
iOS Development: Creating A Command Line Tool to Auto-Generate

Boilerplate Code

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Alex Chan

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

iOS Development: Creating A Command Line Tool to Auto-Generate

Boilerplate Code

CS4991 Capstone Report, 2022

Alex Chan

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

ac5ug@virginia.edu

Abstract

Capital One Financial Corporation, an American

bank holding company, wanted to increase

production of its iOS feature developers by

replacing its inefficient, manual process of writing

repetitive code for plugin request files with a tool

that automatically generated such code. I worked

with a team and created a command line tool that

generates boilerplate code for the API request file

of a given plugin. I learned to use Apple’s

integrated development environment Xcode and

programming language Swift, the version control

software GitHub, and code generation framework

SwiftGen. Additionally, I studied the iOS

environment, worked through an agile process,

and constantly communicated with my team to

ensure the success of the project. As a result, I

developed a minimum viable product that speeds

up the request file creation process by roughly

85%. There are plans to further improve upon the

base product, to allow more unique plugins to

utilize the command line tool, as well as expand a

similar concept for Android development.

1. Introduction and Background

With over 5.6 million reviews on the Apple app

store, Capital One Mobile is widely used by the

company’s 44 million users. In order to continue

its 4.9-star rating (out of 5), iOS developers must

continue to update the app, ensuring its features

are up-to-date with modern software tools and

always functioning properly. However, apart from

making more hires for software developer

positions, there is no simple way for Capital One

to further increase its speed of production. This

applies to the corporation’s iOS application, where

feature developers work to create new features as

well as improve pre-existing ones offered by

Capital One Mobile.

For any of these features to appear on a user’s

screen, an API request must be made to obtain the

necessary designs and functionalities from Capital

One’s API. Therefore, code must be written for an

API request for every single plugin created.

Additionally, the general code structure for each

API request is very similar, so the work to be done

by feature developers tended to be repetitive.

Furthermore, developers would place the API

request files in different locations within their

plugins, making things more difficult to locate

when looking at another’s code. By making a tool

that created starter code for the API request files,

the relative location of such files could be

standardized and feature developers would be able

to save time that can be put towards implementing

new functionalities.

2. Related Works

According to Apple Developer (2022), Xcode is

an integrated development environment (IDE)

used to write code in the programming language

Swift, which is used to create iOS applications [1].

Xcode inspired my internship project because it is,

in a sense, what I was trying to improve. The

Apple IDE is used by all iOS developers to create

powerful projects, offering many helpful features

such as auto-completion and syntax highlighting

to increase productivity. Despite these great tools,

there is no way for Xcode to create large chunks

of code, and this is where my team’s command

line tool came into consideration.

mailto:ac5ug@virginia.edu

With the evolution of mobile banking, the need for

financial corporations to allocate more resources

into mobile development is only increasing.

Mobile banking has grown very prevalent in

people’s everyday lives, from only being able to

show account balances to now offering the ability

to make transactions online. As Yuen (2002)

points out, customers can even personalize alerts

to ensure they pay their paperless bills on time [2].

Such a technological innovation is related to my

internship project because it automated basic

financial procedures, making them much more

efficient and accessible. This led to an increase in

demand for highly functional, modern, mobile

banking applications, especially from the big

hitters in the banking industry.

3. Project Design

We gathered the project specifications before

beginning to work on the project. The

development process consists of research on the

iOS environment and plugin files, deciding on tool

logistics, and finally creating the tool. Challenges

that arose throughout the development process

included understanding the company’s iOS

environment and acquiring necessary input for our

tool to function.

3.1 Project Overview

The project manager gave my team the task of

using a code generation framework to develop an

auto code generation tool for API request files.

Apart from restrictions of the code being in Swift,

Apple’s programming language for iOS products,

there was plenty of creative freedom given to use

in terms of how our end product would function.

3.2 Project Specifications

As long as certain project specifications were

addressed, there was some flexibility in the design

of the code generation tool. Most of the

requirements revolved around making things easy

for the user, including:

1. No need to download any additional

resources to utilize the tool

2. No need to create any additional files or

directories to use the tool

3. Ability to reuse the tool to update and

replace preexisting request files

Essentially, the tool was to be designed so that the

user had to do minimal work.

3.3 Development Process

The development process consists of the research

done to make design decisions on the tool, and the

subsequent creation of said tool.

3.3.1 Research and Decisions

The first thing to learn was the architecture of

the iOS application. I am unable to disclose

exact details, but for the purpose of this

project, API information for a given plugin

was obtained from a site in the form of either

a JSON or YAML file. Each request file

varied from plugin to plugin. Therefore, one

task was to determine the commonalities

among the majority of plugin files, so we

knew what portions of code we could generate

that would be helpful for most users. This

mainly included creating data structures that

held information on a given plugin API.

Additionally, any open-source software we

wanted to utilize had to first be WhiteSource

scanned to ensure its safety before being

implemented into the iOS environment. This

was done for all Swift code generation

frameworks in consideration. In the end, we

decided to use a code generator tool called

SwiftGen because of its compatibility with

JSON and YAML files and structured use of

a configuration file. We also decided to create

a command line tool because an environment

for such implementation already existed in the

working iOS system.

3.4 Designing a Command Line Tool

We broke up our tool’s working process into its

individual tasks in chronological order. We

developed or revised new and preexisting Swift

files with the necessary code to complete each

task.

3.4.1 Implementing SwiftGen

First, we integrated the code generation

tool SwiftGen into the iOS architecture

through a pod install.

3.4.2 Creating SwiftGen Inputs

Second, we performed several tasks in

parallel. One such task was the creation of

templates using a language called Stencil.

This was a necessary input for SwiftGen so

that it knew what code to output given the

desired plugin API’s JSON or YAML file.

Additionally, a struct was created to hold

the required information for SwiftGen’s

configuration file, which was necessary to

state what files were being used as inputs,

their file type, and what the outputted file

should be named.

3.4.3 Parsing the APIs

Third, we created functions to parse the

JSON and YAML files containing the

plugin APIs, obtaining the necessary data

for the request files to be outputted.

3.4.4 Combining the Components

Finally, all of the aforementioned

components which were created in

separate files were integrated into a central

file containing the process of using our

command line tool. This was done so that,

when our command was used given a

plugin name and its respective API as a

JSON or YAML file, a folder called API is

created in the plugin’s directory and

temporary files necessary for SwiftGen are

created. SwiftGen then generates the

request files in the API folder and the

temporary files are subsequently deleted.

3.4 Challenges

The main challenge was learning the iOS

environment and general structure of the

request files. When looking through

examples, there were numerous variations of

variables for the API description structs that

needed to be accounted for. Additionally,

having had no experience to in working with

mobile development, quickly understanding

the architecture proved to be difficult.

One of the bigger challenges was figuring out

how to obtain the JSON/YAML file of the

API description for a plugin. These could be

obtained by selecting a download option from

the webpage containing the APIs, but the

security of the site made it difficult to

automate the download process.

Consequently, for the final product we

achieved, it was still necessary for users to

provide the JSON/YAML file.

4. Results

The command line tool was demonstrated for

potential users, which consisted of mobile

developers on both feature and platform teams.

Mainly, the tool is to be used by those on feature

teams who develop new plugins and features for

Capital One’s iOS application. Through

prototyping, our command line tool is expected to

speed up the creation of request files by ~85%. At

the time of writing this, my manager’s team is

working to bring the tool into mass consumption

for such users’ benefit.

5. Conclusion

The tool created for our project is a great example

of how technology can be used to help the

engineers who are innovating as opposed to just

the end users of a company. Our demo indicated

that our tool will save iOS feature developers time

which they may allocate towards more pressing

matters. Consequently, this project revealed the

possibilities provided by code generation

frameworks such as SwiftGen. Such software

could greatly improve work efficiency especially

for larger organizations with a structured software

environment.

6. Future Work

Considering our tool creates code for the basic

structure that nearly all request files require, we

left the project with plenty of ideas for further

customization of subgroups of request files. This

would mean adding flags as parameters for our

command to auto generate more case-to-case code

for different plugins. Another idea was to create a

user interface for the tool instead of having to run

it through the command line. This would make the

tool more intuitive since users would not have to

learn the different parameters and flags required to

run the command.

There was also hope that our project for the iOS

environment could be used to help develop a

similar resource for the Android side of things.

Nonetheless, the main goal for the future left by

my intern team was to have our tool be approved

and integrated into the main working branch of the

iOS environment so that any and all developers

may utilize it.

References

[1] Apple Developer. 2022. Xcode14. Retrieved

September, 23, 2022 from

https://developer.apple.com/xcode/

[2] Yuen, M. 2022. State of mobile banking in

2022: top apps, features, statistics and market

trends. Retrieved September, 23, 2022 from

https://www.insiderintelligence.com/insights/mob

ile-banking-market-trends/

https://developer.apple.com/xcode/
https://www.insiderintelligence.com/insights/mobile-banking-market-trends/
https://www.insiderintelligence.com/insights/mobile-banking-market-trends/

