa by ∼2027 is expected to make measurements of

the NS’s moment of inertia via high precision timing of the periastrion advancement,

further contributing to constraints on the nuclear EoS.
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On August 17, 2017 the prospects of observing NSs changed forever with the

historic GW detection of a binary NS coalescence, named GW170817 [30]. By mea-

suring the amount of tidal influence on the gravitational waveform (as demonstrated

in Fig. 1.6), the LVC was able to place for the very first time an observational con-

straint on the NS tidal deformability, which characterizes the deformation of nuclear

matter in response to an external tidal field. This observation, not possible with

ordinary EM detections, led the LVC to further place yet another constraint on the

supranuclear matter EoS [39] as shown by the shaded region in Fig. 1.5. Followed

up by the energetic gamma-ray burst GRB170817A [57,58] and several resulting EM

observations over the following weeks [59] from the same source, this event became

the poster-child for multi-messenger astronomy. For the first time ever, we now have

the unique ability to combine both EM observations (e.g. the mass, radius, moment

of inertia) with GW observations of the tidal deformability to place even further

constraints on the nuclear matter EoS.

Another method one can use to probe the NS EoS was first introduced by Yagi and

Yunes in 2013 [60], known as the “I-Love-Q” universal relations. In particular, here

they found that certain combinations of the dimensionless NS observables I (moment

of inertia), Love (tidal deformability), and Q (quadrupole moment) displayed EoS-

insensitive properties when plotted amongst each other, with uncertainties below

∼ 1% for each independent relationship. Similarly in 2013, the same authors (and

others) found approximately universal relations between the NS tidal deformability
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and the stellar compactness (the ratio between the mass and radius) [61–64]. Later

in 2014, Yagi developed the “multipole Love” universal relations [65] between higher-

order multipolar moments of the NS tidal deformabilities. Such universal relations are

highly useful in their ability to analytically express NS observables in terms of others

in an EoS-independent way. For example, a determination of one NS observable

(say, the dimensionless moment of inertia) could allow an automatic determination of

the dimensionless quadrupole moment with relatively small systematic uncertainties

using the I-Love-Q universal relations. This same idea was implemented recently

to place EoS-independent constraints on the mass-radius curve using GW data [39,

66]. Finally, in 2015 and 2016 the same authors developed yet another important

universal relation used extensively by the LVC, known as the “Binary Love” universal

relations [67, 68]. Within the gravitational waveform for binary NS mergers, the

individual tidal deformabilities Λ1,2 of each NS are highly degenerate with each other,

and are very difficult to measure. Instead, the mass-weighted tidal deformability Λ̃ is

dominant in the gravitational waveform among all tidal effects present, and is thus

what the LVC measured in [30]. The Binary Love universal relations then show EoS-

independence between symmetric and anti-symmetric combinations of the individual

tidal deformabilities Λs,a = (Λ1±Λ2)/2. With such relations, one can express Λs(Λa)

(or vice-versa) which allows the mass-weighted tidal deformability to be written as

a function of Λa only. Finally, the constraint on Λ̃ allows a constraint on Λa, which

implies a bound on Λs, which further allows one to infer properties of the individual
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Figure 1.6: Gravitational wave signal with and without tides imposed on the
compact objects. The former occurs for e.g. merging BHs, while the latter occurs
for e.g. NSs.

tidal deformabilities Λ1,2 with only a small amount of systematic uncertainty.

In this thesis, we first consider how one can harness the information encoded

within GWs to probe various aspects of fundamental physics, such as were previ-

ously impossible before the first detections by the LVC. In Part A we focus on probes

of nuclear physics, in particular of the supranuclear matter found only within NSs.

Specifically, as two NSs orbit one another such as in GW170817, the immense grav-

itational tidal fields from the neighboring stars induces a deformation of each body.

Characterized by the tidal deformability of nuclear matter, this effect is magnified

as the NSs approach one another under the emission of gravitational radiation. This

deformation ultimately alters the ensuing inspiral trajectory, a relic which is encoded
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directly into the GW signal as demonstrated in Fig. 1.66. Being vacuum solutions

to Einstein’s field equations, merging BH binaries do not experience such an effect,

thus the tidal deformation present in a GW signal can be used to constrain the tidal

deformability of the NSs. For the first time ever, GWs have allowed us to measure the

tidal deformability of compact objects as was done by the LVC in Ref. [30], something

not previously possible with EM observations alone. By using such constraints, we

show how one can further constrain the EoS of supranuclear matter by probing the

fundamental nuclear matter parameters which determine it in a model-independent

way. In particular, we consider constraints on the EoS found from the current obser-

vation of GW170817, as well as improvements to be made with future GW detections,

including the combination of multiple events. Finally, we find improvements to several

universal relationships between NS observables from the observation of GW170817.

Such new relations are then shown to assist in better parameter estimation of future

GW detections.

For the second half of the thesis, we consider how one can test GR using GW

observations. For the first time in history, we have the unique opportunity to probe

the extreme gravity spacetime environments present around the coalescence of binary

BHs. While GR has been experimentally and observationally confirmed everywhere

else in the spacetime parameter space, one can imagine that this might cease to be

6We observe that systems with tides merge sooner than those without. This is because compact
objects with tides such as NSs, have an extended structure and thus a non-zero quadrupole moment.
This additional moment introduces new gravitational radiation than would be expected for point
particles such as BHs.
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true in more exotic environments. Similar to the accuracy of Newton’s theory of

gravity before the advent of high-powered telescopes and observations of stronger

gravitational effects, GR may yet prove to simply be a subset of a more grand theory

of gravity. While GR may be perfectly accurate in the weak-field or static spacetime

environments considered thus far, an alternative theory of gravity could potentially

activate in such extreme-gravity spacetimes that we may now probe. However, despite

this we still ask – why must we continue to test a theory of gravity that continually

surprises us with its extreme accuracy of our observations, even in light of the eleven

observed GW signals all remaining consistent with GR? This is because even with

all of its successes, there still remains several astrophysical mysteries and open ques-

tions, which can not be described by GR alone. For example, the yet-unexplained

unification of GR with quantum mechanics [69–74], dark matter and the unexpected

rotation curves of galaxies [69–72, 75], dark energy and the late-time accelerated ex-

pansion of the universe [70, 73, 74, 76], or even the rapid inflationary period of the

early universe [69–71,74] are all prevalent examples of unexplained phenomena which

could potentially be attributed to an alternative theory of gravity.

In Part B we continue to test GR using the observations of GW signals from

merging BH (and BH-NS) binaries. As one can imagine, scientific theories such as

GR can never be entirely proven. However, what we can do is test them in an

agnostic way to constrain alternative theories of gravity that work beyond-GR. To

do this, one popular method is to parameterize the gravitational waveform found in
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GR (h̃GR(f) = AGRe
iΨGR) in a theory agnostic way that deviates beyond GR. Known

as the parameterized post-Einsteinian (ppE) formalism as laid out by Yunes et al in

Ref. [77], we introduce general arbitrary corrections to the GR amplitude (∆A) and

phase (∆Ψ) in the frequency domain as

h̃GR(f) = AGR(1 + ∆A)eiΨGR+i∆Ψ. (1.2)

The arbitrary modifications ∆A and ∆Ψ7 are completely theory-agnostic and can be

tested and constrained as so. As demonstrated in Fig. 1.7, ppE modifications like so

alter the ensuing orbital binary inspiral, which affects the resulting detected gravita-

tional waveform signal. Typically, modified theories of gravity increase the amount

of radiation emitted off the binary system, accelerating the inspiral thus predicting

an earlier time of merger than would be predicted by GR alone. By constraining the

sizes of theory-agnostic parameters ∆A and ∆Ψ, one can then map such constraints

to ones on various theory-specific parameters found in proposed alternative theories

of gravity.

In this thesis, we first consider two tests of GR: the parameterized tests and the

inspiral-merger-ringdown consistency tests. In the former, we introduce arbitrary

ppE modifications to the GW signal to ultimately constrain several alternative the-

ories of gravity, both with current GW observations and future ones, including with

7These corrections depend on the power of velocity relative to the speed of light at which given
effects alter the gravitational waveform.
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Figure 1.7: Gravitational wave signal with and without ppE corrections injected
beyond GR. This signal was generated for −1PN effects (i.e. (v/c)−7) corrections to
the the waveform for demonstration purposes.

future GW interferometers, with the combination of multiple detected events, and

even with the multi-band observations between both ground-based and space-based

GW detectors. As displayed in Fig. 1.8, future GW detectors both on the ground

(aLIGO O2 [78, 79], aLIGO [78], A+ [80, 81], Voyager [81, 82], CE [81–83], and ET-

D [82–84]) as well as ones in space (TianQin [85], LISA [86], B-DECIGO [87], and

DECIGO [88]) promise hefty improvements in sensitivity in both the low-frequency

and high-frequency regimes. In the latter, we find new corrections to not only the

inspiral gravitational waveform, but also to the merger-ringdown portion, and to the

predictions of the remnant BH mass and spin. We then test the consistency be-

tween the inspiral and merger ringdown signals, finding the magnitude of beyond-GR

corrections required to become inconsistent, and thus providing evidence of non-GR
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behavior present within the observed signal. Finally, we consider probes of the space-

time environments themselves outside BHs with EM observations. We first construct

a new spacetime metric that is generally parameterized beyond the Kerr one that de-

scribes BHs in GR, while still preserving the Kerr symmetries. In the new spacetime,

we then find the resulting corrections to several astrophysical phenomena including

the photon rings (stable circular equatorial photon orbits), and the orbital energy,

angular momentum, Keplerian and epicyclic frequencies of particle orbits. Such phe-

nomena could be observed and tested in the future by e.g. the EHT.

1.1 Executive summary of results

Here we provide a brief summary of results for busy readers. In particular, we begin

with a recap of the primary findings of Chapter 4, where the observation of binary NS

merger event GW170817 allowed us to place constraints on nuclear matter physics

both in the present and in the future. Following this, we summarize Chapter 5 where

the results of the same event GW170817 allowed us to create more accurate universal

relationships between NS observables. We then show how such new relationships

allow for better determination of such observables with future GW detections. We

then recap Chapters 6 and 7 where we focus on testing GR in the extreme gravity

regime of binary BH coalescences both in the present and the future, using both

parameterized tests and inspiral-merger-ringdown consistency tests. Finally, we wrap

up with a summary of Chapter 8, where we focused on alternative spacetime metrics



Chapter 1. Introduction 24

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

f [Hz]

10
-25

10
-24

10
-23

10
-22

10
-21

10
-20

10
-19

10
-18

S
n

1
/2

, 
  
2
f1

/2
|h~

|  
[H

z-1
/2

]

LIGO O2
aLIGO
A++
Voyager

CE
ET
LISA
TianQin
B-DECIGO
DECIGO
GW150914

4yr

Figure 1.8: Spectral noise densities
√
Sn(f) for both the ground-based (solid) and

space-based (dashed) detectors considered in this thesis. In particular, we consider
the ground-based detectors LIGO O2 [78,79], aLIGO [78], A+ [80, 81],
Voyager [81,82], CE [81–83], and ET-D [82–84] as interpolated from publicly
available data. The space-based detectors considered are TianQin [85], LISA [86],
B-DECIGO [87], and DECIGO [88]. Additionally shown is the characteristic
amplitude (dotted) 2

√
f |h̃(f)| for a GW150914-like event using the

IMRPhenomD [89,90] gravitational waveform template. The ratio between GW
spectrum and signal roughly corresponds to signal-to-noise ratio.
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beyond the Kerr one and their resulting corrections to both the gravitational waveform

and also several EM astrophysical observables.

1.1.1 Constraining nuclear matter parameters

Here we summarize the important findings of Chapter 4. Dominant among all tidal

parameters in the gravitational waveform phase, the mass-weighted tidal deformabil-

ity Λ̃ was measured stringently by the LVC from binary NS merger GW170817. First,

we find new universal relations between this tidal deformability and nuclear matter

parameters K0, M0, or Ksym,0 for a number of mass ratios allowed by GW170817.

Contrary to previous work, we find low-order nuclear parameters K0 and M0 to have

very poor correlations, due to our inclusion of a broad new class of EoSs, taking into

account all possible sources of systematic uncertainties.

Additionally, we studied similar universal relations between Λ̃ and linear combi-

nations of nuclear parameters, such as K0 + αL0, M0 + βL0, and Ksym,0 + γL0. We

found that such relations typically have a stronger correlation than that in the case

of individual nuclear parameters. This is consistent with the findings of Ref. [91] on

correlations between nuclear parameters and individual tidal deformabilities, though

the correlations presented here are much lower than that reported in the previous

work. Contrary to Ref. [91] where coefficients are chosen such that correlation is

maximal, we choose coefficients α = 2.27, β = 24.28, and γ = 0. To minimize the

propagation of uncertainties from L0, we manually choose α and β to be as small as
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possible, while keeping in mind that the correlation with Λ̃ must be large enough to

determine bounds on nuclear parameters. We arbitrarily choose α and β such that

correlations are 50% to give one example of the derived bounds. The parameter γ was

chosen to be 0 in order to neglect the additional uncertainty accrued by the addition

of L0, possible in this case only due to the high correlations between Ksym,0 and Λ̃.

Figure 1.9 presents the 90% confidence interval on nuclear matter parameters after

GW170817, based on the universal relations obtained previously. In the computation

of these above bounds, the posterior probability distribution on Λ̃ as derived by the

LIGO Collaboration [92] was used. In particular, we find such bounds to be -285 MeV

≤ Ksym,0 ≤ 7 MeV 8 at the 90% confidence interval. Additionally, we find bounds on

K0 and M0 to be 69 MeV ≤ K0 ≤ 352 MeV and 1371 MeV ≤M0 ≤ 4808 MeV. Such

results are much weaker than the ones found in Ref. [91], born from the inclusion of

systematic errors from a broader class of EoSs and the scatter uncertainty from EoS

variation on universal relations. These results lead us to conclude that it is important

to account for the large systematic errors accrued from a wider range of valid EoSs

and EoS variation in the approximate universal relations.

We then expand this work into the future of GW astronomy. In particular, we

attempt to find constraints on the nuclear matter parameters as a function of the

binary systems’ chirp mass. The chirp mass M is the dominant parameter in the

gravitational waveform, and thus has the largest potential to be accurately measured.

We begin by finding the correlations between the mass-weighted tidal deformability

8The constraint on Ksym,0 bears a close resemblance to that in Refs. [93, 94].
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Figure 1.9: Resulting posterior distributions on the nuclear incompressibility K0

and its slope M0, and the curvature of symmetry energy Ksym,0 derived by
integrating over the product of one-dimensional conditional probability distributions
(P (K0 + αL0|Λ̃), P (M0 + βL0|Λ̃), and P (Ksym,0|Λ̃)) and PLIGO(Λ̃) in Fig. 4.9.
Further, for the linear combinations of K0 + αL0 and M0 + βL0, one more
integration over the probability distribution of 30 MeV ≤ L0 ≤ 86 MeV was
required to directly find the posterior distributions on K0 and M0. Overlayed are
the resulting 68% and 90% confidence intervals in orange and maroon respectively,
as well as the corresponding bounds calculated in Sec. 4.4.1.1 shown by dashed
maroon vertical lines. Additionally shown in dotted blue are the corresponding
bounds on M0 and Ksym,0 computed by Ref. [91], using priors of Λ̃ ∈ [70, 720] and
L0 ∈ [30, 86] MeV. Observe how the results for the 90% confidence intervals obtained
in this section are slightly smaller than those found in Sec. 4.4.1.1, indicating that
previously the error was slightly overestimated (as the probability distribution on Λ̃
and the covariances between Λ̃ and the nuclear parameters were not properly taken
into account). (Return to the first reference of this figure in the main text.)
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Λ̃ and various nuclear parameters, and combinations thereof. We find that the low-

order nuclear parameters K0 and M0 observe small correlations with Λ̃, while the

correlations for higher-order parameter Ksym,0 remains high at ∼ 80%. For this

reason, we focus on constraints on the curvature Ksym,0 of the symmetry energy

which is one of the most uncertain of nuclear matter parameters around the nuclear

saturation density [95].

We compute the posterior probability distribution for the curvature of symmetry

energy Ksym,0, for 22 different values of chirp mass between 0.94 M� and 1.6 M�. For

each value of chirp massMi considered, we compute the single-event Λ̃ uncertainties

using Fisher analysis techniques. Approximated as a Gaussian prior, the uncertainty

in Λ̃ may be used to estimate the posterior probability distribution on Ksym,0, by

multiplication with the one-dimensional conditional probability distribution on Ksym,0

given an observation of Λ̃, and then integrating over all Λ̃ values. The process is then

repeated for each value of chirp mass Mi, resulting in a relationship between the

uncertainties in Ksym,0 and the chirp mass M.

The corresponding one-sided 90% confidence intervals on Ksym,0 for single-event

detections, along with the calculated systematic errors, are plotted in Fig. 1.10 as a

function of chirp mass for 6 different GW interferometers. In this figure, we observe

that as the detector sensitivity is increased, the statistical errors become subdominant

rather quickly. This in turn forces the overall errors to approach the systematic error

“wall” at ∼ 104 MeV, caused partially by uncertainties in the EoS at low-density
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which are less sensitive to neutron star tidal deformabilities. For this reason, the

curves corresponding to the 3rd-generation detectors CE and ET become indistin-

guishable from the systematic errors – indicating the necessity to reduce such errors

in order for the further constraint of Ksym,0 to become possible.

Following this, we offer a method to further decrease the statistical errors in

the measurement of Ksym,0. This is accomplished by repeating the same analysis

for the fixed chirp mass of 1.188 M� with the first coefficient, λ0, of the Taylor

expanded dimensionless tidal deformability Λ ≈ λ0 +λ1(1− m
m0

) about m0 = 1.4 M�
9,

rather than the mass-weighted tidal deformability Λ̃. λ0 (or the tidal deformability

at 1.4 M�) is mass-independent, and thus, it is identical for all future GW events.

This way, we can combine the uncertainties for multiple detected events when it

becomes applicable for future detectors. As was observed in Fig. 1.10, we found that

the uncertainties in Ksym,0 became dominated by systematics for the single-event

analyses on Voyager-era detectors and beyond. By combining GW170817-like events

detected on aLIGO and A+, we find that one can further reduce the statistical errors

in Ksym,0 such that the errors similarly become dominated by systematics.

Finally, we investigate the reduction of systematic errors by adding information

about the tidal deformability at various different masses. We begin by generating

a four-dimensional Gaussian probability distribution P (Ksym,0,Λmx ,Λmy ,Λmz). The

systematic error on Ksym is obtained by first evaluating P (Ksym,0,Λmx ,Λmy ,Λmz) at

9m0 will remain fixed for the remainder of the chapter, with the exception of Sec. 4.5, where we
consider the effect of variations in m0.
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Figure 1.10: The overall (statistical plus systematic) errors on Ksym,0 using priors in
Λ̃ for single-event measurements, plotted as a function of the binary systems’ chirp
mass – applicable to any future binary NS merger. We fix the mass ratio as q = 0.9
consistent with GW170817 and choose the distance and sky location of the binaries
such that it gives the signal-to-noise ratio (SNR) of 32.4 for the O2 run, again
corresponding to GW170817. This is repeated for 6 different interferometers (O2,
aLIGO, A+, Voyager, CE, ET). Note that the error on O2 appears as a single point,
corresponding to GW170817 - the single event observed on O2. We also present
systematic errors due to scattering in correlations between Ksym,0 and Λ̃. Observe
how as one improves the detector sensitivity, the statistical errors become
subdominant, and the overall errors approach the systematic uncertainties’ “wall”.
This indicates the need to further reduce the EoS variation in the scattering that is
the origin of systematic uncertainties before stronger constraints on Ksym,0 can be
derived. Additionally shown by the dashed vertical line is the chirp mass
M = 1.188 M� corresponding to GW170817. (Return to the first reference of this

figure in the main text.)
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the fiducial values of Λmx , Λmy , and Λmz and estimating the 90% confidence interval.

We then present the systematic errors when mz is fixed to be 1.5 M�, and (mx,my)

are varied between 1.0 M� and 2.0 M�, observing that the resulting systematic un-

certainties are reduced to ∼ 74 MeV for certain combinations of mx and my.

1.1.2 Equation of state insensitive relations

Here we recap the primary findings of Chapter 5. We begin by investigating the

increase in EoS insensitivity due to the constraints placed by GW170817 on the

allowed space of EoSs. We use the posterior probability distribution on the pressure-

density plane [39, 96] obtained from GW170817 [30] to inform the set of EoSs that

is compatible with this observation. We then generate two large samples of spectral

EoSs [97], one in which the EoSs are directly sampled from the posterior probability

distribution (the “constrained” sample) and another in which this constraint is not

enforced (the “unconstrained” sample). We repeat the analysis done by Yagi and

Yunes [62,68] on both sets of EoSs and find that the EoS-insensitive relations present

less EoS variability with the constrained set. In particular, the EoS-insensitivity

increases by a factor of ∼ 60% in the binary Love relations (for stars with mass ratio

larger than 0.75), by a factor of ∼ 70% in the C-Love relations, and by factors of

∼ 50% in the I-Love-Q relations.

With this study at hand, we then carry out additional related studies on EoS-

insensitive relations that go beyond the work in [62, 68]. First, we investigate the
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relation between the NS radius and its tidal deformability, the R-Love relations, for

both sets of EoSs, as these are critical in order to place constraints on the radius

from a measurement of the Love number. We use the C-Love relations to construct

the R-Love relations and find that the maximum EoS variability drops from ∼ 880 m

in the unconstrained case to ∼ 360 m in the constrained case. Second, we study the

EoS-universality of hybrid stars, which experience strong first-order phase transitions

from hadronic to quark matter in the core [98–101]. We find that the I-Love-Q and

C-Love relations remain EoS-insensitive for these hybrid stars, although the EoS

variability increases slightly. However, we also find that the binary Love relations

are not EoS-insensitive for a mixed binary with a (massive) hybrid star and a (low-

mass) hadronic star, due to the large separation in mass-weighted tidal deformability

between the constituent stars.

Last but not least, we study the importance of using the improved EoS-insensitive

relations in future GW observations. The use of EoS-insensitive relations introduces

systematic uncertainties in parameter estimation because of the intrinsic non-zero

EoS-variability in these relations, which one must marginalize over. These uncertain-

ties are currently irrelevant because statistical uncertainties in parameter estimation

are much larger with current detectors. But as the detector sensitivity is improved,

the signal-to-noise ratio and the number of events that will be detected will increase,

therefore decreasing the statistical uncertainties below the systematic ones due to

EoS variability. We carry out Fisher analyses to estimate when the statistical un-
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certainties become comparable to the systematic uncertainties due to EoS variability

and find that this occurs for Voyager-class detectors.

Figure 1.11 shows this result in more detail. We present the (Fisher-estimated)

statistical uncertainty in the measurement of λ0 with various detectors (LIGO O2 [78],

Advanced LIGO at design sensitivity (aLIGO) [78], LIGO A+ (A+) [81], Voyager [81],

the Einstein Telescope (ET) [84], and the Cosmic Explorer (CE) [81]) for an event

similar to GW170817. The x-axis shows the signal-to-noise ratio for a GW170817

event observed with each of these detectors. We also present the combined statistical

uncertainty σAN after N detections with each of these instruments, with the top and

bottom of the region representing the most optimistic and pessimistic expectation

for the number of detections expected from the binary NS merger rate [106]. These

statistical uncertainties should be compared to the systematic uncertainty in λ0 due

to EoS-variability improved with the constrained set. We find that the statistical and

the systematic uncertainties cross for Voyager-class detectors; indicating the need to

reduce systematic uncertainties before the Voyager era.

1.1.3 Parameterized tests of general relativity

Now let us preview the main results found in Chapter 6. We begin by finding con-

straints on the ppE magnitude parameter βppE [77], which describes the strength of

a generalized deviation from the GR waveform AGRe
iΨGR → AGRe

i(ΨGR+βppEu
b), where

AGR and ΨGR are the amplitude and phase of gravitational waveforms in the Fourier
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Figure 1.11: Fisher-estimated statistical uncertainties on the extraction of λ0 with
interferometer (O2, aLIGO, A+, Voyager, CE, ET-D) as a function of the
signal-to-noise-ratio expected in each of these instruments, given a single GW170817
detection (circles). The statistical uncertainties with ET are lower than with CE in
spite of a lower signal-to-noise ratio because the former is more sensitive above 300
Hz, where tidal effects matter the most (see Sec. 5.4.2 for further discussion). We
also plot the combined statistical uncertainty given N observations consistent with
the NS binary merger rate for a 1 year observation (regions), with the top and
bottom edges of the regions corresponding to pessimistic and optimistic merger
rates. These statistical uncertainties should be compared to the systematic
uncertainty on the extraction of λ0 due to EoS-variability (horizontal dashed line).
The statistical and systematic uncertainties cross for Voyager-class detectors. We
confirm this conclusion by repeating the statistical analysis with two different
waveform models: PhenomD [89,90] plus NRTidal corrections [102,103] and
PhenomD [89,90] plus 6PN tidal corrections [104,105]. (Return to the first reference

of this figure in the main text.)
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domain predicted from GR, u is the effective velocity of the binary BH system, and

b categorizes the power of velocity at which the modified theory of gravity affects

the waveform. Using Fisher analysis techniques [107–109], we estimate the maximum

magnitude βppE can take while remaining consistent with the statistical detector noises

for GW150914-like [28] events observed on a ground-based detector (CE [81]), space-

based detectors (LISA [86] [86], TianQin [85], B-DECIGO [87], and DECIGO [88]),

and the multi-band combinations thereof. We find that, as expected, space-based

detectors which are sensitive to low-frequencies (or small relative velocities of bina-

ries) are most proficient at constraining βppE at small values of b, while ground-based

detectors are most proficient at large values of b, which is consistent with e.g. [110].

When combining measurements from both types of detector, we find improvements

across all values of b.

Following this, constraints on βppE can be mapped to the associated parameters of

various theories of gravity identified by their value of b, as summarized in Table 1.1.

We see that EdGB, dCS, noncommutative gravity, and massive graviton (both dy-

namical and propagating effects) theories can provide stronger constraints than the

current best bounds found in the literature, displayed in the last column of Table 1.1.

For dCS in particular, multi-band GW observations are crucial in most cases to place

meaningful bounds, which are more stringent than the existing bounds by ∼ 7 orders

of magnitude.

We then consider the present and future implications on constraining scalar tensor
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Theory PN (b) Parameter CE [81]
TianQin [85] LISA [86] B-DECIGO [87] DECIGO [88]

Current
(+CE) (+CE) (+CE) (+CE)

EdGB [111,112] −1 (−7)
√
αEdGB [km] 4.2

0.74 0.53 0.29 0.12 107 [113]

2− 6 [114–119](0.38) (0.28) (0.25) (0.11)

dCS [117,120–122] +2 (−1)
√
αdCS [km] –

– – – 23
108 [123,124]

(31) (31) (29) (18)

Scalar-tensor [125,126] −1 (−7) φ̇ [sec−1] 340
11 5.6 1.6 0.25

10−6 [125]
(2.9) (1.6) (1.2) (0.21)

Noncommutative [127,128] +2 (−1)
√

Λ 0.74
1.5 1.6 0.83 0.57

3.5 [128]
(0.66) (0.66) (0.64) (0.50)

Varying G [129–131] −4 (−13) Ġ [yr−1] 990
2.4× 10−6 1.4× 10−7 9.4× 10−8 3.4× 1.9× 10−9 10−13 − 10−12

[132–135](5.7 × 10−7) (3.2 × 10−8) (7.2 × 10−8) (1.5 × 10−9)

Varying M [136,137] −4 (−13) Ṁ [M� yr−1] 1.9× 104 9.3× 10−5 5.5× 10−6 3.8× 10−6 7.2× 10−8

–
(2.2 × 10−5) (1.2 × 10−6) (2.8 × 10−6) (5.9 × 10−8)

Massive graviton [138,139]
−3 (−11) mg [eV] 6.7× 10−16 1.9× 10−19 3.1× 10−19 6.6× 10−20 9.5× 10−21 10−14 [140]

(dynamical) 5.2× 10−21 [141](9.2 × 10−20) (1.1 × 10−19) (5.6 × 10−20) (8.5 × 10−21)

Massive graviton [142]
+1 (−3) mg [eV] 1.3× 10−24 1.6× 10−22 1.6× 10−22 1.4× 10−23 3.4× 10−24

5× 10−23 [143]
(propagation) (6.1 × 10−25) (6.3 × 10−25) (2.9 × 10−25) (1.8 × 10−25)

Table 1.1: Tabulated list of modified theories of gravity considered in this chapter.
The first column displays the modified theory of gravity in question, the second
column indicates the post-Newtonian (PN) order (or ppE exponent b) at which the
effect enters the gravitational waveform phase, and the third column identifies the
appropriate parameters associated with the theory. The fourth column tabulates the
estimated constraints on the above-mentioned theoretical parameter as if a
GW150914-like event were detected on ground-based detector CE, while the fifth to
eighth columns likewise display the same bound as observed by space-based
detectors LISA, TianQin, B-DECIGO, and DECIGO (top), and again for the
multi-band GW observations in combination with CE (bottom). Finally, the last
column displays the current constraints on the theoretical parameters as found in
the literature. Entries with a horizontal dash (in the fifth to eighth columns)
correspond to bounds on parameters which do not satisfy the small-coupling
approximation, indicating that no meaningful bounds may be placed. All GW
bounds are derived from GW generation mechanism bounds, except for the last row,
which comes from bounds on the GW propagation correction. We note that such
bounds are obtained via an initial LISA detection exactly four years prior to merger
corresponding to the LISA missions lifetime. This assumption is investigated for
validity in Sec. 7.3. (Return to the first reference of this table in the main text.)
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theories, in particular, quasi-Brans-Dicke theory and Einstein-dilaton Gauss-Bonnet

(EdGB) gravity from the GW detections of BH-NS coalescences. Such sources are

extremely timely to consider as some of the candidate events in the O3 run by the

LVC, such as S190814bv, are likely to be the merger of a black hole and a neutron

star [31, 144]. In scalar tensor theories, BHs and/or NSs can become scalarized10,

which gives rise to a “fifth force” that depends on the internal structure of the mas-

sive objects and violates the strong equivalence principle (SEP). Binaries consisting

of scalarized astrophysical objects further emit scalar dipole radiation (on top of grav-

itational quadrupolar radiation in GR), causing the binaries to evolve faster. Such

radiation becomes larger when the difference between the scalar charges of the binary

constituents become larger, and thus a mixed binary consisting of one black hole and

one neutron star system is ideal for probing such theories [145–148].

We consider the single BH-NS detections with future GW detectors, as well as

the multi-band detections between both space- and ground-based detectors [149–151],

and finally the combination of multiple observations [146,152] made on future detec-

tors with expanded horizons. We find that future observations (especially multi-band

ones) can constrain both theories of gravity several orders-of-magnitude stronger than

the current bounds. More importantly, we find that if the candidate events S190426c

and S190814bv on the LVC O3 are indeed mixed binaries, we can place strong con-

straints on the EdGB theory of gravity almost an order-of-magnitude stronger than

10in EdGB gravity, BHs become scalarized and NSs don’t, while in quasi-Brans-Dicke theories the
opposite occurs.
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the current one.

Finally, we probe EdGB gravity in particular with GWs from binary BH mergers

by including both inspiral and ringdown corrections to the gravitational waveform.

The former correction is computed using the ppE formalism described above, where

the mapping to EdGB gravity is known [119, 153, 154]. The latter corrections are

computed with the EdGB corrections to the individual QNM ringing frequency and

damping time found in Ref. [155] (see also [156–158]). Moreover, we take into account

EdGB corrections to the final mass and spin of the remnant BH as a function of the

initial masses and spins, which can be estimated from corrections to the orbital energy

and angular momentum found in Ref. [159].

With the EdGB corrections to the inspiral signal as well as the remnant BH mass,

spin, and QNMs in hand, we derive current and projected future bounds on the

EdGB coupling parameter αEdGB
11. As a first step calculation, we adopt the Fisher

analysis [160], which is known to agree well with Bayesian analyses for loud enough

signals [161, 162], such as GW150914 [154]. We first consider four GW events, in

order of increasing mass: GW170608 [163], GW151226 [164], GW150914 [28], and

GW170729 [165]. We find that GW events detected during the O1/O2 runs by LVC

detectors have varying success on the constraint of
√
αEdGB while varying the type

of EdGB corrections introduced to the template waveform (inspiral only, axial or

polar QNMs only, or both). We find that for more massive events, the inclusion of

11Note that in the EdGB theory of gravity with coupling parameter αEdGB, GR is recovered in
the limit of αEdGB → 0.
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corrections to the merger-ringdown are necessary in order to satisfy the small coupling

approximation corresponding to 16πα2
EdGB/M

4 � 1. This stresses the need for the

inclusion of merger-ringdown corrections to the template waveform, especially for

more massive events where such contributions become important. Further, we find

that future GW150914-like events detected by CE [81], LISA [86], or the multiband

combination of the two improve the constraints considerably, going beyond current

bounds.

1.1.4 Inspiral-merger-ringdown consistency tests of general

relativity

Here we briefly summarize our important findings found in Chapter 7. We begin by

offering a new simplified (Fisher-analysis-based), predictive inspiral-merger-ringdown

(IMR) consistency test [143,166–168] for future GW150914-like events. This is done

by computing the Gaussian posterior probability distributions between the remnant

BH’s mass Mf and spin χf obtained independently from both the inspiral (I) and

merger-ringdown (MR) signals. The consistency between such final mass and spin

parameters obtained independently from the inspiral and merger-ringdown signals

could then tell one something about the underlying theory of gravity. In particular, if

such predictions disagree with each other to a statistically significant level, evidence

of non-GR behavior emergent within the signal can be presented. Such distributions

are then combined into the joint-probability distribution between non-GR parameters
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∆Mf ≡ M I
f −MMR

f and ∆χf ≡ χI
f − χMR

f , with (∆Mf ,∆χf )|GR = (0, 0) being the

GR value. We estimate the effective size of the 90% confidence region in Fig. 1.12

for ground based detectors, as well as the combination with different space-based

detectors. The areas of such posterior probability distributions can be used to predict

the amount of “wiggle” room a given non-GR theory of gravity will have to become the

correct theory of gravity with future detectors, as any separation of the two posteriors

could indicate deviations from GR. We find that the ground-based detector is optimal

at measuring the merger-ringdown portion of the signal, the space-based detectors

are efficient at measuring the inspiral portion of the signal, and the combination of

the two12 proves to reduce the posterior sizes by up to an order of magnitude.

We follow this up by applying the IMR consistency tests to probe the specific

example theory of EdGB gravity. In particular, we devise a new method to con-

sider EdGB corrections to not only the inspiral properties of a binary BH coales-

cence [146] using the ppE formalism, but also to the characteristic quasinormal modes

(QNMs) [155] and final properties of the post-merger BH [159] as discussed further in

Chapter 6. We then apply the IMR consistency test with full waveform corrections by

steadily increasing the magnitude of EdGB corrections present within the observed

GW signal until the inspiral and merger-ringdown portions of the signal disagree to

a statistically significant degree. At this point, we can claim the presence of non-GR

behavior in the signal. We find that the IMR consistency test applied in this way

12Note that space-based detectors can not observe the merger-ringdown phase of GW150914-like
events. Thus, signals can only be combined for the inspiral portion of the signal.
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Figure 1.12: 90% credible region contours of the transformed probability
distributions in the ε− σ plane (see Eqs. (7.4)–(7.6)), describing the difference in
the remnant mass and spin predictions between the inspiral and merger-ringdown
estimate for GW150914-like event using the GR templates. Here we display the
results for LIGO O1 (Fisher and Bayesian [143] for comparison), CE, and the
multi-band observations of CE and LISA, TianQin, B-DECIGO, and DECIGO. The
areas of such confidence regions show the following: (i) good agreement within 10%
between the Fisher and Bayesian analyses, (ii) three orders-of-magnitude
improvement from LIGO O1 to CE, and (iii) up to an additional order-of-magnitude
improvement with multi-band observations. (Return to the first reference of this figure

in the main text.)
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can give comparable bounds to those found from the parameterized tests found in

Chapter 6. Additionally, we find that future observations, especially multi-band ones,

can constrain the EdGB theory of gravity by up to an order-of-magnitude stronger

than previously found. To the best of our knowledge, the IMR consistency test has

been put into context here for an example modified theory of gravity for the first

time, and can indeed be easily applied to other alternative theories of gravity, given

the required ingredients.

1.1.5 Testing beyond-Kerr spacetimes

Finally, we provide brief details on our primary findings in Chapter 8. We begin by

presenting for the very first time a recipe for one to quickly estimate corrections to

the inspiral, merger-ringdown, and remnant BH properties given only an arbitrary

spacetime metric gX
αβ. For demonstration purposes, we apply this to two example

beyond-Kerr spacetime metrics JP and mod.-∆ spacetime metrics gJP
αβ and gMD

αβ , which

are each parameterized only by the single parameters ε3 and β, deviating from the

Kerr metric gK
αβ. We then demonstrate the power of such corrections by using the

IMR consistency test from Chapter 7 to predict the magnitudes of ε3 and β required

for one to observe statistically significant deviations from the Kerr result.

Table 1.2 presents a summary of the main results found. Here we compare con-

straints on the JP and mod.-∆ deviation parameters ε3 and β for each GW event and

detector considered in this thesis. In particular, constraints are obtained using two
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different methods: (i) using the inspiral merger-ringdown consistency tests of GR in

which one compares the inspiral and merger-ringdown signal’s predictive power of the

remnant BH mass and spin; and (ii) using the parameterized tests of GR, in which the

Fisher analysis parameter estimation method is used to estimate the statistical uncer-

tainties on template waveform parameters. With the current-generation GW detector

aLIGO O2, we find comparable constraints on the JP deviation parameter ε3 to those

from x-ray observations of BH accretion disks [169, 170], found to be ε3 / 5. With

future space- and ground-based GW observatories, we find constraints several orders

of magnitude stronger. We find that such results from the IMR consistency tests

are mostly comparable to those from the parameterized tests as discussed in Chap-

ter 6. In particular, we find that the extreme-mass-ratio-inspirals observable by future

space-based detector LISA [86] can probe such effects by three orders-of-magnitude

stronger than the current constraints found in the literature. We additionally find

that the additional use of merger-ringdown and remnant BH property corrections to

the waveform can alter results by up to 15% as compared to using inspiral ones alone,

as is commonly done.

We then follow up this work by designing a more generic, stationary and axisym-

metric, asymptotically flat Kerr-like BH metric with separable structure like in the

Kerr metric. Following the important work of Johannsen in [173], this is done by first

introducing the most generic deviations possible into the contravariant Kerr metric in

such a way that the Hamilton-Jacobi separability condition is preserved as in the case
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ε3 (JP [171]) β (mod.-∆ [172,173])

IMR Param. IMR Param.

O2 [78]
GW150914 [28] (7)∗ (5)∗ (2)∗ (1)∗

GW170729 [165] (10)∗ (14)∗ (14)∗ (11)∗

CE [81]
GW150914 [28] 0.05 0.05 0.05 0.02

GW170729 [165] 0.6 0.5 0.06 0.07

CE+LISA [81,86]
GW150914 [28] 0.02 0.03 5× 10−3 4× 10−3

GW170729 [165] 0.05 0.09 0.05 0.03

LISA [86]
EMRI (2× 10−3)† 10−3 (2× 10−4)† 10−4

SMBHB 0.02 0.01 10−3 10−3

Table 1.2: Summary of results obtained in this chapter for both the
Johannsen-Psaltis and modified-∆ metrics. Here we compare constraints on the
deviation parameters ε3 and β obtained via the IMR consistency tests of GR (IMR),
and the parameterized tests of GR (Param.) for each gravitational wave event and
detector considered. In particular, bounds are presented for GW150914-like events
(m1 = 36 M�, m2 = 29 M�), GW170729-like events (m1 = 50.6 M�,
m2 = 34.4 M�), EMRIs (m1 = 106 M�, m2 = 10 M�), and super-massive black hole
binaries (SMBHBs, m1 = 106 M�, m2 = 5× 104 M�). Observe that the bounds
with the two methods are comparable in all cases presented here. (Return to the first

reference of this table in the main text.)
∗ Constraints with the aLIGO O2 detector are not as reliable because they fall beyond the small-deviation
approximation made when deriving ppE parameters.
† Constraints from EMRIs with IMR consistency tests may not be accurate since the IMRPhenomD waveforms were
calibrated to numerical relativity simulations with mass ratios only up to 1:18. In the parameterized test, all such
numerical relativity (NR) fits have been removed, and integrations stopped before the merger to avoid such
inaccuracies.
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of a Kerr spacetime. The new metric is then simplified by imposing the constraint

of asymptotic flatness at spatial infinity. Further, we impose constraints consistent

with the weak-field solar system tests as Johannsen did in [173], however we note that

such constraints may not be explicitly valid in the strong-gravity regions surrounding

BHs. We then found that our new metric can be mapped to at least eight known BH

solutions [111,114,120,124,159,174–185].

We then explore several properties of the new spacetime, which could possibly

be translated into future EM observables. We first locate the positions of the event

horizon, Killing horizon, and ergosphere, finding that the former two reduce to the

Kerr horizons, and the latter depends on just one of the five free functions (unlike

the JP and mod. ∆ metrics that only have one free function or parameter) found in

the metric. Following this, we investigate the orbital properties of circular equatorial

particle orbits, finding analytic expressions for the orbital energy and angular momen-

tum, the Keplerian and epicyclic frequencies, and also the location of the ISCO. We

next derive analytic expressions for the photon rings as can be observed by e.g. the

EHT, and present plots of the viewing plane as seen by a distant observer at spatial

infinity for several parameterizations of the metric. We then demonstrate the effect

each parameterization has on each of the above BH properties in Fig. 1.13, and also

investigate the presence of naked singularities emergent for certain parameterizations.
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Figure 1.13: Images of photon rings about a high-spin χ = 0.998 (top), medium-spin
χ = 0.5 (middle), and low-spin χ = 0 (bottom) BH, for various non-vanishing GR
deformation parameters. We avoid combinations of such parameters that produce
naked singularities, and let α13 = α02 = ±2 (left) and α22 = α02 = ±2 (right). The
inclination is fixed at the extreme case of i = 90◦ in every scenario, for
demonstration purposes. (Return to the first reference of this figure in the main text.)



Chapter 1. Introduction 47

1.2 Organization and conventions

Let us now present the outline of the following thesis, which is based on Refs. [186–196]

by the same authors. In Chapter 2 we introduce a theoretical background of GWs,

starting from their generation from arbitrary sources. We then focus on circular

orbits of compact object binaries as is considered for the remainder of the thesis

and derive the leading-order (Newtonian orbit) gravitational waveform and explain

the post-Newtonian corrections. We then introduce the full PhenomD gravitational

waveform model with numerical relativity fits that is utilized for the remainder of this

thesis, along with a description of modifying the waveform in alternative theories of

gravity beyond-GR, or for extended structures such as NSs. Finally, we introduce the

various GW sources considered throughout the thesis. In Chapter 3 we introduce the

Fisher analysis method of parameter estimation for both single GW event detections,

as well as the combination of several observations. We also describe the mechanics

of a GW interferometer and describe the various current GW detectors, and future

third-generation ground-based and space-based GW observatories. Here, the contents

of the thesis is then broken up into two separate parts.

In Part A we discuss how one can use the detection of GWs from binary NS

mergers such as GW170817 to probe nuclear physics. We begin in Chapter 4 by

introducing the fundamental nuclear matter parameters which determine the EoS

of nuclear matter. We then show how detections of GWs from binary NS mergers

both in the present and in the future can constrain such nuclear matter parameters.
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In Chapter 5, we find more accurate universal relations between NS observables us-

ing knowledge of GW170817, and show how they can be used for better parameter

estimations in future observations.

Next, in Part B we show how one can test GR using the coalescences of binary BHs

across the universe. In Chapter 6 we consider several alternative theories of gravity

and test them against GR in a parameterized way for both current, and future GW

observations including multi-band and multi-signal detections. Chapter 7 similarly

tests alternative theories of gravity by building corrections to the gravitational wave-

form in both the inspiral and merger-ringdown components. We then compare the

inspiral and merger-ringdown GW signals for consistency with each other, providing

a test of the underlying theory of gravity. Finally, in Chapter 8 we investigate probes

of beyond-Kerr spacetimes surrounding BHs. We first consider singly-parameterized

beyond-Kerr spacetime metrics and show how we can test them in a similar manner

to the previous chapter. We then build a new general spacetime metric that preserves

Kerr symmetries and find corrections to several astrophysical phenomena which could

be linked to EM observations.

Finally, in the Appendices, we provide supplementary material to the main thesis.

In Appendix A we study the correlations between the weighted tidal deformability Λ̃

and the tidal deformability at 1.4 M�, λ0. In Appendix B we re-compute constraints

on nuclear matter parameters as done in Chapter 4 with the exclusion of the phe-

nomenological equations of state. In Appendix C we consider hybrid stars, which
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are exotic NSs with quark-matter cores and hadronic-matter crusts. Appendix D

demonstrates a comparison to the analysis done in Chapter 4 without restricting the

equations of state to previous experimental knowledge. In Appendix E we consider

the multiplicative combinations of nuclear matter parameters, rather than the linear

ones previously utilized. Next, in Appendix F we provide a direct demonstration

of computing posterior probability distributions on nuclear matter parameters. We

follow this up in Appendix G where we compare two similar quasi-Brans-Dicke theo-

ries of gravity by Mendes-Ortiz and Damour and Esposito-Farése. Appendix H then

investigates the role of the NS EoS and spin on the constraint of scalar tensor the-

ories of gravity. In Appendix I we display the lengthy expressions for corrections to

a remnant BH’s mass and spin in an arbitrary spacetime given a metric tensor gX
αβ.

In Appendix J we analyze the effects of non-vanishing lower-order metric deviation

parameters on direct EM observables. Finally, in Appendix K we discuss the ap-

pearance of naked singularities for certain parameterizations of the new beyond-Kerr

spacetime.

Now let us explain some of the common conventions used throughout this thesis.

Unless specifically noted, we make use of the Einstein summation notation, where the

use of repeated indices implies the summation over the number of dimensions of the

tensors in question. For example,

gµνdx
µdxν ≡

∑
µ,ν=0,1,2,3

gµνdx
µdxν (1.3)
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for four-vectors dxµ. Additionally in our tensor notation, we make use of both Greek

indices which pertain to all four spacetime indices µ, ν, · · · = 0, 1, 2, 3 (0, 1, 2, 3 com-

monly refer to t, x, y, z, or t, r, θ, φ, etc.), and Latin indices which correspond to only

the three spatial indices i, j, · · · = 1, 2, 3. When pertaining to derivatives, we will

commonly make use of the shorthand notation ∂X ≡ ∂
∂X

. Occasionally, we also utilize

the convention that Ḟ ≡ dF
dt

represents a time derivative, while F ′ ≡ dF
dr

represents

a radial derivative. Additional dots and primes correspond to additional consecutive

time and radial derivatives. When considering tensor derivatives, we use the standard

“comma” notation, in which one takes a partial derivative over indices located after

a comma. For example,

Tαβ,µν... ≡
∂

∂xµ
∂

∂xν
. . . Tαβ (1.4)

for some arbitrary tensor Tαβ. We also make use of the d’Alembert operator, which

is simply defined as � ≡ ∂µ∂µ. Finally, throughout this thesis, we have adopted

geometric units of G = c = 1, unless otherwise stated. In these useful units, mass,

length, time, and energy all have the same unit (usually of length or time). A useful

conversion factor in the geometric unit system is 1 M� = 5× 10−6 s = 1.5 km.
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Gravitational waves

Gravitational waves fill our observable universe, embedded with a rich source

of information regarding their creation. Traveling at the speed of light, such

radiation originates from several different astrophysical sources across the uni-

verse. Dominant among these sources are the binary inspirals of compact

objects such as black holes and neutron stars, culminating in a violent co-

alescence event accompanied by a large burst of gravitational radiation. In

particular, tidal deformation effects present in the coalescence of neutron stars

are embedded into the gravitational waveform which tells us something about

the nuclear physics present within. On the other hand, features present within

the waveform emanating from the inspiral of black holes reflect details about

the spacetime surrounding such objects. In this chapter, we find the gravita-

tional waveform generated from the circular inspiral of compact objects which

contains remnants whence they originated.

51



Chapter 2. Gravitational waves 52

2.1 Generation of gravitational waves

In this section our main goal is to express the radiation of GWs from various sources

across the universe. For a more thorough description on the generation of GWs, see

Refs. [197,198]. In particular, we treat GWs as simply leading-order perturbations to

a flat spacetime. In order for one to characterize the properties of a given spacetime,

we introduce the notion of a metric to quantify scalar line elements ds2. Specifically,

the line element in an arbitrary spacetime described by a metric gµν can be written

as

ds2 = gµνdx
µdxν . (2.1)

Here, gµν is a covariant (0,2)-tensor which takes two vectors dxµ and dxν as input to

recover the invariant scalar property ds2. In an arbitrary spacetime, the symmetric

metric tensor gµν can have non-vanishing off-diagonal elements as well as non-unity

elements which describe the curvature of the spacetime in question. In a flat, or

Minkowski spacetime, the metric can be written as

gµν = ηµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (2.2)



Chapter 2. Gravitational waves 53

where ηµν is known as the Minkowski metric. We then consider GWs as small linear

perturbations hµν to a Minkowski background like so

gµν = ηµν + hµν , (2.3)

where we assume |hµν | � 1. This formalism is known as linearized gravity.

Now that we have our perturbed spacetime metric on hand, we must solve for

their solutions in GR. To do this, we consider the famous Einstein’s equations

Rµν −
1

2
gµνR = 8πTµν (2.4)

where Tµν is the stress-energy tensor which describes the matter and energy densities

present. The Ricci tensor Rµν and scalar R can be obtained from the Riemann

curvature tensor Rµ
ναβ like so

Rµ
ναβ ≡ Γµνβ,α − Γµνα,β + ΓµδαΓδνβ − ΓµδβΓδνα (2.5)

Rµν = Rδ
µδν (2.6)

R = Rµ
µ, (2.7)

where the Christoffel symbols Γαµν = 1
2
(gαµ,ν + gαν,µ− gµν,α) describe the connections

between different tangent spaces on a manifold. We finally substitute our perturbed

spacetime metric gµν from Eq. (2.3) into Einstein’s equation from Eq. (2.4) to obtain

a wave equation of the form

�h̄µν = −16πTµν (2.8)



Chapter 2. Gravitational waves 54

to linear order in perturbation hµν . In the above expression, we have defined h̄µν ≡

hµν − 1
2
hηµν to be the trace-reversed metric perturbation, where the Lorentz gauge of

h̄µν,ν = 0 has been assumed.

Following this, assuming we are in vacuum, there exists additional gauge freedom

which can be used to further allow h̄ = h0i = 0. This combined with the Lorentz gauge

above results in h00
,0 = 0, or ∂

∂t
h00 = 0. This tells us that the (0, 0), or tt-component

of our metric perturbation is non-dynamical. Time-independent contributions do not

affect the observable GWs, which allow us to neglect the component, so h00 = 0.

This set of gauge conditions is known as the transverse-traceless (TT) gauge, which

is conveniently summarized as:

hTT

0µ = hTT = hTT,j
ij = 0. (2.9)

Finally, we are left with two residual degrees of freedom in our perturbation metric

hµν . These are commonly decomposed into two linearly independent polarizations for

GWs, known as the + (plus), and × (cross) modes. Each polarization mode has

amplitudes defined to be h+ and h×. For example, GWs propagating in the +ẑ-

direction results in a perturbation metric in the TT gauge to be

hTT

µν =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


. (2.10)
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We see that GW spacetime perturbations hTT
µν are then composed of both plus and

cross polarization modes.

Now we consider the effects of GWs as they pass through matter. To visualize

this, we first consider a simple ring of particles situated in spacetime as indicated by

the left-most diagrams in Fig. 2.1. We then subject the rings of particles to both

plus (top) and cross (bottom) polarized GWs. As time passes (to the right), we see

that rings of particles become deformed in an oscillatory behavior. For example, we

see that under the influence of plus-polarized GWs, the ring is stretched first in the

ŷ-direction, followed by the x̂-direction. On the other hand, cross-polarized GWs

do the same thing but rotated by 45◦. Such an example demonstrates the resulting

stretching and compressing of spacetime under the influence of GW perturbations.

We can see how such effects allow interferometers to observe GWs by their differential

stretching/compressing of each orthogonal arm, as discussed further in Sec. 3.2.

Finally, we must discuss the generation of GW amplitudes h+ and h× from arbi-

trary sources with stress-energy tensor Tµν . We begin by solving the Einstein equa-

tions found in Eq. (2.8) with use of a retarded Green’s function. The resulting gen-

eralized solution for h̄µν can be found to be

h̄µν(t,x) = 4

∫
d3x′

Tµν(t− |x− x′|,x′)
|x− x′|

(2.11)

for source and field vectors x′ and and x respectively. Now we apply the TT gauge
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time

plus modes

cross modes

Figure 2.1: Reaction of a ring of test particles to the passing of plus-polarized (top,
red) and cross-polarized (bottom, blue) GWs traveling in the +ẑ direction.

found in Eq. (2.9) to find

hTT

ij (t,x) = 4

∫
d3x′

T TT
ij (t− |x− x′|,x′)

|x− x′|
, (2.12)

where T TT
ij is the transverse-traceless part of the stress-energy tensor. In particular,

we are now interested in gravitational waves outside of the GW source, which has

approximate size L, with the field-points in question having r = |x| � L. Further, if

we assume (usually correctly) that the source velocity is much smaller than the speed

of light, we can employ a Taylor formula (reminiscent of the Laplace expansion) to

expand our integrand into multipole moments like so

Tij(t− |x− x′|,x′)
|x− x′|

→ Tij(t− r,x′)
r

+O
(

1

r2

)
, (2.13)
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where we have only taken into account the leading order multipole. This then gives

us our metric perturbation in the TT gauge as

hTT

ij (t,x) ≈ 4

r

∫
d3x′T TT

ij (t− r,x′), (2.14)

where we note that to leading order, gravitational radiation decreases only at a linear

rate of 1/r.

Finally, we consider the conservation of energy in the system. In particular, this

constraint tells us that the stress-energy tensor must obey the expression

T µν,ν = 0. (2.15)

By expanding the conservation equation into spatial and temporal components, we

arrive at

T tt,t = −T ti,i (2.16)

T ti,t = −T ij ,j (2.17)

which allows one to find

T tt,tt = T ij ,ij. (2.18)

With several more manipulations, one ultimately finds that

T kl =
1

2
(Tttx

kxl),tt − 2(Tklx
l + Tilx

k),i. (2.19)

Inserting the above expression into the leading-order multipolar expansion in Eq. (2.14),



Chapter 2. Gravitational waves 58

one arrives at the desired result:

hTT

ij =
2

r

∂2

∂t2

∫
d3x′ρ(t− r,x′)x′ix′j ≡

2

r
M̈TT

ij , (2.20)

where ρ ≡ T00 is the mass density. We have defined Mij to be the mass quadrupole

moment, or

Mij(t− r) ≡
∫
d3xρ(t− r,x′)x′ix′j. (2.21)

Finally, we can express the plus- and cross-polarized GW perturbations as

h+(t,x) =
1

r

(
M̈11(t− r)− M̈22(t− r)

)
(2.22)

h×(t,x) =
2

r
M̈12(t− r). (2.23)

We note that the above expressions are valid only on the ẑ-axis, while Ref. [4] describes

the more general projections onto arbitrary axes. Thus, ultimately we find that the

presence of quadrupolar gravitational radiation requires the non-vanishing second-

derivatives of the mass quadrupole moment. For example, this radiation occurs within

the orbiting binary of stellar objects which we will generalize to in the following

section.

2.2 The gravitational waveform

Now that we have established the GW perturbation h from an arbitrary source with

mass quadrupole moment Mij, we focus our attentions on our main source of interest

in the following thesis - the inspiral merger of binary compact objects. In particular,

we first focus on the leading-order GW contributions for the case of a circular binary.
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We then expand to the higher-order corrections to the waveform with expansion pa-

rameter (v/c)2. Finally, we present the PhenomD [89, 90] gravitational waveform

which incorporates numerical-relativity (NR) fits to further increase the accuracy of

our waveform model. We follow this up with a description of the effect of extended

structures such as NSs in the gravitational waveform. Finally, we conclude by ex-

panding to beyond GR in the ppE formalism by inserting parameterized corrections

to the waveform at arbitrary PN orders.

2.2.1 Leading order quadrupole radiation from circular orbit
binaries

In this section we will focus on the simple case of two stellar bodies in a perfectly circu-

lar binary inspiral as shown in Fig. 2.2. As the objects radiate gravitational radiation

which removes energy and angular momentum from the system, they slowly inspiral

towards each other At the point that the innermost-stable-circular-orbit (ISCO) is

reached, the objects finally enter a plunging orbit due to the absence of stable or-

bits and finally make contact with each other [199]. At this point, if the objects are

black holes (BHs) with initial masses m1 and m2, a common horizon is formed and a

remnant BH is created with total mass Mf < m1 + m2 (due to the energy loss from

GWs), which promptly rings down to a relaxed state via the emission of quasinormal

modes (QNMs). Similarly, if the bodies are neutron stars (NSs), a hypermassive NS

is formed which is either stable (for small-mass NSs), or collapses (promptly with

slow rotations, and delayed with fast rotations) into a small-mass BH.
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x

y

Figure 2.2: Diagram of a circular binary orbit with two objects of mass m1 and m2

separated by a total distance a = b+ d.

As shown in Fig. 2.2, we assume two compact objects with mass m1 and m2 in a

circular binary orbit. We generalize the orbit to the the x − y plane for simplicity,

to be located a luminosity distance DL from Earth. If the total mass of the system

is M = m1 + m2, and the orbital separation is given by a, we can find the orbital

angular velocity to be Ω2 = M/a3 to leading order with Kepler’s Law. We can then

find the positions of each object (x1
A, x

2
A) in the center of mass frame to be simply

(x1
1, x

2
1) =

(m2

M
a cos

(
Ωt+

π

2

)
,
m2

M
a sin

(
Ωt+

π

2

))
(2.24)

(x1
2, x

2
2) =

(
−m1

M
a cos

(
Ωt+

π

2

)
,−m2

M
a sin

(
Ωt+

π

2

))
. (2.25)

Finally, if we assume the compact objects to be point masses, we can simplify
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the mass quadrupole moment formula found in Eq. (2.21) with Dirac-delta functions.

The resulting definition of point-particle quadrupole moment is given by

Mij =
∑

A=1,2

mAxiAx
j
A. (2.26)

For the case of the circular binary found in Fig. 2.2, we find the second derivative of

the (1, 1)-component of the quadrupole moment to be

M̈11 =
d2

dt2
(m1x

1
1x

2
1 +m2x

1
2x

2
2)

= ηMa2 d
2

dt2
cos2

(
Ωt+

π

2

)
= 2ηMa2Ω2 cos(2Ωt) (2.27)

for symmetric mass ratio η ≡ m1m2

M2 . Similarly, the (2, 2)- and (1, 2)-components can

be found as

M̈22 = −2ηMa2Ω2 cos(2Ωt), (2.28)

M̈12 = 2ηMa2Ω2 sin(2Ωt). (2.29)

We can then substitute the above expressions into the final quadrupole radiation

formula in Eq. (2.22) to find

h+ =
4ηM

DL

a2Ω2 cos(2Ωt) =
4ηM2

aDL

cos(2Ωt) (2.30)

h× =
4ηM

DL

a2Ω2 sin(2Ωt) =
4ηM2

aDL

sin(2Ωt), (2.31)

where once again the above expressions are only valid along the ẑ-axis, and can be
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seen more generally in [4].

From the above formulae, we notice a few key points. First, we find that the

amplitude of GWs only falls of as 1/r, contrary to typical EM radiation, where the

flux falls off as 1/r2. In the former case, while the flux of GWs still fall off as 1/r2 like

for EM waves, we can directly measure the amplitude as a distortion of spacetime,

as opposed to EM radiation where we can only measure the flux impacted on a

photodetector. Secondly, we observe that the amplitude of GWs are proportional to

the total mass M2 of the binary system. Finally, we see that the GW magnitude is

inversely proportional to the orbital separation a. The latter two points tell us that

the more compact an object is (i.e. the ratio of the mass to the size, or quantitatively

C ≡ M/R for compactness C) the larger magnitude GWs are radiated. This is

because for objects with smaller compactnesses, the separation distance can approach

smaller values while maximizing the total mass. For this reason, binary BH inspirals

with individual compactnesses of C = 1/2 make ideal candidates for GW sources, as

well as tests of extreme gravity.

Next we must find the evolution of the frequency and orbital separation of the

binary system to estimate the GW phase. To do so, we begin by finding the total

energy of the system, given by

E =
1

2
m1v

2
1 +

1

2
m2v

2
2 −

m1m2

a
(2.32)

to leading order, where the first two terms are the individual kinetic energies of each
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object, and the last is the gravitational potential energy between the two. By taking

the velocity of each object to be vA = amB

M
Ω with Ω2 = M/a3, we can reduce the

above expression to

E = −ηM
2

2a
. (2.33)

By following Refs. [197, 198], the gravitational wave luminosity LGW ≡ dE
dt

emitted

from the binary system can be written as

dE

dt
= −1

5

〈
...
M ij

...
M ij −

1

3

( ...
Mkk

)2
〉
. (2.34)

By substituting the above expressions for Mij into this formula, we get a total GW

luminosity of

LGW =
32

5

η2M2

a5
≡ −dE

dt
, (2.35)

which is exactly equal to the loss of energy in the system.

Knowing the above expressions for E and LGW, we next want to find the evolution

of the orbital separation distance, or a(t). We do this via a simple chain-rule expansion

da

dt
=

da

dE

dE

dt
=

(
dE

da

)−1

LGW = −64ηM3

5a3
. (2.36)

The solution to this simple differential equation with the initial condition of a(t =

tc) = 0 for coalescence time tc is then

a(t) = 4

[
1

5
ηM3(tc − t)

]1/4

. (2.37)

Finally, we must find the frequency evolution of the binary system f(t). We start



Chapter 2. Gravitational waves 64

from the definition of the GW frequency f

f ≡ Ω

π
=

1

π

√
M

a3
(2.38)

using Kepler’s Law once again. Substituting a(t) from Eq. (2.37) gives us the final

frequency evolution of GWs to leading order as

f(t) =
53/8

8π

1

M5/8(tc − t)3/8
, (2.39)

for chirp mass M = Mη3/5.

Finally, we estimate the GW phase as shown in Ref. [160]. This is done by

integrating the following expression

φ(t) =

∫
2πf(t)dt = −2

(
1

5M
(tc − t)

)5/8

+ φc (2.40)

for coalescence phase φc. To find the gravitational waveform in the Fourier domain

h̃(f) which we can observe in, we make use of the stationary phase approximation. By

assuming that the binary velocities are much less than the speed of light, the Fourier

component h̃(f) of h(t) = A(t) cosφ(t) under the stationary phase approximation can

be found to be [200]

h̃(f) ≈ 1

2
A (t(f)) ei(2πft(f)−φ(f)−π/4). (2.41)

We begin building this expression by inverting Eq. (2.39) to find t(f) = tc−5M(8πMf)−8/3,

which can be substituted into Eq. (2.40) to find φ(f) = φc − 2(8πMf)−5/3. By sub-

stituting these expressions into Eq. (2.41) along with the amplitudes A (t(f)) from
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Eq. (2.30), we get the final result after some manipulation

h̃+(f) = Af−7/6eiΨ(f) (2.42)

h̃×(f) = Af−7/6eiΨ(f)+iπ/2, (2.43)

where once again the expressions are valid on the ẑ-axis, described more generally

in [4]. Here we have defined A ≡
√

5/24π−2/3M5/6/DL and Ψ(f) = 2πftc − φc −

π/4+ 3
128

(πMf)−5/3. See in e.g. Fig. 1.8 for the gravitational waveform characteristic

strain amplitude 2
√
f |h̃(f)| for a GW150914-like event.

The above expressions for the Fourier-space gravitational waveform h̃(f) have been

derived to leading order, which we will call the 0-th post-Newtonian (PN) order term

in the waveform. At the 0-th PN order, we have assumed a Newtonian circular orbit.

In the PN formalism, we can then provide corrections to this by expanding to higher

PN orders proportional to (v/c)2n for n-PN corrections relative to the leading order

Newtonian contributions as found in Eq. (2.42). Here, v is the characteristic relative

velocity of the objects in the binary, and is given by v = (πMf)1/3. Higher PN-order

corrections to the gravitational waveform amplitude and phase can be found in e.g.

Refs. [201–206] for up to 3.5PN order, by following the same process used above for

modified effects.

2.2.2 PhenomD gravitational waveform

Accurate models of the gravitational waveform signal are crucial in the matched filter-

ing process used to detect such signals, as well as in the extraction of observables from
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Figure 2.3: Amplitude of the PhenomD gravitational waveform |h̃(f)|. Region I
(Mf < 0.018) corresponds to the waveform portion with a hybrid of PN terms and
NR data, while region II (Mf ≥ 0.018) is purely composed of NR data. (Taken
from Refs. [89,90].)

them. In the matched filtering stage of detection used by the LVC, a potential GW

signal detected in the interferometer is then matched to a large bank of gravitational

wave templates with a large variety of parameterizations, individually. If a high cor-

relation between the detected signal and a given template waveform is observed, the

detection becomes a candidate event with a quick estimation of its parameters. At

this point, the candidate event is passed along for a more in-depth Bayesian analysis

to extract most-likely parameters from the observed signal relative to the assumed

template waveform.

Now let us consider further corrections to the gravitational waveform, beyond

the PN ones discussed in the previous section. More specifically, one can build a

frequency-domain phenomenological gravitational waveform model beyond the PN
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formalism in each of the inspiral, merger, and ringdown portions of the signal. In

particular, as shown in Fig. 2.3, the inspiral portion (Region I) corresponds to low-

frequencies when the binary objects are far apart, and slowly-orbiting. Under the

emission of gravitational radiation, the bodies inspiral together with increased fre-

quency until they reach the location of the ISCO (corresponding to a frequency

fISCO = (63/2πM)−1), where circular orbits cease to exist. At this point, the com-

pact objects enter a plunging orbit until they make contact and form a remnant NS

or BH. The remnant object then undergoes a ringdown, radiating QNMs to settle

down into its final relaxed state. As shown in Fig. 2.3, at this point the orbit enters

Region II which is broken up into the intermediate and merger-ringdown stages of

the coalescence.

For the remainder of this thesis, we consider the sky-averaged “IMRPhenomD”

gravitational waveform template h̃(f) found in Refs. [89, 90] for point particles such

as BHs. For the case of NSs, the PhenomD point-particle waveform can be modi-

fied for extended structure as discussed in Sec. 4.2.1. In the PhenomD gravitational

waveform, authors Khan and Husa et al. first separated both the template waveform

amplitude A and phase Ψ into three portions: The inspiral (AI, ΨI), intermediate

(Aint, Ψint), and merger-ringdown (AMR, ΨMR). Within the former region, the authors

built a hybrid model between the PN formalism discussed above in Sec. 2.2.1, and

additional numerical relativity (NR) fits to complex simulations. In the latter two

regions, the authors utilized pure NR data to construct the intermediate and merger-
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ringdown waveform templates. The authors calibrated the phenomenological NR fits

in each region to 19 different effective-one-body-numerical-relativity1 waveforms with

mass ratios up to 1:18, and BH spins of up to |χ| ∼ 0.85 (up to 0.98 for equal-mass

systems), for dimensionless BH spin χ ≡ a/m, with a = Jz/m for ẑ angular momen-

tum Jz. Next, the independent waveform amplitudes (AI, Aint., AMR) and phases (ΨI,

Ψint., ΨMR) are “stitched” together by matching the waveform and its derivative at the

boundary frequencies separating each phase, which were determined by maximizing

the waveform mismatch with template waveforms. The resulting full-waveform am-

plitude (AIMR) and phase (ΨIMR) is now valid for the entire binary coalescence event,

where the Fourier-component waveform is given by

h̃(f) = AIMRe
iΨIMR . (2.44)

With the final inspiral + merger-ringdown (IMR) PhenomD gravitational waveform

template available, the authors then tested it for mismatch against the 19 calibration

waveforms in addition to 29 verification hybrids. The PhenomD waveform model

typically exhibited no more than 1% mismatch against all 48 NR waveforms.

Within the non-precessing sky-averaged PhenomD gravitational waveform model,

we consider the following template parameters in our analysis. For the case of binary

1Effective-one-body (EOB) waveforms map the two-body problem into that of a single parti-
cle moving in an effective metric to non-perturbatively determine the late binary evolution [207].
Effective-one-body-numerical-relativity (EOBNR) waveforms extend this by stitching NR simulation
data to extend the waveform into the merger-ringdown phases [208].
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BHs, we utilize a template parameter vector θa consisting of

θaBH = (A, φc, tc,Mz, η, χs, χa), (2.45)

where A = M5/6
z√

30π2/3DL
is a normalized, sky-averaged, frequency-independent amplitude

factor in the fourier domain, Mz = (1 + z)M is the redshifted chirp mass, and

χs,a = 1
2
(χ1 ± χ2) are the symmetric and anti-symmetric combinations of individual

dimensionless spins χ1,2. Further, we have averaged over the entire sky to remove

all sky-localization parameters in the template. The above parameters have been

specifically chosen for their dominance in the gravitational waveform (for example we

useM and η instead of m1 and m2 because the latter two are highly degenerate with

each other).

Now that we have our full gravitational waveform in GR with leading-order terms

modified by higher-order PN corrections and NR data, we must assume prior knowl-

edge on the parameters entering the template. Typically, when one (such as the

LVC) extracts posterior probability distributions on waveform template parameters

θa, prior probability distributions are first injected, imparting previous knowledge on

such parameters into the analysis. For a Bayesian analysis such as the one used by

the LVC, such prior probability distributions can take any form required, typically

uniform in many cases. For the more computationally inexpensive Fisher analysis we

consider in this thesis as described later in Chapter 3, all prior distributions must

be Gaussian-distributed. To approximate such distributions, we pick a root-mean-
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square value σ
(0)
θa corresponding to previous knowledge, along with a central “fiducial”

value which allows one to construct a Gaussian prior probability distribution. For

uniformly-distributed parameters with no prior knowledge or constraints, we assume

σ
(0)

θA = ∞. In particular, for this thesis investigation we always impose priors on the

coalescence phase of |φc| ≤ π as a general constraint. For BHs, we impose a spin prior

of |χs,a| < 1, corresponding to the maximum rotation a BH can take before exposing

a naked singularity, which is not physically or observationally motivated. All other

parameters A, tc,Mz, and η have no prior motivations or constraints and we assume

σ
(0)

θA = ∞. As for fiducial values, we assume tc = φc = 0 for simplicity, and directly

calculate for the remaining parameters A, M, η, and χs,a from the assumed event

intrinsic properties, as considered in a case-by-case basis, and discussed further in

Sec. 2.3.

2.2.3 Extended structures in the waveform

Now that we have a gravitational waveform with both PN corrections and NR fits for

point-particles such as BHs, how do we extend this template to extended structures

such as NSs? In 2007, authors Flanagan and Hinderer first considered this effect on

the gravitational waveform, deriving the leading-order quadrupolar corrections first

entering the gravitational waveform at 5PN order [209]. Later in 2011, Vines et al

extended this analysis to find the next-leading-order tidal correction entering at 6PN

order [104], which was shown again in [105]. See also Ref. [210] where Damour et al

derived incomplete tidal corrections to the gravitational waveform phase up to 7.5PN
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order in 2012. Finally, in 2018 Yagi computed the `th-order multipole moments for

extended structures in the gravitational waveform in Ref. [65].

Such corrections to the gravitational waveform can ultimately be expressed by

finding the conservative and dissipative corrections to the binary system from such

tidal effects. By first finding tidal corrections to Kepler’s law r(Ω), one can find a

new expression for the binding energy of the system Eb, giving the conservative tidal

corrections. Following this, the quadrupolar radiation formula combined with the

modified Kepler’s law can give a corrected expression for the radiated GW flux, or

Ė of the system in the presence of tides, giving the ensuing dissipative corrections

to the system. Finally, the resulting GW phase in the presence of tidal deformations

can be found by following e.g. [119,160,211]. Such corrections enter the gravitational

waveform phase at 5PN and 6PN orders respectively as described in Refs. [65, 104,

105, 209]. The modifications to the waveform are characterized by the new tidal

parameters Λ̃ (mass-weighted tidal deformability) and δΛ̃, which are given by

Λ̃ =
8

13

[
(1 + 7η − 31η2)(Λ1 + Λ2) +

√
1− 4η(1 + 9η − 11η2)(Λ1 − Λ2)

]
(2.46)

δΛ̃ =
1

2

[√
1− 4η(1− 13272

1319
η +

8944

1319
η2)(Λ1 + Λ2)

+ (1− 15910

1319
η +

32850

1319
η2 +

3380

1319
η3)(Λ1 − Λ2)

]
, (2.47)

for individual dimensionless tidal deformabilities ΛA, which characterize the NS de-

formation in response to an external tidal field (i.e. from the neighboring star). For a

more thorough description of the NS tidal deformability see Chapter 4 of this thesis.
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In a binary system, if both compact objects are NSs2, we simply modify the Phe-

nomD waveform model with the 5PN+6PN tidal corrections for extended structures

in a binary orbit as found in Refs. [65,104,105,209]3. The resulting template param-

eters now consist of

θaNS = (A, φc, tc,Mz, η, χs, χa, Λ̃, δΛ̃). (2.48)

For NSs, we additionally impose a small-spin prior of |χs,a| < 0.05 motivated by

theoretical considerations and pulsar timing observations, which is also used by the

LVC in e.g. [30, 32, 39, 106, 225]. Finally, for NSs we also impose priors on the tidal

parameters of 0 < Λ̃ < 3000 as motivated by the LVC detection of binary NS merger

GW170817 [30,39,106,225], and |δΛ̃| < 500 as motivated in [105].

2.2.4 Beyond general relativity

In the previous sections, we have described in detail the gravitational waveform in

a universe ruled solely by GR. How would this change if instead some modified or

alternative theory of gravity ran the show? To date, a large number of alternative

theories of gravity have been proposed, several of which could potentially be likely

2In the case of mixed binaries, we take Λ1 → 0 (the tidal deformability of a non-rotating BH
is zero [212–216]) and Λ2 → ΛNS, making Λ̃ and δΛ̃ functions of of only η and ΛNS, which can
then be re-parameterized into Λs. See also Ref. [217] in which it was shown that the standard
computation of the tidal deformability relies on the comparison to the BH one and the effective BH
tidal deformability may have a small non-zero effect on the gravitational waveform.

3See Ref. [218] for a recent, more accurate phenomenological BH/NS waveform model, named
“IMRPhenomNSBH”. See also Ref. [219], where a phenomenological BH/NS waveform model was
constructed where the phase exceeded the NR results by 30%. See also Ref. [220], which updates
the model from Ref. [219] with a more accurate baseline binary BH model, and Ref. [221] for a
BH/NS amplitude model, Ref. [222] for an effective-one-body model applicable to BH/NS systems,
or Ref. [223] for BH/NS models computed with tidal splicing. Finally, refer to Ref. [224] for an
analysis on the waveform systematic uncertainties present in such models.
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to exist in nature. Therefore, one must remain as agnostic as possible when testing

observed GW signals for any minute hints of beyond-GR behaviors present within.

To do so, we consider the ppE formalism first suggested by Yunes et al. in [77], where

one can introduce arbitrary beyond-GR modifications to the waveform template in

an agnostic, parameterized way. In particular, the ppE formalism allows one to

inject modifications to the GW template at any given arbitrary PN order. The ppE

formalism is highly advantageous, as it allows one to constrain the effects of any

generic modification to GR into one parameter, controlled by the chosen power of

velocity, which can then be mapped backwards to many modified theories of gravity

which alter the waveform at the same PN order.

Let us now consider the properties of the ppE waveform template. In Fourier

space, a modified template waveform in the ppE formalism can be written generically

as

h̃ppE(f) = AGR(f)(1 + αppEu
a)ei[ΨGR(f)+βppEu

b], (2.49)

where u = (πMf)1/3 is the effective relative velocity of the gravitating bodies in a

binary. The ppE parameters (a, b) then characterize the velocity dependence at which

non-GR modifications of magnitude (αppE, βppE) enter the waveform in the amplitude

and phase, respectively. See Fig. 1.7 for a schematic comparison between the GR

and ppE waveforms h(t) in the time-domain for arbitrary corrections βppE and b.

Observe how there is a noticeable shift in the waveform phase when injecting ppE

modifications characterizing beyond-GR behaviors. The ppE exponents a and b can
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then be mapped to the familiar PN order n corrections to the gravitational waveform.

In particular, we define the ppE phase corrections to the gravitational waveform as

absolute, or Ψ→ ΨGR +βub, where the leading order PN (0PN) correction enters the

waveform at (v/c)−5. On the other hand, the ppE amplitude corrections are chosen

to be relative to the GR components, or A = AGR(1 + αua). Therefore, the final

relationships between n-PN order and absolute power of (v/c) can be written as

a = 2n (2.50)

b = 2n− 5 (2.51)

for amplitude corrections (a) and phase corrections (b).

We can consider two different modifications to the gravitational waveform: (a)

those that alter the generation of GWs, and (b) those that alter the propagation of

GWs. For modifications to generation mechanisms, the ppE correction can only be

included in the inspiral portion of the waveform. This is because beyond the inspiral

phase of the waveform, only NR data is available rather than the PN framework found

in the inspiral. On the other hand, with corrections to propagation mechanisms, we

can include modifications to the entire gravitational waveform. This is because the

generation of such GWs is irrelevant to their propagation across spacetime.

With a new ppE gravitational waveform template describing arbitrary modifica-

tions beyond GR, we can then map constraints on theory-agnostic parameters βppE

or αppE into theory-specific parameters corresponding to given alternative theories of
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gravity. In particular, we carry out Fisher analyses as explained below in Chapter 3

assuming that GR is the true theory of gravity found in nature (i.e. choosing the

fiducial value of the ppE parameter as βppE = 0 or αppE = 0) to estimate the statistical

errors on βppE or αppE. Such statistical errors describe the non-GR “fuzziness” one

can statistically expect the parameter to obey while still remaining consistent within

the detector noise, and can therefore be taken as an upper-bound constraint on βppE

or αppE. By finally choosing the power b or a corresponding to the modified theory of

gravity one wishes to study, the size of the effect (βppE or αppE) can then be mapped to

the corresponding theoretical constants4. The function mapping the theory-agnostic

parameters βppE to theory-specific parameters can be found by computing the binding

energy (conservative corrections) and the radiated GW flux (dissipative corrections)

within the new theory of gravity, which can then be converted to ppE parameters by

e.g. following Refs. [131,227]. See Chapter 6 where we list all of the example theories

considered in this thesis in detail, together with the mapping functions between the

theory-agnostic βppE and theory-specific parameters. Additionally, see Chapter 8 for

example computations of such parameters in two alternative beyond-GR spacetimes,

given only an arbitrary spacetime metric gX
αβ.

4Under consideration of propagation of uncertainties when transforming σβppE
to σε for some

theory-specific parameter ε, all terms containing measurement errors on intrinsic template parameter
vanish due to their proportionality with βppE → 0. See Ref. [226] for a more in-depth discussion on
this topic.
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2.3 Gravitational wave sources

As previously discussed, gravitational radiation is present whenever there exists a

time-varying mass quadrupole moment. This applies to several phenomena present

across the universe, however due to the inherent weakness of gravitational interac-

tions, only a certain few produce spacetime perturbations large enough to be detected

here on Earth. In specific, the coalescence of compact objects produce the largest

amplitude of GWs, whether they be BHs or NSs (or a combination thereof). Other

weaker sources of GWs include the rotation of asymmetric NSs (e.g. with ∼ O(1 cm)

mountains on their surface), asymmetric supernova explosions, primordial GWs arose

from the cosmic inflation of the universe, the inspiral of binary white dwarfs, and

many others. Because such events are not currently detectable with the current LVC

equipment, we focus our attention on the inspiral of BHs, NSs, and combinations of

the two in the following thesis.

Within the LIGO detector’s very first observing period spanning from 2002 to

2010, no gravitational waves were found. However, within days of operation of the

advanced LIGO (aLIGO) detectors5 first observing run (O1) in 2015, GWs from a pair

of merging BHs was observed for the very first time on the historic day of September

14, 2015 [28]. This event was dubbed “GW150914”, and it heralded an entirely

new era of astrophysics, opening a new observing window into the universe. Within

the first and second observing runs, the LVC further observed 9 GW signals from

5The redesign of LIGO’s interferometers improved the sensitivity by an order-of-magnitude, which
corresponds to three orders-of-magnitude more volume of space searched.
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Event m1 (M�) m2 (M�) χ1 χ2 DL (Mpc) SNR

GW170817 [30] (NS/NS) 1.48 1.27 0.02 −0.02 40 32.4

GW170608 [163] (BH/BH) 12.0 7.0 0.5 −0.66 340 9.0

GW151226 [164] (BH/BH) 14.2 7.5 0.5 −0.36 440 13.0

GW150914 [28] (BH/BH) 35.8 29.1 0.32 −0.44 410 25.1

GW170729 [165] (BH/BH) 51.0 31.9 0.60 −0.57 2,900 10.7

BHNS (BH/NS) 1.4 varies varies varies varies varies

EMRI (BH/BH) 106 10 0.90 −0.50 3,000 –

SMBHB (BH/BH) 106 5× 104 0.90 −0.90 3,000 –

Table 2.1: (top) List of notable GW events investigated in the following thesis,
along with their constituent masses m1,2 and dimensionless spins χ1,2, the
luminosity distance DL, and finally the detection SNR. Such events include the
binary NS merger (GW1780817) as well as the most and least massive binary BH
events yet detected (GW170729 and GW170608 respectively), and also the “golden
event” GW150914. (bottom) Same as the top but for future events detectable by
the LVC and future space-based interferometers. Here, many parameters are
unknown, but are varied on a case-by-case basis for practical purposes.

merging BHs [29]. Further, on August 17, 2017 the LVC for the first time observed

the GW signal from a distant pair of merging NSs, observing a tidal signature present

within the waveform [30]. This historic event named “GW170817” made history by

opening the doors to multi-messenger astronomy, due to the follow-up detections of

the gamma-ray burst GRB 170817A as well as EM observations everywhere from the

radio to the x-ray bands, observed by numerous facilities across the planet. The third

LVC observing run (O3) began on April 1, 2019, and has since detected over fifty

BH/BH, NS/NS, and BH/NS candidate events [31] which could be of possible future

interest.

In the following thesis, we consider five notable GW events as if they were ob-
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served by current or future GW interferometers. See Tab. 2.1 for a comprehensive list

of the following GW events, including their constituent masses m1,2, dimensionless

spins χ1,2, their luminosity distance DL, and finally the detection signal-to-noise-ratio

(SNR). In particular, we first consider the binary NS merger event GW170817 [30],

in which constraints on the tidal deformability allows us to study the properties of

supranuclear matter within the star, as discussed in Part A. We then focus our at-

tention on four binary BH events as detected by the LVC, useful in testing GR as

found in Chapters 6 and 7. The first binary BH event considered is the least-massive

event detected to date, GW170608 [163] with a total mass of only 19 M�. This is

followed by the “Christmas event”, GW151226 [164], and then the “golden event”

GW150914 [28] with large SNR. Finally, we consider the most massive event detected

to date, GW170729 [165] with a total mass of 83.5 M�. Each above event has various

useful properties in different situations, including larger/smaller mass ratios, total

masses, luminosity distances, and spins. Such differences prove beneficial when test-

ing different aspects of GR as found in Chapters 6 and 7. For each event considered

in the following thesis, we scale the detection SNR observed on the O2 GW detector

to the actual event SNR as detected by the LVC in order to account for differences

between our template waveform and the actual GW event observed. The same scaling

ratio is then applied to future GW detectors for consistency.

Finally, it sometimes proves useful to consider more exotic events which have yet

to be observed by the LVC. In particular, in Chapter 6 we consider the merger of a BH
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and a NS (BHNS), useful for constraining scalar-tensor theories of gravity. Here we

assume a NS of mass 1.4 M� and a BH of varying mass. Such an event is extremely

timely to consider as two of the candidates in the O3 run by the LVC, S190426c and

S190814bv, are likely to be such a merger, if they are of astrophysical origin [31,144].

Next we consider the merger of extreme-mass-ratio inspirals (EMRIs) detectable in

the future by the space-based GW detector LISA in Chapter 8. We consider such

events with masses of 106 M� and 10 M�, and they are highly useful for constraining

theories of gravity that depend on the symmetric mass ratio η. Finally, in Chapter 8

we consider the extreme inspiral of super-massive black hole binaries (SMBHBs) again

detectable by LISA. Such events with masses of 106 M� and 5× 104 M� are useful in

constraining modified theories of gravity that depend strongly on the total mass. See

Tab. 2.1 for more details on the above events yet to be detected by the LVC, including

their individual masses m1,2, dimensionless spins χ1,2, the luminosity distance DL, and

finally the detection SNR. Because the above events are yet to be detected, in the

following thesis we vary several parameters to consider a wide range of possibilities.
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Parameter estimation

The most reliable, comprehensive method used to extract parameters from a

given gravitational wave signal s = ht + n (the sum of the true gravitational

waveform ht with true parameters θat and noise n), with known GW template

h, is through a full Bayesian analysis. In such analyses, one reconstructs

the full posterior probability distributions for parameters θa, given a signal s.

With such a large parameter space, this form of analysis proves to be quite

computationally expensive, and infeasible when many samples are required.

Alternatively, in the limit of large signal-to-noise ratio, one can use a Fisher

analysis, which assumes Gaussian noise and prior distributions. Such analyses

have been shown to agree very well to their Bayesian counterparts for signal-

to-noise-ratios of O(25), corresponding to the GW event GW150914. Further,

the Fisher analysis process is significantly less computationally expensive than

a Bayesian one.

80
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3.1 The Fisher analysis method

For large enough SNRs [161, 162], a Fisher analysis [107–109, 160] may be used as

a reliable approximation to the Bayesian analysis used by e.g. the LVC. Assuming

that we have a perfect waveform template (h = ht), the signal-to-noise ratio (SNR)

is given by the inner product of the waveform with itself, weighted by the spectral

noise density Sn(f) of the detector:

ρ ≡
√

(h|h), (3.1)

where the inner product is defined as

(a|b) ≡ 2

∫ fhigh

flow

ã∗b̃+ b̃∗ã

Sn(f)
df. (3.2)

The limiting frequencies flow and fhigh depend on the specific GW detector configu-

rations, and are chosen on a case-by-case basis as discussed further in Sec. 3.2.

In a Fisher analysis, we make the assumptions that the detector noise is sta-

tionary, uncorrelated, and Gaussian. Following Refs. [109, 160], the noise in a GW

interferometer follows a probability distribution roughly of the form

p(n) ∝ exp

[
−1

2
(n|n)

]
. (3.3)

Given a successful detection of a GW signal s given by the sum of the noise n in

the detector and the true gravitational waveform h0(θa) with true parameters θa, we
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have [228]

s = h0(θa) + n. (3.4)

We can then re-write the detector noise probability distribution as

p(θat |s) ∝ p(0) exp

[
−1

2
(s− ht|s− ht)

]
= p(0) exp

[
−1

2
(s|s)− 1

2
(ht|ht) + (ht|s)

]
∝ p(0) exp

[
(ht|s)−

1

2
(ht|ht)

]
, (3.5)

where we let p(0) be the prior distributions on parameters θa, to be determined later.

Additionally, the term (s|s) will act as an overall constant and becomes irrelevant

because it is purely signal, containing no parameters to be varied. We next strive

to determine the maximally-likely parameters θ̂a that most agree with the observed,

true parameters θa contained in the true waveform h0. Such parameters describe our

template waveform ht which is found by expanding a generic waveform h(t) about

the true waveform h0 like so [228]

ht = h0 + ∂ih0∆θi +O(∆θ2), (3.6)

for error in our determination of best-fit parameters relative to true parameters ∆θi ≡

θi−θ̂i. Such parameters can be determined by maximizing the distribution in Eq. (3.5)

with respect to θa, resulting in the expression (∂iht|s)− (∂iht|ht) = 0. Substituting in

the above expression and expanding Eq. (3.5) to quadratic order in error ∆θ results
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in the final expression given by

p(θa|s) ∝ p
(0)
θa exp

[
−1

2
Γij∆θ

i∆θj
]

(3.7)

where the Fisher information matrix Γij is determined to be

Γij ≡ (∂ih|∂jh), (3.8)

at leading order, in the limit of large SNR.

Equation (3.7) is reminiscent of the multivariate Gaussian probability distribution

about best-fit parameters θ̂i with variance-covariance matrix given by Σij ⇒ Γ−1
ij . In

this thesis, we follow the works of [107, 108, 160] and assume that the prior distribu-

tions on parameters θa, represented as p
(0)
θa are distributed as Gaussian, for simplicity.

In reality, we could represent the prior probability distributions p
(0)
θa with any distri-

bution one wanted. For example, the LVC commonly utilizes uniform priors on many

parameters which is more realistic than the Gaussian ones considered here. However,

such a choice makes the following computations more complicated and strays away

from the key purpose of the Fisher analysis: quick, simple estimations on waveform

parameters θa for large SNR events. As such, we construct prior distributions by

translating the (typically non-Gaussian) prior information values into the 68% confi-

dence interval root-mean-square errors of a Gaussian probability distribution for our

priors. In addition, we remain conservative in the estimation of priors as described

previously in Sec. 2.2.2, with many chosen to be σ = ∞ (corresponding to uniform
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unknown distributions). Then, we can define the effective Fisher matrix to be

Γ̃ij ≡ Γij +
1(

σ
(0)

θi

)2 δij, (3.9)

where σ
(0)

θi
are the prior root-mean-square estimates of parameters θi. The resulting

1σ root-mean-square errors on best-fit parameters θ̂i can be simply written as

∆θi =

√
Γ̃−1
ii . (3.10)

Additionally, the covariances between parameters θi and θj can be simply given as

the off-diagonal components, or Γ̃−1
ij . Finally, if one utilizes information from multiple

detectors A and B, the resulting Fisher matrix becomes

Γ̃total
ij = ΓA

ij + ΓB
ij +

1(
σ

(0)

θi

)2 δij. (3.11)

In result, the estimated root-mean-square errors on best-fit parameters ∆θa agree

with those from the LVC’s Bayesian analysis to within ∼ 40% for GW150914-like

events with SNRs of 25.1, as thoroughly investigated in Ref. [154]. Such agreements

only strengthen considerably as the SNR increases, becoming especially negligible

for future events on third-generation detection with ρ > 1000, which are mostly

considered in the following thesis.

3.1.1 Combined uncertainties from multiple detections

Now we explain how one can combine statistical uncertainties on certain parameters θi

from multiple observed GW events. This is accomplished with a simple Fisher analysis
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Detector
Detection Rate [events/yr]

Pessimistic Realistic Optimistic

A+ 5 270 5,500

Voyager 72 3,600 74,000

CE 720 36,000 730,000

ET 510 25,000 520,000

B-DECIGO 43 2,200 44,000

DECIGO 730 37,000 730,000

Table 3.1: Pessimistic, mean, and optimistic 1 year detection rates for
10 M� − 1.4 M� BH-NS binaries assuming a local BH-NS coalescence rate of
R ∈ [0.6, 610]Gpc−3yr−1, with a “realistic value” of 30 Gpc−3yr−1 [29, 152].

as described in Sec. 3.1, where we first consider single-event detections observed on

GW detectors A ≡ (aLIGO O2 [78, 79], aLIGO [78], A+ [80, 81], Voyager [81, 82],

ET [82–84], CE [81–83], LISA [86], TianQin [85], B-DECIGO [87], DECIGO [88]) as

described further in Sec. 3.2. We next simulate a population of NA events for each

interferometer, approximating the number of events detected on interferometer A over

an observing period of one year. We then then combine the statistical uncertainties

from NA events, resulting in an approximation on the overall measurement accuracy

of θi. The process used to achieve this is outlined below:

(i) Perform a Fisher analysis as outlined in Sec. 3.1 using detector sensitivity SAn (f),

at various values of the redshift z. The redshift of a merger event is computed

by solving

DL =
1 + z

H0

z∫
0

dz′√
ΩM(1 + z′)3 + ΩΛ

, (3.12)

where DL is the luminosity distance to the merger, H0 = 70km s−1Mpc−1 is the
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local Hubble constant [1], ΩΛ = 0.67 is the universe’s vacuum energy density [1],

and ΩM = 1−ΩΛ is the matter density. This results in the single-event statistical

uncertainty σA(z) accrued in the extraction of some parameter θi on detector

A as a function of the event redshift.

(ii) Estimate the total number of binary merger events NA detected (for BH/BH,

NS/NS, or BH/NS events) over one observing year1 on detector A by taking into

account the merger rate history throughout all redshift values within detector

A’s horizon redshift zh
2, as shown by Eq. (10) of Ref. [231]:

NA = ∆τ0

zh∫
0

4π[a0r1(z)]2Rr(z)
dτ

dz
dz. (3.13)

Here, a0r1(z), dτ
dz

, and r(z) for our chosen cosmology are given by:

a0r1(z) =
1

H0

z∫
0

dz′√
(1− ΩΛ)(1 + z′)3 + ΩΛ

, (3.14)

dτ

dz
=

1

H0

1

1 + z

1√
(1− ΩΛ)(1 + z′)3 + ΩΛ

, (3.15)

r(z) =



1 + 2z z ≤ 1

3
4
(5− z) 1 ≤ z ≤ 5

0 z ≥ 5

. (3.16)

Here we choose an observing period of ∆τ0 = 1 year, and calculate the detection

1The population of NA events follows the probability distribution [229, 230] given by f(ρ) =
3ρ3th/ρ

4 with a network SNR threshold of ρth = 8.
2The horizon redshift is computed to be the redshift where the SNR equals the SNR threshold

of the detector.
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rate for the upper, central, and lower limits of the local binary NS coalescence

rate density R = 1540+3200
−1220 Gpc−3yr−1 [106], giving the rates NA shown in i.e.

Table 3.1 and the second column of Table 5.6.

(iii) Compute the combined population standard deviation σNA
, taking into account

sources at varying redshifts as was done in Eq. (3) of Ref. [146]:

σ−2
NA

= ∆τ

zh∫
0

4π[a0r1(z)]2Rr(z)
dτ

dz
σA(z)−2dz. (3.17)

Here, σA(z) is the redshift dependence of the root-mean-square error on detector

A, evaluated in step (i). This results in the combined statistical uncertainties

for the lower, central, and upper limits of the local binary NS coalescence rate

density R.

See also Sec. 6.4.2.3 for an alternative analysis in which the BH and NS masses

are varied for a more comprehensive combined uncertainty calculation.

3.2 Gravitational wave interferometers

Since the successful detection of GWs by the LVC detectors’ second observing run

in Hanford, Washington and Livingston, Louisiana [78] (aLIGO O2), several future

interferometers have been proposed and even funded. By both increasing our sen-

sitivity to high-frequency GWs (with frequencies between 1 Hz and 104 Hz), and

also expanding into the low-frequency regime (with frequencies between 10−4 Hz and

1 Hz), we can further probe fundamental physics which might currently be hiding
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Laser
Photodiode

Mirrors

Beamsplitter

Pendulum suspension

Figure 3.1: Michelson GW interferometer, similar to the setup found in aLIGO.

within aLIGO O2’s limited capabilities. In particular, we here discuss the future

prospects for GW interferometry, with expeditions both here on the ground, as well

as up in space.

A GW interferometer detects minute GW signals with use of a Michelson inter-

ferometer as shown in Fig. 3.1. In particular, this is done by splitting a laser beam

(with a wavelength of 1064 nm in the LIGO detectors) into two orthogonal arms (of

length 4 km in the LIGO detectors). With the use of partially-reflecting mirrors,

a Fabry-Pérot cavity is formed, allowing the light to be recycled in each arm to ef-

fectively increase the path length traveled (280 round-trips for the LIGO detector).

The beams then recombine at the beamsplitter, where interference patterns can be

observed by a photodetector on the output arm. When the arm lengths are exactly
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fixed, the light completely destructively interferes and as a result, nothing is detected.

Under the presence of a GW, one or both of the cavities will undergo a length change,

which results in a slight detuning of the beams relative to one another. The resulting

interference signal can be used to infer the properties of the observed GW signal.

Such GW interferometers can be characterized by their distribution of power over

frequency. Such a distribution is known as the power spectral density, which for sim-

plicity we refer to as the detector sensitivity, denoted by Sn(f), with units of Hz−1/2.

Through rigorous experimental work, the power spectral density for the 4-km arm

length aLIGO O2 detectors have been characterized in [232]. The sources of noise

taken into account consist of, but are not limited to: seismic effects, thermal fluctua-

tions in the mirrors, quantum uncertainty in the light, laser intensity and frequency

variations, and several more. Such effects are reduced in future observing runs until

finally the aLIGO design sensitivity is reached [78] (corresponding to observing run

5, or O5).

Future upgrades to the aLIGO design sensitivity have been proposed which fur-

ther improve upon the detector sensitivity in the late 2020’s. In the LIGO A+ [80,81]

proposal, upgrades to the mirrors and their suspension, as well as the injection of

squeezed light would almost double the design sensitivity. Finally, a planned upgrade

known as LIGO Voyager [81, 82] will replace the mirrors with more massive, cooled

ones, and the laser with one of a longer wavelength to once again double the sensi-

tivity. Figure 1.8 displays the proposed detector sensitivities Sn(f) for aLIGO and
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Detector Location GW150914 flow (Hz) GW150914 fhigh (Hz) GW150914 SNR Arm length Interferometers

aLIGO O2 [78,79] Ground 23 4000 25.1 4 km 2

aLIGO [78] Ground 23 4000 67.1 4 km 2

A+ [80, 81] Ground 10 4000 133.0 4 km 2

Voyager [81, 82] Ground 10 4000 313.0 4 km 2

CE [81–83] Ground 1 4000 1.64× 103 40 km 1

ET [82–84] Ground 1 4000 714.0 10 km 3

LISA [86] Space 0.01 1 9.3 2.5 Gm 2

TianQin [85] Space 0.01 1 10.7 0.173 Gm 2

B-DECIGO [87] Space 0.01 100 607.0 100 km 2

DECIGO [88] Space 0.01 100 1.53× 104 1,000 km 8

Table 3.2: Tabulated information for the ground-based detectors and all 4
space-based detectors considered in our analysis. The frequency integration ranges
flow-fhigh are computed using Eqs. (3.18) and (3.19) for the example of GW150914.
The lower ground-based and upper space-based frequency limits correspond to the
detector limits flow-cut and fhigh-cut, while the upper ground-based and lower
space-based limits correspond to an arbitrary value such that the gravitational wave
spectrum is sufficiently small compared to the detector sensitivity, and the GW
frequency 4 years prior to merger. The GW150914 SNR is computed via Eq. (3.1).

its future upgrades, as well as the future detectors considered in this analysis3. The

number of independent interferometers (e.g. 2 for aLIGO) have been accounted for

by directly modifying the spectral noise density Sn(f) by N−1
detectors. Similarly, any

detector geometry that is not 90◦ obtains an additional factor of 1/ sin θarm applied

to the spectral noise density. Further, Tab. 3.2 tabulates useful information for each

GW interferometer, such as the arm length, cut-off frequencies, GW150914-like SNR,

and the number of independent interferometers.

Future planned GW detectors to be operational in the late ∼2030’s, which we

refer to as third-generation interferometers, can successfully harbor up to an order-

of-magnitude improvement to the aLIGO design sensitivity. Two such detectors are

3Here we also show the characteristic strain of a GW signal from GW150914, characterized by
2
√
f |h̃(f)| with the same units as Sn(f). Roughly speaking, the ratio between this and the detector

sensitivity corresponds to the SNR of the event.
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now being planned, the first of which is known as the Cosmic Explorer [81–83] (CE)

being planned by the LVC. This feat of human engineering will boast 40-km arm

lengths enclosed in ultra-high vacuum tubes with cryogenic technology to allow up to

an order-of-magnitude improvement to aLIGO’s design sensitivity (or O5). Further,

the proposed Einstein Telescope [82–84] (ET) by several institutions in the European

Union consists of a triangular 10-km arm pattern, effectively creating two independent

interferometers. This planned detector will be built underground to reduce seismic

noise, and will have cryogenically cooled vacuum tubes, which will enable it to out-

perform CE’s sensitivity below 10 Hz, while it is slightly less sensitive beyond 10

Hz. Such third generation detector sensitivities and details are additionally shown in

Fig. 1.8 and Tab. 3.2.

Finally, an entirely new class of GW detectors have been proposed and planned to

be operational entirely in space in the ∼2030’s. Due to this unique opportunity to in-

crease the arm lengths (as well as eliminate various terrestrial noises), such detectors

have sensitivity in the mHz regime, extending from 10−4 Hz to 1 Hz. First, proposed

by the European Space Agency is the Laser Interferometer Space Antenna [86] (LISA),

which will exist in a trailing orbit behind Earth about the sun, with a triangular arm

configuration with lengths of 2.5 Gm. Similarly, the Chinese-proposed GW detector

TianQin [85] has similar capabilities to LISA, albeit with more sensitivity above 10−2

Hz, and slightly less below. Finally, the Deci-hertz Interferometer Gravitational wave

Observatory [88] (DECIGO) is a Japanese-proposed GW detector with two 104 km



Chapter 3. Parameter estimation 92

triangular interferometers interlocked to form a star-shape, along with two additional

triangular interferometers on independent orbits for improved sky localization, re-

sulting in a total of 8 independent interferometers. With the shorter arm-lengths,

DECIGO and it’s less-sensitive counterpart B-DECIGO [87] bridge the gap between

ground-based detectors and LISA/TianQin, operating in a frequency range between

10−2 Hz and 102 Hz. Such space-based detector sensitivities and details are also

displayed in Fig. 1.8 and Tab. 3.2.

Now we must decide the frequency ranges flow to fhigh which are valid in each

GW detector, as used in the integration ranges from e.g. Eq. (3.2). For all of the

ground-based detectors, we choose the upper and lower integration frequencies as

f ground
low = flow-cut, f ground

high = fsmall, (3.18)

where the upper limit of fsmall is chosen such that the gravitational wave spec-

trum 2
√
f |h̃| is sufficiently small compared to the detector sensitivity Sn (for e.g.

GW150914-like events this number is chosen to be 4,000 Hz). The detector lower

cut-off frequencies flow-cut depend on the specific equipment used, and is given by 23

Hz, 10 Hz, and 1 Hz for the aLIGO detector, its upgrades, and the third generation

detectors respectively. Similarly, for space-based detectors, we choose

f space
low = max[10−4 Hz, f4yrs], f space

high = fhigh-cut, (3.19)

where 10−4 Hz is the default detector cutoff frequency [145], and f4yrs is the frequency
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Tobs years prior to the merger. This frequency is given by [145]

fTobs
= 1.84× 10−2

(
M

28 M�

)−5/8(
Tobs

1 yr

)−3/8

. (3.20)

Finally, fhigh-cut is the detector-dependent high cut-off frequency which is found to be

1 Hz for LISA and TianQin, and 100 Hz for B-DECIGO and DECIGO. For demon-

strative purposes, flow and fhigh are tabulated in Tab. 3.2 for GW150914-like events

on each GW detector considered in the following thesis.
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Probing nuclear physics
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Chapter 4

Constraining nuclear matter
parameters

The gravitational wave emission from the merging binary neutron star system

GW170817 arrived full of tidal information which can be used to probe the

fundamental ultra-dense nuclear physics residing in these stars. We find strong

correlations among neutron star tidal deformabilities and certain combinations

of nuclear parameters associated with the equation of state. These relations are

then used to derive bounds on such parameters from GW170817, with several

sources of systematic uncertainties taken into account. We then extend this

analysis into the future of gravitational wave astronomy by finding similar

correlations for varying chirp masses, the dominant determining factor in the

frequency evolution of the inspiral, such that one can apply the same method

to future detections. We estimate how accurately one can measure nuclear

parameters with future gravitational wave interferometers and show how such

measurements can be improved by combining multiple events.

95
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4.1 Introduction

NSs exist in one of the most extreme states of matter found in the universe1. However,

the determination of the equation of state (EoS) of ultra-dense matter found exclu-

sively in such compact objects remains to be one of the largest unsolved mysteries in

both nuclear physics and astrophysics to date. The nuclear matter EoS determines

many important stellar properties, such as the mass, radius, and tidal deformability,

and is vital to the further study of supranuclear matter. Independent measurements

of certain macroscopic NS observables determined by the EoS, such as the mass and

radius, can be used to constrain the EoS, as was indeed done in Refs. [43–47] via

x-ray observations of the mass-radius relationship. However, such measurements po-

tentially suffer from large systematic errors due to uncertainties in the astrophysical

modeling of x-ray bursts.

Recent observations of gravitational waves (GWs) from a merging binary NS sys-

tem (GW170817 [30]) have been used to probe the interior nuclear structure via

imprinted tidal effects [91, 98, 225, 233–235], which offers us a cleaner method of de-

termining the nuclear matter EoS than EM observations of neutron stars. As the

NSs lose energy via GW emission, they inspiral towards each other and become in-

creasingly tidally deformed in response to the companion stars’ tidal field. This de-

formation is characterized by the tidal deformability [209] of the NS, and is strongly

1This chapter is based on the following papers: Z. Carson, A. W. Steiner and K. Yagi, Constrain-
ing nuclear matter parameters with GW170817, Phys. Rev. D 99 043010 (2019) and Z. Carson,
A. W. Steiner and K. Yagi, Future Prospects for Constraining Nuclear Matter Parameters with
Gravitational Waves, Phys. Rev. D 100, 023012 (2019)
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dependent on the underlying EoS. Further, the mass-weighted combination of such

tidal deformabilities from each star is the leading tidal parameter in the gravitational

waveform, which has been constrained by the LIGO and VIRGO Collaboration to a

90% credible bound of 70 ≤ Λ̃ ≤ 720 [233, 236]. Such observations have also been

mapped to the NS radius in Refs. [225,236–240].

While all currently-proposed EoSs to date utilize various different approximations,

one way to effectively study them is by measuring the nuclear parameters which

parameterize the EoSs using a model-independent formalism. One such method for

doing this2 is to Taylor expand the energy per nucleon of asymmetric nuclear matter

about the saturation density of symmetric matter [247,248]. The resulting coefficients

are known as the “nuclear matter parameters” and consist of the following: the

slope of the symmetry energy L0; the nuclear incompressibility K0; the slope of the

incompressibility M0; the curvature of the symmetry energy Ksym,0; and higher orders,

each evaluated at the nuclear saturation density. Interestingly, approximate universal

relations exist among nuclear physics parameters mentioned above and the NS radius

at a given mass [249] (see e.g. [250,251] for other universal relations involving nuclear

parameters). The authors found that while individual nuclear parameters are only

weakly correlated with the stellar radius, linear combinations of the form K0 + αL0

and M0 + βL0 become highly correlated, where α and β are chosen such that the

correlation becomes maximum.

2Piecewise polytropic constructions [96, 241, 242] and spectral EoSs [97, 225, 243–245] similarly
parameterize nuclear matter EoSs in a model-independent way. See also [235,246] for related works
on piecewise unified EoSs.
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Previous important analyses by Alam et al. [249] found approximately universal

relations between the NS radius at a given mass and the nuclear parameters mentioned

above (similar work can be found in Refs. [250,251]). Further, Malik et al. [91] found

that certain linear combinations of nuclear parameters (such as K0 + αL0 with α

chosen to give maximal correlation) gave way to heightened correlations with the

individual tidal deformabilities evaluated at a given mass. By assuming individual

masses for GW170817 and taking the approximate universal relations to be exact, the

authors utilized prior constraints on the tidal deformability from GW170817 [106,252]

and L0 [46, 233,253] to derive new constraints on the nuclear parameters.

This important first-step work of Ref. [91] needs to be improved in various ways.

In this chapter, we propose an extension upon this work by taking into account at

least the following five points of interest for current constraints on nuclear param-

eters. First, we consider a broader class of EoSs by phenomenologically varying

nuclear parameters. Second, we consider correlations among the mass-weighted tidal

deformability (instead of the individual tidal deformabilities) and nuclear parame-

ters for various mass ratios. This allows us to eliminate the need to choose specific

NS masses m1 and m2, as was done in Ref. [91]. Third, instead of assuming per-

fect linear regression between nuclear parameters and Λ̃, the uncertainty from scatter

(corresponding to the EoS variation in the approximate universal relations) is taken

into account, including the covariances among parameters. Fourth, we use the recent

updated posterior distribution of the dominant tidal deformability Λ̃ by LVC [233].
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Finally, we investigate constraints on the incompressibility K0 in addition to its slope

M0 and the curvature of symmetry energy Ksym,0.

We then extend the work into the future of GW astronomy. While every future

merger event will be composed of NSs with varying individual masses which are

difficult to measure, we can categorize them by the chirp mass M, which is the

dominant driving factor in the frequency evolution of the inspiral event given by a

certain combination of individual NS masses. We repeat the analysis as a function

of chirp mass, applicable to any future event. Further, we restrict the set of EoSs

to those that obey the nuclear parameter correlations of Ref. [254], and consider

the implications of observations using future GW interferometers: Advanced LIGO

(aLIGO) [78], LIGO A+ (A+) [81], Voyager [81], Cosmic Explorer (CE) [81], and

Einstein Telescope (ET) [84]. We will consider not only the increased sensitivities from

current detectors but also the combined uncertainties from multiple-event detections

(relevant for future detectors with expanded horizon volumes).

4.2 Background and theory

In this section we begin with a review on the NS tidal deformability in Sec. 4.2.1,

followed up by a review on the NS equation of state and its constituent nuclear

parameters in Secs. 4.2.2 and 5.2.1.
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4.2.1 Neutron star tidal deformability

We begin by reviewing how one can extract internal structure information of NSs

via GW measurement. In the presence of a neighboring tidal field Eij, such as the

binary NS system found in GW170817, NSs tidally deform away from sphericity and

acquire a non-vanishing quadrupole moment Qij that is characterized by the tidal

deformability λ [60, 209,255]:

Qij = −λEij. (4.1)

Such tidal deformability can be made dimensionless as:

Λ ≡ λ

m5
, (4.2)

with m representing the stellar mass. The magnitude of λ depends strongly on the

underlying structure, as well as the fluid nature of the NS [256]. Therefore, this

parameter has the largest impact on the GW phase, and thus, it is encoded in GW

observations of binary NS coalescence.

Following Refs. [60,212,255], the dimensionless tidal deformability Λ can be com-

puted by isolating different asymptotic limits of the gravitational potential in the

buffer zone R� r � L given by

Φ(xi) =
1 + gtt

2
= −M

r
− 3

2

Qij

r3

(
xi

r

xj

r
− 1

3
δij

)
+O

(
L4

r4

)
+

1

2
Eijxixj +O

(
r3

R3

)
,

(4.3)
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where r = |xi|, L is the length scale of the companion-induced curvature, and R is

the stellar radius. Here, gtt corresponds to the tt-component of the full spacetime

metric:

gαβ = g
(0)
αβ + hαβ, (4.4)

constructed via a non-spinning, spherically-symmetric background solution g
(0)
αβ per-

turbed by the tidal deformation with metric components hαβ.

The resulting expression describing Λ can be found to be

Λ =
16

15
(1− 2C̄)2[2 + 2C̄(yR − 1)− yR]{2C̄[6− 3yR + 3C̄(5yR − 8)] + 4C̄3[13− 11yR

+ C̄(3yR − 2) + 2C̄2(1 + yR)] + 3(1− 2C̄)2[2− yR + 2C̄(yR − 1)] ln (1− 2C̄)}−1.

(4.5)

Here C̄ ≡ m/R is the stellar compactness with R representing the NS radius, and

yR ≡ y(R) with y(r) ≡ rh′(r)/h(r), where a prime stands for taking a derivative with

respect to the radial coordinate r. h represents the quadrupolar part of the (t, t)

component of the metric perturbation satisfying the following differential equation:

h′′ +
{2

r
+
[2m

r2
+ 4πr(p− ε)

]
eλ
}
h′ +

{
4π
[
5ε+ 9p+ (p+ ε)

dε

dp

]
eλ

− 6

r2
eλ −

(dν
dr

)2}
h = 0,

(4.6)

with background metric coefficients eν = gtt and eλ = (1 − 2m/r)−1 = grr, while p

and ε represent pressure and energy density respectively.
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The above differential equation can be solved as follows. First, one needs to

prepare unperturbed background solutions by choosing a specific EoS, or p(ε), and

solve a set of Tolman-Oppenheimer-Volkoff (TOV) equations with a chosen central

density (or pressure) and appropriate boundary conditions (the exterior metric being

the Schwarzschild one). The stellar radius is determined from p(R) = 0 while the mass

is given by m = m(R) = 4π
∫ R

0
ε(r) r2dr. Having such solutions at hand, one then

plugs them into Eq. (4.6) and solves it with the boundary condition y(0) = 2 [255].

In this investigation, we consider the scenario of two NSs orbiting each other

in a binary system, such as GW170817. In this case, each NS individually ob-

tains quadrupole moments from the neighboring tidal field, resulting in two highly-

correlated tidal deformabilities Λ1 and Λ2. Due to these correlations, individual tidal

deformabilities are very difficult to extract from GW observations3. Typically, it is

useful to reparameterize the waveform via independent linear combinations of Λ1 and

Λ2 which enter the gravitational waveform at 5th post-Newtonian (PN) and 6PN

orders4 respectively. The dominant tidal effect in the resulting waveform is known as

the mass-weighted tidal deformability, and is given by [209]

Λ̃ =
16

13

(1 + 12q)Λ1 + (12 + q)q4Λ2

(1 + q)5
, (4.7)

with mass ratio q ≡ m2/m1 (m1 ≥ m2). Here we also define the chirp mass of the

3One way to cure this problem is to use universal relations between them [67,236,257,258].
4nPN order corrections enter the gravitational waveform at relative powers of (v/c)2n.



Chapter 4. Constraining nuclear matter parameters 103

binary system, which is the primary controlling factor of the merger inspiral defined

by

M≡

(
q3

1 + q

)1/5

m1. (4.8)

Similarly to Λ̃, this quantity can be measured with much higher accuracy than either

of the individual masses m1, m2, or the mass ratio q. For this reason, we consider

the binary chirp mass M to be the dominant dependent variable in this analysis,

cataloging our various results as a function of M for any future GW event.

4.2.2 Asymmetric nuclear matter parameters

While the NS EoS is not currently known, there are many methods one can use to

restrict it using various observations. This is because the structure of a NS and

many of its observables such as mass, radius, tidal deformability, etc. rely strongly

on the underlying EoS of nuclear matter. For example, GW observations may help

constrain the EoS in the pressure-density plane [39]. In this chapter, we show how

GW detections can aid in the constraint of various characteristics of the EoS, known

as the nuclear matter parameters [248].

As originally considered in Ref. [247] and followed up in i.e. Refs. [91, 248, 249],

we offer a generic method to parameterize NS EoSs. Our starting point is with the

definition of the EoS, given by

P (n) = n2 ∂

∂n
e(n) (4.9)
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for total nuclear number density n ≡ np + nn, energy per nucleon of asymmetric

nuclear matter e, and proton (neutron) number density np (nn). We then expand the

energy per nucleon e with the isospin symmetry parameter δ ≡ (nn − np)/n about

δ = 0 (symmetric nuclear matter case) as [248]:

e(n, δ) = e(n, 0) + S2(n)δ2 +O(δ4), (4.10)

where e(n, 0) corresponds to the energy of symmetric nuclear matter, and S2(n) rep-

resents the “symmetry energy” of asymmetric nuclear matter at quadratic order in δ.

We note that in the above expansion, odd powers of β are missing. This is because the

quantum chromodynamic isospin symmetry leads one to conclude that even powers of

δ (corresponding to strong nuclear forces) dominate over the odd ones (corresponding

to EM forces). Further, we note that the lower-order terms such as e(n, 0) dominate

in near symmetric nuclear matter as found in e.g. terrestrial environments, while

the higher order terms such as S2(n) tend to become more important in neutron-rich

matter as found in NSs.

We follow this up by further characterizing the above terms e(n, 0) and S2(n) as

yet another expansion about the saturation density n0 as:

e(n, 0) = e0 +
K0

2
y2 +

Q0

6
y3 +O(y4),

S2(n) = J0 + L0y +
Ksym,0

2
y2 +O(y3),

(4.11)
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where y ≡ (n − n0)/3n0 characterizes the relative difference from the saturation

density. The above coefficients in each individual expansion are simply known as

the “nuclear matter parameters” which determine the EoS in a model-independent

way. In particular, the nuclear matter parameters are more specifically known as the

energy per particle e0, incompressibility coefficient K0, third derivative of symmetric

matter Q0, symmetry energy J0, its slope L0, and its curvature Ksym,0 at saturation

density, respectively. Following Refs. [91, 259], we further introduce the slope of the

incompressibility to be:

M0 ≡ Q0 + 12K0. (4.12)

We once again observe that the lower-order nuclear matter parameters such as e0,

J0, and L0 become dominant in e.g. terrestrial observations (see the “PREX” and

“CREX” experiments on neutron distributions in heavy elements such as 208Pb [260–

266], which can be related to such lower-order parameters) with near-saturation den-

sity observations, while the supranuclear densities present within NSs result in the

new opportunity to probe high-order parameters, such as Ksym,0.

In this chapter, we investigate correlations between the various nuclear parameters

L0, K0 M0, Ksym,0 and the mass-weighted average tidal deformability Λ̃ in order to

derive bounds on nuclear parameters from GW170817. Bounds on M0 and Ksym,0

have previously been derived in Ref. [91] using GW170817, which we revisit in this

chapter. Current experiments and astrophysical observations place bounds on L0 as

40 MeV < L0 < 62 MeV [46,254,267], and 30 MeV < L0 < 86 MeV [253].
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4.2.3 The supranuclear equation of state

The structure of a NS and its tidal interactions in a binary system rely heavily on the

underlying EoS of nuclear matter. Because of this, we employ a wide range of 120

different nuclear models in our analysis. These EoSs can be classified into three broad

categories: 24 non-relativistic EoSs with Skyrme-type interaction, 9 RMF EoSs, and

88 EoSs derived through phenomenological variation. Following Ref. [241], the high-

density core EoSs listed above are all matched to the low-density EoS of Douchin and

Haensel [268] at the transition density εtr such that the pressures are equivalent.

The EoSs in the first two classes are used also in [91,249]. The Skyrme models used

here are: SKa, SKb [269], SkI2, Sk13, SkI4, SkI5 [270], SkI6 [271], Sly230a [272], Sly2,

Sly9 [273], Sly4 [274], SkMP [275], SkOp [276], KDE0V1 [277], SK255, SK272 [278],

Rs [279], BSK20, BSK21 [280], BSK22, BSK23, BSK24, BSK25, BSK26 [281]. On

the other hand, the RMF models selected are BSR2, BSR6 [282, 283], GM1 [284],

NL3 [285], NL3ωρ [286], TM1 [287], DD2 [288], DDHδ [289], DDME2 [290].

One of the new EoS classes that we consider is the phenomenological EoSs (PEs).

To construct these EoSs, we followed the formalism of Ref. [291] by randomly sampling

nuclear parameters J0, K0, L0, Q0 and Ksym,0 as found in Table I of the above

reference. Following this, nonphysical EoSs with acausal structure (vs > c), or having

decreasing pressure as a function of density were removed.

For the second half of our analysis in regards to future GW observations, we

employ a restricted set of the same EoSs as was used previously, taking into account
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the observed correlations between nuclear parameters J0 and L0. Starting with the

120 nuclear EoS models described above, we further remove 63 EoS models which do

not comply with the allowed regions shown in Fig. 8 of Tews et al. [254]. Here, they

combined an exclusion region J0(L0) with the “accepted” 95.4% correlation confidence

bands between J0 and L0. See App. D for the impact of restricted EoSs on correlations

between Ksym,0 and Λ̃.

Taking the shared region between the above two exclusions results in 58 different

nuclear EoS models, which can be classified into 3 distinct classes: 13 non-relativistic

“Skyrme-type” EoSs, 5 relativistic-mean-field (RMF) EoSs, and 40 PEs. The Skyrme-

type models remaining consist of: SKa, Sly230a, Sly2, Sly9, Sly4, SkOp, SK255,

SK272, BSK20, BSK21, BSK22, BSK24, BSK26. Further, the RMF models remaining

are: BSR2, BSR6, NL3ωρ, DD2, DDHδ. All 18 of the above EoSs originate from

the minimal set of EoSs used in Refs. [91, 249], now restricted by nuclear matter

correlations.

One last class of EoSs indirectly used in this chapter can be found later in Chap-

ter 5, which we call “LVC constrained” EoSs in this chapter. By sampling the full

physical EoS parameter space, the LIGO and Virgo Collaboration [39, 96] derived a

marginalized 90% posterior region on the NS pressure as a function of mass density

(EoS) from GW170817, as seen in Fig. 2 of [39]. By randomly sampling the EoS pos-

teriors from this analysis, a set of 100 “constrained” EoSs were obtained, restricted by

the GW observation of GW170817. While we do not directly utilize these 100 EoSs
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Figure 4.1: Neutron star mass as a function of radius (left) and tidal deformability
Λ (right) for a representative set of the EoSs used in our analysis, separated into
groups of phenomenological (red dashed), RMF (green dotted-dashed) and
Skyrme-type (blue dotted). Observe how Skyrme and RMF EoSs follow
self-consistent behavior, while PEs see a wide variance in properties such as
maximum mass and radius, due to the nature of the random sampling in nuclear
parameters.

in the current analysis, we use them to estimate the mean value of the mass-weighted

tidal deformability Λ̃ in Sec. 4.4.2.1, seen by Fig. 4.10.

Finally, in Fig. 4.1 we present the relations among the NS mass, radius and tidal

deformability for selected EoSs in different classes mentioned above. Observe that

RMF EoSs tend to produce NSs with larger radii and maximum mass than those for

Skyrme-types, while the PE ones generate NSs with a wide range of properties.
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4.3 Correlations between tidal deformability and

nuclear parameters

In this section, we study correlations among nuclear parameters and tidal deforma-

bility, where the latter can be measured from GW observations. The amount of

correlation between two variables x and y with N data points can be quantified by

the Pearson correlation coefficient C defined by:

C(x, y) =
σxy√
σxxσyy

, (4.13)

where the covariances σxy are given by:

σxy =
1

N

N∑
i=0

xiyi −
1

N2

( N∑
i=0

xi

)( N∑
i=0

yi

)
. (4.14)

C = ±1 represents absolute (anti-)correlation, while C = 0 corresponds to having no

correlation.

4.3.1 Λ̃ versus nuclear parameters

Reference [91] first studied the universal relations between nuclear parameters and

the tidal deformability for isolated neutron stars. The authors then map this to the

GW measurement on Λ̃ by using yet another universal relation between Λ̃ and λ0 (the

tidal deformability at 1.4 M�) for a specific choice of masses in a binary neutron star
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Figure 4.2: Correlations between nuclear parameters L0, K0, M0, Ksym,0 and the
mass-weighted average tidal deformability Λ̃q for a chirp mass of M = 1.188M�
corresponding to GW170817, using Skyrme EoSs (green square), RMF EoSs (blue
diamond), and PEs (red circle). Mass ratios are chosen as q = 0.73 (left), 0.875
(middle), and 1.00 (right) consistent with GW170817. The shaded cyan and
magenta regions represent the measurement constraints on Λ̃ from
GW170817 [233,292]. The solid black line in each panel represents the best fit line
through the data, and the Pearson correlation coefficient C measures the amount of
correlation (C = 1 being the absolute correlation and C = 0 being no correlation).
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that is consistent with GW170817. However, the mass ratio q ∈ [0.73, 1.00] [30] for

this event has not been measured very precisely (the lower bound of this constraint

has recently been improved to 0.8 in Ref. [292]), and the question arises as to whether

such relation holds for various q. As we show in Appendix A, indeed the universal

relation is highly insensitive to the choice of q. This suggests that there are universal

relations between nuclear parameters and Λ̃ for a given chirp massM which has been

measured with high accuracy for GW170817. Finding these universal relations is the

focus of this section. Universal relations involving Λ̃ are, in some sense, practically

more useful than those with λ0, because the former is a quantity which can be directly

measured from GW observations.

Figure 4.2 shows the correlations between nuclear parameters (L0, K0, M0, Ksym,0),

and the mass-weighted average tidal deformability Λ̃q evaluated at mass ratios of

q = 0.73, 0.87 and 1.00. The linear regression shown in each panel represents the

best fit line describing the relation between nuclear parameters and Λ̃. Observe that

K0 and M0 show very poor correlations, resulting from a disconnect between PEs

and EoSs found in Ref. [91]. On the other hand, higher order parameter Ksym,0 sees

a fairly strong correlation of ∼ 0.80. It is noted that PEs typically have values of K0

that are much lower than those for Skyrme or RMF EoSs, while M0 is much higher,

and L0 and Ksym,0 are very similar. Let us emphasize that we have restricted to

physically valid PEs which have increasing pressure, and this is why we do not have

PEs with e.g. M0 < 2500 MeV 5. The above finding indicates a necessity in using

5This does not mean that Skyrme and RMF EoSs with M0 < 2500 are nonphysical.
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a large number of EoSs as nuclear parameters can take on a much wider range of

values than considered in [91]. Observe also that the behavior of the scattering and

the amount of correlation found in Fig. 4.2 is not very sensitive to q. This can also

be seen from Fig. 4.3, where correlations between various nuclear parameters and Λ̃

are plotted as a function of mass ratio q.

4.3.2 Λ̃ versus linear combinations of nuclear parameters

References [91, 249] report that correlations among nuclear parameters and NS ob-

servables become stronger if one considers certain combinations of the former, which

we study here. In Refs. [46, 253,254], tight constraints on the slope of the symmetry

energy L0 were derived. Thus we focus on constraining the incompressibility K0, its

slope M0, and the symmetry energies’ curvature Ksym,0, utilizing prior bounds on

L0 and Λ̃ by considering linear combinations of the form K0 + αL0, M0 + βL0, and

Ksym,0 + γL0 with some coefficients α, β and γ. In previous literature [91,249], these

coefficients are chosen such that correlations become maximum.

Figure 4.3 presents the correlations between Λ̃ and linear combinations of nuclear

parameters as a function of mass ratio q. We found that the values of α and β which

give maximal correlation are unnecessarily large. For practical purposes, we choose

here α = 2.27 and β = 24.28, such that a correlation of 50% in the universal relations

is achieved. For γ, we use γ = 2.63 which maximizes the correlation, as was done

previously (see Sec. 4.4 for more details). For reference, we also show correlations
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Figure 4.3: Correlations with Λ̃ as a function of mass ratio q for K0 + αL0,
M0 + βL0, and Ksym,0 + γL0 forM = 1.188M�. These are much stronger than those
involving single nuclear parameters, which is also shown for reference. Here we
choose α = 2.27 and β = 24.28 giving 50% correlations in the universal relations,
while we choose γ = 2.63 such that the correlation is maximized (see Sec. 4.4 for
more details). Observe that correlations do not change significantly with q across a
wide range of mass ratios.
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involving single nuclear parameters. Observe that the former correlations are much

stronger than the latter (except for K0 +αL0 whose correlation is comparable to that

of K0) and remain to be strong over the acceptable region of mass ratio. This implies

that our choice of q when calculating bounds on nuclear parameters does not matter

significantly. Therefore, we consider universal relations evaluated at the central mass

ratio of q = 0.87, shown in Fig. 4.4. Also notice how linear combinations involving

high-order nuclear parameter Ksym,0 continue to significantly outperform lower-order

parameters.

4.3.3 Future prospects

In the previous section, we described the correlations as a function of the mass ratio

q ≡ m1/m2 for the fixed chirp mass of 1.188 M�; corresponding to GW170817. We

here supplement this investigation by considering the correlations as a function of

varying chirp mass at a fixed mass ratio, applicable to any number of future GW

observations. The left panel of Fig. 4.5 justifies the use of a fixed mass ratio by

presenting Λ̃ as a function of q for the various EoS models used in this analysis.

Observe how Λ̃ is insensitive to the choice of q. Such feature is absent in the right

panel of Fig. 4.5, where Λ̃ is plotted as a function of chirp mass for fixed q. Thus, for

the remainder of this chapter we fix the mass ratio to be q = 0.90, corresponding to

the center of 0.80 ≤ q ≤ 1.00 derived in Ref. [292] for GW170817.

It was shown in Refs. [91, 249] that certain linear combinations of nuclear pa-
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Figure 4.4: (Top) Correlations between mass-weighted average tidal deformability Λ̃
and linear combination of nuclear parameters M0 and L0 for a chirp mass of
M = 1.188M� corresponding to GW170817, using Skyrme (green square), RMF
(blue diamond), and PE EoSs (red circle). The first two classes were also considered
in Ref. [91] while the last class is considered here for the first time. Mass ratio is
chosen to be q = 0.87, consistent with GW170817, though such correlations are
insensitive to q. The shaded cyan and magenta regions represent the measurement
constraints on Λ̃ from GW170817 [233,292]. The solid black line represents the best
fit line through the data, while the dashed lines correspond to the lines drawn with
90% error bars on y-intercept and slope. The constant β for the linear combination
M0 + βL0 is chosen to be β = 24.28 such that the correlation between observables
becomes 50%. (middle) Similar to the top panel but for the linear combination of
K0 + αL0, with α = 2.27. (bottom) Similar to the top panel but for the curvature of
symmetry energy Ksym,0.
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Figure 4.5: (left) Mass-weighted tidal deformability Λ̃ for each EoS model used in
this analysis as a function of the mass ratio q for a fixed chirp mass of
M = 1.188 M�. The vertical dashed line at q = 0.90 corresponds to GW170817.
Observe that Λ̃ is insensitive to the choice of q, which justifies our method of
keeping the mass ratio fixed. (right) Similar to the left panel but as a function of
the chirp mass M for a fixed mass ratio of q = 0.90. The vertical dashed line at
M = 1.188 M� corresponds to GW170817.
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rameters, specifically K0 + αL0, M0 + βL0, and Ksym,0 + γL0, exhibit heightened

correlations, allowing one to derive more accurate constraints on the individual nu-

clear parameters. However, in this chapter we show that this comes at the expense of

additional sources of uncertainty which, if properly accounted for, enlarges the result-

ing constraints on the nuclear parameters K0, M0, and Ksym,0. It was also found that

the single nuclear parameters as well as the linear combinations involving K0 and M0

observed poor correlations of C . 0.50; indicating somewhat unreliable constraints

on the nuclear parameters.

Figure 4.6 similarly shows the above correlations as a function of chirp mass for

a fixed mass ratio of q = 0.90. Observe how, similar to what was found in Ref. [186],

the correlations for K0, M0, K0 + αL0, and M0 + βL0 are exceedingly poor for all

values of chirp mass. Ksym,0 on the other hand, remains highly correlated with Λ̃

across the entire range of M. We also observe how correlations are not improved by

much when considering linear combinations between Ksym,0 and L0.

Could other combinations of nuclear parameters give stronger correlations? To

address this question, we further explore new combinations of nuclear parameters

in App. E. In particular, we consider the “multiplicative” combinations of K0L
η
0,

M0L
ν
0, and Ksym,0L

µ
0 that is motivated from Refs. [250,251]. We found that such new

combinations do not offer any advantages in terms of correlations and constraints.

For the above reasons, we consider only the curvature of the symmetry energy

Ksym,0 when considering future-obtained constraints, without combinations with other
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Figure 4.6: Correlations between Λ̃ and various nuclear parameters as a function of
the chirp mass. Observe how low-order nuclear parameters K0 and M0 show poor
correlations, while high-order parameter Ksym,0 is highly correlated – both with and
without a linear combination with L0. Additionally shown by the dashed vertical
line is the chirp mass of 1.188 M� corresponding to GW170817, studied in detail by
Ref. [186].

parameters which would otherwise introduce additional uncertainties in the compu-

tation of constraints. For the present considerations on nuclear matter combinations

from GW170817, we present bounds on each of K0, M0, and Ksym,0.

4.4 Constraints on nuclear matter parameters

Here we compute constraints on nuclear matter parameters. We begin with the

current bounds formed by the binary NS merger GW170817. We follow this up
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with the future prospects of nuclear matter parameters observed by advanced GW

detectors, specifically focusing on the curvature of the symmetry energy Ksym,0.

4.4.1 GW170817

Let us now use the approximate universal relations among combined nuclear param-

eters and Λ̃ to derive bounds on the former from the measurement of the latter with

GW170817. In this section, we detail the process used to estimate nuclear parameter

bounds, taking into account the EoS scattering uncertainty. We offer two alterna-

tive methods of accomplishing this. In Sec. 4.4.1.1, we offer a crude estimation of

the constraints by finding linear regressions between the nuclear parameters and Λ̃.

We estimate 90% confidence integrals on such regressions which allows us to predict

bounds on nuclear parameters. The linear regressions provide ready-to-use type re-

sults that can easily be implemented as the measurement on Λ̃ from GW170817 are

updated. In Sec. 4.4.1.2, we detail a more comprehensive analysis in which we first

compute the 2-dimensional probability distribution between the nuclear parameters

and Λ̃. We then combine this with the probability distribution on Λ̃ computed by

Ref. [92] to estimate the posterior distribution on nuclear parameters K0, M0, and

Ksym,0.
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Figure 4.7: Comparisons between nuclear parameter constraints and correlations
with Λ̃, evaluated at q = 0.87, as functions of α, β, and γ. (Top) Estimated nuclear
parameter constraints for different combinations of priors. Dashed horizontal lines
correspond to bounds derived by [91] under similar prior assumptions. (Middle)
Constraint ranges given as the difference between upper and lower limits. (Bottom)
Correlations between Λ̃ and linear combinations of nuclear parameters. Dotted
vertical lines represent chosen values of α, β, and γ for deriving final bounds on the
nuclear parameters.



Chapter 4. Constraining nuclear matter parameters 121

4.4.1.1 Constraint estimation via linear regressions

In this simple error analysis, we first construct linear regressions of the form (a ±

δ±a )Λ̃ + (b± δ±b ) on the relations evaluated at the central mass ratio of q = 0.87 with

the “90%” error on the slope and y-intercept as follows:

K0

MeV
+ α

L0

MeV
= 0.1086+0.02172

−0.02064 Λ̃ + 299.1+72.97
−64.60 , (4.15)

M0

MeV
+ β

L0

MeV
= 1.488+0.2456

−0.2038 Λ̃ + 3929+1226
−990.2 , (4.16)

Ksym,0

MeV
+ γ

L0

MeV
= 0.2915+0.007287

−0.004080 Λ̃− 259.1+67.36
−118.9 . (4.17)

The uncertainties on the slope and y-intercept, δ±a and δ±b , are found by varying

the upper and lower error bars throughout the parameter space, selecting only combi-

nations of δ±a and δ±b which form “90% error lines” (a±δ±a )Λ̃+(b±δ±b ) containing 90%

of the data points between them. Further, we choose the “best fit” 90% error lines by

minimizing the residual sum of squares,
∑n

1=1(yi− f(xi))
2, as denoted by the dashed

black lines in Fig. 4.4. For reference, the covariances σab from Eq. (4.13) between a

and b are found to be approximately 0.7274, 124.5, and 0.4235 for Eqs. (4.15)–(4.17),

respectively. Using this method of uncertainty prediction, we find a 90% confidence

interval on the value of b and a, allowing us to account for the EoS scatter in the

universal relations when deriving bounds on nuclear parameters from GW170817, as

we will study next.
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Let us now use Eqs. (4.15)–(4.17) to derive bounds on K0, M0, and Ksym,0,

as was done in Ref. [91]. We utilize prior bounds obtained from nuclear experi-

ments and astrophysical observations as L0 ∈ [40, 62] MeV [267] and L0 ∈ [30, 86]

MeV [46, 253, 254], as well as tidal deformability ranges of Λ̃ ∈ [70, 720] [233] and

Λ̃ ∈ [279, 822] [292]. Utilizing the 90% confidence interval’s range on y-intercepts, we

find constraints on K0, M0, and Ksym,0 within priors of L0 and Λ̃ such that minimal

and maximal values of nuclear parameters are obtained. Therefore, 2 constraints on

Λ̃ and 2 constraints on L0 allow us to derive 4 possible constraints on each nuclear

parameter K0, M0, and Ksym,0. This particular method of estimating the probability

distribution is conservative by nature, and also takes into account the uncertainty

from scatter in our relations.

The top panels of Fig. 4.7 show comparisons between estimated nuclear param-

eter limits, while the central panels show constraint ranges (maximum value minus

minimum value) as the linear combination coefficient (α, β, or γ) is increased. The

bounds are stronger if the ranges are smaller. For comparison, the bottom panels

display the correlation between the nuclear parameter combinations and Λ̃. Observe

that the bounds become weaker as one increases the coefficients, as we are introducing

an additional source of uncertainty from L0. Does this mean that it is always better

to set the coefficients to 0 and consider universal relations with individual nuclear

parameters? The answer is no because correlations are too small when α = β = 0, as

can be seen from the bottom panels of Fig. 4.7. If such correlations are too small, the
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relations can easily be affected by the addition of new EoSs and the bounds derived

from these relations become unreliable.

Therefore, we need to find the balance between having large enough correlations

and yet to have reasonable bounds on the nuclear parameters. Regarding α and β,

notice that bounds on K0 and M0 increase approximately linearly with the coeffi-

cients, while correlations with Λ̃ quickly asymptote to values of ∼ 0.60. Thus we

choose α = 2.27 and β = 24.28 such that correlations evaluated at central mass

ratio q = 0.87 are an arbitrary value of C = 0.50, chosen to keep correlations as

high as possible, while keeping α and β as small as possible to avoid the propagation

of uncertainty in L0. Regarding γ, because Ksym,0 starts off with strong correlation

at γ = 0, we choose this value to remove any additional uncertainty in γ and L0

from our calculations (Note this can not be done for the cases of K0 and M0 due to

weak individual correlations with Λ̃). Observe that the coefficient choices discussed

in Ref. [91], to maximize correlations to the level of 0.8 and beyond is not necessarily

applicable to every situation. As seen in Fig. 4.7, high correlations are unobtainable

for linear combinations involving K0 and M0, yielding no bounds under such a se-

lection criteria. Instead, reducing the threshold to 0.50 returns constraints as shown

below, albeit being less reliable.

Table 4.1 summarizes the bounds on the nuclear parameters with these fiducial

choices of α, β and γ, using both this method of constraint estimation, and the more-

comprehensive method described in Sec. 4.4.1.2. The constraints on M0 and Ksym,0



Chapter 4. Constraining nuclear matter parameters 124

are additionally visualized in Fig. 1.9. Notice how our conservative constraints (found

by using the largest-range priors on both L0 and Λ̃) on the slope of incompressibility

and the curvature, 955 MeV ≤ M0 ≤ 5675 MeV and -358 MeV ≤ Ksym,0 ≤ 23 MeV,

are much weaker than those found in Ref. [91] (see Fig. 1.9), due to the consideration

of EoS scatter uncertainty, and of additional PEs with a wider range of nuclear values.

We observe that the constraints derived here on Ksym,0 show good agreement with

that of Refs. [93, 94]. Let us emphasize that the bounds on K0 and M0 should be

considered as rough estimates, as the correlation of 0.50 is not very large; thus these

bounds are more easily affected by inclusion of yet additional EoSs than the bounds

on Ksym,0.

4.4.1.2 Constraint estimation via LIGO posterior distributions

In this section, we offer a more comprehensive method of estimating nuclear matter

constraints than was found in Sec. 4.4.1.1. Previously, a rough estimate on the nuclear

matter constraints was computed by finding linear regressions between Λ̃ and nuclear

parameters. By estimating the 90% errors on these lines, bounds on the nuclear pa-

rameters were manually approximated. In this section, we improve upon this method

by (i) properly taking into account the covariance between Λ̃ and nuclear parameters

by generating a multivariate probability distribution, and (ii) taking into account the

full posterior probability distribution on Λ̃ as derived by the LIGO Collaboration [92].

We begin by generating the 2-dimensional probability distribution between Λ̃ and
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Method 2 Method 1

L0 [MeV]
Λ̃ Λ̃ Posterior

Distribution [92]
70–720 [233] 279–822 [292]

40–62 [46,254,267]

69 MeV ≤ K0 ≤ 352 MeV

1371 MeV ≤M0 ≤ 4808 MeV

-285 MeV ≤ Ksym,0 ≤ 7 MeV

100 MeV ≤ K0 ≤ 375 MeV

1538 MeV ≤M0 ≤ 5433 MeV

-358 MeV ≤ Ksym,0 ≤ 23 MeV

118 MeV ≤ K0 ≤ 388 MeV

1849 MeV ≤M0 ≤ 5609 MeV

-298 MeV ≤ Ksym,0 ≤ 54 MeV

30–86 [253]

123 MeV ≤ K0 ≤ 330 MeV

1884 MeV ≤M0 ≤ 4635 MeV

-285 MeV ≤ Ksym,0 ≤ 7 MeV

45 MeV ≤ K0 ≤ 398 MeV

955 MeV ≤M0 ≤ 5675 MeV

-358 MeV ≤ Ksym,0 ≤ 23 MeV

63 MeV ≤ K0 ≤ 411 MeV

1266 MeV ≤M0 ≤ 5852 MeV

-298 MeV ≤ Ksym,0 ≤ 54 MeV

Table 4.1: GW170817 constraints on the incompressibility K0 (top row), its slope
M0 (middle row), and the symmetry energy curvature Ksym,0 for 4 different sets of
priors on L0 [46, 253,254,267], and Λ̃ [233,292]. These quantities are computed
using two different methods: (i) a simple linear regression estimation described in
Sec. 4.4.1.1 (labeled “Method 1” on the right column), and (ii) a comprehensive
computation of the nuclear parameter posterior probability distributions described
in Sec. 4.4.1.2 (labeled “Method 2” on the left column). The two methods show
moderate agreement, although the first method can be seen to over-estimate the
errors – thus we recommend the use of the more accurate distributions computed in
method 2, which properly take into account the covariances between the parameters,
as well as utilizes the full posterior distribution on Λ̃ derived by the LIGO
Collaboration [92]. The bounds on nuclear parameter M0 and Ksym,0 are weaker but
more reliable than those found in [91] due to the inclusion of scatter uncertainty in
our linear regressions. The bounds on K0 and M0 should be taken as a rough
estimate as the correlation in universal relations that were used to derive them are
not large, and thus, may be subject to change with inclusion of further EoSs.
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the nuclear parameters, taking into account the specific covariances between them.

For the example of Ksym,0 the distribution is given by:

P (Λ̃, Ksym,0) =
1

2π
√
|Σ|

e−
1
2

(x−µ)T Σ−1(x−µ), (4.18)

where x is the 2-dimensional vector containing Λ̃ and the given nuclear parameter, µ

is the 2-dimensional vector containing the expected values of x, and Σ is the 2 × 2

covariance matrix defined with elements given by Eq. (4.14). This distribution is

displayed in Fig. 4.8 for each nuclear parameter. Notice here the high degree of

covariance between the variables used in this analysis - indicative of the importance

for using this method of constraint extraction.

Following this, we compute the conditional probability distributions on nuclear

matter parameters given a tidal observation of Λ̃obs. Following Ref. [293], the one-

dimensional conditional probability distribution on nuclear parameter Y is then given

by

P (Y |Λ̃obs) ∼ N
(
µY +

σY
σΛ̃obs

C(Λ̃obs − µΛ̃obs
), (1− C2)σ2

Y

)
. (4.19)

In the above expression, N (µ, σ2) is the normal distribution with mean and variance

µ and σ2, and µA and σ2
A are the mean and variances of Y and Λ̃obs.

Next, we extract the one-dimensional probability distributions on K0 +αL0, M0 +

βL0, and Ksym,0 by combining the one-dimensional conditional distributions P (Y |Λ̃)

found in Eq. (4.25) with the probability distribution PLIGO(Λ̃) on Λ̃ derived by the
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Figure 4.8: Two-dimensional normalized probability distributions between Λ̃ and
nuclear parameters K0 + αL0 (left), M0 + βL0 (right), and Ksym,0 (center) generated
via Eq. (4.18). Overlayed on the distributions is the set of 120 data points
corresponding to each EoS used in this investigation for comparison. Observe how
the multivariate Gaussian distributions indicate high levels of covariance between
the variables, indicating the importance of estimating bounds using this method.
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Figure 4.9: Posterior probability distribution on Λ̃ as derived by the LIGO
Collaboration in Ref. [92]. We take this as a prior distribution when computing the
posteriors on nuclear parameters. Additionally shown are the GW and EM
counterpart bounds of 70 ≤ Λ̃ ≤ 720 [233] (dashed maroon) and
279 ≤ Λ̃ ≤ 822 [292] (dotted orange) for comparison.
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LIGO Collaboration in Ref. [92] for GW170817, shown in Fig. 4.9. For example, the

posterior probability distribution on K0 + αL0 is given by:

P (K0 + αL0) =

∞∫
−∞

P (K0 + αL0|Λ̃)PLIGO(Λ̃)dΛ̃, (4.20)

and similarly for M0 + βL0 and Ksym,0. Additionally, to find the probability distri-

butions on K0 and M0, we perform one last integration over the prior probability

distribution of L0, assumed to be Gaussian with standard deviation σ = 1
2
(80 + 36)

and mean µ = 1
2
(80− 36) [253] (or σ = 1

2
(62 + 40) and µ = 1

2
(62− 40) [46, 254, 267]

for the alternative priors on L0). For example, the probability distribution on K0 is

given by:

P (K0) =

∞∫
−∞

P (K0 + αL0)P (L0)dL0, (4.21)

with α = 2.27.

The results of these computations are shown in Fig. 1.9 for the more conserva-

tive priors on L0. We observe that K0, M0, and Ksym,0 now obey distributions that

look like skewed Gaussians centered at K0 = 208+86
−85 MeV, M0 = 3075+1045

−1033 MeV, and

Ksym,0 = −156+97
−81 MeV (68% standard deviations). This results in 90% confidence

intervals of 69 MeV ≤ K0 ≤ 352 MeV, 1371 MeV ≤M0 ≤ 4808 MeV, and -285 MeV

≤ Ksym,0 ≤ 7 MeV. We tabulate these values for both priors on L0 in Table 4.1 for

comparison to the simple method described in Sec. 4.4.1.1. These constraints on the

nuclear parameters are comparable to, yet smaller than that found in Sec. 4.4.1.1,
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although are much more accurate because the covariances between Λ̃ and such nu-

clear parameters were properly taken into account, as well as considering the true

probability distribution on Λ̃ from GW170817 as derived by the LIGO Collaboration.

How much does the addition of PEs affect the bounds on K0, M0, and Ksym,0?

To address this, we repeat our analysis without including these additional EoSs (see

Appendix B for more details). We find that the removal of such EoSs gives strong

improvement in both correlations and nuclear constraints for low-order nuclear pa-

rameters K0 and M0, and the results are consistent with those in Ref. [91]. This

further illuminates the need to study a wider variety of EoSs for use in universal

relations to properly account for systematic errors.

4.4.2 Future prospects

Now that we have identified the high-correlation behavior of Ksym,0, we proceed to

compute projected bounds on the curvature of the symmetry energy as a function

of chirp mass that is applicable to any future event. Additionally we offer the same

analysis repeated for 5 anticipated future detector sensitivities Sn(f) for detectors

O2 [78], aLIGO [78], A+ [81], Voyager [81], ET [84] and CE [81] (see Fig. 1.8), which

would allow one to compute the corresponding posterior distribution on Ksym,0 given

an events’ chirp mass M.



Chapter 4. Constraining nuclear matter parameters 131

4.4.2.1 Single events

Previously in Sec. 4.4.1, a posterior distribution on Λ̃ as derived from GW170817,

was utilized in order to compute posterior distributions on the nuclear parameters.

In this analysis of future observations however, no such distribution is available. To

remedy this, we approximate the effective “future” posterior distribution on Λ̃ as a

Gaussian probability distribution given by

PA(Λ̃) =
1√

2πσ2
A

e−(Λ̃−µΛ̃)2/2σ2
A (4.22)

for detector A. Here, µΛ̃ = µΛ̃(M) is computed from the mean value of the “LVC

constrained” EoSs found in Chapter 5 and again described in Sec. 5.2.1 for each value

of chirp mass, as shown by Fig. 4.10. Further, σA is approximated via simple Fisher

analyses described in Sec. 3.1, which estimates the measurement accuracy on Λ̃ under

the assumption of detector sensitivity A. Figure 4.11 presents σA for all 6 detectors.

Now we compute the posterior distributions on Ksym,0 using the Gaussian prior

distributions on Λ̃ computed above as a function of chirp mass, for future detectors.

Following the process used previously in in Sec. 4.4.1.2, this is accomplished by first

generating a two-dimensional Gaussian probability distribution between Ksym,0 and

Λ̃, taking into account the covariances between the two as

P (Λ̃, Ksym,0) =
1

2π
√
|Σ|

e−
1
2

(x−µ)T Σ−1(x−µ). (4.23)
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Figure 4.10: Mean value of Λ̃ (dashed maroon curve) as a function of chirp massM,
computed as the mean value of the “LVC constrained” EoSs (cyan shaded region)
from Chapter 5 for each value of chirp mass. This mean value corresponds to
µΛ̃(M) used in the generation of the approximated Λ̃ probability distributions in
Eq. (4.22) needed to compute constraints on Ksym,0 in Eq. (4.26).
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Figure 4.11: Approximate 90% measurement accuracies of Λ̃ on detectors A = (O2,
aLIGO, A+, Voyager, CE, ET) as a function of chirp mass, computed via simple
Fisher analyses. These correspond to the standard deviations σA used in the
generation of the approximated Λ̃ probability distributions needed to compute
constraints on Ksym,0.
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Parameter Fitting Function
√

ΣΛΛ(M) [MeV] Exp[6.287− 11.86 logM− 0.9803 log2M]√
ΣΛK(M) [MeV] Exp[5.073− 5.477 logM− 4.103 log2M]√
ΣKK(M) [MeV] 80.11

µΛ(M) [MeV] Exp[7.394− 12.27 logM− 6.399 log2M]

µK(M) [MeV] −71.6

Table 4.2: Respective fitting functions for the covariance matrix Σ and the mean
vector µ in Eq. (4.23) necessary for the full reconstruction of the two-dimensional
probability distributions between Λ̃ and Ksym,0. Here, the values of ΣKK and µK

correspond to the variance and mean of Ksym,0, which are independent of chirp
mass, thus require no fitting function.

Here x and µ are the 2D vectors containing (Λ̃, Ksym,0) and their means respectively,

and Σ is the covariance matrix with elements given by Eq. (4.14).

Let us now offer readers the means to fully reproduce the results of the above

analysis for any future event by constructing a fit for µ and Σ in terms of chirp mass

M. Based on the relations between the former and the latter as shown in Fig. 4.12,

we create a fit in a logarithmic power expansion as

log yi = ai + bi logM+ ci(logM)2, (4.24)

with yi being the various parameters
√

Σab and µa, and fitting coefficients ai, bi,

and ci which are summarized in Table 4.2. Observe how well the fit agrees with the

numerical data in Fig. 4.12.

Constraints on Ksym,0 are extracted by first computing the conditional probability

distributions on Ksym,0 given a tidal deformability observation of Λ̃obs. By following
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Figure 4.12: Values of Σab and µa in Eq. (4.23) along with their respective fits
(tabulated in Table 4.2), necessary for the full reconstruction of the two-dimensional
probability distributions between Λ̃ and Ksym,0.

Ref. [293], we can generate the one-dimensional conditional probability distribution

on Ksym,0 by taking

P (Ksym,0|Λ̃obs) ∼ N

(
µKsym,0 +

σKsym,0

σΛ̃obs

C(Λ̃obs − µΛ̃obs
), (1− C2)σ2

Ksym,0

)
. (4.25)

Above, N (µ, σ2) is the normal distribution with mean and variance µ and σ2, while

µA and σ2
A are the mean and variances of Ksym,0 and Λ̃obs. Finally, we can combine the

one-dimensional conditional probability distribution function of Eq. (4.25) with the

one-dimensional prior distribution on Λ̃ of Eq. (4.22). Marginalizing over Λ̃ results
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in a posterior probability distribution on Ksym,0

PA(Ksym,0) =

∞∫
−∞

P (Ksym,0|Λ̃)PA(Λ̃) dΛ̃, (4.26)

from which 90% confidence intervals on the curvature of symmetry energy can be

extracted. This process is then repeated for 22 values of chirp mass M across its

feasible range, and then for each interferometer A. Appendix F exemplifies this by

demonstrating the procedure for one value of chirp mass M = 1.188 M� on interfer-

ometer O2, corresponding to GW170817. The results found there are compared to

those found in Sec. 4.4.1 from GW170817 in order to demonstrate the accuracy of our

approximated Gaussian Λ̃ priors, rather than the full posterior distribution found in

Ref. [39]. We found that we slightly underestimate the errors in Ksym,0 by using this

method.

There is one important question to analyze here: how do the statistical errors on

Ksym,0 (σA in PA(Λ̃) given in Eq. (4.22) that enters in Eq. (4.26)) compare to the

systematic errors (covariance Σ in P (Λ̃, Ksym,0) given in Eq. (4.23) that also enters in

Eq. (4.26))? As more events are observed and the detector sensitivities Sn(f) drop, the

statistical errors on the measurement of Ksym,0 approach zero, and the overall errors

limit closer to the systematic error “wall” introduced from the EoS variation in the

universal relations. We study this effect by first plotting the overall errors on Ksym,0

as a function of chirp mass, defined to be the one-sided 90% confidence interval on

the posterior distribution of Ksym,0. Following this, we define the systematic errors to
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be the one-sided 90% confidence interval of Ksym,0 in the two-dimensional probability

distribution evaluated at the central value µΛ̃(M) of the Λ̃ prior distribution shown in

Fig. 4.10. Equivalently, the fixed diagonal Ksym,0 coefficient of the Gaussian argument

exp[−Σ−1
KK(Ksym,0−〈Ksym,0〉)2/2+. . . ] shows the systematic errors to be exactly equal

to (Σ−1
KK)−1/2.

Figure 1.10 displays the results of the above described procedure; plotting the

(one-sided 90% confidence interval) overall and systematic errors on the measurement

of Ksym,0 as a function of chirp mass. We observe here the presence of a minimum

in the uncertainties with respect to the chirp mass - a relic originating from the

correlations betweenKsym,0 and Λ̃ seen in Fig. 4.6, which similarly observe a maximum

at the same chirp mass (and thus minimum EoS variation that generates systematic

errors). We do note, however, that while previous analyses by Refs. [91,249] required

high correlations for the computation of constraints6, our analysis does not, as all

covariances between Λ̃ and Ksym,0 are taken into account by the two-dimensional

probability distribution of Eq. (4.23).

Observe also how, as predicted, the statistical errors drop as the more sensitive

detectors are analyzed, reducing to almost zero as the overall errors limit to the fixed

systematic error “wall”. The overall errors on the highly-sensitive third generation

interferometers CE and ET are indistinguishable from the systematic errors – indicat-

ing that the error budget is highly dominated by systematics at this point. Once the

6Refs. [91, 249] assumed the relationship between λ0 (the tidal deformability at 1.4 M�) and
nuclear parameters to lay exactly on the best-fit line between the two. Thus, high degrees of
correlation were absolutely necessary for accuracy on this claim.
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errors are dominated by systematics, improving detector sensitivities or observing

new events will not aid in the further constraint of Ksym,0. This indicates the ur-

gent need to reduce the systematic errors found in the EoS-variation of the universal

relations for the Voyager-class detectors and beyond7.

4.4.2.2 Multiple events

The future of GW astronomy will become quite busy in terms of detected events.

For example, future GW interferometer Cosmic Explorer will be detecting anywhere

from 3 × 105 to 4 × 106 [188] binary NS merger events within its horizon distance

per year - a staggering number which will certainly help reduce the statistical errors

on tidal measurements. How does one account for this effect when studying the

uncertainties in future, undetected, events? The dominant tidal parameter in the

gravitational waveform, Λ̃, depends strongly on the subsequent masses in the binary

system, something difficult to predict beforehand. Ultimately, this prevents one from

combining the uncertainties on Λ̃ for multiple events.

Fortunately, this can be remedied by following in the footsteps of Chapter 5,

where we reparameterized the gravitational waveform to instead consider the λ0 and

λ1 tidal coefficients, generated by Taylor expanding the tidal deformability Λ about

7A similar conclusion is reached later in Chapter 5, where the detector statistical errors became
comparable to the systematic errors from the binary Love universal relations for future detectors
Voyager and beyond.
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the reference mass of m0 = 1.4 M� [68, 294]:8

Λ ≈ λ0 + λ1

(
1− m

m0

)
. (4.27)

Here, λ0 ≡ Λ|1.4M� and λ1 ≡ −dΛ/d lnm|1.4M� are the dimensionless tidal deforma-

bility and its slope at 1.4 M�, and they do not depend on the individual NS masses

m or any combination thereof (however they do depend on the fiducial mass value

m0 chosen). Therefore, they are identical for every future binary NS merger event,

and may be combined in uncertainty.

Similar to the correlation between Λ̃ and Ksym,0, we also find a correlation between

λ0 and Ksym,0. We constructed a 2D Gaussian distribution P (λ0, Ksym,0) similar to

P (Λ̃, Ksym,0) in Eq. (4.23) and find

Σ
1/2
ab =

193.6 97.10

97.10 80.11

 [MeV] , µ =

 543.2

−71.164

 [MeV] , (4.28)

for x = (λ0, Ksym,0). Notice that both Σ and µ are independent of M in this case.

In this section, we repeat the analysis performed in Sec. 4.4.2.1 using the combined

uncertainties on λ0 from NA unique events with chirp mass 1.188 M�, corresponding

to the number of observed binary NS mergers within one observing year on detector

A. We refer to Sec. 3.1.1 for details on how to combine information from multiple

8We note here that a linear truncation of this Taylor series is valid for our purposes. By taking
into account an additional quadratic term identified by λ2, we found a reduction in measurement
accuracy in λ0 by only ≤ 5%, across various detectors and values of chirp mass.
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Figure 4.13: The overall errors on Ksym,0 using priors on the combined λ0 (tidal
deformability at 1.4 M�) uncertainty of multiple events (described in Chapter 3),
evaluated at the chirp mass M = 1.188 M�. The 90% uncertainties on Ksym,0 are
shown as a function of the SNR of GW170817 as detected on each interferometer.
σ1

GW170817 corresponds to the constraint formed with 1 GW170817-like observation,
while σNGW170817 forms the range bounded by the optimistic and pessimistic local
binary NS coalescence rates. While the single-event analysis of Fig. 1.10 shows that
single detections are nearly saturated by systematic uncertainties for Voyager-class
detectors and beyond, here we show the effect stacking events can have on the
aLIGO and A+ analyses. We observe that by combining multiple detections, even
the aLIGO and A+ interferometers approach the systematic error “wall” (dashed
horizontal line) with an optimistic number of detections.
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events. Fiducial values of λ0 and λ1 were computed to be the mean values of Λ|1.4M�

and −dΛ/d lnm|1.4M� from the “LVC constrained” EoSs. Figure 4.13 shows how the

combined-event uncertainties on Ksym,0 for the fixed chirp mass of 1.188 M� further

become saturated on the aLIGO, and A+ detectors as well. As is shown in Fig. 1.10,

the single-event uncertainties on Ksym,0 become dominated by systematic errors for

Voyager-class detectors and beyond, and thus there is not much point in stacking

multiple events for these detectors to further reduce statistical errors on λ0.

4.5 Reducing systematic errors via multidimen-

sional correlations

Let us now consider how we can reduce the systematic “walls” present in Fig. 1.10.

In Sec. 4.4.2.2, this was computed by evaluating the two-dimensional probability

distribution between Ksym,0 and λ0 at the fiducial value of λ0, and then finding the

90% confidence interval of the resulting probability distribution of Ksym,0 to yield

∼ 104 MeV. We here construct multidimensional correlations among Ksym,0 and Λmx

at a few different masses mx (since we expect to detect GWs from binary NSs with

different masses with future observations) to see how adding information of the tidal

deformability at multiple different masses may help us to reduce the systematic errors

on Ksym,0.

Let us begin by using Λ at two different masses mx and my. This requires us to
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Figure 4.14: Example three-dimensional probability distribution between Λ1.3, Λ1.6,
and Ksym,0 (blue density contour). Each EoS yields one point (black dot) in this
space. The resulting systematic errors in Ksym,0 are computed by evaluating the
probability distribution at the fiducial values of Λ1.3 = 886.8 and Λ1.6 = 269.4
(maroon line), at the 90% confidence level.

find a three-dimensional correlation among Ksym,0, Λx(≡ Λmx), and Λy(≡ Λmy), and

construct a three-dimensional Gaussian distribution P (Ksym,0,Λx,Λy). Figure 4.14

shows an example of such a distribution for the case of mx = 1.3 M� and my =

1.6 M�. The systematic error is then computed by evaluating the three-dimensional

distribution at the fiducial values of Λx and Λy, and then evaluating the resulting

one-dimensional Ksym,0 probability distribution at the 90% confidence interval.

Figure 4.15 displays the resulting systematic uncertainties on Ksym,0 using canon-

ical masses mx and my between 1 M� and 2 M�. Observe that the systematic errors
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can be reduced by setting both mx and my to be large or small. However, this means

that mx ≈ my, which corresponds to effectively using a two dimensional probability

distribution. Thus, in this case, having additional information on Λ at a different

mass does not help to reduce the systematic errors.

It may sound strange that adding more pieces of information does not help to

reduce the systematic errors. Let us explain why this is the case by comparing the

systematic errors at (mx,my) = (1, 2)M� and (mx,my) = (2, 2)M�. Figure 4.16 com-

pares the two-dimensional 90% contours between Ksym,0 and Λ2.0 from two different

methods by computing (i) directly the two-dimensional probability distribution from

Eq. (4.23), and (ii) the three-dimensional probability distribution between Ksym,0,

Λ2.0, and Λ1.0, and then evaluating it at the fiducial value of Λ1.0. We observe that

while the contour from the first case has a larger area (and value of |Σ|) as expected

due to the use of less information, it becomes distorted such that the systematic un-

certainty (along the dashed horizontal line corresponding to the fiducial value of Λ2.0)

becomes smaller than that from the first case.

Let us now consider using Λ at three different masses, mx, my and mz. This

requires us to find a four-dimensional correlation and construct the four-dimensional

Gaussian probability distribution P (Ksym,0,Λx,Λy,Λz). We fix mz = 1.5 M�, and

allow mx and my to vary between [1.0, 2.0] M�. Similar to the process used previously,
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Figure 4.15: Similar to Fig. 4.17, but computed from the three-dimensional
probability distribution between Ksym,0, Λx, and Λy, and evaluated at the fiducial
values of Λx and Λy. The white diagonal line at mx = my corresponds to the
systematic errors obtained from the reduced two-dimensional probability
distribution P (Ksym,0,Λx). In particular, the black diamond represents the
systematic error obtained with such a function with λ0 (the horizontal dashed line
of Fig. 4.13). The systematic errors along the horizontal dashed line at my = 1.5M�
corresponds to P (Ksym,0,Λx,Λ1.5), which is equivalent to P (Ksym,0,Λx,Λx,Λ1.5)
along the diagonal line in Fig. 4.17. Observe that having the information of
additional Λ values does not help in this case, and what matters is to have mx and
my to be both small or large.
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Figure 4.16: 90% confidence interval contours of the two-dimensional probability
distribution between Ksym,0 and Λ2.0 computed using two different methods: (i)
(brown) the two-dimensional probability distribution between Ksym,0 and Λ2.0, and
(ii) (dashed orange) the three-dimensional probability distribution between Ksym,0,
Λ2.0, and Λ1.0. (We evaluate the latter at the fiducial value of Λ1.0.) To compute the
systematic errors in Ksym,0, one would evaluate such contours at the fiducial value of
Λ2.0, denoted by the horizontal line, and finding the 90% confidence interval of the
resulting one-dimensional probability distribution in Ksym,0. Observe that although
the area of the brown contour is larger than that of the orange, the systematic error
on Ksym,0 from the former is smaller than that of the latter.
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this probability distribution is evaluated at the fiducial values of Λx, Λy and Λ1.5:

P ′′′(Ksym,0) = P (Ksym,0, Λ̄x, Λ̄y, Λ̄1.5). (4.29)

The resulting 90% confidence intervals are presented in Fig. 4.17 for the entire range

of mx and my mass values. We observe that by including information about binaries

with large, medium, and small masses together, the systematic errors can be improved

drastically, down to ∼ 74 MeV. We also see that along the diagonal line of mx = my,

the four-dimensional probability distribution P (Ksym,0,Λx,Λx,Λ1.5) reduces to the

three-dimensional case P (Ksym,0,Λx,Λ1.5), with uncertainties∼ 104 MeV approaching

that of Fig. 4.15 along the horizontal dashed line.

4.6 Conclusions

The recent GW observation GW170817 coupled with the IR/UV/optical counterpart

placed upper and lower bounds on the mass-weighted average tidal deformability Λ̃.

We take advantage of this by selecting a diverse set of NS EoSs encompassing non-

relativistic Skyrme-type interactions, RMF interactions and phenomenological varia-

tion of nuclear parameter models in order to constrain the nuclear matter parameters

which are vital to limiting physically valid EoSs. We first found that approximate uni-

versal relations exist between linear combinations of nuclear parameters and Λ̃ for all

values of mass ratio q allowed from GW170817. We next constructed 2-dimensional
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Figure 4.17: Contours displaying the systematic errors in Ksym,0 [MeV] as a function
of the masses mx and my used to compute the four-dimensional probability
distribution between Ksym,0, Λ1.5, Λx, and Λy. The systematic errors are then
computed by evaluating the probability distribution at the fiducial values of Λ1.5,
Λx, and Λy, and then taking the 90% confidence interval of the resulting
distribution in Ksym,0. Observe how a large reduction in systematic errors to ∼ 74
MeV can occur by including information about the tidal deformability at 3 different
NS masses spread throughout their realistic range. The diagonal contours at
mx = my labeled in white correspond to the systematic errors obtained from the
reduced three-dimensional probability distribution P (Ksym,0,Λx,Λ1.5).



Chapter 4. Constraining nuclear matter parameters 148

probability distributions between Λ̃ and such nuclear parameters, converted them into

one-dimensional conditional probability distributions on Ksym,0 given observations of

Λ̃, and finally combined them with a posterior probability distribution on Λ̃ from

LIGO and integrated them over Λ̃ in order to obtain posterior distributions on the

nuclear parameters. From these posterior distributions, we derived 90% confidence

intervals on the incompressibility K0, its slope M0, and the curvature of symmetry

energy Ksym,0 at saturation density as 69 MeV ≤ K0 ≤ 352 MeV, 1371 MeV ≤M0 ≤

4808 MeV, and -285 MeV ≤ Ksym,0 ≤ 7 MeV. The bounds on M0 and Ksym,0 are more

conservative and safer to quote than those found in [91]. In addition, the constraints

derived on Ksym,0 shows agreement with those in Refs. [93, 94]. We also note that

bounds on K0 and M0 are less reliable than those on Ksym,0 due to smaller correlations

in the universal relations.

Are there any other ways to further improve the constraints on Ksym,0 using ob-

served GW events? One might think that the constraint on Λ̃ with GW170817 may

help in this direction. However, the restriction of data in only the Λ̃ dimension does

not help as systematic errors are found by evaluating the scattering width in the

Ksym,0 direction. We continue this analysis into the future of GW astronomy. In

particular, we compute constraints on Ksym,0 as a function of chirp mass when ob-

served in multidude by future gravitational wave detectors. We find such constraints

to improve down to ∼ 104 MeV, when progress is halted by the presence of system-

atic mismodeling uncertainties. Such systematic errors must be reduced for future
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progress to be made.

Finally, we briefly discuss the possibility of NSs with strong first-order phase tran-

sitions from hadronic to quark matter in the core, as described in Ref. [98]. With high

enough observed chirp masses M, future binary NS merger events could potentially

be composed of one or both hybrid stars (HSs) with quark-matter cores. The tidal

deformabilities and thus, the nuclear parameters, depend on such structure, and could

potentially disagree between events with varying chirp masses and combinations of

NS/HS [101]. Thus, significant variations between nuclear parameter measurements

with future GW observations with varying chirp masses could potentially present evi-

dence of strong phase transitions at around 2−3 times the nuclear saturation density.

If such transitions are present at sufficiently low-densities, then the nuclear matter

parameters will be further decoupled from the GW observations and thus our lower

limit for the nuclear matter parameter uncertainties will increase. Alternatively, sim-

ilar measurements of nuclear parameters could either indicate a pure hadronic matter

EoS, or phase transitions occurring at higher nuclear densities. The structure of such

high-density transitions could be probed by the GW post-merger oscillation signal.

The bounds derived in this chapter are only valid for NSs and may not be valid for

hybrid stars (HSs) with quark core and nuclear matter envelope. We discuss this

point in more detail in Appendix C.

As we showed in the previous section, one can use multidimensional correlations to

reduce the systematic errors. Instead of using tidal deformabilities from different NS
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masses obtained from GWs alone, one can consider combining information from multi-

messenger observations. For example, pulse profiling techniques by NASA’s Neutron

star Interior Composition Explorer (NICER) instrument may provide high-precision

measurements on the NS radius down to 5% [295, 296]. Thus, one can construct

multidimensional correlations among nuclear parameters, tidal deformabilities and

radii of NSs. The work along this direction has been done in Ref. [297].



Chapter 5

Equation-of-state insensitive
relations

The thermodynamic relation between pressure and density (i.e. the equation

of state) of cold supranuclear matter is critical in describing neutron stars, yet

it remains one of the largest uncertainties in nuclear physics. The extraction

of tidal deformabilities from the gravitational waves emitted in the coalescence

of neutron star binaries, such as GW170817, is a promising tool to probe this

thermodynamic relation. Equation-of-state insensitive relations between sym-

metric and anti-symmetric combinations of individual tidal deformabilities, the

so-called “binary Love relations”, have proven important to infer the radius

of neutron stars, and thus constrain the equation of state, from such gravi-

tational waves. A similar set of relations between the moment of inertia, the

tidal deformability, the quadrupole moment, and the compactness of neutron

stars, the so-called “I-Love-Q” and “C-Love” relations, allow for future tests

of general relativity in the extreme gravity regime. But even the most insensi-

tive of such relations still presents some degree of equation-of-state variability

that could introduce systematic uncertainties in parameter extraction and in

model selection. We here reduce this variability by more than 50% by impos-

ing a prior on the allowed set of equations of state, derived from the posteriors

generated from the analysis of GW170817.

151
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5.1 Introduction

The thermodynamic relation between pressure and density in cold, supranuclear mat-

ter, the EoS, remains a largely unsolved problem in nuclear physics1. The EoS is crit-

ical to our understanding of NSs because it determines many NS observables, such as

their mass, radius, moment of inertia (I), quadrupole moment (Q) and tidal deforma-

bility (or Love number). Unfortunately, terrestrial experiments can only probe the

EoS to around nuclear saturation density (ρ0 ≈ 2.5× 1014 g/cm3) [34–38]. Although

some temperature-dependent heavy-ion collision experiments can probe higher den-

sities [298], astrophysical observations of NSs remain ideal for constraining the EoS

of cold and ultra dense, nuclear matter.

Independent measurements of NS observables can be used to constrain the nuclear

EoS. For example, EM observations of the mass and radius of certain NSs have

been used to place confidence limits in the mass-radius plane, and thus constrain

the EoS [43–47]. These observations, however, may potentially suffer from large

systematic errors [299, 300] due to uncertainties in the astrophysical modeling of X-

ray bursts. The GWs emitted in the coalescence of NS binaries may be a cleaner

probe of nuclear physics. During the early inspiral, the orbital separation is large

enough that the tidal fields are negligible; but as the orbital separation decreases due

to GW emission, tidal forces grow and the NSs respond by developing deformations

1This chapter is based on the following paper: Z. Carson, K. Chatziioannou, C. Haster, K. Yagi,
and N. Yunes Equation-of-state insensitive relations after GW170817, Phys. Rev. D 99 083016
(2019)
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determined by their nuclear EoS. These deformations source additional multipole

radiation as well as affect the orbital trajectory of the binary, thus altering the GWs

emitted, encoding within the latter the NS EoS [209,255].

The GWs emitted by binary NSs in the late inspiral must then depend on the tidal

deformabilities Λ1 and Λ2, which control the linear response of the star’s quadrupole

deformation to the (quadrupole) tidal field of the companion (to leading order in a

post-Newtonian expansion [202]) [104, 209]. These parameters, however, enter the

GW waveform model at the same post-Newtonian order, making them degenerate,

and thus, very difficult to estimate independently with current GW data [105]. In-

stead, one can extract certain combinations of the tidal deformabilities, such as a

certain mass-weighted tidal deformability Λ̃ [105,301], or one can extract the (mass-

independent) coefficients (λ0, λ1, . . .) of a Taylor expansion of the tidal deformabilities

about some fiducial mass [68, 294, 302]. Current detectors are not sensitive enough

to accurately measure any of these coefficients, but future detectors will, and the

information from multiple events could then be combined, since the Taylor expansion

coefficients should be common to all events.

Lacking enough sensitivity in current GW observations, one is forced to only es-

timate the mass-weighted tidal deformability, but this prevents the independent ex-

traction of Λ1 and Λ2. Yagi and Yunes [67,68] proposed a solution to this problem by

finding “approximately universal” or “EoS-insensitive” relations between the symmet-

ric and anti-symmetric combinations of the tidal deformabilities Λs,a = 1
2
(Λ1 ± Λ2),
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the so-called “binary Love relations.” These relations can be used to analytically

express Λs in terms of Λa (or vice-versa), making the mass-weighted tidal deforma-

bility a function of only Λa. A measurement of the mass-weighted tidal deformability

then implies a measurement of Λa, and through the use of the binary Love rela-

tions, also a measurement of Λs, which then allows for the inference of the individual

tidal deformabilities Λ1 and Λ2 [67, 68]. With those at hand, one can further use

EoS-insensitive relations between the tidal deformabilities and the compactness, the

so-called “C-Love relations” [61–64], to infer the radii of the NSs, and thus, to place

two constraints in the mass-radius plane, one for each star in the binary. This idea

was recently implemented for GW170817 [30], allowing EoS-independent constraints

on the mass-radius curve using GW data [39,66].

EoS-insensitive relations can in fact be used for more than just measuring the

nuclear EoS. For years, the theoretical physics community considered the possibility

of using measurements of NS properties, such as the mass, the radius and the mo-

ment of inertia, to constrain deviations from General Relativity in the strong-field

regime. Certain modified theories of gravity, such as scalar tensor theories with spon-

taneous scalarization [303], Einstein-Æther and Hořava gravity [304–306], dynamical

Chern-Simons gravity [307–309], beyond Horndesky theories [310, 311], modify such

NS observables, but unfortunately, these modifications are typically degenerate with

the nuclear EoS [312–314]. Yagi and Yunes proposed to solve this problem by finding

EoS-insensitive relations between the moment of inertia, the tidal deformability (or
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Love number) and the quadrupole moment, the so-called “I-Love-Q” relations [61,62].

Given a measurement of the Love number for a given NS, for example through GW

observations, the I-Love-Q relations can be used to infer the moment of inertia or

the quadrupole moment. A second independent measurement of either of these two

quantities, for example through binary pulsar observations [315] or observations with

the Neutron star Interior Composition ExploreR (NICER) [316], then allows an EoS-

insensitive test of General Relativity in the strong field regime [61,62,309,317].

The implementation of the EoS-insensitive relations in data analysis has to some-

how contend with the fact that these relations are in fact not exactly universal, but

rather present different (albeit small) levels of EoS variability. In the case of the bi-

nary Love and C-Love relations to infer the radii of NSs with GW170817, the problem

is solved by marginalizing over the EoS variability [66]. Presumably, this same proce-

dure can be applied in the future when carrying out tests of General Relativity with

the I-Love-Q relations, using a combination of binary pulsar, NICER and GW data.

But this marginalization procedure may not always be as important; as constraints

in the mass-radius plane become more stringent with future GW observations, the

allowed space of EoSs will shrink, which in turn must naturally decrease the degree of

EoS variability in all EoS-insensitive relations. This is the main focus of this chapter.

5.2 Background and theory

In this section we review how the EoS can be represented analytically through a

spectral decomposition, and how the observation of GW170817 constrains the space
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of possible EoSs. We then proceed to discuss the EoS-insensitive relations. See

Sec. 4.2.1 from Chapter 4 for details on the NS tidal deformability Λ, and how to

determine it.

5.2.1 Spectral representations of NS EoSs

The structure of a NS and its tidal interactions in a binary system rely heavily on

the underlying state function (or equation of state - EoS) describing the relationship

between the pressure (p) and energy density (ε) of nuclear matter. Given that all cur-

rently proposed EoSs utilize certain approximations [318, 319], one method to study

a wide range of physically realizable EoSs is to parameterize them such that any

realistic EoS can be represented with a small number of parameters. Spectral repre-

sentations [97,225,243–245] parameterize EoSs by performing spectral expansions on

the adiabatic index Γ(p)2:

Γ(x) = exp
N∑
k

γkx
k, (5.1)

where x ≡ log (p/p0) for a minimum pressure p0. The EoS is then determined by an

integration of the differential equation:

dε(p)

dp
=
ε(p) + p

pΓ(p)
. (5.2)

Using this formalism, any valid EoS can be approximated through the choice of N

spectral coefficients γk, and we here choose N = 4, tabulated for several common

EoSs in Table 1 of [97].

2Another way of parameterizing EoSs is through a piecewise polytropic formulation [96,241,242].
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Figure 5.1: Top: small representative samples of the unconstrained (dotted) and
constrained (solid) sets, together with the 90% marginalized posterior distribution
from the observation of GW170817 (cyan shaded region) [39]. There is significantly
less variability in the constrained set of EoSs due to the requirement that they be
consistent with the GW170817 observation. Bottom: EoSs for ACS and ACB
hybrid stars [98], each transitioning from a hadronic branch (corresponding to a
pure hadronic-matter NS) into a quark-matter branch (quark-matter inner core
surrounded by hadronic matter) at various transition pressures Ptr.
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We here wish to consider EoS-insensitive relations using two sets of EoSs: a “con-

strained set” consistent with the observation of GW170817 and an “unconstrained

set” that does not impose this prior. In both cases, we model the EoS with a piecewise

function that equals the low-density crust EoS of SLy3 [268] below half nuclear satu-

ration density ρstitch = 1.3× 1014 g/cm3 [241], and equals the spectral decomposition

described above outside the crust. For the latter, we restrict the spectral coefficients

to the ranges γ0 ∈ [0.2, 2], γ1 ∈ [−1.6, 1.7], γ2 ∈ [−0.6, 0.6], γ3 ∈ [−0.02, 0.02], and

the adiabatic index is further restricted to Γ ∈ [0.6, 4.5] [320]. Moreover, we impose

the following two restrictions: (i) causality within 10%, i.e. that the speed of sound

of the fluid be less than the speed of light to 10% (following the analysis of Ref. [39]),

and (ii) a high maximum mass, i.e. that the resulting EoS supports NSs with masses

at least as high as 1.97 M�, consistent with astrophysical observations [321–323].

The unconstrained set is then defined by drawing random samples in the spectral

coefficients within their allowed prior ranges, and then eliminating any EoS that

either leads to an adiabatic index Γ outside the allowed range, breaks the causality

restriction, or breaks the maximum mass restriction. To obtain the constrained set

of EoSs we analyze the publicly available data for GW170817 from the Gravitational

Wave Open Science Center [324, 325]. We use the publicly available software library

LALInference [326,327] to sample the EoS posterior, similar to Ref [39]. Our analysis

uses the same settings and prior choice as those of [39, 96]. In both cases, each set

3SLy represents the unified equation of state based on the effective Skyrme Lyon nucleon-nucleon
interactions, developed by Douchin and Haensel, 2001 [268].
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consists of 100 members, with a subset of these shown in the top panel of Fig. 5.1.

In addition, we investigate 10 transitional quark-hadron matter stars, which un-

dergo strong first-order phase transitions at a pressure Ptr, leading to the hadronic

branch departing into a quark-matter branch at a given transitional mass [98, 328–

331]. In particular, we focus on the ACS and ACB models (corresponding to speed

of sound, and piecewise polytropic representations of the EoS beyond the phase tran-

sition, respectively) described in [98], and also shown in the right panel of Fig. 5.1.

These result in two distinct types of NSs, based on their mass: (i) massive (m ≥

mtr) hybrid stars which have quark-matter inner cores and nuclear matter elsewhere

(henceforth, we denote such stars as hybrid stars (HSs)), and (ii) low-mass (m ≤ mtr)

hadronic stars with no internal transition to quark matter (henceforth, we denote

these stars as simply NSs).

5.2.2 EoS-insensitive relations: previous work

Current GW interferometry is not yet sensitive enough to accurately extract both

tidal parameters Λ̃ and δΛ̃. In a search to remedy this, Yagi and Yunes [68] found

that symmetric and anti-symmetric combinations of the tidal deformabilities

Λs ≡
Λ2 + Λ1

2
, Λa ≡

Λ2 − Λ1

2
, (5.3)

display EoS-insensitive properties to a high degree, showing EoS variations of at most

20% for binaries with masses less than 1.7 M� and using a representative sample of

11 EoSs. These “binary Love relations” allow one to analytically break degeneracies
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between the tidal parameters: one can substitute Λa = Λa(Λs) in the GW model, thus

completely eliminating Λa from the parameter list (or vice-versa). This is important

for two reasons: (i) the new model allows for the more accurate extraction of Λs (or

Λa if Λs is eliminated), and (ii) the relations allow for the inference of Λa given a

measurement of Λs (or vice-versa), and from this for the inference of the individual

tidal deformabilities Λ1 and Λ2. A simple Fisher analysis has shown that the binary

Love relations improve parameter estimation of Λ̃ by up to an order of magnitude [67,

68].

Similar EoS-insensitive relations have been found between individual NS observ-

ables: the moment of inertia (I), the tidal deformability (Love), the quadrupole

moment (Q), and the compactness (C), known as the “I-Love-Q” and “C-Love”

relations [61–63]. These relations are EoS-insensitive to better than 1% and 6% re-

spectively, and they have important applications in both GW astrophysics [246] and

experimental relativity [61, 62, 309, 317]. For example, these relations and the mea-

surement of the tidal deformabilities allow for the inference of several other stellar

properties, such as the moment of inertia, the compactness, the spin (χ), and the ra-

dius of NSs [246]. Analyses such as that of [246] could benefit from the improvement

of such EoS-insensitive relations, which we derive in this chapter.

5.3 EoS-insensitive relations

In this section, we repeat and improve the analyses of [62,68] through the use of the

two sets of EoSs (the constrained and the unconstrained set) and through new fitting
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y x α Kyx a1 a2 a3 a4 a5 b1 b2 b3

Ī Λ (–) (–) 1.493 0.06410 0.02085 −5.018× 10−4 3.16× 10−7 (–) (–) (–)

Q̄ Λ (–) (–) 0.2093 0.07404 −0.05382 −5.018× 10−3 1.576× 10−4 (–) (–) (–)

Ī Q̄ (–) (–) 1.383 0.5931 −0.02161 0.04190 −2.968× 10−3 (–) (–) (–)

Ī Λ 2/5 0.5313 1.287 0.09888 −2.300 (–) (–) −1.347 0.3857 −0.02870

Q̄ Λ 1/5 3.555 −2.122 2.72 −1.491 (–) (–) 0.8644 −0.1428 −1.397

Ī Q̄ 2 0.008921 10.59 −37.46 43.18 (–) (–) −2.361 1.967 −0.5678

C Λ −1/5 0.2496 −919.6 330.3 −857.2 (–) (–) −383.5 192.5 −811.1

Table 5.1: Fit parameters for the I-Love-Q and C-Love relations using the
constrained set and the fitting functions in Eq. (5.4) (top) and in Eq. (5.6) (bottom).

functions that properly limit to the Newtonian results.

5.3.1 I-Love-Q relations

Here we present our results on the I-Love-Q universality, comparing when possible

to Fig. 1 of [62]. In particular, we consider two distinct classes of NSs: nuclear

matter EoSs and hybrid quark-hadron star EoSs as described in Sec. 5.2. We begin

in Sec. 5.3.1.1 by fitting the new I-Love-Q relations using the constrained set of EoSs.

This is followed in Sec. 5.3.1.2 by an analysis and discussion of how well the hybrid

star EoSs agree with the improved binary Love relations.

5.3.1.1 Nuclear matter stars

Following [62], we first fit the data for each EoS-insensitive relation to the following

function:

ln y = a1 + a2 lnx+ a3(lnx)2 + a4(lnx)3 + a5(lnx)4, (5.4)

where y and x correspond to NS observables Ī, Q̄, and Λ, and the updated coefficients

are given in the top of Table 5.1. This fitting function, however, does not limit
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properly to the Newtonian results given by [62]:

ĪN = KĪΛΛ2/5, Q̄N = KQ̄ΛΛ1/5, ĪN = KĪQ̄Q̄
2, (5.5)

where Λ−1/5 ∼ C when C � 1. One can thus improve the fitting function to

y = Kyxx
α1 +

∑3
i=1 aix

−i/5

1 +
∑3

i=1 bix
−i/5

, (5.6)

where α is either 2/5, 1/5, or 2 for the Ī−Λ, Q̄−Λ, and Ī− Q̄ relations respectively,

and where the new fitting coefficients are presented in the bottom of Table 5.1. While

the two fits result in similar R2 values4 of ∼ 0.999995, the fit in Eq. (5.6) has the

advantage that it properly limits to the Newtonian result as Λ� 1 [68].

Figure 5.2 shows the improved I-Love-Q relations between the dimensionless mo-

ment of inertia Ī ≡ I/m3, the dimensionless quadrupole moment Q̄ ≡ Q/m3, and the

dimensionless tidal deformability Λ. The fits are done using the new fitting function

in Eq. (5.6) and over either the constrained set or the unconstrained set separately.

The bottom panels show the relative fractional difference between the fit and the data

for each set of EoSs. The new fits to the constrained set shows considerably more EoS-

insensitivity than the fit to the unconstrained set. These results are summarized in

Table 5.2, which tabulates the maximum EoS variation in each fit. Clearly then, the

EoS-insensitive relations can be made more universal by restricting the EoSs through

the use of observations. Such improvements can be beneficial to future studies in

4R2 is the coefficient of determination, defined as
∑
i(fi − ȳ)2/

∑
i(yi − ȳ)2, where ȳ is the mean

data value, and fi, yi are the modeled and actual data values
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GW astrophysics, such as those of [246], and in experimental relativity, such as those

of [309].

EoS-insensitive Maximal EoS Variability

Relation Previous Unconstrained Constrained

Ī − Λ 0.0059 0.0077 0.0031

Q̄− Λ 0.010 0.013 0.0047

Ī − Q̄ 0.012 0.015 0.0057

C − Λ
0.065 0.072 0.022

(–) (0.018) (0.0066)

R− Λ
– 0.056 0.022

(–) (880 m) (360 m)

Λa − Λs ∼ 0.50 0.57 0.21

q = 0.90 (–) (190) (37)

Λa − Λs ∼ 0.20 0.25 0.083

q = 0.75 (–) (320) (52)

Λa − Λs ∼ 0.025 0.038 0.018

q = 0.50 (–) (240) (29)

Table 5.2: Maximum relative and fractional EoS variation in the I-Love-Q, C-Love,
R-Love, and binary Love relations using the unconstrained set, the constrained set
and variations reported in previous work [62,68]. The maximum absolute EoS
variation is also reported in the C-Love, R-Love and binary Love cases in
parentheses. The maximum variation in the constrained set case is better than a
factor of two smaller than the variability in the unconstrained case and in previous
work. The maximum EoS variation in the unconstrained set is slightly larger than
that found in previous work because the former is built from a large random
sampling of EoSs.

5.3.1.2 Hybrid quark-hadron stars

Let us now focus on the I-Love-Q relations of hybrid stars, and their compatibility

with their nuclear matter counterparts. For concreteness, we consider three different

sets of EoSs in the hybrid case:
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Figure 5.2: Individual I-Love-Q relations Ī − Λ (left), Q̄− Λ (right), and Ī − Q̄
(center), shown for both the constrained EoSs (solid green) and unconstrained EoSs
(dotted maroon). In these figures, the black dashed lines correspond to the fits
given by Eq. (5.6). The fractional difference from the fits, shown in the bottom
panels, is greatly suppressed for the constrained case, compared to both the
unconstrained case, and results from previous works [61,62]. The maximal EoS
variation from the fits for the unconstrained and constrained sets of EoSs are
compared in Table 5.2. Additionally shown in this figure is the fractional difference
from the nuclear matter fits for the 10 hybrid star EoSs (dashed green).
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1. the complete set of 100 constrained EoSs combined with the 10 hybrid star

EoSs,

2. the complete set of 100 constrained EoSs alone,

3. the complete set of 10 hybrid star EoSs alone.

For each of these cases, we compute the I-Love-Q relations, we fit the data to Eq. (5.6)

and we compute the relative fractional difference.

Fitting Maximal EoS Variability

Case Constrained Hybrid

Combined
0.0044 0.014

(Case 1)

Constrained only
0.0031 0.017

(Case 2)

Hybrid only
0.0084 0.010

(Case 3)

Table 5.3: Maximum relative and fractional EoS variation in the I-Love relation,
fitting to three different sets of data: using the constrained set plus hybrid EoSs,
using the constrained set alone, and using only the hybrid EoSs. In all 3 cases the
hybrid EoSs are EoS-insensitive to ∼ 1%, which is a slight decrease in universality
relative to the hadronic only EoSs.

The fractional differences of hybrid stars from the fit for the second case (fit to only

the constrained EoSs) is shown with dashed green lines in Fig. 5.2, while the maximum

EoS variation for the I-Love relation is shown in Table 5.3 for both the constrained

and hybrid star cases. The hybrid star EoSs obey the I-Love-Q relations in each case

to better than ∼ 1.7%, a variability that is slightly higher than that found when

using only nuclear matter EoSs in previous works [61,62], and is consistent with [98].
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The universality cannot be improved much through the introduction of new fits, only

bringing the maximal EoS variation down to ∼ 1% for the fits constructed with only

hybrid star EoSs. From this study, we conclude that hybrid star EoSs do obey the

traditional nuclear I-Love-Q relations computed with nuclear EoS data, albeit with

a slight decrease in universality to ∼ 1.7%. We find this decrease in universality

to be somewhat consistent with similar works [98, 332–334]. In such investigations,

departures from universality of up to ∼ 1%− 2% were found with various hybrid star

EoSs, compatible with our result of ∼ 1.7%.

5.3.2 C-Love Relations

In this subsection we focus on the EoS-insensitive C-Love relations, as introduced

in [61–63], as well as on the R-Love relations, since these play a key role in GW data

analysis for the extraction of M-R credible intervals. As in the previous subsection,

we consider both nuclear matter EoSs, as well as hybrid quark-hadron star EoSs.

5.3.2.1 Nuclear matter stars

Following Ref. [63], we begin by fitting the data for each set of EoSs to the simple

curve

C =
2∑

k=0

ak(ln Λ)k. (5.7)

Doing so, yields a0 = 0.3617, a1 = −0.03548, and a2 = 0.0006194 for the constrained

set of EoSs, similar to what was found in [63]. As in the I-Love-Q case, however, the
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Figure 5.3: Similar to Fig. 5.2 but for the C-Love (left) and the R-Love relations
(right). In the top panels, we show two different fits, one for the unconstrained set
and one for the constrained set of EoSs. The bottom panels show the absolute
differences (rather than fractional difference as in Fig. 5.2) from the fit. The
absolute difference is suppressed in the constrained set case relative to the
unconstrained set, and results from previous work [63]. In the left panel, we also
present the corresponding relations in the hybrid star cases (dashed green) for
comparison, where, although still EoS-insensitive, the degree of universality
decreases.
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above fitting function does not limit properly to the Newtonian result

CN = KCΛΛ−1/5. (5.8)

We thus repeat the fit using Eq. (5.6) as the fitting function, with the new fitting

coefficients presented in Table 5.1.

The left panel of Fig. 5.3 shows the C-Love relations for both the constrained and

unconstrained sets, along with the corresponding absolute differences5 from the fits

(instead of the fractional differences as done back in Fig. 5.2). The fit to the con-

strained EoSs suppresses the EoS variability compared to the fit to the unconstrained

set, as well as that of previous work [63]. The maximal EoS variation is compared

between these three cases in Table 5.2.

From the C-Love relations, we can also compute directly the R-Love relation using

R(Λ) = m/C(Λ) for NSs of mass m. The right panel of Fig. 5.3 shows the R-Love

relations for the constrained and unconstrained sets, with the bottom panel showing

the absolute difference of the data and the fits. The C-Love relations allow us to infer

the NS radius to better than ∼ 350m in the constrained case, while the error goes up

to 1, 000m in the unconstrained case, as also tabulated in Table 5.2. The systematic

uncertainty in the radius using the constrained fit is thus comparable to the ∼ 140m

systematic uncertainty in the radius due to the choice of EoS to model the crust [335].

See also Refs. [237,336] for related work on the R-Love relations.

5We present absolute differences instead of fractional differences since the former is what matters
directly to the GW data analysis.
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5.3.2.2 Hybrid quark-hadron stars

Let us now focus on whether the C-Love relations hold for hybrid stars. Much like

in Sec. 5.3.1.2, we perform 3 separate fits: one to the constrained set plus 10 hybrid

EoSs, another to the constrained set only, and a third to the 10 hybrid EoSs only.

We then compare the EoS insensitivity in each case.

In the top left panel of Fig. 5.3, we show the C-Love relations for hybrid stars

(dashed green curves), while in the bottom panel, we show the absolute difference

of the relations for such stars from the fit constructed only from the constrained set

of EoSs (dashed green curves). The C-Love relations for hybrid stars remain EoS-

insensitive, but the degree of universality is not as high as in the case of hadronic NSs.

Table 5.4 compares the maximal EoS variability for the constrained and hybrid star

EoSs fitting to the three data sets described above. As in Sec. 5.3.1.2, the maximal

EoS variation for hybrid stars fluctuates only slightly (∼ 4.5% − 7%) in each case.

From this, we conclude that hybrid stars do obey the C-Love relation derived for

nuclear matter stars, with the caveat that the maximum universality increases to ∼

7.1%. For completeness, we also show the R-Love relations for hybrid stars in Fig. 5.3.

The absolute differences from the (constrained EoS) fit are similarly displayed in the

bottom panel, showing a maximum EoS variability of ∼ 50 m, consistent with the

uncertainties found in the unconstrained relations.
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Figure 5.4: Binary Love relations using Eq. (5.9) fitted to the constrained (dotted
maroon) and unconstrained sets (solid green), fixing q = 0.90, 0.75 and 0.50. The
bottom panels show the absolute difference (not the relative difference as in
Fig. 5.2) of the fit and the data. The fit to the constrained set shows a reduction in
EoS variation relative to both the fit to the unconstrained set and previous
work [68]. For comparison, we also show the binary Love relations for the 10 hybrid
star EoSs (dashed green curves), which present much larger EoS variation. Observe
here how both hadronic and hybrid star EoSs alike seemingly observe increasingly
small distinction from the fits as the mass ratio q approaches 0. While the absolute
errors remain somewhat consistent with mass ratio, the fractional differences from
the fit approach 0 as q → 0 as the universal relation becomes exact (Λs → Λa).
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Fitting Maximal EoS Variability

Case Constrained Hybrid

Combined
0.037 0.055

(Case 1)

Constrained only
0.022 0.072

(Case 2)

Hybrid only
0.058 0.045

(Case 3)

Table 5.4: Similar to Table 5.3 but for the C-Love relation. For all 3 cases, the
hybrid EoSs are only universal up to a minimum of ∼ 1% (fractional difference from
the fit), and the constrained EoSs typically outperform the hybrid ones (other than
the third case where the hybrid stars show slightly better agreement to the fit). The
second case is also shown in Fig. 5.3.

5.3.3 Binary love relations

Let us now consider the binary Love relations. As in other relations, we consider

nuclear matter stars and hybrid stars separately.

5.3.3.1 Nuclear matter stars

Following Ref. [68], we begin by fitting the binary Love relations to the constrained

and unconstrained sets using the two-dimensional curve:

Λa = Fn(q)
1 +

∑3
i=1

∑2
j=1 bijq

jΛ
i/5
s

1 +
∑3

i=1

∑2
j=1 cijq

jΛ
i/5
s

Λα
s , (5.9)

where q ≡ m2/m1 is the mass ratio with m2 ≤ m1, and Fn(q) is the Newtonian-

limiting controlling factor, given by

Fn(q) ≡ 1− q10/(3−n)

1 + q10/(3−n)
. (5.10)
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The coefficients of the fit to the constrained set are

bij =



−14.40 14.45

31.36 −32.25

−22.44 20.35


cij =



−15.25 15.37

37.33 −43.20

−29.93 35.18


, (5.11)

where we set n = 0.743 and α = 1 as was done in Ref. [68]. Unlike the individual

I-Love-Q relations, the binary Love relations depend also on the mass ratio.

Figure 5.4 shows the improved binary Love relation for 3 different mass ratios

(q = 0.9, 0.75 and 0.5) for both the constrained and unconstrained sets of EoSs.

Once again we find that the constrained set shows a considerable increase in EoS-

insensitivity relative to both the unconstrained set and previous works [68]. As before,

the fit to the unconstrained set shows similar, yet slightly larger EoS variation than

that found in previous work [68] due to the random sampling used in our analysis.

The absolute error between the fit and the data is approximately independent of the

mass ratio q, with a subtle maximum at q = 0.75, which mimics the behavior of the

controlling factor Fn(q). As before, maximum EoS variation is tabulated in Table 5.2

for each value of mass ratio considered here.

We can extract two additional conclusions from Fig. 5.4. First, as the mass ratio

becomes more extreme (i.e. away from unity), the ranges of values that Λs and Λa

can take decrease. This is because as the separation between m1 and m2 increases,

the effective number of possible Λ1(m1)-Λ2(m2) configurations decrease, and thus,
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the allowed parameter space shrinks. Second, the fit to the constrained set does not

extend to as high values of Λs as the fit to the unconstrained set does. This is because

of how the sets of EoSs were generated in our analysis, with the unconstrained set

including some EoSs that are stiffer6 and others that are softer than those constrained

by the GW170817 event. This results in the unconstrained set containing a larger

range of tidal deformabilities Λ1,2 (from both above and below) than the constrained

set, which ultimately leads to a larger range of Λs = 1
2
(Λ1 + Λ2) values.

5.3.3.2 Hybrid quark-hadron stars

Let us now consider the binary Love relations for hybrid stars. As described in

Sec. 5.2, transitional quark-hadron matter stars undergo strong first-order phase tran-

sitions at a transitional pressure Ptr, where the hadronic branch departs into a quark-

matter branch at the corresponding transitional mass mtr. These transitions result

in two distinct types of NSs, based on their observed mass: (i) massive (m ≥ mtr)

hybrid stars that have quark-matter inner cores and nuclear matter elsewhere (which

recall we denote “HS”); and (ii) low-mass (m ≤ mtr) hadronic stars with no internal

transition to quark matter (which recall we denote “NS”). We therefore expect the

binary Love relations for hybrid stars to present behavior identical to their purely

hadronic counterparts below the transitional mass (or correspondingly above a tran-

sitional Λs,tr), and very different behavior for higher masses (or correspondingly for

6Typically, the “stiffness” of an EoS is determined by the amount of pressure gained given an
increase in density. Stiff EoSs have steep pressures and predict larger maximum mass NSs, while
soft EoSs have shallow pressures and predict smaller maximum mass NSs.
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smaller Λs,tr).

This behavior is exactly what we observe in Fig. 5.4 for the binary Love relations

of hybrid stars. Indeed, contrary to the case of EoS-insensitive relations for iso-

lated hadronic stars (I-Love-Q, C-Love, and R-Love) which remain moderately EoS-

insensitive for all hybrid stars, the binary Love relations depart from their hadronic

counterparts below some transitional Λs. This is because at low pressures (Λs > Λs,tr)

the binary is purely of NS/NS type (with the EoS for both stars a member of the con-

strained set), but once the critical pressure is reached (Λs < Λs,tr), one or both stars

transition into the hybrid branch, resulting in large reductions in tidal deformability,

as shown in the left panel of Fig. 5.3. When one star lies on the hadronic-matter

branch while the other is on the quark-matter branch, the difference between tidal

deformabilities becomes larger than expected for pure hadronic-matter stars. This re-

sults in large deviations in the sums and differences of tidal deformabilities (Λ2±Λ1),

disrupting the overall universality and generating the large “bump” in the binary

Love relations for hybrid stars7 seen in Fig 5.4.

From this analysis, we conclude that binaries containing one or more hybrid stars

do not satisfy the same binary Love relations as binaries that contain only traditional

nuclear matter stars. This does not imply, however, that more sophisticated binary

Love relations cannot be constructed that will remain EoS-insensitive and able to

model both types of binary systems. Such relations, however, would necessarily have

7This discrepancy is not present in the I-Love-Q and C-Love relations due to their single-star
nature.
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to include (at least) one new parameter that determines the transition between the

hadronic and the quark branches, such that the “bump” in the binary Love relations

can be properly modeled. Work along these lines is outside the scope of this chapter.

5.4 Impact on future observations

We have now shown that binary NS merger observations can help improve the EoS-

insensitive relations, but the question remains: is it worth it? Current interferometer

sensitivities are not yet high enough to accurately constrain the dominant tidal pa-

rameter Λ̃. For example, GW170817 was detected by the second LIGO observing run

(“O2”) [78] and Virgo [337], and was able to constrain Λ̃ to a 90% credible interval

centered at µΛ̃ = 395 and with a width of 325 [233] (or σΛ̃ ≈ 198). This corresponds

to statistical uncertainties of O(80%), which dominates the error budget compared to

the small systematic uncertainties picked up by EoS variation in the EoS-insensitive

relations. This implies that currently, the use of improved EoS-insensitive relations

will only make a negligible difference on the extraction of tidal parameters.

In this section, we further explore this question and study when in the future the

new set of improved relations will become important as current detectors are improved

and new ones are built. In Sec. 5.4.1, we first estimate the systematic uncertainties

introduced by using the improved binary Love relations. In Sec. 5.4.2, we estimate

the statistical uncertainties on the extraction of tidal parameters, and compare them

to the above-mentioned systematic uncertainties. This is repeated for 5 future detec-

tors, where multiple detections become important, but to combine constraints from
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multiple events we cannot use the Λ̃ parameterization, as this depends on the masses

of the binary constituents. To remedy this, we re-parameterize the waveform in terms

of the coefficients λ0 (sometimes called Λ1.4) and λ1, obtained from a Taylor expan-

sion of the dimensionless tidal deformability Λ about a “canonical” reference mass

m0 = 1.4 M� [68, 294]:

Λ = λ0 + λ1

(
1− m

m0

)
+O

[(
1− m0

m

)2
]
. (5.12)

The Taylor coefficients λ0 and λ1 are mass independent, and thus they are identical

in all binary NS observations, and their posteriors may be combined.

5.4.1 Error Marginalization

Although the improved binary Love relation Λrelation
a (Λs, q) shows a high degree of

universality, any residual EoS dependence in the relation could introduce a systematic

bias and lead to incorrect inferences about the correct EoS. Let us then discuss a

method to marginalize over the residual EoS-dependence of the binary Love relations.

The residual is here defined as

r(Λs, q) ≡ Λrelation
a (Λs, q)− Λtrue

a , (5.13)

where Λrelation
a (Λs, q) is given by the binary Love fit found in Sec. 5.3.3, while Λtrue

a

is the true value predicted by choosing a particular EoS in the constrained set and

solving for the tidal deformabilities numerically.

Following the proposal in [66], one can model the residual EoS-sensitivity by
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enhancing the binary Love relations through

Λnew relation
a = Λrelation

a (Λs, q) +N (µr(Λs, q), σr(Λs, q)), (5.14)

where N (µr, σr) is a normal distribution with mean and variance µr and σ2
r . Let

us further assume that the residuals r obey a Gaussian distribution with mean and

standard deviation that can be decomposed as

µr(Λs, q) =
µr(Λs) + µr(q)

2
, (5.15)

σr(Λs, q) =
√
σ2
r(Λs) + σ2

r(q), (5.16)

where µr(q) and µr(Λs) are the means marginalized over Λs and q respectively, while

σr(q) and σr(Λs) are the standard deviations marginalized over Λs and q respectively.

Clearly then, to account for the residual EoS-sensitivity, we must first find the

marginalized mean and standard deviation of the residual function, which we accom-

plish as follows. We first generate Λtrue
s data by sampling through various values

of mass ratio q ∈ [0.36, 1] and symmetric tidal deformability Λs ∈ [4, 4600] over all

100 elements of the constrained set of EoSs. For each value of (q,Λs) we then com-

pute Λrelation
a from the binary Love relation, and then compute the residuals through

Eq. (5.13). We then proceed to marginalize over q by binning the residuals in Λs,

which returns a distribution of residuals that is only a function of the binned Λs,

and from which we can compute the mean µs(Λs) and the standard deviation σr(Λs).

Repeating this procedure by marginalizing over Λs then allows us to compute the

mean µs(q) and the standard deviation σr(q). Finally, we fit the means and standard
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µ1 3.509× 10−3 σ1 −2.074× 10−7

µ2 9.351× 10−1 σ2 −1.492× 10−3

µ3 −18.07 σ3 −4.891× 10−2

µ4 27.56 σ4 8.207× 10−1

µ5 −10.10 σ5 −1.308

σ6 −63.76

σ7 11.14

σ8 75.25

σ8 −23.69

Table 5.5: Coefficients to the fits given by Eqs. (5.17)-(5.20) for the relative error on
Λa in the improved binary Love EoS-insensitive relations presented in this chapter.

deviations to the functions [66]

µr(Λs) = µ1Λs + µ2, (5.17)

µr(q) = µ3q
2 + µ4q + µ5, (5.18)

σr(Λs) = σ1Λ5/2
s + σ2Λ3/2

s + σ3Λs + σ4Λ1/2
s + σ5, (5.19)

σr(q) = σ6q
3 + σ7q

2 + σ8q + σ9, (5.20)

where the fitting parameters µi and σi are tabulated in Table 5.5.

In what follows, however, we will be interested in comparing an estimate of the

systematic uncertainties in λ0 due to the residual EoS-sensitivity in the binary Love

relations to the statistical error in the extraction of this parameter. To estimate the

former, we first numerically calculate λtrue
0 by sampling again in (q,Λs) within the

same ranges as before and over all 100 elements of the constrained and the uncon-

strained sets of EoSs. We then use the binary Love relation to calculate λrelation
0 over
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the (q,Λs) sampled points, and from this we compute the residual.

R(Λs, q) = λrelation
0 (Λs, q)− λtrue

0 . (5.21)

Figure 5.5 shows a histogram of R for both the constrained and unconstrained set

of EoSs. The standard deviations of the two histograms, σ = 9.764 and σ = 78.28,

show a large decrease in EoS-variability from the unconstrained to the constrained

sets of EoSs. From this distribution, we can additionally find the 90%, 99%, and

100% credible interval on λ0, namely P90 = 13.19, P99 = 42.38, and P100 = 111.32 for

the constrained EoSs.

Figure 5.6 shows the standard deviations of the λ0 residuals binned in q (top

panel) and Λs (bottom panel), as was done previously for the Λa residuals. The

EoS-variability in λ0 is dominated by the region around q ∼ 0.5 and Λs ∼ 2000.

Henceforth, in order to take into account these high-error regions of parameter space

which may get averaged out, we approximate the EoS-variability in the binary Love

relations with the 90% credible interval (rather than the 1σ uncertainty), which for

the λ0 parameter is P90 = 13.19 (indicated by the dashed green line in Fig. 5.6 and

the dashed indigo line in Fig. 1.11). We can similarly derive a conservative estimate

of the systematic uncertainty due to EoS-variability in the binary Love relations in

terms of Λ̃a to find 12.01, which is what we use later in Fig. 5.7. Here we note that

these results rely on the assumption of a purely hadronic EoS, as the constrained set

of EoSs do not contain any hybrid stars. This assumption was also made in Ref. [39]
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upon the derivation of the posterior probability distribution.
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Figure 5.5: Residuals on λ0 computed as R = λrelation
0 − λtrue

0 (computed by
sampling q ∈ [0.36, 1] and Λs ∈ [4, 4600] for each of the 100 EoS samples) for the
binary Love relations modeled in Sec. 5.3.3 for both constrained and unconstrained
sets of EoSs. We fit these residuals with Gaussian distributions centered at
µ = −0.1530 and µ = 0.2710 with standard deviations of σ = 9.764 and σ = 78.28
for the constrained and unconstrained sets of EoSs, respectively. These uncertainties
correspond roughly to the systematic uncertainties introduced on the parameter
extraction of λ0 upon the use of binary Love relations. However, to take into
account the systematic uncertainties found in high-error regions of the parameter
space, we instead set the systematic uncertainty to be the 90th percentile,
P90 = 13.19. The systematic uncertainties from using the improved (constrained)
binary Love relations are negligible compared to the statistical uncertainties accrued
on parameter extraction from GW170817, found to be σλ0 = 170.1.

5.4.2 Future Observations

We now estimate the feasibility of using the improved EoS-insensitive relations in

future GW observations of the coalescence of binary NSs. We estimate the sta-

tistical accuracy to which parameters can be extracted through the simple Fisher

analysis [160,338] method described in detail in Chapter 3, assuming sufficiently high
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Figure 5.6: Standard deviations of the λ0 residuals R binned in q (top) and Λs

(bottom), highlighting the different error weights across the entire (q,Λs) parameter
space. In this figure, the violet circles indicate the standard deviation of each bin in
q-space (Λs-space), while the solid black lines represent the best fit given by
Eqs. (5.19)-(5.20). The uncertainty is maximal for q ∼ 0.5 and Λs ∼ 2000, while it
becomes minimal for both low and high values of q and Λs. Also shown in the figure
is the 90th percentile of the un-binned residuals seen in Fig. 5.5, taken to be the
overall systematic uncertainty introduced by using binary Love relations.
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signal-to-noise ratio and Gaussian noise [107,108,160].

We consider here 6 different interferometer designs as described in Chapter 3:

aLIGO O2 [78], aLIGO at design sensitivity [78], A+ [81], Voyager [81], CE [84],

ET-D [81], in order to compare the statistical uncertainties accrued on parameter ex-

traction using future upgraded LIGO detectors, as well as third generation detectors.

We here consider the PhenomD (IMRD) waveform template [89, 90] modified by a

6PN tidal correction [105] (IMRD + 6PN) as described in Chapter 3, as well as the

same PhenomD template modified instead with a NRTidal correction [103] (IMRD

+ NRTidal). Considering two template models will allow us to estimate systematic

uncertainties due to mismodeling of the GW signal.

We begin by testing our Fisher analysis (with an IMRD + 6PN waveform injection)

against a simulated event identical to GW170817 with O2 detector sensitivity [78].

Because only 1 event was detected, we use Λ̃ and δΛ̃ as the tidal parameters for

comparison purposes. Further, we scale the luminosity distance such that the signal-

to-noise-ratio (SNR ≡ ρ) is fixed to ρ = 32.4, as found in GW170817. We used

fiducial template parameter values of M = 1.22 M� for the chirp mass, η = 0.249

for the symmetric mass ratio, Λ̃ = 395 (Corresponding to GW170817), and 0 for

the remaining parameters. We also assume low spin priors |χ| ≤ 0.05, as well as

Λ̃ ≤ 3000 and |δΛ̃| ≤ 500 [339]. The resulting 90% credible region of the posterior

distribution on Λ̃ has a range of ±276.99, which is in close agreement to that found

by LIGO [30,233]
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Figure 5.7: Estimated statistical uncertainty σAGW170817 in the extraction of Λ̃ from a
single GW170817-like event as if observed with aLIGO at design sensitivity, A+,
Voyager, CE, and ET-D, plotted as a function of the signal-to-noise-ratio ρAGW170817

that those detectors would measure for such an event. For comparison, we also plot
the systematic uncertainty on Λ̃ due to the use of the binary Love relations. The
statistical and the systematic errors become comparable for Voyager-class detectors
or better.
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Next, we consider events similar to GW170817 detected on upgraded detectors

and future detectors, as well as the combined statistical uncertainties of NA events

detected over a 1 year observation with each detector. The latter is calculated by

integrating the local binary NS merger rate over redshifts up to the horizon redshift

of each detector. Similar to before, we used fiducial template parameter values of

M = 1.22 M� for the chirp mass, η = 0.249 for the symmetric mass ratio, λ0 = 150,

λ1 = −213 (corresponding to the GW170817), and 0 for the remaining parameters.

Also as before, for each Fisher calculation we assume low spin priors |χ| ≤ 0.05, as well

as 0 ≤ λ0 ≤ 3207 and −4490 ≤ λ1 ≤ 0 [294]8. The process we use to compute single

and combined statistical uncertainties for each detector sensitivity SAn (f) is detailed in

Sec. 3.1.1. From this, we determine if and when the statistical uncertainties associated

with the parameter extraction of λ0 drop below the systematic EoS variation errors

from using the binary Love relations.

Figures 5.7 and 1.11, and Table 5.6 summarize our results graphically using an

IMRD + 6PN template. In Fig. 5.7, one can see the statistical accuracy to which Λ̃

can be estimated as a function of ρAGW170817 for single GW170817-like events, i.e. the

signal-to-noise ratio that future detector A would have measured for a GW170817

event. The systematic uncertainty in Λ̃ (the horizontal dashed line) becomes compa-

rable to the statistical uncertainty for Voyager-class detectors or better. Figure 1.11

presents similar results but for the parameter λ0, for which one can combine poste-

8These are converted from the dimensional forms found in [294] into their corresponding dimen-
sionless forms.
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Detectors (A) GW170817 Multiple events

ρAGW170817 σAGW170817

NA σAN
Low Central High Low Central High

O2 3.2× 101 1.7× 102 – – – – – –

aLIGO 9.1× 101 1.1× 102 2.0× 101 9.8× 101 3.0× 102 1.8× 102 8.3× 101 4.7× 101

A+ 1.8× 102 4.6× 101 1.6× 102 7.9× 102 2.4× 103 5.9× 101 2.5× 101 1.4× 101

Voyager 4.3× 102 2.5× 101 2.2× 103 1.1× 104 3.2× 104 2.1× 101 9.6× 100 5.3× 100

ET-D 1.4× 103 6.9× 100 7.2× 104 3.4× 105 1.1× 106 3.8× 100 1.7× 100 9.6×10−1

CE 2.8× 103 7.7× 100 3.0× 105 1.4× 106 4.4× 106 3.7× 100 1.7× 100 9.0×10−1

Table 5.6: Approximate signal-to-noise ratio ρAGW170817 and (1σ) statistical
uncertainty on the extraction of λ0 had a single event like GW170817 been observed
by future interferometer A and had interferometer A observed NA events in a 1 year
observation, using aLIGO, A+, Voyager, CE, and ET. The number of events NA,
and the combined statistical uncertainty depends on the binary NS merger detection
rate, and thus we include results assuming an upper, a central and a lower limit on
this rate. The statistical uncertainties on λ0 becomes comparable with the
systematic uncertainty (set to be P90 = 13.19) from using the improved binary Love
relations with detectors of Voyager-class or better.
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riors and obtained a reduced combined statistical error. This figure also shows that

the statistical and systematic uncertainties become comparable for Voyager-class de-

tectors or better. The careful reader will notice that Figs. 1.11 and 5.7 show that

the single-event statistical uncertainties using CE is higher than using ET despite the

latter having a larger SNR for a GW170817-like event. This is because the 3-detector

geometry of ET enables it to have higher sensitivity than CE at frequencies above

300Hz, which is precisely where the tidal deformabilities are encoded, but ET has

lower sensitivity at lower frequencies, where a lot of the signal-to-noise ratio accumu-

lates.

Is the statistical error calculated here robust to mismodeling systematics in the

template? We repeat the analysis above using an IMRD + NRTidal template model

and find results consistent with those presented above. Indeed, Fig. 1.11 shows the

individual and combined statistical error on λ0 when using this template model (ma-

roon circles and dashed region). The accuracy to which λ0 can be measured with this

template model is systematically better than when using the IMRD+6PN model (by

roughly a factor of two). This implies that more accurate template models will indeed

be required in the third-generation detector era, as previously pointed out in [103].

However, our conclusion that for Voyager-class detectors or better the statistical and

binary Love systematic uncertainties become comparable seems robust.
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5.5 Conclusions

The recent GW observation of a binary NS coalescence, GW170817, placed constraints

on the supranuclear matter EoS for NSs. We used this observation to generate a re-

stricted set of spectral EoSs that agree with it, in order to reduce the uncertainties

upon the extraction of tidal parameters from future GW events. Previous work by

Yagi and Yunes [61,62,67,68] had found EoS-insensitive relations between symmetric

and antisymmetric combinations of NS tidal deformabilities, which aid in the extrac-

tion of said tidal parameters. We here found that the GW170817-constrained set of

EoSs are more EoS-insensitive by a factor of ∼ 60% for stars with mass ratios of 0.75

relative to previous work. Similarly, we find an increase in EoS-insensitivity in the C-

Love and I-Love-Q relations by factors of ∼ 75% and ∼ 50% respectively. The former

further allowed us to improve the R-Love relation leading to uncertainties below 400

meters in the entire parameter space. We also studied the EoS-insensitive relations

of hybrid stars and found that for the most part the relations remain insensitive for

isolated stars, albeit with slightly higher EoS variability. The binary Love relations,

however, do not satisfy the same EoS-insensitive relations as in the case of purely

hadronic star, when the binary contains at least one hybrid star.

The second half of this chapter focused on when the improvements in the EoS-

insensitive relations would become necessary in future detectors. Current detectors

are not yet sensitive enough that the systematic uncertainties in the EoS-insensitive

relations make a large difference. However, we did find that for Voyager-class detectors
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or better, the systematic uncertainties in the EoS-insensitive relations due to EoS

variability become comparable to statistical uncertainties in the estimation of Λ̃ and

λ0. We also considered the effect of waveform mismodeling and found that the above

conclusion remains robust, but that more accurate waveform models will be necessary

to take full advantage of the improved sensitivity of future detectors.

Future work on this subject could entail an investigation into the improvement

of alternative EoS-insensitive relations, such as the multipole Love relations between

various `-th order electric, magnetic, and shape tidal deformabilities, as discussed

in [65]. Lackey et al. [340, 341] presented surrogate models of non-spinning effective-

one-body waveforms with the use of universal relations. By reducing the number of

waveform model parameters, surrogate models aid in the extraction of NS observables

from GW detections. The improvement in the multipole Love relations can then be

used to increase the accuracy of such surrogate models. Another possible avenue for

future research includes a more comprehensive analysis into the intricacies of new

hybrid star binary Love relations.



Part B

Testing general relativity
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Chapter 6

Parameterized tests

Gravitational waves from extreme gravity events such as the coalescence of

two black holes in a binary system fill our observable universe, bearing with

them the underlying theory of gravity driving their process. 10 binary black

hole merger events observed so far can be used to test Einstein’s theory of

general relativity, which has otherwise been proven to agree with observations

from several sources in the weak- or static-field regimes. We here demonstrate

use of the so-called parameterized tests of general relativity where we intro-

duce generic non-Einsteinian corrections to the waveform, which can easily be

mapped to parameters in known example theories beyond general relativity.

We find that multi-band observations can be crucial in probing several modi-

fied theories of gravity, including those with gravitational parity violation. We

then study prospects on constraining scalar tensor theories with mixed black

hole - neutron star systems. Finally, we investigate the effects of correcting

the general relativity PhenomD template waveform with the ensuing interac-

tions during both the inspiral and the remnant black hole quasinormal mode

portions of the binary black hole coalescence event. In particular, we study

the detectability of EdGB effects by including corrections to both the inspiral

and ringdown portions, as well as those to the mass and spin of remnant black

holes.

190
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6.1 Introduction

Einstein’s theory of General Relativity (GR), which elegantly relates the geometries

of spacetime to the manifestation of gravity, has remained at its post as the prevailing

theory of gravity for over 100 years1. Throughout this era, GR has been subject to

a plethora of tests in search for minute deviations which may point to alternative

theories of gravity. As pointed out by Popper [342], scientific theories such as GR

can never be entirely proven, however alternative theories may be constrained. When

subject to observations on the solar-system scale where gravity is weak and approx-

imately static, such as photon-deflection, Shapiro time-delay, perihelion advance of

Mercury, and the Nordvedt effect [12], GR has passed the tests with flying colors. Ob-

servations concerning the strong-field, static systems of binary pulsar systems [10,11]

similarly proved GR to be entirely consistent. On the large-scale side, cosmological

observations [13–17] have also proven Einstein to be correct. See also Ref. [18] for a

review on testing general relativity on cosmological scales.

On September 14, 2015, the LIGO detectors in Hanford and Livingston chirped

with activity as they, for the first time ever, observed the iconic GW signal from the ex-

plosive coalescence of two BHs 1.4 billion lightyears away. Aptly named GW150914 [28]

1This chapter is based on the following papers: Z. Carson, B. Seymour and K. Yagi, Future
Prospects for Probing Scalar-Tensor Theories with Gravitational Waves from Mixed Binaries, Class.
Quant. Grav. 37, 10.1088 (2020), Z. Carson and K. Yagi, Probing string-inspired Gravity with the
inspiral and ringdown of gravitational waves, submitted to Phys. Rev. D (2020), Z. Carson and
K. Yagi, Parameterized and inspiral-merger-ringdown consistency tests of gravity with multi-band
gravitational wave observations, Phys. Rev. D 101, 044047 (2020), and Z. Carson and K. Yagi,
Parameterized and Consistency Tests of Gravity with Gravitational Waves: Current and Future,
Proceedings, Recent Progress in Relativistic Astrophysics: Shanghai, China, Vol. 17(1) (2019)
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by the LVC, this historic detection has ushered in an entirely new era of observa-

tional astrophysics, finally allowing us to probe the extreme gravity regime of space-

time [137, 154, 168], where the fields are strong, non-linear, and highly dynamical.

GWs such as these carry multitudes of information across the universe regarding the

local spacetime properties of the event, including clues highlighting the underlying

theory of gravity driving the show. For the past 100 years, Einstein’s theory of GR has

remained at its post as the prevailing theory of gravity, despite GW150914 and the fol-

lowing 10 events [343] all being found to be consistent with his theory [143,344–346].

Even though the marvel of modern engineering that is the current LVC infrastruc-

ture [78] might not yet be sensitive enough to expose the subtle signs of a theory

beyond GR, the next generation of ground- and space-based GW detectors [81,84–88]

promise hefty sensitivity improvements across the GW frequency spectrum. This may

yet prove to finally be enough to study the traces of new hidden theory of gravity

describing our universe.

For the past 100 years, GR has been put under the microscope, with countless

observations and tests performed in a wide variety of spacetime environments, all

ultimately finding agreement with Einstein’s famous theory. Observations on the

solar-system scale where gravity is weak and approximately static [12], or the strong-

field, static observations of binary pulsar systems [10,11], even cosmological observa-

tions [13–17], and extreme-gravity observations of GWs [137, 143, 154, 168, 344–346],

have all ultimately found results remarkably consistent with the predictions of GR.
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Even with the substantial list of past observational success, we must continue

to test GR. While this theory still explains all of our gravitational observations,

there still remains several open questions which could potentially be explained by

alternative theories of gravity. To give a few examples, the accelerated expansion of

the universe due to dark energy [70,73,74,76], the inconsistent galactic rotation curves

due to dark matter [69–72, 75], the matter/anti-matter asymmetry in the current

universe [69, 71], the inflationary period of the early universe [69–71,74], or even the

question of unifying GR and quantum mechanics [69–74] all remain open to this day.

Several modified theories of gravity have been proposed to date, many of which have

been found to explain some of the open questions remaining. Similar to the historical

Newtonian description of gravity, these advanced theories could potentially reduce

to GR in weak-gravity environment, and activate in the un-probed extreme-gravity

spacetimes. For this reason, binary BH inspirals with immense gravitational fields

and velocities reaching ∼ 50% the speed of light could very well prove to be vital in

probing such a theory’s untested side.

With such a large array of proposed modified gravity alternatives, how does one go

about determining which one most accurately describes nature? As always, we must

rule them out one at a time with experimental observations. For example, weak-field

observations of the solar system and binary pulsar systems have placed very stringent

constraints on several scalar-tensor theories [347–352], as well as the spontaneous

scalarization of neutron stars [353,354]. There are some remaining theories that have
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not yet been strongly constrained – for example, theories with gravitational parity

violation [120, 121, 181] which may not be activated in the weak-curvature systems

currently studied. In this chapter, we study various modified theories of gravity, all

of which affect the gravitational waveform with different dependence on the relative

velocities of binary constituents, or gravitational wave frequencies.

We currently live in a very exciting era of gravitational wave astronomy. With

great success in both the past and on-going observing runs, many new ground-based

GW interferometers are planned: several upgrades to the current LIGO infrastruc-

ture (Advanced LIGO, LIGO A+, LIGO Voyager) [81], as well as new third-generation

detectors like Cosmic Explorer (CE) [81] and the Einstein Telescope (ET) [84], each

with improved sensitivity in the 1−104 Hz range. While such detectors have been de-

signed with incredible sensitivities that are able to observe millions of events per year,

with signal-to-noise ratios (SNRs) on the order of 103 [188], they can not probe the

sub-unity frequency bands dominated by compact binary early inspirals, supermas-

sive BH binaries, white-dwarf binaries, etc. Space-based detectors such as LISA [86],

TianQin [85], B-DECIGO [87], and DECIGO [88] on the other hand, have long Mm-

to Gm-scale arms which allow them to accurately probe the low-frequency 10−4 − 1

Hz portion of the GW spectrum. While ground-based detectors are proficient at

observing the late, high-frequency, high-velocity, merger-ringdown portion of stellar-

mass binary BH gravitational waveforms, space-based detectors can probe the early,

low-frequency, low velocity inspiral portion.
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Shortly after the observation of GW150914, Sesana [355] pointed out that joint

multi-band detections of GW150914-like events2 could be made using both LISA and

ground-based detectors, with multi-band detection rates on the order of O(1) [355,

359]. Such events would first be observed in their early inspiral stage by space-based

telescopes, until leaving the space-band at 1 Hz for LISA or TianQin for several

months before entering the ground-band to eventually merge at ∼ 300 Hz. The early

detections by space-based interferometers could give alert to EM telescopes [355]

for follow-up observations, as well as ground-based detectors, allowing for potential

sensitivity optimizations which could be used to improve upon tests of GR [360].

Similarly, ground-based observations will allow one to revisit sub-threshold space-

based data, effectively lowering the detection threshold SNR from 15 to 9 [361, 362],

and enhance the overall number of detections [357,362]. Additionally, multi-band GW

observations can improve upon the measurement accuracy of many binary parameters,

specifically the masses and sky positions [150,151,357,363].

In this chapter, we begin with a demonstration of the improvements one can

gain with multi-band observations for the parameterized tests of GR [149, 150, 363,

364]. We study a variety of example theories of gravity, including Einstein-dilaton

Gauss-Bonnet (EdGB) gravity, dynamical Chern-Simons (dCS) gravity, scalar-tensor

theories, noncommutative gravities, theories with time-varying G, time-varying BH

mass or modified dispersion relations.

2Multi-band GW observations are also possible for more massive binary BHs [356,357] and binary
neutron stars [358].
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Following this, we focus on the present and future implications on constraining

non-GR theories with an additional massless scalar field, known as scalar tensor

theories (STTs). This has been studied for binary pulsar systems [11, 365], pulsar-

white dwarf (WD) systems [11, 365–367], and triple pulsar-WD-WD systems [368,

369]. See also Refs. [370, 371] for constraints on STTs from both GWs and pulsar

timing measurements. Here, we consider the present and future constraints obtained

from the GW detections of mixed BH-NS coalescences. In STTs, compact objects

acquire scalar charges that source the scalar field. A scalar force acts between two

scalarized objects, giving rise to a fifth force which depends on the internal structure

of the massive objects and violates the strong equivalence principle (SEP). Binaries

consisting of scalarized astrophysical objects further emit scalar dipole radiation (on

top of gravitational quadrupolar radiation in GR), causing the binaries to evolve

faster.

Finally, we focus our attention on a particular string-inspired STT known as

Einstein-dilaton Gauss-Bonnet (EdGB) gravity, where a dilaton scalar field is coupled

to a quadratic curvature term in the action [111,114,372,373], with coupling parameter

αEdGB. With this new interaction in hand, BHs can become scalarized [137, 146, 180,

374–379] (similar to conducting spheres becoming electrically charged), and a new

fifth force interaction can be experienced between two such objects in a binary orbit.

Similar to analagous interactions found in nature (i.e. EM dipole radiation), such

binary systems would decay faster than proposed by GR through additional scalar
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dipole radiation.

The current observational constraint found on the EdGB coupling parameter to

date has been set to
√
αEdGB . 2 km [114–119, 156, 380]. Previous work on con-

straining EdGB gravity with GWs from BBH mergers mainly focused on looking at

the correction in the inspiral due to the scalar dipole emission [117–119, 154]. Black

hole quasinormal modes (QNMs) can also be used to probe this theory [156], while

Ref. [380] estimated a rough bound on the theory from the dephasing due to the scalar

field radiation computed via NR simulations. Additionally, see Ref. [149] where the

authors found constraints on dipole emission with space-based detector LISA, as well

as multiband observations. See also a recent analysis by Ref. [381], where the first

NR model of an EdGB merger-ringdown waveform was presented, finding a coupling

parameter constraint of
√
αEdGB ≤ 11 km.

In this part of the chapter, we probe EdGB gravity with GWs from BBH merg-

ers by including both inspiral and ringdown corrections. The former correction is

computed using the commonly used ppE formalism [77], in which generic amplitude

and phase modifications are introduced into the inspiral GR waveform, and the map-

ping to EdGB is known [119,153,154]. The latter corrections are computed with the

EdGB corrections to the individual QNM ringing frequency and damping time found

in Ref. [155] (see also [156–158]). Moreover, we take into account EdGB corrections

to the final mass and spin of the remnant BH as a function of the initial masses

and spins, which can be estimated from corrections to the orbital energy and angular
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momentum found in Ref. [159]. We then directly estimate the measurement accuracy

of αEdGB using corrections to the full waveform, rather than only the inspiral ones as

usually considered. In previous analyses, BHs were assumed to be slowly-rotating and

corrections were derived up to quadratic order in spin. Here, we estimate how much

higher-order corrections in spin may affect bounds on αEdGB by deriving corrections

to quartic order in spin as well.

6.2 Modified theories of gravity

In this section we describe the several modified theories of gravity considered in this

chapter, which can be thought of as breaking or deforming the fundamental pillars of

GR. First among them is the strong equivalence principle (SEP) pillar [129], which

states that the trajectories of free-falling and self-gravitating bodies are independent

of their internal structure. Second, the Lorentz invariance (LI) pillar tells us that

there is no preferred direction in our universe. And last, the four dimensional space-

time (4D) pillar, which conveys that the universal spacetime is composed of only four

dimensions: 3 spatial and 1 temporal. Finally, we consider the principle of massless

gravitons (mg) as a result of GR, which describes gravity as being mediated by mass-

less bosons traveling at the speed of light. Theories which violate these fundamental

pillars of GR can be broadly cataloged into two groups:

• Modifications to GW generation mechanisms: These modifications to GR

alter how GWs are formed, and are active only during the coalescence event,
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with non-zero time derivatives of the source multipole moments. Because of

this, these theories depend only on the local properties of the source, such as

the masses and spins.

• Modifications to GW propagation mechanisms: These modifications alter

the speed or dispersion relations of GWs themselves, and are only active during

their travel between their source and Earth. Because of this, such theories

depend on global properties such as the luminosity distance DL to the event.

In the following subsections, we provide a brief description of the modified theories of

gravity considered in this investigation, together with the mapping between the ppE

parameter β and the theoretical parameters. We point the reader towards the more

comprehensive analyses of Refs. [137,154,368] for more complete descriptions of each

theory.

6.2.1 Scalar-tensor theories and Damour Esposito-Farése grav-
ity

Scalar-tensor theories which violate the SEP include a coupling into the Einstein

Hilbert action, where the Ricci scalar R is multiplied by some function of the scalar

field φ. If such a scalar field is time-dependent with a growth rate of φ̇ (for example,

from a cosmological background [125, 126, 382]), BHs will accumulate scalar charges

which accelerate the inspiral. The mapping between βST and φ̇ is given by [125,126]

β
(ST)
ppE = − 5

1792
φ̇2η2/5(m1s

ST

1 −m2s
ST

2 )2, (6.1)
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where the dimensionless BH scalar charges sST
i are given by sST

i ≡ (1+
√

1− χ2
i )/2 [125].

The ppE exponent is b = −7, thus the correction enters in the waveform at −1PN

order. We also note here that the small coupling approximation φ̇mi � 1 must be

upheld for meaningful constraints to be extracted, else the coupling terms in the ac-

tion are not sufficiently small compared to the Einstein-Hilbert action. The current

most stringent constraint on φ̇ is 10−6 s−1 [125] obtained from the orbital decay of a

supermassive BH binary OJ287.

In STTs, compact objects acquire scalar charges that source the scalar field. A

scalar force acts between two scalarized objects, giving rise to a fifth force which

depends on the internal structure of the massive objects and violates the strong

equivalence principle (SEP). Binaries consisting of scalarized astrophysical objects

further emit scalar dipole radiation (on top of gravitational quadrupolar radiation in

GR), causing the binaries to evolve faster.

Such radiation becomes larger when the difference between the scalar charges of

the binary constituents become larger, and thus a mixed binary consisting of one

black hole and one neutron star system is ideal for probing such theories [145–148].

Specifically, the increased mass difference m2
1 − m2

2 and small total mass M of a

BH/NS system will minimize the allowable constraints on
√
αEdGB ∼M (for non-GR

coupling parameter αEdGB), while the offset acquired from the increased SNR of the

alternative scenario of a large-mass binary BH system3 only improves constraints by a

3In many cases, low-mass binary BH systems and BH/NS systems with slowly rotating BHs may
be indistinguishable. However, in the Einstein-dilaton Gauss-Bonnet theory of gravity, the dipole-
radiation slightly decreases when comparing a BH/NS system with the equivalent binary BH system
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small factor of ∼ SNR−1/4, while the SNR only itself increases by ∼M5/6. Moreover,

a smaller binary system has a lower relative velocity for a fixed frequency, which

leads to an enhanced dipole radiation. It is then extremely advantageous to decrease

the total mass of the system rather than maximize it. Such sources are particularly

interesting and extremely timely to consider as two of the candidates in the O3 run

by the LIGO/Virgo Collaborations, S190426c and S190814bv, are likely to be the

merger of a black hole and a neutron star, if they are of astrophysical origin [31,144]4.

Because BHs have vanishing scalar charges in the quasi-Brans-Dicke theory of gravity

considered in this analysis, the presence of a NS is required to place constraints on

such a theory. Therefore, it is of vital importance that, not only the events be of

astrophysical origin, but they must with high confidence also be a BH/NS system

rather than a binary BH system.

A particularly interesting class of theories within STTs is the quasi-Brans-Dicke

theory. The former was introduced first by Damour and Esposito-Farése (DEF) [303,

384] which induces a non-linear growth of the scalar charges onto neutron stars called

spontaneous scalarization [303, 384, 385], while black holes remain hairless as in GR.

The latter is motivated from string theory and the dilaton scalar field is coupled with

a quadratic curvature term (Gauss-Bonnet invariant) in the gravitational action [111,

114]. In this theory, black holes have non-vanishing scalar charges [112,180,374,375]

with the NS replaced by a slowly rotating BH but the effect is insignificant, and thus the constraints
are not significantly affected.

4We note that the LVC categorizes BH/NS candidate events as m1 > 5 M� and m2 < 3 M� [383],
and therefore O3 candidates S190426c and S190814bv potentially could be binary BH mergers. In
addition, S190426c currently has a 58% possibility of being terrestrial noise.
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while neutron stars do not if the scalar field coupling is linear [112, 373]. In this

chapter we consider the single BH-NS detections with future GW detectors, as well

as the multi-band detections between both space- and ground-based detectors [149–

151, 190], and finally the combination of multiple observations [146, 152] made on

future detectors with expanded horizons.

In quasi-Brans-Dicke theories of gravity, matter fields couple to the scalar field

ϕ through the effective metric A2(ϕ)gµν [303, 367, 385, 386]. One can then define the

gradient and curvature of the conformal potential lnA(ϕ) to be α(ϕ) ≡ d lnA(ϕ)/dϕ,

and β(ϕ) ≡ dα/dϕ. In particular, we focus on the DEF model [303,384]5, where the

coupling function can be written in one of its simplest forms as A(ϕ) = exp (β0ϕ
2/2).

Such a theory can be completely characterized by the two weak-field parameters

α0 = α(ϕ0) = β0ϕ0 and β0 = β(ϕ0), where ϕ0 = α0/β0 is the asymptotic value of the

scalar field ϕ at infinity.

Similarly in the strong-field case, NSs with mass mA couple to the scalar field

with an effective coupling αA = ∂ lnmA/∂φ0, known as the (dimensionless) scalar

charge 6 (the scalar charge for BHs is 0 [384]). Such scalar charges induce scalar

dipole radiation in a compact binary, which enters at −1PN order relative to the

leading GR quadrupole radiation and makes the binary evolve faster. Following

Ref. [367,388,389], one can derive the corresponding ppE correction to the waveform

5See App. G for a comparison with the similar Mendes-Ortiz (MO) [387] model.
6Scalar charges depend on the NSs underlying equation-of-state (EoS). In this analysis we assume

the APR4 EoS, consistent with the binary NS observation GW170817 [30, 39]. See App. H for a
comparison between results found with different EoSs.
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to be

β
(DEF)
ppE = −5η2/5(∆α)2

7168
, n = −1, (6.2)

where η ≡ m1m2/M
2 is the symmetric mass ratio, and ∆α ≡ (α1−α2) is the difference

in scalar charges between orbiting compact objects. Additionally, see Sec. 6.4.2.3 for

a discussion and comparison on the inclusion of higher-order PN corrections to the

waveform phase, as well as to the amplitude. See also Ref. [390] for constraints from

GW170817, and predictions for future binary NS detections.

6.2.2 EdGB gravity

Another interesting class of STTs is the EdGB theory of gravity. In this particular

theory, the “dilaton” scalar field ϕ is coupled to a quadratic curvature term in the

action. Correspondingly, the Einstein-Hilbert action is modified by the additional

coupling term and the scalar field kinetic term [111,114,372]

SEdGB =

∫
d4x
√
−g
[
f(ϕ)R2

GB −
1

2
∇µϕ∇µϕ

]
, (6.3)

where g is the determinant of the metric gµν and RGB is the curvature-dependent

Gauss-Bonnet invariant given by

R2
GB ≡ RabcdR

abcd − 4RabR
ab +R2. (6.4)

f(ϕ) is a function of ϕ and some types of string theory effectively reduces to the

correction in Eq. (6.3) with an exponential coupling between the scalar field and

R2
GB. If one expands such a function about a fiducial value of the scalar field ϕ0,
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the leading constant term does not contribute to the field equations since R2
GB is a

topological invariant. Thus, the leading effect arises from a linear coupling, and in

this chapter, we consider7

f(ϕ) = αEdGBϕ , (6.5)

where αEdGB is the coupling parameter of EdGB gravity.

In scalar-tensor theories of gravity including EdGB gravity, compact objects can

accumulate scalar monopole charges, which in turn source a scalar field. This effect is

naturally analogous to the classical effects of electric/mass/color charges sourcing the

electric/gravitational/strong fields. Pairs of such scalarized objects will then give rise

to a new “fifth force” interaction between them, altering their ensuing trajectories.

This effect is dependent on the internal structures of the compact objects, therefore

violating the strong equivalence principle, one of the fundamental pillars of GR. While

two such compact objects orbiting each other in a binary system will decay under the

emission of gravitational radiation (as predicted by GR)8, the new scalar interaction

will additionally induce scalar dipole radiation. This effect will of course accelerate

the coalescence process more than the predictions of GR estimate.

Scalar charges in EdGB gravity with a linear coupling as in Eq. (6.5) only anchor

to BHs [137, 146, 180, 374–376], and not to other objects such as neutron stars [153,

373]. Such scalar charges s depend on the BH’s spin, mass, and the EdGB coupling

7Additionally, refer to [377–379] for more general couplings.
8Gravitational radiation is also modified from GR in EdGB gravity, though such an effect enters

at higher order than the scalar dipole radiation in the binary evolution.
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parameter, and have been found to be [137,376]

s
(EdGB)
i = 2

√
1− χ2

i − 1 + χ2
i

χ2
i

αEdGB

M
. (6.6)

EdGB gravity may be treated as an effective field theory only if the correction

SEdGB to the action is much smaller than the Einstein-Hilbert action SEH. Such an

assumption allows one to neglect the higher-order curvature terms of order O(R3).

This approximation is known as the small coupling approximation, and enforces the

requirement that

ζEdGB ≡
16πα2

EdGB

M4
� 1, (6.7)

for binaries with total mass M ≡ m1 + m2. If this inequality fails to be upheld,

constraints on αEdGB are deemed to be invalid, as the assumption SEdGB � SEH no

longer holds. In addition, beyond the small-coupling approximation corresponds to

large couplings between the scalar field and the curvature, which have largely been

ruled out with observations. Typically, constraints on the EdGB coupling parame-

ter are presented for the quantity
√
αEdGB, which has units of length (commonly in

km). Current constraints on this quantity have been found to be 107 km from solar

system observations [113], and O(1km) from theoretical considerations, and observa-

tions of BH low-mass X-ray binaries, neutron stars, and GWs [114–119,380]. We urge

caution that the constraint
√
αEdGB . 2 found in Refs. [117, 118] take into account

certain approximations which warrant such results to be a rough estimate. For ex-

ample, the authors of Ref. [117] used posterior samples provided by the LIGO/Virgo
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Collaborations though data more finely-sampled around the GR value seem to be

necessary to derive a more reliable posterior distribution on
√
αEdGB. In addition, the

authors utilize −1PN constraints obtained by the LIGO-Virgo analysis of the binary

black hole signals, where it is warned that they cannot be interpreted as dipole ra-

diation constraints, due to higher-order non-negligible terms from dipole radiation.

Also, Ref. [118] utilized a simplified grid-search method rather than a full stochastic

sampling procedure.

Now let us find the various corrections to the gravitational waveform under an

EdGB prescription of gravity. This includes corrections to the inspiral portion of the

waveform, to the remnant BH’s QNMs, and finally to the remnant BH’s mass and

spin predictions. We point out a recent analysis in Ref. [381], in which a NR binary

black hole merger-ringdown waveform in EdGB gravity was presented for the first

time.

6.2.2.1 Inspiral

In our analysis, we consider the commonly-used ppE formalism [77]9 to enact EdGB

corrections to the inspiral gravitational waveform. See Chapter 2 for a summary of

the ppE formalism, which allows one to modify the phase and amplitude of the GR

waveform with generic parameterized corrections, in a theory-agnostic way. In this

part of the chapter, we solely consider corrections to the GR inspiral waveform derived

from the EdGB theory of gravity. Such a theory affects the waveform amplitude at

9ppE phase corrections have a one-to-one correspondence to the inspiral corrections in the gen-
eralized IMRPhenom formalism [168] used by LVC [154].
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−1PN order (a = −2) with magnitude [131]

α
(EdGB)
ppE = − 5

192
ζ

(m2
1s̃

(EdGB)
2 −m2

2s̃
(EdGB)
1 )2

M4η18/5
, (6.8)

with s̃
(EdGB)
i = s

(EdGB)
i mi/αEdGB. Similarly, the waveform phase is modified at −1PN

order (b = −7) with magnitude [112]

β
(EdGB)
ppE = − 5

7168
ζ

(m2
1s̃

(EdGB)
2 −m2

2s̃
(EdGB)
1 )2

M4η18/5
. (6.9)

To have consistency with other EdGB corrections to be explained later, we only

keep up to quadratic order in BH spins. However, in Sec. 6.4.3.2 we consider EdGB

corrections to the waveform up to O(χ4), comparing it to those found here. For the

remainder of this chapter, corrections labeled “inspiral” correspond to the addition

of both phase and amplitude corrections to the GR inspiral waveform. We note that

Tahura et al. [119] showed that corrections to the GR amplitude is not as important

as those in the phase, but we keep the former as well in this chapter for completeness.

6.2.2.2 Ringdown

While the ppE formalism described above allows us to include EdGB corrections to

the inspiral description of the waveform, we can additionally model corrections to the

ringdown waveform. As the orbits of the inspiraling BHs decay under the emission of

gravitational radiation, they eventually become close enough to each other to enter

plunging orbits, where a common horizon is formed as they merge together. The

remnant BH then relaxes down to its final state via the radiation of QNMs [391].
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QNMs can be described by just two parameters: the ringdown frequency fRD and the

damping frequency fdamp [391, 392]. We refer the readers to Ref. [393] where similar

corrections were made, and constraints with multiple GW events were quantified. See

also Refs. [394, 395] where a general formalism to map ringdown corrections directly

to specific theories of gravity was developed. fRD and fdamp are described by the

remnant BH’s mass and spin Mf and χf (from the BH no-hair theorem), which in

turn only depend on m1, m2, χ1, and χ2 of the original BH binary system obtained

through NR simulations [90].

However, within the EdGB viewpoint of gravity, the QNMs additionally depend

upon the EdGB coupling parameter ζEdGB. In this analysis, we attempt to model

corrections to the ringdown and damping frequencies fRD and fdamp up to first order

in ζEdGB, like so

fRD = fRD,GR + ζEdGBfRD,ζ +O(ζ2
EdGB), (6.10)

fdamp = fdamp,GR + ζEdGBfdamp,ζ +O(ζ2
EdGB), (6.11)

where fRD,GR and fdamp,GR are the GR QNM frequency predictions [89, 90], and fRD,ζ

and fdamp,ζ are the first order EdGB corrections. To derive such QNM frequency

corrections to first order in ζEdGB, we use the results in Ref. [155] to compute the

complex QNM frequency up to quadratic order in spin χf of the remnant BH10.

We consider the leading order, ` = m = 2 axial and polar QNMs. As discussed in

10Reference [155] follows a slightly different EdGB notation than considered here, beginning with
the coupling parameter αEdGB in the action as well as their definition of ζ ′EdGB. The quantities can
be mapped to our definitions by letting ζ ′EdGB → 4

√
ζEdGB.
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Ref. [155], the QNM non-spinning components have been computed for both of these

modes. The spinning components of the axial modes were then obtained by adopting

the null geodesic correspondence11 [399] since such modes do not couple to the scalar

field perturbation. The spinning components of the polar modes in EdGB gravity is

currently unknown, though based on the claim in [155], we assume the polar modes

have the same spin dependence as the axial modes to carry out a rough estimate on

the latter.

Now let us compute the ringdown and damping frequencies. Such QNM frequen-

cies can be written as

2πMffRD,ζ = (Rns,0 +Rns,1ζEdGB) (1 +Rs,0 +Rs,1ζEdGB) +O(ζ2
EdGB), (6.12)

2πMffdamp,ζ = (Ins,0 + Ins,1ζEdGB) (1 + Is,0 + Is,1ζEdGB) +O(ζ2
EdGB), (6.13)

where Rns/s,i and Ins/s,i (i = 0, 1) are arbitrary non-spinning (ns) and spinning (s)

coefficients. The non-spinning components are tabulated in Table 6.1, while the

spinning components are given by

Rs,0 = 0.3849χf + 0.2038χ2
f +O(χ3

f ), (6.14)

Rs,1 = 0.5216χf + 0.4224χ2
f +O(χ3

f ), (6.15)

Is,0 = −0.0741χ2
f +O(χ3

f ), (6.16)

Is,1 = −0.0944χf − 0.1056χ2
f +O(χ3

f ). (6.17)

11See Refs. [396–398] where the null geodesic correspondence was used to estimate corrections for
rotating BHs.
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Rns,0 Rns,1 Ins,0 Ins,1

0.3737 −0.1874 −0.08896 −0.0622

Table 6.1: Non-spinning parameters Rns,i and Ins,i [155] required to reconstruct the
EdGB corrections to the ringdown and damping frequencies fRD,ζ and fdamp,ζ as
found in Eqs. (6.18).

Finally, we find the EdGB corrections to the ringdown and damping frequencies as

fRD,ζ =
Rns,1(1 +Rs,0) +Rns,0Rs,1

2πMf

, fdamp,ζ =
Ins,1(1 + Is,0) + Ins,0Is,1

2πMf

. (6.18)

In this analysis, we include EdGB corrections into the merger-ringdown waveform up

to linear order in ζEdGB and quadratic in χf using the above prescription, with correc-

tions like so labeled as “axial/polar QNMs”. See Sec. 6.4.3.2 for a demonstration of

the inclusion of spin effects into the remnant BH QNMs, where we include corrections

up to O(χ4), and also remove all spin effects. In particular, we find that such spin

effects only affect the constraints
√
αEdGB by at most 1.6%.

6.2.2.3 Remnant BH mass and spin

In addition to the direct waveform modifications displayed in the preceding sections,

a post-merger remnant BH in EdGB gravity will settle down into a non-GR final mass

and spin configuration, due to the increased levels of energy and angular momentum

radiation. This effect will also indirectly modify the gravitational waveform. In GR,

the final spin angular momentum of the post-merger BH can be roughly approximated

to be the sum of the spin angular momentum of the initial BHs and the orbital angular

momentum Lz of a particle with mass µ = m1m2/M orbiting about the remnant BH
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at the radius of the ISCO, rISCO [400]. More specifically, the full expression for a

spin-aligned system is found to be [154,400]

µLz(M,χf , rISCO) = M(Mχf − as − δmaa) (6.19)

where as,a ≡ (m1χ1 ± m2χ2)/2 are the symmetric/anti-symmetric combinations of

spins, and δm ≡ (m1 −m2)/M is the weighted mass difference, and Lz is the specific

orbital angular momentum. Similarly, the final mass of the remnant BH Mf can

be expressed in relation to the specific orbital energy Eorb of a particle with mass µ

orbiting at rISCO as

µ [1− Eorb(Mf , χf , rISCO)] = M −Mf (6.20)

Here 1− Eb ≡ Eorb is equivalent to the binding energy of the particle.

We here make an assumption that the above GR picture also holds in EdGB

gravity and derive corrections to Mf and χf . To do so, we take into account the

EdGB corrections to Eorb, Lz and rISCO. Unfortunately, these expressions are not

known to all orders in the BH spin. Thus, we use the expressions valid to quadratic

order in spin presented in [159]. In addition, there is a scalar interaction between two

scalarized BHs, and thus Eq. (6.20) needs to be modified to

µ [1− Eorb(Mf , χf , rISCO)− Escalar(µ,M, χf , rISCO, ζEdGB)] = M −Mf . (6.21)

Here [401],

Escalar(µ,M, χf , rISCO, ζEdGB) =
ζEdGB

η2

(
1−

χ2
f

4

)
M

r
, (6.22)
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corresponds to the specific scalar interaction energy between the particle (with mass

µ and zero spin) and the central BH (with mass Mf and spin χf ). See Sec. 6.4.3.2 for

an investigation into higher-order spin effects up to O(χ4) for each EdGB correction

considered here.

Similar to the merger-ringdown corrections to the QNM ringing and damping

frequencies, we consider corrections to the remnant BH mass and spin to linear order

in ζEdGB and quadratic (and also quartic) in χf . The complete expressions for Mf and

χf can then be written as

Mf = Mf,GR + ζEdGBMf,ζ +O(ζ2
EdGB), (6.23)

χf = χf,GR + ζEdGBχf,ζ +O(ζ2
EdGB), (6.24)

where Mf,GR and χf,GR are the GR predictions of the final mass and spin from the NR

fits of Ref. [90], and Mf,ζ and χf,ζ are the resulting EdGB corrections at first order

in ζEdGB. Having the above expressions for EdGB energy and angular momentum in

hand, one can estimate the EdGB corrections to these quantities as

Mf,ζ = Ma0

(
1 + a1χf + a2χ

2
f

)
+O

(
χ3
f

)
, (6.25)

χf,ζ = −b0η
(
1 + b1χf,GR + b2χ

2
f,GR

)
+O

(
χ3
f,GR

)
, (6.26)

where ai and bi are presented in Table 6.2. Observe that the above expressions

themselves depend on the remnant BH spin in GR (χf,GR), found in Ref. [90].

Finally, in this part of the chapter we investigate the effect of each type of EdGB
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a0 a1 a2 b0 b1 b2

43740−2233
√

2η2

262440η
50659

√
3η2−116640

√
6

12(2233
√

2η2−43740)

1361569247
√

2η2−1285956000

264600(2233
√

2η2−43740)
13571

29160
√

3
75371
40713

√
2
3

58180627
149620275

Table 6.2: Coefficients ai and bi required for the reconstruction of the EdGB
corrections to the remnant BH mass and spin Mf,ζ and χf,ζ as found in Eqs. (6.25)
and (6.26).

correction present in the template waveform: inspiral and ringdown effects. In par-

ticular, we consider the following five cases in which we perform a Fisher analysis:

1. Inspiral: EdGB corrections only in the inspiral waveform.

2. Axial QNMs: EdGB corrections only in the ringdown waveform for the case of

purely axial QNMs.

3. Polar QNMs: Same as 2 but with polar QNMs.

4. Inspiral+Axial QNMs: Combination of 1 and 2, with corrections to both the

inspiral and ringdown portions.

5. Inspiral+Polar QNMs: Same as 4 but for polar QNMs.

We include remnant BH mass and spin corrections within only the latter four cases

listed above. Within each of the above listed cases, we compare the results from each

detector and event considered.
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6.2.3 dCS gravity

Similar to EdGB gravity, dCS gravity is a SEP-violating effective field theory which

modifies the Einstein-Hilbert action with a quadratic curvature term called the Pon-

tryagin density, which violates parity, and is non-minimally coupled to a scalar

field [120, 121]. Scalar dipole charge is accumulated on the BHs, inducing scalar

quadrupole radiation which in turn accelerates the inspiral. The magnitude of the

correction is proportional to the dCS coupling parameter αdCS. The mapping between

β
(dCS)
ppE and αdCS can be written as [117]

β
(dCS)
ppE =− 5

8192

16πα2
dCS

M4η14/5

m1

(
s

(dCS)
2

)2

−m2

(
s

(dCS)
1

)2

M2

+
15075

114688

16πα2
dCS

M4η14/5

(
m2

1χ
2
1 +m2

2χ
2
2

M2
− 305

201
ηχ1χ2

)
, (6.27)

where the dimensionless BH scalar charge can be written as s
(dCS)
i = (2 + 2χ4

i −

2
√

1− χ2
i − χ2

i [3 − 2
√

1− χ2
i ])/2χ

3
i [122]. The ppE exponent is b = −1, which

corresponds to a +2PN correction. We also note that once again the small coupling

approximation ζdCS ≡ 16πα2
dCS/M

4 � 1 must be satisfied in order to place meaningful

constraints on
√
αdCS. Current constraints on

√
αdCS are obtained from solar system

and table-top experiments as 108 km [123,124].

6.2.4 Noncommutative gravity (NC)

Noncommutative theories of gravity [127] have been proposed to quantize the space-

time coordinates, which have been promoted to operators [402] x̂µ, in order to elimi-
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nate the quantum field theory ultraviolet divergences. Such theories have the ultimate

goal of unifying the theories of GR and quantum mechanics. The spacetime operators

as such, satisfy the familiar canonical commutation relations

[x̂µ, x̂ν ] = iθµν , (6.28)

where θµν quantifies the “fuzziness” of spacetime coordinates, similar to the reduced

Planck’s constant ~ in quantum mechanics. Within this non-commutating formalism,

we strive to constrain the scale of quantum spacetime. A useful parameter to do so

normalizes the magnitude of θµν to the Planck length and time scales lp and tp:

Λ2 ≡ θ0iθ0i/l
2
pt

2
p. The Lorentz-violating effects from noncommutative gravity enters

the gravitational waveform at +2PN order (b = −1), and has the ppE phase correction

given by [131]

β
(NC)
ppE = − 75

256
η−4/5(2η − 1)Λ2. (6.29)

The current constraints on the scale of quantum spacetime
√

Λ come from the GW

observation of GW150914, found to be
√

Λ < 3.5 [128], which is on the order of the

Planck scale.

6.2.5 Time-varying G theories

The gravitational constant G may vary with time at a rate of Ġ, producing an anoma-

lous acceleration of the binary system. In this SEP-violating theory, the mapping
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between β
(Ġ)
ppE and Ġ is given by [130,131]

β
(Ġ)
ppE =− 25

851968
η3/5ĠC [11M + 3(s

(Ġ)
1 + s

(Ġ)
2 )M − 41(m1s

(Ġ)
1 +m2s

(Ġ)
2 )], (6.30)

with b = −13 (−4PN order). Here, the sensitivities are given by s
(Ġ)
i ≡ − GC

δGC

δmi

mi
.

The current strongest constraint on |Ġ| is (0.1− 1)× 10−12 yr−1 [132–135].

6.2.6 Time-varying BH mass theories

Some (4D-pillar-violating) modified theories of gravity as well as astrophysical pro-

cesses predict time-variation in the BH mass, ṁA. Many of the string-inspired models

suggest that our four-dimensional brane spacetime is embedded in larger dimensional

bulks [137, 175, 403–405]. One example is the RS-II [405] “braneworld” model by

Randall and Sundrum, in which BHs may evaporate classically [406, 407]12. The

evaporation rate is proportional to the size l of the extra dimension, which has pre-

viously been constrained to (10− 103) µm [410–414]. Such a modification to the BH

mass enters the waveform at −4PN order (b = −13), and β
(Ṁ)
ppE can be mapped to Ṁ

via [136]

β
(Ṁ)
ppE =

25

851968
Ṁ

3− 26η + 34η2

η2/5(1− 2η)
. (6.31)

The evaporation rate of the binary system Ṁ can be written as a function of l [137,415]

in the RS-II model, or mapped to any other desired model. Alternatively, BH mass

losses can be explained by cosmological effects such as the accretion of dark (or “phan-

tom”) energy [416–418]. For comparison purposes, we compute the astrophysical Ed-

12This scenario is now in question given the construction of brane-localized static BH solu-
tions [408,409].
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dington mass accretion rate ṀEdd at which the BH radiates the Eddington luminosity

LEdd. For a GW150914-like binary BH, it is found to be ṀEdd = 1.4× 10−6 M�/yr.

6.2.7 Dynamical graviton mass

The “dynamical massive graviton” theory [138] (violating the massless graviton pil-

lar of GR) models the graviton’s mass to be smaller than all current constraints in

weak gravity regions (see Sec. 6.2.8 below), while becoming much larger in dynamical,

strong-field spacetimes such as in the presence of binary BH mergers. As such, this

theory enters the gravitational waveform as a generation modification, rather than

the usual propagation mechanism. Here, we offer a new ppE correction to the gravi-

tational waveform via the fractional discrepancy between the observed and predicted

decay rates of the binary system’s period Ṗ found in Ref. [139]. In particular, we

focus on a class of massive gravity theories that correctly reduces to GR in the limit

mg → 0 [419] by abandoning Lorentz invariance [139]. We found that such an effect

enters the waveform at −3PN order (b = −11), with the correction given by

β
(mg)
ppE =

25

19712

M2

~2F (e)
m2
g, (6.32)

where F (e) is a function of the eccentricity (Eq. (4.11) of Ref. [139]), taken to be 1

for our analysis (corresponding to quasi-circular binaries). Current constraints on the

dynamical graviton mass have been found to be 5.2 × 10−21 eV from binary pulsar

observations [141], and ∼ 10−14 eV from GW measurements [140].

As we discuss in the next section, the mass of the graviton also changes the
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propagation of GWs. However, the amount of the graviton mass can be different

between (i) in the vicinity of a BH and (ii) in the region where GWs propagate from

a source to us. Thus, we treat these effects separately in this chapter. We consider

these effects one at a time, though one could introduce two different graviton masses,

like the dynamical and propagating graviton mass, and measure these two graviton

masses. However, the dynamical graviton mass that gives rise to non-GR corrections

at the level of the GW generation introduces modifications to the waveform phase at

−3PN , while those from modifications to the GW propagation enters at 1PN order.

Since these two PN orders are well-separated, the amount of correlation is small, and

thus we expect the bound presented here gives us a good estimate on each effect.

6.2.8 Modified dispersion relations (MDR)

Now let us discuss the modified dispersion of GWs. Modifications to the propagation

of GWs activate during their transport between the binary coalescence source and

Earth. As such, these modifications typically violate the LI pillar of gravity as well as

the massless graviton, and describe corrections to the frequency dispersion of GWs,

which in turn modifies the propagation speed of GWs. These modifications depend

primarily on the distance between the binary and Earth.

In general, the dispersion relation for GWs with modified theories of gravity takes

the following form [142]:

E2 = p2 + A paMDR , (6.33)

where E and p are the graviton’s energy and momentum, aMDR is related to the PN
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order via n = 1 + 3
2
aMDR, and A corresponds to the strength of the dispersion. The

mapping between (β
(MDR)
ppE , b) and (A, aMDR) is given by [142]

β
(MDR)
ppE =

π2−aMDR

1− aMDR

Da

λ2−aMDR
A

M1−aMDR

(1 + z)1−aMDR
, (6.34)

b = 3(aMDR − 1). (6.35)

Here, z is the redshift, λA ≡ hA1/(aMDR−2) is similar to the Compton wavelength with

Plank’s constant h, and the effective distance Da is given by [142,154]

Da =
z

H0

√
ΩM + ΩΛ

[
1− z

4

(
3ΩM

ΩM + ΩΛ

+ 2aMDR

)]
+O(z3), (6.36)

where H0 = 67.9 km sec−1 Mpc−1 is the local Hubble constant, and ΩM = 0.303, and

ΩΛ = 0.697 are the energy densities of matter and dark energy [1].

In this chapter, we mainly investigate bounds on the specific case of the massive

graviton [420–423] (propagation), where A = m2
g and aMDR = 0. The current con-

straints on the graviton mass have been found to be 6 × 10−24 eV [143, 424] from

solar-system constraints (Yukawa-like corrections to the binding energy and Kepler’s

law), 5 × 10−23 eV [143] from the combination of GW signals from the LVC catalog

(GW propagation modifications), and ∼ 10−14 eV [140] or 5 × 10−21 eV [141] from

GW150914 and binary pulsars respectively (GW generation modifications). Stronger

bounds have been obtained from cosmological observations (see e.g. [419,425,426]).

Additionally, we offer general constraints on A in Sec. 6.4.1.3, applicable to many

alternative theories of gravity with modified dispersion relations. Some examples of

these include [142,154]
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• Double special relativity [427–430] with A = ηdsrt and aMDR = 3;

• Extra-dimensional theories [431] with A = −αedt and aMDR = 4;

• Hořava-Lifshitz Gravity [432–435] with A = κ4
hlµ

2
hl/16 and aMDR = 4;

• Multifractional Spacetime Theory [436–439] with A = 2E2−aMDR
∗ /(3−aMDR) and

aMDR = 2− 3.

6.3 Detectability of GW150914-like events

In the following chapter, we primarily consider only GW150914-like [28] events, with

masses (m1,m2) = (35.8 M�, 29.1 M�) and spins (χ1, χ2) = (0.15, 0). Such spins are

taken to be non-vanishing so that the spin-dependent BH scalar charges are non-zero

in dCS gravity, yet still small enough to be consistent with the LVC’s measurement

of the effective spin [28]. The luminosity distance is scaled such that an SNR of

ρO2 = 25.1 would be achieved on the sensitivity for the LIGO/Virgo’s 2nd Observing

Run (O2) [78]. We also note that we assume the initial LISA detection of GW150914-

like events to take place exactly four years prior to their merger, corresponding to

the expected lifetime of the LISA mission. Such an assumption is considered for its

validity in further detail in upcoming Sec. 6.4.

In this section, we discuss the feasibility of detecting GW150914-like events using

the space-based GW interferometer LISA13. As described in Refs. [361], the standard

13We found that space-based detector TianQin observes very similar, yet slightly louder (ρ = 10.7
for GW150914-like events) results to that of LISA. Additionally, DECIGO and B-DECIGO can
detect strong GW150914-like signals with SNRs of 102 − 104.
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threshold SNR of ρth ∼ 8 can be reduced to ρth ∼ 4 − 5 for LISA by revisiting sub-

threshold events in prior LISA data with information from high-SNR events in the

ground-based bands of e.g. CE. Moore et al. [362] later pointed out that a template-

based search for LISA requires a much larger SNR threshold of ρth ∼ 15, which can

be further reduced to ρth ∼ 9 in combination with ground-based detectors. However,

such an estimation may be pessimistic, as non-template-based approaches may bring

this threshold down further.

To demonstrate how well such events can be detected in either case, Fig. 6.1 dis-

plays the region in the (m1,m2) parameter space where SNRs exceeds the threshold

value of ρth = 5 or 9 for both CE and LISA. Observe how in both cases, GW150914-

like events with (m1,m2) = (35.8 M�, 29.1 M�) fall within the multiband detectabil-

ity region defined by both ρ > 5 or ρ > 9. For LISA observations of GW150914-like

events, the SNR of ρ = 9.3 only marginally falls within the larger threshold of 9, while

the CE observation well exceeds both thresholds by∼ 2 orders-of-magnitude. We note

that for the following analysis, we consider nearly non-rotating GW150914-like events

that satisfy such detectability criteria. We refer to the discussion by Jani et al. [440]

for a more in-depth analysis into the multi-band detection between third-generation

detectors and LISA.

6.4 Results

In this section we describe the resulting constraints on modified theories of gravity

using the parameterized tests of GR. We begin with those found from multiband
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Figure 6.1: Multi-band detectability region as a function of the constituent BH
masses m1 and m2. This region is formed by SNRs in agreement with the condition
ρ > ρth for ρth = 5 (optimistic) and ρth > 9 [361,362] (pessimistic) for events
detected by both the ground-based detector CE, and space-based detector LISA.
Such SNRs have been computed with the assumption of non-spinning BHs at
luminosity distances of 410 Mpc. The upper-right edge (blue) of the region
corresponds to CE’s ρth contour, while the lower-left edge (maroon) is formed by
LISA’s contour. The SNRs are computed following Eq. (3.1). Additionally shown as
a red star is the event GW150914 with (m1,m2) = (35.8 M�, 29.1 M�). Observe
how GW150914-like events marginally fall within LISA’s larger observational SNR
threshold of ρth = 9. Alternatively, such events exceed both ground-based SNR
thresholds by more than 2 orders-of-magnitude.
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observations, followed up by those obtained from mixed GW binaries. Finally, we

present constraints on the EdGB theory of gravity with waveform corrections to the

inspiral, merger-ringdown, and remnant BH parameters present.

6.4.1 Multiband observations of GWs

In this subsection, we present our findings for constraints on several different modified

theories of gravity with multiband observations between ground- and space-based

detectors. We first show results for bounds on GW generation mechanisms, followed

by those on GW propagation mechanisms. All such constraints are summarized in

Tab. 1.1.

6.4.1.1 GW generation mechanisms: phase corrections

Figure 6.2 presents 90% upper credible level bounds on the generalized non-GR phase

parameter βgen for generation mechanisms14, and we show bounds on the amplitude

parameter αgen in Sec. 6.4.1.3. We consider CE, LISA, TianQin, B-DECIGO, DE-

CIGO, and the combinations of each space-based detector with CE. Bounds are ob-

tained for each half-integer PN order between −4PN and +3.5PN, with the exception

of +2.5PN which observes complete degeneracies with the coalescence phase φc. Ad-

ditionally, the bound from O1 (LVC’s 1st observing run) is taken from Ref. [154] for

comparison.

We can make the following observations from the figure. First, notice that non-GR

14While certain theories of gravity correspond to different signs of the ppE parameter β, in this
analysis we only constrain the modulus of the parameter to remain as generic and theory-agnostic
as possible. In future, more directed analyses with a Bayesian approach, priors of β < 0 or β > 0
can be imposed to improve constraints.
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Figure 6.2: Constraints on the generalized non-GR phase parameter for generation
effects |βgen| as a function of PN order for GW150914-like events observed on various
space- and ground-based detectors individually. Observe how space-based detectors
are most proficient at probing effects that enter at negative-PN orders, with
ground-based detectors more suited to probing positive-PN effects. The combination
of the two (multi-band) results in improved bounds across all PN orders.
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Figure 6.3: 90% upper-bound credible level constraints on the theoretical
parameters representative of 6 of the modified theories of gravity considered in this
analysis for GW150914-like events. Bounds are presented for: EdGB gravity
(
√
αEdGB, −1PN order), dCS gravity (

√
αdCS, +2PN order), scalar tensor theories (φ̇,

−1PN order), noncommutative gravity (
√

Λ, +2PN order), varying-G theories (Ġ,
−4PN order), and BH mass-varying theories (Ṁ , −4PN order), and are additionally
tabulated in Table 1.1. The blue shaded regions correspond to the region such that
the small coupling approximations ζEdGB � 1, ζdCS � 1, and mφ̇� 1 are valid (the
definition of the dimensionless coupling constants ζ can be found in Sec. 6.2), and
the dashed maroon lines correspond to the current bounds in the literature, also
tabulated in Table 1.1. The cyan line in the bottom right panel corresponds to the
Eddington accretion rate for GW150914-like events.
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effects entering the gravitational waveform at negative-PN orders can be constrained

most stringently by space-based detectors, while positive-PN effects are most pro-

ficiently constrained by ground-based detectors. The obvious exception being DE-

CIGO, which bridges the gap between the two frequency bands and provides the

strongest bounds at both positive and negative PN orders. Second, when one consid-

ers multi-band observations by combining both space- and ground-based detectors,

we see large improvements of up to a factor of 40 across all PN orders.

Here we briefly discuss the effect of LISA’s mission lifetime on observations of the

theory-agnostic parameter β. In particular, for the above calculations we assumed the

best-case scenario in which all four years of LISA’s mission can be used to observe the

same GW signal from a GW150914-like event. For comparison, we instead consider

an estimate of the same effect (at −4PN order for the largest effect possible) given

that only the last three, two, or one years of LISA’s lifetime will be able to observe

the GW150914-like signal. We find that the resulting constraints on β are weak-

ened by ratios of 1.8, 4.3, and 16 respectively, compared to the best-case four-year

scenario. Thus we conclude that such effects change our results on the order of an

order of magnitude for the worst-case scenario of only one-year observation by LISA.

Additionally, we find such weakened observations to have SNRs of 9.2, 8.2, 6.7, and

5 for four-, three-, two-, and one-year observations respectively. All such SNRs still

remain within the multi-band detectability region found in Fig. 6.1 for the best-case

threshold SNR.
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Now we consider the cases in which LISA can observe the GW signal more than

four years prior to the coalescence. In particular, we consider the two new scenarios

in which (i) LISA observes the early inspiral signal from six years to two years prior

to merger before going offline, and then CE observes the merger two years later, and

(ii) LISA observes the early inspiral signal from ten years to six years prior to merger

before going offline, and then CE observes the merger 6 years later. The above to

cases have LISA SNRs of 8.8 and 7.7 respectively, each above the best-case SNR

threshold. Relative to the scenario considered in this chapter in which LISA begins

observing four years prior to the merger, we find such constraints to be strengthened

by factors of 1.7, and 3.1 respectively at −4PN order. Such constraints have been

improved because the −4PN order correction is the best-case scenario for observing

the earlier inspiral. In the worst-case scenario of 3.5PN order corrections, we find

constraints on β to weaken by factors of 1.04, and 1.12 respectively. Such changes

are insignificant to our analysis, and for almost all PN orders give way to improved

ppE constraints, making our estimates conservative.

Now that constraints on the agnostic non-GR parameter β have been obtained, we

apply them to the specific theories of gravity reviewed in Sec. 6.2 to constrain their

theoretical parameters using various single-band and multi-band observations. Such

bounds are obtained by simply selecting the constraints on |βgen| corresponding to the

PN order associated with the desired modified theory of gravity, and finally mapping

them to the theoretical parameters with the ppE expressions found in Sec. 6.2. When
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Figure 6.4: Similar to Fig. 6.3, but for constraints on the graviton mass in the
dynamical, generation mechanism regime (top), and in the weak-field, propagation
mechanism regime (bottom).

obtaining constraints on theory-specific parameters from the theory-agnostic ppE

parameter β, we assume a fiducial value of β = 0 corresponding to GR. The resulting

root-mean-square variance on β describes the statistical variance β is allowed to

observe within the detector noise. For this reason, under consideration of propagation

of uncertainties when transforming σβ to σε for some theory-specific parameter ε, all

terms containing measurement errors on intrinsic template parameter vanish due to

their proportionality with β → 0. See Ref. [226] for a more in-depth discussion on

this topic.

Figure 6.3 and the top panel of Fig. 6.4 display the 90% upper credible level

limit on the associated parameters for theories that modify the generation of GWs:
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EdGB, dCS, scalar-tensor, noncommutative, varying-G, varying-M , and massive

graviton theories with dynamical effects for both single- and multi-band detections

of GW150914-like events. Additionally, the constraints are tabulated in Table 1.1 for

each detector analyzed, along with the current strongest bounds from the literature.

We summarize below our findings for each theory.

• EdGB, scalar-tensor: In both theories, corrections to the waveform were de-

rived within the small-coupling approximations, in which non-GR corrections

are assumed to be always smaller than the GR contribution. Bounds on the

theoretical constants (square-root of the coupling constant
√
αEdGB for EdGB

gravity and the time-variation of the scalar field φ̇ for scalar-tensor theories)

both satisfy the small-coupling approximations for every detection scenario,

however only
√
αEdGB can improve upon the current strongest bound of 2–6

km [114–119], for both space-based and multi-band detections.

• dCS: Similar to EdGB and scalar-tensor theories, corrections to the wave-

form have been derived within the small-coupling approximation. Constraints

placed on the parity-violation constant
√
αdCS with CE, LISA, TianQin, and

B-DECIGO fall short of the small-coupling approximation, and thus are not

reliable for GW150914-like events. One can place valid constraints only when

multi-band detections are made, improving upon the current constraint of 108

km [123,124] by ∼7 orders-of-magnitude.

• noncommutative: Bounds on the noncommutative parameter
√

Λ can slightly
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be improved upon the current most stringent bound of 3.5 [128] with multi-band

observations.

• varying-M : Constraints on the time-variation of the total black hole mass Ṁ

(motivated not only by astrophysical gas accretion, but also by a classical evap-

oration in a braneworld scenario [406, 407] or dark energy accretion [416–418])

are below that of the Eddington accretion rate for BHs in GW150914-like events

for B-DECIGO(+CE), DECIGO(+CE), and LISA+CE multi-band detections.

See also a recent analysis [441] in which the impact of gas accretion on the

orbital evolution of BH binaries, and thus the GW emission.

• varying-G: Space and multi-band observations can improve significantly over

ground-based ones, though the former bounds on the time-variation in G are

still much weaker than other existing bounds [132–135].15

• massive graviton (dynamical): CE bounds (from modifications in the inspiral)

on the mass of the graviton are comparable to GW150914-bounds from ring-

down [140] while bounds from space-based detectors can be comparable to those

from binary pulsars [141].

Finally, we comment that, similar to the constraints on β, theories that mod-

ify GR at negative-PN orders (EdGB, scalar-tensor, varying-G, varying-M , and dy-

namical massive graviton) are more strongly constrained by space-based detectors,

15Space-based bounds can be comparable with current strongest bound for GW observations of
supermassive BH binaries [130].
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Figure 6.5: Similar to Fig. 6.2, but for propagation effects βprop entering the GW
phase. Observe how (with the exception of DECIGO), CE gives stronger constraints
on βprop than space-based detectors, while the multi-band case can be even stronger
by up to an order-of-magnitude.

while positive-PN theories (dCS and noncommutative) observe stronger bounds with

ground-based detectors.

6.4.1.2 GW propagation mechanisms: phase corrections

We next move on to studying bounds on the ppE phase parameter βprop from the GW

propagation mechanisms (bounds on the ppE amplitude parameter αprop are shown

in Sec. 6.4.1.3). Figure 6.5 presents bounds on βprop against each PN order at which
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the correction enters. We only show bounds on positive PN orders because all of the

example theories discussed in Sec. 6.2.8 show such a feature. Observe that bounds

placed with CE dominate those by space-based detectors, with little improvement via

multi-band observations. These bounds on βprop can easily be mapped to those on the

magnitude A of the correction to the graviton dispersion relation using Eq. (6.35), as

shown in Fig. 6.8 in Sec. 6.4.1.3.

While these constraints may be used to compute bounds on a variety of propaga-

tion mechanism non-GR effects, we here focus on the case of massive gravitons with

A = m2
g and aMDR = 0, now in the weak-field regime. The bottom panel of Fig. 6.4

displays such bounds for each detector considered. We observe that CE places the

strongest constraints out of all single-band observations16. When combined to make

multi-band detections, we see an improvement on the graviton mass bound, with

more than an order-of-magnitude reduction from the current solar system bound of

6× 10−24 eV [424].

We finally consider a comparison of different space-based detectors’ ability to test

GR. In particular, we compare constraints on coupling parameters found in a selected

few modified theories of gravity investigated with each space-based GW detector:

LISA, TianQin, B-DECIGO, and DECIGO. For EdGB gravity, we find constraints

on
√
αEdGB to be 0.7 km, 0.6 km, 0.3 km, and 0.1 km respectively. In dCS gravity,

we find constraints on
√
αdCS to be respectively 169 km, 176 km, 49 km, and 24

16The bound becomes much stronger for observing supermassive BH binaries with space-based
detectors [108–110,423,442–444].
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km. Finally, for the propagation effect of massive gravitons, we find constraints of

1.6×10−22 eV, 1.6×10−22 eV, 1.3×10−23 eV, and 1.6×10−24 eV respectively. We see

that in general, space-based detector DECIGO forms the strongest constraints on all

theories of gravity by nearly an order of magnitude in some cases, while B-DECIGO

places similar, yet slightly weaker bounds. When comparing similar space-based

detectors LISA and TianQin, we see comparable constraints that differ by less than

∼ 10%. In particular, we see that TianQin can place slightly stronger constraints for

theories that enter at higher PN orders, and vice-versa for LISA.

6.4.1.3 GW amplitude and dispersion relation corrections

In this section, we present constraints on the ppE amplitude parameter α, as well as

on corrections to the graviton dispersion relation. Figures 6.6 and 6.7 display the 90%

credible level upper limits on |αgen| and |αprop| for modified theories which affect GW

generation, and propagation effects respectively. Observe that the multi-band results

simply follow bounds from space- (ground-)based detectors for corrections entering at

negative (positive) PN orders, and do not have much improvement from single-band

results.

Such constraints can be mapped to the desired coupling parameters of many mod-

ified theories of gravity [131]. Figure 6.8 presents constraints on the generalized

dispersion relation correction, A. Such bounds can be further applied to modified

theories of gravity which predict modified dispersion relations, as discussed in the

previous section. Observe that the multiband bounds are very similar to those from
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Figure 6.6: Similar to Fig. 6.2, but for generation effects αgen entering the GW
amplitude. Observe how for the case of amplitude corrections, multi-band
observations do not provide for much improvement over space-based detectors for
negative-PN orders, and ground-based detectors for positive-PN orders.

CE, consistent with Fig. 6.7.

6.4.2 Constraining STTs with mixed binaries

In this section we consider constraints obtained from mixed BH-NS binaries on the

quasi-Brans-Dicke theory DEF, as well as the EdGB theories of gravity. Finally, we

conclude with a summary of the approximations made in this analysis, and their

effects on the results.
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Figure 6.7: Similar to Fig. 6.2, but for propagation effects αprop entering the GW
amplitude. Observe how for the case of amplitude corrections, multi-band
observations do not provide for much improvement over the constraints provided by
CE.
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g, with bounds displayed in Table 1.1 and
Fig. 6.4.
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6.4.2.1 Quasi-Brans-Dicke theories

Let us first focus on the quasi-Brans-Dicke theory, DEF. We begin with current

considerations possibly obtained from the O3 BH-NS merger candidates S190426c

and S190814bv [31]. This is followed up by a foray into the future of GW astronomy,

with constraints obtained by third-generation detectors, multi-band measurements,

and multi-event combinations.

We first discuss the present considerations of DEF constraints using GW and

pulsar timing observations. Figure 6.9 presents the estimated constraints in the DEF

theory parameter α0−β0 plane for the various observations considered in this analysis.

Observe that the combination of Cassini and pulsar timing measurements from PSR

J0337 and PSR J1738 places the strongest constraints on DEF gravity. Moreover,

even if the O3 candidates S190426c and S190814bv were BH-NS merger events [31],

they struggle to place competitive bounds on DEF theory. Thus, this motivates why

we must consider future bounds on DEF from GW measurements.

We conclude with an expedition into the future of GW astronomy. We consider

the BH-NS system described previously, with fixed BH and NS masses of 10 M� and

1.4 M�, respectively. We assume detections on the future GW interferometers A+,

Voyager, CE, ET, B-DECIGO, and DECIGO, and following the spirit of Ref. [146]

we combine the bounds on ∆α from N BH-NS detections falling within the horizon of

each detector over one observing year, as described in Chapter 3. Further, we consider

the multi-band observations [189,190,364] of such binaries between both ground-based
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Figure 6.9: Estimated 68% confidence interval bounds on the DEF
quasi-Brans-Dicke modified theory of gravity with an assumed EoS of APR4,
detected on the LIGO O3 detector with a SNR of 10 that is close to a detection
threshold SNR and thus the bounds serve as conservative. Such bounds are
presented for a BH-NS system with mNS = 1.4 M� and mBH varying between 5 M�
and 40 M� (with iterations of 5 M�). The solid, dashed, and dash-dotted black
curves correspond to constraints placed by the pulsar triple system PSR
J0337+1715 [369,445], and the pulsar-WD systems PSR J1738+0333 [446] and PSR
J0348+0432 [447], respectively. The solid and dashed brown horizontal lines
correspond to constraints by the existing Cassini spacecraft [7] and those predicted

by Gaia [448]. Such bounds are computed via α2
0 = |1−γ|

2−|1−γ| for parameterized

post-Newtonian parameter γ (see Eq. (18) of Ref. [365]). Take note that the Cassini
constraints converted here to α0 were obtained with a few assumptions that make
them applicable as an order-of-magnitude estimation.
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detector ET and space-based detectors DECIGO/B-DECIGO. Unlike the multi-band

case with space-based detector LISA, in which the possibly large SNR threshold of

∼ 9 [362] would prevent one from obtaining event rates larger than O(1), multi-band

detections between ET and DECIGO/B-DECIGO will instead be limited by the ET

event rate because of the large SNRs obtained by the space-based telescopes (this

reasoning primarily applies to DECIGO, with event rates approximately equivalent

or greater than those on ET and CE, rather than B-DECIGO with significantly

smaller rates). Such event rates are still significantly large at ∼ (500− 500, 000) (see

Table 3.1).

Figure 6.10 presents the bounds in the DEF theory placed for the above-mentioned

procedures. Observe how all of the current constraints can be improved upon with

the optimistic number of detections on the A+ detector, while CE and ET begin to

approach the same point with only the pessimistic number of detections. Further,

all predicted bounds placed with DECIGO/B-DECIGO (single-event, multiple-event,

and multi-band) improve the current constraints by several orders of magnitude. Of

course, existing bounds from solar system experiments and binary pulsar observations

will also improve in future. For example, bounds on α0 from Gaia will improve those

from Cassini by a factor of a few [448], while the bounds from the pulsar triple system

PSR J0337 will improve by a factor of ∼ 10 with SKA [368]. Future GW bounds with

3rd generation detectors (ET/CE) and space-based detectors (B-DECIGO/DECIGO)

are likely to be even stronger than them. We also note that the bounds for Brans-
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solid/dashed/dot-dashed black curves are the same as Fig. 6.9.
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Figure 6.11: Projected 68% confidence interval bounds on the EdGB coupling
parameter

√
αEdGB as a function of the black hole mass mBH merging with a 1.4 M�

NS. Such constraints are presented for event SNRs ranging from ρ = 8 to 20 with
iterations of 1. Observe that the strongest constraint in the literature [116–118] can
be improved upon for events with mBH < 16.5 M�, with the intersection displayed
by the vertical shaded turquoise region. Observe also that the BH/NS candidate
S190426c (with a 58% probability of terrestrial origin rather than astrophysical)
with a likely BH mass of ∼ 6 M� [450] can place a constraint of√
αEdGB < [0.4− 0.5] km, indicated by the shaded orange region, which is stronger

than the current bound by a factor of 4–5.

Dicke theory with β0 = 0 for ET and DECIGO are consistent with those in [146,449].

6.4.2.2 Einstein-dilaton Gauss-Bonnet gravity

Now let us consider the EdGB theory of gravity. Similar to before, we consider current

constraints on the coupling parameter
√
αEdGB, as well as future constraints from

third-generation detectors, multi-band observations, and multi-event combinations.

We begin by discussing the current observational constraints on
√
αEdGB, had a

BH-NS coalescence been observed by the current iteration of LIGO interferometers.
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Figure 6.11 projects the prospective constraints on
√
αEdGB for BH-NS binaries with

mNS = 1.4 M� as a function of mBH for detection SNRs ranging between 8 and 20

on the aLIGO O3 detector. Observe how for BHs with mass less than 16.5 M�

(19.5 M�), the current constraint in the literature of 2 km can be improved upon for

events with SNR = 8 (20). Thus, if S190426c or S190814bv are NS-BH merger events

with sufficiently low-mass BHs, such events would place a bound in EdGB gravity

that is stronger than the existing bounds. Reference [450] estimated the properties

of S190426c from the probability of the system being in specific categories, such as

BH/NS. In particular, the BH mass is estimated as ∼ 6M�. If S190426c was indeed

a BH/NS system (58% probability of terrestrial origin) and if this mass estimate was

correct, we can place strong constraints on
√
αEdGB of 0.4 (0.5) km for a 20 (8) SNR

event – a factor of 4–5 improvement from the current observational constraint.

We follow this up with a discussion of future constraints placed on EdGB gravity.

Similar to the previous section, we estimate the constraints placed on
√
αEdGB from

a 10 M� − 1.4 M� BH-NS merger event detected on each detector, in the single-

event, multiple-event, and multi-band cases. Figure 6.12 displays the corresponding

bounds for each scenario. Observe that the single-event rates can place constraints

between 0.02 − 1 km, all stronger than the current bound of 2 km. Further, we

see that the multi-band constraints do not offer much improvement from the single-

band case, while the combined event bounds can reach down to ∼ 10−5 km with

DECIGO, improving the current bounds by up to five orders-of-magnitude. These
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Figure 6.12: Estimated 68% confidence interval constraints on the EdGB coupling
parameter

√
αEdGB for a 10 M� − 1.4 M� BH-NS merger event as observed on each

detector. The blue triangles represent single-event detections, while the red error
bars correspond to the combined constraints from multiple events, with the upper,
central, and lower bounds corresponding to the optimistic, “realistic”, and
pessimistic number of detections [152]. The orange squares give the multi-band
result in conjunction with ET, and the shaded cyan region is where the small
coupling approximation is valid. Finally, the horizontal dashed line corresponds to
the current most stringent result [116–118].

bounds with DECIGO are consistent with the rough estimate presented in [116] and

a recent analysis of [364] for binary black holes with single events.

6.4.2.3 Validity of approximations

In this section we explore the simplifying approximations made in the above analysis,

and their effects on the presented results. We begin with a discussion on the number

of higher-order PN corrections added to the gravitational waveform. In the main

analysis, only the leading order −1PN correction term was taken into account in the
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gravitational waveform, and here we discuss the effect of including corrections up

to 0.5PN order. Next we consider the effect of rotating BHs, rather than the static

ones considered in the analysis. Finally we conclude with an alternative method to

combine multiple events with varying BH and NS masses, rather than the fixed masses

considered in the main analysis.

• Higher-order STT corrections to the waveform

Let us begin with a discussion of the higher-order PN corrections present in the

gravitational waveform. We start by taking into account the l = m = 2 dipolar

contributions to the Fourier domain phase found in Eq. (81c) of Ref. [451]17

up to 0.5PN order. We make the approximation αA � 1 such that only terms

proportional to ∆α2 (and thus also proportional to β
(DEF)
ppE ) remain, making it

possible to keep correlations minimal by allowing only one non-GR parameter

to remain in the waveform, β
(DEF)
ppE

18. The resulting DEF corrections to the

gravitational waveform up to 0.5PN order are given by

δψ = β
(DEF)
ppE u−7

(
1 +

2623 + 2640η

4280
u2 − 6πu3

)
, (6.37)

where β
(DEF)
ppE is the −1PN ppE parameter given in Eq. (6.2). We now include

these additional corrections into the gravitational waveform and recompute

17Note the non-dipolar phase corrections are not relative to the −1PN phase correction, propor-
tional to ∆α, so were not included in this approximation for simplicity.

18Note that the addition of new parameters to the gravitational waveform template may act to
weaken the obtained constraints on ∆α due to increased correlations between the parameters. A
detailed analysis on the magnitude of this effect is beyond the scope of this analysis. The error due

to linearization of the dipole radiation is expected to be minimal because β
(DEF)
ppE � (∆α)2.
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bounds on the DEF theory for an SNR 10 event with a BH mass of 10 M�

on the LIGO O3 detector. We find constraints on ∆α to be ∼ 0.104 with

leading-order −1PN corrections included, and ∼ 0.105 (negligible difference on

a plot such as Fig. 6.9) with higher-order corrections to 0.5PN included. Such

results have a ∼ 0.4% difference, and are likely to be negligible in the presented

analysis. A similar result was found in [227] for Brans-Dicke theory. We also

bring to attention Ref. [119], where it was discovered that the additional pres-

ence of non-GR amplitude corrections to the waveform only differs from those

in phase by ∼ 4% - another negligible difference in our analysis.

• Rotating BHs Now let us discuss the effect of considering rotating BHs in our

analysis, rather than the static ones considered previously. To perform this

simple comparison, we compute constraints on ∆α in the DEF theory of gravity,

and
√
αEdGB in the EdGB theory of gravity for a SNR 10 event with a BH mass

of 10 M� on the LIGO O3 detector, with the assumptions of BH spins χBH =

(0, 0.5, 1). The resulting constraints were found to be ∆α < (0.105, 0.104, 0.103)

and
√
αEdGB < (1.80 km, 1.79 km, 1.78 km) respectively, with only a maximal

difference of ∼ 1.5% found between them in either case. Thus, we conclude that

the effect of rotating BHs in our analysis is sufficiently negligible.

We also point out that the inclusion of spin precession does not play a crucial

role in the order-of-magnitude constraint of −1PN effects. This is demonstrated

in Table IV of Ref. [109], where it was shown that spin precession strengthens
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constraints on the Brans-Dicke parameter by ∼ 43%, due to small correlations

between the −1PN ppE parameter and the spins entering at 1.5PN. Such an

effect is magnified for increasing mass-ratio systems, much larger than those

considered in this analysis, as they tend to increase the effects of precession.

• BH/NS mass populations In this section we model an appropriate BH-NS mass

distribution function and implement it into the procedure used to combine the

uncertainty in non-GR parameters from N events, now with variational masses.

To do this, we modify the expression given in Eq. (3.17) by injecting a mass-

distribution function f(mBH,mNS) like so

σ−2
θa = ∆T

40 M�∫
5 M�

2 M�∫
1 M�

zh(mNS,mBH)∫
0

4π[a0r(z)]2RR(z)
dτ

dz
σ−2
θa (z,mBH,mNS)

× f(mBH,mNS)dzdmNSdmBH, (6.38)

where σθa(z,mBH,mNS) and zh(mNS,mBH) are now interpolated functions that

also depend on the individual binary masses. For simplicity, we assume that

f(mBH,mNS) for BH/NS is simply given by a product of the individual mass dis-

tributions fBH(mBH) and fNS(mNS) as f(mBH,mNS) = CfBH(mBH)fNS(mNS), where

the constant C is determined by normalizing the function to be unity when be-

ing integrated over mBH and mNS. We use fBH(mBH) as the mass distribution

of primary black holes in stellar-mass BH binaries derived by the LIGO/Virgo

Collaborations [452], while we adopt fNS(mNS) as a Gaussian distribution used
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e.g. in [453]. Namely, we have

fBH(mBH) ∝



(
mBH

M�

)−α
if mmin ≤ mBH ≤ mmax

0 otherwise


, fNS(mNS) ∝ N (µNS, σNS).

(6.39)

The relevant parameters α, mmin, mmax, µNS, and σNS have been fit to be 0.4,

5 M�, 41.6 M�, 1.34 M�, and 0.06 M� respectively. We perform a grid search

with 8 redshift values between 0 and 8, 10 NS masses between 1 M� and 2 M�

and 10 BH masses between 5 M� and 40 M� to compute σ√αEdGB
(z,mBH,mNS)

for 800 mass/redshift samples, which is then interpolated.

We perform this example computation for the EdGB theory of gravity on the

CE detector with the “realistic” number of events (730, 000) and compare the

resulting constraint on
√
αEdGB to the case of fixed-mass binaries presented in

the main analysis. Under the described circumstances, we find a constraint on

√
αEdGB of 0.003 km with the new variational mass model. Compared to the

static-mass model result of 0.004 km, we find that the two methods agree to

within 25%. Interestingly, we find the new constraints to be stronger than the

old ones as the new analysis includes BH masses lower than 10M� considered

originally, and thus the results displayed in the main text can be presented as

a conservative estimate. Because the relationship between α0 and β0 in DEF
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theory of gravity themselves depend on the constituent masses, this method

can not be used to reliably compute bounds in the (α0, β0) plane. However, we

expect to find similar results to the EdGB case (where α2
EdGB doesn’t depend

on the masses). This is verified by instead estimating constraints on ∆α only,

which agrees to the static-mass model to within 25% as well.

6.4.3 Probing EdGB gravity with full-waveform corrections

Now let us discuss constraints on the EdGB theory of gravity obtained with cor-

rections to the gravitational waveform in both the inspiral, merger-ringdown, and

remnant BH predictions. For a comparison between constraints found in this sec-

tion and with the inspiral-merger-ringdown consistency tests found in Chapter 7, see

Tab. 6.3. We perform the parameterized test of GR with EdGB corrections to the

waveform to O(χ2) in BH spin, followed up by a discussion and demonstration of

corrections to O(χ4).

6.4.3.1 O(χ2) corrections to BH spin

We start by performing the analysis with EdGB corrections to O(χ2) in BH spin.

Figure 6.13 presents the upper bounds on
√
αEdGB from the most massive binary BH

event detected to date, GW170729, with various EdGB corrections considered. Ob-

serve first that when only the inspiral correction is considered, the bound is beyond

the validity of the small coupling approximation, while those become valid once we

consider corrections to QNMs. This shows the importance of the latter when con-

straining EdGB gravity with large mass binaries for which the contribution of the
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ringdown is larger.
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Figure 6.13: 90%-credible upper bounds on the EdGB parameter
√
αEdGB for the

most massive binary BH event detected to date: GW170729. Such constraints are
obtained via a Fisher analysis with the parameterized tests of GR. Such bounds are
organized into six categories (represented by the columns in each panel) of EdGB
corrections introduced to the GR waveform as discussed in Sec. 6.2.2: GR, inspiral,
axial QNMs, polar QNMs, inspiral+axial QNMs, and inspiral+polar QNMs.
Observe the importance of including non-GR effects in the merger-ringdown
waveform for massive events, as the small-coupling approximation (valid only in the
shaded region) becomes invalid otherwise.

Figure 6.14 displays the upper bounds on
√
αEdGB observed on O1/O2 runs for

each GW event considered in this analysis. We observe several things in regards

to this. Firstly, the smaller total mass events correspond to stronger constraints.

This is because the expressions in Eqs. (6.8)-(6.9) minimize
√
αEdGB for both minimal

mass ratio and, more notably, the individual mass. Second, we observe that the

type of EdGB corrections to the waveform does not strongly affect the two more
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massive events (GW150914, and GW170729), while the two lighter events (GW170608

and GW151226) observe a deterioration in constraining EdGB gravity when only

including the axial/polar QNMs. This is because the fraction of the ringdown portion

in the observed waveform becomes larger for larger-mass binaries, and hence QNM

corrections become more important for these binaries. Third, we observe that for

more massive events such as GW170729, the inclusion of only inspiral EdGB effects

results in an invalid constraint due to violation of the small coupling approximation,

as already shown in Fig. 6.13. Similar conclusions are made later in Chapter 7 for

massive events, in which the merger-ringdown portion of the gravitational waveform

began to make significant contributions to the inspiral-merger-ringdown consistency

test, compared to the inspiral portion.

Next we consider the future detectability of EdGB effects in the waveform. Fig-

ure 6.15 displays the possible upper bound on
√
αEdGB observed by CE, LISA, and the

multiband observation between the two for GW150914-like events, which indeed lie in

the multiband detectability region displayed in Sec. 6.3. We note that EdGB effects

with only axial/polar QNM corrections can not be probed by LISA (thus multiband

observations give the same result as CE detections alone) due to its cutoff frequency

of 1 Hz. We observe that LISA observations alone can improve the ability to probe

EdGB gravity by roughly one order of magnitude from CE observations alone, with

little difference made by the addition of axial/polar QNM corrections. Multiband ob-

servations further improve the bound by about a factor of two. Notice also that the
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Figure 6.14: Same as Fig. 6.13 but for various GW events GW170608, GW151226,
GW150914, and GW170729 (in order of increasing mass). The dashed horizontal
lines represent the small coupling approximation ζEdGB � 1 for events of the same
color, representing invalid constraints when placed above the corresponding line.
The dotted black horizontal line corresponds to the current constraint of√
αEdGB ≤ 2.
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LISA and multiband bounds are stronger than current bounds [114–119,380]. See also

Table 6.3 for a comparison between the
√
αEdGB constraints found in this chapter with

the parameterized tests, and the ones found in Chapter 7 with the inspiral-merger-

ringdown consistency tests. In particular, the latter analysis utilized the same EdGB

corrections to the gravitational waveform used here, and then tested the consistency

between the inspiral and merger-ringdown signals for varying values of αEdGB. We

find that the bounds from the two analyses are comparable to each other.
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Figure 6.15: Same as Fig. 6.14 but for future GW150914-like events detected by the
ground-based detector CE, space-based detector LISA, and the multi-band
observation between the two. We note that no space-based or multiband bounds
appear in the axial/polar QNMs columns, because space-based detectors such as
LISA can not observe the merger-ringdown effects for GW150914-like events
occurring at high frequencies.
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Detector

√
αEdGB [km]

√
αEdGB [km]

(Param.) (IMR consist. Chapter 7)

aLIGO 17 15

CE 5 8

LISA 0.6 –

Multiband 0.3 0.2

Table 6.3: Comparison between the current and future upper bound on
√
αEdGB

obtained in this chapter with the parameterized tests (Param.) and with the
inspiral-merger-ringdown consistency tests (IMR. consist.) discussed in Chapter 7.
Such constraints were formed from GW150914-like events, with the both inspiral
and axial QNM EdGB effects included in the waveform template. Observe how
constraints obtained from both tests produce comparable results on the
detectability of EdGB effects in the GW signal.

6.4.3.2 O(χ4) corrections to BH spin

In this section we compute EdGB corrections to the gravitational waveform up to

quartic order in BH spin, to check the validity of the slow-rotation approximation to

quadratic order in spin used in the previous subsection. We begin by expanding the

expressions for the inspiral dipole radiation and QNM corrections already computed

in Sec. 6.2 to quartic order in BH spin. Next we compute corrections to rISCO, Eorb and

Lz via the EdGB spacetime metric gEdGB
αβ found in Ref. [454], where they computed

each element up to 5th order in BH spin χ. The orbital energy and angular momentum

can be obtained from gEdGB
αβ by simultaneously solving the equations Veff(r) = 0 and

d
dr
Veff(r) = 0 for Eorb and Lz with effective potential given by

Veff(r) =
E2

orbg
EdGB
φφ + 2EorbLzg

EdGB
tφ + L2

zg
EdGB
tt

(gEdGB
tφ )2 − gEdGB

tt gEdGB
φφ

− 1 (6.40)
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GW Event

√
αEdGB (χ2)

√
αEdGB (χ4) frac. diff.

[km] [km] [%]

GW170608 [163] 2.29 2.28 0.4

GW151226 [164] 2.76 2.75 1.1

GW150914 [28] 17.16 17.15 0.1

GW170729 [165] 28.71 28.29 1.5

Table 6.4: Constraints on
√
αEdGB obtained with EdGB corrections to the waveform

up to quadratic order in BH spin (2nd column), and quartic order in BH spin (3rd
column). The last column shows the fractional difference between the two. We
observe that such results agree to within 1.5% in all cases, with the the largest
difference appearing for the most massive event GW170729.

Finally, the location of the ISCO is given by d
dr
Eorb(rISCO) = 0.

With the above corrections to the entire gravitational waveform to quadratic or-

der in spin, we estimate constraints on EdGB parameter
√
αEdGB. In particular,

we compute constraints on
√
αEdGB for each GW event considered in this analysis:

GW150914, GW151226, GW170608, and GW170729 as detected on the O2 detector,

with non-zero fiducial BH spins. We compare these results with those of the main

analysis, with corrections to only quadratic order in spin. Table 6.4 presents a com-

parison between constraints on
√
αEdGB obtained from (i) waveforms with corrections

to quadratic order in BH spin, and (ii) to quartic order in BH spin. We find that such

results agree with each other to between 0.2% and 1.5%, with the latter resulting

from the massive BHs in GW170729, in which spin effects become more important

as it seems to have the largest final spin out of the 4 GW events considered here.

Therefore we conclude that the effect of higher-order spin corrections to the gravi-
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tational waveform has up to a ∼ 1.5% effect on our predictions, which validates our

order-of-magnitude estimation presented in this chapter including up to quadratic

order.

Finally, we consider the effect of including spin effects into the remnant BH QNMs.

For example, in the dCS theory of gravity, all of the ingredients required to correct

the full waveform considered here are available, with the exception of the QNM spin

corrections. Here, we remove all EdGB spin effects to the remnant QNM corrections

and compute constraints on
√
αEdGB. We find the constraint to be 27.58 km for

GW170729 with which the contribution of the ringdown is most significant out of the

4 GW events considered. Such a constraint agrees very well with those tabulated in

Table 6.4 for spin corrections to both O(χ2) and O(χ4), with the largest difference

being with the most massive event again. Therefore, we conclude that spin effects in

the remnant BH QNMs make only a negligible impact on constraints on
√
αEdGB.

6.5 Conclusions

In this chapter, we have highlighted the power in found in the parameterized tests of

GR. This was applied to three different cases: the multi-band observations between

ground- and space-based GW detectors on the constraint of various modified theories

of gravity; the constraint of STTs such as DEF and EdGB under the observation of

mixed BH-NS binaries; and finally probes of EdGB gravity with waveform corrections

to both the inspiral and ringdown of the gravitational waveform.

We began by performing parameterized tests of GR by considering generalized
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modifications to the GW phase, finding that multi-band observations can provide con-

straints reaching up to 40 times stronger than their single-band counterparts. Such

constraints were applied to the specific cases of EdGB, dCS, scalar-tensor, noncom-

mutative, varying-G, varying-M , and massive graviton theories of gravity, resulting

in constraints on the theories’ associated parameters. In particular, we find that con-

straints placed on the EdGB, dCS, noncommutative, and massive graviton non-GR

effects show improvement upon the current constraints (by up to seven orders-of-

magnitude for dCS gravity) found in the literature when making use of multi-band

detections.

Next we demonstrated the present and future considerations on constraining STTs

which violate the SEP with mixed BH-NS binaries. We considered both the DEF and

EdGB theories, which predict massless scalar fields ϕ which couple to matter and alter

the consequent trajectories of gravitating bodies. We investigate constraints placed

on these theories’ coupling parameter spaces for the possible detection of BH-NS

coalescences, both on the current iteration of LIGO interferometers, and with future

GW detectors both on the ground and in space. In the DEF theory, we find that if

such an event (such as the possible candidates S190426c or S190814bv in the O3 run)

were to be observed with the present GW detection capabilities, competing bounds

to those from pulsar timing observations can be presented. In EdGB theory, we find

that with BH masses less than 19.5 M�, improvements to the current constraint on

the coupling parameter
√
αEdGB < 2 km can be made to the order of O(0.1) km.
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Such events detected on future GW detectors (single-event, multi-band observations,

and multiple-event stacking) have been demonstrated to improve upon the current

bounds by several orders of magnitude in many cases.

Finally, we have modeled the resulting EdGB effects throughout various parts of

the gravitational waveform, including the inspiral, the characteristic ringdown QNMs,

and finally, to the final mass and spin properties of the remnant BH. With these new

tools in hand, we offer predictions on the future detectability of such EdGB effects

present in the gravitational waveform.

We studied the detectability of EdGB effects in an observed GW signal by in-

troducing various combinations of EdGB modifications to the inspiral and merger-

ringdown portions of the waveform. In particular, we discovered that for more massive

events such as GW170729, the EdGB merger-ringdown contributions begin to hold

high significance. When only the inspiral corrections to the waveform (as is typi-

cally considered) were applied, the small-coupling approximation ζEdGB � 1 failed

to be upheld. Only upon the inclusion of the merger-ringdown corrections does this

quantity become satisfied, allowing for valid constraints on
√
αEdGB. We found that

future space-based and multiband observations can place bounds that are stronger

than current bounds on EdGB gravity. We also found that the constraints on
√
αEdGB

found here with parameterized tests agree well with those found in Chapter 7 with

the inspiral-merger-ringdown consistency tests. Here we additionally considered the

effects at higher order in spin to justify the use of slow-rotation approximation, find-
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ing that that such higher-order corrections only change our results up to a maximum

of 1.5%. We additionally investigate the effect of spin corrections to the remnant BH

QNMs, finding that their inclusion has a negligible impact on parameter estimation.

Although we have taken into account the known EdGB corrections to the waveform

to date as much as possible, there are some other modifications that have been left

out. Below, we list some of the caveats in our analysis presented in this chapter:

• We only include leading-order post-Newtonian terms in the waveform, while a

more advanced analysis could include higher order corrections. Though such

corrections do not seem to be important in certain scalar-tensor theories [154].

• In GR, axial and polar QNMs are identical (isospectral), while such isospectral-

ity is broken in EdGB [155]. Thus, the ringdown portion of the waveform may

be more complicated than that for GR.

• Our estimate for the mass and spin of the BH remnant in EdGB gravity is

based on the picture verified in GR, though this needs to be justified once NR

simulations of binary black hole mergers are available in such a theory [380].

• We did not include corrections during the merger phase of the waveform. Again,

it is likely that one needs to wait for NR simulations to realize how the correc-

tions enter in this phase.

Having said this, we believe our calculations should be valid as an order of magnitude

estimate. One reason to support this point is because corrections to the waveform
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enter linearly in ζEdGB ∝ α2
EdGB. Thus, even if our estimates are off by an order of

magnitude in ζEdGB, bounds on
√
αEdGB are affected only by a factor of ∼ 101/4 ∼ 2.

Faults such as the ones listed above can be remedied by the full construction

of an EdGB (or any non-GR theory) waveform. Work in this direction is already

in progress such as Ref. [380], where the scalar field dynamics during binary BH

mergers have been expressed in EdGB gravity. Very recently, the EdGB correction to

the merger-ringdown waveform from a binary black hole has been computed [381]19.

In the future, we plan to compare such numerical-relativity waveforms with the simple

analytic model presented here to quantify the validity of the latter.

For the purposes and scope of the investigation found in this chapter, the Fisher

analysis has been used to derive valid order-of-magnitude parameter estimations. As

thoroughly discussed in Ref. [154], for large enough SNR the results approximate well

a Bayesian analysis. In the former reference, the Fisher-estimated non-GR parameter

βppE in the inspiral agreed with its Bayesian counterpart to within ∼ 40% at −1PN

for GW150914-like events with an SNR of 25. This corresponds to only a ∼ 10%

difference on the coupling parameter
√
αEdGB in EdGB gravity. Regarding the latter,

the 90% credible contours in the final mass-spin plane obtained with Fisher and

Bayesian analyses agreed with an error of 20% for GW150914. Such agreements only

strengthen considerably for the future detectors considered in this analysis.

The analysis described about can be improved in numerous ways. One example

of such improvements would be to consider a full Bayesian analyses rather than the

19See also Refs. [455–457] for similar works in dCS gravity.
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Fisher analysis used here. Additionally, one can simulate the multi-band event rates

discussed in Refs. [355, 357, 359] to combine the signals and further reduce the sys-

tematic errors residing in our bounds on non-GR theoretical parameters. Finally, we

can use the results in Sec. 6.4.1.3 to consider alternative theories of gravity which

modify the GW amplitude rather than phase [458–461]. Further, more accurate BH-

NS population simulations other than those found in Ref. [152] may be utilized in

future analyses, together with different masses for different events. Finally, one could

consider a more comprehensive list of STTs to study, rather than the select few ex-

amples investigated here: DEF, MO (see App. G for a comparison between the two),

and EdGB.

In the preceding chapter, we considered inspiral-ringdown waveform modifications

from the EdGB theory of gravity as one given example. Future analyses could, given

all the necessary ingredients described above, repeat the entire investigation using any

given modified theory of gravity. By simply knowing the leading PN corrections to

the inspiral portion (known for most modified theories of gravity [131]), corrections to

the specific orbital energy Eorb and angular momentum Lz, (known for theories such

as dCS gravity [462]), and corrections to the QNMs (for dCS gravity, these are only

known for non-spinning BHs [463–465]), the simple “patchwork” analysis presented

in this chapter could be revisited, without the need for a full non-GR waveform.
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Inspiral-merger-ringdown
consistency tests

The extreme-gravity collisions between black holes allow us to probe the un-

derlying theory of gravity in the extreme gravity sector of spacetime, where the

fields are strong, non-linear, and dynamical. To probe this theory of gravity, we

apply the theory agnostic inspiral-merger-ringdown consistency test where one

derives the mass and spin of a merger remnant from the inspiral and merger-

ringdown independently assuming general relativity is correct, and then check

their consistency. One interesting future possibility is to detect gravitational

waves from GW150914-like stellar-mass black hole binaries with both ground-

based and space-based detectors using multi-band gravitational-wave observa-

tions. We then apply the theory-agnostic inspiral-merger-ringdown consistency

test to an example theory beyond general relativity for the first time. Here we

focus on the string-inspired Einstein-dilaton Gauss-Bonnet gravity and modify

the inspiral, ringdown, and remnant black hole properties of the gravitational

waveform. The formalism developed here can easily be applied to other theo-

ries.

261
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7.1 Introduction

The historic observation of GWs from the merger of two BHs by the LVC [28] has

ushered in the birth of a new era of astrophysics, for the first time probing the extreme

gravity regime where spacetime is strong, non-linear, and dynamical1. GWs such as

these carry with them multitudes of information; not only regarding the sources’

astrophysical properties, but also about the underlying theory of gravity driving the

process. However, this first event, as well as the following 10 [343], have failed to detect

any significant deviations from the predictions of GR [143], the prevailing theory of

gravity for the past century [129]. While the current LVC infrastructure [78] is a

marvel of modern engineering, it may not yet be enough to uncover the elusive traces

of a modified theory of gravity. The next generation of GW detectors [81, 84–88],

on the other hand, promise improvements on the order of 100 times the sensitivity,

as well as new sensitivity in the mHz regime. Will this be enough to pull back the

curtain on the hidden theories of gravity running the show?

Throughout the last century, countless tests and observations of GR have been

performed [10–18, 143, 154, 368], all finding agreement with Einstein’s theory in a

variety of environments. However, even with such success, GR still needs to be tested.

1This chapter is based on the following papers: Z. Carson and K. Yagi, Probing string-inspired
gravity with the inspiral-merger-ringdown consistency tests of gravitational waves, submitted to
Class. Quant. Grav. Letters (2020), Z. Carson and K. Yagi, Parameterized and inspiral-merger-
ringdown consistency tests of gravity with multi-band gravitational wave observations, Phys. Rev. D
101, 044047 (2020), Z. Carson and K. Yagi, Multi-band gravitational wave tests of general relativity,
Class. Quant. Grav. Letters 10, 1361-6382 (2019), and Z. Carson and K. Yagi, Parameterized and
Consistency Tests of Gravity with Gravitational Waves: Current and Future, Proceedings, Recent
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While it explains a majority of our observations, there yet remain several unanswered

questions which could be explained by new theories of gravity. For example, “dark

energy” and the accelerated expansion of the universe [70, 73, 74, 76], “dark matter”

and the unexplained galactic rotation curves [69–72, 75], and more [69, 69, 69, 70, 70,

71,71,71–74,74] all remain open to this day. To date, a plethora of modified theories

of gravity have been proposed to explain some of the open questions listed above.

In this chapter, we demonstrate the power of testing the consistency between

the inspiral and merger-ringdown GW signals [143,166–168]. Known as the inspiral-

merger-ringdown (IMR) consistency tests of GR, we describe how one can, given

independent measurements of (i) only the inspiral signal, and (ii) only the merger-

ringdown signal, test the theory of GR assumed in a template waveform. We begin

with a demonstration of the power of multi-band observations of such signals between

ground- and space-based detectors. We then probe the EdGB theory of gravity as

described thoroughly in Chapter 6 with the IMR consistency test, for the first time

applying such a test to a specific theory of gravity. We consider EdGB corrections

to not only the inspiral properties of a binary BH coalescence [146], but also to

the characteristic QNMs [155] and final properties of the post-merger BH [159] as

discussed in Chapter 6. To the best of our knowledge, the IMR consistency test has

been put into context for an example modified theory of gravity for the first time,

and can indeed be applied to other alternative theories of gravity, given the required

ingredients.
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While the following analysis is not entirely robust, it is presented as a new al-

ternative route to obtain order-of-magnitude estimates (or better in most scenarios)

without the significant time concerns required with full NR solutions, which do not

yet exist for most alternative theories of gravity. We offer a new method to test any

given modified theory of gravity by taking into account additional pieces of informa-

tion available to make the gravitational waveform closer to completion with a minimal

degree of effort and computational time. In particular, we utilize a Fisher-based ap-

proach to the IMR consistency test, rather than the usual Bayesian one. Following

the Fisher analysis techniques found in Chapter 3, we estimate the two-dimensional

posterior probability distributions of remnant BH parameters Mf and χf from both

the inspiral and merger-ringdown signals.

7.2 IMR consistency tests of GR

While two GW150914-like stellar-mass BHs in a binary system inspiral together via

GW radiation, space-based GW interferometers can effectively probe the inspiral por-

tion of the waveform, occurring at low frequencies. Once the separation distance be-

tween the bodies become close enough, they fall into a plunging orbit until finally they

merge, forming a common horizon which will settle down via radiation of quasi-normal

modes [466,467] - a high-frequency merger-ringdown signal which is best observed by

ground-based GW detectors. The remnant BH with mass Mf = Mf (m1,m2, χ1, χ2)

and spin χf = χf (m1,m2, χ1, χ2) (provided by NR fits in Refs. [90]) can then be

entirely described by the same two parameters, in accordance with the BH no-hair
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theorems.

Using only the inspiral portion of the signal (f < fISCO = (63/2πM)−1 [168]), the

final mass and spin of the remnant BH can be uniquely estimated using predictions of

the initial mass and spin parameters m1, m2, χ1, and χ2, while having no information

about the merger-ringdown portion. The opposite is also true: the final mass and

spin may be predicted from the merger-ringdown portion of the signal (f > fISCO =

(63/2πM)−1) with no accompanying information about the inspiral. We utilize the

Fisher analysis method from Chapter 3 to predict a four-dimensional probability

distribution between m1, m2, χ1, and χ2, which can be transformed into the two-

dimensional probability distribution between Mf and χf using fits from numerical-

relativity simulations. Assuming the SNR is sufficiently large2 for both the inspiral

and merger-ringdown waveforms, the estimates of (M I
f , χ

I
f ) should agree with those

of (MMR
f , χMR

f ) within the statistical errors, assuming that GR is the correct theory of

gravity. This test, known as the IMR consistency test [143, 166–168], enables one to

detect emergent modified theories of gravity, manifesting themselves as a difference

between the remnant BH parameters (Mf , χf ), as computed from the inspiral, and

merger-ringdown portions of the waveform individually. Such a test can be performed

by computing the two-dimensional posterior probability distributions PI(Mf , χf ) and

PMR(Mf , χf ) from each section of the waveform. The overlap of such distributions

can determine how well GR describes the observed signal.

All detected GW signals to date have been found to be consistent with GR [143,

2GW150914 was observed with total SNR of 25.1, which is assumed throughout the analysis.
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166–168,468]. Reference [167] phenomenologically introduced a non-GR correction at

second post-Newtonian order in the gravitational wave energy flux and studied the

IMR consistency test, though the reference did not include corrections to the QNM

ringdown spectrum for simplicity.

While most similar tests are performed through a Bayesian statistical analy-

sis [143,166–168,468], here we offer a new method using the Fisher analysis techniques

described in Chapter 3 that is computationally less expensive. Namely, for each of

the inspiral and merger-ringdown portions of the waveform, we first derive posterior

distributions of parameters

θaGR = (lnA, φc, tc,m1,m2, χ1, χ2), (7.1)

using the Fisher analysis method. Next, we marginalize over the first three parameters

to find the posterior distributions for (m1,m2, χ1, χ2). Marginalization over a given

parameter is typically accomplished by integration over the full range of values, or in

the case of multi-variate Gaussian distributions by simply removing the corresponding

row and column from the covariance matrix Σij ≡ Γ−1
ij . Finally, using the Jacobian

transformation matrix and the NR fits provided in Ref. [90], the two-dimensional

Gaussian probability distributions PI(Mf , χf ) and PMR(Mf , χf ) are constructed.

What are the other limitations of the Fisher analysis? Below, we will only use the

GR gravitational waveform, which corresponds to injecting the GR waveform and also

recovering it with the GR waveform. Such a method does not allow us to estimate the
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systematic errors, and thus the final distribution is always centered around the true

GR value, which is not the case in a real analysis [143, 168]. Moreover, the posterior

distribution from the Fisher method is always Gaussian, and thus a 90% credible

contour in a two-dimensional parameter space is always given by an ellipse, which is

also not true in reality.

However, what a Fisher analysis can accurately describe is the size and direction

of correlation of the posterior distributions for (ε, σ), which are of high value when

predicting the future resolving power from the GR value of (0, 0). Throughout the

first half of this chapter, we consider the area of the 90% confidence region as a

metric of the discriminatory power one can gain upon use of this test with ground-

based, space-based, and multi-band detections. Such information may be used to gain

valuable insight on how well future observations can discern GR effects from non-GR

effects.

In the second half of this chapter, we present a method to estimate the systematic

uncertainties present in the IMR consistency test given a arbitrary theory of gravity

beyond-GR. In particular, by following the analysis of Ref. [469], one can estimate the

“theoretical”, or systematic errors present in the extraction of template parameters θa

due to mismodeling present in the template waveform. Specifically, one can estimate

systematic errors on θa by assuming use of the GR template, while EdGB gravity is

in fact the correct theory in nature. The theoretical errors can be computed as

∆thθ
a ≈ Σab

(
[∆A+ iAGR∆Ψ]eiΨGR

∣∣∣∂bh̃GR

)
, (7.2)
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where Σab = (Γ−1)ab is the covariance matrix, a summation over b is implied, and

∆A ≡ AGR−AEdGB and ∆Ψ ≡ ΨGR−ΨEdGB are the differences between the amplitude

and phase in GR and EdGB gravity. The probability distributions in (∆Mf/M̄f ,∆χf/χ̄f )

have included both statistical errors (
√

ΣI,MR) which determine their size, and sys-

tematic errors (∆thXI,MR) which determine their offset from the GR predictions.

For the injection waveform, we use the EdGB waveform by modifying the IM-

RPhenomD GR waveform in three ways. The first modification is in the inspiral

portion, where we add the EdGB leading post-Newtonian correction as in Eq. (6.8).

The second modification is in the ringdown portion, where we modify the QNM ring-

down and damping frequencies as in Eq. (6.18). The third modification is in the

estimate of the final mass and spin, which is given in Eqs. (6.25) and (6.26). We uti-

lize fiducial values such that η and χs correspond to the initial parameters of the GW

event in question, Mf and χf correspond to those predicted by Eqs. (6.25) and (6.26),

and φc = tc = 0. Finally, we allow the fiducial value of ζ to vary slowly as we proceed

with the IMR consistency test with different magnitudes of EdGB coupling.

The IMR consistency test can be performed with the following prescription. First,

we generate the two-dimensional posterior probability distributions PI,MR(Mf , χf ) in

the Mf − χf plane from each portion of the waveform described above. Such pos-

terior distributions are described as a two-dimensional Gaussian probability distri-

bution function with root-mean-square errors estimated via a Fisher-based analysis,

as described below. Combined with the theoretical (systematic) uncertainty “shifts”
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∆thXI,MR ≡ (∆thMf ,∆thχf ) (in the first half of this chapter, we assume systematic

errors to be vanishing, in order to focus on the size of the probability distributions

for future observations), the final probability distributions in the Mf − χf plane are

taken to be Gaussian

PI,MR ≡
1

2π
√
|ΣI,MR|

exp

[
− 1

2

(
X −XGR

I,MR −∆thXI,MR

)T

×Σ−1
I,MR

(
X −XGR

I,MR −∆thXI,MR

) ]
, (7.3)

where ΣI,MR represents the covariance matrix, X ≡ (Mf , χf ) contains the final state

variables, and XGR
I,MR contains their GR predictions from the inspiral and merger-

ringdown portions respectively. The agreement between the two above distributions

is typically measured by transforming to the new parameters ε and σ, describing the

departures ∆Mf and ∆χf from the GR predictions of final mass and spin from the

inspiral and merger-ringdown, normalized by the averages between the two M̄f and

χ̄f [468]

ε ≡ ∆Mf

M̄f

≡ 2
M I

f −MMR
f

M I
f +MMR

f

, (7.4)

σ ≡ ∆χf
χ̄f
≡ 2

χI
f − χMR

f

χI
f + χMR

f

. (7.5)

The probability distributions PI(Mf , χf ) and PMR(Mf , χf ) can be transformed to

P (ε, σ) by following the Appendix of Ref. [468], resulting in the final expression given
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by:

P (ε, σ) =

1∫
0

∞∫
0

PI

([
1 +

ε

2

]
M̄f ,

[
1 +

σ

2

]
χ̄f

)
× PMR

([
1− ε

2

]
M̄f ,

[
1− σ

2

]
χ̄f

)

× M̄f χ̄fdM̄fdχ̄f . (7.6)

Finally, the consistency of the posterior probability distribution with the GR value of

(ε, σ)|GR ≡ (0, 0) will determine the agreement of the signal with GR. Any statistically

significant deviations from the GR value may uncover evidence of modified theories

of gravity present in any portion of the GW signal.
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Figure 7.1: Comparison between the transformed posterior probability distributions
in the IMR consistency test for both the Fisher analysis method (solid) used in this
chapter, and the Bayesian one (dashed) done by the LVC in [143]. We display the
results for both GW events GW150914 (green) and GW170729 (magenta)
considered in this chapter. We observe that in both cases, the areas of the
probability distributions agree between the Fisher and Bayesian analyses to within
10% accuracy, confirming that the former can capture the qualitative feature of the
latter and thus is reliable as an order-of-magnitude estimate.
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See Fig. 7.1 for a comparison between the Fisher analysis method considered in this

chapter, and the Bayesian done by the LVC in [143]. We note that for both GW150914

and GW170729, the resulting Fisher and Bayesian probability distributions agree with

each other to within 10% accuracy. This confirms the validity of the Fisher analysis

method considered in this chapter as a qualitative estimate, something which we

expect to improve considerably for future observations with increased SNRs as we

also consider here.

In the second half of the chapter, we apply this method to test the specific ex-

ample theory of EdGB gravity as follows. We choose the template waveform to be

the IMRPhenomD waveform in GR, while we inject a signal in EdGB gravity by

implementing the EdGB corrections to the inspiral, ringdown and final mass/spin

of the IMRPhenomD waveform given by Eqs. (6.8), (6.9), (6.18), (6.25), (6.26). We

increase the fiducial value of ζ from 0 (∆thXI,MR = 0), until finally the GR prediction

of (∆Mf/M̄f ,∆χf/χ̄f )|GR = (0, 0) falls outside of the 90% confidence region (i.e. the

systematic uncertainties are larger than the statistical errors). This indicates the

magnitude of ζ required to observe non-GR effects in the waveform. We believe this

is the first analysis where the IMR consistency tests have been applied to a con-

crete non-GR theory, where both inspiral and ringdown corrections are consistently

included.
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7.3 Results

In this section we present the results from the IMR consistency tests of GR. We

begin with the consideration of a multiband IMR consistency test, where we analyze

the area of the transformed posterior probability distributions as a metric of future

detectability on various detection schema. We conclude with a probe of EdGB gravity

with the IMR consistency test by injecting EdGB effects into the waveform inspiral,

merger-ringdown, and remnant properties to compute the resulting systematic errors,

increasing the magnitude of non-GR effects until the test is failed.

7.3.1 Multiband IMR consistency tests

Figure 7.2 displays the 90% confidence regions of the remnant mass and spin predic-

tions from the inspiral, merger-ringdown, and full waveforms as detected on LIGO

O1, in comparison with the Bayesian results of Ref. [143]. Here we see good agree-

ment between the probability distributions, in both the direction of correlation, and

the area of the 90% confidence regions – the latter agreeing to within 10% for all

contours considered. We remind the reader that the agreement between the inspi-

ral and merger-ringdown probability distributions indicates the degree of consistency

with GR.

Next, we follow Ref. [468] to transform the individual inspiral and merger-ringdown

probability distributions into the joint probability distribution between new param-

eters (ε, σ) via Eq. (7.6). These quantities determine the remnant mass and spin
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Figure 7.2: 90% credible region contours of the inspiral, merger-ringdown, and
complete waveform posterior distributions in the Mf − χf plane, for GW150914-like
events observed on the LIGO O1 detector. We present both the Fisher analysis
results (solid) discussed here and the Bayesian results of Ref. [143] (dashed) for
comparison. We observe good agreement between the two analyses in both the
direction of correlation, and in the overall areas, which agree to within 10% for all
three distributions.
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(predictions assuming GR) discrepancies ∆Mf and ∆χf between the inspiral and

merger-ringdown waveforms, normalized by the averages between the two M̄f and

χ̄f . Figure 1.12 displays the estimated 90% credible regions in the ε − σ plane for

GW150914-like events observed on the following detectors: LIGO O1 (Fisher and

Bayesian3 [143]), CE, and the multi-band observations between CE and TianQin,

LISA, B-DECIGO, and DECIGO4. The consistency of such distributions with the

GR value of (σ, ε)|GR = (0, 0) gives insight into how well the entire waveform agrees

with GR, while any statistically significant deviations may indicate non-GR effects

present within the signal.

Now we quantify the resolving power gained for each single-band and multi-band

observation, describing how effectively one can discriminate between GR and non-GR

effects. To do this, we compute and compare the areas of the 90% confidence regions

as a metric towards this resolution. Figure 7.3 presents the ratio of such areas for

the LIGO O1 (Fisher and Bayesian [143]) detector relative to CE, and to the multi-

band observations with CE and TianQin, LISA, B-DECIGO, and DECIGO. Here

we observe three important features. First, the results obtained here for LIGO O1

agree very well (within 10%) with the Bayesian analysis of Ref. [143], showing good

validity of our Fisher-estimated analysis. Second, we observe almost a three-order-of-

3Such Bayesian results are extracted from the IMRPhenomPv2 results of Ref. [143]. Similar results
were found with the non-precessing SEOBNRv4 model presented there.

4As the merger-ringdown portion of the signal begins beyond the observing capacity of all space-
based detectors for GW150914-like events, the IMR consistency test may not be performed solely by
space-based detectors for such events. However, Ref. [470] showed that supermassive BH binaries
are compatible with these observations.
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Figure 7.3: Ratios of the areas of the 90% credible regions relative to that found
with the LIGO O1 detector (Fisher result) shown in Fig. 7.2 for GW150914-like
events, obtained from a Fisher analysis (blue cross). We report good agreement
within 10% between the LIGO O1 Fisher and Bayesian [143] (red star) results. We
also observe up to three orders-of-magnitude of improvement from the results of
LIGO O1 to CE, and a further improvement of 7-10 times upon the use of
multi-band observations.

magnitude improvement upon the use of CE from the results of LIGO O1. Third, we

see additional gains in resolving power by a factor of 7-10 upon the use of multi-band

observations.

7.3.2 Probing EdGB gravity with the IMR consistency test

Now let us discuss the resulting detectability of EdGB effects using the IMR consis-

tency tests of GR, using the process outlined in Sec. 7.2. This is done by injecting

varying magnitudes of EdGB effects into the waveform until the IMR consistensy test
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is failed.
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Figure 7.4: (left) IMR consistency test performed under EdGB gravity for
GW150914 with a corresponding waveform generated via IMRPhenomD with the
O2 detector. Displayed is the 90% confidence region of the transformed probability
distribution in the ∆Mf/M̄f −∆χf/χ̄f plane, with the GR value of (0, 0). The
analysis is repeated for various fiducial values of

√
αEdGB. (right) Same as the left

panel but for the more massive GW event GW170729 with
(Mf , χf )GR = (80.3 M�, 0.81).

Let us first discuss the current prospects of observing EdGB effects upon the

detection of binary BH merger events by the LIGO O2 [78] detector. The left

panel of Fig. 7.4 present the results of the test for GW150914 with
√
αEdGB =

(0 km, 15 km, 16 km, 20 km). Such a waveform was generated with the PhenomD

model assuming BH masses and spins of (m1,m2, χ1, χ2) = (38.9M�, 31.6M�, 0.32, 0.44),

with a luminosity distance scaled to a signal-to-noise (SNR) ratio of 25.1. We observe

that, at the 90% confidence interval, EdGB effects can be observed for
√
αEdGB > 15

km, much larger than the current constraint of 2 km [114–119]. Therefore, we confirm

that the current LVC infrastructure is unable to detect EdGB effects based on the

existing observational constraints of
√
αEdGB < 2 km. Similarly, we repeat the pro-
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cess for the more massive event GW170729 in the right panel of Fig. 7.4, observing

how contributions from the merger-ringdown signal are much more significant in this

scenario, with large uncertainties now present in the inspiral signal instead, resulting

in EdGB detectability of
√
αEdGB > 42 km. This waveform was generated with BH

masses and spins of (m1,m2, χ1, χ2) = (50.6M�, 34.3M�, 0.60, 0.57) with an SNR of

10.8.
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Figure 7.5: Similar to Fig. 7.4 but with the CE detector (left), and the multi-band
observation between LISA and CE (right).

Next we consider the future prospects of observing such effects in the waveform

with third-generation ground-based detectors. The left panel of Fig. 7.5 shows the

resulting probability distributions in (∆Mf/M̄f ,∆χf/χ̄f ) found with the Cosmic Ex-

plorer [81] (CE) observations of GW150914-like events, with
√
αEdGB = (0 km, 8 km, 9 km, 10 km).

We see that with CE, EdGB effects can be determined to a 90% confidence interval

for
√
αEdGB > 8 km, still above the current constraint of

√
αEdGB < 2 km.

By noting that a majority of both the statistical (size of the contours) and sys-

tematic uncertainties (shift of the contour centers) come from the inspiral signal, we
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consider a multiband observation by combining CE with the space-based detector

LISA [86] to further probe the inspiral event. The right panel of Fig. 7.5 shows

the resulting probability distributions in (∆Mf/M̄f ,∆χf/χ̄f ) observed by multiband

observations with
√
αEdGB = (0 km, 0.2 km, 0.3 km). Here we see that multiband

detections can probe EdGB effects with magnitudes of
√
αEdGB > 0.2 km, an order-of-

magnitude smaller than the current constraint of 2 km. Thus, if non-GR effects such

as EdGB are indeed present in nature with 0.2 km <
√
αEdGB < 2 km, multiband

detections between CE and LISA can uncover them to the 90% confidence interval.

On the other hand, if one does not find deviations from GR, one would be able

to place bounds on EdGB gravity that are stronger than current bounds by an or-

der of magnitude. The projected bounds with future detectors presented here using

IMR consistency tests are comparable to those found with the parameterized tests

discussed in Chapter 6, with the differences between the two tabulated in Tab. 6.3.

7.4 Conclusions

In this chapter we investigated the consistency between the inspiral and merger-

ringdown portions of the gravitational waveform, in the so called IMR consistency

test. We applied this test to future multiband observations of GWs to analyze the size

of the remnant BH mass and spin posterior probability distributions, indicitave of the

future resolving power for non-GR effects. We then apply such tests to the specific

example of EdGB gravity, where full waveform corrections were injected allowing us

to find the magnitude of coupling paramter αEdGB required to be detectable in future
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GW observations.

We began by demonstrating the resolving power gained upon the use of multi-

band observations, finding up to an order-of-magnitude improvement relative to the

single-band detections made by ground-based detectors alone. Such an improvement

gives way to the enhanced opportunity to shed light on even the most minuscule

deviations from GR in the extreme gravity regime.

We then consider the example of EdGB theory of gravity, which is a proposed

scalar-tensor theory of gravity with curvature coupling to the dilaton scalar field.

This string-inspired theory predicts the scalarization of BHs [146,180,374,375], calling

forth “fifth force” interactions between orbiting BHs in a binary system and giving rise

to scalar dipole radiation that predicts an increased rate of inspiral between them. In

this chapter, we have modeled the resulting EdGB effects throughout various parts of

the gravitational waveform, including the inspiral, the characteristic ringdown QNMs,

and finally, to the final mass and spin properties of the remnant BH. With these new

tools in hand, we offer predictions on the future detectability of such EdGB effects

present in the gravitational waveform.

In particular, we chose EdGB gravity as an example non-GR theory to study the

power of IMR consistency tests, though the formalism that we developed here can

easily be applied to other theories if all of the ingredients are available. For example,

dynamical Chern-Simons gravity is another theory beyond GR that breaks parity

and is motivated from string theory, loop quantum gravity and is an effective field
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theory for inflation [120,121,471]. Leading post-Newtonian corrections to the inspiral

waveform have been derived in [117,119,122], while the scalar interaction energy and

corrections to the specific orbital energy, angular momentum and the location of the

ISCO have been computed in [122, 124, 401]. The QNM ringdown spectrum for non-

spinning BHs in such a theory has been studied in [463–465]. Therefore, once the

spin corrections to the BH ringdown in this theory is available, one can repeat the

analysis here to investigate how accurately one can probe dynamical Chern-Simons

gravity with the IMR consistency test.

We studied the detectability of EdGB effects emergent in an observed GW signal

by introducing EdGB modifications to the inspiral, merger-ringdown, and remnant

BH properties of the waveform. In particular, for a given GW detector we increased

the magnitude of αEdGB present in the systematic uncertainties until they overcame the

statistical errors. Once this happens, the inspiral and merger-ringdown signals are no

longer consistent and we can claim the presence of non-GR effects in the waveform.

In particular, we find this magnitude to be one-order-of-magnitude stronger than

the current constraint of
√
αEdGB < 2 km when utilizing the multiband observation

between ground- and space-based detectors CE and LISA.

If a non-GR effect is observed, how can one potentially infer whether it originated

from one non-GR theory or another? Given that the inspiral-merger-ringdown tests

discussed here were originally designed to test the consistency of GR, a different test

would be more appropriate to address the above question. For example, one could
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directly try to measure the leading corrections to the inspiral and ringdown frequency

independently and check for the consistency between the two quantities within a given

non-GR theory. In the case of EdGB gravity, one can eliminate ζ from the two to

find such a relation, which is unique to the theory.

While this work demonstrated the large gains one can make on testing GR upon

the use of multi-band observations and the IMR consistency test, the analysis can

be improved in numerous ways. One example of such improvements would be to

consider a full Bayesian analyses rather than the Fisher analysis used here – although

it was found that our results agree well with their Bayesian counterparts. Addition-

ally, one can simulate the multi-band event rates discussed in Refs. [355, 357, 359] to

combine the signals and further reduce the systematic errors residing in our bounds

on non-GR theoretical parameters. Finally, we can use the results in Sec. 6.4.1.3 to

consider alternative theories of gravity which modify the GW amplitude rather than

the phase [458–461].



Chapter 8

Testing beyond-Kerr spacetimes

Recently the Event Horizon Telescope Collaboration, with very-long baseline

interferometric observations, resolved structure about the center of the super-

massive black hole M87∗, paving the way for a test of the spacetime surround-

ing black holes. Generic, parameterized spacetimes beyond Kerr allow one to

arbitrarily test the no-hair theorem for deviations from the Kerr result with no

prior theoretical knowledge or motivation. In this chapter, we present such a

new general, stationary, axisymmetric and asymptotically flat black hole solu-

tion with separable geodesic equations, in which five free non-linear functions

parameterically deviate from the Kerr result, allowing one to transform to

many alternative black hole solutions present in the literature. We then derive

analytic expressions for the Keplerian and epicyclic frequencies, the orbital

energy and angular momentum, the location of the innermost stable orbit of

circular equatorial particle orbits, and the image of the photon rings in the

new spacetime, which correspond to the boundary of the black hole shadow

image taken by the Event Horizon Telescope. We then focus on two singly-

parameterized spacetime metrics and derive parameterized corrections to the

waveform inspiral, ringdown, and remnant properties. We predict the beyond-

Kerr parameter magnitudes required in an observed gravitational wave signal

to be statistically inconsistent with general relativity.

282
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8.1 Introduction

The no-hair theorem tells us that the spacetime surrounding isolated BHs is uniquely

described by the Kerr metric1. This famous metric is asymptotically flat, stationary,

axisymmetric, and is parameterized by only two BH parameters: the mass (M), and

the spin (a). Further, within this metric exists an event horizon masking the true

coordinate singularity found within. Supposing the no-hair theorem holds true, we

can expect all BH observations, i.e. of photon orbits about them, to agree with

those as described by the Kerr metric. To date, there has been no sufficient evidence

that points to otherwise [472,473], however only now have our capabilities advanced

enough to accurately probe the near-field structure of these mysterious objects. In

the near future, we may have the opportunity to resolve effects that go beyond the

standard Kerr model.

To date, several tests of the no-hair theorem have been enacted and proposed, as

reviewed in [170,474–476]. Such tests include observations of pulsar-BH binaries [477–

479], the orbits of supermassive BH (SMBH) stellar companions [480–482], the EM

accretion flows of SMBHs (continuum spectrum, iron lines, quasi-periodic oscillations,

etc.) [171,483–496], the quasinormal ringdown modes of a post-coalescence perturbed

remnant BH [497–499], and even the GW observations of extreme mass-ratio inspirals

of super-massive and stellar-mass BHs [476,500–515]. No significant deviations from

1This chapter is based on the following papers: Z. Carson and K. Yagi, A parameterized black
hole metric preserving Kerr symmetries, Phys. Rev. D 101, 084030 (2020) and Z. Carson and
K. Yagi, Probing beyond-Kerr spacetimes with inspiral-ringdown corrections to gravitational waves,
Phys. Rev. D 101, 084050 (2020)



Chapter 8. Testing beyond-Kerr spacetimes 284

the Kerr result have been detected so far.

Recent developments in the very-long baseline interferometric (VLBI) array in

the Event Horizon Telescope (EHT) have given us the unique opportunity to probe

the spacetimes of SMBHs. With the sole purpose of imaging SMBHs, the EHT

and VLBI span the entire globe with an an array of millimeter and sub-millimeter

instruments, effectively creating an Earth-sized telescope [20]. Currently operating

with 8 telescopes, the EHT achieved the impressive feat of resolving the lensed pho-

ton orbits about Messier 87’s central SMBH M87∗, with an angular resolution of

∼ 50µas [19, 21–24]. Even with these extraordinary results, strong deviations from

the no-hair theorem have not been detected. However, the EHT will continue to de-

velop with the addition of new facilities, with a planned resolution increase of ∼ 40%

over the next 3-5 years. Along with the addition of new SMBH targets, this boost in

resolution and image fidelity will further provide us with the ability to probe these

extreme spacetimes.

While the Kerr BH metric, developed under the solutions to Einstein’s theory of

general relativity (GR), has had unprecedented success in describing our BH observa-

tions, we must continue to test the no-hair theorem. In particular, to this day we have

left unanswered several important observational questions regarding the nature of the

universe, which could potentially be described by a new theory of gravity. For exam-

ple, the elusive “dark energy” and “dark matter” accelerating the expansion of our

universe, and the rotation of our galaxies [69,70,70–76], or the early universe’s rapid
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inflationary period [69–71,74] and our current universe’s extreme matter/anti-matter

asymmetry [69,71], or even the issue of unifying GR and quantum mechanics [69–74],

all remain unanswered. Such questions could potentially be explained by a new the-

ory of gravity, which would certainly exhibit itself within the extreme-gravity BH

spacetimes currently described by the Kerr metric.

To test the current theory of gravity, one needs to first develop a new spacetime

metric as a solution to modified field equations. In GR, this spacetime metric is

described by the Kerr result gK
αβ for rotating BHs. In order to perform the tests

in an efficient, theory-agnostic way in beyond GR, one would presumably introduce

parameterized deviations from the Kerr metric which, when vanishing, reproduces

the Kerr result again. In this scenario, one or more non-Kerr deviation parameters

could be observationally constrained in a model-independent way that requires no

prior theoretical knowledge. One could then map such bounds to those on theoretical

parameters in specific non-Kerr theories. To date, several such metrics have been

developed [171,500,504,505,507,516,517], each of which are stationary, axisymmetric,

asymptotically flat, and contain one or more parameters deviating from the Kerr

metric. For example, Johannsen developed a more general parameterized metric with

separable geodesic equations in [173], followed up by an even more general metric

preserving the same symmetries found in [174]. Several of the above parameterized

metrics can then be mapped to many known BH solutions found in the literature [111,

114, 120, 124, 159, 174–185], with popular transformations for the latter two metrics
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tabulated in [172,193].

In this chapter, we focus on testing several beyond-Kerr spacetimes with both

GW and EM observations. For the former, we consider singly-parameterized space-

time metrics introduced elsewhere. We then follow the IMR consistency test process

outlined in Chapter 7 with the Fisher analysis techniques described in Chapter 3 to

identify the magnitude of non-Kerr parameters required to be considered as a suf-

ficient non-Kerr observation. For the latter test, we build a new general spacetime

following the works of [173]. In this deformed spacetime which preserves Kerr symme-

tries, we introduce 6 free non-linear functions that deviate away from the Kerr metric.

We then consider the effect of such parameters on several astrophysical phenomena.

When testing such parameterized spacetimes with GWs, we focus our attentions

on two parameterized metrics. The first one was derived by Johannsen and Psaltis

(JP) [171], which has a single deviation parameter ε3. This spacetime is an example

of the more general metric found in [173]. The second one is motivated by Johannsen

in [173], where a new deviation parameter β2 was introduced into the more gen-

eral metric in [173]. Here, we remove all non-Kerr deviation parameters with the

exception of β to form the singly-parameterized “modified-∆” (mod. ∆, or “MD”

in superscripts/subscripts) metric. Because these single-parameter spacetimes have

been obtained from the more general beyond-Kerr metrics which can be mapped to

several known BH solutions, they make ideal candidates for testing GR in a simple

2β is introduced in ∆ = r2 − 2Mr + a2 as ∆ → ∆̄ = ∆ + β, where M and a characterize the
mass and spin of a BH while r is the radial coordinate.
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way.

With a model-independent beyond-Kerr metric in hand, one next needs to find the

modifications to the gravitational waveform imparted under the new spacetime. As

accomplished previously in Chapters 6 and 7 for the Einstein-dilaton Gauss-Bonnet

theory of gravity [111, 114, 372, 373], one can obtain analytic expressions for various

corrections to the gravitational waveform in an alternative theory of gravity. In this

chapter, given a arbitrary spacetime metric gX
αβ, we show how one can obtain cor-

rectional expressions to the GW inspiral, ringdown quasinormal modes (QNMs), and

the remnant BH’s mass and spin. When inserted into the standard GR gravitational

waveform, these singly-parameterized corrections can be used to test future incoming

signals for deviations from GR. See also Ref. [518] where it was detailed how one can

test beyond-GR theories of gravity, even for Kerr BHs [519] if one considers their

perturbations..

Finally, with a generalized beyond-Kerr metric and its resulting corrections to

the gravitational waveform template, one needs to test the observed GW signals for

deviations present within. Specifically, we focus our attention on the so-called inspiral-

merger-ringdown (IMR) consistency tests of GR [143,166–168] described thoroughly

in Chapter 7. In this application, one tests the consistency between the inspiral

and merger-ringdown GW signals to predict the possibility of emergent non-Kerr

effects present in the observed signal. In particular, we estimate (with the Fisher

analaysis techniques [107–109] described in Chapter 3) the final BH’s mass and spin
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individually from the inspiral signal, and then from the merger-ringdown signal. If

both predictions show significant disagreement from each other, one can conclude

with evidence of non-Kerr effects present in the observed signal (provided systematic

errors are under control).

In addition to the IMR consistency tests, we also test the gravitational wave-

form in a parameterized way. Indicated as the parameterized tests of GR throughout

the following chapter, we begin by introducing corrections to the waveform inspi-

ral, merger-ringdown, and to the remnant BH properties. All such corrections are

parameterized by the single JP or mod. ∆ parameters ε3 and β which allows for a

convenient test. We assume the waveform is described by GR (ε3 = 0 or β = 0 )

and estimate the resulting root-mean-square uncertainties on the non-GR parame-

ters. Such variations then describe the “wiggle room” such non-GR parameters have

to still remain consistent within the GW detector’s noise, and can be taken as an

upper-bound constraint.

We refer readers to related works on testing beyond-Kerr spacetimes with GWs.

Reference [501, 520] constructs an approximate, multipolar gravitational waveform

suitable for extreme-mass-ratio-inspirals (EMRIs) detectable by space-based detector

LISA for inspiral using the analytic kludge method from a beyond-Kerr “bumpy”

spacetime, which can be use to test GR with GW signals by placing constraints on

the deviations, as was considered for future LISA observations. Reference [521] con-

sidered similar EMRI analytic kludge waveforms and performed a Bayesian model
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selection analysis for distinguishing Kerr and beyond-Kerr models. Additionally,

Refs. [505, 510] considered quadrupole corrections to the GR Kerr analytic kludge

waveforms for EMRIs in a bumpy spacetime to consider the accuracy with which

LISA could constrain such deformations. Reference [522] considered the JP met-

ric considered in this chapter to build a parameterized EMRI waveform and test

it with future space-based observations. Even more recently Ref. [523] considered

a singly-parameterized beyond-Schwarzschild (non-spinning BHs) metric and derive

corrections to the inspiral waveform to place constraints on previous LVC detections.

See also Ref. [393] where similar corrections to the QNMs were made, and constraints

with future observations of multiple GW events were quantified.

The analysis presented in this chapter differs from the above ones in at least a

few ways. For example, we not only consider different beyond-Kerr spacetimes than

the ones considered above (except for [522]), but we additionally find corrections to

the ringdown waveform and also to the remnant BH properties, all up to quadratic

order in BH rotation. Additionally, while all of the above analyses focus on wave-

forms suitable for EMRIs detectable by LISA, in our analysis, we find corrections to

the commonly-used IMRPhenomD gravitational waveform which is more suited to

comparable-mass systems (this waveform has been calibrated for mass-ratios up to

1 : 18, significantly smaller than that for EMRIs of ∼ 1 : 105).

With this prescription, we present for the first time a recipe for one to quickly

estimate corrections to the inspiral, ringdown, and remnant BH properties given only
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an arbitrary spacetime metric gX
αβ. We exemplify this for both the JP and mod. ∆

spacetime metrics gJP
αβ and gMD

αβ , which are parameterized beyond-Kerr by the single

parameters ε3 and β, deviating from the Kerr metric gK
αβ. We follow this up with a

demonstration of the power of these corrections by performing the IMR consistency

test to predict the magnitudes of ε3 and β required for one to observe statistically

significant deviations from the Kerr result. With current generation GW detectors,

we find comparable constraints on the JP deviation parameter ε3 to those from x-

ray observations of BH accretion disks [169, 170], found to be loosely ε3 / 5. With

future space-based and ground-based GW observatories we find constraints a few

orders of magnitude stronger. We find that such results from the IMR consistency

tests are mostly comparable to those from the parameterized tests. In particular, we

find that the extreme-mass-ratio-inspirals observable by future space-based detector

LISA [86] can probe such effects by three orders-of-magnitude stronger than the

current constraints found in the literature.

We then consider future tests of beyond-Kerr spacetimes with EM observations

rather than the GW ones discussed above. In order to sufficiently test these space-

times for the possibility of non-Kerr effects, we must first model a “beyond-Kerr”

spacetime in a generic way [171, 500, 504, 505, 507, 516, 517, 524–526]. Ideally, each

metric element should parametrically deviate from the Kerr metric separately, in

such a way that the Kerr spacetime is obtained when all deviations vanish. In this

chapter, we restrict ourselves to BHs preserving the symmetries of Kerr BHs, namely
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asymptotically flat, stationary, axisymmetric, and with separable geodesic equations.

The latter condition avoids chaotic particle orbits, and equates to the existence of a

fourth constant of motion, in addition to the proper mass, the energy and angular

momentum,: the so-called “Carter constant” [508,527]. The metric considered here is

a more broad example of the general class of metrics presented in [528] which admit

separable Klein Gordon equations, and is reduced to the latter for certain assumptions

on the beyond-Kerr functions presented here. Several such metrics have been derived

in the literature [173, 500, 528], each with one or more parametric deviations which

reduce to Kerr when vanishing. See also Ref. [529] where the authors obtained several

separable spacetimes from the Newman-Janis algorithm, and present a Venn diagram

showing the relationship among such metrics and others found in the literature.

In 2015, Johannsen designed a Kerr-like BH solution to the Einstein field equations

which is stationary, axisymmetric, asymptotically flat, and contains four constants

of motion, and an event horizon [173]. His metric depends non-linearly on four free

functions which parametrically deviate from the Kerr solution, and is general enough

that it can be mapped to several other known BH solutions [173]. This is revisited by

Papadopoulos and Kokkotas [174] and Yagi et al [462], in which new metrics preserv-

ing Kerr symmetries (yet no constraints such as asymptotic flatness) were presented

following [530]. Following this, Johannsen constrained several of the free-functions

from weak-field solar system observations [531], and proceeded to derive expressions

for several spacetime properties including the orbital energy and angular momen-
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tum, the Keplerian and epicyclic frequencies, and the location of the ISCO. Further,

the same author derived expressions for the photon orbits about the parameterized

beyond-Kerr BH in [532]. In this chapter, we aim to extend this important work

by introducing a fifth free function and investigating the validity of the constraints

placed from solar-system observations.

In this chapter, we follow the work of Johannsen [173] and design a more generic,

stationary and axisymmetric, asymptotically flat Kerr-like BH metric with separable

structure. The components of the inverse metric for a generic spacetime with sep-

arability structure were derived in [530]. Such a metric has been used to construct

a generic beyond-Kerr (inverse) metric with separable structure in [462] (Appendix

B) and also recently in [174], which contains five arbitrary functions of r and five

arbitrary functions of θ.

We construct the new metric as follows. We first introduce the most generic

deviation into the contravariant Kerr metric in such a way that the Hamilton-Jacobi

separability condition is preserved. The new metric is then simplified by imposing the

constraint of asymptotic flatness at null infinity (radial infinity along a fixed retarded

time). Further, we impose constraints consistent with the weak-field solar system

tests as Johannsen did in [173], however we note that such constraints may not be

explicitly valid in the strong-gravity regions surrounding BHs.

We follow this up by exploring several properties of the new spacetime. We first

locate the positions of the event horizon, Killing horizon, and ergosphere, finding that
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the former two reduce to the Kerr horizons, and the latter depends on just one of

the 5 free functions found in the metric. We additionally explore the spheroidicity

conditions found in Ref. [533], where we find the θ-independent functions to admit

Kerr-like spherical photon orbits. Following this, we investigate the orbital proper-

ties of circular equatorial particle orbits, finding analytic expressions for the orbital

energy and angular momentum, the Keplerian and epicyclic frequencies, and also the

location of the ISCO. We next derive analytic expressions for the photon rings as can

be observed by e.g. the EHT, and present plots of the viewing plane as seen by a

distant observer at null infinity for several parameterizations of the metric. We then

demonstrate the effect each parameterization has on each of the above BH properties,

and also investigate the presence of naked singularities emergent for certain parame-

terizations. Finally, we produce the required mappings that relate the new metric to

eight other BH solutions found in the literature [111,114,120,124,159,174–185].

8.2 Corrections to gravitational waveforms

In this section, we describe how modified BH solutions affect the gravitational wave-

form. In particular, we consider corrections to the inspiral, ringdown (through QNMs)

and the final mass and spin of the remnant BH. In particular, this general recipe

is used to calculate corrections to the gravitational waveform for the two singly-

parameterized JP and mod. ∆ spacetimes considered in this chapter in the following

section.
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8.2.1 Inspiral

Among the many corrections to the gravitational waveform described in Sec. 8.3,

we consider the ppE formalism [77] once again for corrections to the inspiral phase

and amplitude, as described in Chapter 2. Let us first describe how to compute

the ppE phase and amplitude parameters for a given metric, following and slightly

modifying App. A of [131]. The calculation below is similar to that in [523], but

has been extended for a more generic correction in the metric. In particular, for the

two example metrics that we consider in this chapter, the dominant modifications to

the binary evolution comes from the correction to the (t, t) component of the metric.

First, we make an assumption that such a metric component is given by

gtt = −1 +
2m

r

(
1 + A

mp

rp

)
+O

(
m2

r2

)
, (8.1)

where m is the mass of an isolated BH, and the parameters (A,p) characterize the

leading correction to the potential. Then, the reduced effective potential of a binary

becomes

Veff = −M
r

(
1 + A

Mp

rp

)
+

L2
z

2µ2r2
, (8.2)

where µ is the reduced mass, and Lz is the z-component of the orbital angular mo-

mentum. Taking the radial derivative of Veff with respect to r, equating it with 0

and setting Lz = µr2Ω with the orbital angular velocity Ω, one finds the modified

Kepler’s law as

Ω2 =
M

r3

[
1 + (p+ 1)A

Mp

rp

]
. (8.3)
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This equation can be inverted to yield

r =

(
M

Ω2

)1/3(
1 +

p+ 1

3
A v2p

)
, (8.4)

where v = (MΩ)1/3 is the relative velocity and we only keep to leading correction in

A. We substitute this back into Eq. (8.2) and find the binding energy as

Eb = −1

2
η−2/5u2

[
1− 2(2p− 1)

3
A v2p

]
. (8.5)

Next, we look at corrections to the GW luminosity. To take into account such dissi-

pative corrections, one needs a specific theory. Thus, we neglect such effects in this

chapter and assume that the the GW luminosity is given by the one in GR:

LGW =
32

5
π6µ2r4f 6. (8.6)

This luminosity acquires a conservative correction from that in Kepler’s law as

LGW =
32

5
η2v10

[
1 +

4(p+ 1)

3
A v2p

]
. (8.7)

Having these ingredients at hand, we are now ready to compute the ppE param-

eters. We first look at the frequency evolution of the binary, given by

ḟ =
df

dEb

dEb
dt

= − df

dEb
LGW =

96

5πM2
u11
(
1 + γḟu

2p
)
, (8.8)

where f = Ω/π and

γḟ =
2

3
(p+ 1)(2p+ 1)A. (8.9)
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Equation (20) of [131] gives one the ppE parameters in the phase as3

βppE = − 15

16(2p− 8)(2p− 5)
γḟ = − 5(p+ 1)(2p+ 1)

8(2p− 8)(2p− 5)
A, (8.10)

bppE = 2p− 5. (8.11)

On the other hand, the amplitude correction can be obtained from Eqs. (8.4) and (8.8)

and the fact that the amplitude is proportional to r2/

√
ḟ :

αppE = −1

3
(p+ 1)(2p− 1)A, (8.12)

appE = = 2p. (8.13)

Notice that αppE and βppE are related to each other as

αppE =
16(p− 4)(2p− 5)(2p− 1)

15(2p+ 1)
βppE. (8.14)

Both corrections enter at pth PN order relative to the leading contribution in GR (or

Kerr). These expressions are generic and can be applied to any beyond-Kerr metrics,

as long as the dominant correction to the metric comes from the correction to the

Newtonian potential.

8.2.2 Ringdown

We next explain how to derive modifications to the ringdown portion of the waveform.

Following in the footsteps of the post-Kerr formalism developed in Ref. [396–398], we

estimate the QNM ringdown and damping frequencies ωR and ωI in the eikonal limit.

3When we substitute A = −4a1 and p = 2 where a1 is the non-Kerr parameter used in [523], one
finds βppE in agreement with that in [523] modulo a minus sign that originates from the different
convention used for the phase Ψ.
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In this limit, ωR and ωI are associated with the light ring’s angular frequency Ω0 and

the Lyapunov exponent γ0 (corresponding to the divergence rate of photon orbits

grazing the light ring) at the light ring’s radius r0 as

ωR = 2Ω0 = 2(ΩK + δΩ0), (8.15)

ωI = −1

2
|γ0| = −

1

2
|γK + δγ0|. (8.16)

Here

ΩK = ± m1/2

r
3/2
K ± am1/2

(8.17)

is the angular frequency of the Kerr light ring4 at

rK = 2m

{
1 + cos

[
2

3
cos−1

(
∓ a

m

)]}
, (8.18)

while

δΩ0 = ∓
(
m

rK

)1/2 [
hϕϕ ±

(rK

m

)1/2

(rK + 3m)htϕ

+
(
3r2

K + a2
)
htt
]
/
[
(rK −m)

(
3r2

K + a2
)]

(8.19)

is the correction to ΩK with hµν representing the metric deviation away from Kerr.

On the other hand,

γK = 2
√

3m
∆KΩK

r
3/2
K (rK −m)

(8.20)

is the Lyapunov exponent for Kerr with ∆K = r2
K − 2MrK + a2, while δγ0 is the

non-Kerr correction given in Eq. (18) of [397]. See Refs. [394, 395] where a general

4The upper (lower) sign corresponds to prograde (retrograde) orbit.
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formalism to map ringdown corrections similar to the ones explained above directly

to specific theories of gravity was developed.

8.2.3 Final Mass and Spin

Finally, we discuss modifications to the remnant BH’s mass and spin, Mf and χf .

In GR, one can approximately estimate such parameters from the initial masses and

spins via the specific energy E and specific orbital angular momentum Lz (found in

e.g. in Eqs. (8.78) and (8.79) or [173]) of a particle of mass µ = m1m2/M orbiting

the remnant BH at the ISCO. This corresponds to solving the equations [400,534]

µ[1− E(Mf , χf , rISCO)] = M −Mf ,

µLz(Mf , χf , rISCO) = M(Mfχf − as − δmaa), (8.21)

as described previously in Chapter 6. Since E(Mf , χf , rISCO) is dimensionless in the

geometric units, the Mf dependence cancels and it only depends on χf . Given the

difference between M and Mf is small, we can approximate Mf ≈ M in the second

equation. We estimate corrections to Mf and χf in the beyond-Kerr metrics assuming

this picture still holds. The orbital energy and angular momentum are obtained such

that the expressions V̄eff = 0 and V̄ ′eff = 0 are simultaneously satisfied for effective

potential V̄eff given in Eq. (8.74) [173]. Corrections to the ISCO radius are further

obtained by solving the expression E ′(rISCO) = 0 where E is the specific energy of a

particle orbiting around the BH given by Eq. (8.78) [173]. Combining these, one can

find expressions for the corrections to the remnant black hole’s mass (δMf ) and spin
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(δχf ) as

Mf = MK

f + δMf , χf = χK

f + δχf , (8.22)

where MK
f and χK

f are the results for Kerr, which we take to be the ones in [90]. See

App. I for the general expressions for δMf and δχK
f in an arbitrary spacetime with

metric gX
αβ = gK

αβ + ζhX
αβ.

8.3 Beyond Kerr spacetimes

In this section we discuss the three beyond Kerr spacetimes considered in this analysis.

The first two which were derived elsewhere are the Johannsen-Psaltis (JP) metric in-

troduced in Ref. [171] and a modified version of Johannsen’s metric in Refs. [172,173],

denoted as the modified ∆, or the mod. ∆ metric. Finally, we build a new spacetime

metric which preserves the Kerr symmetries, and is axisymmetric, stationary, and

asymptotically flat. For the former two spacetimes, we begin with an introduction to

each spacetime, followed by the theoretical framework developed in the current anal-

ysis used to calculate the various non-Kerr corrections to the binary system present

in each spacetime. Such corrections include those to: the waveform phase and ampli-

tude, Keplers law, the orbital energy and angular momentum, the radiated flux, the

QNMs ringing and damping frequencies, the ISCO radius, and the remnant BH mass

and spin predictions. These corrections may then be used to modify the gravitational

waveform as sourced in the given bumpy-Kerr spacetimes. For the latter spacetime,

we first derive it following in the footsteps of Johannsen in Ref. [173]. We then show
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that the event and Killing horizons in such a spacetime coincides with those of a Kerr

BH, and finally we derive the locations of the ergosphere.

8.3.1 Johannsen-Psaltis metric

We begin our discussion on the JP metric, introduced by Johannsen and Psaltis in

Ref. [171]. In this article, the authors begin with the Kerr metric gK
µν , with metric

elements in Boyer-Lindquist coordinates given by

gK

tt = −
(

1− 2mr

Σ

)
= −∆− a2 sin2 θ

Σ
,

gK

rr =
Σ

∆
,

gK

θθ = Σ,

gK

φφ =

(
r2 + a2 +

2ma2r sin2 θ

Σ

)
sin2 θ =

[(r2 + a2)2 − a2∆ sin2 θ] sin2 θ

Σ
,

gK

tφ = −2mar sin2 θ

Σ
= −a(r2 + a2 −∆) sin2 θ

Σ
, (8.23)

with

Σ ≡ r2 + a2 cos2 θ,

∆ ≡ r2 − 2mr + a2, (8.24)

where (r, θ, φ) are the radial, polar, and azimuthal coordinates, and m, a are the BH’s

mass and spin. Generalized parametric deviations h(r, θ) of the form

h(r, θ) =
∞∑
k=0

(
ε2k + ε2k+1

mr

Σ

)(m2

Σ

)k
(8.25)
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for some non-Kerr deviation parameters εk were introduced into each metric element

as seen in Eq. (44) of Ref. [171]. By further applying the constraint of asymptotically

flat spacetime at null infinity, as well as observational constraints on the parameterized

post-Newtonian (PPN) framework [535], the deviation function h(r, θ) was reduced

to a single non-Kerr parameter ε3

h(r, θ) = ε3
m3r

Σ2
. (8.26)

Assuming that deviations from Kerr are small and keeping only up to linear order in

ε3, the resulting JP metric gJP
µν can be written as

gJP

tt = −
(

1− 2mr

Σ

)
− ε3

m3(r − 2m)

r4
,

gJP

rr =
Σ

∆
+ ε3

m3(r − 2m)

∆2
,

gJP

θθ = Σ,

gJP

φφ =

(
r2 + a2 +

2ma2r sin2 θ

Σ

)
sin2 θ + ε3

a2m3(r + 2m)

r4
,

gJP

tφ = −2mar sin2 θ

Σ
− ε3

2am4

r4
. (8.27)

With this choice of h(r, θ), the JP metric now allows one to probe strong-field gravity

to any order of spin in a parameterized way. Observe how in the limit of ε3 → 0, we

recover the original Kerr metric for a spinning BH. See Refs. [169,170] for constraints

on the JP deviation parameter ε3 from BH accretion disk thermal spectra, found to

be loosely ε3 / 5.

We next identify the dominant contribution to the binary evolution. For a particle
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orbiting around a BH, the angular velocity Ω is determined from the radial derivative

of gtt, gtφ and gφφ (see Eq. (8.72) found in e.g. Ref. [173]). When we expand the JP

metric components about r =∞, one finds that the leading correction to ∂rgtt, ∂rgtφ

and ∂rgφφ enters at O(m2/r2), O(m3/r3) and O(m5/r5) relative to the leading Kerr

contribution respectively. Thus, the dominant correction comes from gtt and we find

AJP = −ε3
2
, pJP = 2. (8.28)

Now let us lay the groundwork for the JP modifications to the gravitational wave-

form by applying the results presented in Sec. 8.2. First, the ppE parameters are

given by

βJP

ppE =
75ε3

64η4/5
, bJP

ppE = −1,

αppE
JP =

3ε3
2η4/5

, aJP

ppE = 4, (8.29)

and the corrections enter at 2PN order. This is of the same order as the correction

for the beyond-Kerr metric proposed in Ref. [525], as found in Ref. [523]. Next, the

QNM corrections in a JP spacetime to first order in JP deviation parameter, and

quadratic in spin are given by

ωJP

R = ωK

R + ε3

(
1

81
√

3M
+

10

729M
χ+

47

1458
√

3M
χ2

)
,

ωJP

I = ωK

I − ε3
(

1

486M
χ+

16

2187
√

3M
χ2

)
, (8.30)

for unitless spin parameter χ ≡ a/M , and Kerr QNM frequencies ωK
R,I. It is interesting



Chapter 8. Testing beyond-Kerr spacetimes 303

to note that ωI does not acquire corrections if the BH is non-spinning. Finally,

corrections to the final mass and spin are given by

δM JP

f = −ε3
µ

139968

[
864δχJP

f

(
5
√

2χK

f + 3
√

3
)

+ 545
√

2
(
χK

f

)2
+ 324

√
3χK

f + 216
√

2
]

(8.31)

δχJP

f = −ε3
1

384
√

3κµ

[
420µMχaδm + 420µχaλ− 152

√
2κµ+ 2416

√
3µ2

+ 420µδmλχs + 945
√

3M2 − 315κM + 1086
√

6µM + 420µMχs

]
, (8.32)

which is valid to linear order in ε3 and to quadratic order in the final spin, and

κ ≡
[
8
√

3µχa (Mδm + λ) + 8
√

3µχs (δmλ+M) + 3
(

40µ2 + 9M2 + 12
√

2µM
) ]
.

λ ≡
√
M(M − 4µ) (8.33)

This is derived from rISCO, which, to linear order in JP deviation and quadratic in BH

spin, is given by

rJP

ISCO = rK

ISCO

[
1− ε3

(
1

27
+

37

324
√

6
χ+

1229

23328
χ2

)]
, (8.34)

with Kerr result rK
ISCO [536].

8.3.2 Modified ∆ metric

Now let us discuss the newly constructed mod. ∆ metric, following in the footsteps

of Johannsen in Refs. [172, 173]. We begin in Ref. [173], in which 4 free functions

A1(r), A2(r), A5(r), and f(r) are introduced to the Kerr spacetime, parameterically
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describing deviations from GR, as shown in Eq. (51) of [173]. Such a metric is found to

be stationary, axisymmetric, asymptotically flat, admits freely-rotating BHs, reduces

to the Kerr metric for A1(r) = A2(r) = A5(r) = 1, and f(r) = 0, and posess a fourth

constant of motion, a Carter-like constant [537]. This symmetry, as in the Kerr

metric, gives rise to separable, non-chaotic geodesic equations for particle motion.

Following this, in Ref. [172], Johannsen further modified the obtained spacetime

metric by introducing a pure-deviation β from the Kerr metric, by substituting

∆→ ∆̄ ≡ ∆ + βm2 (8.35)

into the metric found in Eq. (51) of Ref. [173]. We further equate all other free

functions to their Kerr values, A1(r) = A2(r) = A5(r) = 1, and f(r) = 0, resulting in

the modified-∆ metric gMD
µν with elements given by5

gMD

tt = −
(

1− 2mr

Σ

)
− βm

2

Σ
,

gMD

rr =
Σ

∆
− βm

2Σ

∆2
,

gMD

θθ = Σ,

gMD

φφ =

(
r2 + a2 +

2ma2r sin2 θ

Σ

)
sin2 θ

− βa
2m2 sin4 θ

Σ
,

gMD

tφ = −2mar sin2 θ

Σ
+ β

am2 sin2 θ

Σ
, (8.36)

where we assume that the deviation from Kerr is small and we keep only to linear

5This metric can also be obtained by applying the replacement in Eq. (8.35) to Eq. (8.23).
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order in β. This spacetime is entirely parameterized by the single, pure-deviation

parameter β, reduces to the Kerr metric for β = 0, and is useful as it can be mapped

to BH solutions other than Kerr. Such metrics include the Kerr-Newman metric for

charged BHs [538], the RS-II braneworld BHs [176], and those in the modified gravity

(MOG) [539]

Now let us consider the various corrections to the gravitational waveform present

in the mod. ∆ spacetime. Just like in the case of the JP metric, the leading correction

comes from gMD
tt and

AMD = −β
2
, pMD = 1, (8.37)

which means that the correction enters at 1PN order. First, the ppE parameters

entering in the inspiral waveform are given by

βMD

ppE =
5β

48η2/5
, bMD

ppE = −3,

αMD

ppE = − β

3η2/5
, aMD

ppE = 2. (8.38)

Next, the ringdown frequencies are modified as

ωMD

R = ωK

R + β

(
1

9
√

3M
+

2

27M
χ+

61

486
√

3M
χ2

)
,

ωMD

I = ωK

I + β

(
1

108
√

3M
− 1

243M
χ− 11

729
√

3M
χ2

)
. (8.39)
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Finally, the corrections to the final mass and spin are given by

δMMD

f = −β µ

7776

[
48δχMD

f

(
5
√

2χK

f + 3
√

3
)

+ 119
√

2
(
χK

f

)2
+ 84
√

3χK

f + 72
√

2
]
,

(8.40)

δχMD

f = −β 1

256
√

3κµ

[
876µMχaδm + 876µχaλ− 286

√
2κµ+ 5288

√
3µ2

+ 876µδmλχs + 1971
√

3M2 − 657κM + 2172
√

6µM + 876µMχs

]
, (8.41)

where we used the ISCO radius expression of

rMD

ISCO = rK

ISCO

[
1− β

(
1

4
+

1

2
√

6
χ+

77

432
χ2

)]
. (8.42)

8.3.3 A new metric preserving Kerr symmetries

In this section, we present a new general spacetime metric with parameterized de-

viations beyond GR. This spacetime preserves all of the Kerr symmetries, and is

axisymmetric, stationary, and asymptotically flat. We also show that the event and

Killing horizons in such a spacetime coincides with those of a Kerr BH, and then we

derive the locations of the ergosphere. Finally, we compute the spheroidicity condi-

tions of Ref. [533], showing them to be independent of θ, thus admitting Kerr-like

spherical photon orbits.

8.3.3.1 The metric

Here we compute the new spacetime metric as used throughout this analysis. We

obtain this metric by following and modifying the analysis thoroughly done by Jo-

hannsen in Ref. [173]. There, a regular parameterized BH solution was created to
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be stationary, axisymmetric, asymptotically flat, and separable. The latter property

comes forth from the existence of a fourth constant of motion, the Carter-like con-

stant [527]. The metric presented here, while very similar to Johannsen’s, is more

general and admits an additional deviation function from the Kerr metric. In ad-

dition, we allow several parameters assumed to vanish by Johannsen via weak-field

PPN constraints, to remain intact.

We begin with the Kerr metric for a rotating BH. This well-known spacetime has

a line element given by

ds2
K = −

(
1− 2mr

Σ

)
dt2 + Σdθ2 − 4mar sin2 θ

Σ
dtdφ

+
Σ

∆
dr2 +

(
r2 + a2 +

2ma2r sin2 θ

Σ

)
sin2 θdφ2. (8.43)

Similar to Ref. [173], we introduce scalar deviation functions f(r), g(θ), A1(r), A2(r),

A3(θ), A4(θ), and A6(θ) into the contravariant Kerr metric, as well as new functions

Ā0(θ) and A0(r)

gαβ
∂

∂xα
∂

∂xβ
=

− 1

∆Σ̃

[
(r2 + a2)2A1(r)2

(
∂

∂t

)2

+ a2A2(r)2

(
∂

∂φ

)2

+ 2a(r2 + a2)A0(r)
∂

∂t

∂

∂φ

]

+
1

Σ̃ sin2 θ

[
A3(θ)2

(
∂

∂φ

)2

+ a2 sin4 θA4(θ)2

(
∂

∂t

)2

+ 2a sin2 θĀ0(θ)
∂

∂t

∂

∂φ

]

+
∆

Σ̃
A5(r)

(
∂

∂r

)2

+
1

Σ̃
A6(r)

(
∂

∂θ

)2

, (8.44)
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with

Σ̃ ≡ Σ + f(r) + g(θ). (8.45)

Observe how this expression is similar to Eq. (10) of Ref. [173], however the two ad-

ditional scalar functions A0(r) and Ā0(θ) introduce more generality into the function.

One recovers the metric in [173] by settingA0 = A1A2 and Ā0 = A3A4, while it reduces

to the Kerr metric in the limit Ai → 1 and f → 0, g → 0. Such modifications guaran-

tee the resulting Hamilton-Jacobi equations remain seperable, and a fourth constant

of motion appears as thoroughly described in [173]. Additionally, following Ref. [528]

we find that our metric is a more broad example of the general class of metrics that

admit separable Klein Gordon equations. As was the case for the metric presented

in [173], we find that with the additional assumption of f(r) = (r2 + a2)
(
A1(r)
A2(r)

− 1
)

,

our metric also reduces to one that allows for the separability of the Klein Gordon

equations.

Next we define functional forms of our scalar deviation functions, and apply vari-

ous constraints. We expand the radial functions as a power series in m/r, g(θ) as a

Legendre expansion, and ignore the remaining polar functions for now [173]:

Ai(r) ≡
∞∑
n=0

αin

(m
r

)n
, (i = 0, 1, 2, 5), (8.46)

f(r) ≡ r2

∞∑
n=0

εn

(m
r

)n
(8.47)

g(θ) ≡M2

∞∑
n=0

γnPn(cos θ), (8.48)

with Legendre polynomials Pn(cos θ). We note that the Legendre expansion of g(θ)
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differs from that presented in [173], where the author utilized a trigonometric ex-

pansion in powers of sin θ and cos θ. The Legendre expansion given here is a more

natural choice given an axisymmetric spacetime metric, and gives unique choices on

parameters γn, where degeneracies occur in the the trigonometric expansion utilized

previously.

We begin constraining the deviation parameters by imposing the condition of

asymptotic flatness [536, 540]. This corresponds to imposing that our metric line

element must limit to

ds2
∞ = −

(
1− 2m

r

)
dt2 − 4ma

r
sin2 θdtdφ+ dr2 + r2dΩ2, (8.49)

at spatial infinity r → ∞ for dΩ ≡ dθ2 + sin2 θdφ2. Doing so reveals the need to

constrain Ā0(θ) = A3(θ) = A4(θ) = A6(θ) = 1, as well as α00 = α10 = α20 = α50 = 1

and ε0 = 0. The asymptotic behavior of gtt and gtφ become

gtt = −1 + (2 + 2α11 − ε1)
m

r
+O

(
m2

r2

)
, (8.50)

gtφ = −(2 + α01)a
m

r
sin2 θ +O

(
m2

r2

)
. (8.51)

Thus, we can rescale m and a to further set α01 = 0 and α11 = ε1/2 without loss of

generality.

The final covariant form of the metric for a BH with mass m and spin a is given

by

gtt = −
Σ̃
(
∆− a2A2

2 sin2 θ
)

ρ̃4
,
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grr =
Σ̃

A5∆
,

gθθ = Σ̃,

gφφ =
Σ̃ sin2 θ

[
(a2 + r2)

2
A2

1 − a2∆ sin2 θ
]

ρ̃4
,

gtφ = −aΣ̃ sin2 θ [(a2 + r2)A0 −∆]

ρ̃4
, (8.52)

with

ρ̃4 ≡
[(
a2 + r2

)
A1 − a2A2 sin2 θ

]2
+ a2

(
a2 + r2

)
(A0 − A1A2) sin2 θ

[
a2 + r2

∆
(A0 + A1A2)− 2

]
, (8.53)

and

Σ̃ ≡ Σ + f(r) + g(θ), (8.54)

Σ ≡ r2 + a2 cos2 θ, (8.55)

∆ ≡ r2 + a2 − 2Mr. (8.56)

The arbitrary functions are expanded about spatial infinity as

Ai(r) ≡ 1 +
∞∑
n=1

αin

(m
r

)n
, (i = 0, 1, 2, 5), (8.57)

f(r) ≡ r2

∞∑
n=1

εn

(m
r

)n
, (8.58)

g(θ) ≡ m2

∞∑
n=0

γnPn(cos θ), (8.59)

for Legendre polynomials Pn(cos θ). Here, the parameters αin, εn and γn control the
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amount of deviation from Kerr. We can set α01 = 0 and α11 = ε1/2 without loss

of generality by rescaling m and a. One can further impose ε1 = ε2 = α51 = α12 =

g(θ) = 0 to satisfy solar system bounds, though such weak-field constraints may not

apply to spacetime outside of a BH. The difference from Johannsen’s metric in [173]

is that we have introduced a new radial function A0 that enters in gtt, gtφ and gφφ. We

believe this new metric is the most general stationary, axisymmetric, asymptotically

flat, and separable spacetime.

Next we consider imposing constraints obtained from the parameterized-post-

Newtonian (ppN) framework [535]6. This is done by further imposing that the metric

for a non-spinning object must reduce to the line element given by

ds2
ppN =−

[
1− 2m

r
+ 2(βppN − γppN)

m2

r2
+O

(
m3

r3

)]
dt2

+

[
1 + 2γppN

m

r
+O

(
m2

r2

)]
dr2 + r2

[
1 +O

(
m2

r2

)]
dΩ, (8.60)

for ppN parameters γppN and βppN, while the asymptotic behavior of the new metric

is given by

gtt = −1 + 2
m

r
+

[
m2

4
(8α12 + ε21 − 4ε2)− g

]
m2

r2
+O

(
m3

r3

)
, (8.61)

grr = 1 + (2− α51 + ε1)
m

r
+O

(
m2

r2

)
, (8.62)

gθθ = r2

[
1 + ε1

m

r
+O

(
m2

r2

)]
, (8.63)

6Apart from γppN and βppN considered here, one could in principle consider other PPN parameters,
including the one in [541] which is associated with the Lense-Thirring precession. We leave this
possibility for future work.
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gφφ = r2 sin2 θ

[
1 + ε1

m

r
+O

(
m2

r2

)]
. (8.64)

Given the strong observational constraints of βppN [531] and γppN [7] from solar system

experiments, one can further impose the conditions ε1 = 0 (which automatically sets

α11 = 0), α51 = 0 and 2ε2 − 2α12 − g(θ)/M2 = 0. The simplest choice of the last

condition is ε2 = α12 = g(θ) = 0 [173], which is what we consider in the main part of

this chapter.

Notice, however, that because Birkhoff’s theorem is not guaranteed to hold in

theories beyond GR, such ppN constraints obtained in the weak-field environment

of the local solar system may not necessarily apply to the strong-gravity conditions

present near the BHs considered here. This is indeed the case for BHs in e.g. Einstein-

dilaton Gauss-Bonnet gravity, in which the BH exterior spacetime is different from

that for stars due to the presence (absence) of the BH (stellar) scalar charge [137,153,

180, 373–376]. Thus, the presented constraints on ε1, α51 ε2, α12, and g(θ) may not

necessarily hold, and App. J provides a description of the effects of including such

parameters in the metric.

8.3.3.2 Location of the event horizon, Killing horizon, and ergosphere

In this section we describe the locations of the event horizon, Killing horizon, and

ergosphere in the new spacetime. In particular, we note that the locations of each of

these appear identically to those as presented in Ref. [173], thus we refer the reader

there for a thorough description of each.
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We begin by briefly describing the event horizon in both the new spacetime pre-

sented here, and Johannsen’s spacetime. The angular function rEH ≡ H(θ) is a

solution to

grr + gθθ
(
dH

dθ

)2

= 0, (8.65)

which results in the solution

∆A5(H) +

(
dH

dθ

)2

= 0. (8.66)

One solution is either the Kerr result (∆ = 0, dH/dθ = 0)

rEH = m+
√
m2 − a2, (8.67)

or a solution to A5(r) = 0 with dH/dθ = 0. The latter set is realized if A5 diverges

when ∆ = 0, which is the case for some example BH solutions that can be mapped

to the metric presented in this paper. These solutions are the same as those for

Johannsen’s spacetime because A0(r) does not appear in either grr or gθθ. We see

here that this expression only depends on the non-Kerr deviation function A5(r).

Next we find the location of the Killing horizon, which is located at the solution

of (gtφ)2 − gttgφφ = 0. Such an expression reduces down to ∆ = 0, coinciding with

the event horizon, in both the spacetimes considered here and by Johannsen.

Finally, the ergosphere exists at the roots of gtt = 0. Because A0(r) only appears in

the denominator of gtt, the new solution is identical to that of Johannsen’s, reducing
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to

∆ = a2A2(r)2 sin2 θ (8.68)

in both cases, which is displayed in Fig. 1 of Ref. [173]. We see that this expression

only depends on the non-Kerr deviation function A2(r).

8.3.3.3 The spheroidicity condition

In this section we compute the spheroidicity condition as detailed in the analysis

of Ref. [533] for the new general metric presented in this chapter. In the above

investigation, the authors found the most general form of the “spheroidicity condi-

tion”. Such a condition defines non-equatorial circular orbits confined on a spheroidal

shell described by r0(θ). In particular, we compute the spheroidicity condition found

in Eq. (14) of [533] as a function of r0(θ) for the general metric presented here in

Eq. (8.52), with only the leading order terms of each beyond-Kerr function present.

We find the resulting condition to be

0 = 3α13a
6M3

(
α13M

3 + r3
0

)
− a5bM2r0

(
5α13α22M

3 + 3α13Mr2
0 + 2α22r

3
0

)
− a4r0

(
M4

(
8α13r

3
0 − 2α2

22b
2r0

)
− 2α22b

2M2r3
0 + 7α2

13M
7 − 8α2

13M
6r0 − 7α13M

3r4
0

+Mr6
0 + r7

0

)
+ 2a3bMr2

0

(
6α13α22M

5 − 5α13α22M
4r0 + 4α13M

3r2
0 + 3 (α22 − α13)M2r3

0

− 2α22Mr4
0 + r5

0

)
− a2r3

0

(
b2
(
5α2

22M
5 − 3α2

22M
4r0 + 6α22M

3r2
0 − 4α22M

2r3
0 +Mr4

0

− r5
0

)
+ 10α2

13M
7 − 7α2

13M
6r0 + 8α13M

4r3
0 − 5α13M

3r4
0 − 2Mr6

0 + 2r7
0

)
− abMr4

0

(
− 8α13α22M

5 + 5α13α22M
4r0 − 4α13M

3r2
0 + (3α13 − 2α22)M2r3

0 + 2α22Mr4
0

+ 2r5
0

)
− r5

0

(
3α2

13M
7 − 2α2

13M
6r0 − α13M

3r4
0 − 3Mr6

0 + r7
0

)
(8.69)
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for orbital impact parameter b. Similar to Johannsen’s metric, we find the above

condition to be independent of θ, and we conclude that this metric admits r0 = const.

Kerr-like spherical photon orbits.

8.4 Testing beyond-Kerr spacetimes

In this section we consider tests of the beyond-Kerr spacetimes developed above. In

particular, for the singly-parameterized JP and mod. ∆ metrics derived elsewhere

we consider tests by way of GWs. Specifically, we use the IMR consistency tests

introduced in Chapter 7 with the Fisher analysis techniques found in Chapter 3 to

estimate the magnitudes of ε3 and β required to fail the test. For the new metric

preserving Kerr symmetries presented here, we consider EM tests. We find corrections

to several astrophysical phenomena including the Keplerian and epicyclic frequencies

of orbiting particles, the orbital energy and angular momentum of particle orbits, the

location of the ISCO, and finally the photon orbits.

8.4.1 GW tests of beyond-Kerr spacetimes

In this section we test the singly-parameterized JP and modified ∆ spacetimes by

way of the IMR consistency tests and the parameterized tests of GR. See Tab. 1.2

for a summary of all estimated constraints in both the JP and mod. ∆ spacetimes

obtained from both (i) the IMR consistency tests of GR, and (ii) re-computed with

the parameterized tests of GR for comparison.
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Figure 8.1: IMR consistency test for the “golden event” GW150914 (left) and the
massive event GW170729 (right) in the JP spacetime using the CE detector (top),
and through the multiband observation between CE and LISA (bottom). In
particular, in each panel we plot the 90% confidence regions in the (Mf , χf ) plane as
observed from (i) only the inspiral (I) signal, and (ii) only the merger-ringdown
(MR) signal, for consecutively increasing values of the JP deviation parameter ε3.
Only when such probability distributions begin to disagree with each other can one
decisively admit there may be evidence of beyond-Kerr spacetimes present.
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Figure 8.2: Similar to Fig. 8.1, but for the EMRI and SMBHB GW events.
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8.4.1.1 IMR consistency test in the JP spacetime

Let us begin by performing the IMR consistency test in the JP spacetime, to predict

how well one can observe deviations from GR. By following the procedure outlined in

Chapter 7, we perform the IMR consistency test for several consecutively increasing

values of the JP deviation parameter ε3 until the inspiral and merger-ringdown 90%

confidence interval probability distributions begin to disagree. Only then can one

provide evidence of non-Kerr behaviors in the gravitational signal.

We start with an investigation into the GW events already detected on the aLIGO

O2 detector, namely GW150914 and GW170729. We perform the IMR consistency

test for several values of ε3 injected into the gravitational waveform with the aLIGO

O2 GW detector. We find that for GW150914-like (GW170729-like) events, when ε3 ≈

7 (ε3 ≈ 10) the systematic uncertainties begin to overtake the statistical errors, and

the I and MR contours begin to disagree. Such constraints on ε3 are on the same order

of magnitude as those from x-ray observations presented in [169, 170]. On the other

hand, for GW170729-like events we observe that, due to the large BH masses, there is

large statistical and systematic uncertainty in the inspiral determination of remnant

properties. No such large errors are present in the merger-ringdown determination,

but, similar to the GW150914-like case, we see the two contours begin to disagree at

ε3 ≈ 10. However, they fail to satisfy the small-deviation assumption made in the

derivation of ppE parameters, thus the resulting constraints are less valid than the

following ones presented for future GW detectors. As a result of this we do not present
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the resulting contours in this chapter, however the constraints are still tabulated in

Tab. 1.2 for reference.

We next focus our attention on future observations of the same GW events

GW150914 and GW170729. We now consider such events as detected by the future

CE detector, as well as the increased observation from the multiband observation

between ground- and space-based detectors CE and LISA. Figure 8.1 displays the

results of the IMR consistency test in such cases. For the CE case, we find that when

ε3 ≈ 0.05 and ε3 ≈ 0.6, we can begin to distinguish the inspiral and merger-ringdown

signals for GW150914- and GW170729-like events respectively. For the multiband

case, we find that while the inspiral has significantly smaller statistical uncertain-

ties than the merger ringdown (due to the low-frequency space-based observations

by LISA), its systematic uncertainties are much larger. This allows one to constrain

deviation parameters to ε3 ≈ 0.02 and ε3 ≈ 0.05 for GW150914- and GW170729-

like events respectively. Such constraints are about two-orders-of-magnitude stronger

than existing bounds presented by [169,170].

Finally, we consider the more extreme events detectable in the low frequency bands

by LISA: EMRIs7 and SMBHBs. Figure 8.2 presents the resulting IMR consistency

test for such two events involving massive BHs. When considering EMRI systems, we

7Such EMRIs are not valid in the NR fits presented in the PhenomD waveform, which have
been calibrated to NR simulations with mass ratios of only up to 1:18. To take this into account
in the parameterized tests, we remove all NR fits from the gravitational waveform, and cut-off all
frequency integrations before the merger-ringdown, at fISCO. Namely, we use the TaylorF2 waveform
in GR up to 3.5PN order included in the phase and introduce the ppE corrections to account for
the inspiral corrections. Thus, such estimates are more conservative than the other ones presented
in this chapter, as we only consider the inspiral portion of the waveform.
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find that the inspiral signal is very deterministic for the remnant BH properties, with

such contours orders of magnitude smaller than their merger-ringdown counterparts.

With a majority of systematic uncertainties present in the inspiral signal, we find that

we can constrain ε2 ≈ 6×10−3 – a few orders-of-magnitude stronger than those found

in [169,170]. These constraints are much stronger because in high mass-ratio inspirals,

the quadrupole radiation is smaller, thus the orbit decays slower and the number of

GW cycles is greatly increased compared to equal-mass systems, so the non-Kerr effect

is significantly enhanced. This can be seen by the factor of η−4/5 present in the ppE

phase parameter in Eq. (8.29), which is very large for large mass-ratio systems (∼ 104

for EMRIs, and only ∼ 3 for i.e. GW150914). However, as noted previously, we point

out that such results are not as reliable due to the IMRPhenomD NR fits only being

calibrated up to mass ratios of 1:18. Finally, we see that for SMBHB events detected

by LISA, we can constrain ε3 ≈ 0.02, significantly weaker than those from EMRIs,

and similar to those found by future GW170729 and GW150914 observations.

Finally, for comparison we perform a parameterized test of GR for the deviation

parameter ε3. To do so, we include ε3 into the template waveform with fiducial value

of 0, and perform a Fisher analysis to estimate root-mean-square uncertainties on ε3.

Such results are displayed in Tab. 1.2 in comparison to all of the constraints found

via the IMR consistency test as presented here. We find that they give comparable

bounds on ε3 for each case considered, even for EMRIs. In this case, the IMRD

consistency test is less valid as mentioned above, while in the parameterized test we
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Figure 8.3: Same as Fig. 8.1 but under the mod. ∆ spacetime instead, with β being
the beyond-Kerr deviation parameter.

used the TaylorF2 waveform with the ppE correction and stopped all integrations

before the merger-ringdown.

8.4.1.2 IMR consistency test in the modified ∆ spacetime

Now we repeat the analysis performed in Sec. 7.3 in the mod. ∆ spacetime. Because

the results here are very similar to those found in the preceding section, we only

outline a brief overview here.

We begin by performing the IMR consistency test on GW150914-like and GW170729-

like events observed on both CE, as well as with the multi-band observation between

CE and LISA. Figure 8.3 presents the resulting 90% credible error ellipse in the
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Figure 8.4: Same as Fig. 8.2 but within the mod. ∆ spacetime with deviation
parameter β.
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(Mf , χf ) plane for each case. Similar to above in the JP spacetime, we observe that

for O2, we can detect non-Kerr effects on GW150914-like events for β ≈ 2, and

significantly higher at β ≈ 14 for GW170729-like events, due to the large inspiral

uncertainty resulting from the large BH masses. Such results are still less reliable

than the following ones due to the large deviations, and we do not present the re-

sulting contours, however the constraints are still tabulated in Tab. 1.2. Following

this, we see that when observed on future detector CE, GW150914-like events can

resolve non-Kerr effects at a significantly smaller β ≈ 0.05, and a very similar value of

β ≈ 0.06 for GW170729-like events. Finally, we observe constraints of β ≈ 5× 10−3

(GW150914-like) and β ≈ 0.05 (GW170729-like) for the multiband observations be-

tween CE and LISA. The former strong constraint is a result of the small inspiral

statistical uncertainties and large systematic uncertainties.

Following this, we repeat the IMR consistency test for LISA observations of EM-

RIs and SMBHBs. Heeding the warning discussed previously in Sec. 8.4.1.1 about

the validity of EMRIs in the PhenomD waveform, we once again present these results

in Fig. 8.4. Once again, the inspiral statistical uncertainty on EMRI observations is

minuscule, resulting in the strong constraint of β ≈ 2 × 10−4. Finally, we observe

inconsistencies between the inspiral and merger-ringdown signals in a SMBHB event

at β ≈ 10−3. Finally, we note that in the mod. ∆ spacetime, typically the direction of

systematic uncertainties in the (Mf , χf ) plane are opposite to those in the JP space-

time. We found that this is primarily due to the different PN orders at which each
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spacetime alters the inspiral waveform at (2PN order in JP, 1PN order in mod. ∆).

This effect is dominant among the corrections provided in this analysis, and serves to

shift the direction of systematic uncertainties present in each spacetime.

In addition, we perform a set of parameterized tests of GR for each case considered

here for comparison to the ones found with the IMR consistency test. As in the JP

case, we find that such bounds are comparable for each case discussed in this section.

As discussed in Sec. 8.4.1.1, the IMR consistency test is less valid due to the invalid use

of the IMRPhenomD waveform, while such pieces were removed for the parameterized

test. We refer the reader to Table 1.2 for a comprehensive display of all results found

in this section.

8.4.1.3 The effects of ringdown and remnant BH corrections to the wave-
form

In this section, we investigate the effects of including ringdown and remnant BH

corrections into the waveform. In other words, how much does this change our results

if only the inspiral corrections were included as is commonly done in parameterized

tests?

We begin by performing parameterized tests in two separate cases: (i) with only

ppE inspiral corrections present within the whole inspiral-merger-ringdown waveform,

and (ii) with inspiral, ringdown, and remnant BH property corrections present in the

waveform, as was done in the main analysis. For demonstration purposes, we choose

the third-generation detector CE observing GW150914-like events, GW170729-like
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Inspiral-corr. only all corrections

GW150914 (CE) 0.0586 0.0509

GW170729 (CE) 0.464 0.406

SMBHB (LISA) 0.0101 0.0098

Table 8.1: Comparison between constraints on JP parameter ε3 when (left) only
inspiral corrections to the waveform are included, and (right) when all of the
inspiral, ringdown, and remnant BH property corrections are included for
parameterized tests. Constraints for the GW150914- and GW170729-like events are
assumed to be made with the third-generation detector CE for demonstration
purposes, while the SMBH ones are assumed to have been observed with space-based
detector LISA. Observe that additional corrections do not give significant
contribution on bounding beyond-Kerr spacetimes with parameterized tests.

events, and then space-based detector LISA observing a SMBHB event as considered

in the main analysis. See Table 8.1 for a summary of obtained results in each case. We

see that for the smaller-mass events GW150914 and GW170729, the two cases differ

by up to ∼ 15%. As expected, the large-mass SMBHB event observed by LISA only

differs by ∼ 3% due to the small-frequency window available to space-based detectors,

where the inspiral corrections make the largest difference. We conclude that such

additional corrections to the ringdown and remnant BH properties in the waveform

do not have significant contribution on constraining beyond-Kerr spacetimes with

parameterized tests.

In fact, a similar feature can be seen for the IMR consistency tests. Since the

systematic error in the merger-ringdown portion is typically smaller than that of

the inspiral, even if we do not include corrections to the ringdown and final BH’s

mass and spin, we would still find bounds that are comparable to those presented

in Table 1.2. These findings give us supporting evidence that in many cases, the
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dominant contribution comes from the corrections to the inspiral, as considered e.g.

in [154].

8.4.2 Astrophysical implications in the new metric

In this section we present the various astrophysical implications emergent under a BH

described by the new metric preserving Kerr symmetries presented in this analysis.

Specifically, we derive expressions for the various astrophysical observables one might

consider about a such a BH. Such properties include the Keplerian and epicyclic

frequencies of orbiting particles, the orbital energy and angular momentum of particle

orbits, the location of the ISCO, and finally the photon orbits.

8.4.2.1 Keplerian and epicyclic frequencies

Now let us describe the computation of the Keplerian and epicyclic frequencies νφ,

νr, and νθ. The former frequency describes a particle’s motion in the polar direction

as observed at null infinity, while the latter two describe the motion in the azimuthal

and radial directions for perturbed orbits.

We begin by finding the Keplerian frequency νφ = Ωφ/2π. We start with the

definition of Ωφ ≡ φ̇/ṫ, which can be determined from the geodesic equations

d2xα

dτ 2
= −Γαβγ

dxβ

dτ

dxα

dτ
, (8.70)

with Christoffel symbols Γαβγ and proper time τ . Following Ref. [173], axi-symmetry

and reflection symmetry of particles on circular equatorial orbits allow us to reduce
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this relation to

∂rgrr ṫ
2 + 2∂rgtφṫφ̇+ ∂rgφφφ̇

2 = 0. (8.71)

The above expression allows us to express the Keplerian and frequency as

Ωφ =
−∂rgtφ ±

√
(∂rgtφ)2 − ∂rgtt∂rgφφ
∂rgφφ

. (8.72)

We see that this expression only depends on the non-Kerr deviation functions A1(r),

A2(r), A0(4), and f(r).

Next we obtain expressions for the vertical and radial epicyclic frequencies de-

scribing the radial and polar motion of orbiting particles with mass µ. Following the

derivation presented in Sec. 4 and 5 of [542], the general epicyclic frequencies observed

with respect to the proper time of a comoving observer in the X-direction are given

by

ωX =

√
∂2Veff

∂X2
, (8.73)

for effective potential

Veff = −1

2
(gttE2 − 2gtφELz + gφφL2

z + µ2). (8.74)

The resulting radial and vertical epicyclic frequencies observed at null infinity are

found to be

Ωr =

√
(gtt + Ωφgtφ)2

2grr
(∂2
rg

tt − 2Lz∂2
rg

tφ + L2
z∂

2
rg

φφ), (8.75)

Ωθ =

√
(gtt + Ωφgtφ)2

2gθθ
(∂2
θg

tt − 2Lz∂2
θg

tφ + L2
z∂

2
θg

φφ). (8.76)
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We see such epicyclic frequencies depend on the non-Kerr deviation functions A1(r),

A2(r), A0(r), A5(r), and f(r), while the vertical frequencies depend on all but A5(r).

Finally, we plot the Keplerian and epicyclic frequencies νX ≡ ΩX/2π for various

combinations of lower-order deviation paramters. Here take note that certain combi-

nations of deviation parameters produce naked singularities outside of the BH event

horizon, as discussed further in App. K. Such exotic singularities originate from dis-

allowed combinations of parameters A1(r), A2(r), and A0(r), due to their unique

relationships as seen in Eq. (8.44). Namely, we find that if α13 6= 0 or α22 6= 0, α02

must additionally be non-vanishing and of the same sign, else the photon orbit ener-

gies and angular momentum become discontinuous and negative, and photon orbits

become open, letting photons escape to null infinity as discussed in [543, 544]. Here

we vary only the lowest-order non-vanishing parameters present in the given expres-

sions α13, α22, α02, and ε3 for the Keplerian and vertical epicyclic frequencies, and

also α52 for the radial epicyclic frequency. In each case, all other non-Kerr deviation

parameters that are not specifically mentioned are set to be 0. For a further analysis

on the further-lower-order parameters assumed to vanish here, see App. J. In Fig. 8.5

we plot the Keplerian frequencies νφ, while in Figs. 8.6 and 8.7 the vertical and ra-

dial epicyclic frequencies νθ and νr are plotted for various non-vanishing parameters.

We observe that, in general, the parameters ε3 and α52 introduce very little change

into the frequencies νX, while combinations of α02 and α13, α22 have the power to

significantly alter the ensuing trajectories. Observe how the frequencies (especially
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epicyclic ones) can deviate significantly from the Kerr case when varying the new

parameter α02 introduced for the first time in this chapter.

8.4.2.2 Energy and angular momentum

In this section, we present the expressions for the orbital energy Eorb and angular

momentum Lz of a particle orbiting a BH described by the new metric. We begin

with the effective potential Veff given in Eq. (8.74). In the equatorial plane, circular

orbits obey the expressions Veff(r) = dVeff(r)
dr

= 0. When combined with the Keplerian

frequency in Eq. (8.72), and the Keplerian frequency written in terms of constants of

motion

Ωφ =
pφ
pt

= − gtφEorb + gttLz
gφφEorb + gtφLz

, (8.77)

we obtain expressions for the energy and angular momentum of a particle orbiting

our central BH

Eorb = −µ gtt + gtφΩφ√
−gtt − 2gtφΩφ − gφφΩ2

φ

, (8.78)

Lz = −µ gtφ + gφφΩφ√
−gtt − 2gtφΩφ − gφφΩ2

φ

. (8.79)

We see that these expressions only depend on the non-Kerr deviation functions A1(r),

A2(r), A0(4), and f(r).

Now let us plot the resulting energy Eorb/µ and angular momentum Lz/µ for

various deviation parameters present in the expressions obtained above. Here we vary

only the lowest-order non-vanishing parameters present in the given expressions: α13,
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Figure 8.5: Keplerian frequencies of a particle orbiting a 10 M� BH with a = 0.8M
on circular equatorial orbits for various values of the non-Kerr deviation parameters,
while setting all remaining parameters to 0. The frequencies are plotted for varying
the f(r) lowest-order parameter ε3 (left), varying the A1(r) and A0(r) lowest-order
parameters α13 and α02 (center), and varying the A2(r) and A0(r) lowest-order
parameters α22 and α02 (right). Several cases with α22 = 0 while α02 6= 0 or α12 = 0
while α02 6= 0, or vice versa, produce BHs with naked singularities which are not
shown here. The left-most plot agrees with that in Fig. 3 of [173].

α22, α02, and ε3. For a further analysis on lower-order parameters assumed to vanish

here, see App. J. In Figs. 8.8 and 8.9 we plot the energy and angular momentum as a

function of radius for a particle of mass µ on a circular orbit for several combinations of

non-Kerr deviation parameters that produce BHs without naked singularities, where

the energies and angular momenta become discontinuous and non-positive. In each

case, all non-Kerr parameters that are not specifically mentioned are set to be 0. We
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Figure 8.6: Similar to Fig. 8.5 but for the vertical epicyclic frequency νθ.

see that in general, non-Kerr parameters (including the new parameters introduced in

this manuscript, α0n) have a significant impact on the energy and angular momentum

of orbiting particles, and also the ISCO radius (minimum point of the energy curves)

that we will describe in more detail in the next section.

8.4.2.3 Innermost stable circular orbits

In this section, we compute the location of the ISCO. In particular, the ISCO occurs

at the minimum stable point of the orbital energy Eorb of a particle with a circular

orbit, or

dEorb

dr

∣∣∣
r=rISCO

= 0. (8.80)
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Figure 8.7: Similar to Fig. 8.5 but for the radial epicyclic frequency νr. Additionally
plotted here (top right) is the dependence on the lowest-order parameter α52 of the
deviation function A5(r) appearing only in the grr metric element.

Because the dependence of this solution is very complicated in terms of the lower-order

deviation parameters, we here plot contours of constant rISCO for varying unitless BH

spins χ, and magnitude of deviation parameters. Fig. 8.10 does just this for 5 different

classes of non-vanishing deviation parameters, taking note that the parameters α13

or α22 can not be the sole non-vanishing parameter unless α02 is also non-vanishing,

else naked singularities appear as discussed previously and in App. K. Thus, to vary

α13 or α22, we fix α02 = 10 and vice versa, in order to check the rISCO dependence on

individual non-Kerr parameters.

Now we discuss the ISCO dependence on the lower-order non-Kerr parameters ε3,
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Figure 8.8: Similar to Fig. 8.5 but for the specific orbital energy Eorb/µ. The
left-most plot agrees with that in Fig. 4 of [173]. We note that the non-Kerr
deviation parameters, especially the new one A0(r) introduced in this chapter
significantly impact the orbital energy of particles.

α02, α13, and α22 as seen in Fig. 8.10. When varying the parameter ε3, we see that for

χ < 0.8 the ISCO is mildly dependent on non-Kerr perturbations. When varying α22

we observe that rISCO stays almost constant for any given value of α22 except for very

large spin BHs. As for α13, we see that the location of the ISCO depends very strongly

on the non-Kerr parameter. Finally we observe that for BHs with non-vanishing spin,

the dependence of rISCO on α02 becomes increasingly stronger for increasingly larger

BH spins χ.
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Figure 8.9: Same as Fig. 8.8 but for the orbital angular momentum Lz. The
left-most plot agrees with that in Fig. 5 of [173].

8.4.2.4 Photon rings

In this section, we obtain solutions describing the orbit of a photon about a BH de-

scribed by the new metric with various non-vanishing deviation parameters. Following

Refs. [173,532], we begin with the Hamilton-Jacobi function

S ≡ −1

2
µτ − Eorbt+ Lzφ+ Sr(r) + Sθ(θ) (8.81)

for particle mass µ, proper time τ , orbital energy Eorb, angular momentum Lz (these

are the first two constants of motion), and generalized radial and polar functions
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Figure 8.10: Constant rISCO contours displaying their dependence on the unitless BH
spin χ and non-Kerr deviation parameters ε3, α02, α13, and α22. Such contours are
presented (from right to left) for rISCO values of 2M (black), 3M (maroon), 4M
(red), 5M (orange), 6M (yellow), 7M (green), 8M (blue), 9M (indigo), 10M
(violet), and 11M (magenta). When varying the parameters α13, or α22, we fix
α02 = 10, and vice versa, to avoid the presence of naked singularities.
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Sr(r) and Sθ(θ). We compute the Hamilton-Jacobi equations

− ∂S

∂τ
=

1

2
gαβ

∂S

∂xα
∂S

∂xβ
, (8.82)

to obtain

− µ2
(
a2 cos2(θ) + f(r) + g(θ) + r2

)
=

1

∆

[
− a4A2

1E
2
orb + 2a3A0EorbLz

− 2a2A2
1E

2
orbr

2 − a2A2
2L

2
z + a2∆E2

orb sin2 θ + 2aA0EorbLzr
2 − 2a∆EorbLz

+ ∆L2
z csc2 θ + ∆

(
∂Sθ
∂θ

)2

− A2
1E

2
orbr

4 + A5∆2

(
∂Sr
∂r

)2
]
. (8.83)

Next we separate the Hamilton-Jacobi equations, using the separation constant

C =− µ2 −
(
f(r) + r2

)
− 1

∆

[
− a4A2

1E
2
orb + 2a3A0EorbLz − 2a2A2

1E
2
orbr

2

− a2A2
2L

2
z + 2aA0EorbLzr

2 − A2
1E

2
orbr

4 + A5∆2

(
∂Sr
∂r

)2 ]
, (8.84)

C =a2E2
orb sin2 θ + µ2(g(θ) + a2 cos2 θ)− 2aEorbLz + L2

z csc2 θ +

(
∂Sθ
∂θ

)2

. (8.85)

We then define the Carter-like constant of motion Q ≡ C− (Lz−aEorb)2 which gives

us a solution for Sr(r) (and Sθ(θ), not displayed here)

Sr(r) = ±
∫
dr

1

∆

√
R(r)

A5(r)
, (8.86)

R(r) ≡ a4A2
1E

2
orb − 2a3A0EorbLz + 2a2A2

1E
2
orbr

2 + a2A2
2L

2
z − a2∆E2

orb

− 2aA0EorbLzr
2 + 2a∆EorbLz + A2

1E
2
orbr

4 −∆f(r)µ2 −∆L2
z −∆Q−∆µ2r2,

(8.87)

where the different signs represent particles with prograde and retrograde motion.
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This proves that the new metric presented here indeed has a separable structure, and

thus generalizing Johannsen’s [173].

Finally, we compute the generalized momenta pα given by

pα =
∂S

∂xα
. (8.88)

In particular, we focus on the radial momenta, given in covariant and contravariant

form as

pr = ± 1

∆

√
R(r)

A5(r)
, (8.89)

pr = ±A5(r)R(r)

Σ̃
. (8.90)

Following Ref. [532], the impact parameters x′ and y′ [545] describing the image plane

from an observer’s point of view at infinity with an inclination angle i can be found

to be

x′ = − ξ

sin i
, y′ = ±

√
η + a2 cos2 i− ξ2 cot2 i. (8.91)

In the above expression, the new invariant parameters ξ ≡ Lz/Eorb and η ≡ Q/E2

have been constructed entirely out of constants of motion.

Now we describe the solutions (ξ, η) which describe the photon rings about the

central BH. Such new constants of motion are conserved along the null geodesics, and,

because they are the same everywhere, can be simply solved for along the special case

of a circular-orbit for simplicity. Here, the radial photon momentum pr found in

Eq. (8.90) as well as its radial derivative much vanish. Because Σ̃ and A5(r) are both
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non-negative, this results in the system of equations

R(r) = 0,
dR(r)

dr
= 0, (8.92)

with the full re-parameterized expression for R(r) for an orbiting photon (µ = 0)

given by

R(r) =a4A1(r)2 − 2a3A0(r)ξ + 2a2A1(r)2r2 + a2A2(r)2ξ2 − a2∆− 2aA0(r)ξr2

+ 2a∆ξ + A1(r)2r4 −∆η −∆ξ2. (8.93)

With this, one can easily simultaneously solve Eqs. (8.92) for ξ and η to give param-

eterized expressions for the photon orbits in Eqs. (8.91). Because such results are

quite lengthy we do not show them here, however in the Kerr limit, they are found

to correctly reduce to the GR expressions found in [182]

ξ = −r
2(r − 3m) + a2(r +m)

a(r −m)
(8.94)

η =
r3[4a2m− r(r − 3m)2]

a2(r −m)2
. (8.95)

We also note that the expressions for ξ and η only depend on the non-Kerr deviation

functions A1(r), A2(r), and A0(r).

Now we compute the image of the photon rings about a BH described by the new

metric. In particular, we focus our attention on only the lowest order parameters

α13, α22, and α02, as was done in [173, 532]. However, we refer the reader to App. J

for an analysis of the inclusion of lower-order parameter α12, which was assumed to
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vanish in the ppN framework. There we also consider photon rings in the EdGB

theory of gravity, where we investigate the validity of the 1
r

expansion in the EdGB

metric. Here we vary each parameter α13, α22, and α02, while avoiding the cases with

emergent naked singularities (See App. K), else closed photon orbits do not appear

and the photons escape to null infinity as discussed in [543, 544]. This means that if

α13 6= 0 or α22 6= 0, then α02 must also be non-vanishing and of the same sign.

Figure 8.11 shows the image of the photon ring as it depends on the BH’s spin (χ),

and the observers inclination angle (i) for the case of all deviation parameters vanish-

ing (Kerr) for simplicity. We observe that for a fixed inclination angle, increasing the

BHs spin serves to increasingly displace and deform the photon’s orbit. Similarly, for

a fixed BH spin, the inclination dilutes the displacement and deformation gained from

the rotating BH for all but the highest angles. Such displacement and deformation

as a function of inclination only reaches the maximum value allowable by the spin,

with none present for a static non-rotating BH.

Finally, we compute the images of the closed photon rings about a BH for several

non-vanishing deviation parameters in Fig. 1.13. Specifically, for highly-rotating BHs

(χ = 0.998), moderately-rotating BHs (χ = 0.5), and slowly-rotating BHs (χ =

0.002), we generate the photon orbits for different non-vanishing values of α13, α22,

and α02. We observe that the effect of increasing α13 and α02 acts to increase the

image size, and negative values of each parameter works to deform the image. The

latter becomes less apparent as the spin decreases, while the former still holds true
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Figure 8.11: Images of photon rings of a Kerr BH seen by an observer at infinity (all
deviation parameters vanishing in the new metric) for increasing degrees of
inclination at a fixed BH spin (top), and increasing BH spins at a fixed inclination
(bottom). For the former, we fix the BH spin at the extreme case of χ = 0.998 for
demonstration purposes, and increase the inclination angle going left to right from
i = 0◦ to i = 90◦ in intervals of 10◦. For the latter, we fix the inclination angle at
the extreme case of i = 90◦, and increase the BH spin going left to right from χ = 0
to χ = 0.998 in intervals of 0.1.

for even low BH spins. Next we see that non-vanishing values of α22 and α02 only

marginally affect the image size, but highly deform the orbits for fast-rotating BHs.

In this case (and not in the case of non-vanishing α13 and α02), we see that positive

values of the parameters work to deform the image inwards, while negative values

distort outwards. We conclude with the remark that, especially for highly-rotating

and/or highly-inclined observations, that BHs with deviations from Kerr are highly

distinguishable from the exact Kerr result. This is because the deviation parameters

α22 and α02 (corresponding to free functions A2(r) and A0(r)) are associated with

modifications to the angular portions (φ-components) of the contravariant metric in
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Eq. (8.44).

8.5 Transformation of the new metric to other space-

times

In this section we present the maps that take one from the new metric presented here

to several other deformed spacetimes present in the literature. In particular, we focus

on the following theories and spacetimes:

1. the separable deformed spacetime:

• spacetime in Papadopoulos and Kokkotas [174];

• parameters: generic deviation parameters Ai and Bi for i = 1 . . . 5;

2. the string-inspired RS2 Braneworld [175]:

• spacetime in [176];

• parameters: the tidal charge β;

3. the heterotic string theory:

• spacetime in Kerr & Sen [179];

• parameters: deviation parameter b related to the magnetic dipole moment;

4. Einstein-dilaton-Gauss-Bonnet (EdGB) gravity [111,114,180]:

• spacetime in [159,184];
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• parameters: the dimensionless coupling constant ζEdGB;

5. dynamical Chern-Simons (dCS) gravity [120,121]

• spacetime in [124,181,184];

• parameters: the dimensionless coupling constant ζdCS;

6. quantum-corrected regular BHs:

• spacetime in Bardeen [182];

• parameters: deviation g controlling the amount of BH “regularity”;

7. the non-localized theory of gravity:

• spacetime in [183];

• parameters: the mass scale m′;

8. the Kalb-Ramond BH with Kalb-Ramond parameter s = 1 and s = 2:

• spacetime in [185];

• parameters: the Kalb-Ramond Lorentz-violating parameter Γ.

Now let us provide a brief overview of the procedure used to find such mappings

between the new spacetime presented here and the ones (X) listed above. Using a

computer-algebra software, this is done by first equating each metric element gαβ =

gX
αβ to solve for the the functions A0(r), A1(r), A2(r), A5(r), and f(r) found in the
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new metric as a function of the GR deformation parameters present in metric X. Such

functions are then expanded in powers of m
r

about r = ∞ to obtain the mappings

between non-Kerr parameters α0n, α1n, α2n, α5n, and εn and non-Kerr parameters in

metric X. We present all such mappings in Tab. 8.2, for the three lowest-order non-

vanishing parameters from each free function. We note that here, we do not take into

account the ppN bounds mentioned in Ref. [173], and instead allow all lower-order

parameters to enter.

We now discuss the results presented in Table 8.2. We first note that in the

separable deformed spacetime presented by Papadopoulos and Kokkotas, we only

find the transformation from the arbitrary functions presented here Ai(r), f(r) to the

ones (APK
i (r)) found in [174]. We also note that in the nonlocalized theory of gravity,

a new definition of Ai(r) had to be made for i = 1, 2, as the Taylor expansions of M/r

in these cases appeared in half-powers. Thus, for nonlocal gravity only we define the

new parameters αin
2

via

Ai(r) =
∞∑
n=0

αin
2

mn/2

rn/2
, (i = 1, 2) (8.96)

in order to properly map the new metric to the nonlocal theory of gravity. Addi-

tionally, Ref. [173] states that the RS2 Braneworld metric could not be related to

Johannsen’s metric, and in Ref. [532] the author found a mapping by introducing

a new non-Kerr parameter β such that ∆ → ∆ + β. However, we have found that

both Johannsen’s metric and the metric presented here could be mapped to RS2
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BH spacetime Deviation parameters

separable deformed spacetime [174]

f(r) = APK
1 (r)− r2,

A1(r) =

√
−APK

5 (r)∆

a2+r2 ,

A2(r) =

√
−APK

3 (r)∆

a
,

A5(r) =
APK

2 (r)

∆
,

A0(r) = −APK
4 (r)∆

a(a2+r2)

RS2 Braneworld [175]

α10 = 1, α12 = − β
2m2 , α13 = − β

m2 , . . . ,

α20 = 1, α22 = − β
2m2 , α23 = − β

m2 , . . . ,

α50 = 1, α52 = β
m2 , α53 = 2β

m2 , . . . ,

α00 = 1, α02 = − β
m2 , α03 = − 2β

m2 , . . .

heterotic string (Kerr-Sen) [179]

ε1 = 2b
m

, . . . ,

α10 = 1, α11 = b
m

, α12 = − b2+4bm
2m2 , . . . ,

α20 = 1, α21 = − b
m

, α22 = 3b2−4bm
2m2 , . . . ,

α50 = 1, α51 = 2b
m

, α52 = 4b
m

, . . . ,

α00 = 1, α02 = −4b
m

, α03 = 8b(b−m)
m2 , . . .

EdGB gravity [159]

α10 = 1, α13 = − ζ
6
, α14 = −14ζ

3
, . . . ,

α20 = 1, α23 = −13ζ
30

, α24 = −16ζ
3

, . . . ,

α50 = 1, α52 = ζ, α53 = 3ζ, . . . ,

α00 = 1, α03 = −3ζ
5

, α04 = −10ζ, . . .

dCS gravity [124,181]

α10 = 1,

α20 = 1, α24 = −5ζ
8

, α25 = −15ζ
14

, . . . ,

α50 = 1,

α00 = 1, α04 = −5ζ
8

, α05 = −15ζ
14

, . . .

quantum-corrected (Bardeen) [182]

α10 = 1, α13 = − 3g2

2m2 , α14 = −3g2

m2 , . . . ,

α20 = 1, α23 = − 3g2

2m2 , α24 = −3g2

m2 , . . . ,

α50 = 1, α53 = 3g2

m2 , α54 = 6g2

m2 , . . . ,

α00 = 1, α03 = −3g2

m2 , α04 = −6g2

m2 , . . .

Nonlocal gravity [183]

α1 1
2

= −
√

3
mm′

, α1 3
2

=
√

3(2m2m′2−3)
2m3m′3

, α1 5
2

=
√

3(4m4m′4+36m2m′2−27)
8m5m′5

, . . . ,

α2 1
2

= −2mm′√
3

, α2 3
2

= 9+24m2m′2−4m4m′4

4
√

3m3m′3
, α2 5

2
= 27−9m2m′2+24m4m′4+4m6m′6

4
√

3m5m′5
, . . . ,

α51 = 3
m2m′2

, α52 = −3(3+2m2m′2)
m4m′4

, α53
9(3+4m2m′2)

m6m′6
, . . . ,

α00 = 2, α01 = 3+4m2m′2

m2m′2
, α02 = 3(3−2m2m′2)

m4m′4
, . . .

Kalb-Ramond [185]

(s = 1)

α10 = 1, α12 = − Γ
2m2 , α13 = − Γ

m2 , . . . ,

α20 = 1, α22 = − Γ
2m2 , α23 = − Γ

m2 , . . . ,

α50 = 1, α52 = Γ
m2 , α53 = 2Γ

m2 , . . . ,

α00 = 1, α02 = − Γ
m2 , α03 = − 2Γ

m2 , . . .

Kalb-Ramond [00](s = 2)

α10 = 1, α11 = − Γ
2m

, α12 = Γ(3Γ−8m)
8m2 , . . . ,

α20 = 1, α21 = − Γ
2m

, α22 = Γ(3Γ−8m)
8m2 , . . . ,

α50 = 1, α51 = Γ
m

, α52 = 2Γ
m

, . . . ,

α00 = 1, α01 = − Γ
m

, α02 = Γ(Γ−2m)
m2 , . . .

Table 8.2: Mappings from the new metric presented in this chapter to several other
BH solutions in related works. For the separable deformed spacetime, we show only
the transformation between the arbitrary functions defined here and in [174]
(APK

i (r)). The notation αin
2

for i = 1, 2 and n = 1, 3, 5 in nonlocal gravity represents
re-defined Ai(r) to instead sum over half-powers of m/r, as in Eq. (8.96). The
mappings to EdGB and dCS gravity are only valid up to linear order in BH spin
and first order in deformation parameters ζ, and the mapping to Bardeen is only
valid to quartic order in deviation parameter g. Parameters which are missing
correspond to those that are vanishing in the series expansion.



Chapter 8. Testing beyond-Kerr spacetimes 345

Braneworld as shown in Table 8.2, with some difficulty. We also note that Ref. [174]

claims that Kerr-Sen BH cannot be mapped to the Johannsen metric in [173], while

we were able to find such a mapping here. In both the EdGB and dCS theories of

gravity, the mapping is only valid up to first order in spin χ and coupling parameter

ζ. We note that all the mappings presented in Table 8.2 for the new metric can also

be mapped to Johannsen’s.

We finish this section by noting the high versatility of this new metric, with the

ability to map to many BH solutions found in the literature. Having said this, we

point out there are many BH solutions that cannot be mapped to the new metric

found here. Such metrics include BHs in Einstein-scalar gravity [546] and Einstein-

Maxwell dilaton theory [177], the Bumblebee metric [178], and slowly-rotating BHs

in EdGB and dCS gravity [124,159]. These metrics do not contain separable geodesic

equations, thus no Carter-like constant is present and the geodesic equations may be-

come chaotic [547]. Such fundamental differences manifest themselves as an inability

to transform to Johannsen’s metric or the metric presented here, and can be seen by

the appearance of angular functions within the mapping functions of f(r) and Ai(r).

8.6 Conclusions

The no-hair theorem tells us that isolated BHs creates a spacetime described by the

famous Kerr metric. In this metric, we can predict the shape and size of photon

rings seen by a far-away observer that depend only on the central BH’s mass and

spin. While several tests to date have confirmed this hypothesis [171, 474–494, 497–
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500,502–515], what if small deviations from the Kerr metric yet exist in nature? That

is one question the EHT with the VLBI aim to answer, by using an effective earth-

sized telescope to accurately map photon rings about SMBHs located at the center

of galaxies.

In this chapter, we have extended the important analysis done by Johannsen

in [173] to design a more general Kerr-like BH solution. This new metric can be

interpreted as the most general stationary, axisymmetric, and asymptotically flat

spacetime we can create with intact separable geodesic equations. Such a new metric

is parameterized non-linearly by 5 free functions Ai(r) for i = 0, 1, 2, 5 and f(r) which

deviate from the Kerr metric, and reproduce the exact Kerr metric when vanishing.

This general metric can be mapped to a large range of BH solutions found in the

literature, as demonstrated for eight different cases [111, 114, 120, 124, 159, 174–185].

The metric has been shown to produce an event horizon and Killing horizon coexistent

with the Kerr one. Finally, we look at the spheroidicity conditions found in Ref. [533],

finding a θ-independent function which admits a Kerr-like spherical photon orbits.

Now that we have a new, general metric in hand, we proceeded to calculate several

properties of the ensuing spacetime. In particular, we focused on circular equatorial

particle orbits and found analytic expressions for the orbital energy and angular

momentum of such a particle, along with its Keplerian and epicyclic frequencies for

perturbed radial and vertical orbits. We plot these quantities for several different

parameterizations of the new metric for comparison against the Kerr result to show
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the effect of the parameterized deviations. We then compute the location of the ISCO,

once again comparing the results for several parameterizations against the Kerr result.

We finally shift our attention to the orbits of photons about BHs described by

the new metric presented here. By following the analysis of Johannsen in [532], we

derive analytic expressions for thin photon orbit solutions, called “photon rings”. The

images of such orbits are observable by, e.g. the EHT, and are extremely timely due to

the recent image of the lensed photon orbits about the SMBH M87∗ [19,21–24], with

future resolution and fidelity improvements imminent. We then compare the photon

rings about BHs with several different parameterizations against the Kerr result.

We find that, especially for highly-rotating BHs and/or highly inclined observation

angles, the non-Kerr photon rings indeed distinguish themselves prominently against

the standard Kerr result.

Future work in this topic includes constraining the new metric found in this

chapter with current and future observations. For example, one can use obser-

vations of X-ray continuum spectrum and iron line emissions from accretion disks

around BHs to constrain some of the parameters, as already done in [548–552]. An-

other way to constrain the metric is to use future gravitational-wave observations.

For example, extreme-mass ratio inspirals can probe accurately spacetime around

BHs [476,500–515]. Other possibilities include pulsars orbiting around BHs [477,553],

stars orbiting around the center of Sgr A∗ [480–482] and low-mass X-ray binaries with

BHs [116]. One could additionally repeat the analysis done in [523] with the new met-
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ric presented here, where the authors compared current and future gravitational wave

and x-ray constraints on deformed spacetime metric parameters.

In addition, future work on the presented topic includes a detailed investiga-

tion into a finite stress-energy tensor that sources the beyond-Kerr nature presented

here, if such a metric corresponds to a non-vacuum spacetime. In particular, one

could compute Einstein’s Equations with the new metric considered in this chapter

assuming GR, and attribute the purely beyond-Kerr components to an additional

stress-energy tensor. While the key purpose of this investigation was to determine

an arbitrary, theory agnostic spacetime model, a source term for such effects is inter-

esting to study, and e.g. determine if the energy conditions are satisfied. We found

that the stress-energy tensor and energy conditions required for the beyond-Kerr cor-

rections presented here are lengthy and complicated given the number of arbitrary

beyond-Kerr functions, and don’t provide any immediately meaningful observations.

We leave a further analysis on this point for future work.

Additionally, one could introduce a stress-energy tensor corresponding to the ac-

cretion disk found outside of e.g. M87∗ in the EHT observations, find a black hole

solution with such an accretion disk perturbatively and see if such a solution can

be mapped to the beyond-Kerr metric presented in this chapter (or with any other

beyond-Kerr spacetimes). Such future work could be used to probe properties of the

disk with the arbitrary free parameters utilized in this chapter.

Alternatively, we consider testing singly-parameterized beyond-Kerr spacetimes



Chapter 8. Testing beyond-Kerr spacetimes 349

with GWs and the inspiral-merger-ringdown consistency test as done before in Chap-

ter 7. Parameterized BH solutions to modified Einstein’s field equations allow us

to test the extreme-gravity regime of GR in a model-independent way. From here,

parameterized corrections to the gravitational waveform for inspiraling BHs can be

predicted. Once one has these tools in hand, future GW signals can be tested against

the beyond-Kerr metric by (i) IMR consistency tests (comparing the consistency be-

tween the inspiral and merger-ringdown portions of the signal) and (ii) parameterized

tests.

In this chapter, we presented the necessary recipe required to estimate corrections

to the inspiral, ringdown, and remnant BH properties of the gravitational waveform

given an arbitrary spacetime metric gX
αβ, and then test future GW signals against this

template with the above two tests. In particular, we extend the work of Chapter 7

where this was done for the specific example of the EdGB theory of gravity. We

first derive corrections in a generic way without specifying the beyond-Kerr space-

time. As an application, we focused on the JP metric introduced by Johannsen and

Psaltis in Ref. [171] and the modified ∆ metric, modified from Johannsen’s metric

in Refs. [172, 173]. Each spacetime metric considered here is singly-parameterized

beyond the Kerr metric with parameters ε3 and β. Such spacetimes can then be

mapped to BH solutions other than Kerr found in the literature.

With the arbitrary JP and mod. ∆ metrics in hand, we next estimate corrections to

the gravitational waveform for inspiraling BHs immersed in a JP or mod. ∆ spacetime.
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Specifically, we found corrections to the GW amplitude and phase in the inspiral, the

ringdown and damping QNM frequencies, the orbital energy and angular momentum

of a particle about the BH, and finally the remnant BH’s mass and spin. Each of

the above-listed corrections are parameterized by the single parameters ε3 and β in

the JP and mod. ∆ spacetimes respectively, and can be accordingly added into the

gravitational waveform template. With this modified-gravity waveform template, we

next test GW signals for their feasibility within such a spacetime.

We then perform the IMR consistency test to predict the magnitude of ε3 (β)

required to differentiate between Kerr and JP (mod. ∆) GW signals. Within this test,

we compute statistical uncertainties on the remnant BH mass and spin parameters

from the inspiral and merger-ringdown signals independently, using a Fisher analysis.

We next estimated the systematic uncertainties in each measurement representing the

waveform mismodeling uncertainty present by using a GR template with Kerr BHs,

and yet observing a GW signal with a given magnitude of ε3 (β) present within. We

then increase the magnitude of ε3 (β) until the inspiral and merger-ringdown estimates

of remnant BH properties begin to disagree to a statistically significant level. Only

at this point can we reliably claim the observed GW signal indeed has emergent

JP (mod. ∆) effects present within. We also computed bounds on ε3 (β) using the

parameterized test and compared them with those from the IMR consistency test.

We now discuss our findings. We performed the IMR consistency test in each

considered spacetime metric for the current-generation aLIGO O2 detector, the third-
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generation CE detector, the future space-based detector LISA, and finally the multi-

band observation between the latter two. As summarized in Table 1.2, we first found

that observations by the O2 detector can detect JP (mod. ∆) deviations from the GR

waveform for magnitudes of ε3 (β) on the order of unity, in agreement with current

constraints. For future GW detectors CE and LISA, we found that constraints about

two orders-of-magnitude stronger can be claimed. Finally, for the observation of

EMRIs by the space-based detector LISA, we found that constraints three orders-of

magnitude stronger can be made. Such strong constraints occur because EMRI BH

systems radiate GWs less compared to comparable-mass systems with the same total

mass, thus increasing the amount of time JP (mod.-∆) effects are observed for, which

results in a factor of η−4/5 ∼ 104 for EMRI systems in the ppE correction to the

inspiral waveform.

In this analysis, several assumptions were made that somewhat weaken our results.

In particular, we have assumed the following caveats:

• We only included corrections to the ringdown phase of the waveform, neglecting

those to the merger.

• We only consider conservative corrections to the inspiral waveform, rather than

dissipative ones. The resulting presented bounds are therefore conservative

in nature. Once dissipative effects are additionally included, constraints may

become stronger.

• We only included corrections to the leading-order PN terms in the waveform,
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and also to quadratic order in spin, and first order in beyond-Kerr parameters

ζ.

• We assumed that the QNMs are isospectral between axial and polar modes,

something that may not be entirely true in beyond-Kerr spacetimes.

• We estimated the BH final mass and spin following the result that holds for Kerr

BH binary mergers in GR, which may not be true in beyond-Kerr spacetimes.

One needs to specify a theory of gravity to overcome most of the points raised above,

which goes beyond the scope of probing beyond-Kerr spacetime in a generic, model-

independent way with GWs. We present this article as a new method to quickly and

easily estimate various corrections in the full waveform from an arbitrary beyond-Kerr

metric, to obtain order-of-magnitude parameter constraints. Future analyses could

improve upon this work for more valid, yet significantly slower and computationally

expensive results. Specifically, repeated calculations with the more-robust Bayesian

parameter-estimation analysis could be performed. One could also study higher PN

order-corrections and higher spin corrections beyond O(ε3, β, χ
2) to the gravitational

waveform. Another avenue for future work includes studying beyond-Kerr spacetimes

other than those considered here.
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Appendix A

Λ̃ versus Λ1.4

Malik et al. [91] first studied correlations between nuclear and tidal parameters for

individual NSs1. Given that the tidal parameter measured from GW observations is

Λ̃, corresponding to the mass-weighted average of two tidal parameters in a binary,

the authors of Ref. [91] assumed the masses of the two NSs in GW170817 to be

m1 = 1.4M� and m2 = 1.33M�. Next they studied correlations between Λ̃ in such

a binary and Λ1.4, representing the tidal deformability for an individual NS with a

mass of 1.4M�.

The above assumption can be dangerous because the individual mass measure-

ments of GW170817 are not very accurate. Although the chirp mass has been mea-

sured with great accuracy as M = (m1m2)3/5(m1 + m2)−1/5 = 1.188+0.004
−0.002 M�, the

mass ratio varies as q = m2/m1 ∈ [0.73, 1.00] [106].

The top panel of Fig. A.1 presents the Λ̃–Λ1.4 correlation for various q within the

above range with the chirp mass fixed to M = 1.188M�, while the bottom panel

shows the absolute fractional difference from the linear fit. Observe that a strong

1This appendix provides supplementary material for Chapter 4.
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Figure A.1: (Top) Correlation between mass-weighted average tidal deformability Λ̃
and Λ1.4 (individual tidal deformability at the mass of 1.4 M�) for various EoSs
each evaluated at mass ratios q = 0.73, 0.80, 0.87, 0.93 and 1.00. The chirp mass is
fixed to be the measured value of M = 1.188M�. (Bottom) Fractional difference
from the fit for each EoS. Notice how the HS EoSs interrupt the universality
between the two parameters by up to 60% (5% maximal percent difference in the
absence of hybrid EoSs).

correlation exists between Λ̃ and Λ1.4 for any q. The maximum fractional error for

this case is ∼ 5%, with a correlation coefficient of C = 0.998. On the other hand, once

we include the hybrid EoSs discussed in more detail in Appendix C, one clearly sees

a large deviation from the correlation with other EoSs, with the fractional difference

reaching up to 60%.

The behavior in Fig. A.1 can be understood from Fig. A.2, where we show Λ̃

against q with M fixed to the measured value for GW170817. If we do not consider

hybrid EoSs, Λ̃ is insensitive to q [234,252], which is the origin of the strong correlation
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Figure A.2: Λ̃ for a representative set of EoSs as a function of mass ratio q in
GW170817’s observed range of q ∈ [0.73, 1.00] with the chirp mass fixed to
M = 1.188M�. Notice how Λ̃ only varies slightly in this region of interest for
Skyrme, RMF, and PEs. Hybrid EoSs on the other hand admit two different
configurations for GW170817, HS/NS (solid maroon) and HS/HS (dashed maroon),
with the former giving a significant variation in Λ̃. For demonstration purposes, the
black vertical line corresponds to mass ratio q = 0.995, where it can be seen that
two different binary configurations emerge, discussed in more detail in Appendix C.

in the Λ̃–Λ1.4 relation. On the other hand, for hybrid EoSs considered here, GW170817

can be either HS/HS or HS/NS when the mass ratio is close to unity2. Thus, one

finds a significant drop in Λ̃ as one increases q [234], which changes the Λ̃–Λ1.4 relation

drastically.

2We note that hybrid EoSs considered in [98] admit either NS/NS or HS/NS for GW170817.



Appendix B

Repeated analysis without PEs

In this appendix, we study the effect of PEs on nuclear parameter bounds by re-

analyzing them without including such EoSs1. This way, we can directly compare our

results with those in Ref. [91] which did not include these additional EoSs. Figure B.1

once again presents correlations between Λ̃ and linear combinations of nuclear param-

eters as a function of mass ratio. Here, for comparison purposes we choose α = 1.10,

β = 15.62, and γ = 2.81 such that correlations become maximum, as was done in

Ref. [91]. Observe that correlations with Λ̃ remain almost constant throughout the

entire region of allowable mass ratios. In addition, note how correlations for linear

combination involving K0 and M0 are increased by up to 55% from Fig. 4.3 which

includes PEs, while linear combinations with higher order nuclear parameter Ksym,0

interestingly shows a small decrease in correlation, yet remains comparable. This is

revealing of the flexible nature of the Ksym,0 nuclear parameter.

We now derive constraints on nuclear parameters without PEs. Following the

procedure outlined in Sec. 4.4, new bounds on K0, M0, and Ksym,0 are calculated for

1This appendix provides supplementary material for Chapter 4.
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Figure B.1: Similar to Fig. 4.3 upon the removal of PEs. Observe that the
correlations for linear combinations involving lower order parameters improve by up
to 55%, while linear combinations with high order parameter Ksym,0 shows slightly
diminished, yet comparable, correlations. Observe also that the correlations are
insensitive to q.
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L0 [MeV]
Λ̃ 70-720 [233] 279–822 [292]

40–62 [46,254,267]

161 MeV ≤ K0 ≤ 309 MeV

1506 MeV ≤M0 ≤ 3506 MeV

-327 MeV ≤ Ksym,0 ≤ 140 MeV

182 MeV ≤ K0 ≤ 324 MeV

1851 MeV ≤M0 ≤ 3723 MeV

-246 MeV ≤ Ksym,0 ≤ 190 MeV

30–86 [253]

134 MeV ≤ K0 ≤ 320 MeV

1131 MeV ≤M0 ≤ 3662 MeV

-394 MeV ≤ Ksym,0 ≤ 168 MeV

155 MeV ≤ K0 ≤ 335 MeV

1476 MeV ≤M0 ≤ 3880 MeV

-313 MeV ≤ Ksym,0 ≤ 218 MeV

Table B.1: Similar to Table 4.1, when excluding PEs, and only considering the “first
method” of computing nuclear parameter constraints. Observe how the bounds
upon removal of PEs show drastic improvement - showing closer agreement with
Ref. [91] (in addition to uncertainty from EoS variation), and also highlighting the
effect of utilizing a large set of additional EoSs. The exception is high order nuclear
parameter Ksym,0 - showing weakened constraints due to the inclusion of uncertainty
in L0.
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a central mass ratio of q = 0.87, and summarized in Table B.1. Comparing this with

Table 4.1, one sees that the additional PEs significantly weaken estimated constraints

for low order nuclear parameters K0 and M0, and interestingly, improve them for

high-order nuclear parameter Ksym,0. Here we find results somewhat agreeable to

what was found in Malik et al [91], however enlarged due to the addition of EoS

variation uncertainties.



Appendix C

Hybrid quark-hadron stars

In this appendix, we investigate the use of an additional valid class of EoS: hybrid

quark-hadron stars based on Ref. [98]1. Here, the low-density nucleonic matter region

of PEs transition into a high-density quark matter phase in a given transitional energy

density region ε1 ≤ ε ≤ ε2. For our purposes, we consider Set I quark matter EoSs,

where the pressure following transition is given by [328] (see also [101,329–331]):

P (ε) =


Ptr (ε1 ≤ ε ≤ ε2)

Ptr + c2
s (ε− ε2) (ε > ε2)

(C.1)

with cs being the constant speed of sound in the quark matter, ε1 and ε2 characterizing

the energy density “jump” ε2− ε1 ≡ ε1j, and Ptr representing the transition pressure,

such that the low density hadronic matter’s energy density equals ε1. In this paper,

we adopt the ACS-II parameterization in [98] as Ptr = 1.7 × 1035dyn/cm2, ε2 =

8.34× 1014g/cm3 and c2
s = 0.8 with j = 0.8 or 1.

As we show in Fig. A.2, strong phase transitions in the star admit a secondary

1This appendix provides supplementary material for Chapter 4.
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stable HS configuration (denoted HS/HS). HSs evaluate to a reduction in tidal de-

formability Λ̃ from their NS-branch counterparts, thus altering universal relations

accordingly. Here, we examine how this additional possibility of binary HSs and the

choice of fiducial nuclear matter EoS impacts correlations between Λ̃ and nuclear

parameters.

Figure C.1 investigates this phenomena by choosing 3 different fiducial nuclear

matter EoSs with soft (Λ̃ ≈ 465), intermediate (Λ̃ ≈ 800), and stiff (Λ̃ ≈ 1045)

representative values of tidal deformability for M = 1.188M� and q = 0.995. Next,

HS EoSs are formulated, and new universal relations are derived - including both

stellar configurations at high values of q, as can clearly be seen by the dashed vertical

line in Fig. A.2. Observe how the choice of fiducial nuclear matter EoS impacts the

universal relations differently depending on which combination of nuclear parameters

is used. For example, use of the stiff fiducial EoS compared to the intermediate

one results in a small decrease in correlation for K0 + αL0, a negligible decrease for

M0 + βL0, and a large decrease for Ksym,0 + αL0. Alternatively, choice of the soft

fiducial EoS results in medium decreases in correlation for K0 + αL0 and M0 + αL0,

and an increase in correlation for Ksym,0 + αL0.

In conclusion, we find that the use of valid hybrid quark-hadron star EoSs in

universal relations can influence universality in unexpected ways. Thus, the bounds

derived in Table 4.1 are strictly valid only for NSs, and they are subject to change

once one includes the possibility for HSs. Refer also to Ref. [101] for a more detailed
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Figure C.1: Scatter plots demonstrating variation in correlation at q = 0.995 (with
M = 1.188M�) when introducing HS EoSs based on 3 different fiducial nuclear
matter EoSs with Λ̃ ≈ 465, Λ̃ ≈ 800, Λ̃ ≈ 1045, represented by filled red circles.
These correspond to soft, intermediate and stiff fiducial EoSs respectively. These are
followed by two different star configurations of hybrid HS/NS values (purple
triangle), and HS/HS (purple diamond) with a reduction in Λ̃, as is shown in
Fig. A.2 for two different HS EoSs, corresponding to the j = 0.8 and j = 1.0
configurations. As demonstrated in Fig. A.2, q = 0.995 clearly admits both HS/NS
and HS/HS binary configurations. Shown in gray as reference are the PE, Skyrme,
and RMF EoSs, irrelevant to this investigation. Displayed in the bottom right
corner is the correlation between nuclear parameter combinations and Λ̃ when
imposing soft, intermediate, and stiff fiducial EoSs in the generation of HS
structure. Notice how the choice of fiducial EoS alters correlations between Λ̃ and
combinations of nuclear parameters differently. This indicates that potential HS
EoSs could impact nuclear bounds significantly.

analysis of hybrid star EoSs in conjunction with GW170817.



Appendix D

Original versus restricted sets of
EoS

In this appendix, we show how the restriction of EoSs described in Sec. 5.2.1 used

in Chapter 4 impacts our observations, as compared to the original, unrestricted set

of EoSs1. Figure D.1 shows a comparison between the two-dimensional probability

distributions P (Ksym,0, Λ̃) resulting from each set of EoSs. We see that while the

restriction to EoSs does indeed shrink the 90% confidence intervals in the direction

of correlation, the widths are approximately equal at the fiducial value of Λ̃ (where

the systematic errors are analyzed). This shows that while using a subset of EoSs

may reduce the overall error2, the level of systematic errors will remain mostly fixed.

Our result is consistent, for example, with Ref. [286], which found that the correla-

tion between L0 and the radius of a 1.4 M� neutron star was weak because of the

contribution of the high-density component of the EoS.

1This appendix provides supplementary material for Chapter 4.
2We indeed observed large reductions in the overall errors found in Fig. 1.10 when using the

restricted EoSs rather than the original ones, while the level of systematics stayed constant at ∼ 104
MeV.
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Figure D.1: Comparison of the two-dimensional Ksym,0 − Λ̃ correlations when using
(i) the reduced set of EoSs taking into account the nuclear parameter correlations
found in Ref. [254] (filled circle) and (ii) the original set of EoSs used in Ref. [186]
(open diamond). Depicted by their respective 90% confidence ellipses, we observe
that the reduced set of EoSs shrinks the probability distribution in the direction of
correlation, though such a set does not appreciably change the width. The
systematic errors, computed to be the 90% width of the Ksym,0 probability
distribution evaluated at the fiducial value of Λ̃ (depicted by the vertical dashed
line), are seen to be both ∼ 104 MeV, independent of which set of EoSs are used.
However, the overall errors are observed to be reduced for the reduced set.



Appendix E

Multiplicative combinations of
nuclear parameters

In this appendix, we discuss the feasibility of using multiplicative combinations of

nuclear parameters, such as K0L
η
0, rather than the linear combinations such as K0 +

αL0 considered in Refs. [91, 249] and the main analysis of Chapter 41. Here we

consider the following multiplicative combinations for comparison purposes: K0L
η
0,

M0L
µ
0 , and Ksym,0L

ν
0, where coefficients η, µ, and ν are similarly chosen to achieve

maximal correlation. Such multiplicative combinations are similar to those considered

in [250,251].

Figure E.1 presents the correlations between Λ̃ and all 6 multiplicative and linear

combinations of nuclear parameters considered in this analysis. While the two classes

of nuclear parameter combinations produce very similar correlations with Λ̃, we ob-

serve that the linear cases slightly outperform the multiplicative cases for nearly all

values of chirp mass. Similarly, repeating the analysis2 found in Sec. 4.4.2 returns

1This appendix provides supplementary material for Chapter 4.
2Because the two-dimensional probability distribution is now between Λ̃ and Ksym,0L

ν
0 , an ad-

ditional marginalization over L0:
∫∞
−∞ P (Ksym,0L

ν
0)P (L0)dL0 must be performed (P (L0) is an ad-
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Figure E.1: Similar to Fig. E.1, but for the comparison between multiplicative and
linear combinations of nuclear parameters: K0L

η
0, M0L

µ
0 , Ksym,0L

ν
0, K0 + αL0,

M0 + βL0, and Ksym,0 + γL0. Here, parameters η, µ, ν, α, β, and γ are chosen such
that the correlations with Λ̃ are maximal at each value of chirp mass. Observe how
both the linear and multiplicative combinations of nuclear parameters produce
similar correlations with Λ̃, though the former outperforms the latter marginally for
nearly all values of chirp mass.

constraints on Ksym,0 to be slightly worse than that considered in the the main anal-

ysis, due to the additional inclusion of uncertainties from nuclear parameter L0. One

arrives at a similar conclusion if one uses a linear combination with γ 6= 0 [186].

From this evidence, we conclude with the remarks that the multiplicative combi-

nations of nuclear parameters offer nothing new in terms of enhanced constraints on

nuclear parameters. The multiplicative combinations of nuclear parameters slightly

under-perform their linear combination counterparts in terms of correlations with Λ̃.

ditional prior distribution on L0 given by Refs. [46, 253, 254, 267]) in order to extract the posterior
distribution on Ksym,0.



Appendix F

Example computation of the
Ksym,0 posterior distribution

In this appendix, we demonstrate the process of computing the posterior distribution

on Ksym,0 (used in Sec. 4.4.2) for one value of chirp mass,M = 1.188 M�, correspond-

ing to GW170817 on detector O21. This case corresponds to the large dot in Fig. 1.10.

Referring to Figs. 4.10 and 4.11, we observe that the mean and root-mean-square Λ̃

values for O2 detector sensitivity at M = 1.188 M� are given by µΛ̃ = 430.8 and

σO2 = 172.5, respectively. This results in a prior distribution on Λ̃ shown in Fig. F.1,

given by

PO2(Λ̃) =
1√

2π(172.5)2
e−(Λ̃−430.8)2/2(172.5)2

. (F.1)

We additionally show the true posterior distribution on Λ̃ derived in Ref. [39], which

was used as a prior in our original analysis found in Ref. [186] for comparison purposes.

Following along with Sec. 4.4.2.1, we generate the two-dimensional probability

distribution between Ksym,0 and Λ̃, given by Eq. (4.23). We find the covariance

1This appendix provides supplementary material for Chapter 4.
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Figure F.1: Prior distribution (solid green) on Λ̃ for O2 detector sensitivity with a
chirp mass of M = 1.188 M�. This distribution, used to compute posteriors on
Ksym,0, is generated by assuming Λ̃ follows a Gaussian distribution in Eq. (F.1) with
mean µΛ̃ = 430.8 (dashed vertical line), and root-mean-square σO2 = 172.5 (cyan
shaded region). These are computed from the GW170817-constrained EoSs from
Ref. [186], and from a simple Fisher analysis respectively. Additionally shown in the
figure is the posterior distribution on Λ̃ derived by the LIGO and Virgo
Collaborations in Ref. [39] (dashed blue).
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matrix and the mean vector to be

Σ =

45610 10410

10410 6418

 , µ =

 606.7

−71.16

 , (F.2)

for x = (Λ̃, Ksym,0) This results in the two-dimensional probability distribution be-

tween Ksym,0 and Λ̃ shown in Fig. F.2. The systematic error on Ksym,0 is then com-

puted by evaluating the 90% confidence interval width of the distribution in the

Ksym,0-dimension at µΛ̃ = 430.8, corresponding to the mean of the prior distribution

in Λ̃. The resulting (one-sided 90% confidence level) systematic errors for this case

are found to be σsys = 104.6 MeV.

Next, we obtain the one-dimensional conditional probability distributions onKsym,0

given tidal deformability observations of Λ̃obs. By following Eq. (4.25), this is simply

given by

P (Ksym,0|Λ̃obs) =

Exp

[
−(Ksym,0−(0.228(Λ̃obs−606.7)−71.16))

2

2(63.59)2

]
√

2π(63.59)2
. (F.3)

Finally, the posterior distribution on Ksym,0 can be computed by combining the one-

dimensional conditional probability distributions with the prior distribution on Λ̃,

and then integrating over all observations of Λ̃:

P (Ksym,0) =

∞∫
−∞

P (Ksym,0|Λ̃)PO2(Λ̃)dΛ̃. (F.4)

Figure F.3 finally displays the resulting posterior distribution on Ksym,0, with a mean

value of −115+75
−73 MeV, giving a 90% confidence interval of −227 MeV ≤ Ksym,0 ≤
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68%

90%

Figure F.2: Two-dimensional normalized probability distribution between Ksym,0

and Λ̃ as given by Eq. (4.23), with the 68% and 90% confidence regions highlighted
in black. Overlaid on the distribution is the set of 58 data points corresponding to
the various EoS models used in the analysis. The vertical dashed line represents the
mean of the prior Λ̃ distribution, at which the (one-side 90% confidence interval)
systematic error in Ksym,0 is computed to be σsys = 104.6 MeV.
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Figure F.3: Resulting posterior distribution on Ksym,0 (solid green), displaying a
mean of −97.63 MeV (dashed magenta) and a one-sided 90% confidence interval of
116.0 MeV (shaded magenta). Additionally shown (dashed blue) are the results
found when using the full set of 121 EoSs and the full prior distribution in Λ̃, rather
than the Gaussian estimation and restricted set of EoSs used here. Observe that the
approximation of Gaussian Λ̃ prior distributions slightly underestimates the
uncertainties in Ksym,0.

7 MeV (or a one-sided 90% confidence interval of 117 MeV corresponding to the

maroon dot in Fig. 1.10). Comparing this to the resulting posterior distribution (also

shown in Fig. F.3) using the LVC priors on Λ̃ giving a 90% confidence interval of

−285 MeV ≤ Ksym,0 ≤ 7 MeV, we find that this approximation of Λ̃ priors slightly

underestimates the errors in Ksym,0, but otherwise works quite well. We also see that

this approximation of Λ̃ priors skews the distribution less so than the LVC posterior,

making it more normally distributed. We also note that here, we utilize a restricted

set of EoSs, resulting in a slightly more accurate posterior distribution on Ksym,0.



Appendix G

DEF and MO theory comparison

In this appendix, we compare results between the DEF [554, 555] and MO [387]

quasi-Brans-Dicke theories of gravity1. The latter theory is defined by the coupling

α(ϕ) = tanh(
√

3β0ϕ)/
√

3, while the former relies upon only the first term in the

above expansion about ϕ0, namely α(ϕ) = β0ϕ. Figure G.1 compares the results

for the PSR J0337 [369,445] system from the SEP-violation test, assuming an APR4

EoS2. Observe how the “horn” structure3 is more pronounced in MO theory, and

the drop-off in the lower left region is shifted. Otherwise, the two theories predict

nearly-identical values. This finding is consistent with that in [386] for the orbital

decay rate measurement of pulsar-WD binaries.

1This appendix provides supplementary material for Chapter 6.
2The BH-NS system constraints were found to be indistinguishable between theories, due to their

lack of the horn structure present only in pulsar-WD binaries.
3The horns arise in pulsar-WD systems because certain values of α0 and β0 suppresses the dipole

term and deteriorating the constraints [365].
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Figure G.1: Comparison between the PSR J0337 [369,445] constraints formed in the
α0 − β0 plane for the two quasi-Brans-Dicke theories: DEF and MO. Bounds formed
from GW constraints of BH-NS binaries were found to be indistinguishable from one
another in each theory, and have been excluded from this figure. Observe how for a
majority of the contours each theory predicts identical constraints. The two obvious
exceptions being the tilt of the horn, and the drop-off at the lower-left region of the
parameter space.



Appendix H

Equation of state comparison and
the effects of spin in the waveform

In this appendix, we present a comparison between the assumption of different NS

EoSs, as well as an investigation into spin effects in the gravitational waveform1.

Figure H.1 compares bounds in the α0−β0 plane for 10 M�− 1.4 M� BH-NS system

detected by ET, assuming three different EoSs: WFF1 [241, 556, 557], APR4 [241,

558], and MPA1 [241, 559]. Such EoSs were chosen to be consistent with the GW

observation of binary NSs, GW170817 [30, 39, 560], and with increasing degrees of

stiffness. We observe that, while the constraints do not differ much, the softer EoSs

produce stronger bounds for small values of β0 / −3, while the stiffer EoSs give

stronger results for large values of β0 ' −3. Thus, for consistency, we present results

in the main text for the APR4 EoS.

We now consider the advisement of including spin effects in the gravitational

waveform when computing constraints on quasi-Brans-Dicke theories. Such bounds

were computed for binary NS systems found in Ref. [367] with a waveform template

1This appendix provides supplementary material for Chapter 6.
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Figure H.1: Comparison between quasi-Brans-Dicke constraints formed in the
α0 − β0 plane assuming WFF1, APR4, and MPA1 NS EoSs, all compatible with the
observation of GW170817 [39]. These constraints were computed assuming a
10 M� − 1.4 M� BH-NS system at 1 Gpc detected by ET. We observe that softer
EoSs give stronger bounds for smaller values of β0 / −3, while stiffer EoSs give
stronger constraints for larger values of β0 ' −3.



Appendix H. EoS comparison and spin effects 377

-5 -4 -3 -2 -1 0 1 2 3 4 5
β

0

-5

-4

-3

-2

lo
g

1
0
α

0

No spin effects

Spin effects

Figure H.2: Comparison between the quasi-Brans-Dicke constraints formed in the
α0 − β0 plane with and without including spin effects in the PhenomD gravitational
waveform. The latter, which produces much stronger constraints, can be seen here
to under-estimate ∆α by a factor of ∼ 2. The constraints displayed here were
computed assuming a 10 M� − 1.4 M� BH-NS system at 1 Gpc detected by ET.

not including any spin effects. In our analysis, we utilize the PhenomD [89, 90]

gravitational waveform which does indeed include spin effects. Figure H.2 compares

the constraints formed from the ET observation of a 10 M�−1.4 M� BH-NS system,

both with and without spin effects included in the PhenomD waveform. We see that

the latter under-estimates bounds on ∆α by a factor of 2, indicating the necessity to

include spin effects in the waveform. These discrepancies arise from the correlations

between spin, and the other parameters in the waveform, in particular the non-GR

parameter, which ultimately increases the uncertainties in parameter estimation.



Appendix I

Arbitrary remnant BH mass and
spin corrections

In this appendix, we display the lengthy corrections to the remnant BH mass and spin

given in an arbitrary spacetime metric gX
αβ = gK

αβ + ζhX
αβ for general deviation param-

eter ζ and perturbation metric hX
αβ. The perturbation metric is further expanded up

to quadratic order in BH spin as hX
αβ = hαβ,0 + hαβ,1χf + hαβ,2χ

2
f . In the following

expressions, all of the metric components are to be evaluated at r = 6M .

δMX

f =
µ

23328M2

[
2χK

f

(
62208

√
3M4h′′tt,0 + 15552

√
3M3h′tt,0 − 23328

√
2M3h′tt,1

+10368
√

2M3h′′tφ,0 + 432
√

3M2htt,0 − 3888
√

2M2htt,1 − 2376
√

2M2h′tφ,0 − 2592
√

3M2h′tφ,1

+288
√
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2Mhtφ,0 + 216
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√
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√
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+55
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3hφφ,0 + 36
√
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)
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(
χK

f

)2
(
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√
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+124416
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Appendix J

The effects of lower-order
parameters in the metric

In this appendix we investigate the effects of lower-order parameters on the direct

observables in the new spacetime: the Keplerian and epicyclic frequencies, and the

photon rings1. Such lower-order parameters were originally assumed to be vanishing

by Johannsen in Ref. [173] due to strong constraints on the ppN parameters [531].

However, such constraints were obtained via observations of the local, weak-field solar

system and may not hold true in the strong-gravity regimes present near BHs, where

the spacetime is not guaranteed to even be similar to that surrounding a star. Thus,

in this appendix we revive these neglected parameters:

• the first order parameter ε1 from the function f(r)2;

• the lowest-order parameter α12 from the A1(r) function;

• the lowest-order parameter α51 from the function A5(r);

1This appendix provides supplementary material for Chapter 8.
2We note that to avoid a rescaling of the observable BH mass M , when ε1 6= 0, we must set

α11 = ε1/2.
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• the first- and second-order parameters γ1 and γ2 from the function g(θ)3.

We begin our investigation on the Keplerian and epicyclic frequencies’ dependence

on such lower-order parameters. In the case of the former, we note that of the

parameters we focus on in this appendix, only ε1 and α12 enter the expression (which

is dependent on gtt, gφφ, and gtφ) for equatorial orbits (where γ1P1(cos θ) vanishes

entirely). Similarly, the radial epicyclic frequencies depend only on ε1, α12, and now

α51, due to the grr dependence. Finally, the vertical epicyclic frequencies depend on

ε1, α12, and now γ1 and γ2, as a result of the ∂θ derivatives. In Fig. J.1, we compare

each of these orbital frequencies for two different cases: (i) only including the lower

order parameters (ε1, α12, α51, γ1 and γ2) that were assumed to vanish in the ppN

framework, and (ii) only including the next-higher-order parameters already used in

the main analysis (ε3, α13, α52). We observe that for every case the inclusion of the

neglected lower-order parameters makes quite a large difference on the observables νφ,

νr, and νθ as compared to the higher-order ones. In particular, the radial epicyclic

frequencies are significantly impacted upon the inclusion of ε1, α12, and α51. This

indicates that, if the parameters ε1, α12, α51, γ1 and γ2 are indeed non-vanishing and

the ppN constraints applied to BHs are invalid, such lower-order parameters must be

included for accuracy.

Next we discuss another observable – the BH photon orbits. We find that, of the

lower-order parameters considered here, such expressions only depend on α12. This

3We additionally consider the second-order parameter γ2 corresponding to terms of cos2 θ. This
is because in all example metrics considered, typically cos2 θ enters at first order in g(θ), as is the
case of the Kerr-Sen metric.
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is a result of g(θ) not entering the separated radial equations, A5(r) canceling out on

each side of R(r) = d
dr
R(r) = 0, and a vanishing µf(r) for photon orbits with µ = 0.

In Fig. J.2 we plot the ensuing photon rings with (i) only α12 included, and (ii) only

α13 included. We observe that, if such lower-order parameters were non-vanishing in

the ppN framework, their inclusion would make a sizable impact on the size (but not

the shape) of the photon rings.

Finally we provide a brief analysis on the validy of including leading-order param-

eters in the computation of photon rings for the example of EdGB gravity. To do this,

we begin by computing the photon ring solutions in the EdGB theory of gravity, to

first order in spin as described in Ref. [159] (exact in the 1
r

expansion). Next we take

the new metric and map to the EdGB theory of gravity as described in Tab. 8.2 using

only the leading-order parameters (to leading order in the 1
r

expansion). Figure J.3

compares the photon orbit paths for these two cases for a EdGB BH with coupling

parameter ζ = 0.5, spin χ = 0.1, and observer inclination i = 90◦4. We observe that

the two photon orbit solutions agree quite well, giving some indication to the validity

of using only the leading-order terms in the 1
r

expansion.

4We note that, due to the small-coupling and slow-rotation approximations used in the EdGB
metric, neither ζ nor χ can be too large, else the approximations break down and the photon ring
results become unreliable.



Appendix J. The effects of lower-order parameters in the metric 384

2 3 4 5 6 7 8 9 10
r (M)

200

400

600

ν
φ
 [

H
z
]

GR
ε

1
 = - 2

ε
1
 = 2

ε
3
 = -2

ε
3
 = 2

2 3 4 5 6 7 8 9 10
r (M)

200

400

600

ν
φ
 [

H
z
]

GR
α

12
 = - 2

α
12

 = 2

α
13

 = -2

α
13

 = 2

3 4 5 6 7 8 9 10
r (M)

100

200

300

ν
r [

H
z
]

GR
ε

1
 = - 2

ε
1
 = 2

ε
3
 = -2

ε
3
 = 2

2 3 4 5 6 7 8 9 10
r (M)

100

200

300

400

ν
r [

H
z
]

GR
α

12
 = - 2

α
12

 = 2

α
13

 = -2

α
13

 = 2

2 3 4 5 6 7 8 9 10
r (M)

50

100

150

200

ν
r [

H
z
]

GR
α

51
 = - 2

α
51

 = 2

α
52

 = -2

α
52

 = 2

3 4 5 6 7 8 9 10
r (M)

200

400

600

ν
θ
 [

H
z
]

GR
ε

1
 = - 2

ε
1
 = 2

ε
3
 = -2

ε
3
 = 2

2 3 4 5 6 7 8 9 10
r (M)

100

200

300

400

500

ν
θ
 [

H
z
]

GR
α

12
 = - 2

α
12

 = 2

α
13

 = - 2

α
13

 = 2

2 3 4 5 6 7 8 9 10
r (M)

100

200

300

400

500

ν
θ
 [

H
z]

GR
|γ

1
| = 2

γ
2
 = - 2

γ
2
 = 2

Figure J.1: Keplerian (top row), radial epicyclic (middle row), and vertical epicyclic
frequencies about a BH with the lower order parameters ε1, α12, α51, γ1, and γ2 that
were presumed to vanish in Ref. [173] due to strong constraints on the ppN
parameters [531]. Also shown for comparison in each case are the high-order
parameters ε3, α13, and α52 that were used in the main analysis and [173]. We note
that when ε1 6= 0, we have set α11 = ε/2 to prevent a rescaling of the BH mass.
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Figure J.2: Comparison between the image of the photon rings about a BH when
including lower order parameter α12 (presumed to vanish in Ref. [173] due to strong
constraints on the ppN parameters [531]) and when instead including the next-order
parameter α13. Observe the difference made in the observable photon orbit when
including the lower-order parameter that may be non-vanishing if the solar-system
ppN constraints are invalid.
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in Tab. 8.2 and (ii) using the full EdGB metric to first order in spin. Here, the BH
spin or EdGB coupling parameter ζ can not be too large or else the small-coupling
approximation or small-spin approximations begin to break down and the photon
orbits become nonsensical. Obsesrve how the two photon orbits agree quite well,
indicating the validity of the leading-order expansion in 1

r
.



Appendix K

Naked singularities in the new
spacetime

In this appendix we briefly discuss the emergent naked singularities for certain sections

of the new metric’s parameter space1. As also shown in e.g. Refs. [543, 544], when a

naked singularity is present outside of the BH event horizon rEH, closed photon orbits

no longer exist and the photons escape to radial infinity. Fig. K.1 demonstrates this

phenomena for several cases of BHs with naked singularities, such as α13 = 2, α22 = 2,

α02 = 2, α13 = −α02 = 2, or α22 = −α02 = 2, with all other deviation parameters

vanishing in each case. Observe how for each case, a photon “arc” appears, and the

orbit is not closed. We similarly find in each such scenario that the other spacetime

properties such as the orbital energy and angular momentum become discontinuous,

negative, and complex. We find that these naked singularities appear when any of

α13, α22, or α02 appear as the sole non-vanishing parameter of the three, while the

former two must appear alongside α02 to avoid such singularities. We also find that

when non-vanishing, the parameters (α13, α02) or (α22, α02) must share the same sign,

1This appendix provides supplementary material for Chapter 8.
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else naked singularities appear.
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Figure K.1: Open photon orbits (“arcs”) about a BH with photons escaping to
radial infinity. Such orbits appear for certain parameterizations of the new metric
similar to the ones presented here: α13 = 2, α22 = 2, α02 = 2, α13 = −α02 = 2, and
α22 = −α02 = 2, with all other deviation parameters set to 0.

Next we demonstrate that such open photon orbits are indeed indicative of emer-

gent naked singularities in the new spacetime. This is done by examining the nature

of the Kretschmann invariant K in both of the spacetimes that do and do not exhibit

naked-singularity symptoms. The Kretschmann invariant is given by

K = RαβγδR
αβγδ (K.1)
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for Riemann curvature tensor given by

Rα
βγδ = Γαβδ,γ − Γαβγ,δ + ΓµβδΓ

αµγ + ΓµβγΓ
αµδ (K.2)

with Christoffel symbols given by

Γαβγ =
1

2
(gαβ,γ + gαγ,β − gβγ,α). (K.3)

The scalar quantity K is gauge invariant, and thus a divergence of K is a sign for the

presence of a true singularity. For demonstration purposes, we pick a highly-rotating

BH with χ = 0.998, for the two cases of α13 = 2, and α13 = α02 = 2, where the former

exhibits naked singularity behaviors, and the latter does not. The event horizon for

the latter case is located at rEH = m +
√
m2 − a2, which reduces to 1.06m for our

given BH rotation.

Finally, we compute the Kretschmann invariant along the equatorial plane. The

results are shown in Fig. K.2 for both cases. We observe that for the closed-photon

orbit case of α13 = α02 = 2, there exists a singularity at r = a = 0.998m as usual, well

behind the event horizon of rEH = 1.07m. Alternatively, for the open-orbit case of

sole-non-vanishing parameter α13 = 2, we observe several interesting features. First,

we see a singularity behind the “would-be” event horizon at r = 0.93m as one would

expect. Next, there exists a singularity directly on the “would-be” event horizon at

r = 1.07m, and finally we see a singularity well beyond the “would-be” event horizon

at r = 1.77m. This confirms our suspicion of the existence of naked singularities,

thus for the remainder of this analysis we avoid parameterizations that create such



Appendix K. Naked singularities in the new spacetime 390

0 0.5 1 1.5 2 2.5 3
r (M)

10
0

10
6

10
12

10
18

10
24

10
30

K
θ

 =
 π

/2
  
[a

rb
. 
u
n
it

s]

Event Horizon
α

13
 = 2

α
13

 = α
02

 = 2

χ = 0.998

Figure K.2: Scalar Kretschmann invariant K on the equatorial plane plotted in
arbitrary units as a function of radius from the central BH described by the new
metric. This is plotted for two cases: (i) BH with non-vanishing parameter α13 = 2,
and a (ii) BH with non-vanishing parameters α13 = α02 = 2. Also shown by the
dashed vertical line is the event horizon of rEH = m+

√
m2 − a2 = 1.07m for case

(ii). In case (i) we see, as predicted, that there exists a naked singularity at
r = 1.77m, well outside of the “would-be” event horizon. Additionally, in this case
there also exists a singularity at r = 0.93m, and interestingly, on the “would-be”
event horizon at r = 1.07m. In case (ii), we observe a singularity at r = a = 0.998m,
behind the event horizon as usual, confirming our predictions.

anomalies.
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