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Abstract

The baby boomers are approaching retirement, and the majority of them are married. Simul-

taneously, employers are less likely to provide retiree or spousal health insurance, making it

important to understand how health insurance affects couples’ joint retirement decisions. I

develop a dynamic programming model of household retirement in which married couples

jointly decide when to retire, how to use available insurance, and how much to save. In-

surance plans vary by plan characteristics (including premium, deductible, and coinsurance

rates). The members of each couple coordinate their retirement decisions in response to the

following motivations: (1) they share economic resources through the household budget

constraint; (2) they care about spending leisure time with each other; and (3) their health

insurance coverage choices are interdependent. I also model two channels through which

people value health insurance: (1) insurance smooths consumption by reducing the mean

and volatility of medical expenses; and (2) insurance can improve health and thus decrease

individuals’ value of leisure relative to work.

I estimate my model with Maximum Simulated Likelihood estimation using data

from the Health and Retirement Study and the Medical Expenditure Panel Survey. I find

that employer-provided health insurance (EPHI) plays an important role in retirement de-

cisions. For workers with tied health insurance, who lose employer-provided coverage if

they retire, gaining employer-provided retiree coverage would decrease the average retire-

ment age by 1.1 and 0.5 years for husbands and wives, respectively. Similarly, raising the

Medicare eligibility age is predicted to delay retirement (by 0.7 and 0.4 years), while the

Affordable Care Act (ACA), which makes health insurance independent of employment

status, is predicted to accelerate it (by 0.4 and 0.3 years). The effects of Medicare are big-

ger than the effects of the ACA but smaller than the effects of EPHI due to the differences

in plan quality, which has been overlooked in the previous literature. In addition, in decom-

posing the employment response to EPHI coverage, I find that over 80% of the response

reflects the valuation of the consumption smoothing effects of health insurance, and less

than 20% reflects the valuation of the health improvement effects. Furthermore, I find that

spousal coverage motivates simultaneous retirement by delaying husbands’ retirement and
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accelerating wives’ retirement, and it explains about one-fourth of the simultaneous retire-

ment observed in the data. Lastly, I find that husbands and wives enjoy spending leisure

time together, which explains nearly one-third of the observed simultaneous retirement.

JEL Classification: I13, J26, H31, C51

Keywords: household retirement, health insurance, Medicare, saving, spousal insur-

ance coverage, health insurance plan characteristics
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1 Introduction

In the United States, the absence of retiree health insurance coverage might be one of the

biggest obstacles to retiring before age 65. People with health insurance are not only better

protected financially in case of serious accident or sickness; they also tend to be healthier

because they are more likely to get preventative care. Health insurance coverage is partic-

ularly important for people facing retirement, who tend to have more health problems and

usually are less able to financially recover from costly medical expenses. Many American

workers are reluctant to retire before becoming eligible for Medicare at age 65 because they

fear losing their employer-provided health insurance and because health insurance from the

private market is expensive.1 The link between health insurance and retirement is even

more complicated in a household in which two spouses face different employment condi-

tions but coordinate their retirement decisions. This paper studies how health insurance

affects retirement decisions at the family level.

Many papers have studied the effect of retiree health insurance availability on in-

dividuals (usually men’s) retirement decisions (Madrian et al. (1994), Gruber and Madrian

(1995), Rust and Phelan (1997), Blau and Gilleskie (2008), and French and Jones (2011)).

Indeed, many have found that people coordinate their retirement with that of their spouse

(Blau (1998), Maestas (2001), Blau and Gilleskie (2006), Gustman and Steinmeier (2000,

2004, 2009), and Casanova (2010)). This arises because spouses share economic resources

and because their health insurance coverage may be interdependent.2 Thus, an individ-

ual’s retirement decision may also affect his or her spouse’s access to health insurance.

For example, if a wife cannot receive health insurance from her employer, her husband

may choose to work until she is eligible for Medicare, even if the husband can receive re-

tiree health insurance or Medicare. Also significant are the characteristics of the available

health insurance plans such as the coinsurance rate and deductible. Therefore, even if both

spouses have health insurance available through their own employers, one spouse might

1According to a Kaiser Family Foundation survey of employers, only 28 percent of large firms with 200
or more workers offered retiree health insurance in 2010, down from 66 percent in 1988. Only three percent
of small firms that have between three and 199 workers offer health plans for retirees.

2According to an annual survey of more than 130 companies by Conrad Siegel Actuaries, 69 percent of
the employers surveyed in 2014 provided health insurance that cover spouses, down from 80 percent in 2012.
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delay retirement to give the other higher-quality insurance.

Understanding the effects of health insurance on couples’ joint retirement decisions

is important for evaluating health insurance policy. The baby boomer generation is ap-

proaching retirement, and most of them are married. At the same time, the health insurance

system has undergone massive changes. If the elderly delay their retirement due to a lack

of retiree health insurance, the Affordable Care Act (ACA), which makes health insurance

widely available and independent of employment, could increase the rate of early retirement

(Dague et al. (2014), and Baicker et al. (2013)).

In this paper, I develop a model of household retirement that accounts for the coor-

dination between spouses and includes heterogeneity in the availability of health insurance

plans and in health insurance plan characteristics. I develop a dynamic structural model

wherein households in which both spouses work make three decisions to maximize ex-

pected lifetime household utility: (1) when each spouse will retire; (2) how each spouse

will receive health insurance, given their available options; and (3) how much the household

should save and consume. A household’s utility is the weighted average of each spouse’s

utility (weighted by each spouse’s bargaining power). Each spouse’s utility depends on

total household consumption, his or her own leisure, and his or her own unobserved tastes

for retirement and health insurance plan choices. The preference for leisure is determined

by age, health status, and the spouse’s leisure. In addition, two spouses’ health transitions

and medical expenses are allowed to be correlated. My model captures unobserved het-

erogeneity in household-level tastes for two household decisions–retirement decisions and

health insurance plan choices–that make evaluating the likelihood function computationally

difficult. Following Heckman and Singer (1985), I assume that there are two types of un-

observed tastes for retirement decision and health instance plan choices (Keane and Wolpin

(1997), Cameron and Heckman (1998), Mroz and Guilkey (1992), and Mroz (1999)). Each

household belongs to each type with a probability. I estimate the unobserved heterogeneity

parameters jointly with the preference parameters.

This paper makes three key contributions to the literature. First, it allows health

insurance to affect retirement decisions through two channels: (1) insurance smooths con-
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sumption by reducing the mean and volatility of medical expenses; and (2) insurance can

improve health and thus decrease individuals’ value of leisure relative to work. The ex-

tant literature on health insurance and retirement takes into account only the first channel.

According to Rust and Phelan (1997), individuals who are facing retirement value health

insurance because they are risk averse to uncertain medical expenses. I model changes in

health as an additional channel that links health insurance and retirement and that, more-

over, allows access to insurance to influence health (Currie and Gruber (1996), Levy and

Meltzer (2008), Zimmer (2012), and Gustman and Steinmeier (2014)).

Second, my model includes the interdependence of two spouses’ health insurance

coverage as an additional factor that motivates coordinated retirement. This means that one

spouse’s retirement decision can affect the other spouse’s health insurance coverage. Papers

in the previous literature that either overlook or simplify this interdependence would risk

underestimating the effect of health insurance on couples’ retirement.

Third, this paper differentiates each spouse’s employer-provided plan by plan char-

acteristics (premium, deductible, and coinsurance rate). Including the heterogeneity in plan

characteristics enables me to model the endogenous choice of EPHI coverage. In my model,

when a spouse is eligible for the plans provided by both spouses’ employers, he or she

chooses a plan by comparing the two plans’ characteristics. This is because plan charac-

teristics affect both the amount and the risk of out-of-pocket medical expenses.3 In other

words, this paper evaluates two dimensions of health insurance: coverage and plan char-

acteristics. The latter dimension has been largely overlooked in the literature. Whereas

the effect of health insurance coverage has been intensively studied (Madrian et al. (1994),

Lumsdaine et al. (1994), Gustman and Steinmeier (1994), Gruber and Madrian (1995), Rust

and Phelan (1997), and French and Jones (2011)), very little attention has been paid to how

health insurance plan characteristics affect retirement (Gustman et al. (1994), Gustman and

Steinmeier (2000), and Fields and Mitchell (1984)).
3Total medical expenditures are defined as the sum of direct payments for care provided during a period,

including out-of-pocket payments and payments by insurance. I model total medical expenditures as a func-
tion of health insurance coverage, labor supply, health status, household income, and some other demographic
characteristics. Then, out-of-pocket medical expenditures are determined by total medical expenditures and
observed insurance plan characteristics. Details are discussed in model section.
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The main data source that I use to estimate my model is the Health and Retirement

Study (HRS), which collects extensive information about household characteristics, labor

force participation, health insurance coverage, health, income, and assets. But the HRS

provides little information about total medical expenditures or health insurance plan char-

acteristics, which in my model are necessary to compare health insurance plans that have

different characteristics. I collect information about total medical expenses from the Medi-

cal Expenditure Panel Survey (MEPS), which is a set of large-scale surveys of families and

individuals, their medical providers, and their employers. The MEPS also provides aver-

ages (including average paid premium, average co-insurance rate, and average deductible)

of employer-provided plans by industry type and firm size, and I use these to impute the

"generic" paid premium, co-insurance rate, and deductible for each possible health insur-

ance plan for each household in my sample. Note that I cannot observe individuals’ earning

history before they enter into the HRS.4 Full earnings histories are needed to compute So-

cial Security benefits. To solve this problem, I use the Panel Study of Income and Dynamics

(PSID) to estimate a labor income growth function. Then, I use the income growth function

and the income observed in the first wave of the HRS to recover the earning history.

I estimate my model using the Maximum Simulated Likelihood (MSL) estimation

(Keane and Wolpin (1997), Rust and Phelan (1997), and Brien et al. (2006), and Blau and

Gilleskie (2008)). The parameter estimates are similar to those in the literature, and the

predicted labor market behavioral patterns match the sample patterns well. Using the pa-

rameter estimates, I run several counterfactual simulations to measure the causal effects

of health insurance on spouses’ retirement behavior. I find that employer-provided health

insurance has an important influence on retirement. For workers with tied health insurance,

who lose employer-provided coverage if they retire, gaining employer-provided retiree cov-

erage would decrease the average retirement age by 1.1 and 0.5 years for husbands and

wives, respectively. In decomposing the employment response to EPHI coverage, I find

that over 80% of the response reflects the valuation of the consumption smoothing effects

4The HRS collects individuals’ earning history in a restricted file. It takes more time to get the restricted
file and it requires no internet access while using this file. However, I need internet access to use the HPC
(High-Performance computing) system in University of Virginia because my code needs parallel computing.
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of health insurance, and less than 20% reflects the valuation of the health improvement

effects. Furthermore, I find that spousal coverage motivates simultaneous retirement by de-

laying husbands’ retirement and accelerating wives’ retirement, and it explains about 24%

of the simultaneous retirement observed in the data. Lastly, I find that husbands and wives

enjoy spending leisure time together, which explains 34% of the observed simultaneous

retirement.

I also conduct several policy simulations to predict labor supply responses to the

implementation of the ACA, which makes health insurance independent of employment

status,5,6and responses to changes in the Medicare and Social Security retirement rules.

According to my simulation results, for the workers who have tied coverage, the imple-

mentation of the ACA is predicted to accelerate retirement by 0.4 years for husbands and

0.3 years for wives. Raising the Medicare eligibility age from 65 to 67 is predicted to de-

lay retirement by 0.7 years for husbands and 0.4 years for wives. The effects of Medicare

are bigger than the effects of the ACA but smaller than the effects of EPRHI due to the

differences in plan characteristics. For the whole sample, the implementation of the ACA

is predicted to accelerate retirement by 0.12 years for husbands and 0.09 years for wives.

Raising the Medicare eligibility age from 65 to 67 is predicted to delay retirement by 0.17

years for husbands and 0.12 years for wives. Comparatively, increasing the Social Security

full retirement age from 65 to 67 delays retirement by 0.11 years for husbands and 0.08

years for wives.

The rest of the paper proceeds as follows. In Section 2, I discuss how my work re-

lates to the literature on household retirement behavior and the relationship between health

insurance and retirement decisions. I present my dynamic programming model of house-

hold joint retirement in Section 3, and, in Section 4, I describe the different data sets used

to estimate the model. In Section 5, I explain the estimation strategy. Section 6 presents

5A key component of the ACA is that it requires people without health insurance to purchase insurance
from the health insurance marketplace. The Health Insurance Marketplace, also called the Health Insurance
Exchange, "is the place where people without health care insurance can find information about health insur-
ance options and also purchase health care insurance. Information can also be found regarding eligibility for
help with paying premiums and reducing out-of-pocket costs."

6In addition to the federally-facilitated Marketplace, there are state-based Marketplaces. Whether an
individual uses the federally-facilitated Marketplace or a state-based Marketplace depends on the state in
which he or she lives. Source: https://www.irs.gov/Affordable-Care-Act/

https://www.irs.gov/Affordable-Care-Act/Individuals-and-Families/The-Health-Insurance-Marketplace
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the estimates of my structural parameters and tests how well the model performs in various

aspects. In Section 7, I run several counterfactual simulations to examine the causal ef-

fects of health insurance on retirement and to predict the labor supply responses to relevant

policies. Section 8 concludes.
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2 Literature Review

My paper draws from two important branches of the literature on retirement. The first

branch considers the relationship between health insurance and an individual’s retirement

decisions. The second branch examines married couples’ coordinated retirement decisions.

Papers in the second branch identify two main factors that lead spouses to coordinate their

retirement decisions: preference for shared leisure, and shared economic resources. How-

ever, there are very few studies that combine both branches to examine the role of health

insurance in a couple’s joint retirement decisions. My paper contributes to this limited

literature by considering the interdependence of husbands’ and wives’ health insurance

coverage, which is also a crucial factor in spousal retirement coordination. In addition, I

model both health and medical expenses as channels linking health insurance and retire-

ment behavior, whereas previous studies consider medical expenses as the only channel. I

also add to the existing literature by modeling the heterogeneity in health insurance plan

characteristics. In the subsequent sections, I comprehensively review the current literature

and identify my contribution to ongoing research in these areas.

2.1 Health Insurance and an Individual’s Retirement

Researchers have used different models to examine the effect of health insurance on indi-

viduals (usually elderly men’s) retirement behavior, but their findings do not align. Madrian

et al. (1994) and Gruber and Madrian (1995) regress the individuals’ retirement decision

on health insurance coverage. Madrian et al. (1994) uses the data from the 1987 National

Medical Expenditure Survey (NMES), and Gruber and Madrian (1995) use the data from

the Current Population Survey (CPS) and the Survey of Income and Program Participation

(SIPP). Both papers find that having health insurance can significantly increase the propen-

sity to retire. Lumsdaine et al. (1994) and Gustman and Steinmeier (1994) develop struc-

tural models assuming that individuals value health insurance at the cost paid by employers.

Lumsdaine et al. (1994) estimate their model using data from a large company, and Gust-
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man and Steinmeier (1994) use the data from the 1977 NMES.7 Both papers conclude that

health insurance coverage has only a moderate effect on early retirement. However, if work-

ers are risk-averse and if health insurance allows them to smooth consumption when facing

volatile medical expenses, they might value health insurance well beyond the cost paid

by employers. Rust and Phelan (1997) and Blau and Gilleskie (2008) construct dynamic

programming models that account for uncertain medical expenses as well as risk aversion.

Both papers estimate their models using Maximum Likelihood Estimation (MLE), but they

use different data sets. Rust and Phelan (1997) use the Retirement History Survey (RHS)

and Blau and Gilleskie (2008) use the Health and Retirement Study (HRS). Both find larger

effects of health insurance on older men’s retirement behavior. However, these two studies

overlook the possibility that older people can "self-insure" against out-of-pocket medical

expenses through savings. French and Jones (2011) address this shortcoming by estimat-

ing a dynamic model that includes saving and retirement decisions, using the data from the

HRS and Generalized Method of Moments (GMM). They find that individuals whose health

insurance coverage depends on their employment status retire half a year later than those

who have retiree health insurance coverage. Their findings provide empirical evidence that

models which exclude saving decisions overstate the effect of health insurance. Follow-

ing French and Jones (2011), my paper develops a dynamic structural model of saving and

retirement decisions that accounts for health insurance and uncertain medical expenses.

In contrast to my study, which examines the effects of health insurance on family

retirement decisions, most papers in the literature on health insurance and individual re-

tirement ignore spousal retirement coordination, and they exclude the dynamic relationship

between one spouse’s retirement and the other spouse’s health insurance coverage. Ignoring

this dynamic relationship may cause biased estimates of the effects of health insurance.

2.2 Married Couples’ Retirement

With the increase in women’s labor force participation since the 1960s, a growing number

of scholars study the retirement of married couples. Regardless of the data set used, re-
7The data used in Lumsdaine et al. (1994) are drawn from the personnel records of all persons employed

by the firm at any time between 1979 and 1988.
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searchers find evidence of coordinated retirement among couples. Hurd (1990), Gustman

and Steinmeier (2000), Blau (1998), and Coile (2004) use data from variety of sources: the

United States New Beneficiary Survey (NBS), the National Longitudinal Survey of Ma-

ture Women (NLS), the Retirement History Survey (RHS), and the Health and Retirement

Study (HRS). All these studies find that couples coordinate the timing of their retirement.

For example, Hurd (1990) finds that, for spouses who retire after age 54, one-fourth retire

within one year of their spouse.

Economists have identified two motivations that can lead spouses to coordinate their

retirement: (1) the complementarity in leisure (preference for shared leisure time); and

(2)financial incentives (shared economic factors affecting both spouses). First, regardless

of the empirical strategy used, several papers find that the propensity of one spouse retiring

is higher if the other spouse is retired, and these papers identify the complementarity in

leisure as an important factor that motivates spouses to coordinate their retirement. Gust-

man and Steinmeier (2000, 2004) develop a non-cooperative bargaining model to represent

the decision-making process in a family. They model the marginal utility of leisure for

one spouse as a function of the retirement status of the other spouse. Thus, the parame-

ter associated with the spousal retirement status measures the complementarity in leisure.

Gustman and Steinmeier (2000) solve the model by finding a Nash equilibrium graphically

and using the data from the NLS of Mature Women. The estimates show that husbands

value shared leisure much more than wives do. Gustman and Steinmeier (2004) re-estimate

the model established in Gustman and Steinmeier (2000) by using MLE and more recent

data–namely, the HRS, which includes detailed information on pension and Social Secu-

rity benefits. They simulate the probability of simultaneous retirement under the full base

model and the model without spousal retirement. The simulation results show that simulta-

neous retirement is largely due to the complementarity in leisure. Banks et al. (2010) run IV

regressions to examine the effect on husbands’ retirement of their wife’s retirement status.

The wife’s retirement status is instrumented with indicators of whether she has reached the

full retirement age. They find that the husband enjoys retirement more when his wife is also

retired, and the authors interpret these results as evidence of complementarity in leisure.
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Second, several papers find evidence of the effects of financial incentives on si-

multaneous retirement. The economic environment affecting both spouses in a household

causes a positive correlation in the two spouses’ retirement dates. Both husband and wife

provide income and share household wealth; thus, they can potentially insure each other

against shocks to wages, health, or medical expenditures. This means that one spouse is

affected not only by his own Social Security and pension benefits, but also by the other

spouse’s benefits. Both reduced-form and structural models find that one spouse’s financial

incentives have spillover effects on the other spouse’s retirement decision. Blau (1998) de-

velops a discrete choice model of household labor supply. He models the value function of

a household as a linear function of variables affecting preferences and state-specific bud-

get constraints, such as wage, current Social Security benefits, and pension coverage. He

does not include pension benefits as an explanatory variable because the data he uses is the

RHS, which lacks the necessary detail to construct accurate pension benefits. He finds that

husbands exit the labor force earlier if their wife has pension coverage. Michaud (2003),

Coile (2004), and Kapur and Rogowski (2007) construct accurate pension benefits using

the data from the HRS, which includes detailed information on pension benefits. These

papers include pension benefits as a measure of financial incentives that affect spouses’

retirement decisions. Michaud (2003) and Coile (2004) estimate probit models to test the

spillover effect of one spouse’s financial incentives on the other spouse’s retirement deci-

sion. Both papers find that men are very responsive to their wives’ financial incentives,

but women are not responsive to their husbands’ financial incentives. Kapur and Rogowski

(2007) estimate a multinomial logit model to test the effects of the two spouses’ financial

incentives (pension benefits) on the household retirement decision. They find asymmetric

spillover effects: for couples in which the husband has high pension benefits from delaying

retirement, the wife is more likely to retire first, while for couples in which the wife has

high pension benefits from delaying retirement, simultaneous retirement is more common

than other household retirement status.

The main limitation of above papers is that they do not consider uncertainty in fu-

ture environments because they employ static models. Yet uncertainty plays an increasing
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role at older ages because the incidence of negative shocks to health, out of pocket medical

expenditures, and survival is much larger than when individuals are young. Van der Klaauw

and Wolpin (2008), Guvenen (2009), and Casanova (2010) expand on this literature by de-

veloping dynamic structural models that account for the following: complementarity in

leisure, shared household budget constraints, and the uncertainty of future income, health

costs, and survival upon retirement. They also contribute to this literature by jointly an-

alyzing retirement and saving decisions. Guvenen (2009) add uncertainty into the model

developed in Gustman and Steinmeier (2000, 2004), and allow spouses to make sequential

decisions. Both Van der Klaauw and Wolpin (2008) and Casanova (2010) model the house-

hold utility as a weighted sum of each spouse’s utility. Van der Klaauw and Wolpin (2008)

model the weight (sharing rule) as a function of the state space for a couple, and Casanova

(2010) assumes a constant weight across time and households. To account for the com-

plementarity in leisure, Van der Klaauw and Wolpin (2008) model the product of the two

spouses’ labor supply as a factor that affects each spouse’s utility. The researchers assume

that the parameters associated with this product are the same for both spouses. Casanova

(2010) assumes that the measure of a spouse’s leisure depends on whether the two spouses

retire simultaneously or not. All these papers use the HRS to estimate their dynamic models

but with different estimation methods. Van der Klaauw and Wolpin (2008) use Maximum

Simulated Likelihood (MSL) estimation, and Guvenen (2009) and Casanova (2010) use the

Method of Simulated Moments (MSM). Following the literature, my dynamic model incor-

porates complementarity in leisure, correlation in economic environments, and uncertainty

in future environments.8

Most papers in the literature on married couples’ retirement do not pay enough

attention to health insurance coverage. However, health insurance is an important factor that

can link spouses’ retirement behaviors for two reasons. First, health insurance can affect

the household out-of-pocket medical expenditures, which in turn can affect the household

8In my model, household utility is defined as a weighted sum of each spouse’s utility (Van der Klaauw
and Wolpin (2008) and Casanova (2010)), and the weight is imputed using spouses’ discrete responses to a
question in the HRS about who has the final say when major household decisions are made (Friedberg and
Webb (2006)). The weight varies across households but is constant over time. The marginal utility of leisure
for one spouse is modeled as a function of age, health, and the other spouse’s retirement status (Gustman and
Steinmeier (2000, 2004, 2009)).
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budget constraints. Second, one spouse’s retirement decision might affect the other spouse’s

health insurance coverage. In the next subsection, I discuss the few studies that focus on

the effects of health insurance on married couples’ retirement.

2.3 Health Insurance and Married Couples’ Retirement

There is very little research examining the effects of health insurance on married cou-

ples’ retirement (Blau and Gilleskie (2006) and Kapur and Rogowski (2007)), even though

most people coordinate their retirement decisions with their spouses. Kapur and Rogowski

(2007) estimate a reduced-form, multinomial logit model of spouses’ simultaneous retire-

ment decisions, using the data from the HRS. They conclude that the availability of wives’

retiree health insurance almost doubles the probability of simultaneous retirement, while

the availability of husbands’ retiree health insurance has only a small effect. Blau and

Gilleskie (2006) develop a dynamic model of older couples’ retirement decisions that ac-

counts for risk aversion and uncertain medical expenses. They model out-of-pocket med-

ical expenditures as a function of health insurance plan characteristics and total medical

expenditures, and they assume that future uncertain total medical expenditures follow a

three-point discrete distribution (Heckman and Singer (1985)). This approach connects re-

tirement decisions, health insurance coverage, and medical expenditure risk in a realistic

and tractable way. The authors estimate the model using the HRS, and they find moderate

effects of health insurance on the husband’s retirement and very small effects on the wife’s

retirement.

These two papers do not include the interdependence of the two spouses’ health

insurance coverage, which is a factor that can link two spouses’ retirement behaviors. For

example, Blau and Gilleskie (2006) make two simplifying assumptions about health insur-

ance coverage: (1) if a worker’s employer does not provide retiree health insurance, he

will lose health insurance after he retires, even if he could be covered by his spouse; and

(2) someone covered by spousal health insurance always has health insurance. However,

these two assumptions are problematic: an individual, for example, could lose health in-

surance coverage if his or her spouse retires. Analysts who overlook this interdependence
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risk underestimating the effect of health insurance on couples’ retirement. This is because

one spouse’s retirement decision might affect the other spouse’s health insurance coverage,

which in turn affects both spouses’ retirement decisions.

My paper contributes to the existing literature in three ways. First, I carefully model

the interdependence of the two spouses’ health insurance coverage. Using the information

on the two spouses’ employer-provided health insurance eligibility, my model constructs

the available insurance plans for each spouse under each possible household retirement

decision. Different household retirement decisions cause different household health insur-

ance coverage. Thus, each spouse’s health insurance coverage is modeled to depend on

both spouses’ retirement decisions.

Second, my paper includes heterogeneity in health insurance plan characteristics.

For spouses who are eligible for both the husband and wife’s employer-provided health

insurance plans, my model allows them to choose one plan after comparing the plan char-

acteristics (including paid premium, co-insurance rate, and deductible). By including this

heterogeneity, I can evaluate the effects on retirement choices of policies affecting health

insurance plan characteristics.9

Last, my paper models health as an additional channel that links health insurance

and retirement. Previous papers studying health insurance and retirement assume that peo-

ple value health insurance because they are risk averse and face uncertain future medical

expenses (Rust and Phelan (1997), Blau and Gilleskie (2006, 2008), and French and Jones

(2011)).10 Besides the medical expense channel, my paper models health status as an ad-

ditional channel that connects health insurance coverage to the retirement decision. Health

insurance can indirectly affect one’s decision to retire by affecting one’s health. People

with health insurance tend to be healthier because they are more likely to use preventive

9In the literature on pension and retirement, several papers, such as Gustman et al. (1994), Gustman and
Steinmeier (2000), and Fields and Mitchell (1984), find that workers with different pension plan types (or de-
scriptions) have different retirement behaviors. Similarly, apply insurance plans with different characteristics
to the same amount of total medical expenses can result out-of-pocket medical expenses with different volatil-
ity and mean. In other words, insurance plans with different characteristics can generate different financial
incentives for spouses making retirement decisions.

10In the literature on health insurance and retirement, the medical expense channel is considered as the
only channel through which health insurance can affect retirement decisions.
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medication,11 and being healthier can make people enjoy working more. Therefore, having

health insurance may decrease people’s preference for retirement.

The identification of two parameters of particular interest is warranted. First, the

degree of risk aversion is identified by the co-variation in household savings and future

uncertainty. A household with health insurance will save less than a household without

insurance for two reasons: (1) the one with insurance has less uncertainty about future

medical expenses (the "risk reducing" aspect of insurance); and (2) the insurance company

helps to pay part of the medical expenses for the insured household (the "gift" aspect of

insurance). For healthy people, the effect of the gift aspect of insurance on saving decisions

is limited because their expected total medical expenses are small. Therefore, the degree of

risk aversion is actually identified by the extent to which healthy, insurance-eligible house-

holds save less than healthy, ineligible households. Second, the parameters representing the

husband’s and wife’s preferences for shared leisure are both identified by the co-variation

in the two spouses’ retirement choices: retiring simultaneously or not. Thus, the parameters

representing the spouses’ preferences for shared leisure cannot be identified separately. Fol-

lowing Van der Klaauw and Wolpin (2008) and Blau and Gilleskie (2006, 2008), I assume

the two spouses’ preferences for shared leisure to be the same.12

11Several papers (e.g., Currie and Gruber (1996), Levy and Meltzer (2008), Zimmer (2012), and Gustman
and Steinmeier (2014)) find that people with health insurance tend to be healthier.

12Gustman and Steinmeier (2000, 2004, 2009) allow the husband and the wife to have asymmetric pref-
erences for spending leisure with the other spouse. Their ability to separately identify these two parameters
relies on an important assumption: the decision-making process in a family is a non-cooperative bargaining
process.
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3 Theoretical Model

In this section, I develop a finite-horizon, discrete-time, dynamic model to show how house-

holds make decisions about retirement, employer-provided health insurance (EPHI) plans,

and household consumption. Each household consists of two spouses ("husband" and

"wife") who are both initially working, each with his or her own preferences.13,14

At the beginning of the first period, a household knows both spouses’ labor incomes

and pension benefits, both spouses’ EPHI eligibilities, and the characteristics (premium,

coinsurance rate, and deductible) of the insurance plans provided by both spouses’ employ-

ers for all periods.15,16 In addition, at the beginning of each period, the household observes

household assets and the two spouses’ health and survival statuses for the period. Although

the household does not observe the two spouses’ medical expenditures until the end of the

period, it does know the joint distribution of the two spouses’ medical expenditures.17

With the above information in hand, a household makes three decisions at the be-

ginning of each period: whether each spouse should retire if he or she is working; how to

use available insurance; and how much the household should consume this period.18 These

three decisions remain fixed for the duration of the period.19

During each two-year period, from 1992 (t = 1) to a known terminal period (t =

T ), each household makes the three decisions with the goal of maximizing the expected

discounted value of remaining lifetime utility, subject to budget constraints. The terminal

13In the rest of this paper, I use "he" as a generic pronoun.
14This paper does not include same-sex couples or cohabitants. Details are discussed in the data section.
15For each spouse, employer-provided health insurance eligibility includes four pieces of information: 1)

whether he is eligible for his EPHI when he is working; 2) if yes, whether this working health insurance can
cover his spouse; 3) whether he is eligible for his EPHI when he is retired; and 4) if yes, whether this retiree
health insurance can cover his spouse.

16I assume that EPHI eligibility does not depend on job choice. If individuals could become eligible
for employer-provided retiree health insurance by changing jobs, then the effect of health insurance on their
employment decisions might be less than what the model finds because the incentive to stay employed, and
thus keep health insurance coverage, is weaker (Madrian et al. (1994)).

17I assume that a household observes the two spouses’ period-t medical expenses after period-t household
decisions have been made. Blau and Gilleskie (2006) employ the same assumption.

18I define retirement as a state where an individual works less than full-time. Thus, I treat part-time work
as retirement. Details about retirement decision are discussed in subsection 3.1.

19In reality, the household makes health treatment decisions, and so it can adjust its total medical expen-
ditures on medical care. To reduce the computational burden, and following papers in the health insurance
literature (e.g., Rust and Phelan (1997), Blau and Gilleskie (2008), and French and Jones (2011)), I assume
that total medical expenditure is an exogenous variable that is a function of state variables (such as age, health,
and retirement choice) and some random medical shocks. Details are discussed in subsection 3.4.
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period T is a period by which both spouses in a household have retired permanently.20 Let

T ∗ be the period by which both spouses in a household have died.21 For T ≤ t < T ∗, a

household makes only the decision about consumption. The main features of the model are

described in the following subsections.

3.1 Discrete Choice Set

At each discrete period t, other than a continuous household consumption choice, a house-

hold makes two discrete choices: the household retirement status and the EPHI plan choice.

3.1.1 Retirement Status

I define retirement as a state where an individual works less than full-time.22 Let

Lit =


1 i f spouse i is in retirement in period t

0 i f spouse i is workingin period t
i = {m, f},

where i is m for the husband and f for the wife. Retirement is assumed to be an absorbing

state: once retired, one cannot return to work full-time in any future period.23 Let Lit

denote the set of retirement statuses available to spouse i in period t,

Lit = {Li,t−1∪1}.

The household retirement status consists of the two spouses’ retirement statuses, Lt =

(Lmt , L f t). The choice set of household retirement status in period t is

Lt = Lmt×L f t .

20I assume that everyone has retired at age 72 (Blau and Gilleskie (2006)). T is the period in which the
younger spouse in a household turns 72.

21I assume that everyone has died at age 100. T ∗ is the period in which the younger spouse in a household
turns 100.

22Recall that all spouses are initially working full-time. I define both full retirement and part-time jobs as
retirement because, according to the Hewitt survey of American businesses in the late 1990s, most (more than
75% of) part-time jobs did not offer health insurance. Consequently, the transition from a full-time job to a
part-time job or full retirement might cause the loss of EPHI. Blau and Gilleskie (2006) also define part-time
jobs as retirement.

23Very few people (less than 1%) in my sample go back to full-time work from either part-time work
or full retirement. Therefore, I assume in this paper that retirement is an absorbing state, and thus I do not
model the transition from retirement to work. While Berkovec and Stern (1991) include reverse flows (from
retirement to work) in their analysis, Hausman and Wise (1985) and Gustman and Steinmeier (2004) treat
retirement as an absorbing state.
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3.1.2 Employer-Provided Health Insurance Plan Choice

A household also chooses the EPHI plan for each spouse. Let jt denote the household EPHI

plan choice, which consists of the two spouses’ EPHI plan choices, jt = ( jmt , j f t). For each

spouse i, jit is defined as

jit =


0 i f spouse i hasnoEPHI coverage

m i f spouse i iscovered by thehusband ′s EPHI plan

f i f spouse i iscovered by thewi f e ′s EPHI plan.

If no EPHI plan is available to spouse i, then he has no EPHI coverage. If he is eligible for

just one employer-provided plan–either his own or that of his spouse–then he automatically

chooses to be covered by the plan. If he is eligible for insurance plans provided by both

spouses’ employers, then he picks one of the two plans.24

The choice set of household EPHI plans in period t, Jt , depends on the house-

hold retirement status, Lt , and the household EPHI eligibility, et = (emt ,e f t). Each spouse’s

EPHI eligibility, eit , is expressed using a vector of four dummy variables, eit =(ew1
it ,ew2

it ,er1
it ,e

r2
it ).

Table 1 defines these four variables. See the Appendix for details about how the household

Table 1: Spouse i’s EPHI Eligibility, eit = (ew1
it ,ew2

it ,er1
it ,e

r2
it )

ew1
it =1 if spouse i’s employer provides health insurance while he is working;

ew1
it =0 otherwise.

ew2
it =1 if the working insurance provided by i’s employer can cover the other spouse;

ew2
it =0 otherwise.

er1
it =1 if spouse i’s employer provides health insurance while he is retired;

er1
it =0 otherwise.

er2
it =1 if the retiree insurance provided by i’s employer can cover the other spouse;

er2
it =0 otherwise.

EPHI eligibility, et , and the household retirement status, Lt , affect the choice set of house-

hold EPHI plan, Jt .

The health insurance plans available to a person change when he turns 65 because he

becomes eligible for Medicare.25 Some people lose EPHI and have only Medicare available
24I assume that people always choose to be covered by some EPHI plan if they are eligible for one because

that is what I observe in the data.
25Some spouses are eligible for Medicare before 65 if they have been receiving Social Security disability

benefits for two years.
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to them when they turn 65, while others continue to have EPHI available to them along with

Medicare (McArdle et al. (2014)). In addition, some EPHI policies change when the person

turns 65, either to supplement Medicare or to reduce benefits in order to induce people to

switch to Medicare.26 This information is not observed in the data. Even if it were in the

data, a model that took into account all of these characteristics would be computationally

burdensome. To overcome this data problem and simplify the model, I assume that retirees

switch from EPHI (if available) to Medicare at 65, and non-retirees are covered by both

EPHI (if available) and Medicare until they retire.27

3.2 Preferences

The household utility flow in period t is defined as the weighted sum of each spouse’s

utility. For each spouse i, his individual utility flow is a function of his retirement status, Lit ,

the household consumption, Ct , and unobserved preferences, ϖit(dt , ιdt), for the household

discrete choice, dt = (Lt , jt). Let ui(Lit ,Ct ,ϖit(dt , ιdt)) denote spouse i’s utility flow and

U(dt ,Ct , ιdt) = γum(Lmt ,Ct ,ϖmt(dt , ιdt))+(1− γ)u f (L f t ,Ct ,ϖ f t(dt , ιdt)) (3.1)

be the household utility function, where γ is the husband’s bargaining power (or some

household sharing rule), which I assume is constant over time but differs across house-

holds.28

The utility flow for each spouse, ui, is assumed to be non-decreasing and twice

differentiable in household consumption, Ct . The function ui is assumed to take the form

ui(Lit ,Ct ,ϖit(dt , ιdt)) =
C1−α

t

1−α
+ exp{β iX i

t }Lit +ϖit(dt , ιdt), (3.2)

where α measures the degree of risk aversion over consumption, and exp{β iX i
t } determines

26For example, some employers increase premiums and/or reduce coverage of plans provided to retirees.
27I make this assumption because the HRS data provides information only about whether an employer

provides health insurance for retirees until they turn 65, and less than 6% of spouses in my sample did not
enroll in Medicare when they turned 65.

28I use a unique survey question in the HRS to impute the value of γ for each household. Details are
discussed in data section 4.8.
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the value of leisure to spouse i. Spousal retirement status, L−i,t , is a variable included in

the vector of X i
t .29 The parameter associated with L−i,t measures spouse i’s preference for

retiring at the same time as his spouse (simultaneous retirement) (Gustman and Steinmeier

(2000, 2004, 2009)).30

The unobserved preference for the household discrete choice, ϖit(dt , ιdt), is mod-

eled as the sum of three unobserved variables:

ϖit(dt , ιdt) = η
i
Lit
+ τ

i
jit + ιdt , (3.3)

where the first two variables, η i
Lit

and τ i
jit , represent spouse i’s time-invariant unobserved

preferences for his retirement status, Lit , and EPHI plan choice, jit , respectively. Includ-

ing these sources of unobserved heterogeneity can help explain why some spouses always

choose to work and why some always choose to be covered by their own EPHI plan, even

when their spousal EPHI plan has better characteristics. The last variable, ιdt , is an idiosyn-

cratic shock to the individual utility flow that spouse i receives at time t resulting from the

household choice d.31 For computational purposes, I assume that the two spouses receive

the same idiosyncratic shock resulting from the household discrete choice. Including this

assumption makes the household’s idiosyncratic shock equal to each spouse’s idiosyncratic

shock. In this way, the household’s shock is also distributed Extreme Value (EV).32 In

addition, I assume that the two spouses’ time-persistent choice-specific individual prefer-

ences, (η i
Lit

, τ i
jit ), are known to the household at the beginning of the first period and that

the idiosyncratic shock, ιdt , is known to the household at the beginning of period t.33

29The subscript −i denotes the spouse of i.
30Note that the two spouses’ preferences for simultaneous retirement cannot be separately identified. I

assume that the husband’s and wife’s preferences for simultaneous retirement are equal. Details are discussed
in the estimation section.

31In the literature, it is standard to include in the individual utility an Extreme Value (EV) distributed
idiosyncratic shock resulting from an individual choice. This paper allows widows or widowers to make
choices to maximize their individual choice-specific value function. I assume that each spouse’s idiosyncratic
shock is distributed EV, so the value function of surviving spouses has a closed-form expression. Details are
discussed in the estimation section.

32Note that the idiosyncratic shock to the household is a weighted sum of the shock to each spouse. If the
shocks to the two spouses are different, the shock to the household is not distributed EV, even if both spouses’
individual shock are distributed EV.

33I discuss the empirical specification for the distributions of these unobserved preferences in the estima-
tion section.
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3.3 Budget Constraints

In each period t, a household has household assets saved from the last period, At . In ad-

dition, the household receives household income during this period. The household has

several sources of income: household asset income, rAt , where r is the constant asset re-

turn rate;34 the two spouses’ labor incomes, ∑i wit(1−Lit), where wit denotes wage; pen-

sion benefits, ∑i bit ; Social Security benefits, ∑i sit ; and household government transfers,

gt . The household post-tax income, yt , is a function of taxable income (including rAt ,

∑i wit(1−Lit), and ∑i bit), which captures the tax structure.35 I describe the computation of

yt in the Appendix.

The household spends money on consumption, Ct , and on household out-of-pocket

medical expenditures, ∑
i=m, f

oit , this period. The rest of the household’s money is the house-

hold assets saved for the next period, At+1. Thus, the asset accumulation equation is

At+1 = At + yt + ∑
i=m, f

sit +gt− ∑
i=m, f

oit−Ct . (3.4)

Households cannot borrow against future Social Security benefits, and it is very

difficult to borrow against future pension benefits. Thus, I assume that the household faces

the borrowing constraint,

Ct 6 At + yt + ∑
i=m, f

sit +gt . (3.5)

Following Hubbard, Skinner, and Zeldes (1994, 1995), government transfers are

modeled as

gt = max{0,Cmin− (At + yt + ∑
i=m, f

sit)}. (3.6)

The parameter Cmin, which I will estimate, is the consumption floor: the minimum amount,

34I assume that the asset return rate is constant over time. With this assumption, my model ignores the
stochastic return to assets. Gustman and Steinmeier (2002) find that a stock market boom (in the late 1990s)
can raise retirement rates by three percentage points per year. Later, Gustman et al. (2010) find that the decline
in household assets due to a market downturn (in 2007) has very limited effects on retirement. The reason for
the limited effects is that, for average households on the cusp of retirement, stock market holdings account
for a small portion of their total assets.

35Some people who get Social Security must pay federal income taxes on their benefits if their modified
adjusted gross income (AGI) exceeds a certain amount. I assume that Social Security benefits are not taxable
because the HRS data has limited information to compute modified AGI.
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or sustenance level of consumption, that a household needs in every period. Although

the data on government transfers does not always support equation (3.6),36 this equation

is useful because it captures the penalty on saving behavior of asset-based means-tested

programs (e.g., food stamps) in a simplified way.37

In the next two subsections, I describe how I model three important parts of house-

hold budget constraints: each spouse’s out-of-pocket medical expenditures, oit ; Social Se-

curity benefits, sit ; and pension benefits, bit .

3.4 Medical Expenditure

I model medical expenditure as a channel through which health insurance affects retirement

decisions. Health insurance can affect both total medical expenditures and out-of-pocket

medical expenditures. In this subsection, I first describe how I calculate each spouse’s out-

of-pocket medical expenditures, given the characteristics of health insurance plans and the

total medical expenditures. Then, I discuss the processes that generate the two spouses’

total medical expenditures.

3.4.1 Out-of-Pocket Medical Expenditure

Spouse i’s out-of-pocket medical expenditures, oit , are computed by applying the insurance

plan characteristics (including paid premium, Γit , co-insurance rate, Λit , and deductible,

Ξit) to the total medical expenditures, mit ,38

oit = mit− (1−Λit)max{0,(mit−Ξit)}+Γit . (3.7)

36In my sample, 41 households have financial resources (household assets plus household income) less
than $7,734 (the estimate of Cmin) and receive no government transfers; and 36 households have financial
resources more than $7,734 and receive some government transfers.

37Several papers in the literature on health insurance (e.g., Casanova (2010), and French and Jones (2011))
model government transfers in the same way.

38I assume that plan characteristics are exogenous. Workers do not make job choices based on the plan
characteristics. Employers also do not choose plan characteristics based on their employees’ health, nor do
they structure plans to influence the distribution of workers with respect to health.
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3.4.2 Total Medical Expenditure

I assume that each spouse’s total medical expenditures are generated by two separate pro-

cesses: (1) whether each spouse has zero or positive total medical expenditures; and (2) the

amount of total medical expenditures conditional on having positive total medical expendi-

tures.39 Within each process, I assume that the total medical expenditures depend on four

components: (i) the individual’s health insurance coverage, Iit , because spouses with health

insurance might visit doctors more often and choose more health care treatments;40 (ii) the

individual’s health status, Hit ,because healthier people usually need less medical care; (iii)

the individual’s retirement status, Lit ;41 and (iv) the individual’s demographic and socioe-

conomic factors (including age, race, education level, and household wealth), Xit , because

these factors have been found useful in explaining the variation in medical expenditures

(Gao (2007)).42

To model the first process, I use a probit framework. Let an indicator variable, Pit ,

denote whether spouse i has positive total medical expenditures in period t. The latent

variable, P∗it , is modeled as a function of the four components and an error term, ϑit ,

P∗it = P(Iit ,Hit ,Lit ,Xit)+ϑit , (3.8)

 ϑmt

ϑ f t

∼ N


 0

0

 ,

 1 ρϑ

ρϑ 1


.

To model the second process, I assume that positive total medical expenditures, mP
it ,

are a function of the same four components and an error term, uit . Medical expenditures for

39Following the literature on health cost (e.g., Pohlmeier and Ulrich (1995), Diehr et al. (1999), Buntin and
Zaslavsky (2004), and Frees et al. (2011)), I consider the process that generates zero medical expenditures
different from the one that generates positive medical expenditures. Casanova (2010) also considers two
separate processes that generate medical expenditures.

40Health insurance coverage, Iit , is a vector of both private (EPHI) and public (Medicare) insurance cov-
erage.

41Frees et al. (2011) find that, on average, working people have less medical expenditures than those who
do not work. This correlation means that retirement status is useful in explaining the variation in medical
expenditures. I estimate equations for total medical expenditures outside of my structural model because the
HRS data has no information on total medical expenses (explained in data section 4.1). Thus, my model
cannot separately identify the causal effects of retirement status on medical expenses and the causal effects of
medical expenses on retirement status.

42These demographic and socioeconomic factors have been included as explanatory variables for medical
expenditures in a large health care literature that is summarized by Gao (2007).
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spouses facing retirement have two main features: (1) the distribution of medical expendi-

tures has a long right tail (Casanova (2010)); and (2) medical expenditures are volatile, and

the variance of medical expenditures varies across people (De Nardi et al. (2010)).43 To

capture these two features, I model the log of positive total medical expenditures as

ln(mP
it) = µ(Iit ,Hit ,Lit ,Xit)+σ(Iit ,Hit ,Lit ,Xit)uit , (3.9)

 umt

u f t

∼ N


 0

0

 ,

 1 ρu

ρu 1


.

Combining the two processes described above, spouse i’s total medical expendi-

tures, mit , are

mit = PitmP
it . (3.10)

3.5 Social Security and Pension Benefits

Two sources of income, Social Security and pension benefits, can generate retirement in-

centives. I model these two programs in detail.

3.5.1 Social Security Benefits

Social Security benefits are determined by the age at which a worker claims the benefits and

by his average indexed monthly earnings (AIME), which roughly equal his average labor

income during his 35 highest earnings years, adjusted for inflation. Precisely calculating

AIME requires keeping track of a worker’s entire earnings history, which is computationally

burdensome. To simplify the computation, I follow French and Jones (2011) in assuming

that spouse i’s annualized AIME in the next year is a function of his annualized AIME,

wage, retirement status, and age this year (described in data section 4.7).44

The Social Security system has four features. First, for individuals who work less

than 35 years, working more years automatically increases their AIME; and for individuals

43De Nardi et al. (2010) find that the variance of medical expenditures rises with age, bad health, and
income.

44Although AIME is a function of wage, it does not increase the size of the state space. This is because I
assume that, at the beginning of the first period, a household observes the two spouses’ wages for all periods.
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who have already worked more than 35 years, working more years increases their benefits

only if labor income earned later is higher than income earned in some previous years.

Because Social Security benefits increase in AIME, this decreases work incentives after 35

years of work.

Second, the age at which the individual claims Social Security affects the level of

benefits. A worker can start his Social Security benefits as early as age 62. If he claims

benefits at his normal retirement age (65), the Social Security benefits he receives are the

Primary Insurance Amount (PIA), which is a monotone increasing function of his AIME.45

If he claims benefits before age 65, his benefits are reduced by 6.67% for every year before

age 65. But, if he claims benefits after age 65, his benefits rise by 5.5% for every year after

age 65 up until age 70. Thus, spouse i’s benefits based on his own earnings history, sO
it , are

a function of his age this period, ait , and his age and PIA at the time of claiming benefits,

(ac
i ,ϒ

c
i ),

sO
it = sO(ait ,ac

i ,ϒ
c
i ).

Third, each spouse is eligible for spousal benefits when he is at least 62 and his

spouse is receiving Social Security benefits. If he claims spousal benefits at his normal

retirement age (65) or older, the spousal benefits equal one half of his spouse’s benefits. If

he claims benefits before age 65, the benefits are reduced by 6.67% for every year before

age 65.46 This rule may give spouses (usually those who have higher lifetime earnings

in a household) incentives to retire earlier once their spouse turns 62. A worker’s spousal

benefits, sS
it , are a function of his age this period, ait , his age at the time of claiming benefits,

ac
i , and his spouse’s benefits, sO

−i,t(a−i,t ,ac
−i,ϒ

c
−i),

sS
it = sS(ait ,ac

i ;sO
−i,t).

Fourth, widows or widowers are entitled to survivor benefits. The full retirement

age for survivors is age 66. Survivors can get their deceased spouse’s benefits at age 66

or older, and can get reduced benefits as early as age 60.47 If a survivor is getting benefits
45The details of the PIA formula are presented in the Appendix.
46An individual cannot apply for spousal benefits and then later switch to his own benefits, or vice versa.
47If a spouse claims survival benefits before age 66, the benefits he receives are reduced by 6% for every

year before age 66.
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(either spousal or their own benefits) when the other spouse dies, he can switch to survivor

benefits if they are higher than the benefits he received before his spouse died. A worker’s

survivor benefits, sW
it , are a function of his age, ait , his age at the time of claiming survivor

benefits, acW
i , and the deceased spouse’s basic benefits, sD

−i,

sW
it = sW (ait ,acW

i ;sD
−i).

In summary, the Social Security benefits that one receives depend on his own ben-

efits, sO
it , the survival status of his spouse, S−i,t , his spousal benefits, sS

it , and his survivor

benefits, sW
it . Thus, spouse i’s Social Security benefits in period t, sit , are

sit = s(sO
it ,S−i,t ,sS

it ,s
W
it ). (3.11)

I describe the computation of sit in more detail in the Appendix.

I assume that a spouse starts claiming benefits when he retires, or at age 62 if he

retires earlier than 62.48 This assumption simplifies the dynamic problem because it treats

Social Security benefits as a variable determined by the retirement decision and previous

work and earnings history.49

3.5.2 Pension Benefits

There are two main types of pension plans: defined-benefit (DB) plans and defined-contribution

(DC) plans. Different types of pension plans generate different incentives. DB plans give

strong incentives for retirement at specific ages: the pension accrual rate is greatly reduced

after a certain number of years of service in a firm, or past the early or normal retirement

age.50 On the other hand, benefits from DC plans are determined by a worker’s salary, his

48In my sample, 26% of spouses claim benefits either before or after they retire. Although, I might be
able to model and estimate this decision, I choose not to because it would add two additional state variables
into my model. Casanova (2010) tested this assumption by comparing the actual and assumed Social Security
claiming data; the two series are very close.

49Individuals who continue to work after they claim benefits might be subject to the Social Security Earn-
ings Test (SSER). I do not apply the earning test rule in this paper because: (1) benefits lost due to the earnings
test are returned later with an actuarially fair increase; and (2) I assume that people claim benefits when they
retire; thus, the earning test is not relevant to them. Recall that I aggregate part-time job to retirement. Thus,
labor income from a part-time job is assumed away.

50In a DB plan, the employer guarantees that the employee will receive a definite amount of benefit upon
retirement. Most defined benefit schemes provide benefits based on four key elements: (1) job tenure; (2)
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and his employer’s contribution rates, and the asset return rate. This does not encourage or

discourage retirement at specific ages (Lumsdaine et al. (1996)). However, most DC pen-

sion plans, such as 401(K) plans or IRAs, specify an early withdrawal age of age 59 1/2.

Withdrawing benefits before this age is strongly penalized. This may encourage spouses

with low household wealth to continue working at least until the early withdrawal age.

I model the pension benefits for DC and DB plans differently. If spouse i has a

DC plan, I assume that he withdraws the pension wealth when he retires, or at the early

withdrawal age if he retires earlier.51 His pension wealth in period t, bw
it , depends on pension

wealth in the last period, bw
i,t−1, and the pension accrual this period, bA

it ,

bw
it = (1+ r)bw

i,t−1 +bA
it , (3.12)

where r is the constant asset return rate,52 and bA
it is a function of his labor income, wit(1−

Lit), his contribution rate, ro
it , and his employer’s contribution rate, re

it ,

bA
it = wit(1−Lit)(ro

it + re
it). (3.13)

Spouse i’s DC pension benefits in period t, bDC
it , are a function of his pension wealth this

period, bw
it , his age this period, ait , and his age at the time of his retirement, ar

i ,

bDC
it (bw

it ,ait ,ar
i ) =


bw

it i f ait = ar
i ,

0 otherwise.
(3.14)

Computing the pension benefits for DB plan recipients requires detailed data on DB

plan characteristics, including normal and early retirement ages, job tenure, pensionable

salary, and the pension accrual rate which varies with job tenure. This information is often

pensionable salary (which is usually the average of salaries in years immediately before taking one’s pen-
sion); (3) accrual rate (which could be a fixed number or a variable that varies with job tenure); and (4) the
circumstances when benefits were taken from the scheme (such as retirement and early payment).

51Most DC plan recipients withdraw their pension wealth when they retire, and treat their pension wealth
as household wealth.

52With a constant asset return rate, my model ignores an important feature of DC pension plans: the
employees incur all of the risk associated with the random asset return rate. Yet, the effects on retirement of
ignoring the randomness in asset return rates are very limited (explained in subsection 3.3).
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missing.53 Even if it were in the data, a model that took into account all of these char-

acteristics would be computationally burdensome.54 To overcome this data problem and

simplify the model, following French and Jones (2011), I model spouse i’s DB pension

benefits, bDB
it , as a function of his age this period, ait , and his age, PIA, and EPHI eligibility

type at the time of his retirement, (ar
i ,ϒ

r
i ,e

r
i ),

bDB
it = bDB(ait ,ϒ

r
i ,e

r
i ;γ

ar
i ), (3.15)

where γar
i is a vector of parameters; it is the same across spouses but varies with retirement

age.55 Accounting for the differences in DB pension benefits across different types of EPHI

eligibility is important in isolating the effects of EPHI on retirement. As found in French

and Jones (2011), workers who have retiree EPHI are likely to have greater pension benefits

than others.56 In other words, workers who have retiree EPHI might choose to retire earlier

because: (1) their health insurance coverage is independent of their employment status; and

(2) they have higher pension accrual rates than others.

In summary, spouse i’s pension benefits, bit , are

bit = bDC
it 1[DC]+bDB

it 1[DB], (3.16)

where 1[DC] is a variable indicating whether spouse i has a DB plan, and 1[DB] is a variables

53The HRS data matches with a data on pensions from a survey of the employers of HRS sample mem-
bers. The data on pensions provides crucial information to calculate DB plan benefits. However, some HRS
respondents do not have matched pension data, and this data can be used only on a computer that is not con-
nected to the internet. I cannot use this data because, to run parallel computing for my code, I need to use the
High-Performance Computing system at University of Virginia, and this requires internet access.

54In the literature on retirement, papers that address the difficulty in modeling the DB pension benefits
use different simplification methods. Some papers exclude people who are covered by a DB plan (Van der
Klaauw and Wolpin (2008)) or by any pension plan (Benitez-Silva et al. (1999, 2004)). Other papers use
data on pension plan characteristics to calculate DB plan benefits, and reduce the computational burden by
simplifying other parts of the model. For example, Gustman and Steinmeier (2008) simplify the model by
taking the spousal labor market decision as exogenous; and Fields and Mitchell (1984) simplify the model by
ignoring the variation in individuals’ earnings and years of service.

55The function that determines the DB pension benefits is the same for everyone. Details about this
function are discussed in the Appendix.

56French and Jones (2011) divide EPHI eligibility into three types: no EPHI, tied EPHI and retiree EPHI.
Tied EPHI means that employer-provided health insurance is available to a spouse only when he continues to
work, while retiree EPHI means that employer-provided insurance is available whether he continues to work
or retires.
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indicating whether he has a DC plan.

3.6 Health Transitions and Survival Rates

In every period t, the household is uncertain about future health and survival status of the

two spouses. The household adjusts its behavior in every period based on its subjective

belief about future health and survival status. In this subsection, I model a household’s

subjective belief about health and survival status in the next period, conditional on state

variables in the current period.

3.6.1 Household Health Transitions

In a household, the two spouses’ health transitions may be interdependent because they

experience similar events that can affect health.57 I use a bivariate probit framework to

model the household health transitions.58 I model health transitions as a second channel

through which health insurance can affect retirement decisions.59 Health insurance (es-

pecially private health insurance) can affect health, and health is a factor that determines

spouses’ preference for leisure (equation (3.2)).60 Let an indicator variable, Hit , denote

whether spouse i has good health in period t. The latent variable, H∗it , represents the true

(continuous) health status of spouse i in period t. H∗it is modeled as a function of health

insurance coverage, Ii,t−1, health status, Hi,t−1,61 and demographic information, Xi,t−1, in

57As Wilson (2002) points out, the health status of the two spouses in a household often are interdependent
due to marriage sorting, similar lifestyles, or shared family income and health insurance coverage.

58Previous papers (e.g., Blau (1998), and French and Jones (2004)) that study the retirement behavior
of married couples ignore the possible correlation between the husband’s and wife’s health transitions and
calculate them separately.

59Recall that the first channel (described in subsection 3.4) is that health insurance can affect retirement
decisions through spouses’ out-of-pocket medical expenditures, which are part of the household budget con-
straint.

60While Finkelstein et al. (2013) find no significant effects of Medicaid coverage on health, Dor et al.
(2006), Levy and Meltzer (2008), and Zimmer (2012) find positive effects of health insurance (especially
private health insurance) on health.

61It is more realistic to model the health transition, the utility flow, and total medical expenses as functions
of the true continuous health status, H∗it . However, it is difficult to incorporate H∗it in the model because: (1)
H∗it is not observed; and (2) health status becomes a continuous state variable. In the future, I can extend
my model using the technique developed in Brien et al. (2006), which shows how to use a modified GHK
algorithm (Geweke (1989), Hajivassiliou (1990), and Keane (1994)) to solve a dynamic structural model that
includes an unobserved continuous state variable.
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the last period, and an error term, uH
it ,

H∗it = H(Ii,t−1,Hi,t−1,Xi,t−1)+uH
it , (3.17)

 uH
mt

uH
f t

∼ N


 0

0

 ,

 1 ρH

ρH 1


.

3.6.2 Household Survival Rates

Similar to the way that I model household health transitions, I use a bivariate probit frame-

work to model household survival rates.62 Let an indicator variable, Sit , denote whether

spouse i is alive at period t. The latent variable, S∗it , measures the underlying continuous

propensity for spouse i to survive at period t. S∗it is modeled as a function of demographics,

Xi,t−1, and health status, Hi,t−1, in the last period, and an error term, uS
it ,

63

S∗it = S(Xi,t−1,Hi,t−1)+uS
it , (3.18)

 uS
mt

uS
f t

∼ N


 0

0

 ,

 1 ρS

ρS 1


.

The two error terms, uH
it and uS

it , denote spouse i’s idiosyncratic health shock and

mortality shock, respectively. One spouse’s health shock, mortality shock, and medical

expense-related shocks, (ϑit ,uit), might be correlated. Limitations in my data prevent me

from modeling the possible correlation between medical expense-related shocks and the

other two shocks.64 And I assume that a spouse’s health shock is independent from his life

shock. Ignoring the correlation between these two shocks may cause biased estimates.65

62In the literature on married couples’ retirement (e.g., Blau and Gilleskie (2006), and Gustman and Stein-
meier (2004)), the husband’s and wife’s survival rates are calculated separately.

63Casanova (2010) assumes that the survival rate is a function of age and gender. French and Jones (2004)
model the survival rate as a function of previous health status and age.

64The HRS data has no information on total medical expenses, and I use a different data set to estimate
medical expense-related equations, separately from estimating health transitions and survival rates (explained
in data section 4.1).

65If one spouse’s health shock and life shock are positively correlated, ignoring this correlation might un-
derpredict the probability of being alive in the next period. Then, the model might overpredict the household
savings. The overprediction of household savings may cause a downward bias in the estimate of risk aversion
parameter. In the health insurance literature, some papers (e.g., Blau and Gilleskie (2008) model the possi-
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In the next subsection, I discuss how I model the household utility function when

one or both spouses die.

3.7 Death and Bequest Function

If one spouse dies, the surviving spouse continues to choose retirement status and con-

sumption in order to maximize the household’s remaining lifetime utility.66 The household

utility flow now is the surviving spouse’s individual utility flow times his original bargain-

ing power. If both spouses die, following De Nardi (2004), the household utility flow is

modeled as a function of assets, At , bequeathed to survivors in the family,

B(At) = θB
(At +K)1−α

1−α
, (3.19)

where θB is the intensity of the bequest motive, and K determines the extent to which

bequests are luxury goods.67

3.8 Value Function

I assume households are forward-looking. Each period, a household makes choices in

order to maximize its present discounted value of expected lifetime utility subject to the

budget constraints. Let zt = (At ,Ht ,St , ιdt) be the state variables in period t that are either

endogenous or stochastic.68 Note that Ht = (Hmt ,H f t) denotes household health status,

and St = (Smt ,S f t) denotes household survival status. The optimization problem can be

represented in terms of choice-specific value functions which give the lifetime discounted

value of a vector of household choices, (dt ,Ct), for a given set of state variables, zt .

ble correlation between one’s health and life shocks, while others (e.g., Rust and Phelan (1997)) ignore this
possible correlation.

66The surviving spouse is usually no longer eligible for the deceased spouse’s EPHI. I assume that a
surviving spouse is covered by his own EPHI (if available).

67This paper ignores divorce because less than 1% of couples in the sample divorce. Thus, I do not
have enough observations to estimate any parameters associated with divorce. For a similar reason, I ignore
remarriage of a widow or widower.

68Recall that I assume a household observes the two spouses’ wage and EPHI eligibility for all period.
Thus, wage and EPHI eligibility are neither endogenous nor stochastic state variables.
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The value function for a household in period t is

V (zt) = Max
(dt ,Ct)

{v(dt ,Ct ; zt)} (3.20)

subject to

At+1 = At + yt + Σ
i=m, f

sit +gt− Σ
i=m, f

oit−Ct ,

Ct 6 At + yt + Σ
i=m, f

sit +gt ,

gt = max{0,Cmin− (At + yt + Σ
i=m, f

sit)}.

The term v(dt ,Ct ; zt) in equation(3.20) is the choice-specific value function

v(dt ,Ct ; zt) = Em{v(dt ,Ct ; zt |mt)}

= U(dt ,Ct , ιdt)+βEm{E[V (zt+1) |At ,Ht ,St ,dt ,Ct ,mt ]},
(3.21)

where β is the time discount factor. E[V (zt+1) |At ,Ht ,St ,dt ,Ct ,mt ] is the expected value

function in period t +1, conditional on three state variables, (At ,Ht ,St), household choices

(dt ,Ct), and the two spouses’ total medical expenses, mt = (mmt ,m f t), in period t. Given

the household consumption choice in period t, the household assets at the beginning of the

next period, At+1, depends on the two spouses’ total medical expenses in current period,

mt . Different realizations of mt generate different values of At+1, and then generate differ-

ent values of E[V (zt+1) |At ,Ht ,St ,dt ,Ct ,mt ]. Recall that the household does not know the

realization of mt at the beginning of period t, and thus, when the household makes choices,

it knows only the expected value of E[V (zt+1) |At ,Ht ,St ,dt ,Ct ,mt ] with respect to the joint

distribution of mt , F(·),

Em{E[V (zt+1) |At ,Ht ,St ,dt ,Ct ,mt ]}=
ˆ

mt

E[V (zt+1) |At ,Ht ,St ,dt ,Ct ,mt ]dF(mt). (3.22)

Expectations in the term E[V (zt+1) |At ,Ht ,St ,dt ,Ct ,mt ] are taken over the idiosyn-

cratic utility shock, ιd,t+1, and future household health and survival status, (Ht+1,St+1). At

period t, a household does not know the two spouses’ health and survival statuses in the
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next period, but it has subjective beliefs about each spouse’s probability of being in good

health and probability of being alive in the next period. Let π(Ht+1,St+1|At ,Ht ,St ,dt ,) de-

note the household’s subjective beliefs about household health and survival status in the

next period, (Ht+1,St+1), conditional on three state variables, (At ,Ht ,St), and household

discrete choices in the current period, dt . Then, the expected value function in period t +1

can be expressed as

E[V (zt+1)|At ,Ht ,St ,dt ,Ct ,mt ] = ∑
(Ht+1,St+1)

EV (zt+1|Ct ,mt)π(Ht+1,St+1|At ,Ht ,St ,dt)

(3.23)

where

EV (zt+1|Ct ,mt) = Emax
(dt+1,Ct+1)

{v(dt+1,Ct+1; zt+1|Ct ,mt)}. (3.24)

The household uses the value functions to determine the optimal choices each pe-

riod.
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4 Data

4.1 Data Sources

I use data from three sources: the Health and Retirement Study (HRS), the Medical Expen-

diture Panel Survey (MEPS), and the Panel Study of Income and Dynamics (PSID). The

primary source of data is the HRS, which is a detailed panel survey of individuals over

age 50 and their spouses. It collects extensive information about household characteristics,

labor force participation, health insurance coverage, health transitions, income, assets, pen-

sion plans, and health care expenditures. The HRS began in 1992 and, since then, it has

re-interviewed the same households every two years.69 I use data from the first nine waves,

which cover 1992 to 2008.

Although the HRS provides most of the information I need to estimate my model,

it is not an ideal data set for two types of information: total medical expenditures and

health insurance plan characteristics.70 First, the HRS data have no information on individ-

uals’ total medical expenses, which I need to predict out-of-pocket expenses on alternative

plans.71 To overcome this problem, I impute total medical expenses using MEPS, which is

"a set of large-scale surveys of families and individuals, their medical providers, and their

employers."72 The MEPS began in 1996 and provides precise information about household

total medical expenses. I use households in the MEPS to estimate the part of the model

that determines total medical expenses (equations (3.8)-(3.9)), and then use the estimates

to impute total medical expenses for each spouse each period.

Second, the HRS data have no information on health insurance plan characteristics.

To impute plan characteristics for each spouse, I use MEPS, which provides the average

plan characteristics (including average paid premium, co-insurance rate, and deductible) of

employer-provided plans by industry type and firm size in the private sector and for govern-

ment institutions in the public sector. I assign the averages of insurance plan characteristics

69New cohorts are added every three waves.
70Health insurance plan characteristics include premiums and deductibles (for both family and single

plans), as well as the coinsurance rate.
71The HRS only collects data on out-of-pocket medical expenses.
72See the Medical Expenditure Panel Survey homepage: http://meps.ahrq.gov/mepsweb/

http://meps.ahrq.gov/mepsweb/
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to each spouse in my sample according to his employment industry type, firm size, and

sector.73

Another problem with the HRS is that it collects individuals’ labor income histories

in a restricted file, and I cannot use this file because it can be used only on a computer that is

not connected to other computers.74 Yet, I need a worker’s earnings history to calculate his

average indexed monthly earnings (AIME), Social Security benefits, and pension benefits.

To solve this data problem, I assume that an individual’s labor income follows a modified

AR(1) process (described in subsection 4.7) (Guvenen (2009)). With the estimates of this

modified AR(1) process, I construct each individual’s earnings history backward from the

labor income recorded in the 1992 HRS. A useful data set for estimating the modified AR(1)

process is the PSID, which is a longitudinal household survey that has been operating since

1968. The PSID collects data on employment and income for individuals in a nationally

representative sample of households. In subsection 4.7, I describe how I use the PSID and

the HRS together to impute an individual’s earnings history before 1992.

4.2 Sample

I restrict my sample to couples in long-term marriages75 in which both spouses were full-

time workers in the first wave.76 Table 2 describes the criteria that I use and the number of

couples I delete due to each criterion.

Table 2: Sample Selection Criteria for the HRS Sample
Observation Observation

Criteria Deleted Remaining
Couples with only one spouse interviewed 4,746
Changed spouses after age 35 1,310 3,436
Not both full-time workers in 1992 2,513 923

73The MEPS divides firms into two sectors: private and public. Firms in the private sector are divided
into 10 industry types using the two-digit SIC (Standard Industrial Classification) codes (e.g., construction,
wholesale, and retail, etc.). Details about averages of plan characteristics are discussed in subsection 4.5.

74I cannot use this restricted file because, to run parallel computing for my code, I need to use the High-
Performance Computing system at University of Virginia, and this violates the restrictive of data rules.

75Long-term marriages are defined as beginning before both spouses were aged 35. As Gustman and
Steinmeier (2002) point out, in the cases of those who change spouses after age 35, it is necessary to consider
how much wealth each spouse brings into the marriage and how they split obligations to children–factors that
are not recorded in the HRS data.

76Full-time work is defined as 30+ hours per week and 36+ weeks per year.
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The resulting estimation sample is 923 couples and 6461 household-period obser-

vations. My sample does not include cohabitants because the HRS does not survey them

about the length of their current relationship, and my sample requires couples in long-term

relationships. In addition, my sample does not include same-sex couples because same-sex

marriage was not recognized in 1992, and same-sex couples were documented as "partners"

(meaning cohabitants) in the HRS.

4.3 Health Insurance Eligibility

My structural model requires information about employer-provided health insurance (EPHI)

eligibility for both spouses in a household.77 However, in the HRS, the only people who

report their EPHI eligibility are those covered by their own EPHI plan. Consequently, there

is no information about the EPH eligibility of those who are covered by their spouse’s

employer.78

To solve the missing data problem, I need a model that accounts for two elements:

(1) the relationship between the observed EPHI eligibility and explanatory variables for

those who report their EPHI eligibility; and (2) the selection of reporting EPHI eligibility.

It would be ideal to use structural equations to model the observed EPHI eligibility and the

selection of reporting EPHI eligibility. However, modeling the EPHI eligibility in a struc-

tural way requires modeling how workers choose a job based on employer-provided plan

characteristics. Job choice-related information is not recorded in the HRS data. In addition,

although my structural model describes the spouses’ health insurance coverage choice, us-

ing my structural model to explain the selection of reporting EPHI eligibility makes EPHI

eligibility a vector of four state variables. To simplify the dynamic computation, rather

than treating EPHI eligibility as a vector of four state variables, I instead assume that, at

the beginning of the first period, a worker knows his EPHI eligibility for all periods. I use a

multivariate probit framework to model the EPHI eligibility and the selection of reporting

EPHI eligibility, and I use the estimates to impute EPHI eligibility for spouses who do not

77The details of EPHI eligibility are discussed in model section 3.1.2.
78Figure A1 in the Appendix shows how the HRS surveys households about their EPHI coverage.
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report their EPHI eligibility.79

First, I model a spouse’s EPHI eligibility. Recall that I use a vector of four dummy

variables, eit = (ew1
it ,ew2

it ,er1
it ,e

r2
it ), to represent spouse i’s EPHI eligibility.80 Note that ew2

it =

0 if ew1
it = 0, er1

it = 0 if ew1
it = 0, and er2

it = 0 if er1
it = 0 or ew2

it = 0. Spouses who have

more education are more likely to have a job that provides health insurance, and employers

who provide pension benefits are more likely to provide health insurance (especially retiree

health insurance). Thus, the latent variable of each of these dummy variables is modeled

as a function of one’s demographic characteristics (including race, gender, age, health, and

education), Xd
it , his employment characteristics (including firm size, working hours, hourly

wage, tenure, and pension availability), XE
it , and an error term. These four latent variables

can be expressed as

ew1∗
it = e(Xd

it ,X
E
it ;ςw1)+ω

w1
it , (4.1)

ew2∗
it |[ew1

it =1] = e(Xd
it ,X

E
it ;ςw2)+ω

w2
it , (4.2)

er1∗
it |[ew1

it =1] = e(Xd
it ,X

E
it ;ςr1)+ω

r1
it , (4.3)

er2∗
it |[er1

it =1;ew2
it =1] = e(Xd

it ,X
E
it ;ςr2)+ω

r2
it . (4.4)

Different combinations of these four binary variables represent different types of EPHI eli-

gibility. I assume that there are three mutually exclusive categories of EPHI eligibility. The

first category is None, which consists of workers whose employers provide no health insur-

ance at all. The second category is Tied, where workers receive their employer-provided

insurance as long as they continue to work. The third category is Retiree, where workers

keep their health insurance even after leaving their jobs. Each category consists of one or

more types of EPHI eligibility. Table 3 defines the three categories and the six types of

EPHI eligibility using the four binary variables.

Next, I model the selection of reporting EPHI eligibility. Let an indicator variable,

es
it , denote whether spouse i reports his EPHI eligibility. Spouses who report EPHI eli-

gibility are those who are covered by their own EPHI plan, either because they are not
79Because the multivariate probit model is used to impute EPHI eligibility, I hereafter describe it as the

EPHI eligibility imputation model.
80The definitions of these dummy variables are discussed in model section 3.1.2.
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Table 3: EPHI Eligibility
Eligibility Category Eligibility Type ew1 ew2 er1 er2

None N1N2 0 0 0 0
Tied T1N2 1 0 0 0

T1T2 1 1 0 0
Retiree R1N2 1 0 1 0

R1T2 1 1 1 0
R1R2 1 1 1 1

Note: In the eligibility type column, N, T, and R are short for None,
Tied, and Retiree, and numbers 1 and 2 represent self and spouse,
respectively. For example, T1T2 means that a sposue is eligible
for his EPHI only when he is working, and this working health
insurance can cover his spouse.

eligible for their spouse’s EPHI, or because their employer provides better plans than their

spouse’s employer. I assume that one’s own EPHI plan characteristics are correlated with

employment characteristics. Spouses who have similar employment characteristics might

have different coverage. For example, some are covered by their own EPHI plan because

their spouse has a part-time job that does not provide insurance; while others are covered

by their spousal EPHI plan because their spouse works for a big firm that provides a good

spousal plan. Thus, whether a spouse is covered by his own EPHI is correlated with his

own and his spouse’s employment characteristics. The latent variable, es∗
it , is modeled as

es∗
it = es(Xd

it ,X
E
it ,X

E
−i,t ;ςs)+ω

s
it (4.5)

where Xd
it , XE

it , and XE
−i,t represent spouse i’s demographic characteristics, his employment

characteristics, and his spouse’s employment characteristics, respectively; and ωs
it is an

error term. Let ωit = (ωw1
it ,ωw2

it ,ωr1
it ,ω

r2
it ,ω

s
it)
′
, and assume that ωit ∼ N(0,Σω). The EPHI

eligibility imputation model consists of equations (4.1)-(4.5). To estimate this model, I

use married people who are working in the HRS. The estimates are used to predict the

probability of the occurrence of each type of EPHI eligibility for spouses in my sample

who do not report their EPHI eligibility.81

Tables 4 and 5 list the sample statistics for EPHI eligibility for husbands and wives,

81The details of the estimation of the EPHI eligibility imputation model are discussed in the Appendix.
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respectively, in the first wave.82 In both tables, the third column lists the statistics for

observed (binary) EPHI eligibility for those who report their EPHI eligibility. The fourth

column lists the statistics for imputed (continuous) EPHI eligibility for those who do not

report their EPHI eligibility. The last columns in tables 4 and 5 list statistics for EPHI

eligibility for all husbands and all wives, respectively.

Table 4: EPHI Eligibility Distribution in 1992: Husband
Observed Imputed All Husbands

Category Type Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
None N1N2 0.144 (0.35) 0.196 (0.40) 0.156 (0.35)
Tied T1N2 0.034 (0.18) 0.107 (0.31) 0.051 (0.17)

T1T2 0.192 (0.39) 0.149 (0.33) 0.182 (0.44)
Retiree R1N2 0.005 (0.07) 0.009 (0.01) 0.006 (0.06)

R1T2 0.024 (0.15) 0.054 (0.15) 0.031 (0.16)
R1R2 0.601 (0.49) 0.485 (0.33) 0.574 (0.44)

Note: See the note in Table 3 for an explanation of the type column.

Table 5: EPHI Eligibility Distribution in 1992: Wives
Observed Imputed All Wives

Category Type Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
None N1N2 0.142 (0.35) 0.146 (0.33) 0.144 (0.33)
Tied T1N2 0.042 (0.20) 0.102 (0.14) 0.070 (0.16)

T1T2 0.243 (0.43) 0.228 (0.34) 0.236 (0.31)
Retiree R1N2 0.012 (0.11) 0.008 (0.02) 0.010 (0.09)

R1T2 0.030 (0.17) 0.028 (0.21) 0.029 (0.15)
R1R2 0.531 (0.49) 0.488 (0.32) 0.511 (0.44)

Note: See the note in Table 3 for an explanation of the type column.

The percentage of spouses in the tied category equals the sum of percentages of

spouses in types T1N2 and T1T2, and the percentage of spouses in the retiree category

equals the sum of percentages of spouses in types R1N2, R1T2, and R1R2.83 Compared

to spouses who report their EPHI eligibility (observed), spouses who do not report their

eligibility (imputed) have higher percentages of individuals in the none or the tied category,

and they have a smaller percentage of spouses in the retiree category. These differences
82In the data, the observed EPHI eligibility type rarely changes over time, and thus, I assume that each

spouse’s EPHI eligibility type remains the same.
83For example, for those who report their eligibility, the percentages of husbands in the none, the tied, and

the retiree categories are 14.4%, 22.6%, and 63%, respectively. For those who do not report their eligibility,
the percentages of husbands in the none, the tied, and the retiree categories are 19.6%, 25.6%, and 54.8%,
respectively.
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between the imputed and the observed EPHI eligibility distributions can be explained by

the selection pattern of reporting EPHI eligibility in the HRS. Spouses who do not report

their eligibility are those who are covered by their spouse’s EPHI plan, either because they

are not eligible for their own EPHI, or because their employer provides worse plans than

their spouse’s employer. On average, employers who provide tied health insurance provide

less generous plans than employers who provide retiree insurance (Miller (2015)). Thus,

spouses who do not report their eligibility are more likely to be in the none or the tied

category, and they are less likely to be in the retiree category.

The last column in Table 4 shows that about 63% of husbands in my sample are in

the retiree category, and 23.3% of them are in the tied category. The last column in Table 5

shows that about 55% of wives in my sample are in the retiree category, and 30.6% of them

are in the tied category. In contrast, the Department of Labor estimates that in 1993, 44%

of full-time employees in medium and large private establishments offered retiree health

insurance (Clark (1999)). Kaiser (2006) estimates that, during the mid-1990s, about 50%

of large firms offered tied heath insurance. My sample might overpredict the percentage of

people in the retiree category and underpredict the percentage of people in the tied category.

4.4 Employment

Figures 4.1-4.4 present some of the labor market behavior that my model should explain.

Figures 4.1 and 4.2 show the HRS full-time job participation rates by health insurance

category. Regardless of the health insurance category, the full-time job participation rate

declines with age, and the decline is especially sharp between the ages of 62 and 65. Those

in the tied category have the highest participation rates, while those in the retiree category

have the lowest participation rates. Note that the participation rates for workers in the none

category are higher than those for workers in the retiree category. This may be because,

in my sample, most workers in the none category are self-employed. On average, self-

employed workers have a strong labor market attachment.84

84Several papers (e.g., Zissimopoulos et al. (2007), and Hochguertel (2015)) find that self-employed work-
ers aged 50 and over are less likely to retire than wage and salary workers. One potential reason for this
phenomenon is that self-employed workers have low access to pension benefits.
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Figure 4.1: Full-Time Job Participation Rates: Husband
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Figure 4.2: Full-Time Job Participation Rates: Wife
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Figures 4.3 and 4.4 show the HRS full-time job exit rates by health insurance cat-

egory. For both husbands and wives, the job exit rates jump at age 62 and at age 65. At

age 62, the jump in the job exit rates is large for workers in the retiree category. This

pattern provides evidence that being eligible for SSB gives workers in the retiree category

incentives to retire. At age 65, the jump in the job exit rates is large for workers in the tied

category. This pattern provides evidence that workers in the tied category tend to work until

age 65, when they become eligible for Medicare. French and Jones (2011) also find these

patterns for males in different insurance categories. Casanova (2010) finds jumps in the job

exit rates at age 62 and at age 65 for both husbands and wives, but she does not distinguish

between spouses in different insurance categories.

At age 65, the job exit rate is similar for those in the tied and the retiree categories.
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Figure 4.3: Full-Time Job Exit Rates: Husband
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Figure 4.4: Full-Time Job Exit Rates: Wife
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At almost every age other than 65, workers in the tied category have lower job exit rates

than those in the retiree or the none category. For example, at age 62, the job exit rates for

husbands in the tied, retiree, and none categories are 7.8%, 25%, and 11.3%, respectively.

In Rust and Phelan (1997), at around age 62, the job exit rates for males in the tied and the

non-tied (including the retiree and the none) categories are 7.5% and 25.9%, respectively.

Compared to Rust and Phelan (1997), I find a smaller job exit rate for males in the non-tied

category. This might be because: (1) the males in my sample have higher household in-

comes, and thus, the social security benefits account for a smaller portion of their retirement

income and generate smaller incentives for them to retire;85 and (2) most of the males in

85Rust and Phelan (1997) include low- to middle-income males who initially aged 58-63 from 1969-1979.
For this generation, the labor force participation rate of married women is low (Goldin (1986)), and thus,
the husband is usually the only income earner in a household. The males in my sample are from a younger
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the none category in my sample are self-employed workers, and they, on average, have a

strong labor market attachment.

Furthermore, at almost every age, the job exit rates for workers in the tied category

are lower than those for workers who are eligible for retiree insurance. This suggests that

factors other than differences in health insurance eligibility cause differences in job exit

rates.86

4.5 Employer-Provided Health Insurance Plan Characteristics

To compute household budget constraints, this paper requires the following information

about EPHI plan characteristics: the co-insurance rate, the paid premium and deductible for

family coverage, and the paid premium and deductible for single coverage. Unfortunately,

the HRS data have no information on plan characteristics. To solve this data problem, I use

information provided in MEPS to impute plan characteristics for each spouse in my sample.

The MEPS Insurance Component surveys private- and public-sector employers to collect

data on their private health insurance plan characteristics. Firms in the private sector are

divided into cells by industry type and firm size. Specifically, there are ten industry types

and two firm size categories (more or less than 100 employees), which leads to total of 20

cells. All firms in the public sector are treated as one cell. The data are used to generate the

average of each EPHI plan characteristic for these 21 cells. For each spouse in my sample,

I define his EPHI plan characteristics as the averages of the cell to which his firm belongs.

Table 6 lists the 2002 EPHI plan characteristics in the private sector by industry type and

firm size, and Table 7 lists the 2002 EPHI plan characteristics in the public sector.

Using the cell averages in the MEPS to impute the plan characteristics of each

spouse in my sample poses two problems: (1) the MEPS does not contain data before 1996

(the "censored data problem" discussed in 4.5.1); and (2) the cell averages of plan character-

istics can differ significantly from the true individual plan characteristics (the "measurement

generation (those who aged over 50 in 1992), and both them and their wives are full-time workers in 1992.
Thus, the males in my sample have higher household income because they have higher income (more than
60% of the husbands have DB or DC pension), and their wife can bring additional income to the household.

86As French and Jones (2011) point out, those who are eligible for retiree health insurance usually have
higher pension wealth than those who are eligible for tied health insurance. Thus, pension wealth could be
another factor that causes workers who have retiree health insurance to retire earlier.
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Table 6: EPHI Characteristics in Private Sector (Year 2002)
Cells EPHI Characteristics

Family Coverage Single Coverage
Co-insurance Rate Premium Deductible Premium Deductible

Industry Firm Size Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Agric.,fish.,forest. <100 22.2% (3.2%) 1,182 (983) 1,699 (418) 435 (266) 743 (287)

≥100 16.7% (7.4%) 867 (894) 929 (399) 397 (284) 436 (229)

Mining and manufact. <100 16.8% (2.9%) 1,239 (309) 1,469 (402) 468 (133) 611 (97)

≥100 17.5% (0.9%) 921 (359) 778 (45) 485 (53) 375 (38)

Construction <100 17.3% (1.8%) 1,391 (361) 1,231 (140) 526 (105) 595 (77)

≥100 16.7% (2.3%) 1,586 (1,114) 1,195 (361) 540 (180) 513 (119)

Utilities and transp. <100 16.9% (4.5%) 1,151 (867) 1,075 (409) 508 (306) 610 (202)

≥100 17.2% (2.7%) 916 (510) 746 (198) 537 (117) 345 (72)

Wholesale trade <100 22.0% (6.7%) 1,643 (808) 1,533 (274) 428 (171) 697 (108)

≥100 15.9% (2.7%) 1,063 (687) 850 (129) 500 (59) 413 (37)

Fin. svs. and real estate <100 17.1% (2.9%) 1,580 (455) 1,350 (188) 356 (94) 602 (106)

≥100 18.3% (3.3%) 1,281 (380) 900 (127) 606 (63) 374 (37)

Retail trade <100 19.6% (1.3%) 1,582 (307) 1,386 (279) 602 (124) 608 (77)

≥100 17.2% (1.3%) 1,417 (453) 953 (138) 695 (43) 392 (33)

Professioal services <100 18.3% (1.8%) 1,341 (284) 1,353 (162) 404 (81) 582 (56)

≥100 16.5% (1.7%) 1,228 (454) 851 (154) 580 (67) 381 (51)

Other services <100 19.0% (1.6%) 1,330 (388) 1,361 (461) 566 (89) 560 (38)

≥100 17.6% (1.8%) 1,429 (402) 948 (134) 702 (71) 418 (45)

Source: Medical Expenditure Panel Survey, 2002

Table 7: EPHI Characteristics in Public Sector (Year 2002)
Family Coverage Single Coverage

Co-insurance Rate Premium Deductible Premium Deductible
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
18.4% (0.8%) 1,137 (77) 707 (50) 325 (44) 346 (21)
Source: Medical Expenditure Panel Survey, 2002

error problem" discussed in 4.5.2). In the rest of this subsection, I first describe and address

the censored data problem. Then, I discuss how the measurement error problem is likely to

affect the model estimates.

4.5.1 Censored Data Problem

The MEPS collecting information about paid premiums and deductibles in 1996, and it

began collecting information about co-insurance rates in 2002. Thus, I cannot observe

paid premiums and deductibles for periods before 1996, and I cannot observe co-insurance

rates for periods before 2002. To impute missing information about paid premiums and
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deductibles, I assume that the real paid premiums and deductibles in 1992 and 1994 are the

same as those in 1996. This assumption is reasonable because the paid premiums increased

only modestly from the mid-1990s to the late 1990s (Cutler (2003)).87 I calculate the

nominal values of the paid premiums and deductibles in 1992 and 1994 using the Medical

Care Price Index (MCPI) from the St. Louis Federal Reserve Bank as a deflator.88

To impute missing information about co-insurance rates, I assume that the co-

insurance rates in 1992, 1994, 1996, 1998, and 2000 equal those in 2002. This assumption

is reasonable because the co-insurance rates remained approximately the same from the

mid-1990s to the early 2000s (Elbner and Marquis (2008)).89

4.5.2 Measurement Error Problem

Using the cell averages of EPHI plan characteristics to impute individual plan characteris-

tics creates a measurement error problem in my model. In Tables 6 and 7, the numbers in

the parentheses are standard deviations associated with these averages. The high standard

deviations show that the plan characteristics within each cell are spread out over a wide

range of values. Thus, the observed cell averages of plan characteristics (also called the

observed data) and the true individual plan characteristics (also called the error-free data)

may be significantly different.

In my model, the measurement errors cause two problems. First, measurement error

may cause the estimates of the structural model to be inconsistent and biased. As is well

known (see Carroll et al. (2006) and Wooldridge (2010)), in linear regression, the effect of

measurement error is to bias the slope estimate in the direction of 0 (also called attenuation

bias). In my model, the effects of measurement error on model estimates are more complex

than the attenuation bias because my model is nonlinear. In my structural model, the value

function is a nonlinear function of parameters and plan characteristics (equation 3.20), and

the likelihood function is a nonlinear function of value functions.90 This means that the
87Cutler (2003) finds that the nominal paid premiums increased by less than 6% between 1993 and 1999.
88The Medical Care Price index (MCPI) was 190.058, 211.025, and 228.267 in 1992, 1994 and 1996,

respectively.
89Elbner and Marquis (2008) find that the co-insurance rates either declined modestly or remained about

the same from 1995 to 2003.
90The likelihood function is described in estimation section 5.2.
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likelihood function is a nonlinear function of parameters and plan characteristics. Because

the parameter estimates are the values that maximize the likelihood function, the parameter

estimates can be expressed as

θ̂ = f (X1,Z2) (4.6)

where X1 is a vector of variables without measurement error, and Z2 is a vector of observed

plan characteristics. Let X2 be a vector of plan characteristics in the error-free data, then Z2

can be expressed as

Z2 = X2 + e (4.7)

where e represents the measurement error in plan characteristics. A second-order Taylor

series expansion of f (X1,Z2) around Z2 at X2 is

f (X1,Z2)≈ f (X1,X2)+
∂ f (X1,Z2)

∂Z2
(Z2−X2)+

1
2
(Z2−X2)

′ ∂ 2 f (X1,Z2)

∂Z2∂Z ′2
(Z2−X2). (4.8)

Assuming that θ̂ c = f (X1,X2) is a consistent estimate, then equation (4.8) can be rewritten

as

θ̂ ≈ θ̂ c +
∂ f (X1,Z2)

∂Z2
e+

1
2

e
′ ∂ 2 f (X1,Z2)

∂Z2∂Z ′2
e. (4.9)

Because the observed plan characteristics are the averages of the true plan characteristics,

E(e) = 0. Thus, plim ∂ f (X1,Z2)
∂Z2

e = 0 if e is uncorrelated with X1 and X2. Equation (4.9)

shows that plim θ̂ = θ̂ c if the term e
′ ∂ 2 f (X1,Z2)

∂Z2∂Z′2
e equals zero. This term equals zero only

if ∂ 2 f (X1,Z2)

∂Z2∂Z′2
= 0. However, the term ∂ 2 f (X1,Z2)

∂Z2∂Z′2
is unlikely to equal zero because the func-

tion f (·) is unlikely to be linear in Z2. This means that the measurement errors in plan

characteristics cause inconsistent estimates.

The second problem caused by the measurement errors in my model is the observed

data exhibit relationships not present in the error-free data. In the error-free data, different

plan characteristics are correlated. For example, a plan with a high premium usually has

a low deductible, whereas a plan with a low premium usually has a high deductible. The

relationships between different plan characteristics are nonlinear. Assuming that the insur-

ance market is competitive, and an insurance company adapts plan characteristics to gain
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zero profit, then the relationships between different plan characteristics can be expressed as

Γ = (1−Λ)(m(Γ,Λ,Ξ)−Ξ). (4.10)

Variables Γ, Λ, and Ξ represent the premium, the co-insurance rate, and the deductible,

respectively, and m(·) represents the total medical expenses, which are a function of plan

characteristics. The derivative of the premium with respect to the deductible is

∂Γ

∂Ξ
= (1−Λ)

(
∂m(Γ,Λ,Ξ)

∂Ξ
−1
)
. (4.11)

Equation (4.11) shows that, if the total medical expenses are nonlinear in the deductible,

then the premium is nonlinear in the deductible. Next, I use a simple example to show

that the total medical expenses are nonlinear in the deductible. I assume that individuals

choose their total medical expenses, m, and consumption, C, to maximize their utility. An

individual’s optimization problem is

max U(m(Γ,Λ,Ξ),C) (4.12)

s.t.


y > m+C i f m 6 Ξ,

y > Ξ+Λ(m−Ξ)+C i f m > Ξ,

where y represents income. The First Order Condition (FOC) is

U1(m,C) =


U2(m,C) i f m 6 Ξ,

ΛU2(m,C) i f m > Ξ.

(4.13)

Equation (4.13) shows that the utility function, U(·), is nondifferentiable in total med-

ical expenses. This nondifferentiability implies that m might be nondifferentiable in Ξ.

This equation also shows that the relationship between m and C depends on U1(m,C) and

U2(m,C), and thus, the relationship is unlikely to be linear. In summary, the total medical

expenses, m, are likely to be nonlinear and nondifferentiable in Ξ. Therefore, as equation



47

(4.8) shows, the premium, Γ, is also likely to be nonlinear and nondifferentiable in the

deductible, Ξ. Let

Γ = g(Ξ) (4.14)

represent the relationship between the premium and the deductible. The nonlinear relation-

ship between the premium and the deductible means that g(·) is a nonlinear function. Let

Γ∗ and Ξ∗ represent the observed premium and deductible. Because the plan characteris-

tics in the observed data are the averages of the true plan characteristics, Ξ∗ and Γ∗ can be

expressed as

Ξ∗ =
´

ΞdFΞ(Ξ),

Γ∗ =
´

g(Ξ)dFΞ(Ξ).
(4.15)

where FΞ(Ξ) is the distribution of the deductible in the error-free data. The nonlinearity in

g(·) implies that ˆ
g(Ξ)dFΞ(Ξ) 6= g(

ˆ
ΞdFΞ(Ξ)). (4.16)

Equation (4.13) implies that

Γ
∗ 6= g(Ξ∗). (4.17)

Equations (4.11) and (4.14) show that the relationships between the true plan characteristics

are different from the relationships between the observed plan characteristics.91

I do not address these measurement error problems in this paper, but future analysis

of these problems would be worthwhile.

4.6 Wage

Annual wage is defined as the product of hourly wage, working hours per week, and work-

ing weeks per year. However, in the HRS, information about annual wage can be missing

for two reasons. First, some individuals did not report one or more of these variables. Sec-

ond, as in the well-known wage selection problem, econometricians cannot observe what

annual wage retired people would have earned.

91Carroll et al. (2006) conclude that one of the potential effects of measurement error is that the observed
data exhibit relationships not present in the error-free data.
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To solve the missing data problem, I use a wage equation to impute annual wage for

spouses whose wage cannot be observed in the HRS. I model the log real annual wage in

period t as

ln(wit) = β
wXw

it +uit (4.18)

where Xw
it is a vector of explanatory variables (including age, gender, education, and an-

nual working hours), and uit ∼ N(0,σ2
u ) is an error term. Simultaneously estimating this

wage equation and my structural model is computationally burdensome. This is because

including the wage equation increases the number of parameters, and the computational

time increases more than linearly in the number of parameters.

Due to this computational burden, I estimate the wage equation separately from my

structural model. One resulting problem is that the error term in the wage equation, uit ,

might be correlated with the error terms (e.g., the idiosyncratic shock ιdt) in my structural

model that affect individuals’ retirement decisions. Ignoring this correlation causes incon-

sistent estimates. To capture the correlation between the error that affects the log wage and

the error that affects the labor supply, I use a probit framework to model the probability of

working. Let an indicator variable, Dit , denote whether spouse i is working in period t. The

latent variable, D∗it , is modeled as

D∗it = γ
DXD

it + εit (4.19)

where XD
it is a vector of explanatory variables (including age, race, gender, and marital sta-

tus) and εit ∼ N(0,1). The wage imputation model consists of equations (4.18) and (4.19).

The exclusion restriction is that marital status is assumed to affect only the probability of

working (equation (4.19)) and not affect the real wage (equation (4.18)).

I use the two-step Heckman selection method to estimate the wage imputation

model. The Heckman method assumes that uit

εit

∼ N


 0

0

 ,

 σ2
u ρuσu

ρuσu 1


 . (4.20)
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Under this assumption, the log real wage conditional on working is

ln(wit) |Dit=1 = β
wXw

it +ρuσuλ (γDXD
it )+νit (4.21)

where λ (γDXD
it ) is the inverse Mills ratio evaluated at γDXD

it and νit is

νit = uit−E[uit |Dit = 1]

= uit−ρuσuλ (γDXD
it ).

Following Heckman (1979), in the first step, I use a probit regression to estimate γD in

equation (4.19). In the second step, I compute λ ( ˆγDXD
it ) and I use a least squares regression

to estimate equation (4.18). Although including the probit equation reduces the asymptotic

bias of the estimate of β w, the two-step Heckman estimates are still inconsistent because the

probit equation differs from my structural model of individuals’ labor supply (or retirement)

behavior.

I use individuals in the HRS to estimate the wage imputation model (equations

(4.18)-(4.19)). Table A7 in the Appendix lists parameter estimates of this wage imputation

model. Using the resulting estimates, I compute the expectation of wage conditional on

working, which I use as my annual wage data.

4.7 Average Indexed Monthly Earnings (AIME)

As described in model section 3.5, a spouse’s AIME is a key factor that determines Social

Security and pension benefits. Precisely calculating AIME requires keeping track of a

worker’s entire earnings history, which is computationally burdensome. Following French

and Jones (2011), I assume that spouse i’s annualized AIME in the next year is a function

of his annualized AIME, ∆it , labor income, witLit , and age, ait , in the current year.92 I refer

to this function as the AIME updating function hereafter.

Using the AIME updating function and the annualized AIME in 1992, I compute

the annualized AIME under each possible retirement choice for every year after 1992. To

calculate the AIME in 1992, I need a worker’s earnings history up to 1992. Due to the HRS

92The details of the AIME updating function are described in the Appendix.
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data usage restriction of individuals’ earnings history,93 I impute the earnings history prior

to 1992 for each spouse in my sample.

I construct a worker’s earnings history in two steps. In the first step, the log real

labor income in period t is modeled as94

ln(wit) = ρ
Lln(wi,t−1)+θ

LXL
it + ε

L
it (4.22)

where XL
it is a vector of explanatory variables (including education, race, and age) and εL

it is

white noise.95 To estimate equation (4.22), I use the PSID, which is a longitudinal house-

hold survey that began in 1968. The PSID collects data about employment and income

for individuals in a nationally representative sample of households. I include husbands and

wives who were between the ages of 20 and 40 in 1968, and I track their earnings history

until 1988. I use this sample to estimate equation (4.22) for husbands and wives sepa-

rately.96 Table A9 in the Appendix reports the estimates of equation (4.22). In the second

step, given the estimates of equation (4.22) and each spouse’s annual labor income in 1992,

I derive a spouse’s earnings history backwards from 1992 to the year when he was 20 years

old.97 With the constructed earnings histories in hand, I compute the annualized AIME in

1992 for each spouse in my sample.98

In the literature on labor income processes, there are two leading views about the

nature of the income process. As summarized in Guvenen (2009), the first view (the "Het-

erogeneous Income Profile" (HIP) model) is that individuals are subject to shocks with

modest persistence, but face life-cycle profiles that are individual-specific. The second

93For an explanation of the data usage restriction, see data section 4.1.
94Real labor income equals nominal labor income divided by the Consumer Price Index (CPI). The refer-

ence base for the CPI is 1992.
95Most literature about the labor income process models labor income as a function of both explanatory

variables and an income shock that follows an AR(1) process. See Guvenen (2009) for a summary.
96I cannot observe how much labor income non-working people would have earned. Thus, to estimate the

modified AR(1) process, I include only the labor income of those who are working. However, this introduces
a selection problem, which I ignore here.

97To derive a spouse’s earnings history using equation (4.22), I need to know the variables in XL
it for years

prior to 1992. The only variable in XL
it that changes over time is age, which can be easily calculated for these

years.
98If a spouse is older than 55 in 1992, then the AIME as of 1992 is the average monthly labor income

during his 35 highest earnings years. If one spouse is younger than 55 in 1992, then his earnings history is
less than 35 years, and his AIME is the sum of his labor income over the history divided by 35×12.
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view (the "Restricted Income Profile" (RIP) model) is that individuals are subject to ex-

tremely persistent shocks, but face similar life-cycle income profiles. The RIP models get

higher estimates of the level of persistence than the HIP models.99 Because I do not include

the individual-specific effect in equation (4.22), I may overestimate the level of persistence

of a worker’s income and underestimate the consistent difference between two workers’

labor incomes over time. However, for each spouse in each year, the imputed labor income

using equation (4.22) is still a mostly accurate prediction of the real labor income. This is

because the individual-specific effect on labor income is absorbed in the estimate of ρL.

Table 8 compares the sample statistics of husbands’ annualized AIME100 in 1992

using my imputed earnings histories and those calculated by French and Jones (2011), who

use the restricted SSER file.

Table 8: Sample Statistics for Initial Annualized AIME
EPHI Eligibility Category Imputed Earnings History SSER File

Mean Std. Dev. Mean Std. Dev.
Retiree 24.8 (5.0) 24.9 (9.1)

Tied 24.6 (4.5) 24.9 (8.6)
None 21.9 (4.3) 16.0 (9.0)

Note: Numbers are measured in thousands of dollars

Compared to the annualized AIME calculated using the SSER file, the annualized AIME

that I calculate for husbands has similar sample means and has smaller standard devia-

tions.101 The smaller standard deviations might be because I ignore the individual-specific

effect in equation (4.22).102 Yet, it is still reasonable to use equation (4.22) because the

purpose of the process is to impute annual labor income prior to 1992 but not to explain the

nature of the income process.

99In HIP models, the estimated level of persistence in income shocks ranges from 0.5 to 0.7 (Lillard and
Weiss (1979), Baker (1997), and Haider (2001)); in RIP models, the estimated level of persistence is close to
1 (MaCurdy (1982), Abowd and Card (1989), and Topel and Ward (1992)).

100Annualized AIME equals AIME times 12 months.
101The only exception is that, for husbands in the none category (who have no insurance), I calculated a

larger sample mean of AIME than French and Jones (2011). This might be because, in my sample, many
husbands who have no EPHI are self-employed, and self-employed workers have higher labor income than
salary workers (Hochguertel (2015)).

102For husbands in my sample, 27.6% of the standard deviation of the AIME is due to the error, and 72.4%
is due to the variation in XL.
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4.8 Bargaining Power

In the first wave, the HRS asks each spouse a question about decision-making power:

"When it comes to making major family decisions, who has the final say-you or your (hus-

band/wife/partner)?"103 Individuals could answer that they themselves had the final say,

that their spouse did, or that the division of responsibility was about equal.104 Because

retirement is described as a major family decision,105 answers to the HRS question can be

used to predict the true continuous bargaining power for households facing retirement. The

answers are discrete and, in some households, the two spouses’ answers differ. Friedberg

and Webb (2006) treat the answers as noisy discrete measures of the true continuous bar-

gaining power, and they develop a bivariate ordered probit model to examine the effects

of explanatory variables on bargaining power.106 Using the estimates and the explanatory

variables included in Friedberg and Webb (2006), I impute the continuous bargaining power

for each husband in my sample. I find that the imputed bargaining power for husbands in

my sample varies from 0.16 to 0.76.107 The sample mean of the imputed bargaining power

is 0.51 and the standard deviation is 0.1.

4.9 Summary Statistics

Table 9 shows the summary statistics for the first period for the variables used in my

model.108 Two variables that I haven’t previously discussed are household race and health

status. Household race is defined as white if both spouses are white, black if both spouses

are black, and other if otherwise. Most (84%) households in my sample are white, and very

103See the Health and Retirement Study Questionnaire, Question E135.
104For two reasons, I do not consider the dynamics of bargaining power. First, households in my sample

consist of older couples who have had long marriages, and this indicates that their marriages have been happier
and more harmonious than average. I can treat the reported decision-making power as the steady-state of a
repeated game. Second, Friedberg and Webb (2006) find that average past earnings have a substantially
greater impact on decision-making power than current earnings. This indicates that the retirement decision
may not have much effect on decision-making power.

105As the HRS survey states, "by major family decisions we mean things like when to retire, where to live,
or how much money to spend on a major purchase."

106Details of the bivariate ordered probit model developed by Friedberg and Webb (2006) are described in
the Appendix.

107A small number means that a husband has limited bargaining power in making major family decisions,
including retirement.

108Because the summary statistics for EPHI eligibility are listed in Tables 4 and 5, I exclude them from
Table 9.
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few (5%) households have mixed races.

Table 9: Summary Statistics For The Initial Distribution
Variables Mean Std Dev
Bargaining Power 0.51 0.10
Household Assets a 197 229
AIME_h a 24.6 4.34
AIME_w a 13.8 2.71
Annual Income_h a 35.7 21.5
Annual Income_w a 21.9 13.8
Health_h b 0.89 0.32
Health_w b 0.93 0.25
Age_h 54.5 3.02
Age_w 51.6 3.11
EPHI Plan Characteristics
co-insurance rate_h 0.18 0.02
paid premium-Family_h c 1220 198
deductible-Family_h c 1026 269
paid premium-Single_h c 295 62
deductible-Single_h c 464 114
co-insurance rate_w 0.18 0.01
paid premium-Family_w c 1333 164
deductible-Family_w c 1045 238
paid premium-Single_w c 303 58
deductible-Single_w c 456 94
Household Race
white 0.84 0.36
black 0.11 0.31
other 0.05 0.21
Education_h
no degree 0.16 0.37
high school 0.60 0.49
college+ 0.24 0.43
Education_w
no degree 0.12 0.32
high school 0.70 0.46
college+ 0.18 0.39
Note: a: measured in thousands of dollars; b: fraction in good health;

c: measured in dollars.

To measure the health status of the HRS respondents, I examine their answer to

the question: "Would you say your health is excellent, very good, good, fair or poor?"109

Health status is defined as good if the answer is excellent, very good, or good, and bad if the

answer is fair or poor. Although several researchers raise concerns about the reliability of
109See the Health and Retirement Study Questionnaire, Question B1.
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self-reported health status (e.g., O’Donnell et al. (1998), and Dwyer and Mitchell (1999)), I

assume, following Benitez-Silva et al. (2004), that it is reported accurately.110 The statistics

show the fraction of people who are in good health in the first wave of the HRS survey: 89%

of husbands and 93% of wives.

110Benitez-Silva et al. (2004) argue that respondents tend to report their true health status because the HRS
data have a very high level of confidentiality.
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5 Estimation

In this section, I first define the structure of errors in my theoretical model (see subsection

5.1). Secondly, I use the error structure to define the likelihood function and describe the

estimation strategy (see subsection 5.2). I conclude by discussing how the parameters in

the model are identified (see subsection 5.3).

5.1 Error Structure

The household utility function includes two types of errors: an idiosyncratic error, ιdt ,

and unobserved heterogeneity terms, (η i
Li
,τ i

ji) (equation (3.3)). As described in the model

section, the term ιdt accounts for the household utility shock that varies across discrete

choices and time. The term η i
Li

is spouse i’s time-invariant preference for his retirement

status Li, and the term τ i
ji is spouse i’s time-invariant preference for his EPHI plan choice ji.

Both types of errors are assumed to be known to the household but not the econometrician.

I proceed by discussing the empirical specification for each type of error.

5.1.1 Idiosyncratic Error

I assume that idiosyncratic errors (or household utility shocks), ιdt , are independent across

households, time, and discrete choices. Specifically, I assume that ιdt ∼ iid EV . The distri-

bution function of ιdt is

F(ι ;σι) = exp{−exp{− ι

σι

}}. (5.1)

The parameter σι is the scale of the distribution of the idiosyncratic error.111

5.1.2 Unobserved Heterogeneity

The vector of unobserved heterogeneity terms is uh = (η ,τ) where η = (ηm
0 ,η

m
1 ,η

f
0 ,η

f
1 )

represents the vector of the two spouses’ unobserved time-invariant preferences for dif-

ferent retirement statuses and τ = (τm
0 ,τ

m
m ,τ

m
f ,τ

f
0 ,τ

f
m,τ

f
f ) represents the vector of the two

111The identification of σι is discussed in subsection 5.3.
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spouses’ unobserved time-invariant preferences for different EPHI plan choices.112 It is

common to assume that uh has a multivariate normal distribution, and then to use a GHK

simulator (Geweke (1989), Hajivassiliou (1990), and Keane (1994)) or a mixed logit simu-

lator (McFadden and Train (2000)) to approximate the choice probabilities. However, the

assumed multivariate normal distribution adds 55 parameters to the model, which is com-

putationally burdensome.113 In order to reduce the computational burden, I use the method

developed by Heckman and Singer (1985). I assume that the vector of unobserved hetero-

geneity takes two values, uh
1, uh

2, with probabilities pu, 1− pu, and I restrict uh
1 = 0. (Keane

and Wolpin (1997), Cameron and Heckman (1998), Mroz and Guilkey (1992), and Mroz

(1999)). This method adds only 11 parameters to the model, uh
2 and pu.

5.2 Likelihood Function

As described in the model section, before both spouses in a household retire, the household

makes three decisions at the beginning of each period to maximize the expected present

discounted value (EPDV) of its remaining lifetime utility. The three decisions include two

discrete choices (household retirement status and EPHI plan choice, dt = (Lt , jt)) and one

continuous choice (household consumption, Ct). After both spouses in a household retire,

the household chooses only the household consumption, Ct , at the beginning of each period

to maximize the EPDV of its remaining lifetime utility.

Including the density of the observed Ct in the likelihood function not only increases

the computational burden; it also requires a data set with quality information about house-

hold assets and tracks each household’s asset transitions over time.114 However, the HRS

fails to keep track of asset transitions.115 To avoid the computational burden and the data

112Recall that η i
0 and η i

1 represent spouse i’s time-invariant tastes for working and being in retirement,
respectively; and τ i

0, τ i
m, and τ i

f represent spouse i’s time-invariant tastes for being covered by no EPHI plan,
by the husband’s EPHI plan, and by the wife’s EPHI plan, respectively.

113The vector uh includes ten unobserved heterogeneity terms. If I assume a multivariate normal distri-
bution for unobserved heterogeneity terms, the variance-covariance matrix of uh contains 55(= [(1+ 10)×
10]/2) parameters.

114The household consumption decision this period affects household assets at the beginning of the next
period. Thus, including the density of the observed Ct in the likelihood function requires a data set that keeps
track of asset transitions for each household.

115For example, for several households in my sample, the difference between the household assets observed
in two adjacent waves is much bigger than the observed household income gained during the period.
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problem, I assume that, in each period, households optimally choose Ct , conditional on

the discrete decision dt (Rust (1988) and Casanova (2010)). This means that the Bellman

equation (equation (3.20)) can be rewritten as

V (zt) = max
dt
{max

Ct
{v(d,Ct ;zt)|dt = d}} (5.2)

where zt = (At ,Ht ,St , ιdt) is a vector of state variables in period t (defined in model sec-

tion 3.8) and v(dt ,Ct ;zt) is the choice-specific value function (defined in equation (3.21)).

Equation (5.2) implies that optimal household consumption can be expressed as a function

of the discrete choices. Because I assume that a household stops making discrete choices

after both spouses retire, the likelihood function includes terms only up to the period when

both spouses retire.

In the rest of this subsection, I first describe how to compute optimal consumption,

conditional on a discrete decision dt (see 5.2.1). Next, I discuss how to compute choice

probabilities (see 5.2.2). Then, I derive the likelihood function (see 5.2.3). Finally, I discuss

the estimation strategy (see 5.2.4).

5.2.1 Optimal Consumption

As defined in the model section (equations (3.21)), v(dt ,Ct ;zt) is

v(dt ,Ct ; zt) =U(dt ,Ct ; zt , ιdt)+βEm{E[V (zt+1)|zt ,dt ,Ct ,mt ]} (5.3)

where Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]} is defined in equation (3.22).116 Given any dt , optimal

household consumption, denoted as C∗(dt), satisfies the First Order Condition (FOC) of

equation (5.3),

∂U(dt ,Ct ;zt)

∂Ct
+β

∂Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]}
∂At+1

∂At+1(Ct)

∂Ct
= 0. (5.4)

116The term v(dt ,Ct ; zt) is strictly concave in Ct because: (1) the household utility flow (equations (3.1)-
(3.2)), U(·), is strictly concave in Ct ; (2) the distribution function of mt (equations (3.8)-(3.10)) are indepen-
dent of Ct ; and (3) the transition functions in E[V (zt+1)|zt ,dt ,Ct ,mt ] (equation (3.23)) are independent of Ct .
Thus, given any dt , there exists a unique household consumption decision that maximizes v(dt ,Ct ; zt).



58

The functional form of household utility flow (equations (3.1)-(3.2)) implies that ∂U(dt ,Ct ;zt)
∂Ct

= 1
Cα

t
. Similarly, the budget constraint (equation (3.4)) implies that ∂At+1(Ct)

∂Ct
= −1. Thus,

the FOC can be rewritten as

Ct =

{
β

∂Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]}
∂At+1

}−(1/α)

. (5.5)

Computing the term ∂Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]}
∂At+1

analytically is computationally burden-

some. My approach is to use several linear splines to approximate Em{E[V (zt+1)|zt , dt ,Ct ,mt ]}.

Then, instead of computing ∂Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]}
∂At+1

at every point of At+1, I compute the

slope of each linear spline.

I first discretize the household assets using five points (A1,A2,A3,A4,A5).117 Then,

I calculate Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]} at these five points. Let

Dq(dt) = Em{E[V (zt+1(Aq))|zt ,dt ,Ct ,mt ]} q = {1,2,3,4,5} (5.6)

denote the value of Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]} when At+1 = Aq. Therefore, the slope of

the linear spline that connects Dq and Dq+1 is

Sq(dt) =
Dq+1(dt)−Dq(dt)

Aq+1−Aq q = {1,2,3,4}. (5.7)

For each Sq(dt), there exist corresponding assets, denoted as At+1(dt ,q). If At+1(dt ,q) is

located inside of [Aq,Aq+1], I replace the term ∂Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]}
∂At+1

in the FOC (equation

(5.5)) with Sq(dt). The optimal household consumption for the qth spline, conditional on

dt , is

C(dt ,q) = {βSq(dt)}−(1/α) . (5.8)

If At+1(dt ,q) is located outside of [Aq,Aq+1], I update At+1(dt ,q) with Aq or Aq+1,

whichever is closer to At+1(dt ,q). Given the updated At+1(dt ,q), I then update C(dt ,q)

in equation (5.8) with the amount of consumption that satisfies the household budget con-

117These five points are defined by the mean, mA, and the standard deviation, stdA, of the distribution of the
household assets observed in the first wave: A1 = mA−2stdA, A2 = mA− stdA, A3 = mA, A4 = mA + stdA, and
A5 = mA +2stdA.



59

straint.118 I derive C(dt ,q) for each of the four splines, and the optimal household con-

sumption, conditional on dt , is

C∗(dt) = argmax
Ct∈{C(dt ,q),q=1,...,4}

{v(dt ,Ct ; zt)}. (5.9)

5.2.2 Choice Probabilities

Equations (5.2) and (5.9) show that, before the two spouses in a household retire, the house-

hold’s optimization problem in each period is to choose the dt that maximizes v(dt ,C∗(dt); zt).

Because v(dt ,C∗(dt); zt) is a function of dt only, I simplify the notation by rewriting it as

v∗(dt , ; zt). I decompose the term v∗(dt ; zt) as the sum of three parts:

v∗(dt ; zt) = v̂(dt ; zt)+(ηL + τ j)+ ιdt (5.10)

where ηL = γηm
Lm

+(1−γ)η
f

L f
and τ j = γτm

jm +(1−γ)τ
f
j f

are the household’s time-invariant

preferences for the household retirement status, L, and the household EPHI plan choice, j,

respectively.119 In any period before both spouses retire, the probability of interest for a

household is the probability that the observed discrete decision d∗ = (L∗, j∗) generates a

higher value of v∗(dt ; zt) than any other possible discrete choice d = (L, j). This choice

probability can be expressed as

Pt(dt = d∗; zt ,θ |e,η ,τ) = Prob[v̂(d∗; zt |e)+(ηL∗+ τ j∗)+ ιd∗t

> v̂(d ; zt |e)+(ηL + τ j)+ ιdt ; ∀d 6= d∗]}
(5.11)

where θ is the full set of parameters to be estimated and e is the household EPHI eligibility

type.120 Because the idiosyncratic error, ιdt , is assumed to be distributed Extreme Value, the

choice probability, conditional on the household EPHI eligibility type and the unobserved

118Although the introduction of the spline function simplifies the computation of the optimal consumption,
it creates kink points in the value function. See section 5.2.4 for a discussion about the estimation problem
caused by these kinks.

119As introduced in model section 3.2, the parameter γ is the husband’s bargaining power.
120As I described in data section 4.3, I assume that EPHI eligibility type does not change over time.
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heterogeneity, (e,η ,τ), is

Pt(dt = d∗; zt ,θ |e,η ,τ) =
exp{[v̂(d∗; zt |e)+(ηL∗+ τ j∗)]/σι}
∑

d∈Lt×Jt

exp{[v̂(d ; zt |e)+(ηL + τ j)]/σι}
. (5.12)

Next, I derive the likelihood function using the choice probabilities.

5.2.3 Likelihood Function

Let T R
n be the period by which both spouses in household n have retired, and let T L

n be the

last period by which the household has stayed in the HRS. For household n, the number of

periods included in its likelihood contribution is

Tn = min{T R
n ,T L

n }.

Given panel data {zn
t ; dn

t }(t = 1, ...,Tn; n = 1, ...,N) on the observed states and dis-

crete decisions of N households, the likelihood contribution for household n, conditional

on the household EPHI eligibility type and the unobserved heterogeneity, (en,η ,τ), is

Ln(θ |en,η ,τ) =
Tn

∏
t=1

{
Pt(d

n

t ; zn
t ,θ |en,η ,τ)πt(zn

t ,θπ |zn
t−1,d

n

t−1)
}

(5.13)

where πt(·|·) represents the household’s health transition probabilities and survival rates.

The vector of parameters θ = (θP,θm,θπ) includes three parts: (1) the vector of parameters

that affect the household utility function and the consumption floor, θP; (2) the vector of pa-

rameters that affect household total medical expenses, θm; and (3) the vector of parameters

that affect the the household’s subjective belief about future events, θπ .121

Recall that uh = (η ,τ) is assumed to take two values, uh
1 = (η1,τ1) and uh

2 =

(η2,τ2), with probabilities pu and (1− pu). Thus, the likelihood contribution for household

n, conditional on the household EPHI eligibility type, en, is

Ln(θ |en) =
2

∑
k=1

{
pkLn(θ |en,ηk,τk)

}
(5.14)

121This decomposition is useful later in the estimation strategy (see section 5.2.4.).
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where p1 = pu and p1 = 1− pu.

As described in data section 4.3, for spouses who are covered by their spouse’s

EPHI plan, their EPHI eligibility is not reported in the HRS. For these spouses, I use the

EPHI eligibility imputation model (equations (4.1)-(4.5)) to impute the probability for each

of the six possible types of EPHI eligibility.122 This means that, for some households, I

know only the distribution of the household EPHI eligibility over the 36 possible types.123

For households in which both spouses’ EPHI eligibilities are reported in the HRS, I assign

1 to the probability for the observed household EPHI eligibility type and assign 0 to all

of the other 35 household EPHI eligibility types. Let Pe
n (e

n = e) represent the probability

of having a particular EPHI eligibility type for household n. Then, a household likelihood

contribution over the distribution of the household EPHI eligibility type is

Ln(θ) =
36

∑
e=1

Pe
n (e

n = e)Ln(θ |e). (5.15)

The likelihood function is

L(θ) =
N

∏
n=1

Ln(θ). (5.16)

Initial Conditions

The likelihood function (equation (5.16)) ignores the initial conditions problem: the ob-

served EPHI eligibility is not exogenous, and it is determined by the process generating the

panel sample. For example, individuals who prefer to retire early might tend to find a job

that provides retiree insurance. Ignoring the initial conditions problem might overestimate

the effects of retiree insurance eligibility on retirement, and my parameter estimates might

be inconsistent (Heckman (1981)). In future research, I can control for this initial con-

ditions problem by including the probability of being in a particular insurance eligibility

category in the likelihood function. The probability of being in a particular insurance eligi-

bility category is modeled as a logistic function of a worker’s initial state vector, including

122Different types of individual EPHI eligibility are defined in data section 4.3.
123There are six possible types of EPHI eligibility for a spouse, and thus, there are 36 possible types of

household EPHI eligibility for a household.
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age, wage, health status, wealth, and pension eligibility (Keane and Wolpin (1997), and

Van der Klaauw and Wolpin (2008)). The parameters in the logistic function are estimated

jointly with parameters in my structural model.

Simulation

A key part of computing the likelihood function, L(θ), is to compute the term v̂(dt ; zt |e),

which is

[U(dt ,C∗(dt);zt , ιdt |e)− (ηL + τ j)− ιdt ]+βEm{E[V (zt+1)|e,zt ,dt ,mt ]}.

Thus, computing v̂(dt ; zt |e) requires an evaluation of integrals over the joint distribution of

the two spouses’ total medical expenses, mt = (mmt ,m f t). Recall that, when a household

makes decisions, it does not observe the two spouses’ medical expense-related shocks,

(ϑmt ,ϑ f t ,umt ,u f t), which later determine the two spouses’ total medical expenses, mt .124

Thus, v̂(dt ; zt |e) can be expressed as

v̂(dt ; zt |e) =
´

v̂(dt ; zt |e,ϑmt ,ϑ f t ,umt ,u f t)dG(ϑmt ,ϑ f t ,umt ,u f t)

where G(·) is the joint distribution of (ϑmt ,ϑ f t ,umt ,u f t). This means that computing

v̂(dt ; zt |e) requires an evaluation of the four-dimensional integrals over the joint distribution

of (ϑmt ,ϑ f t ,umt ,u f t).

Evaluation of the four-dimensional integrals in v̂(dt ; zt |e) is not possible analyti-

cally, so I calculate the value of v̂(dt ; zt |e) numerically using a simulation method. As

described in the model section (equations (3.8) and (3.9)),

ϑmt

ϑ f t

umt

u f t


∼ N





0

0

0

0


,



1 ρϑ 0 0

ρϑ 1 0 0

0 0 1 ρu

0 0 ρu 1




.

124As described in model section 3.4.2, each spouse has two medical expense-related shocks, (ϑit ,uit ). The
first determines whether a spouse has positive medical expenses, and the second determines the total medical
expenses conditional on having positive medical expenses.
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I make R draws of (ϑmt ,ϑ f t ,umt ,u f t) from the distribution defined above and compute the

term v̂(dt ; zt |e,ϑ r
mt ,ϑ

r
f t ,u

r
mt ,u

r
f t) for each random draw. I define the simulated analog to

v̂(dt ; zt |e) as

v̂R(dt ; zt |e) =
1
R

R

∑
r=1

v̂(dt ; zt |e,ϑ r
mt ,ϑ

r
f t ,u

r
mt ,u

r
f t). (5.17)

The simulated choice probability, PR
t (dt ;zt ,θ |e,η ,τ), is computed by replacing all

v̂(dt ; zt |e) terms in equation (5.12) with their simulated analogs, v̂R(dt ; zt |e). The simulated

conditional likelihood contribution for household n, LnR(θ |en,η ,τ), is computed by replac-

ing Pt(dt ;zt ,θ |e,η ,τ) in equation (5.13) with their simulated analogs, PR
t (dt ;zt ,θ |e,η ,τ).

The simulated unconditional likelihood contribution is

LnR(θ) =
36

∑
e=1

Pe
n (e

n = e)

[
2

∑
k=1

pkLnR(θ |e,ηk,τk)

]
, (5.18)

and the simulated likelihood is

LR(θ) =
N

∏
n=1

LnR(θ). (5.19)

The estimate θ̂ is the vector of parameter values that maximizes the simulated like-

lihood function LR(θ). Although the Maximum Simulated Likelihood (MSL) estimator, θ̂ ,

is inconsistent, the magnitude of the inconsistency is frequently small, and with a modest R,

MSL estimation can construct an practically consistent estimator (Börsch-Supan and Haji-

vassiliou (1993) and Hajivassiliou (2000)). Next, I describe the estimation strategy that I

use to estimate θ .

5.2.4 Estimation Strategy

While a relatively small number (16) of parameters are used to specify a household’s prefer-

ences, a large number (98) of parameters are needed to specify its health transition function

and survival function and to specify the distribution of the two spouses’ medical expenses (I

refer to it as computational burden problem). In addition, the HRS data have no information

on the two spouses’ total medical expenses (I refer to it as omitted variables problem).
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Due to the computational burden and the omitted variables problem, I use a two-

stage estimation procedure to estimate the model (Rust (1987, 1988), Rothwell and Rust

(1997), Rust and Phelan (1997), Gourinchas and Parker (2002), Laibson et al. (2007), and

French and Jones (2011)). In the first stage, I use the HRS demographic data and Max-

imum Likelihood (ML) Estimation to estimate the parameters (θπ ) that determine house-

hold health transitions (equation (3.17)) and survival rates (equation (3.18)).125 I also use

the MEPS data and ML Estimation to estimate the parameters (θm) that determine total

medical expenditures (equations (3.8)-(3.10)).126 In the second stage, I use my HRS sam-

ple and MSL Estimation (Keane and Wolpin (1997), Rust and Phelan (1997), Brien et al.

(2006), and Blau and Gilleskie (2008)) to estimate the parameters (θP) that determine utility

function (equations (3.1)-(3.3)) and the consumption floor (equation (3.6)).127

In my model, the idiosyncratic errors in the second stage that associated with dis-

crete choices and time are correlated with the errors in the first stage that affect total medical

expenses and health transitions.128 This correlation makes my two-stage estimators incon-

sistent. Several papers (e.g., Amemiya (1978) and Rust (1994)) provide correction formulae

that yield consistent estimates. I don’t use these correction formulae because the data I use

to estimate some first stage parameters (medical expenses parameters) is independent from

the data I use to estimate second stage parameters. This means that there is no information

to identify the correlation between the errors in the two stages. Therefore, I assume that the

first stage errors are independent from the second stage errors, and the two-stage estimation

method is appropriate in this paper.

The second stage partial simulated likelihood function is

LR
2 (θ) =

N

∏
n=1

{
36

∑
e=1

Pe
n (e

n = e)

[
2

∑
k=1

pk
Tn

∏
t=1

PR
t (d

n

t ; zn
t ,θP, θ̂m, θ̂π |e,ηk,τk)

]}
. (5.20)

I maximize this partial simulated likelihood function using BHHH (Berndt et al. (1974)). I

125The likelihood function used to estimate θπ includes only the product of the πt terms.
126The likelihood function used to estimate θm is the product of the probability of having the observed

household total medical expenses outcome across different households and different periods.
127As discussed in Rust and Phelan (1997), the two-stage estimation procedure is not as efficient as the full

likelihood estimation using the full likelihood function (equation (5.19)).
128For example, when a household suffers a negative health shock at the beginning of a period, the house-

hold is more likely to choose retirement, have high medical expenses, and be unhealthy in the next period.
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implement my estimation routine using FORTRAN and MPI for parallel processing.

The parameter estimates delivered by the BHHH algorithm might not be optimal

due to the kinks in the value function. There are two sources of the kinks in the value func-

tion. First, the tax, Social Security, and pension rules cause several kinks in the household

budget constraint. Second, I discretize household assets, which makes the value function

a piecewise linear function of household assets. These kinks in the value function might

cause the likelihood function to become nondifferentiable in some parameters. Due to this

nondifferentiability, the derivative on one side of a kink in the likelihood function is not

informative about the derivative on the other side of the kink. Therefore, the BHHH algo-

rithm (a fast hill-climbing optimization algorithm) might get stuck at a local maximum that

is not the global maximum.

5.3 Identification

In this subsection, I discuss how the functions of interest in my model are identified sepa-

rately from one another. I begin by discussing how preference parameters in the household

utility function are identified. Then I describe how the parameters that determine the dis-

tribution of total medical expenditures are identified. Lastly, I examine the identification

of parameters in the household health transition functions and the household survival func-

tions.

5.3.1 Utility Function Parameters

Recall that household utility is defined as the weighted sum of each spouse’s utility, ui.

Spouse i’s utility depends on household consumption, Ct , his retirement status, Lit , and his

unobserved preferences, ϖit(dt , ιdt), for household discrete choices, dt .129 As defined in

model section 3.2, spouse i’s utility function is

ui(Lit ,Ct ;ϖit(dt , ιdt)) =
C1−α

t

1−α
+ exp{β iX i

t }Lit +ϖit(dt , ιdt) i ∈ {m, f}

where

β
iX i

t = β
i
0 +β

i
1ait +β

i
2Hit +β

i
3L−i,t . (5.21)

129As I defined in model section 3.2, L−i,t denotes the other spouse’s leisure (or retirement status).
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The risk aversion parameter α is identified by the co-variation in household savings

and future uncertainty. For example, suppose that two risk averse households are similar

in everything except that one has family health insurance coverage and one does not. The

household with health insurance coverage will save less than the household without insur-

ance coverage for two reasons. First, the one with insurance coverage has less uncertainty

about future medical expenses (the "risk reducing" aspect of insurance). Second, the health

insurance company helps to pay part of the medical expenses for the household with in-

surance coverage (the "gift" aspect of insurance). For healthy people, the effect of the gift

aspect of insurance on saving decisions is limited because their expected total medical ex-

penses are small. Therefore, the degree of risk aversion is identified by the extent to which

healthy, insurance-eligible households save less than healthy, ineligible households.

For spouse i, β i is a vector of parameters that affect his preference for leisure. The

parameters associated with spouse i’s age and health, (β i
1,β

i
2), are identified by the co-

variation in spouse i’s retirement status, Lit , and his age and health status, (ait ,Hit), condi-

tional on other observable characteristics. The last element of β i, β i
3, represents spouse i’s

preference for spending leisure time with the other spouse (simultaneous retirement). Both

β m
3 and β

f
3 are identified by the co-variation in the two spouses’ retirement choices: retiring

together or not. Thus, these two parameters, (β m
3 ,β

f
3 ), cannot be identified separately, and

I assume that β m
3 = β

f
3 .130

Recall that uh represents the vector of the two spouses’ unobserved time-invariant

preferences for different discrete household choices.131 The vector uh differs across house-

holds, but its distribution remains the same. I assume that uh takes two values, uh
1, uh

2, with

probabilities pu, 1− pu, and I restrict uh
1 = 0. The parameters uh

2 and pu are identified by the

variance of the household time-specific residuals and the variance of the household-specific

residuals.
130Friedberg and Stern (2014) make an analogous assumption. They restrict covariates to have the same

effect on both spouses’ happiness, as they found no major differences in estimates with and without this
restriction. Gustman and Steinmeier (2000, 2004) and Guvenen (2009) allow the husband and the wife to
have asymmetric preferences for spending leisure with the other spouse. Their ability to separately identify
these two parameters relies on an important assumption: the decision-making process in a family is a non-
cooperative bargaining process.

131Details of uh are explained in section 5.1.1.
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An identification problem I face is the difficulty of separately identifying the ef-

fects of unobserved heterogeneity from duration dependence. This is because both factors

can account for the observed decreasing hazard out of employment over time. Elbers and

Ridder (1982) prove that variations in observed explanatory variables that are included in

hazard functions provide enough restrictions on the observed hazard to separately identify

the effects of unobserved heterogeneity and duration dependence.132 Because the choice

probability functions (or hazard functions) in my model include explanatory variables that

vary across people and time, the effects of unobserved heterogeneity can be separately

identified from duration dependence.

Additionally, there are three parameters that affect household choices but do not

appear in the household utility function directly. These parameters are: (1) the time dis-

count factor, β ; (2) the consumption floor, Cmin; and (3) the scale of the distribution of

idiosyncratic utility shocks, σι .133 The time discount factor is identified by the co-variation

in household asset quantile and retirement decision. The consumption floor is identified by

the same co-variation in households in the bottom asset quantile. If the consumption floor

is sufficiently low, the risk of a catastrophic medical expense shock will encourage work

(delaying retirement) among the poor. Conversely, a high consumption floor discourages

work among the poor (Hubbard et al. (1995)).134 The scale parameter can be identified sep-

arately from other parameters because the value function is nonlinear in other parameters

(equation (5.12)).135

5.3.2 Medical Expenditure Function Parameters

Recall that two independent processes are modeled to determine each spouse’s total med-

ical expenditures: (1) whether he has positive medical expenses; and (2) the amount of

total medical expenses conditional on having positive medical expenses. I use a Bivariate

Probit framework to model the first process. Let Pit be a binary variable indicating whether

132See Elbers and Ridder (1982) for details of the proof.
133The idiosyncratic shocks are assumed to be distributed EV (equation (5.1)).
134As emphasized by Hubbard et al. (1995), the consumption floor can be considered a 100% tax on the

savings of those who have high medical expenses, and low income and assets.
135Rust and Phelan (1997) and Blau and Gilleskie (2006) include EV distributed idiosyncratic shocks in

their models, and they normalize the scale parameter to 1.
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spouse i has positive total medical expenses in period t. As described in model section 3.4.2

(equation (3.8)), the latent variable, P∗it , is modeled as

P∗it = ξ
i
1Iit +ξ

i
2Hit +ξ

i
3Lit +ξ

i
4Xit +ϑit , (5.22)

 ϑmt

ϑ f t

∼ N


 0

0

 ,

 1 ρϑ

ρϑ 1


.

The parameters associated with the explanatory variables, ξ i, are identified by the

co-variation in whether spouse i has positive medical expenses and the explanatory vari-

ables, (Iit ,Hit ,Lit ,Xit). The correlation between the two spouses’ error terms, ρϑ , is identi-

fied by the co-variation in the residuals of the two spouses’ probits.

In the second process, the log of positive total medical expenditures, ln(mP
it), is mod-

eled as a function of the four components used in the first process,
−→
Xit = (Iit ,Hit ,Lit ,Xit),

and an idiosyncratic shock, uit . Additionally, I assume that the vector of explanatory vari-

ables,
−→
Xit , can affect both the mean, µ(·), and the variance, σ(·), of ln(mP

it). Thus, ln(mP
it)

is modeled as (equation (3.9))

ln(mP
it) = µ(

−→
Xit)+σ(

−→
Xit)uit , (5.23)

 umt

u f t

∼ N


 0

0

 ,

 1 ρu

ρu 1


,

where

µ(
−→
Xit) = χ

i
1Iit +χ

i
2Hit +χ

i
3Lit +χ

i
4Xit , (5.24)

σ(
−→
Xit) = π

i
1Iit +π

i
2Hit +π

i
3Lit +π

i
4Xit . (5.25)

The parameters that affect the mean of the log of total medical expenditures, χ i, are

identified by the co-variation in the log of total medical expenditures and the explanatory

variables. The parameters that affect the volatility of the log of total medical expenditures,

π i, are identified by the co-variation in the two spouses’ squared residuals of the log of total

medical expenditures and the explanatory variables. With the estimated parameters π̂ i and
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the vector of observed explanatory variables
−→
Xit , I can calculate each spouse’s preference

for medical expenditure shocks, σ(π̂ i−→Xit).136 The co-variation in the two spouses’ residuals

divided by σ(π̂ i−→Xit) identifies the correlation between the two spouses’ error terms, ρu.

5.3.3 Health Transitions and Survival Rates Parameters

In the household health transitions function, Hit is a binary variable that indicates whether

spouse i is in good health in period t. As described in model section 3.6.1, the latent

variable, H∗it , is modeled as

H∗it = κ
i
1Ii,t−1 +κ

i
2Hi,t−1 +κ

i
3Xi,t−1 +uH

it , (5.26)

 uH
mt

uH
f t

∼ N


 0

0

 ,

 1 ρH

ρH 1


.

The parameters associated with the explanatory variables, κ i, are identified by the

co-variation in the health status in this period, Hit , and the explanatory variables in the last

period, (Ii,t−1,Hi,t−1,Xi,t−1). The correlation between the two spouses’ health shocks, ρH ,

is identified by the co-variation in the residuals of the two probits.

In the household survival rates function, Sit is a binary variable that indicates whether

spouse i is alive in period t. As described in model section 3.6.2, the latent variable, S∗it , is

modeled as

S∗it = ζ
i
1Hi,t−1 +ζ

i
2Xi,t−1 +uS

it , (5.27) uS
mt

uS
f t

∼ N


 0

0

 ,

 1 ρS

ρS 1


.

The parameters associated with the explanatory variables, ζ i, are identified by the

co-variation in the survival status in this period and the explanatory variables in the last pe-

riod, (Hi,t−1,Xi,t−1). The correlation between the two spouses’ life shocks, ρS, is identified

by the co-variation in the residuals of the two probits.

136σ(
−→
X π) shows that spouses who have different values of explanatory variables,

−→
X , react to the medical

expenditure shock differently.
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6 Results

In this section, I first discuss the parameter estimates. Then, I assess the model’s perfor-

mance using three different specification tests.

6.1 Model Parameter Estimates

Recall that I use a two-stage estimation procedure to estimate the model.137 In the first

stage, I use the HRS demographic data and Maximum Likelihood (ML) Estimation to esti-

mate the parameters that determine household health transitions (equation (3.17)) and sur-

vival rates (equation (3.18)). I also use the MEPS data and ML Estimation to estimate the

parameters that determine the distribution of total medical expenditures (equations (3.8)-

(3.10)). In the second stage, I use my HRS sample and Maximum Simulated Likelihood

(MSL) Estimation to estimate the parameters that determine utility function (equations

(3.1)-(3.3)) and the consumption floor (equation (3.6)). In this subsection, I present the

preference parameter estimates in the second stage that affect household utility. I discuss

the parameter estimates in the first stage that determine the distribution of total medical

expenditures, health transitions, and survival rates in Appendix A.8.

As described in model section 3.2, a household’s utility is the weighted average

of each spouse’s utility, weighted by each spouse’s bargaining power (equation (3.1)). A

spouse’s utility function depends on his leisure, his time-invariant preferences for discrete

choices (unobserved heterogeneity), household consumption, and an idiosyncratic shock

(equation (3.2)). His preference for leisure depends on his age, his health, and the other

spouse’s leisure.

Table 10 presents estimates of preference parameters that affect household utility.

The first and the second panels list the estimates of parameters that determine husbands’

and wives’ preferences for leisure, respectively. The sign of these parameter estimates are

as expected and are significant at 1% significance level. The estimates show that, for both

husbands and wives, their preferences for leisure increase with age. Husbands and wives

value leisure more if they are in bad health or their spouse is retired. The estimated coeffi-
137Details of the estimation strategy are discussed in estimation section 5.2.4.
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cients of age and health are similar to those found in Gustman and Steinmeier (2000, 2004).

Unlike these two papers, I assume that husbands and wives value spousal leisure (shared

retirement) equally. I make this assumption because the two parameters representing the

two spouses’ preferences for shared leisure cannot be separately identified (explained in

estimation section 5.3.1). For Gustman and Steinmeier (2000, 2004), their ability to sepa-

rately identify these two parameters relies on an important assumption: the decision-making

process in a family is a non-cooperative bargaining process.138 My estimated coefficient

of spousal leisure falls between the estimates of the husbands’ and wives’ preferences for

shared retirement found in these two papers.139 To put the size of the estimates into per-

spective, I compute the average marginal effect (AME) for each of these variables. The

AMEs show that increasing the age by one year increases the propensity to retire by 0.9

and 1.2 percentage points for husbands and wives, respectively. Being in good health de-

creases the propensity to retire by 3.3 and 2.9 percentage points for husbands and wives,

respectively. Spending leisure with the other spouse increases the propensity to retire by

2.4 and 3.2 percentage points for husbands and wives, respectively.

The third panel presents the parameter estimates associated with the distribution of

unobserved heterogeneity. The first estimate in this panel, 0.72, is the estimated probabil-

ity of being Type I unobserved heterogeneity. Recall that Type I unobserved heterogeneity

is assumed to be a vector of zeros. The rest of the estimates in this panel are the esti-

mated Type II unobserved heterogeneity. These estimates show that there exists, at least,

one factor that makes husbands prefer working over retirement and prefer obtaining health

insurance from their own employer rather than from their wife’s employer. In addition,

this factor makes wives prefer retirement over working and prefer obtaining insurance from

their husband’s employer rather than from their own employer. This factor could be the un-

observed ability/willingness to do house work and care for family members. The estimate

of the wife’s preference for her own employer-provided health insurance (EPHI) relative to

138In Gustman and Steinmeier (2000, 2004), each spouse is modeled to maximize his or her own utility
with respect to budget constraints. The marginal utility of leisure for one spouse is modeled as a function of
the retirement decision of the other spouse.

139Gustman and Steinmeier (2000, 2004) found that the wife’s preference for retirement is small and sta-
tistically insignificant and the husband’s preference for shared retirement is large and statistically significant.
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Table 10: Estimates of Preference Parameters
Estimate Std. Err. AME

Husband’s Preference for Leisure
H’s age 0.589** 0.143 0.009
H has good health -0.573** 0.147 -0.033
W’s leisure 0.792** 0.129 0.024
Constant -1.583** 0.353
Wife’s Preference for Leisure
W’s age 0.503** 0.035 0.012
W has good health -1.262** 0.378 -0.029
H’s leisure 0.792** 0.129 0.032
Constant -1.523** 0.269
Unobserved Heterogeneity
Probability of type I 0.724** 0.024
H’s taste for working relative to retirement 0.555** 0.144
H’s taste for own EPHI relative to spousal EPHI 0.425** 0.109
W’s taste for working relative to retirement -0.819** 0.247
W’s taste for own EPHI relative to spousal EPHI -4.561** 0.488
Relative risk aversion 1.674** 0.019
Time discount factor 0.942** 0.163
Consumption floor 7,734** 1,578
The Scale of idiosyncratic errors (σι ) 0.816** 0.204
Note: 1) * is 5 percent significance level, and ** is 1 percent significance level;

2) variable age here is (age-55);
3) the column AME lists average marginal effects of variables on the propensity to retire.

spousal EPHI has a much larger scale than other estimates, which indicates that my model

does not explain the observed wives’ EPHI coverage choices very well. This might be be-

cause my model does not include the notion that many wives prefer to let husbands provide

family health insurance coverage, which allows wives to be more flexible and to take care

of family members.

The last panel shows other parameters that affect household utility. My estimated

relative risk-aversion coefficient is 1.67, which lies within the range of [1,5] that many

economists believe contains this parameter (Chetty (2006)).140 This implies that my esti-

mate of the coefficient of relative risk aversion is reasonable. Another important estimate

is the time discount factor. Each period contains two years, and thus, the estimated time

discount factor 0.94 is a biannual discount factor. The yearly time discount factor is 0.97,

140The estimated values of the relative risk-aversion coefficient reported by Rust and Phelan (1997), Blau
and Gilleskie (2006, 2008), and French and Jones (2011) are 1.1, 1.8, 1.0 and 5.0, respectively.
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which matches the empirical time discount factor widely assumed in the literature. For

example, Blau and Gilleskie (2006) fix the annual time discount factor at 0.96; Rust and

Phelan (1997) fix it at 0.98. My estimated household consumption floor is $7,734 per year,

which is similar to the consumption floor assumed or estimated in the literature. For ex-

ample, Casanova (2010) assumes that the household consumption floor is $7,596,141 and

French and Jones (2011) estimate that the individual consumption floor is $4,380.

6.2 Specification Tests

I conduct three different specification tests to assess my model’s performance. First, I test

how well the model fits the data by comparing the predicted and observed labor market be-

havior by age and health insurance types (see 6.2.1). Then, I use a Chi-Square Goodness-of-

Fit test to assess whether the distribution of predicted probabilities matches the distribution

of observed frequencies of household retirement choices (see 6.2.2). Last, I use three La-

grange Multiplier (LM) tests to check whether the model is properly specified (see 6.2.3).

6.2.1 Model Fit

To examine how well the structural model fits the data, I simulate full-time work partic-

ipation rates and job exit rates for each spouse in my sample, using the model and the

estimated parameters. I compare these simulated labor market behaviors with the observed

labor market choices in the HRS.

Participation Rates

Figures 6.1-6.3 and 6.4-6.6 compare the simulated and observed full-time work participa-

tion rates by age and health insurance categories for husbands and wives, respectively. The

focus is on employment patterns for spouses who are in three different health insurance

categories: (1) health insurance is available only while employed ("Tied HI"); (2) health

insurance is available while employed and retired ("Retiree HI"); and (3) no insurance is

141In Casanova (2010), the household consumption floor is set to $7,596. This is the average amount
of Supplemental Social Security Income that a couple on income support and aged 65 or older would have
received in 1992.
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available, whether employed or retired ("No HI"). The area between the two grey, smooth

lines represents the 95 percent confidence interval for the predicted participation rates. As

these figures show, although the simulated data differ from the actual data, the observations

fall within the 95 percent confidence interval for all points. This implies that my model fits

the overall patterns of full-time work participation rates quite well.

My model is able to replicate three key features of how full-time work participation

rates vary with age and health insurance categories. First, my model is able to capture the

overall pattern that full-time participation rates decline with age. Second, my model is able

to capture several sharp declines around age 62 and 65. Specifically, the model captures (a)

the sharp declines in participation rates at age 65 for both husbands and wives who have

tied health insurance; (b) the sharp declines at age 62 and 65 for husbands who have retiree

insurance; and (c) the sharp decline at age 62 for wives who have retiree insurance. Third,

my model is able to capture the large differences in full-time work participation rates across

health insurance categories. For example, the model matches the high participation rates

of workers who have tied health insurance and the low participation rates of workers who

have retiree health insurance.

Figure 6.1: Husband Participation Rates: Tied EPHI
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Job Exit Rates

Figures 6.7-6.9 and 6.10-6.12 compare the simulated and observed full-time job exit rates

by age and health insurance categories for husbands and wives, respectively. As these
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Figure 6.2: Husband Participation Rates: Retiree EPHI
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Figure 6.3: Husband Participation Rates: No EPHI
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Figure 6.4: Wife Participation Rates: Tied EPHI

0
.2

.4
.6

.8
1

P
ar

tic
ip

at
io

n 
R

at
e

60 61 62 63 64 65 66 67 68
Age

Data Model
95% CI

Wife

figures show, most of the observations fall within the 95 percent confidence interval for

the predicted job exit rates. This indicates that my model fits the overall patterns of job
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Figure 6.5: Wife Participation Rates: Retiree EPHI
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Figure 6.6: Wife Participation Rates: No EPHI
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exit rates quite well. To be more specific, the model captures the spike in job exit rates

at age 65 for both husbands and wives who have tied health insurance. It also captures

the spike in job exit rates at age 62 and 65 for both husbands and wives who have retiree

health insurance. However, some differences exist between the simulated data and the

actual data. For example, for husbands with tied insurance, the model underpredicts the

age-65 job exit rate. For husbands with retiree insurance, the model underpredicts the age-

62 job exit rate and overpredicts the age-65 job exit rate. For wives with tied insurance, the

model overpredicts the age-65 job exit rate, and for wives with retiree insurance, the model

underpredicts the age-62 job exit rate. For both husbands and wives with no insurance, the

model overpredicts the job exit rates at almost every age. The mismatch for spouses with no

insurance may be due to the following reasons: (1) the sample size of households that have
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no health insurance is very small; and (2) most spouses who have no EPHI in my sample

are self-employed, and self-employed people may have a high preference for working due

to some unobserved factors, such as workaholism, that are not included in my model.

The ability of this paper to capture the spikes at ages 62 and 65 relies mostly on two

aspects of the model: (1) carefully model the interaction between two spouses’ financial

benefits (including Social Security and pension benefits); and (2) the interdependence of

two spouses’ health insurance coverage. Papers ignore the interdependence of two spouses’

health insurance coverage may underpredict the high job exit rate at ages 65. This is because

some spouses with retiree insurance may delay their retirement to age 65, in order to provide

health insurance to their spouses. For example, Blau and Gilleskie (2006) do not pick up

the especially high exit rates at ages 62-65, and they underpredict the difference in job exit

rates between workers with and without retiree insurance. French and Jones (2011) fail to

capture the spike at 65 for those who have retiree insurance.

Figure 6.7: Husband Job Exit Rates: Tied EPHI
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6.2.2 Chi-Square Goodness-of-Fit Test

Table 11 summarizes the goodness-of-fit of my model. In my model, there are four possible

household labor supply choices: (1) both spouses work full-time; (2) only husband works

full-time; (3) only wife works full-time; or (4) both spouses are retired. For each household

in my sample, the model predicts the probability of these four household choices. For each

household labor supply choice, I divide households into five strata by the percentile of their
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Figure 6.8: Husband Job Exit Rates: Retiree EPHI
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Figure 6.9: Husband Job Exit Rates: No EPHI
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Figure 6.10: Wife Job Exit Rates: Tied EPHI
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predicted probabilities and then compare the average predicted probabilities to the observed

frequencies for each stratum. The null hypothesis I test is that the distributions of observed
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Figure 6.11: Wife Job Exit Rates: Retiree EPHI
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Figure 6.12: Wife Job Exit Rates: No EPHI
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frequencies and predicted probabilities are identical. The Pearson Chi-square test statistic

is

4
∑

c=1

5
∑

g=1

(Oc,g×Ng−Pc,g×Ng)
2

Pc,g×Ng

where Oc,g and Pc,g represent the average observed frequency and the average predicted

probability for choice c in stratum g, and Ng is the number of observations in stratum g.

This Pearson Chi-square test statistic has an χ2 distribution with 19(= cg− 1) degrees of

freedom. For 19 degrees of freedom, the 5% critical value of the χ2 distribution is 30.14

and the 1% critical value is 36.19. The chi-square statistic is 21.8465, which is well below

these critical values. This indicates that there is little evidence that the model does not fit

the data well.
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Table 11: Chi-Square Goodness-of-Fit Analysis on Employment
Predicted Probabilities

Prob. Both Work Husband Works Wife Works Both Retired
1st 0.4189 0.0089 0.0119 0.0001
2nd 0.6832 0.0429 0.0449 0.0021
3rd 0.8201 0.0769 0.0941 0.0089
4th 0.9101 0.1341 0.1528 0.0299
5th 0.9791 0.2301 0.2201 0.1309

Observed Frequencies
Cell Both Work Husband Works Wife Works Both Retire
1st 0.4543 0.0166 0.0186 0.0003
2nd 0.6993 0.0491 0.0529 0.0029
3rd 0.8301 0.0724 0.0901 0.0074
4th 0.8951 0.1207 0.1527 0.0273
5th 0.9645 0.2141 0.2121 0.1195

Statistical Test: χ2(19)=21.8465, p=0.2919

6.2.3 Lagrange Multiplier Test

I use three Lagrange Multiplier (LM) tests to check whether the utility function is properly

specified. First, I test the specification of individuals’ preference for leisure. In my model,

one spouse’s preference for leisure is assumed to be an exponential function of age, health

status, and the other spouse’s leisure. However, other variables, such as the other spouse’s

health status, could also affect the preference for leisure due to caregiving. I assume spouse

i’s true preference for leisure in period t is

exp{β iX i
t +Zi

t γ
i}

where Zi
t = H−i,t is the other spouse’s health, which is omitted in the model. I run an LM

test to check whether or not parameters in γ = (γm,γ f ) are jointly significantly different

from zero. The null hypothesis is that γ = 0. The LM test statistic is χ2(2) = 14.17,

and the P-value is 0.001. Thus, the null hypothesis can be rejected at the 1% significance

level. This indicates that the omitted variable, spousal health, has a statistically significant

effect on individuals’ preference for leisure. This suggests the existence of another channel

through which spousal retirement may be correlated, and it should be the subject of future

research.
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Second, I test whether one spouse cares about the other spouse’s utility (also called

caring preference). In the model, I assume that each spouse has egoistic preferences and

does not value the other spouse’s utility. To test caring preferences, I add the product of the

two spouses’ self-regarding utility functions to the original household utility function. The

new household utility funtion is

Unew =Uold + γA(uh×uw).

The lowercase uh and uw present the two spouses’ self-regarding utility functions, as defined

in the model section. The null hypothesis is γA = 0. The LM test statistic is χ2(1) = 8.91

and the P-value is 0.003. Thus, the null hypothesis can be rejected at the 1% significance

level. This indicates that caring preferences might be more appropriate than egoistic pref-

erences to describe married people’s utility. This test result is consistent with the evidence

found in Friedberg and Stern (2014).

Last, I test for heteroskedasticity of idiosyncratic errors. In the model, I assume

that idiosyncratic utility shocks, ιdt , are independent across households, time, and discrete

choices. Specifically, I assume that idiosyncratic utility shocks are iid EV. In other words,

the variance of the idiosyncratic shocks is assumed to be the same across different groups of

households. However, this may not always be the case. For example, in healthy households,

some spouses may retire from full-time work because they want to travel, while others may

continue working full-time because they want to bring in more money. Thus, households

in good health may have a greater dispersion in labor supply decisions than households in

bad health. To test for heteroskedasticity, I add a vector of observed explanatory variables

to the original scale parameter. The new scale parameter is

σnew = σι +Xσ γσ

where σι is the scale parameter under the homoskedasticity assumption. The variable Xσ is

a vector of variables that might affect the variance of idiosyncratic shocks, which includes

the two spouses’ education level and health status. Then the null hypothesis is γσ = 0, which

means that, among people who have different education levels and health statuses, there is

no heteroskedasticity of idiosyncratic errors. The LM test statistic is χ2(4) = 2.95, and the
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P-value is 0.23. Therefore, since the null hypothesis cannot be rejected significantly, it is

reasonable to assume the homoskedasticity of idiosyncratic errors.



83

7 Counterfactual Simulations

In this section, I use the model estimates to run several counterfactual simulation experi-

ments for two purposes. First, I run several simulation experiments to identify the follow-

ing causal inferences: (1) the causal effects of employer-provided retiree health insurance

(EPRHI) on spouses’ retirement (see 7.1.1); (2) the importance of including the health chan-

nel in evaluating the effects of health insurance on retirement (see 7.1.2); (3) the causal ef-

fects of spousal coverage on spouses’ coordinated retirement (see 7.1.3); and (4) the causal

effects of enjoying shared leisure time on household simultaneous retirement (see 7.1.4).

Second, I conduct several policy simulations to predict the consequences of the following

potential policy reforms: (1) the implementation of the Affordable Care Act (ACA) (see

7.2.1); (2) raising the Medicare eligibility age to 67 (see 7.2.2); and (3) raising the normal

retirement age to 67 (see 7.2.3).

7.1 Causal Inferences

In the simulation experiments, I either pretend people are slightly different in their pension

benefits or spousal coverage, or set some parameter estimates to zero, to see how spouses’

retirement behaviors change.

7.1.1 The Effects of Employer-Provided Retiree Health Insurance

As shown in Figures 4.1 and 4.2 in data section 4.4, spouses who have retiree health insur-

ance have lower full-time work participation rates, at every age, than those who have tied

health insurance. This may be so for two reasons: (1) risk-averse workers value the effect

of health insurance on reducing both the amount and the volatility of future out-of-pocket

medical expenses; and (2) workers who have retiree insurance may have greater pension

wealth than those with tied insurance. To isolate the effects of EPHI on labor supply from

the effects of pension wealth, I assign the average pension accrual rates of workers who

have tied health insurance to every spouse in my sample, so that pension incentives are

the same across health insurance categories. Next, I conduct two simulation experiments.
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In the first experiment, I assume that all spouses have tied insurance; and in the second

experiment, I assume that all spouses have retiree insurance. The difference in these two

simulation experiments is a measure of the effects of EPHI on retirement, after controlling

for pensions.

Figure 7.1 compares the job participation rates in the two simulation experiments.

The two solid lines represent the model-predicted participation rates for spouses with tied

insurance and those with retiree insurance, respectively. The two dotted lines represent

the simulated participation rates for spouses in these two groups. At almost every age,

spouses with tied insurance have higher simulated participation rates than those with retiree

insurance. Even after the Medicare eligibility age (65), the simulated participation rates

of husbands with tied insurance are still higher than the simulated participation rates of

husbands with retiree insurance. This might be because some husbands with tied insurance

delay their retirement to provide insurance coverage to their wife until their wife is eligible

for Medicare. By contrast, the simulated participation rates of wives with tied insurance

are close to the simulated participation rates of wives with retiree insurance even before 65.

This might be because some wives are covered by spousal coverage, and thus, they would

retire before 65 without losing insurance coverage.

Figure 7.1: Effects of EPRHI on Job Participation Rates
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One measurement of the effects of EPRHI is the difference in the average retirement

age, which is the sum of the differences in the two dotted lines for all ages between 60 and

69 (French and Jones (2011)). The results show that, giving employer-provided retiree
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insurance to spouses with tied insurance, the average retirement age decreases by 1.1 and

0.5 years for husbands and wives, respectively. Comparatively, the sum of the differences

in the model-predicted participation rates in two insurance categories (retiree insurance

and tied insurance) is 2.3 and 1.2 years for husbands and wives, respectively. Thus, the

low job participation rates of workers who have retiree coverage are due partly to more

generous pensions. However, even after controlling for pensions, health insurance remains

an important factor that explains more than 40% of the difference in the job participation

rates for spouses in the two insurance categories.

In the literature, another measurement of the effects of EPHI used is the difference

in the age-62 job exit rates (Rust and Phelan (1997)). Figure 7.2 compares the job exit rates

in the two simulation experiments. The difference at age 62 means that, giving retiree cov-

erage to spouses with tied insurance increases the age-62 job exit rate by 9 and 8 percentage

points for husbands and wives, respectively.142

Figure 7.2: Effects of EPRHI on Job Exit Rates
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This paper finds larger effects of health insurance on retirement than previous struc-

tural studies that include risks related to medical expenses. For example, Rust and Phelan

(1997) find that being eligible for employer-provided retiree insurance increases men’s age-

62 job exit rate by about 8 percentage points.143 French and Jones (2011) find that retiree

142If all spouses are eligible for retiree insurance rather than tied insurance, the husbands’ age-62 job exit
rate would increase from 9 to 18 percentage points, and the wives’ age-62 job exit rate would increase from 8
to 16 percentage points.

143See Table VIII in Rust and Phelan (1997).
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coverage reduces men’s average retirement age by 0.34 year.144 Blau and Gilleskie (2006,

2008) find that retiree coverage reduces married men’s average participation rates by 1.7

percentage points. By contrast, I find that retiree coverage increases husbands’ age-62 exit

rate by 9 percentage points, accelerates husbands’ retirement by 1.1 years, and reduces

husbands’ average participation rates by 11 percentage points. The reason why I find larger

effects of health insurance on retirement may be because my model accounts for the interde-

pendence of both spouses’ insurance coverage, which has been overlooked in the previous

studies. My estimates of the effects of health insurance lie within the range of estimates that

have been provided by previous reduced-form studies. For example, Madrian et al. (1994)

find that retiree coverage reduces men’s retirement age by 0.4−1.2 years.

7.1.2 The Importance of Including the Health Channel

Recall that this paper models two channels through which health insurance affects house-

hold retirement decisions: medical expense and health. The medical expense channel is

the only one that has been considered in the literature on health insurance and retirement.

To evaluate the importance of including the health channel in my model, I run several sim-

ulation experiments to answer two research questions. First, without including the health

channel, how well does my model explain the observed labor market behaviors? Second,

does EPRHI raise job exit rates primarily through the medical expense channel or the health

channel?

To answer the first question, I simulate household labor supply by taking out the

health channel, which appears in health transition functions (equation (3.17)). I set the

parameters of health status in health transition functions to zero. Figure 7.3 compares

observed job participation rates in the data, model-predicted participation rates with both

channels, and simulated participation rates without the health channel. Figure 7.4 compares

observed, model-predicted, and simulated job exit rates. For both husbands and wives,

without the health channel, the model would overpredict the job participation rates and

144Structural studies that omit risks related to medical expenses find even smaller effects of health insur-
ance. For example, Gustman and Steinmeier (1994) find that retiree coverage reduces years in the labor force
by 0.1 years. Lumsdaine et al. (1994) find even smaller effects.
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underpredict the job exit rates, at almost every age. This is because, without the health

channel, spouses would expect worse health in the model. This would affect their retirement

decisions in two directions: (1) spouses with worse health have higher preference for leisure

relative to work, and thus, they would retire earlier; and (2) spouses with worse health

would expect higher and more volatile medical expenses, and thus, they would delay their

retirement to have better financial protection. The simulation results show that the second

direction outweighs the first one.

Figure 7.3: Job Participation Rates without the Health Channel
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Figure 7.4: Job Exit Rates without the Health Channel
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To answer the second question (does EPRHI raise job exit rates primarily through

the medical expense channel or the health channel?), I conduct two simulation experiments

to separate the effects of health insurance through the medical expense channel from the

effects through the health channel. In this subsection (7.1.2), I rerun the two simulations
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from subsection 7.1.1 but take out the health channel. The difference in these two simu-

lation experiments is a measure of the effects of EPRHI on retirement without the health

channel. Figure 7.5 compares effects of EPRHI on job participation rates with and without

the health channel. Without the health channel, although the effects of EPHI on participa-

tion rates becomes smaller at almost every age, the model still captures most of the effects.

For example, without the health channel, EPHI coverage accelerates husbands’ retirement

by 0.9 years, which accounts for about 82% of the effects of EPHI when both channels are

considered. Thus, the health channel accounts for only 18% of the effects of EPRHI.145

In summary, most of the value that workers place on health insurance comes through the

medical expense channel, which reduces both the amount and the volatility of medical ex-

penses.

Figure 7.5: Effects of EPRHI on Participation Rates without the Health Channel
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Figure 7.6 compares effects of EPRHI on job exit rates with and without the health

channel. Without the health channel, the effects of EPHI on job exit rates become smaller

at almost every age before 65, while the effects become bigger after 65. This might be be-

cause, without the health channel, spouses in my model would expect worse health. There-

fore, before they are eligible for Medicare, worse health makes them less likely to retire,

in order to keep the employer-provided insurance. After they are eligible for Medicare,

worse health makes them more likely to retire in order to have more leisure without losing

insurance coverage.

145Similarly, without the health channel, EPRHI coverage accelerates wives’ retirement by 0.4 years, which
accounts for about 80% of the effects of EPRHI when both channels are considered.
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Figure 7.6: Effects of EPRHI on Exit Rates without the Health Channel
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7.1.3 Spousal Coverage and Household Retirement

This paper includes spousal coverage as a factor that motivates spouses’ coordinated retire-

ment. To evaluate the causal effects of spousal coverage on couples’ coordinated retirement,

I rerun the two simulations from subsection 7.1.1 but take out spousal coverage.146 Figure

7.7 compares the distributions of retirement age for husbands with tied insurance under

two circumstances: with and without spousal coverage. The comparison shows that, with

spousal coverage, the proportion of husbands who retire around age 65 (between 64.5 and

65.5) decreases from 65% to 20%. The decrease comes from two sources. This is because,

if spousal coverage is available, a small group of husbands choose to accelerate their re-

tirement before 65, and a large group of husbands choose to delay their retirement after 65

when spousal coverage exists.147 The variation in husbands’ responses to spousal coverage

captures the heterogeneity in plan characteristics and individual preference for leisure in-

cluded in my model. For example, with spousal coverage, many husbands choose to delay

their retirement to provide insurance to their younger wife because husbands’ employer-

provided plans have better quality, while some husbands choose to switch to their wife’s

employer-provided plan and retire earlier, either because their wife’s employer provides a

better plan or because they have a high preference for leisure. Similarly, the proportion of

wives who retire around age 65 decreases from 56% to 17% when spousal coverage exists.

146Recall that, in subsection 7.1.1, I assume every spouse has spousal coverage in both simulation experi-
ments.

147Figure 7.7 shows that spousal coverage increases the proportion of husbands who retire before 65 from
17% to 20%, and it increases the proportion of husbands who retire after 65 from 18% to 60%.
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The decrease is due to the fact that most wives choose to retire earlier (before 65) when

spousal coverage exists.148 Although spousal coverage accelerates most wives’ retirement,

the upper-right part of the distribution functions show that a very small group of wives

choose to delay their retirement.

Figure 7.7: Distribution of Retirement Age
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Figure 7.8 compares the distributions of the time interval (years) between husbands’

and wives’ retirement for households with tied insurance. For most households, the time

interval between the husband’s and the wife’s retirement decreases when spousal coverage

exists. For example, for some of these households, the husbands retire more than two

years earlier than their wife when there is no spousal coverage, whereas, when spousal

coverage exists, these husbands retire within two years either before or after their wife

retires. This increases the proportion of households that choose simultaneous retirement

(husband and wife retire within one or two years of each other) from 18% to 33%. Recall

that, for many households, spousal coverage delays husbands’ retirement and accelerates

wives’ retirement.149 Additionally, since the husband is usually a few years older than the

wife, pushing their retirement age apart further actually reduces the years between their

retirement. This makes households more likely to choose simultaneous retirement.

In summary, spousal coverage motivates simultaneous retirement by delaying hus-

bands’ retirement and accelerating wives’ retirement. To evaluate the effects of spousal cov-

148Figure 7.7 shows that spousal coverage increases the proportion of wives who retire before 65 from 32%
to 75%, and it decreases the proportion of wives who retire after 65 from 11% to 8%.

149For example, figure 7.7 shows that spousal coverage increases husbands’ median retirement age from
65.1 to 65.7, and it decreases wives’ median retirement age from 64.6 to 64.1.
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Figure 7.8: Distribution of the Difference in Retirement Year
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erage on simultaneous retirement for my sample, I take out spousal coverage from spouses

whose employer provides it. Then, I simulate the propensity of husbands’ and wives’ to

retire in the same period (simultaneous retirement rate). The results show that taking out

spousal coverage decreases the simultaneous retirement rate by 7 percentage points (from

0.29 to 0.22), which accounts for 24% of the model-predicted simultaneous retirement rate.

7.1.4 Complementarity in Leisure and Simultaneous Retirement

Complementarity in leisure (spouses’ valuation of spending leisure together) could be one

of the factors leading to simultaneous retirement in a household. To evaluate the importance

of including spousal leisure in modeling household retirement behavior, I set the parameter

of spousal leisure in an individual utility function equal to zero, and then I simulate the

simultaneous retirement rate. The results show that omitting complementarity in leisure

decreases the simultaneous retirement rate by 10 percentage points (from 0.29 to 0.19),

which explains 34% of the model-predicted simultaneous retirement rate. My estimated

effect of spousal leisure on simultaneous retirement is slightly smaller than the effect found

in Gustman and Steinmeier (2004),150 while my estimated effect is much bigger than the

effect found in Casanova (2010).151

150Gustman and Steinmeier (2004) find that omitting complementarity in leisure decreases the simultaneous
retirement rate by 11 percentage points.

151Casanova (2010) finds that omitting complementarity in leisure decreases the simultaneous retirement
rate by 3.8 percentage points.
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7.2 Policy Simulations

In this subsection, I use the model to predict how the Patient Protection and Affordable

Care Act (PPACA, or, in short, ACA) and the changes in Medicare and Social Security

rules would affect retirement behavior.

7.2.1 The Implementation of the ACA

A key component of the ACA, which was signed into law on March 23, 2010, is the Health

Insurance Marketplace. The Health Insurance Marketplace, also called the Health Insur-

ance Exchange, "is the place where people without health care insurance can find informa-

tion about health insurance options and also purchase health care insurance. Information

can also be found regarding eligibility for help with paying premiums and reducing out-of-

pocket costs."152 The law requires people without health insurance to purchase insurance

from the Marketplace. Thus, the ACA helps to make health insurance independent of em-

ployment status. Four plans are available in the Marketplace for people who are facing

retirement: Bronze, Silver, Gold, and Platinum. The Bronze plan has the lowest premium

and coinsurance rate, while the Platinum plan has the highest premium and coinsurance

rate.153 To simplify the computation of the simulation, I use the Silver plan as the repre-

sentative plan in the Marketplace because it is the most popular insurance option by far.154

Because the implementation of the ACA makes health insurance independent of

employment status, the ACA reduces the degree of the job-lock generated by employer-

provided insurance for workers with tied insurance. To evaluate the effects of the ACA

on labor supply of spouses with tied insurance, I assume that every spouse in my sample

is eligible for tied health insurance, and I give everyone the average pension accrual rates

of workers who have tied health insurance. Then I simulate spouses’ labor supply in two

simulation experiments: with the implementation of the ACA and without it. Figures 7.9

and 7.10 compare the simulated job participation rates and job exit rates, respectively, in

152Source: https://www.irs.gov/affordable-care-act/
153Coinsurance rate is "the percentage of costs of a covered health care service you pay (20%, for example)

after you’ve paid your deductible." https://www.healthcare.gov/glossary/co-insurance/
154In 2015, about 70 percent of consumers enrolled in Silver plans. Source: "2016 Marketplace Afford-

ability Snapshot," CMS.gov, 10-26-2015. https://www.cms.gov/Newsroom/MediaReleaseDatabase/

https://www.irs.gov/affordable-care-act/individuals-and-families/the-health-insurance-marketplace
https://www.healthcare.gov/glossary/co-insurance/
https://www.cms.gov/Newsroom/MediaReleaseDatabase/Fact-sheets/2015-Fact-sheets-items/2015-10-26-2.html
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these two simulation experiments. The figures show that, for spouses with tied insurance,

the ACA decreases participation rates and increases exit rates, mostly between age 61 and

65. Note that the effects of the ACA on participation rates decrease significantly after 65.

This might be because spouses are eligible for Medicare from age 65 onward and Medicare

provides better plans than the ACA does. Thus, the ACA is not very attractive after spouses

are eligible for Medicare. The sum of the differences in participation rates shows that, over

a 10-year period (for ages 60-69), the ACA accelerates retirement by 0.5 and 0.3 years for

husbands and wives with tied insurance, respectively.

Figure 7.9: Effects of the ACA on Job Participation Rate: Tied Insurance
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Figure 7.10: Effects of the ACA on Job Exit Rate: Tied Insurance
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To predict the consequences of recent health care reform, I also simulate labor sup-

ply for spouses in my sample assuming the implementation of the ACA. Figures 7.11 shows

the effects of the ACA on job participation rates for my sample, and Figures 7.12 shows
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the effects on job exit rates. Over a 10-year period, implementing the ACA accelerates

retirement by around 0.12 and 0.09 years for husbands and wives, respectively.

Figure 7.11: Effects of the ACA on Job Participation Rates: Sample
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Figure 7.12: Effects of the ACA on Job Exit Rates: Sample
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Two features of my model enable me to predict the effects of the implementation

of the ACA. First, my model differentiates insurance plans by their quality (plan charac-

teristics). Second, my model allows spouses to choose an insurance plan from available

plans by comparing their qualities. Previous papers about health insurance and retirement

do not consider the heterogeneity in plan qualities (e.g., Madrian et al. (1994), Gruber and

Madrian (1995), and Blau and Gilleskie (2006)). Thus, these papers would largely overpre-

dict the effects of the ACA on retirement because the ACA plan quality is much worse than

the quality of employer-provided plans.

My model may still overpredicts the effects of the ACA because my model excludes
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the choice of being uninsured. I assume that workers choose to be covered by health in-

surance when they are eligible. I make this assumption for two reasons: (1) before the

implementation of the ACA, there was no private health insurance available, other than

EPHI, to spouses in my sample; and (2) no spouse in my sample chooses to be uninsured

when he is eligible for some EPHI. Thus, my model excludes the choice to be uninsured

because I do not have data to identify the preference for no insurance. However, even af-

ter the implementation of the ACA, a large amount of people still choose to be uninsured.

Without capturing the possibility of choosing to be uninsured, my model may overpredict

the effect of the ACA on.

7.2.2 Raising the Medicare Eligibility Age to 67

Medicare is a public health insurance program that is available to, in general, all persons age

65 and older.155 Thus, Medicare mitigates the degree of job-lock generated by employer-

provided insurance for workers with tied insurance. The Medicare eligibility age is not

scheduled to rise, but there are proposals to raise it to 67. To evaluate the effects of raising

the Medicare eligibility age on labor supply of spouses with tied insurance, I assume that

every spouse in my sample has tied insurance and has the average pension accrual rates of

workers who have tied health insurance. Then I simulate spouses’ labor supply with the

Medicare eligibility age set at 65 and 67, respectively. Figures 7.13 and 7.14 compare the

simulated job participation rates and job exit rates, respectively, in these two simulation

experiments. For spouses who have tied insurance, raising the Medicare eligibility age to

67 increases the job participation rates and decreases the job exit rates, mostly between age

64 and 67.156 In addition, the spike in exit rates moves from age 65 to 67 as the Medicare

eligibility age increases from 65 to 67.

Over a 10-year period (for ages 60-69), raising the Medicare eligibility age to 67

delays retirement by 0.8 and 0.4 years for husbands and wives with tied insurance, respec-

tively. Recall that EPRHI delays retirement by 1.1 years for husbands and 0.5 years for

155People under 65 and receive Social Security Disability Insurance (SSDI) benefits is eligible for Medi-
care. https://www.ssa.gov/disabilityresearch

156After 67, raising the Medicare eligibility age to 67 still increases husbands’ participation rates. This
might be because some husbands delay their retirement to provide insurance to their wife.

https://www.ssa.gov/disabilityresearch/wi/medicare.htm
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Figure 7.13: Effects of Medicare on Participation Rates: Tied Insurance
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Figure 7.14: Effects of Medicare on Exit Rates: Tied Insurance
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wives. The implementation of the ACA accelerates retirement by 0.5 years for husbands

and 0.3 years for wives. Therefore, the effects of Medicare (or raising the Medicare eligi-

bility age to 67) are bigger than the effects of the ACA but are smaller than the effects of

EPRHI. We can, perhaps, attribute these differences to plan quality: the employer-provided

insurance plan has the best plan characteristics (high co-insurance rate and low paid pre-

mium and deductible), and the plans in the Marketplace have the worst plan characteristics.

To predict the consequences of raising the Medicare eligibility age from 65 to 67, I

simulate labor supply for spouses in my sample assuming that the Medicare eligibility age

is 67. Figures 7.15 and 7.16 present the effects of raising the age to 67 on job participation

rates and job exit rates, respectively. Over a 10-year period, raising the age to 67 delays

retirement by 0.17 years for husbands and 0.12 years wives. These amounts are larger than

the effects found in the literature. For example, Rust and Phelan (1997), Blau and Gilleskie
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(2006), and French and Jones (2011) find that increasing the Medicare eligibility age to

67 delays men’s retirement by 0.13, 0.01 and 0.074 years, respectively. The reason why I

find a larger effect of Medicare is that my model accounts for the interdependence of both

spouses’ insurance coverage, which is the same reason why my model finds big effects of

EPRHI on retirement (see 7.1.1).

Figure 7.15: Effects of Medicare on Participation Rates: Sample
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Figure 7.16: Effects of Medicare on Exit Rates: Sample
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7.2.3 Raising the Normal Retirement Age to 67

Finally, I conduct simulation experiments to predict how the normal retirement age (NRA)

affects labor supply. The normal retirement age is scheduled to increase from 65 to 67 by

2022, and I simulate labor supply with the normal retirement age set at age 67. Figures 7.17

and 7.18 shows how spouses’ labor supply change if the normal retirement age increases
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from 65 to 67.

Figure 7.17: Effects of the Normal Retirement Age on Participation Rates: Sample
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Figure 7.18: Effects of the Normal Retirement Age on Exit Rates: Sample
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Raising the normal retirement age to 67 increases the job participation rates from

age 62 onward, mostly between age 62 and 67. In total, over a ten-year period, this delays

retirement by 0.11 years for husbands and 0.08 years wives. These numbers are similar

to (though slightly larger than) the effects found by French and Jones (2011), but they are

smaller than the effects documented by Rust and Phelan (1997).157 The reason why Rust

and Phelan (1997) find a bigger effect may be because their sample consists of low-income

males, whose Since Social Security benefits are the main source of their retirement income.

Note that, after increasing the normal retirement age from 65 to 67, the spikes at age 62 and

65 still persist, but the height of the spike at age 65 drops.

157French and Jones (2011) find that raising the normal retirement age to 67 increases years of work by
0.08 years. Rust and Phelan (1997) find a larger effect of raising the normal retirement age.
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8 Conclusion

The absence of health insurance coverage could be one of the biggest obstacles to retiring

before age 65. People who have health insurance are better protected financially against

serious accident or sickness, and they tend to be healthier because they are more likely

to use preventative care. Health insurance coverage is particularly important for poten-

tial retirees, who tend to have more health issues and, thus, usually have less ability to

recover financially from costly medical expenses. Many American workers are reluctant

to retire because of the fear of losing their employer-provided health insurance. The link

between health insurance and retirement is especially complicated in a household in which

two spouses coordinate their retirement decisions–both because they share economic re-

sources and because spouses’ health insurance coverages are interdependent. To examine

how health insurance affects household joint retirement decisions, band and wife jointly

make decisions about retirement, about whose employer will provide their insurance cover-

age (if available), and about household savings. My paper adds to the literature by including

the interdependence of the two spouses’ health insurance coverage (spousal coverage), by

evaluating health insurance in terms of both quantity (coverage) and quality (plan charac-

teristics), and by allowing health insurance to affect retirement through two channels: (1)

insurance smooths consumption by reducing the mean and volatility of medical expenses;

and (2) insurance can improve health and thus decrease individuals’ value of leisure relative

to work.

Using data from the Health and Retirement Study, I estimate the structural parame-

ters of my model. The estimates of preference parameters are reasonable and the model fits

the data well. I find that employer-provided health insurance is an important factor that de-

termines retirement. Moving workers from retiree to tied health insurance coverage delays

retirement by 1.1 years for husbands and 0.5 years for wives. In decomposing the employ-

ment response to EPHI coverage, I find that over 80% of the response reflects the valuation

of the consumption smoothing effects of health insurance, and less than 20% reflects the

valuation of the health improvement effects. Furthermore, I find that spousal coverage mo-

tivates simultaneous retirement by delaying husbands’ retirement and accelerating wives’
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retirement, and it explains about 24% of the simultaneous retirement observed in the data.

Lastly, I find that husbands and wives enjoy spending leisure time together, which explains

34% of the observed simultaneous retirement.

My policy simulations show that health insurance-related policies would have big

effects on retirement. For people with tied insurance, the health care reform (ACA) is

predicted to accelerate retirement by 0.4 years for husbands and 0.3 years for wives. Raising

the Medicare eligibility age from 65 to 67 is predicted to delay retirement by 0.7 years for

husbands and 0.4 years for wives. The effects of Medicare are bigger than the effects of the

ACA but smaller than the effects of EPRHI due to the differences in plan quality, which has

been overlooked in the previous literature. For the whole sample, the implementation of

the ACA is predicted to accelerate retirement by 0.12 years for husbands and 0.09 years for

wives. Raising the Medicare eligibility age from 65 to 67 is predicted to delay retirement

by 0.17 years for husbands and 0.12 years for wives. Comparatively, increasing the Social

Security full retirement age from 65 to 67 delays retirement by 0.11 years for husbands and

0.08 years for wives.
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A Appendix

A.1 The Choice Set of Household EPHI Plans

Table A1 and A2 in the Appendix show how the household EPHI eligibility, et , and house-

hold retirement status, Lt , affect the choice set of household EPHI plan, Jt . The first

column lists all possible household EPHI eligibilities, and the first row lists all possible

household retirement statuses. Each cell represents the choice set of household EPHI plan

decisions, Jt , under a specific household EPHI eligibility and a specific household retire-

ment status. Consider, for example, the first cell in Table A1. It shows a household in which

both spouses’ employers provide health insurance whether they are working or retired, and

the insurance can cover the other spouse. When the household decides that both spouses

retire, three household EPHI plan choices are available: (1) both spouses are covered by

the husband’s EPHI, (m,m); (2) both are covered by the wife’s EPHI, ( f , f ); and (3) the

husband is covered by his own EPHI and the wife is covered by her own EPHI, (m, f ).158

In this paper, I assume that a household makes the EPHI plan choice every period until both

spouses are retired.159

A.2 Taxes

Individuals pay federal, state, and payroll taxes on income. I compute federal taxes using

the Federal Income Tax tables for "Married Filing Jointly" in 1998.160 I use the standard

deduction,161 and do not allow individuals to claim medical expenses as an itemized deduc-

tion. The state income tax rate varies across the U.S., and I use the average state tax rate to

calculate state income taxes for each household. For a worker, payroll taxes are 7.65% up

to $68,400, and are 1.45% thereafter.
158A worker has to enroll in his own EPHI plan before he can add the other spouse into the plan. Thus, it is

impossible that the husband is covered by the wife’s EPHI and the wife is covered by the husband’s EPHI. In
other words, ( f ,m) is not a valid choice.

159In my sample, no household switches EPHI choices after both spouses retire. Therefore, I assume that a
household stops making the EPHI plan choice after both spouses are retired.

160For widows or widowers, I compute federal taxes using the Federal Income Tax tables for "Single" in
1998.

161The standard deduction is $12,500 for a household, and is $6,250 for a widow or widower.
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Table A1: The Choice Set of Household EPHI Plan Choices Jt
Lt=(1,1) Lt=(1,0) Lt=(0,1) Lt=(0,0)

em=(1,1,1,1) J t={(m,m), J t={(m,m), J t={(m,m), J t={(m,m),
e f =(1,1,1,1) (f,f),(m,f)} (f,f),(m,f)} (f,f),(m,f)} (f,f),(m,f)}
em=(1,1,1,1) J t={(m,m), J t={(m,m), J t={(m,m), J t={(m,m),
e f =(1,1,1,0) (m,f)} (f,f),(m,f)} (m,f)} (f,f),(m,f)}
em=(1,1,1,1) J t={(m,m)} J t={(m,m)} J t={(m,m)} J t={(m,m),
e f =(1,1,0,0) (f,f),(m,f)} (f,f),(m,f)}
em=(1,1,1,1) J t={(m,m), J t={(m,m), J t={(m,m), J t={(m,m),
e f =(1,0,1,0) (m,f)} (m,f)} (m,f)} (m,f)}
em=(1,1,1,1) J t={(m,m)} J t={(m,m), J t={(m,m)} J t={(m,m),
e f =(1,0,0,0) (m,f)} (m,f)}
em=(1,1,1,1) J t={(m,m)} J t={(m,m)} J t={(m,m)} J t={(m,m)}
e f =(0,0,0,0)
em=(1,1,1,0) J t={(f,f), J t={(f,f), J t={(m,m), J t={(m,m),
e f =(1,1,1,1) (m,f)} (m,f)} (f,f),(m,f)} (f,f),(m,f)}
em=(1,1,1,0) J t={(m,f)} J t={(f,f), J t={(m,m), J t={(m,m),
e f =(1,1,1,0) (m,f)} (m,f)} (f,f),(m,f)}
em=(1,1,1,0) J t={(m,0)} J t={(f,f), J t={(m,m)} J t={(m,m),
e f =(1,1,0,0) (m,f)} (f,f),(m,f)}
em=(1,1,1,0) J t={(m,f)} J t={(m,f)} J t={(m,m), J t={(m,m),
e f =(1,0,1,0) (m,f)} (m,f)}
em=(1,1,1,0) J t={(m,0)} J t={(m,f)} J t={(m,m)} J t={(m,m),
e f =(1,0,0,0) (m,f)}
em=(1,1,1,0) J t={(m,0)} J t={(m,0)} J t={(m,m)} J t={(m,m)}
e f =(0,0,0,0)
em=(1,1,0,0) J t={(f,f)} J t={(f,f)} J t={(m,m), J t={(m,m),
e f =(1,1,1,1) (f,f),(m,f)} (f,f),(m,f)}
em=(1,1,0,0) J t={(0,f)} J t={(f,f)} J t={(m,m), J t={(m,m),
e f =(1,1,1,0) (m,f)} (f,f),(m,f)}
em=(1,1,0,0) J t={(0,0)} J t={(f,f)} J t={(m,m)} J t={(m,m),
e f =(1,1,0,0) (f,f),(m,f)}
em=(1,1,0,0) J t={(0,f)} J t={(0,f)} J t={(m,m), J t={(m,m),
e f =(1,0,1,0) (m,f)} (m,f)}
em=(1,1,0,0) J t={(0,0)} J t={(0,f)} J t={(m,m)} J t={(m,m),
e f =(1,0,0,0) (m,f)}
em=(1,1,0,0) J t={(0,0)} J t={(0,0)} J t={(m,m)} J t={(m,m)}
e f =(0,0,0,0)
em=(1,0,1,0) J t={(f,f), J t={(f,f), J t={(f,f), J t={(f,f),
e f =(1,1,1,1) (m,f)} (m,f)} (m,f)} (m,f)}
em=(1,0,1,0) J t={(m,f)} J t={(f,f), J t={(m,f)} J t={(f,f),
e f =(1,1,1,0) (m,f)} (m,f)}
em=(1,0,1,0) J t={(m,0)} J t={(f,f), J t={(m,0)} J t={(f,f),
e f =(1,1,0,0) (m,f)} (m,f)}
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Table A2: Table A1 Continued
Lt=(1,1) Lt=(1,0) Lt=(0,1) Lt=(0,0)

em=(1,0,1,0) J t={(m,f)} J t={(m,f)} J t={(m,f)} J t={(m,f)}
e f =(1,0,1,0)
em=(1,0,1,0) J t={(m,0)} J t={(m,f)} J t={(m,0)} J t={(m,f)}
e f =(1,0,0,0)
em=(1,0,1,0) J t={(m,0)} J t={(m,0)} J t={(m,0)} J t={(m,0)}
e f =(0,0,0,0)
em=(1,0,0,0) J t={(f,f)} J t={(f,f)} J t={(f,f), J t={(f,f),
e f =(1,1,1,1) (m,f)} (m,f)}
em=(1,0,0,0) J t={(0,f)} J t={(f,f)} J t={(m,f)} J t={(f,f),
e f =(1,1,1,0) (m,f)}
em=(1,0,0,0) J t={(0,0)} J t={(f,f)} J t={(m,0)} J t={(f,f),
e f =(1,1,0,0) (m,f)}
em=(1,0,0,0) J t={(0,f)} J t={(0,f)} J t={(m,f)} J t={(m,f)}
e f =(1,0,1,0)
em=(1,0,0,0) J t={(0,0)} J t={(0,f)} J t={(m,0)} J t={(m,f)}
e f =(1,0,0,0)
em=(1,0,0,0) J t={(0,0)} J t={(0,0)} J t={(m,0)} J t={(m,0)}
e f =(0,0,0,0)
em=(0,0,0,0) J t={(f,f)} J t={(f,f)} J t={(f,f)} J t={(f,f)}
e f =(1,1,1,1)
em=(0,0,0,0) J t={(0,f)} J t={(f,f)} J t={(0,f)} J t={(f,f)}
e f =(1,1,1,0)
em=(0,0,0,0) J t={(0,0)} J t={(f,f)} J t={(0,0)} J t={(f,f)}
e f =(1,1,0,0)
em=(0,0,0,0) J t={(0,f)} J t={(0,f)} J t={(0,f)} J t={(0,f)}
e f =(1,0,1,0)
em=(0,0,0,0) J t={(0,0)} J t={(0,f)} J t={(0,0)} J t={(0,f)}
e f =(1,0,0,0)
em=(0,0,0,0) J t={(0,0)} J t={(0,0)} J t={(0,0)} J t={(0,0)}
e f =(0,0,0,0)

In period t, a household’s pre-tax income, Yt , is

Yt = rAt + ∑
i=m, f

wit(1−Lit)+ ∑
i=m, f

bit .

Post-tax income, yt , is computed by applying the three taxes on pre-tax income, Yt ,
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yt =



0.9235Yt i f Yt
2 6 12,500,

2(11,543.75+0.7323(Yt
2 −12,500)) i f 12,500 < Yt

2 6 42,350,

2(33,402.91+0.5665(Yt
2 −42,350)) i f 42,350 < Yt

2 6 102,300,

2(67,363.67+0.5283(Yt
2 −102,300)) i f 102,300 < Yt

2 6 136,800,

2(85,590.02+0.5903(Yt
2 −136,800)) i f 136,800 < Yt

2 6 155,950,

2(96,894.27+0.5265(Yt
2 −155,950)) i f 155,950 < Yt

2 6 278,450,

2(161,390.52+0.4806(Yt
2 −278,450)) i f Yt

2 > 278,450.

If one spouse dies, the widow or widower’s pre-tax income is

Yt = rAt +wit(1−Lit)+bit ,

and his post-tax income is

yt =



0.9235Yt i f Yt
2 6 6250,

2(5771.87+0.7323(Yt
2 −6250)) i f 6,250 < Yt

2 6 21175,

2(16701.45+0.5665(Yt
2 −21175)) i f 21175 < Yt

2 6 51150,

2(33682.29+0.5283(Yt
2 −51150)) i f 51150 < Yt

2 6 68400,

2(42795.47+0.5903(Yt
2 −68400)) i f 68400 < Yt

2 6 77975,

2(48447.59+0.5265(Yt
2 −77975)) i f 77975 < Yt

2 6 139225,

2(80695.71+0.4806(Yt
2 −139225)) i f Yt

2 > 139225.

A.3 Social Security and Pension Benefits

In this subsection, I first introduce the formula that determines an individual’s PIA. Then, I

describe the functions used to calculate Social Security benefits and DB pension benefits.

A.3.1 PIA Formula

A worker’s PIA, ϒit , is a monotone increasing function of his AIME, ∆it ,
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ϒit =


0.9∆it i f ∆it < 5724,

5151.6+0.32(∆it−5724) i f 5724≤ ∆it < 34500,

14359.9+0.15(∆it−34500) i f ∆it ≥ 34500.

Note that the PIA and AIME in the function above are annualized.

A.3.2 Social Security Benefits

A worker can start his Social Security benefits as early as age 62. If he claims benefits

based on his own earnings history, his benefits, sO
it , are a function of his age this period, ait ,

and his age and PIA at the time of claiming benefits, (ac
i ,ϒ

c
i ),

sO
it (ait ,ac

i ,ϒ
c
i ) =



2ϒc
i 0.933(65−ac

i ) i f 62 6 ac
i 6 65 & ac

i 6 ait ,

2ϒc
i 1.055min{(ac

i−65),5} i f ac
i > 65 & ac

i 6 ait ,

0 otherwise.

Note that ac
i 6 ait means spouse i has already claimed benefits before or at period t, and

ac
i > ait means spouse i has not claimed benefits before or at period t. In addition, each

period is two years. Thus, the benefits that spouse i receives during period t equal two

times his annual benefits.

If a worker’s spouse is alive (S−i,t = 1), the worker can claim spousal benefits as

early as age 62. If he claims spousal benefits at his normal retirement age (65) or older, the

spousal benefits equal one half of his spouse’s benefits. If he claims benefits before age 65,

the benefits are reduced by 6.67% for every year before age 65. His spousal benefits, sS
it ,

are a function of his age this period, ait , his age at the time of claiming benefits, ac
i , and his

spouse’s benefits, sO
−i,t(a−i,t ,ac

−i,ϒ
c
−i),

sS
it(ait ,ac

i ;sO
−i,t) =


1
2 sO
−i,t(a

c
−i,ϒ

c
−i,a−i,t)0.933max{(65−ac

i ),0} i f ac
i > 62 & ac

i 6 ait ,

0 otherwise.

If a worker’s spouse is dead (S−i,t = 0), the worker can claim survivor benefits. His

survivor benefits, sW
it , are calculated based on the deceased spouse’s basic benefits. If the

deceased spouse started collecting benefits before his death (ac
−i < aD

−i), his basic benefits
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equal the benefits he receives. If the deceased spouse did not start collecting benefits before

his death (ac
−i > aD

−i), his basic benefits are calculated as if he claimed benefits at the time

of his death, or at age 62 if he died before 62. The PIA used in the calculation is his PIA at

the time of his death. Thus, the deceased spouse’s basic benefits, sD
−i, are a function of his

age and PIA at the time of death, (aD
−i,ϒ

D
−i), and his age and PIA at the time of claiming

benefits, (ac
−i,ϒ

c
−i),

sD
−i(a

D
−i,ϒ

D
−i,a

c
−i,ϒ

c
−i) =



2ϒc
−i0.933(65−ac

−i) i f 62 6 ac
−i 6 65 & ac

−i < aD
−i,

2ϒc
−i1.055min{(ac

−i−65),5} i f ac
−i > 65 & ac

−i < aD
−i,

2ϒD
−i0.933min{(65−aD

−i),3} i f aD
−i 6 65 & ac

−i > aD
−i,

2ϒD
−i1.055min{(aD

−i−65),5} i f aD
−i > 65 & ac

−i > aD
−i.

A survivor can claim survivor benefits as early as age 60. The full retirement age

for a survivor is age 66. If the survivor claims survivor benefits at his full retirement age

(66) or older, the survivor benefits equal the deceased spouse’s basic benefits. If he claims

benefits before age 66, the benefits are reduced by 6% for every year before age 66. If a

survivor is getting benefits (either his own or spousal benefits) when the other spouse dies,

he can switch to survivor benefits if they are higher than the benefits he is receiving now.

Thus, the worker’s survivor benefits, sW
it , are a function of his age this period, ait , his age

at the time of claiming survivor benefits, acW
i , and the deceased spouse’s basic benefits,

sD
−i(a

D
−i,ϒ

D
−i,a

c
−i,ϒ

c
−i),

sW
it (ait ,acW

i ;sD
−i) =


sD
−i(a

D
−i,ϒ

D
−i,a

c
−i,ϒ

c
−i)0.94max{(66−ac

i ),0} i f acW
i > 60 & acW

i 6 ait ,

0 otherwise.

In summary, the Social Security benefits a worker receives, sit , depend on his own

benefits, sO
it (ait ,ac

i ,ϒ
c
i ), his spouse’s survival status, S−i,t , his spousal benefits, sS

it(ait ,ac
i ;sO
−i,t),

and his survivor benefits, sW
it (ait ,acW

i ;sD
−i),

sit = s(sO
it ,S−i,t ,sS

it ,s
W
it ) =


max{sO

it (a
c
i ,ϒ

c
i ,ait),sS

it(ait ,ac
i ;sO
−i,t)} i f S−i,t = 1,

max{sO
it (a

c
i ,ϒ

c
i ,ait),sW

it (ait ,acW
i ;sD

−i)} i f S−i,t = 0.
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A.3.3 DB Pension Benefits

Following the method developed in French and Jones (2011), I model a worker’s DB pen-

sion benefits, bDB
it , as a function of his age this period, ait , and his age, PIA, and EPHI

eligibility type at the time of his retirement, (ar
i ,ϒ

r
i ,e

r
i ),

bDB
it (ait ,ϒ

r
i ,e

r
i ;γar

i ) =
2( ∑

k={R,T,N}
γ

ar
i

1,k1[er
i = k]+ γ

ar
i

2 ϒr
i + γ

ar
i

3 max{0,ϒr
i −9,999.6}+ γ

ar
i

4 max{0,ϒr
i −14,359.9}) i f ait > ar

i ,

0 otherwise,

where k denotes the category of EPHI eligibility type. Different types of EPHI eligibility

can be divided into three categories: (1) k = R (retiree insurance) if er
i equals (1,1,1,1),

(1,1,1,0), or (1,0,1,0); (2) k = T (tied insurance) if er
i equals (1,1,0,0), or (1,0,0,0);

and (3) k = N (no insurance) if er
i equals (0,0,0,0). The vector of parameters, γar

i =

(γ
ar

i
1,k,γ

ar
i

2 ,γ
ar

i
3 ,γ

ar
i

4 ), is the same across spouses but varies with retirement age, ar
i . Table

A3 lists the value of γar
i for different retirement ages.

Table A3: Value of γ by Retirement Age
Retirement Age γa

1,no γa
1,retiree γa

1,tied γa
2 γa

3 γa
4

59 1695 8446 5009 -0.1955 1.421 0.8186
60 1929 8854 5111 -0.1955 1.533 0.3831
61 2146 9222 5184 -0.1955 1.637 -0.023
62 2345 9551 5227 -0.1955 1.735 -0.399
63 2528 9840 5242 -0.1955 1.826 -0.747
64 2693 10090 5228 -0.1955 1.910 -1.065
65 2841 10300 5184 -0.1955 1.987 -1.354
66 2972 10470 5112 -0.1955 2.057 -1.613
67 3085 10600 5010 -0.1955 2.120 -1.843
68 3182 10690 4879 -0.1955 2.176 -2.043
69 3261 10740 4719 -0.1955 2.225 -2.214
70 3323 10760 4530 -0.1955 2.268 -2.356
71 3368 10730 4312 -0.1955 2.303 -2.468
72 3396 10660 4065 -0.1955 2.331 -2.551
73 3406 10550 3789 -0.1955 2.353 -2.605

Source: French and Jones (2011).
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A.4 Employer-Provided Health Insurance Eligibility

In the HRS, the only people who are selected to be surveyed about their EPHI eligibility

are those covered by their own EPHI plan. Consequently, there is no information about the

EPHI eligibility of those who are covered by their spouse’s employer. Figure A1 shows

how the HRS surveys households about their health insurance eligibility.

Figure A1: Flowchart of Survey Questions about Health Insurance Eligibility in the HRS

To impute the EPHI eligibility for those who are not surveyed about their EPHI

eligibility, I establish a multivariate probit model of the observed EPHI eligibility and the

selection of reporting EPHI eligibility (equations (4.1)-(4.5)). The error terms in the five

equations are assumed to be multivariate normally distributed,
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

ωw1
it

ωw2
it

ωr1
it

ωr2
it

ωs
it


∼ N





0

0

0

0

0


,



1 ρ12 ρ13 ρ14 ρ15

ρ12 1 ρ23 ρ24 ρ25

ρ13 ρ23 1 ρ34 ρ35

ρ14 ρ24 ρ34 1 ρ45

ρ15 ρ25 ρ35 ρ45 1




.

I use married couples in the HRS to estimate the imputation model. In this sample,

each spouse’s likelihood contribution is the probability of having the EPHI coverage out-

come observed in the data. A coverage outcome includes two pieces of information: (1)

whether a spouse reports his EPHI eligibility; and (2) his EPHI eligibility type if he reports.

Table A4 defines the seven EPHI coverage outcomes observed in the data, using the five

binary variables, (ew1
it ,ew2

it ,er1
it ,e

r2
it ,e

s
it).

Table A4: EPHI Coverage Outcome
Outcome ew1 ew2 er1 er2 es

1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 1
4 1 0 1 0 1
5 1 0 0 0 1
6 0 0 0 0 1
7 0

I calculate each spouse’s likelihood contribution using equations (4.1)-(4.5). Let

P1it , P2it , P3it , P4it , P5it , P6it , and P7it represent the probability of observing outcomes

1-7 for spouse i in period t, respectively,

P1it = Pr[ew1
it = 1,ew2

it |[ew1
it =1] = 1,er1

it |[ew1
it =1] = 1,er2

it |[er1
it =1,ew2

it =1] = 1,es
it = 1]

=
´

D1

´
D2

´
D3

´
D4

´
D5 dG(ωw1

it ,ωw2
it ,ωr1

it ,ω
r2
it ,ω

s
it),

(A1)

P2it = Pr[ew1
it = 1,ew2

it |[ew1
it =1] = 1,er1

it |[ew1
it =1] = 1,er2

it |[er1
it =1,ew2

it =1] = 0,es
it = 1]

=
´

D1

´
D2

´
D3

´ D4 ´
D5 dG(ωw1

it ,ωw2
it ,ωr1

it ,ω
r2
it ,ω

s
it),

(A2)

P3it = Pr[ew1
it = 1,ew2

it |[ew1
it =1] = 1,er1

it |[ew1
it =1] = 0,es

it = 1]

=
´

D1

´
D2

´ D3 ´
D5 dG1,2,3,5(ω

w1
it ,ωw2

it ,ωr1
it ,ω

s
it),

(A3)
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P4it = Pr[ew1
it = 1,ew2

it |[ew1
it =1] = 0,er1

it |[ew1
it =1] = 1,es

it = 1]

=
´

D1

´ D2 ´
D3

´
D5 dG1,2,3,5(ω

w1
it ,ωw2

it ,ωr1
it ,ω

s
it),

(A4)

P5it = Pr[ew1
it = 1,ew2

it |[ew1
it =1] = 0,er1

it |[ew1
it =1] = 0,es

it = 1]

=
´

D1

´ D2 ´ D3 ´
D5 dG1,2,3,5(ω

w1
it ,ωw2

it ,ωr1
it ,ω

s
it),

(A5)

P6it = Pr[ew1
it = 0,es

it = 1]

=
´ D1 ´

D5 dG1,5(ω
w1
it ,ωs

it),
(A6)

P7it = Pr[es
it = 0]

=
´ D5 dG5(ω

s
it),

(A7)

where D1 =−(ς1
w1Xd

it +ς2
w1XE

it ), D2 =−(ς1
w2Xd

it +ς2
w2XE

it ), D3 =−(ς1
r1Xd

it +ς2
r1XE

it ), D4 =

−(ς1
r2Xd

it +ς2
r2XE

it ), D5 =−(ς1
s Xd

it +ς2
s XE

it +ς3
s XE
−i,t), and G(·) is the joint distribution func-

tion of the five error terms. The term G(·) with subscript represents the joint distribution

function of a subset of the five error terms. For example, the term G1,2,3,5(·) represents the

joint distribution function of the 1st, 2nd, 3rd, and 5th elements of the five error terms.

Spouse i’s likelihood contribution in period t, Pit , is

Pit = P1
1[Outcome1]
it ·P2

1[Outcome2]
it ·P3

1[Outcome3]
it ·P4

1[Outcome4]
it

·P5
1[Outcome5]
it ·P6

1[Outcome6]
it ·P7

1[Outcome7]
it ,

where 1[Outcomek] is a variable indicating whether spouse i has outcome k = {1,2, ...,7} in

period t.

The likelihood function is

L(ς ,ρ) =
N
Π

i=1

T
Π

t=1
Pit .

Equations (A1)-(A6) show that calculating the likelihood contribution requires an

integration over the joint distribution of multiple error terms. Because evaluation of the

multidimensional integrals is not possible analytically or numerically, I use a GHK simula-

tor (Geweke (1989), Hajivassiliou (1990), Keane (1994)) to simulate the likelihood contri-

bution. Parameter estimates of the EPHI eligibility imputation model maximize the likeli-

hood function.
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Table A5 lists the estimates of parameters associated with the explanatory variables

in the imputation model, ς . These estimates represent the correlation between the explana-

tory variables and the dependent variables. Individuals who work for bigger firms, have

a higher hourly wage, work longer hours per year, have longer tenure, or are eligible for

pension benefits, are more likely to be eligible for employer-provided working and retiree

insurance. They are also more likely to report their EPHI eligibility. Compared with wives,

husbands are more likely to be eligible for employer-provided working and retiree insur-

ance and to report their EPHI eligibility. Workers in good health are more likely to be

eligible for employer-provided insurance (especially for the retiree insurance) and to report

their EPHI eligibility. There are two possible reasons that cause the positive correlation

between health and being eligible for EPHI plans. First, individuals who have insurance

coverage might visit doctors more often and choose more health care treatments, and thus,

have better health. Second, individuals who care about health are more likely to have better

health, and they are more likely to choose a job that provides insurance coverage.

Table A6 lists the estimates of parameters in the covariance matrix of the five error

terms, ρ . Individuals who experience shocks that increase the probability of being eligible

for employer-provided working insurance also tend to experience shocks that increase the

probability of being eligible for employer-provided retiree insurance and the probability of

reporting their EPHI eligibility. Individuals experience shocks that increase the probability

of being eligible for retiree insurance that cover themselves or their spouse also tend to

experience shocks that increase the probability of reporting their EPHI eligibility.

A.5 Wage Imputation Model Estimates

In the HRS, information about annual wage is often missing (explained in data section

4.6). To solve the missing data problem, I use the two-stage Heckman selection method to

impute individuals’ annual wage. In the first stage, I use a probit regression to predict the

probability that each individual will work (equation (4.10)). In the second stage, I regress

the logarithm of observed real annual wage on explanatory variables and the inverse Mills

ratio (equation (4.12)). I use individuals in the HRS to estimate the wage imputation model.
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Table A5: EPHI Eligibility Imputation Model Estimates
Variable ew1 ew2|[ew1=1] er1|[ew1=1] er2|[er1=1;ew2=1] es

Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.
Constant 0.65** 0.27 2.12*** 0.43 1.26*** 0.21 1.53*** 0.44 -0.23 0.23
Race

White (omitted)
Black -0.07 0.13 -0.09 0.17 -0.41*** 0.08 -0.10 0.13 -0.02 0.09
Other -0.32 0.21 -0.52** 0.22 0.04 0.12 0.03 0.24 0.08 0.18

Hispanic -0.06 0.17 0.13 0.23 -0.27*** 0.10 -0.16 0.19 -0.13 0.14
Firmsize

[1,24] (omiteed)
[25,99] 0.05 0.09 0.19 0.16 0.02 0.07 -0.04 0.13 0.06 0.07
[100,499] 0.14 0.10 0.15 0.15 0.06 0.07 -0.15 0.13 0.16** 0.08
[500,+∞) 0.29** 0.12 0.12 0.17 0.03 0.07 0.001 0.14 0.22*** 0.09

Good Health 0.11 0.13 0.26 0.17 0.23*** 0.08 0.13 0.15 -0.11 0.10
Log(hourly wage) 0.42*** 0.07 0.16 0.14 0.26*** 0.05 0.41*** 0.12 0.03 0.06
Log(annual hours) 0.11* 0.06 -0.08 0.11 0.46*** 0.06 0.35*** 0.13 0.36*** 0.05
Tenure 0.18** 0.07 -0.13 0.14 0.02 0.06 0.04 0.11 0.16** 0.07
Pension 0.58*** 0.12 -0.11 0.19 -0.17** 0.08 -0.002 0.16 0.50*** 0.08
Tenure*Pension 0.02 0.09 0.21 0.16 0.19*** 0.06 0.08 0.11 -0.01 0.08
Region

Northeast (omitted)
Midwest -0.13 0.13 -0.13 0.19 0.04 0.08 -0.10 0.15 -0.16 0.10
South -0.17 0.12 -0.02 0.18 -0.07 0.07 -0.01 0.15 -0.06 0.09
West 0.14 0.12 -0.05 0.19 0.10 0.07 -0.07 0.14 0.05 0.09

Education
No degree (omitted)
High school 0.13 0.14 0.07 0.22 0.07 0.09 0.30** 0.15 0.08 0.10
College+ 0.01 0.16 0.02 0.25 0.08 0.10 0.29 0.18 0.02 0.12

Female -0.21** 0.09 -0.15 0.16 -0.19*** 0.05 -0.44*** 0.11 -0.43*** 0.08
Spouse Self-employed 0.08 0.09
Spouse Education

No degree (omitted)
High school -0.01 0.08
College+ -0.13 0.09

Spouse Full-Time -0.17** 0.07
Spouse Tenure -0.01 0.04
Spouse Tenure*Pension -0.07 0.04
Sample Size: N=4,354

Source: Health and Retirement Study;

Est. is short for Estimates, and S.E. is short for standard error;

*,**,*** represent the 10, 5, and 1 percentage significance level, respectively.

The sample size to estimate the first-stage probit regression is 163,538 person-periods, and

the sample size to estimate the second-stage regression is 33,721 person-periods.

Table A7 lists the estimates of these two stages. The coefficients of age, educa-

tion, race, gender, and marital status are statistically significant. Before age 60, aging



122

Table A6: Covariance Matrix Estimates
Parameter Estimate Std. Err.

ρ12 0.23 0.48
ρ13 0.92*** 0.37
ρ14 0.09 0.33
ρ15 1.61*** 0.59
ρ23 0.06 0.15
ρ24 0.58 0.46
ρ25 0.04 0.19
ρ34 0.01 0.46
ρ35 0.66*** 0.14
ρ45 0.67*** 0.18

Source: Health and Retirement Study;
*,**,*** represent the 10, 5, and 1 percentage
significance level, respectively.

significantly increases the probability of working, while after age 60, aging significantly

decreases the probability of working. Before age 53, aging significantly increases annual

wage, while after age 53, aging significantly decreases annual wage. Having more educa-

tion significantly increases annual wage and the probability of working. Whites and males

are more likely to choose to work and have higher wages than non-whites and females,

respectively. Being married significantly increases the probability of working for males

and significantly decreases the probability of working for females. Having more working

experience significantly increases annual wage.

A.6 AIME and Earnings History

In this subsection, I first describe the function that use a worker’s current AIME to update

his AIME in the next year. Then, I present the estimates of the modified AR(1) process

used to derive each spouse’s past earnings history.

A.6.1 AIME Updating Function

I can calculate each spouse’s AIME in the first wave (year 1992) using the labor income

history up to 1992. To calculate the AIME for future years, following French and Jones

(2011), I assume that spouse i’s annualized AIME in the next year is a function of his

annualized AIME, ∆it , labor income, witLit , and age, ait , in the current year,
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Table A7: Annual Wage Imputation Model Estimates
Probit (1st Stage) Wage (2nd Stage)

Variable Est. S.E. Est. S.E.
Age 0.388*** 0.101 0.939*** 0.049
Age2 -0.032*** 0.008 -0.094*** 0.004
Education

No degree (omitted)
High school degree 0.742*** 0.035 0.254*** 0.011
College degree+ 1.421*** 0.045 0.739*** 0.013

Race
White (omitted)
Black -0.150*** 0.041 -0.059*** 0.011
Other -0.280*** 0.067 -0.044** 0.017

Male 0.345*** 0.043 0.451*** 0.008
Married -0.308*** 0.027
Married*Male 0.646*** 0.045
Experience 0.346*** 0.011
Inverse Mills ratio 0.003 0.006
Constant 2.944*** 0.319 1.745*** 0.149
Sample Size N=163,538 N=33,721
Source: Health and Retirement Study;
Est. is short for Estimate, and S.E. is short for standard error;
Age equals real age divided by 10; Experience equals the log of working years;
*,**,*** represent the 10, 5, and 1 percentage significance level, respectively.

∆i,t+1 = (1+g1[ait≤60]Lit)∆it

+
1
35

max{0, witLit−αait (1+g1{ait≤60})∆it},

where g denotes the average real wage growth rate, set to 0.016. The parameter αait is the

same across people but varies with age. Table A8 lists the value of αait for different ages.

A.6.2 Earnings History

To calculate the AIME in 1992, I need a worker’s earnings history up to 1992. To construct

each spouse’s earnings history backward from the annual labor income in 1992, I assume

that a worker’s real annual labor income is serially correlated and follow a modified AR(1)

process (equation (4.13)). To estimate this process, I select husbands and wives who were

over age 20 in 1968 from the PSID data, and I track their earnings history until year 1988.

Table A9 shows the estimates of this modified AR(1) process. Labor incomes are

highly persistent, and the level of persistence is around 0.7. In addition, age, education, and
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Table A8: Value of αait by Age
Age αait

56 0.107
57 0.213
58 0.320
59 0.427
60 0.534
61 0.570
62 0.589
63 0.600
64 0.608
65 0.614
66 0.616
67 0.617
68 0.618
69 0.618
70 0.619
71 0.619

Source: French and Jones (2011).

race have significant effects on predicting labor income. Before age 60, aging significantly

increases the husbands’ labor income; while after age 60, aging significantly decreases the

husbands’ labor income. Age has similar effects on predicting the wives’ labor income; the

age cutoff for the wives is 50. Having more education significantly increases labor income.

Whites have higher labor incomes than non-whites.

A.7 Bargaining Power

I describe how to use the method developed by Friedberg and Webb (2006) to predict the

husband’s bargaining power relative to that of his wife. Let γn be the true bargaining power

in household n and assume that it is a function of household observables X γ
n . Let Rni rep-

resents spouse i’s response to the survey question, and let R∗ni be the underlying continuous

measure of Rni, which depends on the true bargaining power γn and some reporting bias

β
γ

i X γ
n ,

γn = αγX γ
n +uγ

n,

R∗ni = γn +β
γ

i X γ
n +uγ

ni = (αγ +β
γ

i )X
γ
n + ũni i ∈ {m, f}.

Based on the answer to the survey question, Rni, is defined as below
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Table A9: Modified AR(1) Process Estimates
Husband Wife

Variable Est. S.E. Est. S.E.
Labor Income next period 0.706*** 0.003 0.679*** 0.007
Age 0.024*** 0.001 0.009*** 0.002
Age2 -0.0002*** 0.00001 -0.00009*** 0.00002
Education

No degree (omitted)
High school degree 0.060*** 0.004 0.077*** 0.009
College degree+ 0.127*** 0.005 0.174*** 0.015

Race
White (omitted)
Black -0.068*** 0.004 -0.046*** 0.009
Other -0.022** 0.009 -0.054* 0.031

Constant 0.96*** 0.025 1.213*** 0.057
Sample Size N=51,491 N=10,473
Source: Panel Study of Income Dynamics;
Est. is short for Estimate, and S.E. is short for standard error;
*,**,*** represent the 10, 5, and 1 percentage significance level, respectively.

Rni =


1 i f husband has f inal say

0 i f about equal

−1 i f wi f e has f inal say.

Since R∗ni is the underlying continuous measure of Rni, the definition of Rni can be

rewritten as

Rni =


1 i f R∗ni > µ1

0 i f µ0 < R∗ni ≤ µ1

−1 i f R∗ni ≤ µ0.

Assume that ũni = (uγ

ni + uγ

i ) ∼ N(0, σ2
γ ), and cor(ũnm, ũn f ) = ργ . The parame-

ters (αγ +β
γ

i ),σγ ,ργ ,µ0,µ1 are identified by estimating the bivariate ordered probit model.

Then, αγ can be estimated after imposing the restriction β
γ
m +β

γ

f = 0. With the estimated

αγ , I can predict the value of the bargaining power γ̂n = α̂γX γ
n .

For each household in my sample, I impute the husband’s bargaining power relative

to that of his wife using the explanatory variables and parameter estimates provided by

Friedberg and Webb (2006).
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A.8 First Stage Parameter Estimates

I first present parameter estimates that affect the distribution of total medical expenses (see

A8.1). Then, I list parameter estimates that determine health transitions (see A8.2). Lastly,

I discuss parameter estimates that determine survival rates (see A8.3).

A.8.1 Total Medical Expenditure Parameter Estimates

As described in model section 3.4.2, I assume that each spouse’s total medical expenses

are generated by two separate processes: (1) whether each spouse has zero or positive total

medical expenses (equation (3.8)); and (2) the amount of total medical expenditures condi-

tional on having positive total medical expenditures (equation (3.9)). Tables A10 and A11

present estimates of parameters in the first and the second processes, respectively. In Table

A10, the binary (0/1) dependent variable equals 1 if a spouse has zero total medical ex-

penses. In Table A11, the dependent variable is the log of positive total medical expenses,

which is modeled as the sum of a mean function and a standard deviation function (equa-

tions (5.23)-(5.25)). The sign of parameters are as expected, and most of the estimates are

statistically significant. To put the size of the estimates into perspective, I compute the

AME (average marginal effect) for each of the variables.

The effects of health status, health insurance coverage, and employment status are

of particular interest. The estimates of the "Good Health" parameters indicate that being

in good health increases the probability of having zero total medical expenses. It also

decreases the mean and the variance of the distribution of the log positive medical expenses.

The AMEs of the "Good Health" variable show that, on average, being in good health

increases the probability of having zero medical expenses by 10.1 and 6.7 percentage points

for husbands and wives, respectively. Additionally, it decreases the expectation of positive

total medical expenses by $6,494.7 and $5,063.6 for husbands and wives, respectively.162

The estimates of health insurance coverage parameters imply that spouses who have

insurance coverage (either public or private) are more likely to have positive medical ex-

162Positive total medical expenses are the amount of total medical expenses conditional on having positive
medical expenses.
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Table A10: Parameter Estimates For The Probability Of Having Zero Total Medical Ex-
penses

Husband’s Equation Wife’s Equation
Variable Estimate S/E AME Estimate S/E AME
Age/10 Slope -0.004 -0.001

Age≤64 -0.50*** 0.03 -0.45*** 0.03
Age≥65 -0.03 0.05 0.11 0.09

Hispanic 0.35*** 0.04 0.058 0.29*** 0.05 0.032
Good Health 0.67*** 0.05 0.101 0.71*** 0.07 0.067
Full-time Work 0.26*** 0.05 0.062 0.22*** 0.07 0.046
Family Assets∗10−6 -3.29*** 0.36 -0.566 -2.37*** 0.45 -0.241
Race (White is omitted)

Black 0.32*** 0.05 0.051 0.21*** 0.06 0.024
Other 0.01 0.03 0.001 0.02 0.04 0.002

Education (less than high school is omitted)
High school -0.19*** 0.04 -0.027 -0.13*** 0.05 -0.014
College and above -0.37*** 0.05 -0.057 -0.33*** 0.06 -0.033

Health Insurance (having no insurance coverage is omitted)
Public HI -0.12** 0.06 -0.048 0.03 0.07 -0.015
Private HI -0.46*** 0.04 -0.085 -0.48*** 0.05 -0.053

Constant 1.35*** 0.17 0.51*** 0.19
Correlation Coefficient 0.37*** 0.02
Note: 1) *, **, and *** represent 10, 5 and 1 percent significance, respectively;

2) the columns labelled AME list average marginal effects of variables on the probability of
having zero total medical expenses;
3) the AME of the "Age/10 Slope" is the AME of increasing age by 1 year;
4) the AME of the "Family Assets" is the AME of increasing assets by 1%.

penses than those who have no insurance. The distribution of the log of positive total

medical expenses for those who have insurance has larger mean and variance than that for

those who have no insurance. For example, the AMEs of the "Private HI" variable show

that, on average, compared to having no health insurance coverage, having private cover-

age decreases the probability of having zero medical expenses by 8.5 and 5.3 percentage

points for husbands and wives, respectively. It also increases the expectation of positive

total medical expenses by $1,708.6 and $1,307.1 for husbands and wives, respectively.

The estimates of the "Full-time Work" parameters indicate that, on average, full-

time workers are more likely to have zero total medical expenses than retirees. The distri-

bution of the log of positive total medical expenses for full-time workers has smaller mean

and variance than the distribution for retirees. The AMEs of the "Full-time Work" variable
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Table A11: Parameter Estimates For Positive Total Medical Expenses
Mean Function(µ) S.D. Function(σ ) AME

Variable Estimate S/E Estimate S/E
Husband’s Equation
Age/10 Slope 60.8

Age≤64 0.37*** 0.02 -0.20*** 0.02
Age≥65 0.06 0.04 0.04* 0.02

Hispanic -0.22*** 0.05 -0.06* 0.03 -1,522.3
Good Health -0.97*** 0.04 -0.02 0.02 -6,494.7
Full-time Work -0.25*** 0.04 -0.07*** 0.02 -1,947.6
Family Assets*10−6 0.84*** 0.32 -0.15 0.19 3,367.2
Race (White is omitted)

Black -0.18*** 0.05 -0.002 0.03 -813.8
Other 0.30 0.03 0.01 0.02 1,803.7

Education (less than high school is omitted)
High school 0.31*** 0.04 -0.10*** 0.03 816.4
College and above 0.40*** 0.04 -0.18*** 0.03 644.4

Health Insurance (having no insurance coverage is omitted)
Public HI 0.38*** 0.04 0.14*** 0.03 2198.1
Private HI 0.48*** 0.04 -0.006 0.02 1708.6

Constant 5.09*** 0.15 2.72*** 0.11
Wife’s Equation
Age/10 Slope 38.9

Age≤64 0.22*** 0.02 -0.24*** 0.02
Age≥65 0.04 0.04 0.08*** 0.03

Hispanic -0.28*** 0.04 0.004 0.03 -1,061.1
Good Health -0.86*** 0.03 -0.04* 0.02 -5,063.6
Full-time Work -0.36*** 0.04 0.002 0.02 -1,599.2
Family Assets*10−6 1.7*** 0.26 -1.04*** 0.13 1,142.9
Race (White is omitted)

Black -0.22*** 0.05 0.10*** 0.03 -270.9
Other 0.37*** 0.02 0.03* 0.01 1,813.7

Education (less than high school is omitted)
High school 0.26*** 0.04 0.02 0.02 1,160.1
College and above 0.25*** 0.04 -0.03 0.02 809.2

Health Insurance (having no insurance coverage is omitted)
Public HI 0.30*** 0.04 0.17*** 0.02 1,867.3
Private HI 0.59*** 0.04 -0.12*** 0.02 1,307.1

Constant 5.98*** 0.13 2.76*** 0.10
Correlation Coefficient 0.13*** 0.01
Note: 1) *, **, and *** represent 10, 5 and 1 percent significance, respectively;

2) the column labelled AME lists average marginal effects of variables on the
expected positive total medical expenses, which equal exp{µ +0.5σ2}.
3) the AME of the "Age/10 Slope" is the AME of increasing age by 1 year;
4) the AME of the "Family Assets" is the AME of increasing assets by 1%.
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show that, on average, working full-time increases the probability of having zero total med-

ical expenses by 6.2 and 4.6 percentage points for husbands and wives, respectively. It also

decreases the expectation of total medical expenses by $1,947.6 and $1,599.2 for husband

and wives, respectively.

A.8.2 Health Transitions Parameter Estimates

Recall that I use a bivariate probit framework to model health status in the next period as a

function of current health insurance coverage, health status, age, race, and education degree

(equation (3.17)). Table A12 presents the estimates of parameters that affect health transi-

tions and the AME for each of the variables. Note that I include health status this period

as a factor that affects health status next period. Thus, health transition is the probability

of being in good health next period conditional on health status this period. The effects of

current health status and health insurance coverage are of particular interest. The AMEs of

the "Good Health" variable show that, on average, improving health status from bad to good

increases the probability of being in good health next period by 34.1 and 33.1 percentage

points for husbands and wives, respectively. Compared to people who lack health insurance

coverage, especially for those under age 65, being covered by public health insurance, on

average, decreases the probability of being in good health next period by 14.6 and 11.9

percentage points for husbands and wives, respectively. This might be because people who

are under age 65 and have access to public health insurance usually have poor health, and

their poor health either due to disability or lack of medical treatment (as a result of low

income). By contrast, compared to people who have no health insurance, being covered

by private health insurance increases the probability of being in good health next period by

1.8 and 2.5 percentage points for husbands and wives, respectively. This might be because

people who have private health insurance usually work full-time and have a better financial

situation, which makes them more likely to receive better health care, and thus makes them

more likely to be in good health next period.
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Table A12: Health Transitions Parameter Estimates
Husband’s Equation Wife’s Equation

Variable Estimate S/E AME Estimate S/E AME
Age 0.004 0.004

Age/10 0.19** 0.09 0.23*** 0.08
(Age/10)2 -0.03*** 0.01 0.006 0.09

Hispanic -0.23*** 0.03 -0.052 -0.33*** 0.03 -0.064
Good Health 1.47*** 0.02 0.341 1.64*** 0.02 0.331
Race (White is omitted)

Black -0.18*** 0.03 -0.042 -0.22*** 0.03 -0.046
Other -0.16*** 0.03 -0.036 -0.10*** 0.03 -0.019

Education (less than high school is omitted)
High school 0.25*** 0.02 0.065 0.33*** 0.02 0.078
College and above 0.52*** 0.03 0.127 0.59*** 0.03 0.129

Health Insurance (having no insurance coverage is omitted)
Public HI_65 -0.05* 0.03 -0.010 -0.004 0.03 -0.0002
Public HI_64 -0.62*** 0.04 -0.146 -0.59*** 0.05 -0.119
Private HI 0.08*** 0.02 0.018 0.12*** 0.02 0.025

Constant -0.74** 0.33 -1.04*** 0.25
Correlation Coefficient 0.13*** 0.01
Note: 1) *, **, and *** represent 10, 5 and 1 percent significance, respectively;

2) indicator variable Public HI_65 equals 1 if one has public insurance and age≥65;
3) indicator variable Public HI_64 equals 1 if one has public insurance and age≤64;
4) the columns labelled AME list average marginal effects of variables on the probability of
being in good health the next period.

A.8.3 Survival Rates Parameter Estimates

I also use a bivariate probit framework to model survival rates in the next period as a func-

tion of current health status, age, race, and education degree (equation (3.18)). Table A13

lists the estimated parameters that affect survival rates and the AME for each of the vari-

ables. For example, the estimates of the "Good Health" parameters indicate that spouses

who have good health this period are more likely to survive in the next period. The AMEs

of the "Good Health" variable show that, on average, improving health status from bad to

good increases the probability of being alive in the next period by 7.0 and 3.8 percentage

points for husbands and wives, respectively.
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Table A13: Survival Rates Parameter Estimates
Husband’s Equation Wife’s Equation

Variable Estimate S/E AME Estimate S/E AME
Age 0.003 0.002

Age/10 0.29** 0.12 0.51*** 0.13
(Age/10)2 -0.05*** 0.01 -0.005 -0.06 0.01 -0.003

Hispanic 0.21*** 0.04 0.020 0.29*** 0.06 0.015
Good Health 0.74*** 0.02 0.070 0.74*** 0.03 0.038
Race (White is omitted)

Black -0.04 0.03 -0.003 -0.07* 0.04 -0.004
Other -0.001 0.05 -0.0007 -0.11* 0.06 -0.006

Education (less than high school is omitted)
High school 0.005 0.02 0.0005 0.003 0.03 0.0002
College and above 0.11*** 0.03 0.010 0.12** 0.05 0.006

Constant 1.58** 0.44 0.99** 0.43
Correlation Coefficient 0.11*** 0.02
Note: 1) *, **, and *** represent 10, 5 and 1 percent significance, respectively;

2) the columns labelled AME list average marginal effects of variables on the probability of
being alive in the next period.
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