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Abstract—To investigate the current state of autonomous 

system development and to gain a better understanding of the 
field, this report on autonomous driving systems is divided into 
three main parts, each of which focuses on a different aspect of 
these systems. The II part outlines a human trust study related to 
an autonomous system that aims to reveal the real meaning and 
significance of human trust in autonomous driving. The III and IV 
parts, lane and object detection, focus on the use of computer 
vision technologies in autonomous driving by exploring existing 
projects and testing hands-on implementations using images and 
locally recorded videos.  By exploring these different approaches, 
it is possible to provide a deeper and more comprehensive 
understanding of current research in autonomous driving systems. 

I.  INTRODUCTION 
utonomous driving appears to be the future of 
transportation, and countless research studies and industry 

projects have been conducted in this field in the hope of 
delivering safer and more reliable transportation to the public 
in the near future. For example, all major car manufacturers 
plan to deliver self-driving cars commercially by 2025 [1]. The 
commercialization of autonomous cars will provide multiple 
benefits to consumers. In 2014, Americans were caught in 
traffic for approximately 6.9 billion hours; with autonomous 
cars, drivers will have more free time because they don’t have 
to drive [2]. Additionally, the economic benefits should not be 
neglected. According to a NHTSA study, vehicle-related 
accidents were responsible for $871 billion in economic losses 
[3]. The use of autonomous vehicles will help resolve this 
problem, provided the autonomous systems function correctly. 
Moreover, more than 57 million people in the United States 
have a disability, and autonomous cars will provide these 
people with convenient transportation. One study reported that 
autonomous driving has the potential to create two million job 
opportunities because people with disabilities will be able to get 
to their workplaces more easily [4]. 

Despite all of these benefits, the concept of autonomous 
driving is still not widely accepted by the public. Studies have 
shown that people generally have the impression that 
autonomous cars are not reliable, and this presents a significant 
challenge for autonomous car designers and manufacturers [5]. 
Therefore, it is extremely important to increase human trust in 
autonomous cars. However, it is impossible to achieve that goal 
without improving the algorithms used in these cars in areas 
such as route selection and object detection algorithm, which 

 
 

involve the fields of machine learning and computer vision.  For 
example, neural networks, supervised learning, and 
reinforcement learning are already contributing to the 
development of more advanced autonomous vehicle control 
systems [6]. 

II.  HUMAN TRUST EXPERIMENT WITH A DRIVING SIMULATOR 
This section documents part of a human trust study in 

relation to the autonomous car system as conducted by our 
research group. Driving scenarios were created using the 
PreScan software and human subjects were recruited to engage 
with the simulated scenarios in a driving simulator. The change 
of human trust level in Likert scale and the subjects’ other 
responses during the experiment were recorded for future 
analysis [7]. Trust level have been used to evaluate human trust 
in autonomous systems. For example, in a study on trust, the 
researchers recorded and analyzed the participants’ trust level 
prior to and after driving in manual and autonomous mode, 
respectively [8].     

To understand the importance of trust in autonomous driving 
better, the definition of human trust in relation to the 
autonomous driving system needs to be clarified. Researchers 
do not all define human trust in the autonomous system in the 
same way, and so, to avoid ambiguity, our research group 
defined trust as participants delegating their responsibility when 
driving to the autonomous system, as this expresses their 
willingness to accept the risks and uncertainties of autonomous 
driving activities [7].  

All driving scenarios used in the experiment were created on 
a driving simulation platform called PreScan and then run on a 
driving simulator. Researchers can do a number of things with 
PreScan: for example, they can choose the level of automation 
that best fits their research goals, they can add multiple cameras 
and various sensors to be included in the automation, and they 
can place different obstacles on the routes. PreScan also has the 
capability to execute the pre-designed scenarios using its GUI-
based preprocessor [9]. With its powerful functionality, 
PreScan is widely used in both industry and academic research 
for the design and study of autonomous driving. Researchers 
can test their driving scenarios within a virtual system, and they 
can measure the efficiency of their driving algorithms, such as 
an intersection collision avoidance algorithm, with ease [10]. 
The driving simulator used in this study has three screens, a 
steering wheel, and throttle and brake pedals. Participants use 
these as they would in a real vehicle. In addition, the steering 
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wheel has two buttons that allow participants to indicate their 
increased, or decreased, level of trust in the system while it is 
operating. Pressing both buttons simultaneously will switch 
them between autonomous and manual driving modes. Data on 
trust level change and mode switching will be recorded 
throughout the experiment [7]. Depending on the experimental 
goals and setups, a simpler desktop kit, such as the Logitech 
Racing Wheel with pedals, may also be used. 

During the experiment, each participant was required to 
drive in three scenarios, all of which required them to travel 
from one point to another along routes that were pre-planned by 
the autonomous system. These PreScan scenarios were 
developed by Ph.D. students in the group, and each scenario 
included different types of incident, with the order of the 
incidents varying. One scenario included four incidents that 
followed in the order: pedestrian, empty incident, obstacle, 
truck. A second scenario had four incidents in the order: truck, 
empty incident, obstacle, pedestrian. The third scenario 
presented its four incidents in the order: pedestrian, truck, 
pedestrian, obstacle. A baseline trial was provided which acted 
as training so the participants could familiarize themselves with 
the driving simulator before the actual experiment.  Each trial 
started in the autonomous mode setting, and all the incidents, 
except the empty ones, were designed to be detectable by 
sensors attached to the autonomous system. Drivers were given 
two options when they heard an alarm from the autonomous 
system indicating that the sensor had detected an incident a 
certain distance in front of them. The distance was pre-
determined when the scenarios were first designed in PreScan, 
and it allowed a period of time for the driver to react to the 
situation. If they did not trust the autonomous system’s ability 
to avoid the incident, they were free to change from 
autonomous mode to manual mode and therefore to take control 
of the steering, brake, and throttle. Alternatively, they could 
choose not to switch modes and to allow the autonomous 
system to handle the incident [7]. 

Throughout the experiment, the drivers adjusted their level 
of trust in the autonomous system by pressing the buttons on 
the simulator’s steering wheel. After each trial, the participants 
were asked to fill out a survey, which asked questions such as 
their satisfaction rate with the performance of the autonomous 
system and their reasons for taking over from the autonomous 
system when faced with an incident [7]. The autonomous 
system relies on various forms of advanced sensors and built in 
algorithms to adjust its control of throttle, brake, and steering 
and also to choose routes for the driver. The participants’ 
responses and the recorded data will provide answers to 
research questions such as how autonomous system designers 
can help new autonomous drivers to gain more trust in the 
system. One potential solution is to implement algorithms that 
choose better routes at the beginning of the autonomous 
experience to allow drivers to build a foundation of trust. A 
definition of "better" in this context could refer to roads that 
were straighter and had a lesser chance of encountering 
incidents. 

This initial part of the research report focuses on the details 
involved in assisting simulation experiments to study trust and 

safety in autonomous driving. In addition, the group designed 
another driving trial using PreScan. This trial involved 
combinations of a series of driving scenarios and was intended 
for use by members of the group for collecting and analyzing 
data such as the time taken for a driver to switch from 
autonomous driving mode to manual mode when encountering 
an incident. The scenarios for this trial included incidents such 
as barrels, falling trees, and trucks in the road. However, unlike 
the human trust experiment mentioned previously, a second 
autonomous car was added, which maintained the same speed 
as that operated by the participant and travelled in front at a 
predetermined distance. This was done to avoid the drivers 
becoming aware of the incidents ahead of the alarm going off. 
MATLAB was used to record additional outputs such as lane 
types and distances between the autonomous cars. The lanes 
were provided through four output ports that allowed further 
calculations to determine whether the driver had driven off the 
road. 

III.  LANE DETECTION FOR THE AUTONOMOUS CAR 
One of the greatest challenges for autonomous system 

designers is to ensure that autonomous vehicles do not drive out 
of their lanes. As one can imagine, autonomous car users will 
have high expectations that the vehicle will be able to identify 
lanes. An autonomous system therefore requires a lane 
detection algorithm that is able to recognize solid or broken 
lines and different colors, mostly white and yellow. The 
algorithm also needs to perform this task quickly and efficiently 
because lane detection is needed in real-time.   

In computer vision, Canny Edge Detection and Hough 
Transformation are often used to detect lines. To examine the 
use of these algorithms for lane detection in real time, an 
autonomous vehicle project from Udacity, and coded by Galen 
Ballew, was studied [11, 12]. This project constructed a simple 
lane detection system using OpenCV and was written in Python 
using Jupyter notebook. OpenCV is a computer vision library 
for image processing that is often used for real-time computer 
vision tasks. Jupyter notebook allows developers to visualize 
their computing results on the same page as their codes. To test 
this project, the input video needed to be broken down into a 
sequence of frames. Each frame of a video is in fact an image 
in RGB format, which is so named for the three color channels, 
red, green and blue. The first step was to covert each frame to a 
grayscale image that had only one channel. This type of color 
space transformation is often seen in computer vision and is 
accomplished by using the functions provided in the OpenCV 
library. To describe it simply, each index in the greyscale 
channel is the average of three indices at the same location in 
the RGB image. Sometimes, the color information from the 
three channels has little impact on the final results, so the 
greyscale images are used to save computing time as they 
require only one third of the time that RGB images take [13]. 
This offers a great advantage in real time processing. As 
mentioned previously, lanes are often demarcated in white or 
yellow, and it is therefore essential that the algorithm can 
differentiate between these two colors and the other colors. 
Fortunately, each color has its own pixel range, which can be 
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used to identify it. To prepare for this, the greyscale images 
must first be converted into images in the HSV color model. 
Unlike the RGB color model, HSV contains hue, saturation, and 
value information, which make it far easier to describe a color 
within a range [14]. Before the Canny Edge Detection is 
introduced, Gaussian blur needs to be applied to the images. As 
its name suggests, Gaussian blur involves blurring an image, 
resulting in a modified image with reduced noise and detail 
[15]. Image noise normally refers to brightness and color 
information that does not belong to the subject being filmed but 
rather results from random electronic input [16]. Image noise 
can affect the results of edge detection greatly, so it is very 
important to remove it before processing [17]. After the 
Gaussian blur, the Canny Edge Detection algorithm can be 
applied to the image. Canny Edge Detection computes both the 
gradient and direction of the edges identified in the image, and 
it also combines edges that are very close to each other into a 
single edge by using non-maximum suppression [18]. Just as it 
is important to differentiate white and yellow from the other 
colors, it is also necessary to differentiate between the region in 
front of the car and the other areas in the image. This region is 
called the area of interest. This is done by defining a polygon 
shape within the image [11, 12]. Hough Line Transform is then 
applied to the line drawing codes to determine whether the 
detected edges are, in fact, lines. After the lanes have been 
detected and drawn into the image, the modified images, or 
frames, can be combined to form a new video which has the 
same content as the original but now has the lanes in front of 
the car highlighted in real-time. For demonstration purposes, 
three images processed by the algorithm described are 
presented in Figure 1, 2 and 3.      

As with the other methods, this lane detection method is not 
perfect. For example, the region of interest is fixed, which 
means that it does not perform well in situations where the 
vehicle is turning. Researchers have been working on 
developing better methods for lane detection. Some people have 
taken advantages of feature detection by using ROI selection 
methods, which increase lane detection accuracy [19], while 
others have found a way of converting the images from a front 
view to a top view to get more precise lines [20]. Some 
advanced lane detection algorithms take camera calibration, 
curvature of lanes, and vehicle position all into account [21].  

 

 
Fig. 1.  Lane Detection Result 1 [22] 

 
Fig. 2: Lane Detection Result 2 [23] 

 

 
Fig. 3. Lane Detection Result 3 [24] 

 

IV.  OBJECT DETECTION THROUGH STATIC IMAGE AND VIDEO 
As with lane detection, object detection is a very important 

aspect of an autonomous system. To make a safe lane switch, 
an autonomous car needs to have the ability to detect vehicles 
nearby and also the speed of those vehicles. The car also needs 
to understand its environment well before it can make its 
operating decisions. For example, it needs to identify traffic 
lights and road signs.   

 In this section of the report, both static and real-time object 
detection methods are explored. Road objects such as vehicles 
and traffic lights are some of the most important objects to 
detect in autonomous driving. However, it is also important to 
detect other kinds of objects while driving, in complex driving 
circumstances in particular, such as driving in urban 
environments. Therefore, computer vision methods that focus 
on generalized object detection were selected for investigation 
first, and detection method for a specific object was presented 
next. 

For object detection in static images, the approach used is to 
fine-tune and retrain a pre-trained ResNet, using the COCO-
dataset. COCO is a large-scale object detection dataset that 
contains 80 object categories. In this dataset, some categories 
are relevant to autonomous driving, such as traffic lights, 
trucks, buses, motorcycles, bicycles, cars, and persons [25]. The 
COCO dataset has 330K images, and training the ResNet with 
all these images would take a long time on a personal laptop. 
Therefore, to increase the training speed and reduce network 
overheads, only 20,000 images were used for the training and 
1,000 images for the validation. Those 20,000 training images 
and 1,000 validation images were randomly selected from the 
COCO dataset. Image transformations were done using the 
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Torchivision package, which contains a number of dataset and 
transformation operations that are constantly used in computer 
vision [26]. All the images were resized to 256 x 256 then 
cropped and centered. Image normalization was applied to 
make the computation more efficient. To train and validate a 
neural network, it is essential to have a dataset, which is a group 
of labeled images. As mentioned previously, Torchvision 
contains a list of datasets that include two types of COCO 
dataset: Captions and Detection [26]. In the approach taken, it 
was necessary to map each image to an eighty-dimensional 
vector. Each entry in the vector represented one object type. 
Value 1 indicated that the object-type was present, and 0 that it 
was not. The Torchvision COCO Detection dataset was 
modified for this purpose. Two datasets were created, one for 
training and the other for validation. To batch and iterate the 
datasets, two data loaders were created using a batch size of 
128. A batch size of 128 means that the datasets are divided into 
groups where each group contains 128 images. After pre-
processing the data, the next step was to build the model. Again, 
taking advantage of the Torchvision package, a pre-trained 
model named ResNet-50 was loaded. ResNet is a convolutional 
neural network that performs deep residual learning for image 
recognition [27]. To retrain this model on a new small set of 
data without having to do everything from scratch or worry 
about the negative effect of overfitting, the loaded ResNet 
model was finetuned by replacing the last layer with a new 
linear classification. The weights of the network were also 
modified using the SGD training. The object classifier was 
defined as the modified ResNet, the loss function was defined 
as a combination of the Sigmoid layer and the Binary Cross 
Entropy loss [28]. The network was then trained ten times and 
validated each time it was trained. Each training iteration 
processes all the data in a batch at a time. The model weights 
were updated throughout the training and validating process. 
The final training accuracy of the network was 82.9%, and the 
validation accuracy was 83.41%. Figure 4 to 9 show some test 
results: the top ten classes predicted are shown with their 
predicted score next to them. 

 

 
Fig. 4. Object Detection Result 1 [25] 

 
 

 
Fig. 5. Object Detection Result 2 [29] 

 
 
 

 
Fig. 6. Object Detection Result 3 [30] 

 
 

 
 

 

 
Fig. 7. Object Detection Result 4 [31] 
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Fig. 8. Object Detection Result 5 [32] 

 
 

 
Fig. 9. Object Detection Result 6 [33] 

 
 

Unlike object detection in static images, real-time object 
tracking is more useful in an autonomous system. To learn more 
about real-time object detection for the autonomous car, YOLO 
was explored. This is an object detection system that processes 
images in three main steps, which include resize image, run 
image through convolutional network, and threshold detection 
result by confidence scores, which is the accurate score of the 
object detected [34]. The name YOLO stands for You Only 
Look Once, which implies that the system is capable of 
predicting multiple objects simultaneously from one input 
image. Full images are used in training the YOLO system and, 
as a result, YOLO is better at catching the general features of 
an object than other comparable approaches [34]. Using the 
code from Art Poltavsky’s real-time object detection project, 
which used YOLO, I was able to do object detection on video 
streams taken locally [35]. Screenshots were taken and are 
shown in Figure 10 to 16. From the results, it is possible to see 
that YOLO did a better job than the static object detection 
algorithm described previously because it produced less false 
detection, which is a significant advantage also mentioned in 
Redmon’s paper. It was also able to predict objects accurately 

even when the objects had not been fully captured by the 
camera. Nonetheless, YOLO is not perfect, and it can still give 
wrong detection results in some situations.  

 
 
 

 
Fig. 10. Detect Moving Vehicles (YOLOv3) 

 
 
 

 
Fig. 11. Detect Parked Vehicles (YOLOv3) 

 
 
 

 
Fig. 12. Stop Sign - True Positive and False Positive (YOLOv3) 

 
 
 

 
         Fig. 13. Bench vs. Bridge - False Positive and True Negative (YOLOv3) 

 
 
 

 
       Fig. 14. Train vs. House - False Positive and True Negative (YOLOv3) 
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Fig. 15. Truck – False Positive and True Positive (YOLOv3) 

 
 
 

 
Fig. 16. Detect Objects that are Not Fully Captured (YOLOv3) 

 
The version of YOLO from Poltavsky’s project was 

YOLOv3, which trained on the COCO dataset [36]. As shown 
in the images of the results presented above, Poltavsky’s 
YOLOv3 has the ability to detect multiple classes of objects, 
such as stop signs, traffic lights, and cars. While this is 
beneficial, sometimes a YOLO detector that focuses on a 
specific object may be desired because it would more accurately 
detect that object. Anton Muenlemann created a project on 
training YOLOv3 for any object that a user wanted [37]. Based 
on his implementation, a YOLOv3 was retrained into a 
customized version that only detects traffic lights in this study. 
First, the LISA Traffic Light Dataset was downloaded from the 
Kaggle website. This dataset contains frames of driving 
sequences in JPG format as well as annotation information [38, 
39, 40]. However, these annotation data were not used, instead, 
customized annotation data were created manually. A hundred 
images were selected from the day-sequence part of the dataset. 
Although those images were manually chosen in a somewhat 
random manner, as much as possible, I tried to select images 
that included traffic lights from different roads (instead of 
choosing the same traffic lights from different angles and 
distances). VoTT, a tool for labeling images and creating 
annotations, was used to label those images. All images were 
labeled manually in VoTT. Four of the labeled images that were 
used for training are shown in Figure 17 below. Ninety images 
were used for training, and 10 images were used for validation. 
The training still took advantage of YOLOv3’s pretrained dark-
net weights, so no need to train the YOLOv3 from scratch; the 
final training loss of this modified YOLOv3 was 23.0596%, and 
the validation loss was 28.4340%. To test this model, I recorded 
local traffic video streams, and the results are shown below. 
Figures 18–21 each contain three pictures. The top and middle 
images show the results from the modified YOLOv3 that only 
detected traffic lights and the unmodified YOLOv3, 
respectively. The bottom image is the original frame before any 
detection process was initiated. As shown by the results, the 
modified YOLOv3 is more accurate than the unmodified 
YOLOv3, sometimes even detecting traffic lights that the 
unmodified YOLOv3 could not detect; however, the modified 
YOLOv3 did not perform as well as the unmodified YOLOv3 

in detecting traffic lights that were very far away. If more 
images were used to train the YOLOv3 tool, more accurate 
results could likely have obtained. 
 
 
 

 

 
Fig. 17. Labeled Traffic Lights [38, 39, 40] 

 
 
 
 
 

 
Fig. 18. Traffic Light Detection Result 1 (Customized YOLOv3) 
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Fig. 19. Traffic Light Detection Result 2 (Customized YOLOv3) 

 
 

 
Fig. 20. Traffic Light Detection Result 3 (Customized YOLOv3) 

 
Fig. 21. Traffic Light Detection Result 4 (Customized YOLOv3) 

 

V.  CONCLUSION AND FUTURE PROPOSALS 
This report explored three important areas that industry and 

researchers have been working on. These included a human 
trust study on using the autonomous system, and the use of 
neural networks and other computer vision technologies for 
lane and object detection in autonomous driving. The human 
trust study described in detail the human trust experiment with 
human subjects using PreScan software to develop driving trials 
that combined varies driving scenarios. This study will help 
autonomous system researchers to develop better algorithms to 
potentially maximize passengers’ trust in the autonomous 
system, and therefore, improve the likelihood of their becoming 
involved with autonomous driving and determine their future 
driving experience. The use of computer vision technologies 
was also explored in the hope of providing a better 
understanding of current research directions in the development 
of the autonomous system. Using the Canny Edge Detection 
and Hough Transformation algorithms together can provide a 
basic lane detection model, but the results yielded were not up 
to expectation because they were limited by many factors such 
as the shape of the roads, the surrounding environment, and the 
lighting conditions. Other advanced lane detection technologies 
were also briefly discussed, but all of them have their own 
limitations.  

Using modified neural networks and YOLO for object 
detection exceeded the study’s expectations, although even 
those results were not perfect. The neural networks constructed 
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by retraining RestNet-50 can only be applied to static images 
within the current set up, and they may give false positives 
when detecting objects presented in an input image. YOLO 
functions better in real-time detection than the neural network 
detection model, but it is less than perfect and it may detect the 
wrong type of objects. As found with the modified YOLOv3, it 
is beneficial to use a specific set of data to train the network in 
object detection, and one can anticipate an increase in accuracy 
given a larger training set. Moreover, the traffic light detector 
presented in this study is only suitable for daytime detection; if 
nighttime traffic light data is used in training, it will certainly 
improve the proposed model’s ability to detect traffic lights in 
more scenarios.  

Future studies are needed to explore other capabilities of 
autonomous systems. With six levels of automation, including 
no automation, driver assistance, partial automation, 
conditional automation, high automation, and full automation, 
more work is needed to improve current autonomous systems 
[2]. Technologies, such as text mining and action recognition, 
may be helpful because autonomous systems could benefit from 
the ability to retrieve useful information from road objects, such 
as road signs or police hand gestures. It would also be beneficial 
to add voice commands and other recognizable features to an 
autonomous system; this may help provide a customized 
driving experience.  

VI.  ACKNOWLEDGMENT 
The author gratefully appreciates the human trust on 

autonomous driving research and training experience as a 
member of Dr. Lu Feng’s research group at the University of 
Virginia, and would like to express special thanks to Dr. Lu 
Feng, Ph.D. students Shili Sheng, Erfan Pakdamanian and 
undergraduate students Margaret Cheng and Haoxiao Zhang for 
their support in this journey.    

VII.  REFERENCES 
[1] A. Takacs, I. Rudas, D. Bosl, and T. Haidegger, “Highly Automated 

Vehicles and Self-Driving Cars [Industry Tutorial],” IEEE Robotics 
&amp; Automation Magazine, vol. 25, no. 4, pp. 106–112, 2018. 

[2] “Automated Vehicles for Safety,” National Highway Traffic Safety 
Administration , 13-Apr-2020. [Online]. Available: 
https://www.nhtsa.gov/technology-innovation/automated-vehicles-
safety. 

[3] J. Lowy, “Traffic accidents in the U.S. cost $871 billion a year, federal 
study finds,” 29-May-2014. [Online]. Available: 
https://www.pbs.org/newshour/nation/motor-vehicle-crashes-u-s-cost-
871-billion-year-federal-study-finds. 

[4] Ruderman, “Self-Driving Cars: The Impact on People with Disabilities,” 
2019. [Online]. Available: 
https://rudermanfoundation.org/white_papers/self-driving-cars-the-
impact-on-people-with-disabilities/. 

[5] S. Sadvandi and D. Halkias, “Challenges of Human Factors Engineering 
in the Coming Transition to Autonomous Vehicle Technologies: A 
Multiple Case Study. ISM Journal of International Business, 3(1), 3–8.,” 
2019. [Online]. Available: 
https://search.ebscohost.com/login.aspx?direct=true&amp;db=bth&amp;
AN=139003520&amp;site=eds-live.  

[6] S. Kuutti, S. Fallah, R. Bowden, and P. Barber, “Deep Learning for 
Autonomous Vehicle Control: Algorithms, State-of-the-Art, and Future 
Prospects,” Synthesis Lectures on Advances in Automotive Technology, 
vol. 3, no. 4, pp. 1–80, 2019.  

[7] S. Sheng, E. Pakdamanian, K. Han, B. Kim, P. Tiwari, I. Kim, and L. 
Feng, “A Case Study of Trust on Autonomous Driving*,” 2019 IEEE 
Intelligent Transportation Systems Conference (ITSC), 2019. 

[8] C. Strauch, K. Mühl, K. Patro, C. Grabmaier, S. Reithinger, M. Baumann, 
and A. Huckauf, “Real autonomous driving from a passenger’s 
perspective: Two experimental investigations using gaze behaviour and 
trust ratings in field and simulator,” Transportation Research Part F: 
Traffic Psychology and Behaviour, vol. 66, pp. 15–28, 2019. 

[9] TASS International, “PreScan Overview,” 27-Mar-2020. [Online]. 
Available: https://tass.plm.automation.siemens.com/prescan-overview. 

[10] M. Baek, H. Lee, H. Choi, and K. Ko, “Poster: Development of ICA 
algorithm for V2X communications by using PreScan,” 2015 IEEE 
Vehicular Networking Conference (VNC), 2015. 

[11] G. Ballew, “OpenCV For Lane Detection in Self Driving Cars,” 17-Jul-
2017. [Online]. Available: https://medium.com/@galen.ballew/opencv-
lanedetection-419361364fc0. 

[12] G. Ballew, “Finding Lane Lines on the Road,” 2016. [Online]. Available: 
https://github.com/galenballew/SDC-Lane-and-Vehicle-Detection-
Tracking/blob/master/Part%20I%20-
%20Simple%20Lane%20Detection/P1.ipynb. 

[13] K. Harikrishnan, “Image Processing tips for Computer Vision and Deep 
Learning tasks,” Medium, 26-Apr-2017. [Online]. Available: 
https://medium.com/@kharikri/image-processing-tips-for-computer-
vision-and-deep-learning-tasks-e5247ec94f3. 

[14] K. Chinnathambi, “A Little About Color: RBG vs. HSV,” kirupa.com, 26-
Jul-2008. [Online]. Available: 
https://www.kirupa.com/design/little_about_color_hsv_rgb.htm. 

[15] “Gaussian blur,” Wikipedia, 16-Apr-2020. [Online]. Available: 
https://en.wikipedia.org/wiki/Gaussian_blur. 

[16] “Image noise,” Wikipedia, 28-Apr-2020. [Online]. Available: 
https://en.wikipedia.org/wiki/Image_noise. 

[17] S. Sahir, “Canny Edge Detection Step by Step in Python - Computer 
Vision,” Medium, 27-Jan-2019. [Online]. Available: 
https://towardsdatascience.com/canny-edge-detection-step-by-step-in-
python-computer-vision-b49c3a2d8123. 

[18] “Canny edge detector,” Wikipedia, 14-Apr-2020. [Online]. Available: 
https://en.wikipedia.org/wiki/Canny_edge_detector. 

[19] M. Li, Y. Li, and M. Jiang, “Lane Detection Based on Connection of 
Various Feature Extraction Methods,” Advances in Multimedia, vol. 
2018, pp. 1–13, 2018. 

[20] B. Dorj and D. J. Lee, “A Precise Lane Detection Algorithm Based on 
Top View Image Transformation and Least-Square Approaches,” Journal 
of Sensors, vol. 2016, pp. 1–13, 2016. 

[21] A. Gunzi, “Advanced Lane Line Project,” Medium, 21-Aug-2018. 
[Online]. Available: https://chatbotslife.com/advanced-lane-line-project-
7635ddca1960. 

[22] T. Wolter, Auto Highway Road Tunnel Speed. 2015. [Online]. Available: 
https://pixabay.com/photos/auto-highway-road-tunnel-speed-962083/ 

[23] M. Cuadros, Brown Mountains Near Road. 2020. [Online]. Available: 
https://www.pexels.com/photo/brown-mountains-near-road-2373495/ 

[24] H. Heorhiichuk, Gray Asphalt Road Under Blue Sky. 2020. [Online]. 
Available: https://www.pexels.com/photo/gray-asphalt-road-under-blue-
sky-1021683/ 

[25] “Common Objects in Context,” COCO. [Online]. Available: 
http://cocodataset.org/. 

[26] “torchvision¶,” torchvision - PyTorch master documentation. [Online]. 
Available: https://pytorch.org/docs/stable/torchvision/index.html. 

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 
Recognition,” 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2016. 

[28] “torch.nn¶,” torch.nn - PyTorch master documentation. [Online]. 
Available: https://pytorch.org/docs/stable/nn.html. 

[29] ArtisticOperations, Highway Road Off Ramp Cars Travel. 2018. 
[Online]. Available: https://pixabay.com/photos/highway-road-off-ramp-
cars-travel-3836653/ 

[30] Facncycravel, City Transportation San Francisco Urban Street. 2015. 
[Online]. Available: https://pixabay.com/photos/city-transportation-san-
francisco-823604/ 

[31] Pexels, Architecture New York City Manhattan. 2010. [Online]. 
Available: https://pixabay.com/photos/architecture-new-york-city-
manhattan-1853552/ 

[32] Free-Photos, Cars Traffic Road Transportation. 2020. [Online]. 
Available: https://pixabay.com/photos/cars-traffic-road-transportation-
690932/ 



 9 

[33] Franky1st, Lisbon Tram Blue Portugal. 2019. [Online]. Available: 
https://pixabay.com/photos/lisbon-tram-blue-portugal-4401276/ 

[34] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look 
Once: Unified, Real-Time Object Detection,” 2016 IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), 2016. 

[35] A. Poltavsky, “Real-time object detection using YOLO upon Google 
Colab in 5 minutes,” Medium, 08-Sep-2019. [Online]. Available: 
https://medium.com/@artinte7/real-time-object-detection-using-yolo-
upon-google-colab-in-5-minutes-fd65a4903df5. 

[36] J. Redmon, “YOLO: Real-Time Object Detection,” Apr-2020. [Online]. 
Available: https://pjreddie.com/darknet/yolo/. [Accessed: 03-May-2020]. 

[37] A. Muehlemann, “How to train your own YOLOv3 detector from 
scratch,” 18-Nov-2019. [Online]. Available: 
https://blog.insightdatascience.com/how-to-train-your-own-yolov3-
detector-from-scratch-224d10e55de2. [Accessed: 03-May-2020]. 

[38] M. Born and Jensen, “LISA Traffic Light Dataset,” 28-Feb-2018. 
[Online]. Available: https://www.kaggle.com/mbornoe/lisa-traffic-light-
dataset. [Accessed: 03-May-2020]. 

[39] M. B. Jensen, M. P. Philipsen, T. B. Moeslund, and M. M. Trivedi, 
“Trivedi MM. Vision for Looking at Traffic Lights: Issues, Survey, and 
Perspectives. I E E E Transactions on Intelligent Transportation 
Systems.,” Feb. 2016. 

[40] M. P. Philipsen, M. B. Jensen, A. Mogelmose, T. B. Moeslund, and M. 
M. Trivedi, “Traffic Light Detection: A Learning Algorithm and 
Evaluations on Challenging Dataset,” 2015 IEEE 18th International 
Conference on Intelligent Transportation Systems, Sep. 2015. 
 


	Template Technical Report Title page
	Zeng_Zi_Technical Report
	I.   Introduction
	II.   Human Trust Experiment with a Driving Simulator
	III.   Lane Detection for the Autonomous Car
	IV.   Object Detection Through Static Image and Video
	V.   Conclusion and Future Proposals
	VI.   Acknowledgment
	VII.   References


