
Human Trust and Computer Vision in Autonomous Driving

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Zi Zeng

Spring, 2020.

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Lu Feng, Department of Computer Science & Engineering Systems and Environment

 1

Abstract—To investigate the current state of autonomous

system development and to gain a better understanding of the
field, this report on autonomous driving systems is divided into
three main parts, each of which focuses on a different aspect of
these systems. The II part outlines a human trust study related to
an autonomous system that aims to reveal the real meaning and
significance of human trust in autonomous driving. The III and IV
parts, lane and object detection, focus on the use of computer
vision technologies in autonomous driving by exploring existing
projects and testing hands-on implementations using images and
locally recorded videos. By exploring these different approaches,
it is possible to provide a deeper and more comprehensive
understanding of current research in autonomous driving systems.

I. INTRODUCTION
utonomous driving appears to be the future of
transportation, and countless research studies and industry

projects have been conducted in this field in the hope of
delivering safer and more reliable transportation to the public
in the near future. For example, all major car manufacturers
plan to deliver self-driving cars commercially by 2025 [1]. The
commercialization of autonomous cars will provide multiple
benefits to consumers. In 2014, Americans were caught in
traffic for approximately 6.9 billion hours; with autonomous
cars, drivers will have more free time because they don’t have
to drive [2]. Additionally, the economic benefits should not be
neglected. According to a NHTSA study, vehicle-related
accidents were responsible for $871 billion in economic losses
[3]. The use of autonomous vehicles will help resolve this
problem, provided the autonomous systems function correctly.
Moreover, more than 57 million people in the United States
have a disability, and autonomous cars will provide these
people with convenient transportation. One study reported that
autonomous driving has the potential to create two million job
opportunities because people with disabilities will be able to get
to their workplaces more easily [4].

Despite all of these benefits, the concept of autonomous
driving is still not widely accepted by the public. Studies have
shown that people generally have the impression that
autonomous cars are not reliable, and this presents a significant
challenge for autonomous car designers and manufacturers [5].
Therefore, it is extremely important to increase human trust in
autonomous cars. However, it is impossible to achieve that goal
without improving the algorithms used in these cars in areas
such as route selection and object detection algorithm, which

involve the fields of machine learning and computer vision. For
example, neural networks, supervised learning, and
reinforcement learning are already contributing to the
development of more advanced autonomous vehicle control
systems [6].

II. HUMAN TRUST EXPERIMENT WITH A DRIVING SIMULATOR
This section documents part of a human trust study in

relation to the autonomous car system as conducted by our
research group. Driving scenarios were created using the
PreScan software and human subjects were recruited to engage
with the simulated scenarios in a driving simulator. The change
of human trust level in Likert scale and the subjects’ other
responses during the experiment were recorded for future
analysis [7]. Trust level have been used to evaluate human trust
in autonomous systems. For example, in a study on trust, the
researchers recorded and analyzed the participants’ trust level
prior to and after driving in manual and autonomous mode,
respectively [8].

To understand the importance of trust in autonomous driving
better, the definition of human trust in relation to the
autonomous driving system needs to be clarified. Researchers
do not all define human trust in the autonomous system in the
same way, and so, to avoid ambiguity, our research group
defined trust as participants delegating their responsibility when
driving to the autonomous system, as this expresses their
willingness to accept the risks and uncertainties of autonomous
driving activities [7].

All driving scenarios used in the experiment were created on
a driving simulation platform called PreScan and then run on a
driving simulator. Researchers can do a number of things with
PreScan: for example, they can choose the level of automation
that best fits their research goals, they can add multiple cameras
and various sensors to be included in the automation, and they
can place different obstacles on the routes. PreScan also has the
capability to execute the pre-designed scenarios using its GUI-
based preprocessor [9]. With its powerful functionality,
PreScan is widely used in both industry and academic research
for the design and study of autonomous driving. Researchers
can test their driving scenarios within a virtual system, and they
can measure the efficiency of their driving algorithms, such as
an intersection collision avoidance algorithm, with ease [10].
The driving simulator used in this study has three screens, a
steering wheel, and throttle and brake pedals. Participants use
these as they would in a real vehicle. In addition, the steering

Human Trust and Computer Vision in
Autonomous Driving

Zi Zeng

A

 2

wheel has two buttons that allow participants to indicate their
increased, or decreased, level of trust in the system while it is
operating. Pressing both buttons simultaneously will switch
them between autonomous and manual driving modes. Data on
trust level change and mode switching will be recorded
throughout the experiment [7]. Depending on the experimental
goals and setups, a simpler desktop kit, such as the Logitech
Racing Wheel with pedals, may also be used.

During the experiment, each participant was required to
drive in three scenarios, all of which required them to travel
from one point to another along routes that were pre-planned by
the autonomous system. These PreScan scenarios were
developed by Ph.D. students in the group, and each scenario
included different types of incident, with the order of the
incidents varying. One scenario included four incidents that
followed in the order: pedestrian, empty incident, obstacle,
truck. A second scenario had four incidents in the order: truck,
empty incident, obstacle, pedestrian. The third scenario
presented its four incidents in the order: pedestrian, truck,
pedestrian, obstacle. A baseline trial was provided which acted
as training so the participants could familiarize themselves with
the driving simulator before the actual experiment. Each trial
started in the autonomous mode setting, and all the incidents,
except the empty ones, were designed to be detectable by
sensors attached to the autonomous system. Drivers were given
two options when they heard an alarm from the autonomous
system indicating that the sensor had detected an incident a
certain distance in front of them. The distance was pre-
determined when the scenarios were first designed in PreScan,
and it allowed a period of time for the driver to react to the
situation. If they did not trust the autonomous system’s ability
to avoid the incident, they were free to change from
autonomous mode to manual mode and therefore to take control
of the steering, brake, and throttle. Alternatively, they could
choose not to switch modes and to allow the autonomous
system to handle the incident [7].

Throughout the experiment, the drivers adjusted their level
of trust in the autonomous system by pressing the buttons on
the simulator’s steering wheel. After each trial, the participants
were asked to fill out a survey, which asked questions such as
their satisfaction rate with the performance of the autonomous
system and their reasons for taking over from the autonomous
system when faced with an incident [7]. The autonomous
system relies on various forms of advanced sensors and built in
algorithms to adjust its control of throttle, brake, and steering
and also to choose routes for the driver. The participants’
responses and the recorded data will provide answers to
research questions such as how autonomous system designers
can help new autonomous drivers to gain more trust in the
system. One potential solution is to implement algorithms that
choose better routes at the beginning of the autonomous
experience to allow drivers to build a foundation of trust. A
definition of "better" in this context could refer to roads that
were straighter and had a lesser chance of encountering
incidents.

This initial part of the research report focuses on the details
involved in assisting simulation experiments to study trust and

safety in autonomous driving. In addition, the group designed
another driving trial using PreScan. This trial involved
combinations of a series of driving scenarios and was intended
for use by members of the group for collecting and analyzing
data such as the time taken for a driver to switch from
autonomous driving mode to manual mode when encountering
an incident. The scenarios for this trial included incidents such
as barrels, falling trees, and trucks in the road. However, unlike
the human trust experiment mentioned previously, a second
autonomous car was added, which maintained the same speed
as that operated by the participant and travelled in front at a
predetermined distance. This was done to avoid the drivers
becoming aware of the incidents ahead of the alarm going off.
MATLAB was used to record additional outputs such as lane
types and distances between the autonomous cars. The lanes
were provided through four output ports that allowed further
calculations to determine whether the driver had driven off the
road.

III. LANE DETECTION FOR THE AUTONOMOUS CAR
One of the greatest challenges for autonomous system

designers is to ensure that autonomous vehicles do not drive out
of their lanes. As one can imagine, autonomous car users will
have high expectations that the vehicle will be able to identify
lanes. An autonomous system therefore requires a lane
detection algorithm that is able to recognize solid or broken
lines and different colors, mostly white and yellow. The
algorithm also needs to perform this task quickly and efficiently
because lane detection is needed in real-time.

In computer vision, Canny Edge Detection and Hough
Transformation are often used to detect lines. To examine the
use of these algorithms for lane detection in real time, an
autonomous vehicle project from Udacity, and coded by Galen
Ballew, was studied [11, 12]. This project constructed a simple
lane detection system using OpenCV and was written in Python
using Jupyter notebook. OpenCV is a computer vision library
for image processing that is often used for real-time computer
vision tasks. Jupyter notebook allows developers to visualize
their computing results on the same page as their codes. To test
this project, the input video needed to be broken down into a
sequence of frames. Each frame of a video is in fact an image
in RGB format, which is so named for the three color channels,
red, green and blue. The first step was to covert each frame to a
grayscale image that had only one channel. This type of color
space transformation is often seen in computer vision and is
accomplished by using the functions provided in the OpenCV
library. To describe it simply, each index in the greyscale
channel is the average of three indices at the same location in
the RGB image. Sometimes, the color information from the
three channels has little impact on the final results, so the
greyscale images are used to save computing time as they
require only one third of the time that RGB images take [13].
This offers a great advantage in real time processing. As
mentioned previously, lanes are often demarcated in white or
yellow, and it is therefore essential that the algorithm can
differentiate between these two colors and the other colors.
Fortunately, each color has its own pixel range, which can be

 3

used to identify it. To prepare for this, the greyscale images
must first be converted into images in the HSV color model.
Unlike the RGB color model, HSV contains hue, saturation, and
value information, which make it far easier to describe a color
within a range [14]. Before the Canny Edge Detection is
introduced, Gaussian blur needs to be applied to the images. As
its name suggests, Gaussian blur involves blurring an image,
resulting in a modified image with reduced noise and detail
[15]. Image noise normally refers to brightness and color
information that does not belong to the subject being filmed but
rather results from random electronic input [16]. Image noise
can affect the results of edge detection greatly, so it is very
important to remove it before processing [17]. After the
Gaussian blur, the Canny Edge Detection algorithm can be
applied to the image. Canny Edge Detection computes both the
gradient and direction of the edges identified in the image, and
it also combines edges that are very close to each other into a
single edge by using non-maximum suppression [18]. Just as it
is important to differentiate white and yellow from the other
colors, it is also necessary to differentiate between the region in
front of the car and the other areas in the image. This region is
called the area of interest. This is done by defining a polygon
shape within the image [11, 12]. Hough Line Transform is then
applied to the line drawing codes to determine whether the
detected edges are, in fact, lines. After the lanes have been
detected and drawn into the image, the modified images, or
frames, can be combined to form a new video which has the
same content as the original but now has the lanes in front of
the car highlighted in real-time. For demonstration purposes,
three images processed by the algorithm described are
presented in Figure 1, 2 and 3.

As with the other methods, this lane detection method is not
perfect. For example, the region of interest is fixed, which
means that it does not perform well in situations where the
vehicle is turning. Researchers have been working on
developing better methods for lane detection. Some people have
taken advantages of feature detection by using ROI selection
methods, which increase lane detection accuracy [19], while
others have found a way of converting the images from a front
view to a top view to get more precise lines [20]. Some
advanced lane detection algorithms take camera calibration,
curvature of lanes, and vehicle position all into account [21].

Fig. 1. Lane Detection Result 1 [22]

Fig. 2: Lane Detection Result 2 [23]

Fig. 3. Lane Detection Result 3 [24]

IV. OBJECT DETECTION THROUGH STATIC IMAGE AND VIDEO
As with lane detection, object detection is a very important

aspect of an autonomous system. To make a safe lane switch,
an autonomous car needs to have the ability to detect vehicles
nearby and also the speed of those vehicles. The car also needs
to understand its environment well before it can make its
operating decisions. For example, it needs to identify traffic
lights and road signs.

 In this section of the report, both static and real-time object
detection methods are explored. Road objects such as vehicles
and traffic lights are some of the most important objects to
detect in autonomous driving. However, it is also important to
detect other kinds of objects while driving, in complex driving
circumstances in particular, such as driving in urban
environments. Therefore, computer vision methods that focus
on generalized object detection were selected for investigation
first, and detection method for a specific object was presented
next.

For object detection in static images, the approach used is to
fine-tune and retrain a pre-trained ResNet, using the COCO-
dataset. COCO is a large-scale object detection dataset that
contains 80 object categories. In this dataset, some categories
are relevant to autonomous driving, such as traffic lights,
trucks, buses, motorcycles, bicycles, cars, and persons [25]. The
COCO dataset has 330K images, and training the ResNet with
all these images would take a long time on a personal laptop.
Therefore, to increase the training speed and reduce network
overheads, only 20,000 images were used for the training and
1,000 images for the validation. Those 20,000 training images
and 1,000 validation images were randomly selected from the
COCO dataset. Image transformations were done using the

 4

Torchivision package, which contains a number of dataset and
transformation operations that are constantly used in computer
vision [26]. All the images were resized to 256 x 256 then
cropped and centered. Image normalization was applied to
make the computation more efficient. To train and validate a
neural network, it is essential to have a dataset, which is a group
of labeled images. As mentioned previously, Torchvision
contains a list of datasets that include two types of COCO
dataset: Captions and Detection [26]. In the approach taken, it
was necessary to map each image to an eighty-dimensional
vector. Each entry in the vector represented one object type.
Value 1 indicated that the object-type was present, and 0 that it
was not. The Torchvision COCO Detection dataset was
modified for this purpose. Two datasets were created, one for
training and the other for validation. To batch and iterate the
datasets, two data loaders were created using a batch size of
128. A batch size of 128 means that the datasets are divided into
groups where each group contains 128 images. After pre-
processing the data, the next step was to build the model. Again,
taking advantage of the Torchvision package, a pre-trained
model named ResNet-50 was loaded. ResNet is a convolutional
neural network that performs deep residual learning for image
recognition [27]. To retrain this model on a new small set of
data without having to do everything from scratch or worry
about the negative effect of overfitting, the loaded ResNet
model was finetuned by replacing the last layer with a new
linear classification. The weights of the network were also
modified using the SGD training. The object classifier was
defined as the modified ResNet, the loss function was defined
as a combination of the Sigmoid layer and the Binary Cross
Entropy loss [28]. The network was then trained ten times and
validated each time it was trained. Each training iteration
processes all the data in a batch at a time. The model weights
were updated throughout the training and validating process.
The final training accuracy of the network was 82.9%, and the
validation accuracy was 83.41%. Figure 4 to 9 show some test
results: the top ten classes predicted are shown with their
predicted score next to them.

Fig. 4. Object Detection Result 1 [25]

Fig. 5. Object Detection Result 2 [29]

Fig. 6. Object Detection Result 3 [30]

Fig. 7. Object Detection Result 4 [31]

 5

Fig. 8. Object Detection Result 5 [32]

Fig. 9. Object Detection Result 6 [33]

Unlike object detection in static images, real-time object
tracking is more useful in an autonomous system. To learn more
about real-time object detection for the autonomous car, YOLO
was explored. This is an object detection system that processes
images in three main steps, which include resize image, run
image through convolutional network, and threshold detection
result by confidence scores, which is the accurate score of the
object detected [34]. The name YOLO stands for You Only
Look Once, which implies that the system is capable of
predicting multiple objects simultaneously from one input
image. Full images are used in training the YOLO system and,
as a result, YOLO is better at catching the general features of
an object than other comparable approaches [34]. Using the
code from Art Poltavsky’s real-time object detection project,
which used YOLO, I was able to do object detection on video
streams taken locally [35]. Screenshots were taken and are
shown in Figure 10 to 16. From the results, it is possible to see
that YOLO did a better job than the static object detection
algorithm described previously because it produced less false
detection, which is a significant advantage also mentioned in
Redmon’s paper. It was also able to predict objects accurately

even when the objects had not been fully captured by the
camera. Nonetheless, YOLO is not perfect, and it can still give
wrong detection results in some situations.

Fig. 10. Detect Moving Vehicles (YOLOv3)

Fig. 11. Detect Parked Vehicles (YOLOv3)

Fig. 12. Stop Sign - True Positive and False Positive (YOLOv3)

 Fig. 13. Bench vs. Bridge - False Positive and True Negative (YOLOv3)

 Fig. 14. Train vs. House - False Positive and True Negative (YOLOv3)

 6

Fig. 15. Truck – False Positive and True Positive (YOLOv3)

Fig. 16. Detect Objects that are Not Fully Captured (YOLOv3)

The version of YOLO from Poltavsky’s project was

YOLOv3, which trained on the COCO dataset [36]. As shown
in the images of the results presented above, Poltavsky’s
YOLOv3 has the ability to detect multiple classes of objects,
such as stop signs, traffic lights, and cars. While this is
beneficial, sometimes a YOLO detector that focuses on a
specific object may be desired because it would more accurately
detect that object. Anton Muenlemann created a project on
training YOLOv3 for any object that a user wanted [37]. Based
on his implementation, a YOLOv3 was retrained into a
customized version that only detects traffic lights in this study.
First, the LISA Traffic Light Dataset was downloaded from the
Kaggle website. This dataset contains frames of driving
sequences in JPG format as well as annotation information [38,
39, 40]. However, these annotation data were not used, instead,
customized annotation data were created manually. A hundred
images were selected from the day-sequence part of the dataset.
Although those images were manually chosen in a somewhat
random manner, as much as possible, I tried to select images
that included traffic lights from different roads (instead of
choosing the same traffic lights from different angles and
distances). VoTT, a tool for labeling images and creating
annotations, was used to label those images. All images were
labeled manually in VoTT. Four of the labeled images that were
used for training are shown in Figure 17 below. Ninety images
were used for training, and 10 images were used for validation.
The training still took advantage of YOLOv3’s pretrained dark-
net weights, so no need to train the YOLOv3 from scratch; the
final training loss of this modified YOLOv3 was 23.0596%, and
the validation loss was 28.4340%. To test this model, I recorded
local traffic video streams, and the results are shown below.
Figures 18–21 each contain three pictures. The top and middle
images show the results from the modified YOLOv3 that only
detected traffic lights and the unmodified YOLOv3,
respectively. The bottom image is the original frame before any
detection process was initiated. As shown by the results, the
modified YOLOv3 is more accurate than the unmodified
YOLOv3, sometimes even detecting traffic lights that the
unmodified YOLOv3 could not detect; however, the modified
YOLOv3 did not perform as well as the unmodified YOLOv3

in detecting traffic lights that were very far away. If more
images were used to train the YOLOv3 tool, more accurate
results could likely have obtained.

Fig. 17. Labeled Traffic Lights [38, 39, 40]

Fig. 18. Traffic Light Detection Result 1 (Customized YOLOv3)

 7

Fig. 19. Traffic Light Detection Result 2 (Customized YOLOv3)

Fig. 20. Traffic Light Detection Result 3 (Customized YOLOv3)

Fig. 21. Traffic Light Detection Result 4 (Customized YOLOv3)

V. CONCLUSION AND FUTURE PROPOSALS
This report explored three important areas that industry and

researchers have been working on. These included a human
trust study on using the autonomous system, and the use of
neural networks and other computer vision technologies for
lane and object detection in autonomous driving. The human
trust study described in detail the human trust experiment with
human subjects using PreScan software to develop driving trials
that combined varies driving scenarios. This study will help
autonomous system researchers to develop better algorithms to
potentially maximize passengers’ trust in the autonomous
system, and therefore, improve the likelihood of their becoming
involved with autonomous driving and determine their future
driving experience. The use of computer vision technologies
was also explored in the hope of providing a better
understanding of current research directions in the development
of the autonomous system. Using the Canny Edge Detection
and Hough Transformation algorithms together can provide a
basic lane detection model, but the results yielded were not up
to expectation because they were limited by many factors such
as the shape of the roads, the surrounding environment, and the
lighting conditions. Other advanced lane detection technologies
were also briefly discussed, but all of them have their own
limitations.

Using modified neural networks and YOLO for object
detection exceeded the study’s expectations, although even
those results were not perfect. The neural networks constructed

 8

by retraining RestNet-50 can only be applied to static images
within the current set up, and they may give false positives
when detecting objects presented in an input image. YOLO
functions better in real-time detection than the neural network
detection model, but it is less than perfect and it may detect the
wrong type of objects. As found with the modified YOLOv3, it
is beneficial to use a specific set of data to train the network in
object detection, and one can anticipate an increase in accuracy
given a larger training set. Moreover, the traffic light detector
presented in this study is only suitable for daytime detection; if
nighttime traffic light data is used in training, it will certainly
improve the proposed model’s ability to detect traffic lights in
more scenarios.

Future studies are needed to explore other capabilities of
autonomous systems. With six levels of automation, including
no automation, driver assistance, partial automation,
conditional automation, high automation, and full automation,
more work is needed to improve current autonomous systems
[2]. Technologies, such as text mining and action recognition,
may be helpful because autonomous systems could benefit from
the ability to retrieve useful information from road objects, such
as road signs or police hand gestures. It would also be beneficial
to add voice commands and other recognizable features to an
autonomous system; this may help provide a customized
driving experience.

VI. ACKNOWLEDGMENT
The author gratefully appreciates the human trust on

autonomous driving research and training experience as a
member of Dr. Lu Feng’s research group at the University of
Virginia, and would like to express special thanks to Dr. Lu
Feng, Ph.D. students Shili Sheng, Erfan Pakdamanian and
undergraduate students Margaret Cheng and Haoxiao Zhang for
their support in this journey.

VII. REFERENCES
[1] A. Takacs, I. Rudas, D. Bosl, and T. Haidegger, “Highly Automated

Vehicles and Self-Driving Cars [Industry Tutorial],” IEEE Robotics
& Automation Magazine, vol. 25, no. 4, pp. 106–112, 2018.

[2] “Automated Vehicles for Safety,” National Highway Traffic Safety
Administration , 13-Apr-2020. [Online]. Available:
https://www.nhtsa.gov/technology-innovation/automated-vehicles-
safety.

[3] J. Lowy, “Traffic accidents in the U.S. cost $871 billion a year, federal
study finds,” 29-May-2014. [Online]. Available:
https://www.pbs.org/newshour/nation/motor-vehicle-crashes-u-s-cost-
871-billion-year-federal-study-finds.

[4] Ruderman, “Self-Driving Cars: The Impact on People with Disabilities,”
2019. [Online]. Available:
https://rudermanfoundation.org/white_papers/self-driving-cars-the-
impact-on-people-with-disabilities/.

[5] S. Sadvandi and D. Halkias, “Challenges of Human Factors Engineering
in the Coming Transition to Autonomous Vehicle Technologies: A
Multiple Case Study. ISM Journal of International Business, 3(1), 3–8.,”
2019. [Online]. Available:
https://search.ebscohost.com/login.aspx?direct=true&db=bth&
AN=139003520&site=eds-live.

[6] S. Kuutti, S. Fallah, R. Bowden, and P. Barber, “Deep Learning for
Autonomous Vehicle Control: Algorithms, State-of-the-Art, and Future
Prospects,” Synthesis Lectures on Advances in Automotive Technology,
vol. 3, no. 4, pp. 1–80, 2019.

[7] S. Sheng, E. Pakdamanian, K. Han, B. Kim, P. Tiwari, I. Kim, and L.
Feng, “A Case Study of Trust on Autonomous Driving*,” 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), 2019.

[8] C. Strauch, K. Mühl, K. Patro, C. Grabmaier, S. Reithinger, M. Baumann,
and A. Huckauf, “Real autonomous driving from a passenger’s
perspective: Two experimental investigations using gaze behaviour and
trust ratings in field and simulator,” Transportation Research Part F:
Traffic Psychology and Behaviour, vol. 66, pp. 15–28, 2019.

[9] TASS International, “PreScan Overview,” 27-Mar-2020. [Online].
Available: https://tass.plm.automation.siemens.com/prescan-overview.

[10] M. Baek, H. Lee, H. Choi, and K. Ko, “Poster: Development of ICA
algorithm for V2X communications by using PreScan,” 2015 IEEE
Vehicular Networking Conference (VNC), 2015.

[11] G. Ballew, “OpenCV For Lane Detection in Self Driving Cars,” 17-Jul-
2017. [Online]. Available: https://medium.com/@galen.ballew/opencv-
lanedetection-419361364fc0.

[12] G. Ballew, “Finding Lane Lines on the Road,” 2016. [Online]. Available:
https://github.com/galenballew/SDC-Lane-and-Vehicle-Detection-
Tracking/blob/master/Part%20I%20-
%20Simple%20Lane%20Detection/P1.ipynb.

[13] K. Harikrishnan, “Image Processing tips for Computer Vision and Deep
Learning tasks,” Medium, 26-Apr-2017. [Online]. Available:
https://medium.com/@kharikri/image-processing-tips-for-computer-
vision-and-deep-learning-tasks-e5247ec94f3.

[14] K. Chinnathambi, “A Little About Color: RBG vs. HSV,” kirupa.com, 26-
Jul-2008. [Online]. Available:
https://www.kirupa.com/design/little_about_color_hsv_rgb.htm.

[15] “Gaussian blur,” Wikipedia, 16-Apr-2020. [Online]. Available:
https://en.wikipedia.org/wiki/Gaussian_blur.

[16] “Image noise,” Wikipedia, 28-Apr-2020. [Online]. Available:
https://en.wikipedia.org/wiki/Image_noise.

[17] S. Sahir, “Canny Edge Detection Step by Step in Python - Computer
Vision,” Medium, 27-Jan-2019. [Online]. Available:
https://towardsdatascience.com/canny-edge-detection-step-by-step-in-
python-computer-vision-b49c3a2d8123.

[18] “Canny edge detector,” Wikipedia, 14-Apr-2020. [Online]. Available:
https://en.wikipedia.org/wiki/Canny_edge_detector.

[19] M. Li, Y. Li, and M. Jiang, “Lane Detection Based on Connection of
Various Feature Extraction Methods,” Advances in Multimedia, vol.
2018, pp. 1–13, 2018.

[20] B. Dorj and D. J. Lee, “A Precise Lane Detection Algorithm Based on
Top View Image Transformation and Least-Square Approaches,” Journal
of Sensors, vol. 2016, pp. 1–13, 2016.

[21] A. Gunzi, “Advanced Lane Line Project,” Medium, 21-Aug-2018.
[Online]. Available: https://chatbotslife.com/advanced-lane-line-project-
7635ddca1960.

[22] T. Wolter, Auto Highway Road Tunnel Speed. 2015. [Online]. Available:
https://pixabay.com/photos/auto-highway-road-tunnel-speed-962083/

[23] M. Cuadros, Brown Mountains Near Road. 2020. [Online]. Available:
https://www.pexels.com/photo/brown-mountains-near-road-2373495/

[24] H. Heorhiichuk, Gray Asphalt Road Under Blue Sky. 2020. [Online].
Available: https://www.pexels.com/photo/gray-asphalt-road-under-blue-
sky-1021683/

[25] “Common Objects in Context,” COCO. [Online]. Available:
http://cocodataset.org/.

[26] “torchvision¶,” torchvision - PyTorch master documentation. [Online].
Available: https://pytorch.org/docs/stable/torchvision/index.html.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[28] “torch.nn¶,” torch.nn - PyTorch master documentation. [Online].
Available: https://pytorch.org/docs/stable/nn.html.

[29] ArtisticOperations, Highway Road Off Ramp Cars Travel. 2018.
[Online]. Available: https://pixabay.com/photos/highway-road-off-ramp-
cars-travel-3836653/

[30] Facncycravel, City Transportation San Francisco Urban Street. 2015.
[Online]. Available: https://pixabay.com/photos/city-transportation-san-
francisco-823604/

[31] Pexels, Architecture New York City Manhattan. 2010. [Online].
Available: https://pixabay.com/photos/architecture-new-york-city-
manhattan-1853552/

[32] Free-Photos, Cars Traffic Road Transportation. 2020. [Online].
Available: https://pixabay.com/photos/cars-traffic-road-transportation-
690932/

 9

[33] Franky1st, Lisbon Tram Blue Portugal. 2019. [Online]. Available:
https://pixabay.com/photos/lisbon-tram-blue-portugal-4401276/

[34] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[35] A. Poltavsky, “Real-time object detection using YOLO upon Google
Colab in 5 minutes,” Medium, 08-Sep-2019. [Online]. Available:
https://medium.com/@artinte7/real-time-object-detection-using-yolo-
upon-google-colab-in-5-minutes-fd65a4903df5.

[36] J. Redmon, “YOLO: Real-Time Object Detection,” Apr-2020. [Online].
Available: https://pjreddie.com/darknet/yolo/. [Accessed: 03-May-2020].

[37] A. Muehlemann, “How to train your own YOLOv3 detector from
scratch,” 18-Nov-2019. [Online]. Available:
https://blog.insightdatascience.com/how-to-train-your-own-yolov3-
detector-from-scratch-224d10e55de2. [Accessed: 03-May-2020].

[38] M. Born and Jensen, “LISA Traffic Light Dataset,” 28-Feb-2018.
[Online]. Available: https://www.kaggle.com/mbornoe/lisa-traffic-light-
dataset. [Accessed: 03-May-2020].

[39] M. B. Jensen, M. P. Philipsen, T. B. Moeslund, and M. M. Trivedi,
“Trivedi MM. Vision for Looking at Traffic Lights: Issues, Survey, and
Perspectives. I E E E Transactions on Intelligent Transportation
Systems.,” Feb. 2016.

[40] M. P. Philipsen, M. B. Jensen, A. Mogelmose, T. B. Moeslund, and M.
M. Trivedi, “Traffic Light Detection: A Learning Algorithm and
Evaluations on Challenging Dataset,” 2015 IEEE 18th International
Conference on Intelligent Transportation Systems, Sep. 2015.

	Template Technical Report Title page
	Zeng_Zi_Technical Report
	I. Introduction
	II. Human Trust Experiment with a Driving Simulator
	III. Lane Detection for the Autonomous Car
	IV. Object Detection Through Static Image and Video
	V. Conclusion and Future Proposals
	VI. Acknowledgment
	VII. References

