
The Transformation of Vehicle Controls to Drive-By-Wire

A Technical Report submitted to the Department of Mechanical and Aerospace Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Alexander Matthew Pascocello

Spring, 2022

Technical Project Team Members

Jacob Deane

Matthew Deaton

Henry Goodman

Logan Montgomery

Vishal Singh

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Tomonari Furukawa, Department of Mechanical and Aerospace Engineering

TABLE OF CONTENTS

1. Introduction

2. Background and Essential Knowledge

3. Design Process

4. Final Design

4.1. Full Design Diagrams

4.2. Throttle-by-Wire System

4.3. Brake-by-Wire System

4.4. Steer-by-Wire System

4.5. Emergency Stop and Autonomation Switch

4.6. Sensor Suite

4.7. Software

5. Mathematical and Numerical Analyses

5.1. Motion Model Comparison

5.2. PID Tuning

6. Experimental Validation

7. Operations Manual

8. Conclusions and Future Work

1

1 INTRODUCTION

Autonomous vehicles are revolutionizing the transportation industry. If implemented

correctly they can provide greater freedoms to the eldery and disabled, create safer roads, and

give back time to commuting workers. While this technology is not ready to be assimilated into

society, there are steps being taken to introduce semi-autonomous vehicles to the road. There is a

scale of autonomy for such vehicles that ranges from zero, no autonomy, to five, full autonomy,

as seen in Figure 1. Currently, some electric vehicles already use low levels of automation such

as self-parking and lane assist (Shipley, 2021). This would not be possible without the ability to

control the vehicle’s integral driving functions such as steering, throttle, and braking. The goal of

this project is to lay the groundwork for the future autonomous control of a Ford Escape by

creating an electromechanical drive-by-wire system to externally steer the vehicle. This will

allow the implementation of semi-autonomous processes and eventually full autonomy.

Fig. 1. Levels of Autonomy as Defined by The Society of Automotive Engineers
(Wevolver, 2020)

2

Early on in the design process, the team established a set of target specifications that

reflected the needs of the prospective clients. This target specification list can be seen below in

Figure 2. In the past, there have been multiple attempts to create a higher level autonomous

vehicle with some of these design elements, with varied levels of success. The Stanford Stanley

project is a modified version of a Volkswagen Touareg R5, designed for competing in DARPA

Grand Challenge in 2005. Stanford’s Stanley placed first in this competition, and boasted a

completion time of 6 hours and 54 minutes (see Appendix F). While this vehicle included

important components of the target specifications mentioned above such as functional steering,

throttle, and braking systems, it lacks important systems, such as the integration of a remote

control, allowing the car to be manually controlled from an outside user.

Outside of vehicles designed for the DARPA Grand Challenge, there are multiple

companies currently developing level 4 autonomous vehicles. Waymo, formerly the Google

Self-Driving Car Project, has developed a fleet of functioning autonomous vehicles, operating in

Phoenix, Arizona (Schwall et al., 2020). While these vehicles are impressive and present

groundbreaking breakthroughs in autonomous driving technology, they operate on a slightly

different principle than what has been defined for our project by the initial target specifications.

Waymo vehicles operate off of a highly detailed map that is premade for a specific city in

conjunction with the sensor suite integrated into the vehicle (Laukkonen, 2020). For the purposes

of this project, the ultimate goal is to create a vehicle that does not need to operate in a specific

city, or be limited to use only on well maintained and marked roads. There is definitely much to

take away from the way Waymo’s autonomous vehicles operate, but the end goal of this project

differs categorically from Waymo’s Self-Driving Car.

3

The main objectives of this project are to create a vehicle that is able to map its

surroundings in real time and make decisions regarding what actions to take in order to safely

drive to its objective. This process should not be restricted to operating solely on paved city

streets, and as a result cannot be solely reliant on external mapping and road markings. A full list

of these goals can be seen below in Figure 2, and potential design solutions based around the

completion of these goals can be seen in Figure 3. These goals are not expected to be completed

in their entirety by the end of the year, and are more reflective of the long term, multi-year goals

of the project. For this year, the main objectives of the project are to design and integrate

functioning steer-by-wire, throttle-by-wire, and brake-by-wire systems into the car, as well as

create a design for the essential sensors for progress in future years.

2 BACKGROUND AND ESSENTIAL KNOWLEDGE

The Ford Escape being used for the team’s project came from a previous Virginia Tech

project with similar goals. When the car was received it was stripped of most subsystem

connections including all LiDar and radar systems. There was a mounted pulley with a rusted

stepper motor already installed for the brake-by-wire system, but it had to be replaced due to

rust. The computer's hard drive became corrupted and had to be replaced, but some past Arduino

and Python code was salvageable.

Beside the state of the car, no report or documentation is known regarding the success of

the previous team. While the current TA involved with the project spearheaded the previous

project at Virginia Tech, his involvement is purely educational, helping guide the team with his

previous knowledge of the systems.

4

There were several required subjects the team researched in preparation for the

drive-by-wire project. These topics included electrical systems of electric power steering and

throttle system components, closed-loop control systems specializing in PID controllers, and

Controller Area Network (CAN) bus readings utilizing python codes. The technological

background aided the team in accomplishing the set forth goals and creating functional

steer-by-wire, brake-by-wire, and throttle-by-wire subsystems.

Advancements were made on previous drive-by-wire projects in several different ways in

accordance with customer requirements. Firstly, the car will have an emergency stop feature that

will immediately halt all autonomous capabilities and give control over to the driver.

Furthermore, there is an accessible switch to easily switch from driver to autonomous mode in a

non-emergency setting. A second advancement to the drive-by-wire vehicle is a PID feedback

closed-loop control system for each subsystem to ensure a smooth and safe controlled driving

experience. This control system will be used, for example, to confirm steering angles while

driving at high speeds where the steering wheel could naturally return to a neutral position due to

tire friction. In these ways the team’s project improves on other drive-by-wire systems.

3 DESIGN PROCESS

To determine the goals of the project and design, we first surveyed a customer on what

they would like to see in their drive-by-wire vehicle that would eventually become autonomous

in the future. For the scope of this year’s project goal, a strictly drive-by-wire car with no

autonomy, the most important needs from the customer were a “drive-by-wire system with

practical controller,” and it “must have steering and override electrical or mechanical

5

capabilities,” referring to the E-stop needed for the car. The biggest customer need was that the

controller was “safer than a human operator,” which was emphasized in our target specifications.

Taking into account the relation to customer needs, the technical importance, and the

difficulty to implement, target specifications were generated based on important safety and

performance criteria for a drive-by-wire system and the car as a whole. The full Quality Function

Deployment (QFD) chart is shown in the appendix, but a short summary is shown in Figure 2

below.

Fig. 2. Summary of the QFD Chart

The two most prioritized specifications are the total braking distance from 60-0 mph and the

response time for braking. The target specifications for response time for braking and throttle

were the focus of our testing, which will be explained in the mathematical and numerical

analyses section.

To brainstorm and decide potential solutions to implement drive-by-wire in the braking,

throttle, and steering, concept generation was used. The full concept generation, including the

6

functional decomposition, will be found in the appendix, but Figure 3 shows below a summary

of the different solutions brainstormed and which solutions will be implemented.

Fig. 3. Concept Generation Design Solutions

Based on the morphological analysis, three potential solutions were created, and then

these designs were evaluated based on their strengths and weaknesses. Out of three designs,

solution number 1 was selected, as denoted by the yellow highlighted cells.

Our potential design was then compared to other similar designs by other institutions or

existing solutions in the industry in a concept selection process. Figures 4 and 5 show the

concept selection screening and scoring processes.

Fig. 4. Concept Selection (Screening)

7

Inferences on how the different subsystems and target specifications of other solutions

compared to our solutions were made based on performance, type of car, and the types of

DARPA challenges they competed in. Our primary solution ranked the best in this qualitative

analysis.

Fig. 5. Concept Selection (Scoring)

In the concept scoring process, relative weights were applied to each selection criteria

based on importance determined during the target specifications process. The rankings aligned

with the concept screening rankings, with our solution 1 ranked the highest by receiving top

scores in all categories besides response time for braking and obstacle avoidance distance.

4 FINAL DESIGN

4.1 FULL DESIGN DIAGRAMS

8

Fig. 6. Block System Diagram

Fig. 7. Complete Wiring Diagram

4.2 THROTTLE-BY-WIRE SYSTEM

The design for the throttle control system is a direct electrical approach. Instead of using

an actuator to pull the pedal (as is the case for braking) the team thought a less obtrusive and

more direct option would be to mimic the signals that the throttle pedal sends the electrical

control unit (ECU) to tell the car to tell the engine to accelerate. Therefore, the problem could be

solved solely by using digital-to-analog converters (DACs). The throttle pedal has three

potentiometers that send different ranges of voltages to the ECU to be interpreted as a throttle

amount. These three signals need to be hijacked and mimicked. For this we use three DACs

controlled by an Arduino UNO. The relevant electrical components are highlighted in Figure 8.

9

Fig. 8. Throttle Electrical Diagram

Our throttle code tells the DACs exactly what voltages to output in order to achieve a

specific throttle percentage from 1-100. The three throttle signals each have their own unique

idle voltages and voltage ranges that the ECU then uses to compute a throttle percentage. These

are depicted in Figure 9.

10

Fig. 9. Throttle signals sent to ECU for idle and throttle pedal fully pressed

These values were discovered experimentally by measuring the signals directly. Our code

to control throttle takes these ranges and applies a linear distribution to the outputs from our

DACs. So, the percent of throttle requires the three correct voltage values to be sent from each

DAC’s output channel.

Fig. 10. Throttle Signal Mimic Function (in bits)

A three channel relay is able to switch the car between autonomous mode and manual

mode by switching the voltages that the ECU receives from our DAC outputs to the throttle

pedal outputs. In order to ensure accurate and safe acceleration, this system will eventually be

integrated with and controlled by a PID controller. A feedback loop with the throttle messages

11

from the car’s CAN bus will allow us to make sure that the car is autonomously throttling as

expected even when changing slopes.

4.3 BRAKE-BY-WIRE SYSTEM

The braking subsystem is the only subsystem controlled by external actuation rather than

internal signal mimicking. The team uses a stepper motor driven by a DM860T stepper driver

and controlled by arduino code through ROS via our operator.py script. A power board inverts

120V AC to 32V DC in order to power the motor. The relays for braking switch the power on

and off to the motor, so no external actuation is possible without them flipped. This system

features a PID control loop using the brake’s CAN bus status to ensure that the brake reaches the

correct position in the most efficient and smooth manner with little oscillation. This is motivated

by error factors such as the lack of precise positioning with the stepper motor and slack in the

pulley cable.

The CAN bus feedback is also used in the zeroing function for braking. As mentioned,

the stepper motor does not record position. This means that if the motor slips, the wire

connecting it to the brakes may become taut and the brakes may become compromised. To

ensure there is no slack in the pulley when the car is put into autonomous mode, the brake

zeroing function spins the stepper motor until the CAN bus registers that the brake is pressed.

Once this occurs, the function slowly steps back the motor until the CAN bus registers the

brakes as released. This zeroing function is imperative to ensuring a taut cable and immediate

braking. The relevant electrical components are highlighted in Figure 11 as well as CAD models

of the pulley system.

12

Fig. 11. Electrical (right) and physical (left) diagram of braking components

4.4 STEER-BY-WIRE SYSTEM

Electric power steering uses a motor to assist driver steering when a torque is applied.

The torque sensor sends two voltages ranging from zero to five volts. These voltages stay around

2.5V when no torque is being applied and then spike or drop by similar amounts when torque is

applied. Understanding and recording these values is required to emulate the signals sent by the

torque sensor.

13

The steering control system’s final design works quite similarly to the throttle control

system. It uses a DAC to emulate the voltage signals for torque to the ECU, mimicking what the

torque sensor in the steering column would give it to assist a steering motion from the user. The

steering system uses a single dual channel DAC called the MCP4922 which can output two

different voltages. These signals are sent to the ECU when the car is in autonomous mode and

the relevant electrical components are highlighted in Figure 12 below.

Fig. 12. Electrical diagram (steering components)

The steering signals that are being recreated are torque signals, so they spike when torque

is applied and then return to a zero torque value. There are two torque signals to be mimicked, as

14

opposed to throttle where there are three position signals. Figure 13 explains how the torque

signals move when torque is applied.

Fig. 13. Steering signals sent to ECU for zero torque and a small experimental torque

Understanding how these messages work was required to write the subsequent control

code. This code takes a single input of a negative or positive bit value to offset each signal by.

This is the input that we will then use to map the left stick of the remote controller. Since this is

giving a torque command, PID control is necessary to give the steering wheel positional control,

so when the user lets go of the stick the steering wheel will return to its straight position.

15

Fig. 14. Steering Arduino Function

4.5 EMERGENCY STOP AND AUTONOMATION SWITCH

The car will have the ability to switch between autonomy and manual control via two

methods of input on the center console: the emergency stop (E-stop) button and the autonomy

switch. These are connected in series with the relay circuit, so that users will need to actuate both

inputs to enter autonomous mode, but just one to disable it. All signals being sent to the ECU and

the power for the stepper motor run through relays. Flipping these relays is the most direct way

to return the car to manual operation, giving the user control over all subsystems. A future

improved version of the emergency system might entail an immediate full-braking command or a

pull over and stop sequence. These are some semi-autonomous processes to be further developed

by future teams. A picture and diagram of the E-stop and autonomy switch are provided in

Figures 15 and 16.

16

Fig. 15. Emergency stop inputs: autonomy switch (left), E-stop button (right)

Fig. 16. Diagram for autonomy relays and E-Stop inputs

4.6 SENSOR SUITE

The Ford Escape came with two Blackfly S USB3 FLIR cameras, a 64 point LiDAR

system and two GPS units. The cameras are able to form point cloud images and will be used by

17

future teams to gather data to avoid obstacles, vehicles and pedestrians. The next step for the

cameras is to create a point cloud system represented as matrices from each camera’s feed. A

python code can be used to do this. The 64 point LiDAR system was replaced with a 128 point

system made by Ouster for more accurate recordings. The Ouster system uses a 24V power

supply and connects to the main computer using a USB to Ethernet cable. The LiDAR sensor

should remain unplugged when not in use, because if it remains plugged in it will continually

scan its surroundings and wear itself out. The sensor communicates to the computer using IPv4.

When the LiDAR is fully connected, open a terminal window and use the command:

ping -4 -c3 os-122148000210.local to activate it.

If this command runs and a package is sent and received, this indicates the sensor is

connected to the computer and is able to send and receive data. Once the sensor is connected it

needs to be configured, and will need to be reconfigured whenever disconnected from the main

power. The configure command is:

python3 -m ouster.sdk.examples.client os-122148000210.local configure-sensor

Once the sensor is configured, it is ready to collect and receive data using the command:

python3 -m ouster.sdk.examples.client os-122148000210.local live-plot-signal

This will broadcast a black and white image that will use the live data from the sensor.

The Ouster sensor data is able to be used by rvis and broadcast live data that will be used when

the car is made autonomous. To do this first enter catkin_ws/src. Run the command:

source ../devel/setup.bash

Then the command:

roslaunch outster_ros ouster.launch sensor_hostname:=10.5.5.50 udp_dest:=10.5.5.1

metadata:=metadata.json

18

Open rvis in a new terminal, add a point cloud by topic and change the fixed frame to

“os_sensor” this will pull up a live feed from rvis. Figure 17 shows the final imaging when the

above prompts are initialized successfully.

Fig. 17. LiDAR imaging taken in reactor room where car is worked on

4.7 SOFTWARE

The software suite on the Escape is meant to combine all of the concepts above into one

centralized computing environment. This was accomplished with the Robot Operating System

(ROS) middleware suite, which handles the operation of programs and the communications

between different programs in the suite. Doing so allows for quick and clear communication

methods between Python and Arduino files, as well as an external joystick and the car’s onboard

CAN bus system.

The software suite can be broken up into the 3 groups of hardware they reside on: the

CAN bus, the onboard desktop computer, and the Arduino Unos. The CAN bus is the car’s

19

onboard computer that allows the car’s many microcontrollers and devices to communicate. This

can be read using a PCAN to USB adapter that translates the CAN bus’ messages into

hexadecimals that the computer can read. The onboard computer houses many of the programs

that will be run for the operation of the car. This includes scripts such as the CanBusReader.py

script, which will decode the CAN messages, the joystickControl.py script, which will take input

from a user-controlled joystick, and the operator.py script, which will take the decoded CAN

messages and joystick input and decide what messages to send to the Arduinos accordingly.

Lastly, the Arduinos convert the messages from operator.py into voltages, which then are sent to

each subsystem to operate them. Once these systems change, their CAN messages will as well,

and operator.py compares the new CAN values with the joystick input to make sure everything is

operating properly. This is done using PID tuning, and is present on both the braking and steering

subsystems.

Using these feedback loops, every subsystem can be checked for accuracy. This is

especially important with the stepper motor for the brake, because, unlike the electrical systems

like the torque sensor for the steering or the potentiometers for throttle that are relatively easy to

set, this is a physical system. This means it is much more prone to error, such as a bad step from

the motor or a loose or slipped cable from the motor to the brake. If an event like this happens, it

will be immediately clear, as the CAN bus value for braking will not match the input value,

allowing the software to adjust the brake as necessary. A full software logic tree is provided in

Figure 18.

20

Fig. 18. Software system diagram

5 MATHEMATICAL AND NUMERICAL ANALYSES

5.1 MOTION MODEL COMPARISON

In order to validate the car’s motion systems, students decided to compare reactions to a

computer motion model of the car. Luckily, the Compositional Systems Lab at the University of

Arizona created a Gazebo plugin called “catvehicle” as a testbed for autonomy. The model used

is a Ford Escape (shown in Figure 19). This plugin features a controllable car model complete

with sensors. Both the motion model and the actual car were fed acceleration step inputs for

throttle, and the velocity of each system was measured in response. Trials were run at with inputs

21

of 8% throttle, 10% throttle, and 12% throttle, and the reaction was plotted for easy comparison

in Figures 20, 21 and 22 respectively.

Fig. 19. Catvehicle plugin on Gazebo

Fig. 20. Trial with 8% Throttle

22

Fig. 21. Trial with 10% Throttle

Fig. 22. Trial with 12% Throttle

Interestingly, the results showed that the real car has a smoother acceleration than the

simulated catvehicle. Overall, the car performs very similarly to the motion model, however

there is much more internal noise in the modeled system. The systems are expected to converge

more closely toward at cruising speeds because external factors like static friction have been

overcome and air friction has plateaued. This behavior is true of the 8% and 12% trials, however

the two systems failed to converge on our 10% trial.

23

5.2 PID TUNING

In order to minimize the error in brake position and eliminate jitter from the overall

motion, a PID controller was implemented. PID controllers require tuning to achieve the desired

motion, meaning that our Kp, Ki, and Kd constants must be adjusted in the calculation of the

output command. In order to tune our system, the brake controller was fed a constant step input

of reaching a brake position of 124 from an unpressed position of 127. There are several methods

of tuning a PID controller, but our team chose to follow the Ziegler-Nichols method. This

consists of first finding a system’s ultimate gain (Ku), or the Kp value that causes constant

undamped oscillation. Several equations relate Ku and its period of oscillation to the suggested

values for the constants. The relation used in our braking system can be found in figure 23

below.

Fig. 23. Ziegler-Nichols equations for a P and I term only

Results were recorded for a PID controller using just a proportional (Kp) term (Ki=Kd=0), and a

proportional and integral term (Kd=0). The trial with all three terms led to a worse result than

just P and I and, therefore, is not shown. Figure 24 shows the attempt of the system to reach a

brake position of 124 with a Kp (left) and a Kp and Ki value (right) found from the

Ziegler-Nichols method with a Ku of 40 and period of 3 seconds.

24

Fig. 24. PID Brake Test (124 position step input), Left: P only, Right: P & I only

The results show the improvement of the system dampening the oscillation after adding in the

integration term. Only two oscillations before reaching the setpoint is fairly good, although

further tuning may be beneficial for future teams to pursue.

6 EXPERIMENTAL VALIDATION

The braking and throttle systems were tested for response times in order to ensure that the

target specifications have been met for the car to be “safer than a human operator” as previously

quoted from the customer. Step inputs for a brake position of fully pressed and a throttle value of

25% were fed into both systems and the time of the response was measured in Figures 25 and 26.

25

Fig. 25. Braking test results

The black lines and dots above the data illustrate the two separate response times of the

system. The first two dots represents the time between the input given to the system and the

beginning of the system response. For braking, this response time was 0.13 seconds. The second

span of dots illustrates the time for the system to reach its desired state. These two response

times were summed to show the total response time from user input until system completion. The

total braking response time was 0.7 seconds. In fact, the human response time (moving foot from

throttle to brake) is 0.75 seconds, which makes the system safer than a human operator.

26

Fig. 26. Throttle test results

This test was repeated on the throttle system. The system response time was .72 seconds

(user input until system reaction), and the total response time was 5.22 seconds (user input until

reaching 25% throttle). Due to the nature of throttle response, it takes more time for the system

to reach the value specified by the step input.

7 OPERATIONS MANUAL

As a division of VICTOR Lab, we have developed this operations manual in order to

record the general operating procedures necessary for the safe handling of the drive-by-wire

2008 Ford Escape Hybrid outlined in the document. This document has been designed to outline

fundamental structure, development, and deployment of this system.

Before operating the system, it is essential to ensure that the 12V battery in the front of

the car is connected, and that the high voltage (HV) battery in the trunk of the car has the

27

disconnect switch turned to the locked position. The locked position will have the crossbar

handle of the switch sitting horizontal, as can be seen by the lock arrow close to the switch.

Fig. 27. Hybrid battery disconnect switch diagram

For the purpose of this description, it will be assumed that the car’s non-native electronics are

plugged into wall power via the power strip in the back of the car. To switch over to battery

power, first locate the strip, the computer, the power inverter (labeled ‘Pure Sine Inverter’), the

battery, and the switch in the back of the vehicle. Before unplugging the power strip, make sure

the computer is properly shut down. After this, unplug the strip from the wall and plug it into the

outlet on the side of the power inverter. The battery is connected to a pink plastic clip, which will

connect to a matching red clip connected to the car that should be located in the back of the

vehicle. Plug the battery’s pink clip into this red clip. Lastly, turn the safety switch (small gray

box) on using the red key zip-tied to the switch. Once this is complete, you should be able to turn

28

the inverter on using the small circular power button located next to the outlet, which will supply

power to the system.

Fig. 28. From left to right, front to back: Power strip, computer monitor, joystick, power

inverter, battery-kill switch, 12V battery, computer.

Next, make sure the Arduinos are connected to the car systems. There are 4 total pin

connections that need to be plugged into the arduinos. The pin connector with the red, yellow,

and green wires is for the braking system and should be connected to the arduino with a single

connector. The connector with the blue, yellow, black, and green wires is the throttle connector

and should be connected to the only 4-pin connector on the other arduino. The remaining two

3-pin connectors are both for steering. The one with a blue, purple, and black wire should be

29

connected to the middle pin connector. The last connector has blue, purple, and red wires and

should be connected to the final left 3-pin connector. Finally, the two blue cables attached to

extenders from the computer should both be connected to the arduinos.

Fig. 29. Pin connector locations

Make sure the CAN bus reader (white cable with a small box on it and a red light) is plugged

into the car near the driver seat and the computer as well. The system should now be

independently operable.

All software needed for the operation of the vehicle is located in the

catkin_ws/src/car_chassis_controller_s22 directory of the computer. All directories named

hereafter will be found in this directory, and so the catkin_ws/src/car_chassis_controller_s22

part will be left out of its location for brevity. The software is handled using the ROS middleware

suite, which means you do not need to be in this directory to launch the commands except for the

30

CanBusReader.py script, which has not been integrated into the launch file. Because of this, you

must be in the directory of CanBusReader.py to run the script.

To do this, turn the computer on and open a terminal window. Use the change directory

command (cd) to get into CanBusReader.py’s directory:

cd catkin_ws/src/car_chassis_controller_s22 /src/pcan

Open another terminal window in this directory by right-clicking on the current terminal window

and selecting “New Tab” or “New Window.”. You should now have two terminal windows

opened in the pcan directory. This is done because the CanBusReader.py script is not killable

with Control+C, so the terminal it is running in must be closed every time by right-clicking on it

and selecting “Close window” manually. To avoid having to change into CanBusReader.py’s

directory each time you close and reopen the terminal, you can cd into the directory in one

terminal, then use it to open another in the same directory.

Next, open the Arduino IDE. Open the Brake_Control and Steering_Throttle_Control

files, which are located in the src/arduino directory. Make sure that each of these files is

uploaded to the proper Arduino by uploading them and checking to make sure that the proper

Arduino flashes for each upload. The Steering_Throttle_Control file should be uploaded to the

Arduino with many DACs on it and the Brake_Control file to the Arduino with a single pin

connector for the stepper driver.

The next step is to make sure that the emergency stop button and autonomy switch are

disengaged. These are located in the center console of the car. The left E-stop button must be in

the up position (twist until it pops up) and the autonomy switch must be towards the right. Both

of these switches are wired in series so both need to be in the right position to send signals to the

car. Engaging either system cuts power to the relays and returns manual control of the vehicle.

31

The E-stop button doesn’t automatically stop the car; user intervention is necessary. The

following is the most important instruction in the user manual. If the E-Stop needs to be flipped

during operation, it is imperative to not turn the autonomy back on without first turning the car

off. The E-stop and autonomy switch need to be in the correct positions before the car is turned

on. Turning autonomy on while the car is on sends a voltage spike to the systems that can burn

out the motor in the power steering assembly.

In one terminal, write but do not run the command roslaunch car_chassis_controller_s22

car.launch. In the other terminal, write but do not run python CanBusReader.py. The launch file

will run all necessary programs for teleoperation including operator.py, rosserial for Arduino

communication, and joystickControl.py. CanBusReader.py will decode the CAN messages and

send them to operator.py.

Run the car.launch command. You should see ROS start up, some information text, and

then a line saying “Controller Not Connected: Press A.” Before pressing A, press both triggers a

few times and spam a few buttons like the D-pad and joysticks. This helps to establish the

communication between the joystick and the computer and reset the potentiometers in the

joystick. After this, press A. The message should change to “ BRAKE NOT ZEROED.” Now you

can run the CanBusReader.py command. You should see this terminal window begin to print

CAN values, and eventually the other terminal window will say “Brake Zeroed.” Once this is

printed, the car should be ready for teleoperation. Remember to press the brake before taking the

car out of park. The operation of the car uses the left trigger for brake control, right trigger for

throttle, and the left stick for steering.

To stop the autonomous driving mode, stop the car using the brakes and put it into park.

Kill the car.launch terminal with Control+C, and then close the CanBusReader.py terminal by

32

right clicking and selecting “Close.” To return the car to non-autonomous mode, press the

emergency stop and flip the switch from autonomous mode to non-autonomous mode. Again, it

is imperative to turn the car all the way off before switching it back into autonomous mode.

8 CONCLUSIONS AND FUTURE WORK

The team was able to accomplish its main goals and successfully completed a test drive

of the system. External electromechanical and wiring systems that allow for the control of the

car’s steering, brake, and throttle systems have been installed. Software to interface with the

external control system, the joystick controller, and the car’s internal CAN bus for the

teleoperation of the car have been created. PID controllers to allow for feedback control of the

steering and braking systems using data from the CAN BUS have been designed. The sensor

suite for LiDAR, GPS, IMU, and depth cameras have been mapped and designed. All

subsystems are controlled together, meaning the car is now fully drive-by-wire, and is able to

drive on the road, albeit slowly and safely in a parking lot.

Future work on the system involves several small fixes to make the system more reliable

with more safeguards to prevent damage. Adding the functionality to account for user input in

the steering wheel during operation and adding components to the relay circuit to prevent the

spike in voltage when the system is turned on are some examples that will help future teams.

However, future work on the car will primarily involve making the car fully autonomous. The

first step of this process will be in creating more reliable PID controllers for steering, throttle,

and braking. Once these subsystems can be more accurately controlled with an external

controller, sensors can begin being integrated into the system. This sensor data can be used to

33

create semi-autonomous processes such as self-parking and speed control by interpreting data

from the outside world. Once enough semi-autonomous control loops are integrated into the

system future teams can create more autonomous features and eventually a fully autonomous

vehicle. It is imperative for future teams to more accurately control the integral driving

subsystems and convert the data points recorded by the sensors into a complete image of its

surroundings in order to perform logical processes.

34

Appendix

Appendix A: QFD Chart

35

Appendix B: Concept Generation- Functional Decomposition

36

Appendix C: Concept Generation- Different Solutions for Braking

Appendix D: Concept Generation- Different Solutions for Throttle

37

Appendix E: Concept Generation- Different Solutions for Steering

Appendix F: Concept Generation- Other Solutions Info

The Carnegie Mellon Boss, a Chevy Tahoe, did have steering, throttle, and brakes controlled with

actuators. It was mentioned that normal driving controls are available in case of emergency override, so it

is implied that sensors to detect override are present. For internal processing and data computation, the

Boss uses a CompactPCI Chassis with 10 Core2Duo Processors.

The Stanford Stanley, a Volkswagen Touareg R5 did have steering, throttle, and brakes mechatronics

controlled with actuators. Processing was done internally in the car with a system of external computers

running Linux software hidden in the trunk. Linux was used due to its excellent networking and time

sharing capabilities. Race software was executed on three of the six computers, with the fourth computer

to log race data, leaving two idle computers. One of the race computers handled solely video processing

and the other two race computers executed all other software polling the sensors and controlling the

38

brake, steering, and throttle. There was no mention on whether sensors to detect manual override were

present (other than an E-stop button), if there was an intuitive graphical interface to show processing, or a

physical controller.

MIT’s Talos vehicle, a Land Rover LR3, includes servos for throttle and brake actuation. The car has a

“Situational Planner” interface, which does show vehicle decision making ahead of time. Processing is

done on a Quanta blade server computer system. It was mentioned that there is a “proven and safe

method” for switching between manual and autonomous driving, but it is unclear whether it is some sort

of E-stop or sensors on the throttle, brake, or steering themselves. There was no mention of a physical

controller.

Virginia Tech’s Victor Tango car is a Chevy Volt. Very limited information was found about the car but

from what was gathered, the steering and throttle/brake systems are not controlled with actuators, but

computing was done internally.

Some autonomous vehicles that are currently in the industry include Volvo’s driveMe system and

NuTonomy’s driverless taxi. Both had steering, brake, and throttle systems controlled by actuators, as

well as internal secure processing (nuTonomy used machine learning) but did not have sensors to detect

override other than an E-stop.

39

REFERENCES

Kottayil, N. K. (Ed.). (2021, August 24). What is an autonomous vehicle? - definition from
Techopedia. Techopedia.com. Retrieved March 21, 2022, from
https://www.techopedia.com/definition/30056/autonomous-vehicle

Laukkonen, J. (2020, February 13). Take a ride in Waymo's self-driving car. Lifewire. Retrieved
March 29, 2022, from https://www.lifewire.com/waymo-self-driving-cars-4171314

PID theory explained. National Instruments. (2020, March 17). Retrieved May 8, 2022, from
https://www.ni.com/en-us/innovations/white-papers/06/pid-theory-explained.html

Schwall, M., Daniel, T., Victor, T., Favarò, F., Honhold, H., (2020). Waymo public road safety
performance data.
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Public-Road-Safety-Performan
ce-Data.pdf

Shipley, D. (2021, November 17). A Trucker Shortage? Bring on the Robots. Bloomberg.com.
Retrieved February 24, 2022, from
https://www.bloomberg.com/opinion/articles/2021-11-17/autonomous-vehicles-could-solve-the-u
-s-truck-driver-shortage

Wevolver. (2020). 2020 autonomous vehicle technology report Wevolver. Retrieved from
https://www.wevolver.com/article/2020.autonomous.vehicle.technology.report

Jmscslgroup. (2013). Jmscslgroup/catvehicle: A macroscopic multivehicle tesbed and
hardware-in-the-loop simulator for autonomous driving. GitHub. Retrieved from
https://github.com/jmscslgroup/catvehicle

40

https://www.techopedia.com/definition/30056/autonomous-vehicle
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Public-Road-Safety-Performance-Data.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/Waymo-Public-Road-Safety-Performance-Data.pdf

