
Using Context Free Grammars to Generate SQL Questions

Jared Conway* and Nada Basit

ABSTRACT
This paper showcases the limitations of current SQL
practice approaches, both in server architecture and
implementation. The technical project works towards
resolving these limitations by providing a fully client-sided
website to help students practice SQL. By providing a client
only architecture rather than the traditional server-client
approach, queries are guaranteed to be sandboxed, and the
necessity for reliable WiFi becomes nearly nonexistent. This
is in part an extension of the SQL Injection platform first
presented in 2019 [1], with more focus on practicing SQL
queries than SQL injection attacks. Such practice involves
basic keywords, including WHERE, HAVING, and GROUP
BY as well as aggregates. This approach implements
modified context free grammars for constructing questions
and example answers, including variables for aggregates
and GROUP BY.

CCS CONCEPTS
• Theory of computation → Formal languages and
automata theory; • Applied computing → Education;

KEYWORDS
SQL; education; context free grammar; question generation

1 INTRODUCTION
Experiential learning, otherwise known as “learn-by-doing,”
is defined as the “sense-making process of active
engagement between the inner world of the person and the
outer world of the environment” [2]. Some schools, such as
UVA, even have sections that talk more about how their
curriculums offer experiential learning due to how effective
of a learning strategy it is [3].

One such concept that is particularly useful to learn
using experiential learning is SQL, or Structured Query
Language. SQL is used in software development whenever
large amounts of data needs to be stored, updated, read, or
deleted. Many companies, such as Oracle, rely on SQL
during their day-to-day operations, so knowledge of SQL
can be vital when joining the workforce.

Due to SQL being a programming language, practice
can be done with a computer instead of on paper.
Approaches which use computers have the benefit of being
more extendable and reusable than paper methods. Instead
of instructors using paper and ink to print physical
assignments for each student, students can instead use their
electronic devices to access and complete online
assignments. Additionally, instead of printing a page for
every new assignment, the instructor only needs to add a
new section to the already existing website. Such
assignments may even have an autograde feature, allowing
students to check the correctness of their SQL queries in
real time.

2 RELATEDWORK
Many websites have been able to leverage these benefits in
order to help people learn SQL. One such website is the
SQL Injection platform this technical project extends. That
platform implements a server-client architecture which
allows users to submit SQL queries which exploit the
website’s vulnerabilities and inject malicious SQL. The
intention of the platform is to show students how bad actors
can bypass their security features, as well as underscoring
the importance of always checking user queries [1]. One
downside, however, is that some assignments require an
administrator to reset the database after usage, meaning it is
unable to be fully reusable.

An alternative approach which resolves this issue is to
use a regex, or regular expression, instead of allowing the
user to run a real SQL query. Typically, these approaches
have a set of pre-made questions and ask the user to fill in a
blank to complete the query, w3schools being one such
website [4]. After the user fills in the blank, the system
checks to see if their answer matches the correct answer; if

1

so, the user is right, and if not, the user is wrong. Although
sites like this do offer an environment that allows users to
run SQL queries, the exercises do not take advantage of
these environments. These sites are tailored more towards
people new to SQL, but not those who already understand
keywords and wish to consolidate what they already know.
Additionally, as SQL is a programming language, there is
not necessarily always one correct answer for any query;
therefore, a simple regex approach would only be able to
check one correct answer, but not alternatives which return
the same query.

3 OVERVIEW
In order to have an approach which is both extendible and
reusable, we present our own website which is capable of
generating SQL practice questions, adapting context free
grammars with constructing questions and answers. Similar
to the Injection platform, our website allows users to input
any SQL query into a textbox to be run and checked. Unlike
the platform, this query is run on the client rather than on
the server, meaning an administrator does not need to reset a
database every time someone drops a table. Besides sending
the client HTML and Javascript, there is no backend
required for this approach. A pleasant side effect of using a
frontend only architecture is that users are capable of
running queries on unreliable or nonexistent WiFi, assuming
their internet browser is capable of caching the webpage, as
there is nothing to send to the server.

Figure 1: Example Generated SQL Question and Answer.
The user is able to type SQL in the bottom box, and click

“Run” once they are finished.

Figure 2: Correct SQL Query. The question is replaced with
the word “Correct!” and the user’s query flashes green.

This approach has additional benefits over the regex
approach as its implementation is capable of accounting for
all valid queries instead of just one. Instead of comparing
the input values, our implementation compares the outputs
the generated answer produces with the submitted answer.
By comparing outputs instead of inputs, our system is able
to treat any query submitted by the user as a black box - as
long as the query has the correct behavior, it does not matter
what goes on “under the hood.” This allows users to use
more advanced methods, such as subquerying, to see how
different approaches to the same problem can be performed.

4 IMPLEMENTATION
The approach is based on context free grammars, with the
addition of a variable x1. Both questions and answers have
similar, but distinct grammars. Let ε denote an empty string.

4.1 QUESTION GRAMMAR
Each question generated using this approach is of the form:
S → “Find” [A | B [C | ε][D | ε]] “.”
A → [[“all distinct” | “the amount of distinct”]

W [C | ε] | “the amount of each distinct” W
[C | ε][D | ε]]]

B → “the” X Z “of each” Z
C → “whose” Z [“is not” | “is” | “is less than”

| “is greater than”] [value] [“and” C | ε]
D → “, having its” X Y be at least 0
W → [[table name] | Z]
X → [“average” | “minimum” | “maximum”]
Y → [table name] [column name (integer only)]
Z → [table name] [column name]

2

4.2 ANSWER GRAMMAR
Each example answer generated using this approach is of
the form:
S → “SELECT” [T | U] “;”
T → [“DISTINCT” Z A | [“COUNT(DISTINCT” Z “)”

A | “DISTINCT” x1 “, COUNT(*)” B]]
U → [x1 “,” V B | V A]
V → [“AVG(” | “MIN(” | “MAX(”] Z “)”
A → “FROM Cars NATURAL JOIN Register”

(“WHERE” C | ε)
B → A “GROUP BY” x1 (“HAVING” D | ε)
C → Z (“!=” | ”==” | ”<” | ”>”) [value]

(“ and” C | ε)
D → X “> 0”
X → [“AVG(” Y “)” | “MIN(” Y “)” | “MAX(” Y “)”]
Y → [table name].[column name (integer only)]
Z → [table name].[column name]

4.3 QUERY VALIDATION
After generating the question and example answer, the user
is given the question, and the answer query is run in the
browser using alasql.js. The resulting table from the query is
stored in local memory to be used later. After the user
submits their own query, their SQL is again run using
alasql.js. To check for correctness, the saved table and the
user’s table is compared using a compiled statement in
Javascript:
var c = alasql.compile('SELECT VALUE ? == ?');
Then, the correct output and the user output can be
compared using:
var correct = c([user_output, correct_output]);

Assuming the outputs match and are in the correct
order, correct has a value of true after the user submits
their code, regardless of whether or not it is identical code to
the example answer. After this value is set, the system tells
the user if they are correct if this value is true, or wrong if
false. The user may attempt any question as many times as
they need, and can continue to submit SQL queries even
after they get a question correct. Once the user wants to
move on to a new question, they may select “Next” to
generate a new question and answer using the above
automatas.

4.4 TABLE GENERATION
To supply both example and user queries with data, the
environment is populated with two tables: Cars, and
Register. To save on storage, both tables are generated at
runtime using the following Javascript:

alasql("CREATE TABLE Cars (VIN INT, color
STRING, price INT, brand STRING)");

alasql("CREATE TABLE Register (VIN INT, state
STRING, date INT)");

for (let i = 0; i < 5000; i++) {
alasql("INSERT INTO Cars VALUES (?, ?, ?,

\'brand\')", [i, colors[Math.floor(Math
.random() * colors.length)], Math
.floor(Math.random() * 2000) + 5000])

alasql("INSERT INTO Register VALUES (?, ?,
?)", [i, states[Math.floor(Math.random()
* states.length)], Math.floor(Math
.random() * 100) + 1990])

}

5 RESULTS AND FURTHERWORK
The repository can be located at https://github.com/
Jar3dC0nway/SQLilly. The current system supports 2
tables, Cars and Register. Both schemas are available under
the “Schema” button which can be toggled at any time.
Additional tables would add more variety to the questions
asked, and would make the questions less repetitive.
Allowing users to submit their own tables would further add
variety to the system, and could allow users to practice with
data they know about. Such tables could be added in two
different ways. The first is to allow users to add tables using
pure SQL. The system could then detect the table names,
data types, and foreign keys as this information should be
included with the CREATE TABLE statement. An
alternative approach is to allow the users to specify the
schema and range of values for each column, similar to how
Cars and Register is created.

Figure 3: Schema Statements. Clicking the Schema button
will show the schema of the two tables over the answer box.

3

https://github.com/Jar3dC0nway/SQLilly
https://github.com/Jar3dC0nway/SQLilly

Each question can ask a maximum of 2 WHERE
conditions, 1 GROUP BY, and 1 HAVING condition. There
is currently no way to toggle which conditions the user
wants to practice, but this is feasible to implement given the
modular nature of the automatas. Additionally, when the
user gets a question wrong, the system does not help the
user in any way other than telling them they are right or
wrong. Informing the user on information, such as how
many extra rows they have or rows they are missing, could
be one way to help users from remaining stuck.
Alternatively, the user could choose to reveal the correct
answer after 3 attempts, or reveal part of the correct answer.

The only aggregates being used are minimum,
maximum, average, and count, although more would likely
be needed. Other types of queries, such as CREATE or
INSERT, would need their own automatas in order to be
implemented in this approach. Additionally, such queries
would need to reconstruct each set of tables after running
either example SQL or user SQL. As tables are generated at
runtime, the same code used to construct the tables could be
reused for reconstruction.

REFERENCES
[1] Nada Basit, Abdeltawab Hendawi, Joseph Chen, and
Alexander Sun. 2019. A Learning Platform for SQL
Injection. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (SIGCSE '19).
Association for Computing Machinery, New York, NY,
USA, 184–190. https://doi.org/10.1145/3287324.3287490
[2] Colin Beardon and John P. Wilson. 2013. Experiential
learning a handbook for Education, training and coaching
London: Kogan Page. Retrieved from:
https://ebookcentral-proquest-com.proxy1.library.virginia.ed
u/lib/uva/reader.action?docID=1318826&ppg=12#
[3] UVA. 2024. Mayo Center - Experiential Learning, UVA
Darden School of Business. Retrieved from:
https://www.darden.virginia.edu/mayo-center/experiential-le
arning
[4] W3Schools. 2024. W3Schools Online Web Tutorials.
Retrieved from:
https://www.w3schools.com/sql/sql_exercises.asp

4

