
PERSONALIZING FEDERATED LEARNING USING META-LEARNING 

 

A Technical Report submitted to the Department of Computer Science 

 

 

 

Presented to the Faculty of the School of Engineering and Applied Science 

University of Virginia • Charlottesville, Virginia 

 

 

 

In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 

 

 

 

 

Matthew Whelan 

Spring, 2023 

 

 

 

On my honor as a University Student, I have neither given nor received unauthorized aid on this 
assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

 

Aidong Zhang, Department of Computer Science 

 

 

 



Abstract—Federated learning (FL) has emerged as a promising
approach for collaborative training of machine learning models
in distributed environments, where data is decentralized across
multiple devices. This paper presents a study on the implemen-
tation and comparison of two commonly used algorithms in
FL: Federated Averaging (FedAvg) and Personalized Federated
Averaging (Per-FedAvg). FedAvg serves as the baseline algorithm,
while Per-FedAvg is an extension that aims to find the optimal
solution for the federated learning problem. The performances
of both algorithms are evaluated and compared in terms of
convergence rate, accuracy, and communication efficiency. The
experiments are conducted on a diverse set of distributed
datasets, with consideration given to the heterogeneity of devices
and data characteristics. The results demonstrate that Per-
FedAvg exhibits improved performance over FedAvg in various
scenarios, showcasing its potential as an enhanced algorithm
for personalized federated learning. This study contributes to
the advancement of federated learning methods and provides
insights into the benefits of personalized algorithms in distributed
machine learning settings.

I. INTRODUCTION

Machine learning has been widely recognized as a powerful
tool for solving complex problems across multiple domains.
This is due to its ability to recognize patterns and learn from
data which surpasses human performance at comparably low
costs. However, there is a significant limitation to traditional
machine learning methods: the requirement for large amounts
of centralized data to train models. This can be a major
challenge in distributed environments where data is spread out
across multiple devices and cannot be easily aggregated in one
location.

To address this challenge, federated learning (FL) has
emerged as a promising approach that allows multiple parties
to collaboratively train a model without sharing their data
directly with each other. Federated learning distributes the
model’s training across the devices that contain the data,
instead of centralizing the data to train the model. This reduces
communication cost, as training can be done locally and only
model updates need to be communicated to the server. The
central server then aggregates the model updates to modify
the global model and communicates back the changes, which
greatly reduces amount of data needing to be transferred
between the client and server. Thus, federated learning can
significantly reduce privacy risks and data transfer costs while
enabling scalable and flexible machine learning. As low energy
devices and privacy concerns become more prevalent, feder-
ated learning is gaining interest as an alternative to traditional
centralized machine learning.

However, federated learning poses its own unique chal-
lenges. The main challenge is heterogeneity of devices and
data, as the decentralized setting can include a wide variety of
different device hardware and data characteristics. For exam-
ple, natural language processing (NLP) models are generally
trained on mobile devices, namely for next-word keyboard
prediction. Training data in this context, i.e. every word a
user types on their keyboard, is privacy sensitive and can
vary drastically from person to person. Further, since the data
is based on the usage of the user, the data is likely to be

Fig. 1. Federated Learning Setting for Next-Word Prediction

non-independent and identically distributed (non-IID) across
devices. Additionally, some users can have much heavier usage
patterns than others, leading to unbalanced amounts of data
from user to user.

The research conducted in this paper is a part of a National
Science Foundation (NSF) grant under the guidance of Profes-
sor Aidong Zhang. This research hopes to progress towards the
overall goal of implementing a multi-party learning framework
to support data sharing in a distributed environment. To help
further this goal, this paper implements a commonly used
algorithm in FL, FedAvg, Federated Averaging, as a baseline.
This paper also implements Per-FedAvg, Personalized Feder-
ated Averaging, an extension of FedAvg, and compares the
performance of both algorithms.

II. BACKGROUND

Federated Learning
As mentioned previously, FL is a distributed machine learn-

ing paradigm that allows multiple clients to collaboratively
train a global model without sharing their local data with a
central server. To formally expression this scenario, consider
a federated learning problem in the cross-silo setting, where
the objective is to minimize the following function:

min
w∈Rd

f(w) =
1

N

N∑
i=1

fi(w) (1)

Here, fi(w) = ℓ(xi, yi;wi) where this calculates loss
of predicting the true label yi for the input xi made with
parameters w for client i out of the N total clients. As such,
f(x) calculates the average of the local model parameters in
order to capture the collective knowledge of all devices.

FedAvg
In terms of its algorithmic implementation, Federated Aver-

aging [1] dictates a global model is to be trained by averaging
the local models from each device or node, regardless of their
individual characteristics or preferences. This is generally done
in a distributed environment, where data is spread out across
devices and the data is kept private.

The general steps behind FedAvg include the following:
1) Initialization and Client Selection: central server initial-

izes a global model and a set of clients is selected to
participate in each round of federated learning.



2) Local Model Training: each selected client downloads
the current global model from the central server and
trains the model locally using its own data. This is
performed using local optimization algorithms such as
Stochastic Gradient Descent (SGD).

3) Local Model Update: after local training, each client
generates as a model update that represents the changes
made to the local model during training, which can be
in the form of model parameters, gradients or other
information.

4) Model Aggregation and Global Model Update (FedAvg
Step): Client model updates are sent to the central server
for aggregation using the FedAvg algorithm, where the
weighted average of the updates replaces the previous
global model

5) Iteration: Steps 2-4 are repeated for multiple rounds,
so that the global model can be iteratively improved
through collaboration until the global model converges
or reaches the maximum specified number of rounds

Per-FedAvg
Personalized Federated Averaging [2] is an extension

of the FedAvg algorithm, meaning it allows each client to
have its own personalized model by utilizing a global, meta
model. This meta model leverages the collective knowledge
and insights gained from the base models to improve overall
performance. The premise is current or new clients can adapt
this meta model to their own local dataset by performing one
or a few steps of gradient descent, known as few-shot learning.
In this way, prior knowledge from a larger set of related clients
can be leveraged to learn how to quickly adapt to new clients
with only a few training examples.

This process is done through using the Model-Agnostic
Meta-Learning (MAML) problem formulation discussed in [3]
using a two step procedure. The first step is the inner loop
(personalization step), where the model is exposed to a few
training examples from a specific task and performs gradient
updates to adapt its parameters. The second step is the outer
loop (global update step), where the updated parameters are
fine-tuned for a specific task based on the performance from
the previous step to optimize fast adaption across tasks.

Since this algorithm relies on few-shot learning principles,
to simplify the problem expression, we assume each user takes
the initial model and updates it using one step of gradient
descent with respect to its own loss function. As such, the
problem formulated in (1) changes to:

min
w∈Rd

F (w) =
1

N

N∑
i=1

fi(w − α∇fi(w)) (2)

where α ≥ 0 is the learning rate or step size. This problem
formulation allows for the convergence upon a meta-model
which is trained in a way that one step of local gradient
leads to a good model for every individual user. Per-FedAvg
follows a similar scheme as FedAvg for solving equation (2);
as detailed in [2], the first step is to compute the gradient of
local functions - the gradient ∇Fi:

∇Fi(w) = (I − α∇2fi(w))∇fi(w − α∇fi(w)) (3)

where ∇2fi(w) represents the Hessian matrix, which is
comprised of second-order partial derivatives of fi(w). Cal-
culating the Hessian matrix can be very computationally
expensive, so Per-FedAvg uses two different approximation
techniques.

The first follows the concepts in First-Order MAML (FO-
MAML) in [3], which replaces the gradient estimation with its
first-order approximation therefore ignoring the Hessian term
(I−α∇2fi(w) term). This is referred to as Per-FedAvg (FO).

The second technique follows the idea of HF-MAML, pro-
posed in [4], where the Hessian-vector product in the MAML
global update step (second step) is replaced by difference of
gradients using the following approximation:

∇2ϕ(w)u ≈ ∇ϕ(u+ δv)−∇ϕ(u− δv)

δ

This is referred to as Per-FedAvg (HF).

A. Related Work
There are many other significant advancements being made

in the FL space that address its main challenges.
As referenced earlier, meta-learning, also known as ”learn-

ing to learn,” is a subfield of machine learning that focuses on
algorithms that can learn from and generalize across multiple
interrelated learning tasks. The goal of meta-learning is to
enable models to acquire knowledge or prior experience from
a set of related tasks, allowing them to quickly adapt and
perform well on new, unseen tasks. One popular meta-learning
algorithm, ARUBA, incorporates adaptive regularization dur-
ing the training process, which is shown to improve the
performance of the FedAvg algorithm [5].

Another related subarea is multi-task learning, where multi-
ple related tasks are split between clients to be jointly learned
and optimized to achieve personalization. MOCHA [6] is
a federated learning algorithm that presents a solution to
overcome data heterogeneity and communication efficiency.
Instead of treating each client as an independent learning
task, MOCHA leverages multi-task learning techniques to
collaboratively learn a set of separate but related models
simultaneously across clients. This algorithm is the first of
its kind to address certain statistical and systems challenges
within the distributed multi-task learning setting, such as
high communication cost, stragglers, and fault tolerance. The
methods introduced in this paper were studied in detail, formed
a foundational set of knowledge for this research and remain
a topic of interest in future extensions of this work.

III. APPROACH

In terms of actual implementation, this project utilized
PyTorch, a widely used machine learning framework, within
a Python runtime environment. To facilitate the simulation of
federated learning runs, the research leveraged the distributed
communication package torch.distributed. This package en-
abled the distribution of the training process across multiple



GPUs within a single machine, harnessing parallel processing
capabilities for improved performance and a more realistic
testbed than traditional single-processor configurations.

To execute runs of the algorithms, the suite, created by
Xidong Wu of University of Pittsburgh, uses the argparse
package to convert command line arguments to code. This
allows for customization of key parameters, such as the
learning rate (α), momentum rate (β) and specifying if using
the Hessian approximation. The suite incorporates many func-
tions, including partition_dataset(), to partition and
modify the heterogeneity of the dataset. The suite provides
all of the necessary neural network models (using PyTorch)
for compatibility with the supported datasets. The datasets
supported include MNIST, FashionMNIST and CIFAR-10, all
with three separate settings for heterogeneity [7]. In the first
level (0), all clients share the same data so each client is
homogenous. In the second level (1), each client has class data
and divides it equally across clients, simulating a middling
heterogeneity scenario. In the third level (2), each client has
partial class data that is not divided equally among clients,
which simulates high heterogeneity.

As stated previously, Per-FedAvg uses few-shot learning
principles to frame the problem such that each user takes the
initial model and updates it using one step of gradient descent
with respect to its own loss function. Normally, the algorithm
is tested with respect to the test data for performance evalua-
tion either directly before or after a communication round, i.e.
when the model aggregation between clients occurs. But, for
Per-FedAvg, a helper function, train_one_step(), runs
one step of stochastic gradient descent with respect to the test
data before evaluating the model on the test dataset.

The suite along with all other code for this project is avail-
able at https://github.com/matthewhelan/Federated-Learning.
Xidong Wu’s expertise and efforts in developing the suite have
been instrumental in enabling the customization and execution
of these algorithms [7].

IV. RESULTS

The three algorithms focused on are FedAvg, Per-FedAvg
(FO) and Per-FedAvg (HF). For a fair comparison, the out-
put of the FedAvg method is updated with one step of
stochastic gradient descent with respect to the test data, using
train_one_step(). This is because both of the Per-
FedAvg implementations utilize this function to personalize
the model before evaluation.

In determining run scenarios for these algorithms, a few key
variables are available to modify. First, to change the total
amount of clients simulated, the --worker-size, repre-
senting N , is varied between 2 and 10 to simulate different
client scenarios. Second, the --lr, α, is varied from 0.01
and 0.001 to change the convergence speed and robustness.
For consistency, the neural network design and non-specified
hyperparameters are unchanged. The test accuracy results
along with the 95% confidence intervals are shown in Table 1
for the MNIST dataset with low heterogeneity.

TABLE I
COMPARISON OF TEST ACCURACY IN PERCENTAGE (%)

Hyperparameters FedAvg Per-FedAvg (FO) Per-FedAvg (HF)
α = 0.01, N = 2 87.02 ± 0.02 89.81 ± 0.04 94.74 ± 0.03
α = 0.01, N = 10 84.85 ± 0.01 90.62 ± 0.07 96.23 ± 0.06
α = 0.001, N = 2 89.54 ± 0.03 93.92 ± 0.03 95.63 ± 0.06
α = 0.001, N = 10 84.14 ± 0.05 93.72 ± 0.03 97.17 ± 0.03

There are a few main key takeaways that can be gathered
from Table 1. The first is the personalized variants of FedAvg,
Per-FedAvgs, perform better than FedAvg for all test scenarios.
For increasing α from 0.001 to 0.01, there is a marginal
decrease in performance, but not substantial. But, in the
case of Per-FedAvg (FO), the performance seems to decrease
the most when increasing α, a trend also noted in [2]. For
increasing N from 2 to 10, there is a slight, but not consistent
decrease in performance. Overall, it’s clear that Per-FedAvg
(FO) generally performs better than FedAvg and Per-FedAvg
(HF) generally performs the best out of all methods.

In other test runs changing the heterogeneity, similar trends
can be found. Per-FedAvg (HF) consistently outranked the
other methods, with Per-FedAvg (FO) continuing to struggle
greatly with higher α values, when compared to Per-FedAvg
(HF). One reason why Per-FedAvg (HF) seems to outperform
Per-FedAvg (FO) in these runs is because of its tendency to
adapt better to user data. This method seems to better capture
the characteristics of each client’s distribution, resulting in
improved personalized solutions.

The CIFAR-10 dataset runs give interesting insights. Since
this dataset is much larger and more complex than the MNIST
dataset, the accuracies gained are much lower than the values
shown in Table 1. But, as a result of this, Per-FedAvg achieves
a much more significant gain on the other methods. These
results are also consistent with the FashionMNIST dataset
runs. Figure 2 shows how Per-FedAvg (HF) seems to converge
fastest to the optimal solution and seems to achieve the best
test accuracy out of the three methods in a scenario with
α = 0.01 and N = 2 under a low heterogeneity setting.

Fig. 2. Comparison of Test Accuracy on FMNIST dataset

Thus, it seems like the Hessian approximation, or lack
thereof, makes a difference in the Per-FedAvg implemen-

https://github.com/matthewhelan/Federated-Learning


tations. Per-FedAvg (HF) utilizes an approximation of the
Hessian-vector product, replacing it with a difference of gra-
dients. Evidently, this approximation is generally much more
accurate than the complete omission of an approximation in
the case of Per-FedAvg (FO). This means a more efficient
computation of the Hessian information, which can lead to
faster convergence and better optimization performance over-
all.

V. CONCLUSION

This paper focuses on the Federated Learning (FL) problem
and its related challenges in a distributed setting. Specifically,
this paper looked at the implementations of two popular
FL algorithms: FedAvg and Per-FedAvg. FedAvg serves as
the baseline algorithm, while Per-FedAvg is an extension
designed to address the specific challenges of the FL problem.
The two relevant versions of Per-FedAvg include Per-FedAvg
(FO), which ignores the second-order (Hessian) term, and
Per-FedAvg (HF), which uses an approximation technique to
estimate the Hessian term.

The study evaluates and compares the performance of both
algorithms for various distributed datasets, taking into account
the heterogeneity of devices and data characteristics. The
experiments reveal that Per-FedAvg outperforms FedAvg in
multiple scenarios, demonstrating its potential as an improved
algorithm for personalized federated learning. Further, the
results also show that Per-FedAvg (HF) is the best performing
method out of the two Per-FedAvg methods due to its better
approximation, tendency to adapt to user data and ability to
handle larger learning rates.

The findings contribute to the advancement of federated
learning methods by highlighting the benefits of personalized
algorithms in distributed machine learning settings. The study
provides valuable insights into the performance of different FL
approaches and their implications for practical applications. By
addressing the limitations of traditional FL algorithms, Per-
FedAvg (HF) offers a promising solution for achieving more
efficient and accurate collaborative learning in decentralized
environments.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Xidong
Wu and Jianhui Sun from the University of Pittsburgh and
University of Virginia, respectively, for the invaluable support
and guidance throughout my undergraduate research. I would
also like to extend my thanks to Professor Aidong Zhang
for her continuous support, mentorship, and encouragement,
and the National Science Foundation (NSF) for funding this
project.

REFERENCES

[1] McMahan, B., Moore, E., Ramage, D., Hampson, S., and Aguera y Ar-
cas, B. (2017). Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics (AISTATS).

[2] Fallah, A., Mokhtari, A., and Ozdaglar, A. (2020). Personal-
ized federated learning: A meta-learning approach. arXiv preprint
arXiv:2002.07948.

[3] Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of the
34th International Conference on Machine Learning (pp. 1126–1135).
Sydney, Australia.

[4] Fallah, A., Mokhtari, A., and Ozdaglar, A. (2020). On the convergence
theory of gradient-based model-agnostic meta-learning algorithms. In
International Conference on Artificial Intelligence and Statistics (pp.
1082–1092).

[5] Khodak, M., Balcan, M.-F. F., and Talwalkar, A. S. (2019). Adaptive
gradient-based meta-learning methods. In Advances in Neural Informa-
tion Processing Systems (pp. 5915–5926).

[6] Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. (2017).
Federated multi-task learning. In Advances in Neural Information Pro-
cessing Systems (pp. 4424–4434).

[7] Wu, X., Huang, F., Hu, Z., and Huang, H. (2023). Faster Adaptive
Federated Learning. Retrieved from https://arxiv.org/pdf/2212.00974.pdf


	7b3835ab-f249-4ab6-acb0-069d6d8b161e.pdf
	Introduction
	Background
	Related Work

	Approach
	Results
	Conclusion
	References


